Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.76
      1 /*	$NetBSD: if_bnx.c,v 1.76 2019/04/04 08:16:24 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.76 2019/04/04 08:16:24 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 
    466 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    467 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    468 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    469 	    ? "Serdes " : "", sc->bnx_chipid);
    470 
    471 	/* Bus info. */
    472 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    473 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    474 		    sc->link_width);
    475 		switch (sc->link_speed) {
    476 		case 1: aprint_normal("2.5Gbps\n"); break;
    477 		case 2:	aprint_normal("5Gbps\n"); break;
    478 		default: aprint_normal("Unknown link speed\n");
    479 		}
    480 	} else {
    481 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    482 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    483 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    484 		    sc->bus_speed_mhz);
    485 	}
    486 
    487 	aprint_normal_dev(sc->bnx_dev,
    488 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    489 	    sc->bnx_rx_quick_cons_trip_int,
    490 	    sc->bnx_rx_quick_cons_trip,
    491 	    sc->bnx_rx_ticks_int,
    492 	    sc->bnx_rx_ticks,
    493 	    sc->bnx_tx_quick_cons_trip_int,
    494 	    sc->bnx_tx_quick_cons_trip,
    495 	    sc->bnx_tx_ticks_int,
    496 	    sc->bnx_tx_ticks);
    497 }
    498 
    499 
    500 /****************************************************************************/
    501 /* PCI Capabilities Probe Function.                                         */
    502 /*                                                                          */
    503 /* Walks the PCI capabiites list for the device to find what features are   */
    504 /* supported.                                                               */
    505 /*                                                                          */
    506 /* Returns:                                                                 */
    507 /*   None.                                                                  */
    508 /****************************************************************************/
    509 static void
    510 bnx_probe_pci_caps(struct bnx_softc *sc)
    511 {
    512 	struct pci_attach_args *pa = &(sc->bnx_pa);
    513 	pcireg_t reg;
    514 
    515 	/* Check if PCI-X capability is enabled. */
    516 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    517 		NULL) != 0) {
    518 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    519 	}
    520 
    521 	/* Check if PCIe capability is enabled. */
    522 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    523 		NULL) != 0) {
    524 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    525 		    reg + PCIE_LCSR);
    526 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    527 		    "0x%08X\n",	link_status);
    528 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    529 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    530 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    531 		sc->bnx_flags |= BNX_PCIE_FLAG;
    532 	}
    533 
    534 	/* Check if MSI capability is enabled. */
    535 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    536 		NULL) != 0)
    537 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    538 
    539 	/* Check if MSI-X capability is enabled. */
    540 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    541 		NULL) != 0)
    542 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    543 }
    544 
    545 
    546 /****************************************************************************/
    547 /* Device attach function.                                                  */
    548 /*                                                                          */
    549 /* Allocates device resources, performs secondary chip identification,      */
    550 /* resets and initializes the hardware, and initializes driver instance     */
    551 /* variables.                                                               */
    552 /*                                                                          */
    553 /* Returns:                                                                 */
    554 /*   0 on success, positive value on failure.                               */
    555 /****************************************************************************/
    556 void
    557 bnx_attach(device_t parent, device_t self, void *aux)
    558 {
    559 	const struct bnx_product *bp;
    560 	struct bnx_softc	*sc = device_private(self);
    561 	prop_dictionary_t	dict;
    562 	struct pci_attach_args	*pa = aux;
    563 	pci_chipset_tag_t	pc = pa->pa_pc;
    564 	pci_intr_handle_t	ih;
    565 	const char 		*intrstr = NULL;
    566 	uint32_t		command;
    567 	struct ifnet		*ifp;
    568 	uint32_t		val;
    569 	int			mii_flags = MIIF_FORCEANEG;
    570 	pcireg_t		memtype;
    571 	char intrbuf[PCI_INTRSTR_LEN];
    572 
    573 	if (bnx_tx_pool == NULL) {
    574 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    575 		if (bnx_tx_pool != NULL) {
    576 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    577 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    578 		} else {
    579 			aprint_error(": can't alloc bnx_tx_pool\n");
    580 			return;
    581 		}
    582 	}
    583 
    584 	bp = bnx_lookup(pa);
    585 	if (bp == NULL)
    586 		panic("unknown device");
    587 
    588 	sc->bnx_dev = self;
    589 
    590 	aprint_naive("\n");
    591 	aprint_normal(": %s\n", bp->bp_name);
    592 
    593 	sc->bnx_pa = *pa;
    594 
    595 	/*
    596 	 * Map control/status registers.
    597 	*/
    598 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    599 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    600 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    601 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    602 
    603 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    604 		aprint_error_dev(sc->bnx_dev,
    605 		    "failed to enable memory mapping!\n");
    606 		return;
    607 	}
    608 
    609 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    610 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    611 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    612 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    613 		return;
    614 	}
    615 
    616 	if (pci_intr_map(pa, &ih)) {
    617 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    618 		goto bnx_attach_fail;
    619 	}
    620 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    621 
    622 	/*
    623 	 * Configure byte swap and enable indirect register access.
    624 	 * Rely on CPU to do target byte swapping on big endian systems.
    625 	 * Access to registers outside of PCI configurtion space are not
    626 	 * valid until this is done.
    627 	 */
    628 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    629 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    630 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    631 
    632 	/* Save ASIC revsion info. */
    633 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    634 
    635 	/*
    636 	 * Find the base address for shared memory access.
    637 	 * Newer versions of bootcode use a signature and offset
    638 	 * while older versions use a fixed address.
    639 	 */
    640 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    641 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    642 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    643 		    (sc->bnx_pa.pa_function << 2));
    644 	else
    645 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    646 
    647 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    648 
    649 	/* Set initial device and PHY flags */
    650 	sc->bnx_flags = 0;
    651 	sc->bnx_phy_flags = 0;
    652 
    653 	bnx_probe_pci_caps(sc);
    654 
    655 	/* Get PCI bus information (speed and type). */
    656 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    657 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    658 		uint32_t clkreg;
    659 
    660 		sc->bnx_flags |= BNX_PCIX_FLAG;
    661 
    662 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    663 
    664 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    665 		switch (clkreg) {
    666 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    667 			sc->bus_speed_mhz = 133;
    668 			break;
    669 
    670 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    671 			sc->bus_speed_mhz = 100;
    672 			break;
    673 
    674 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    675 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    676 			sc->bus_speed_mhz = 66;
    677 			break;
    678 
    679 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    680 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    681 			sc->bus_speed_mhz = 50;
    682 			break;
    683 
    684 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    685 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    686 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    687 			sc->bus_speed_mhz = 33;
    688 			break;
    689 		}
    690 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    691 			sc->bus_speed_mhz = 66;
    692 		else
    693 			sc->bus_speed_mhz = 33;
    694 
    695 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    696 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    697 
    698 	/* Reset the controller. */
    699 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    700 		goto bnx_attach_fail;
    701 
    702 	/* Initialize the controller. */
    703 	if (bnx_chipinit(sc)) {
    704 		aprint_error_dev(sc->bnx_dev,
    705 		    "Controller initialization failed!\n");
    706 		goto bnx_attach_fail;
    707 	}
    708 
    709 	/* Perform NVRAM test. */
    710 	if (bnx_nvram_test(sc)) {
    711 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    712 		goto bnx_attach_fail;
    713 	}
    714 
    715 	/* Fetch the permanent Ethernet MAC address. */
    716 	bnx_get_mac_addr(sc);
    717 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    718 	    ether_sprintf(sc->eaddr));
    719 
    720 	/*
    721 	 * Trip points control how many BDs
    722 	 * should be ready before generating an
    723 	 * interrupt while ticks control how long
    724 	 * a BD can sit in the chain before
    725 	 * generating an interrupt.  Set the default
    726 	 * values for the RX and TX rings.
    727 	 */
    728 
    729 #ifdef BNX_DEBUG
    730 	/* Force more frequent interrupts. */
    731 	sc->bnx_tx_quick_cons_trip_int = 1;
    732 	sc->bnx_tx_quick_cons_trip     = 1;
    733 	sc->bnx_tx_ticks_int           = 0;
    734 	sc->bnx_tx_ticks               = 0;
    735 
    736 	sc->bnx_rx_quick_cons_trip_int = 1;
    737 	sc->bnx_rx_quick_cons_trip     = 1;
    738 	sc->bnx_rx_ticks_int           = 0;
    739 	sc->bnx_rx_ticks               = 0;
    740 #else
    741 	sc->bnx_tx_quick_cons_trip_int = 20;
    742 	sc->bnx_tx_quick_cons_trip     = 20;
    743 	sc->bnx_tx_ticks_int           = 80;
    744 	sc->bnx_tx_ticks               = 80;
    745 
    746 	sc->bnx_rx_quick_cons_trip_int = 6;
    747 	sc->bnx_rx_quick_cons_trip     = 6;
    748 	sc->bnx_rx_ticks_int           = 18;
    749 	sc->bnx_rx_ticks               = 18;
    750 #endif
    751 
    752 	/* Update statistics once every second. */
    753 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    754 
    755 	/* Find the media type for the adapter. */
    756 	bnx_get_media(sc);
    757 
    758 	/*
    759 	 * Store config data needed by the PHY driver for
    760 	 * backplane applications
    761 	 */
    762 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    763 	    BNX_SHARED_HW_CFG_CONFIG);
    764 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    765 	    BNX_PORT_HW_CFG_CONFIG);
    766 
    767 	/* Allocate DMA memory resources. */
    768 	sc->bnx_dmatag = pa->pa_dmat;
    769 	if (bnx_dma_alloc(sc)) {
    770 		aprint_error_dev(sc->bnx_dev,
    771 		    "DMA resource allocation failed!\n");
    772 		goto bnx_attach_fail;
    773 	}
    774 
    775 	/* Initialize the ifnet interface. */
    776 	ifp = &sc->bnx_ec.ec_if;
    777 	ifp->if_softc = sc;
    778 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    779 	ifp->if_ioctl = bnx_ioctl;
    780 	ifp->if_stop = bnx_stop;
    781 	ifp->if_start = bnx_start;
    782 	ifp->if_init = bnx_init;
    783 	ifp->if_watchdog = bnx_watchdog;
    784 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    785 	IFQ_SET_READY(&ifp->if_snd);
    786 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    787 
    788 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    789 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    790 
    791 	ifp->if_capabilities |=
    792 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    793 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    794 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    795 
    796 	/* create workqueue to handle packet allocations */
    797 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    798 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    799 		aprint_error_dev(self, "failed to create workqueue\n");
    800 		goto bnx_attach_fail;
    801 	}
    802 
    803 	sc->bnx_mii.mii_ifp = ifp;
    804 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    805 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    806 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    807 
    808 	/* Handle any special PHY initialization for SerDes PHYs. */
    809 	bnx_init_media(sc);
    810 
    811 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    812 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
    813 	    bnx_ifmedia_sts);
    814 
    815 	/* set phyflags and chipid before mii_attach() */
    816 	dict = device_properties(self);
    817 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    818 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    819 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    820 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    821 
    822 	/* Print some useful adapter info */
    823 	bnx_print_adapter_info(sc);
    824 
    825 	mii_flags |= MIIF_DOPAUSE;
    826 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    827 		mii_flags |= MIIF_HAVEFIBER;
    828 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    829 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    830 
    831 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    832 		aprint_error_dev(self, "no PHY found!\n");
    833 		ifmedia_add(&sc->bnx_mii.mii_media,
    834 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    835 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    836 	} else
    837 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    838 
    839 	/* Attach to the Ethernet interface list. */
    840 	if_attach(ifp);
    841 	if_deferred_start_init(ifp, NULL);
    842 	ether_ifattach(ifp,sc->eaddr);
    843 
    844 	callout_init(&sc->bnx_timeout, 0);
    845 
    846 	/* Hookup IRQ last. */
    847 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    848 	    sc, device_xname(self));
    849 	if (sc->bnx_intrhand == NULL) {
    850 		aprint_error_dev(self, "couldn't establish interrupt");
    851 		if (intrstr != NULL)
    852 			aprint_error(" at %s", intrstr);
    853 		aprint_error("\n");
    854 		goto bnx_attach_fail;
    855 	}
    856 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    857 
    858 	if (pmf_device_register(self, NULL, NULL))
    859 		pmf_class_network_register(self, ifp);
    860 	else
    861 		aprint_error_dev(self, "couldn't establish power handler\n");
    862 
    863 	/* Print some important debugging info. */
    864 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    865 
    866 	/* Get the firmware running so ASF still works. */
    867 	bnx_mgmt_init(sc);
    868 
    869 	goto bnx_attach_exit;
    870 
    871 bnx_attach_fail:
    872 	bnx_release_resources(sc);
    873 
    874 bnx_attach_exit:
    875 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    876 }
    877 
    878 /****************************************************************************/
    879 /* Device detach function.                                                  */
    880 /*                                                                          */
    881 /* Stops the controller, resets the controller, and releases resources.     */
    882 /*                                                                          */
    883 /* Returns:                                                                 */
    884 /*   0 on success, positive value on failure.                               */
    885 /****************************************************************************/
    886 int
    887 bnx_detach(device_t dev, int flags)
    888 {
    889 	int s;
    890 	struct bnx_softc *sc;
    891 	struct ifnet *ifp;
    892 
    893 	sc = device_private(dev);
    894 	ifp = &sc->bnx_ec.ec_if;
    895 
    896 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    897 
    898 	/* Stop and reset the controller. */
    899 	s = splnet();
    900 	bnx_stop(ifp, 1);
    901 	splx(s);
    902 
    903 	pmf_device_deregister(dev);
    904 	callout_destroy(&sc->bnx_timeout);
    905 	ether_ifdetach(ifp);
    906 	workqueue_destroy(sc->bnx_wq);
    907 
    908 	/* Delete all remaining media. */
    909 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    910 
    911 	if_detach(ifp);
    912 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    913 
    914 	/* Release all remaining resources. */
    915 	bnx_release_resources(sc);
    916 
    917 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    918 
    919 	return 0;
    920 }
    921 
    922 /****************************************************************************/
    923 /* Indirect register read.                                                  */
    924 /*                                                                          */
    925 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    926 /* configuration space.  Using this mechanism avoids issues with posted     */
    927 /* reads but is much slower than memory-mapped I/O.                         */
    928 /*                                                                          */
    929 /* Returns:                                                                 */
    930 /*   The value of the register.                                             */
    931 /****************************************************************************/
    932 uint32_t
    933 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    934 {
    935 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    936 
    937 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    938 	    offset);
    939 #ifdef BNX_DEBUG
    940 	{
    941 		uint32_t val;
    942 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    943 		    BNX_PCICFG_REG_WINDOW);
    944 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    945 		    "val = 0x%08X\n", __func__, offset, val);
    946 		return val;
    947 	}
    948 #else
    949 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    950 #endif
    951 }
    952 
    953 /****************************************************************************/
    954 /* Indirect register write.                                                 */
    955 /*                                                                          */
    956 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    957 /* configuration space.  Using this mechanism avoids issues with posted     */
    958 /* writes but is muchh slower than memory-mapped I/O.                       */
    959 /*                                                                          */
    960 /* Returns:                                                                 */
    961 /*   Nothing.                                                               */
    962 /****************************************************************************/
    963 void
    964 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    965 {
    966 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    967 
    968 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    969 		__func__, offset, val);
    970 
    971 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    972 	    offset);
    973 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    974 }
    975 
    976 /****************************************************************************/
    977 /* Context memory write.                                                    */
    978 /*                                                                          */
    979 /* The NetXtreme II controller uses context memory to track connection      */
    980 /* information for L2 and higher network protocols.                         */
    981 /*                                                                          */
    982 /* Returns:                                                                 */
    983 /*   Nothing.                                                               */
    984 /****************************************************************************/
    985 void
    986 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    987     uint32_t ctx_val)
    988 {
    989 	uint32_t idx, offset = ctx_offset + cid_addr;
    990 	uint32_t val, retry_cnt = 5;
    991 
    992 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    993 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    994 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    995 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    996 
    997 		for (idx = 0; idx < retry_cnt; idx++) {
    998 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    999 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1000 				break;
   1001 			DELAY(5);
   1002 		}
   1003 
   1004 #if 0
   1005 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1006 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1007 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1008 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1009 #endif
   1010 
   1011 	} else {
   1012 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1013 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1014 	}
   1015 }
   1016 
   1017 /****************************************************************************/
   1018 /* PHY register read.                                                       */
   1019 /*                                                                          */
   1020 /* Implements register reads on the MII bus.                                */
   1021 /*                                                                          */
   1022 /* Returns:                                                                 */
   1023 /*   The value of the register.                                             */
   1024 /****************************************************************************/
   1025 int
   1026 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1027 {
   1028 	struct bnx_softc	*sc = device_private(dev);
   1029 	uint32_t		data;
   1030 	int			i, rv = 0;
   1031 
   1032 	/*
   1033 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1034 	 * with special mappings to work with IEEE
   1035 	 * Clause 22 register accesses.
   1036 	 */
   1037 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1038 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1039 			reg += 0x10;
   1040 	}
   1041 
   1042 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1043 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1044 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1045 
   1046 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1047 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1048 
   1049 		DELAY(40);
   1050 	}
   1051 
   1052 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1053 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1054 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1055 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1056 
   1057 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1058 		DELAY(10);
   1059 
   1060 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1061 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1062 			DELAY(5);
   1063 
   1064 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1065 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1066 
   1067 			break;
   1068 		}
   1069 	}
   1070 
   1071 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1072 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1073 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1074 		rv = ETIMEDOUT;
   1075 	} else {
   1076 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1077 		*val = data & 0xffff;
   1078 
   1079 		DBPRINT(sc, BNX_EXCESSIVE,
   1080 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1081 		    phy, (uint16_t) reg & 0xffff, *val);
   1082 	}
   1083 
   1084 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1085 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1086 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1087 
   1088 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1089 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1090 
   1091 		DELAY(40);
   1092 	}
   1093 
   1094 	return rv;
   1095 }
   1096 
   1097 /****************************************************************************/
   1098 /* PHY register write.                                                      */
   1099 /*                                                                          */
   1100 /* Implements register writes on the MII bus.                               */
   1101 /*                                                                          */
   1102 /* Returns:                                                                 */
   1103 /*   The value of the register.                                             */
   1104 /****************************************************************************/
   1105 int
   1106 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1107 {
   1108 	struct bnx_softc	*sc = device_private(dev);
   1109 	uint32_t		val1;
   1110 	int			i, rv = 0;
   1111 
   1112 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1113 	    "val = 0x%04hX\n", __func__,
   1114 	    phy, (uint16_t) reg & 0xffff, val);
   1115 
   1116 	/*
   1117 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1118 	 * with special mappings to work with IEEE
   1119 	 * Clause 22 register accesses.
   1120 	 */
   1121 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1122 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1123 			reg += 0x10;
   1124 	}
   1125 
   1126 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1127 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1128 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1129 
   1130 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1131 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1132 
   1133 		DELAY(40);
   1134 	}
   1135 
   1136 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1137 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1138 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1139 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1140 
   1141 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1142 		DELAY(10);
   1143 
   1144 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1145 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1146 			DELAY(5);
   1147 			break;
   1148 		}
   1149 	}
   1150 
   1151 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1152 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1153 		    __LINE__);
   1154 		rv = ETIMEDOUT;
   1155 	}
   1156 
   1157 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1158 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1159 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1160 
   1161 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1162 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1163 
   1164 		DELAY(40);
   1165 	}
   1166 
   1167 	return rv;
   1168 }
   1169 
   1170 /****************************************************************************/
   1171 /* MII bus status change.                                                   */
   1172 /*                                                                          */
   1173 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1174 /* MAC interface registers.                                                 */
   1175 /*                                                                          */
   1176 /* Returns:                                                                 */
   1177 /*   Nothing.                                                               */
   1178 /****************************************************************************/
   1179 void
   1180 bnx_miibus_statchg(struct ifnet *ifp)
   1181 {
   1182 	struct bnx_softc	*sc = ifp->if_softc;
   1183 	struct mii_data		*mii = &sc->bnx_mii;
   1184 	uint32_t		rx_mode = sc->rx_mode;
   1185 	int			val;
   1186 
   1187 	val = REG_RD(sc, BNX_EMAC_MODE);
   1188 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1189 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1190 	    BNX_EMAC_MODE_25G);
   1191 
   1192 	/*
   1193 	 * Get flow control negotiation result.
   1194 	 */
   1195 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1196 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1197 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1198 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1199 	}
   1200 
   1201 	/* Set MII or GMII interface based on the speed
   1202 	 * negotiated by the PHY.
   1203 	 */
   1204 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1205 	case IFM_10_T:
   1206 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1207 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1208 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1209 			break;
   1210 		}
   1211 		/* FALLTHROUGH */
   1212 	case IFM_100_TX:
   1213 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1214 		val |= BNX_EMAC_MODE_PORT_MII;
   1215 		break;
   1216 	case IFM_2500_SX:
   1217 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1218 		val |= BNX_EMAC_MODE_25G;
   1219 		/* FALLTHROUGH */
   1220 	case IFM_1000_T:
   1221 	case IFM_1000_SX:
   1222 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1223 		val |= BNX_EMAC_MODE_PORT_GMII;
   1224 		break;
   1225 	default:
   1226 		val |= BNX_EMAC_MODE_PORT_GMII;
   1227 		break;
   1228 	}
   1229 
   1230 	/* Set half or full duplex based on the duplicity
   1231 	 * negotiated by the PHY.
   1232 	 */
   1233 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1234 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1235 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1236 	} else
   1237 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1238 
   1239 	REG_WR(sc, BNX_EMAC_MODE, val);
   1240 
   1241 	/*
   1242 	 * 802.3x flow control
   1243 	 */
   1244 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1245 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1246 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1247 	} else {
   1248 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1249 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1250 	}
   1251 
   1252 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1253 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1254 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1255 	} else {
   1256 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1257 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1258 	}
   1259 
   1260 	/* Only make changes if the recive mode has actually changed. */
   1261 	if (rx_mode != sc->rx_mode) {
   1262 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1263 		    rx_mode);
   1264 
   1265 		sc->rx_mode = rx_mode;
   1266 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1267 
   1268 		bnx_init_rx_context(sc);
   1269 	}
   1270 }
   1271 
   1272 /****************************************************************************/
   1273 /* Acquire NVRAM lock.                                                      */
   1274 /*                                                                          */
   1275 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1276 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1277 /* for use by the driver.                                                   */
   1278 /*                                                                          */
   1279 /* Returns:                                                                 */
   1280 /*   0 on success, positive value on failure.                               */
   1281 /****************************************************************************/
   1282 int
   1283 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1284 {
   1285 	uint32_t		val;
   1286 	int			j;
   1287 
   1288 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1289 
   1290 	/* Request access to the flash interface. */
   1291 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1292 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1293 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1294 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1295 			break;
   1296 
   1297 		DELAY(5);
   1298 	}
   1299 
   1300 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1301 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1302 		return EBUSY;
   1303 	}
   1304 
   1305 	return 0;
   1306 }
   1307 
   1308 /****************************************************************************/
   1309 /* Release NVRAM lock.                                                      */
   1310 /*                                                                          */
   1311 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1312 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1313 /* for use by the driver.                                                   */
   1314 /*                                                                          */
   1315 /* Returns:                                                                 */
   1316 /*   0 on success, positive value on failure.                               */
   1317 /****************************************************************************/
   1318 int
   1319 bnx_release_nvram_lock(struct bnx_softc *sc)
   1320 {
   1321 	int			j;
   1322 	uint32_t		val;
   1323 
   1324 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1325 
   1326 	/* Relinquish nvram interface. */
   1327 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1328 
   1329 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1330 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1331 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1332 			break;
   1333 
   1334 		DELAY(5);
   1335 	}
   1336 
   1337 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1338 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1339 		return EBUSY;
   1340 	}
   1341 
   1342 	return 0;
   1343 }
   1344 
   1345 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1346 /****************************************************************************/
   1347 /* Enable NVRAM write access.                                               */
   1348 /*                                                                          */
   1349 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1350 /*                                                                          */
   1351 /* Returns:                                                                 */
   1352 /*   0 on success, positive value on failure.                               */
   1353 /****************************************************************************/
   1354 int
   1355 bnx_enable_nvram_write(struct bnx_softc *sc)
   1356 {
   1357 	uint32_t		val;
   1358 
   1359 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1360 
   1361 	val = REG_RD(sc, BNX_MISC_CFG);
   1362 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1363 
   1364 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1365 		int j;
   1366 
   1367 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1368 		REG_WR(sc, BNX_NVM_COMMAND,
   1369 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1370 
   1371 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1372 			DELAY(5);
   1373 
   1374 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1375 			if (val & BNX_NVM_COMMAND_DONE)
   1376 				break;
   1377 		}
   1378 
   1379 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1380 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1381 			return EBUSY;
   1382 		}
   1383 	}
   1384 
   1385 	return 0;
   1386 }
   1387 
   1388 /****************************************************************************/
   1389 /* Disable NVRAM write access.                                              */
   1390 /*                                                                          */
   1391 /* When the caller is finished writing to NVRAM write access must be        */
   1392 /* disabled.                                                                */
   1393 /*                                                                          */
   1394 /* Returns:                                                                 */
   1395 /*   Nothing.                                                               */
   1396 /****************************************************************************/
   1397 void
   1398 bnx_disable_nvram_write(struct bnx_softc *sc)
   1399 {
   1400 	uint32_t		val;
   1401 
   1402 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1403 
   1404 	val = REG_RD(sc, BNX_MISC_CFG);
   1405 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1406 }
   1407 #endif
   1408 
   1409 /****************************************************************************/
   1410 /* Enable NVRAM access.                                                     */
   1411 /*                                                                          */
   1412 /* Before accessing NVRAM for read or write operations the caller must      */
   1413 /* enabled NVRAM access.                                                    */
   1414 /*                                                                          */
   1415 /* Returns:                                                                 */
   1416 /*   Nothing.                                                               */
   1417 /****************************************************************************/
   1418 void
   1419 bnx_enable_nvram_access(struct bnx_softc *sc)
   1420 {
   1421 	uint32_t		val;
   1422 
   1423 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1424 
   1425 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1426 	/* Enable both bits, even on read. */
   1427 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1428 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1429 }
   1430 
   1431 /****************************************************************************/
   1432 /* Disable NVRAM access.                                                    */
   1433 /*                                                                          */
   1434 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1435 /*                                                                          */
   1436 /* Returns:                                                                 */
   1437 /*   Nothing.                                                               */
   1438 /****************************************************************************/
   1439 void
   1440 bnx_disable_nvram_access(struct bnx_softc *sc)
   1441 {
   1442 	uint32_t		val;
   1443 
   1444 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1445 
   1446 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1447 
   1448 	/* Disable both bits, even after read. */
   1449 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1450 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1451 }
   1452 
   1453 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1454 /****************************************************************************/
   1455 /* Erase NVRAM page before writing.                                         */
   1456 /*                                                                          */
   1457 /* Non-buffered flash parts require that a page be erased before it is      */
   1458 /* written.                                                                 */
   1459 /*                                                                          */
   1460 /* Returns:                                                                 */
   1461 /*   0 on success, positive value on failure.                               */
   1462 /****************************************************************************/
   1463 int
   1464 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1465 {
   1466 	uint32_t		cmd;
   1467 	int			j;
   1468 
   1469 	/* Buffered flash doesn't require an erase. */
   1470 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1471 		return 0;
   1472 
   1473 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1474 
   1475 	/* Build an erase command. */
   1476 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1477 	    BNX_NVM_COMMAND_DOIT;
   1478 
   1479 	/*
   1480 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1481 	 * and issue the erase command.
   1482 	 */
   1483 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1484 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1485 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1486 
   1487 	/* Wait for completion. */
   1488 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1489 		uint32_t val;
   1490 
   1491 		DELAY(5);
   1492 
   1493 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1494 		if (val & BNX_NVM_COMMAND_DONE)
   1495 			break;
   1496 	}
   1497 
   1498 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1499 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1500 		return EBUSY;
   1501 	}
   1502 
   1503 	return 0;
   1504 }
   1505 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1506 
   1507 /****************************************************************************/
   1508 /* Read a dword (32 bits) from NVRAM.                                       */
   1509 /*                                                                          */
   1510 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1511 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1512 /*                                                                          */
   1513 /* Returns:                                                                 */
   1514 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1515 /****************************************************************************/
   1516 int
   1517 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1518     uint8_t *ret_val, uint32_t cmd_flags)
   1519 {
   1520 	uint32_t		cmd;
   1521 	int			i, rc = 0;
   1522 
   1523 	/* Build the command word. */
   1524 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1525 
   1526 	/* Calculate the offset for buffered flash if translation is used. */
   1527 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1528 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1529 		    sc->bnx_flash_info->page_bits) +
   1530 		    (offset % sc->bnx_flash_info->page_size);
   1531 	}
   1532 
   1533 	/*
   1534 	 * Clear the DONE bit separately, set the address to read,
   1535 	 * and issue the read.
   1536 	 */
   1537 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1538 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1539 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1540 
   1541 	/* Wait for completion. */
   1542 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1543 		uint32_t val;
   1544 
   1545 		DELAY(5);
   1546 
   1547 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1548 		if (val & BNX_NVM_COMMAND_DONE) {
   1549 			val = REG_RD(sc, BNX_NVM_READ);
   1550 
   1551 			val = bnx_be32toh(val);
   1552 			memcpy(ret_val, &val, 4);
   1553 			break;
   1554 		}
   1555 	}
   1556 
   1557 	/* Check for errors. */
   1558 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1559 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1560 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1561 		rc = EBUSY;
   1562 	}
   1563 
   1564 	return rc;
   1565 }
   1566 
   1567 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1568 /****************************************************************************/
   1569 /* Write a dword (32 bits) to NVRAM.                                        */
   1570 /*                                                                          */
   1571 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1572 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1573 /* enabled NVRAM write access.                                              */
   1574 /*                                                                          */
   1575 /* Returns:                                                                 */
   1576 /*   0 on success, positive value on failure.                               */
   1577 /****************************************************************************/
   1578 int
   1579 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1580     uint32_t cmd_flags)
   1581 {
   1582 	uint32_t		cmd, val32;
   1583 	int			j;
   1584 
   1585 	/* Build the command word. */
   1586 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1587 
   1588 	/* Calculate the offset for buffered flash if translation is used. */
   1589 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1590 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1591 		    sc->bnx_flash_info->page_bits) +
   1592 		    (offset % sc->bnx_flash_info->page_size);
   1593 	}
   1594 
   1595 	/*
   1596 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1597 	 * set the NVRAM address to write, and issue the write command
   1598 	 */
   1599 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1600 	memcpy(&val32, val, 4);
   1601 	val32 = htobe32(val32);
   1602 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1603 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1604 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1605 
   1606 	/* Wait for completion. */
   1607 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1608 		DELAY(5);
   1609 
   1610 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1611 			break;
   1612 	}
   1613 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1614 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1615 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1616 		return EBUSY;
   1617 	}
   1618 
   1619 	return 0;
   1620 }
   1621 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1622 
   1623 /****************************************************************************/
   1624 /* Initialize NVRAM access.                                                 */
   1625 /*                                                                          */
   1626 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1627 /* access that device.                                                      */
   1628 /*                                                                          */
   1629 /* Returns:                                                                 */
   1630 /*   0 on success, positive value on failure.                               */
   1631 /****************************************************************************/
   1632 int
   1633 bnx_init_nvram(struct bnx_softc *sc)
   1634 {
   1635 	uint32_t		val;
   1636 	int			j, entry_count, rc = 0;
   1637 	struct flash_spec	*flash;
   1638 
   1639 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1640 
   1641 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1642 		sc->bnx_flash_info = &flash_5709;
   1643 		goto bnx_init_nvram_get_flash_size;
   1644 	}
   1645 
   1646 	/* Determine the selected interface. */
   1647 	val = REG_RD(sc, BNX_NVM_CFG1);
   1648 
   1649 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1650 
   1651 	/*
   1652 	 * Flash reconfiguration is required to support additional
   1653 	 * NVRAM devices not directly supported in hardware.
   1654 	 * Check if the flash interface was reconfigured
   1655 	 * by the bootcode.
   1656 	 */
   1657 
   1658 	if (val & 0x40000000) {
   1659 		/* Flash interface reconfigured by bootcode. */
   1660 
   1661 		DBPRINT(sc,BNX_INFO_LOAD,
   1662 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1663 
   1664 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1665 		     j++, flash++) {
   1666 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1667 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1668 				sc->bnx_flash_info = flash;
   1669 				break;
   1670 			}
   1671 		}
   1672 	} else {
   1673 		/* Flash interface not yet reconfigured. */
   1674 		uint32_t mask;
   1675 
   1676 		DBPRINT(sc,BNX_INFO_LOAD,
   1677 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1678 
   1679 		if (val & (1 << 23))
   1680 			mask = FLASH_BACKUP_STRAP_MASK;
   1681 		else
   1682 			mask = FLASH_STRAP_MASK;
   1683 
   1684 		/* Look for the matching NVRAM device configuration data. */
   1685 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1686 		    j++, flash++) {
   1687 			/* Check if the dev matches any of the known devices. */
   1688 			if ((val & mask) == (flash->strapping & mask)) {
   1689 				/* Found a device match. */
   1690 				sc->bnx_flash_info = flash;
   1691 
   1692 				/* Request access to the flash interface. */
   1693 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1694 					return rc;
   1695 
   1696 				/* Reconfigure the flash interface. */
   1697 				bnx_enable_nvram_access(sc);
   1698 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1699 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1700 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1701 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1702 				bnx_disable_nvram_access(sc);
   1703 				bnx_release_nvram_lock(sc);
   1704 
   1705 				break;
   1706 			}
   1707 		}
   1708 	}
   1709 
   1710 	/* Check if a matching device was found. */
   1711 	if (j == entry_count) {
   1712 		sc->bnx_flash_info = NULL;
   1713 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1714 			__FILE__, __LINE__);
   1715 		rc = ENODEV;
   1716 	}
   1717 
   1718 bnx_init_nvram_get_flash_size:
   1719 	/* Write the flash config data to the shared memory interface. */
   1720 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1721 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1722 	if (val)
   1723 		sc->bnx_flash_size = val;
   1724 	else
   1725 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1726 
   1727 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1728 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1729 
   1730 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1731 
   1732 	return rc;
   1733 }
   1734 
   1735 /****************************************************************************/
   1736 /* Read an arbitrary range of data from NVRAM.                              */
   1737 /*                                                                          */
   1738 /* Prepares the NVRAM interface for access and reads the requested data     */
   1739 /* into the supplied buffer.                                                */
   1740 /*                                                                          */
   1741 /* Returns:                                                                 */
   1742 /*   0 on success and the data read, positive value on failure.             */
   1743 /****************************************************************************/
   1744 int
   1745 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1746     int buf_size)
   1747 {
   1748 	int			rc = 0;
   1749 	uint32_t		cmd_flags, offset32, len32, extra;
   1750 
   1751 	if (buf_size == 0)
   1752 		return 0;
   1753 
   1754 	/* Request access to the flash interface. */
   1755 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1756 		return rc;
   1757 
   1758 	/* Enable access to flash interface */
   1759 	bnx_enable_nvram_access(sc);
   1760 
   1761 	len32 = buf_size;
   1762 	offset32 = offset;
   1763 	extra = 0;
   1764 
   1765 	cmd_flags = 0;
   1766 
   1767 	if (offset32 & 3) {
   1768 		uint8_t buf[4];
   1769 		uint32_t pre_len;
   1770 
   1771 		offset32 &= ~3;
   1772 		pre_len = 4 - (offset & 3);
   1773 
   1774 		if (pre_len >= len32) {
   1775 			pre_len = len32;
   1776 			cmd_flags =
   1777 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1778 		} else
   1779 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1780 
   1781 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1782 
   1783 		if (rc)
   1784 			return rc;
   1785 
   1786 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1787 
   1788 		offset32 += 4;
   1789 		ret_buf += pre_len;
   1790 		len32 -= pre_len;
   1791 	}
   1792 
   1793 	if (len32 & 3) {
   1794 		extra = 4 - (len32 & 3);
   1795 		len32 = (len32 + 4) & ~3;
   1796 	}
   1797 
   1798 	if (len32 == 4) {
   1799 		uint8_t buf[4];
   1800 
   1801 		if (cmd_flags)
   1802 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1803 		else
   1804 			cmd_flags =
   1805 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1806 
   1807 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1808 
   1809 		memcpy(ret_buf, buf, 4 - extra);
   1810 	} else if (len32 > 0) {
   1811 		uint8_t buf[4];
   1812 
   1813 		/* Read the first word. */
   1814 		if (cmd_flags)
   1815 			cmd_flags = 0;
   1816 		else
   1817 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1818 
   1819 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1820 
   1821 		/* Advance to the next dword. */
   1822 		offset32 += 4;
   1823 		ret_buf += 4;
   1824 		len32 -= 4;
   1825 
   1826 		while (len32 > 4 && rc == 0) {
   1827 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1828 
   1829 			/* Advance to the next dword. */
   1830 			offset32 += 4;
   1831 			ret_buf += 4;
   1832 			len32 -= 4;
   1833 		}
   1834 
   1835 		if (rc)
   1836 			return rc;
   1837 
   1838 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1839 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1840 
   1841 		memcpy(ret_buf, buf, 4 - extra);
   1842 	}
   1843 
   1844 	/* Disable access to flash interface and release the lock. */
   1845 	bnx_disable_nvram_access(sc);
   1846 	bnx_release_nvram_lock(sc);
   1847 
   1848 	return rc;
   1849 }
   1850 
   1851 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1852 /****************************************************************************/
   1853 /* Write an arbitrary range of data from NVRAM.                             */
   1854 /*                                                                          */
   1855 /* Prepares the NVRAM interface for write access and writes the requested   */
   1856 /* data from the supplied buffer.  The caller is responsible for            */
   1857 /* calculating any appropriate CRCs.                                        */
   1858 /*                                                                          */
   1859 /* Returns:                                                                 */
   1860 /*   0 on success, positive value on failure.                               */
   1861 /****************************************************************************/
   1862 int
   1863 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1864     int buf_size)
   1865 {
   1866 	uint32_t		written, offset32, len32;
   1867 	uint8_t		*buf, start[4], end[4];
   1868 	int			rc = 0;
   1869 	int			align_start, align_end;
   1870 
   1871 	buf = data_buf;
   1872 	offset32 = offset;
   1873 	len32 = buf_size;
   1874 	align_start = align_end = 0;
   1875 
   1876 	if ((align_start = (offset32 & 3))) {
   1877 		offset32 &= ~3;
   1878 		len32 += align_start;
   1879 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1880 			return rc;
   1881 	}
   1882 
   1883 	if (len32 & 3) {
   1884 		if ((len32 > 4) || !align_start) {
   1885 			align_end = 4 - (len32 & 3);
   1886 			len32 += align_end;
   1887 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1888 			    end, 4)))
   1889 				return rc;
   1890 		}
   1891 	}
   1892 
   1893 	if (align_start || align_end) {
   1894 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1895 		if (buf == NULL)
   1896 			return ENOMEM;
   1897 
   1898 		if (align_start)
   1899 			memcpy(buf, start, 4);
   1900 
   1901 		if (align_end)
   1902 			memcpy(buf + len32 - 4, end, 4);
   1903 
   1904 		memcpy(buf + align_start, data_buf, buf_size);
   1905 	}
   1906 
   1907 	written = 0;
   1908 	while ((written < len32) && (rc == 0)) {
   1909 		uint32_t page_start, page_end, data_start, data_end;
   1910 		uint32_t addr, cmd_flags;
   1911 		int i;
   1912 		uint8_t flash_buffer[264];
   1913 
   1914 	    /* Find the page_start addr */
   1915 		page_start = offset32 + written;
   1916 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1917 		/* Find the page_end addr */
   1918 		page_end = page_start + sc->bnx_flash_info->page_size;
   1919 		/* Find the data_start addr */
   1920 		data_start = (written == 0) ? offset32 : page_start;
   1921 		/* Find the data_end addr */
   1922 		data_end = (page_end > offset32 + len32) ?
   1923 		    (offset32 + len32) : page_end;
   1924 
   1925 		/* Request access to the flash interface. */
   1926 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1927 			goto nvram_write_end;
   1928 
   1929 		/* Enable access to flash interface */
   1930 		bnx_enable_nvram_access(sc);
   1931 
   1932 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1933 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1934 			int j;
   1935 
   1936 			/* Read the whole page into the buffer
   1937 			 * (non-buffer flash only) */
   1938 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1939 				if (j == (sc->bnx_flash_info->page_size - 4))
   1940 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1941 
   1942 				rc = bnx_nvram_read_dword(sc,
   1943 					page_start + j,
   1944 					&flash_buffer[j],
   1945 					cmd_flags);
   1946 
   1947 				if (rc)
   1948 					goto nvram_write_end;
   1949 
   1950 				cmd_flags = 0;
   1951 			}
   1952 		}
   1953 
   1954 		/* Enable writes to flash interface (unlock write-protect) */
   1955 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1956 			goto nvram_write_end;
   1957 
   1958 		/* Erase the page */
   1959 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1960 			goto nvram_write_end;
   1961 
   1962 		/* Re-enable the write again for the actual write */
   1963 		bnx_enable_nvram_write(sc);
   1964 
   1965 		/* Loop to write back the buffer data from page_start to
   1966 		 * data_start */
   1967 		i = 0;
   1968 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1969 			for (addr = page_start; addr < data_start;
   1970 				addr += 4, i += 4) {
   1971 
   1972 				rc = bnx_nvram_write_dword(sc, addr,
   1973 				    &flash_buffer[i], cmd_flags);
   1974 
   1975 				if (rc != 0)
   1976 					goto nvram_write_end;
   1977 
   1978 				cmd_flags = 0;
   1979 			}
   1980 		}
   1981 
   1982 		/* Loop to write the new data from data_start to data_end */
   1983 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1984 			if ((addr == page_end - 4) ||
   1985 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1986 			    && (addr == data_end - 4))) {
   1987 
   1988 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1989 			}
   1990 
   1991 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1992 
   1993 			if (rc != 0)
   1994 				goto nvram_write_end;
   1995 
   1996 			cmd_flags = 0;
   1997 			buf += 4;
   1998 		}
   1999 
   2000 		/* Loop to write back the buffer data from data_end
   2001 		 * to page_end */
   2002 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2003 			for (addr = data_end; addr < page_end;
   2004 			    addr += 4, i += 4) {
   2005 
   2006 				if (addr == page_end-4)
   2007 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2008 
   2009 				rc = bnx_nvram_write_dword(sc, addr,
   2010 				    &flash_buffer[i], cmd_flags);
   2011 
   2012 				if (rc != 0)
   2013 					goto nvram_write_end;
   2014 
   2015 				cmd_flags = 0;
   2016 			}
   2017 		}
   2018 
   2019 		/* Disable writes to flash interface (lock write-protect) */
   2020 		bnx_disable_nvram_write(sc);
   2021 
   2022 		/* Disable access to flash interface */
   2023 		bnx_disable_nvram_access(sc);
   2024 		bnx_release_nvram_lock(sc);
   2025 
   2026 		/* Increment written */
   2027 		written += data_end - data_start;
   2028 	}
   2029 
   2030 nvram_write_end:
   2031 	if (align_start || align_end)
   2032 		free(buf, M_DEVBUF);
   2033 
   2034 	return rc;
   2035 }
   2036 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2037 
   2038 /****************************************************************************/
   2039 /* Verifies that NVRAM is accessible and contains valid data.               */
   2040 /*                                                                          */
   2041 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2042 /* correct.                                                                 */
   2043 /*                                                                          */
   2044 /* Returns:                                                                 */
   2045 /*   0 on success, positive value on failure.                               */
   2046 /****************************************************************************/
   2047 int
   2048 bnx_nvram_test(struct bnx_softc *sc)
   2049 {
   2050 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2051 	uint8_t		*data = (uint8_t *) buf;
   2052 	int			rc = 0;
   2053 	uint32_t		magic, csum;
   2054 
   2055 	/*
   2056 	 * Check that the device NVRAM is valid by reading
   2057 	 * the magic value at offset 0.
   2058 	 */
   2059 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2060 		goto bnx_nvram_test_done;
   2061 
   2062 	magic = bnx_be32toh(buf[0]);
   2063 	if (magic != BNX_NVRAM_MAGIC) {
   2064 		rc = ENODEV;
   2065 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2066 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2067 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2068 		goto bnx_nvram_test_done;
   2069 	}
   2070 
   2071 	/*
   2072 	 * Verify that the device NVRAM includes valid
   2073 	 * configuration data.
   2074 	 */
   2075 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2076 		goto bnx_nvram_test_done;
   2077 
   2078 	csum = ether_crc32_le(data, 0x100);
   2079 	if (csum != BNX_CRC32_RESIDUAL) {
   2080 		rc = ENODEV;
   2081 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2082 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2083 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2084 		goto bnx_nvram_test_done;
   2085 	}
   2086 
   2087 	csum = ether_crc32_le(data + 0x100, 0x100);
   2088 	if (csum != BNX_CRC32_RESIDUAL) {
   2089 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2090 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2091 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2092 		rc = ENODEV;
   2093 	}
   2094 
   2095 bnx_nvram_test_done:
   2096 	return rc;
   2097 }
   2098 
   2099 /****************************************************************************/
   2100 /* Identifies the current media type of the controller and sets the PHY     */
   2101 /* address.                                                                 */
   2102 /*                                                                          */
   2103 /* Returns:                                                                 */
   2104 /*   Nothing.                                                               */
   2105 /****************************************************************************/
   2106 void
   2107 bnx_get_media(struct bnx_softc *sc)
   2108 {
   2109 	sc->bnx_phy_addr = 1;
   2110 
   2111 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2112 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2113 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2114 		uint32_t strap;
   2115 
   2116 		/*
   2117 		 * The BCM5709S is software configurable
   2118 		 * for Copper or SerDes operation.
   2119 		 */
   2120 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2121 			DBPRINT(sc, BNX_INFO_LOAD,
   2122 			    "5709 bonded for copper.\n");
   2123 			goto bnx_get_media_exit;
   2124 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2125 			DBPRINT(sc, BNX_INFO_LOAD,
   2126 			    "5709 bonded for dual media.\n");
   2127 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2128 			goto bnx_get_media_exit;
   2129 		}
   2130 
   2131 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2132 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2133 		else {
   2134 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2135 			    >> 8;
   2136 		}
   2137 
   2138 		if (sc->bnx_pa.pa_function == 0) {
   2139 			switch (strap) {
   2140 			case 0x4:
   2141 			case 0x5:
   2142 			case 0x6:
   2143 				DBPRINT(sc, BNX_INFO_LOAD,
   2144 					"BCM5709 s/w configured for SerDes.\n");
   2145 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2146 				break;
   2147 			default:
   2148 				DBPRINT(sc, BNX_INFO_LOAD,
   2149 					"BCM5709 s/w configured for Copper.\n");
   2150 			}
   2151 		} else {
   2152 			switch (strap) {
   2153 			case 0x1:
   2154 			case 0x2:
   2155 			case 0x4:
   2156 				DBPRINT(sc, BNX_INFO_LOAD,
   2157 					"BCM5709 s/w configured for SerDes.\n");
   2158 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2159 				break;
   2160 			default:
   2161 				DBPRINT(sc, BNX_INFO_LOAD,
   2162 					"BCM5709 s/w configured for Copper.\n");
   2163 			}
   2164 		}
   2165 
   2166 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2167 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2168 
   2169 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2170 		uint32_t val;
   2171 
   2172 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2173 
   2174 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2175 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2176 
   2177 		/*
   2178 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2179 		 * separate PHY for SerDes.
   2180 		 */
   2181 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2182 			sc->bnx_phy_addr = 2;
   2183 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2184 				 BNX_SHARED_HW_CFG_CONFIG);
   2185 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2186 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2187 				DBPRINT(sc, BNX_INFO_LOAD,
   2188 				    "Found 2.5Gb capable adapter\n");
   2189 			}
   2190 		}
   2191 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2192 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2193 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2194 
   2195 bnx_get_media_exit:
   2196 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2197 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2198 }
   2199 
   2200 /****************************************************************************/
   2201 /* Performs PHY initialization required before MII drivers access the       */
   2202 /* device.                                                                  */
   2203 /*                                                                          */
   2204 /* Returns:                                                                 */
   2205 /*   Nothing.                                                               */
   2206 /****************************************************************************/
   2207 void
   2208 bnx_init_media(struct bnx_softc *sc)
   2209 {
   2210 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2211 		/*
   2212 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2213 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2214 		 * the PHY to the mii(4) layer. PHY specific configuration
   2215 		 * is done by the mii(4) layer.
   2216 		 */
   2217 
   2218 		/* Select auto-negotiation MMD of the PHY. */
   2219 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2220 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2221 
   2222 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2223 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2224 
   2225 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2226 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2227 	}
   2228 }
   2229 
   2230 /****************************************************************************/
   2231 /* Free any DMA memory owned by the driver.                                 */
   2232 /*                                                                          */
   2233 /* Scans through each data structre that requires DMA memory and frees      */
   2234 /* the memory if allocated.                                                 */
   2235 /*                                                                          */
   2236 /* Returns:                                                                 */
   2237 /*   Nothing.                                                               */
   2238 /****************************************************************************/
   2239 void
   2240 bnx_dma_free(struct bnx_softc *sc)
   2241 {
   2242 	int			i;
   2243 
   2244 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2245 
   2246 	/* Destroy the status block. */
   2247 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2248 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2249 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2250 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2251 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2252 		    BNX_STATUS_BLK_SZ);
   2253 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2254 		    sc->status_rseg);
   2255 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2256 		sc->status_block = NULL;
   2257 		sc->status_map = NULL;
   2258 	}
   2259 
   2260 	/* Destroy the statistics block. */
   2261 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2262 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2263 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2264 		    BNX_STATS_BLK_SZ);
   2265 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2266 		    sc->stats_rseg);
   2267 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2268 		sc->stats_block = NULL;
   2269 		sc->stats_map = NULL;
   2270 	}
   2271 
   2272 	/* Free, unmap and destroy all context memory pages. */
   2273 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2274 		for (i = 0; i < sc->ctx_pages; i++) {
   2275 			if (sc->ctx_block[i] != NULL) {
   2276 				bus_dmamap_unload(sc->bnx_dmatag,
   2277 				    sc->ctx_map[i]);
   2278 				bus_dmamem_unmap(sc->bnx_dmatag,
   2279 				    (void *)sc->ctx_block[i],
   2280 				    BCM_PAGE_SIZE);
   2281 				bus_dmamem_free(sc->bnx_dmatag,
   2282 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2283 				bus_dmamap_destroy(sc->bnx_dmatag,
   2284 				    sc->ctx_map[i]);
   2285 				sc->ctx_block[i] = NULL;
   2286 			}
   2287 		}
   2288 	}
   2289 
   2290 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2291 	for (i = 0; i < TX_PAGES; i++ ) {
   2292 		if (sc->tx_bd_chain[i] != NULL &&
   2293 		    sc->tx_bd_chain_map[i] != NULL) {
   2294 			bus_dmamap_unload(sc->bnx_dmatag,
   2295 			    sc->tx_bd_chain_map[i]);
   2296 			bus_dmamem_unmap(sc->bnx_dmatag,
   2297 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2298 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2299 			    sc->tx_bd_chain_rseg[i]);
   2300 			bus_dmamap_destroy(sc->bnx_dmatag,
   2301 			    sc->tx_bd_chain_map[i]);
   2302 			sc->tx_bd_chain[i] = NULL;
   2303 			sc->tx_bd_chain_map[i] = NULL;
   2304 		}
   2305 	}
   2306 
   2307 	/* Destroy the TX dmamaps. */
   2308 	/* This isn't necessary since we dont allocate them up front */
   2309 
   2310 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2311 	for (i = 0; i < RX_PAGES; i++ ) {
   2312 		if (sc->rx_bd_chain[i] != NULL &&
   2313 		    sc->rx_bd_chain_map[i] != NULL) {
   2314 			bus_dmamap_unload(sc->bnx_dmatag,
   2315 			    sc->rx_bd_chain_map[i]);
   2316 			bus_dmamem_unmap(sc->bnx_dmatag,
   2317 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2318 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2319 			    sc->rx_bd_chain_rseg[i]);
   2320 
   2321 			bus_dmamap_destroy(sc->bnx_dmatag,
   2322 			    sc->rx_bd_chain_map[i]);
   2323 			sc->rx_bd_chain[i] = NULL;
   2324 			sc->rx_bd_chain_map[i] = NULL;
   2325 		}
   2326 	}
   2327 
   2328 	/* Unload and destroy the RX mbuf maps. */
   2329 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2330 		if (sc->rx_mbuf_map[i] != NULL) {
   2331 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2332 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2333 		}
   2334 	}
   2335 
   2336 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2337 }
   2338 
   2339 /****************************************************************************/
   2340 /* Allocate any DMA memory needed by the driver.                            */
   2341 /*                                                                          */
   2342 /* Allocates DMA memory needed for the various global structures needed by  */
   2343 /* hardware.                                                                */
   2344 /*                                                                          */
   2345 /* Returns:                                                                 */
   2346 /*   0 for success, positive value for failure.                             */
   2347 /****************************************************************************/
   2348 int
   2349 bnx_dma_alloc(struct bnx_softc *sc)
   2350 {
   2351 	int			i, rc = 0;
   2352 
   2353 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2354 
   2355 	/*
   2356 	 * Allocate DMA memory for the status block, map the memory into DMA
   2357 	 * space, and fetch the physical address of the block.
   2358 	 */
   2359 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2360 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2361 		aprint_error_dev(sc->bnx_dev,
   2362 		    "Could not create status block DMA map!\n");
   2363 		rc = ENOMEM;
   2364 		goto bnx_dma_alloc_exit;
   2365 	}
   2366 
   2367 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2368 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2369 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2370 		aprint_error_dev(sc->bnx_dev,
   2371 		    "Could not allocate status block DMA memory!\n");
   2372 		rc = ENOMEM;
   2373 		goto bnx_dma_alloc_exit;
   2374 	}
   2375 
   2376 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2377 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2378 		aprint_error_dev(sc->bnx_dev,
   2379 		    "Could not map status block DMA memory!\n");
   2380 		rc = ENOMEM;
   2381 		goto bnx_dma_alloc_exit;
   2382 	}
   2383 
   2384 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2385 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2386 		aprint_error_dev(sc->bnx_dev,
   2387 		    "Could not load status block DMA memory!\n");
   2388 		rc = ENOMEM;
   2389 		goto bnx_dma_alloc_exit;
   2390 	}
   2391 
   2392 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2393 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2394 
   2395 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2396 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2397 
   2398 	/* DRC - Fix for 64 bit addresses. */
   2399 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2400 		(uint32_t) sc->status_block_paddr);
   2401 
   2402 	/* BCM5709 uses host memory as cache for context memory. */
   2403 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2404 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2405 		if (sc->ctx_pages == 0)
   2406 			sc->ctx_pages = 1;
   2407 		if (sc->ctx_pages > 4) /* XXX */
   2408 			sc->ctx_pages = 4;
   2409 
   2410 		DBRUNIF((sc->ctx_pages > 512),
   2411 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2412 				__FILE__, __LINE__, sc->ctx_pages));
   2413 
   2414 
   2415 		for (i = 0; i < sc->ctx_pages; i++) {
   2416 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2417 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2418 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2419 			    &sc->ctx_map[i]) != 0) {
   2420 				rc = ENOMEM;
   2421 				goto bnx_dma_alloc_exit;
   2422 			}
   2423 
   2424 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2425 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2426 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2427 				rc = ENOMEM;
   2428 				goto bnx_dma_alloc_exit;
   2429 			}
   2430 
   2431 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2432 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2433 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2434 				rc = ENOMEM;
   2435 				goto bnx_dma_alloc_exit;
   2436 			}
   2437 
   2438 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2439 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2440 			    BUS_DMA_NOWAIT) != 0) {
   2441 				rc = ENOMEM;
   2442 				goto bnx_dma_alloc_exit;
   2443 			}
   2444 
   2445 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2446 		}
   2447 	}
   2448 
   2449 	/*
   2450 	 * Allocate DMA memory for the statistics block, map the memory into
   2451 	 * DMA space, and fetch the physical address of the block.
   2452 	 */
   2453 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2454 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2455 		aprint_error_dev(sc->bnx_dev,
   2456 		    "Could not create stats block DMA map!\n");
   2457 		rc = ENOMEM;
   2458 		goto bnx_dma_alloc_exit;
   2459 	}
   2460 
   2461 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2462 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2463 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2464 		aprint_error_dev(sc->bnx_dev,
   2465 		    "Could not allocate stats block DMA memory!\n");
   2466 		rc = ENOMEM;
   2467 		goto bnx_dma_alloc_exit;
   2468 	}
   2469 
   2470 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2471 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2472 		aprint_error_dev(sc->bnx_dev,
   2473 		    "Could not map stats block DMA memory!\n");
   2474 		rc = ENOMEM;
   2475 		goto bnx_dma_alloc_exit;
   2476 	}
   2477 
   2478 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2479 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2480 		aprint_error_dev(sc->bnx_dev,
   2481 		    "Could not load status block DMA memory!\n");
   2482 		rc = ENOMEM;
   2483 		goto bnx_dma_alloc_exit;
   2484 	}
   2485 
   2486 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2487 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2488 
   2489 	/* DRC - Fix for 64 bit address. */
   2490 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2491 	    (uint32_t) sc->stats_block_paddr);
   2492 
   2493 	/*
   2494 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2495 	 * and fetch the physical address of the block.
   2496 	 */
   2497 	for (i = 0; i < TX_PAGES; i++) {
   2498 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2499 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2500 		    &sc->tx_bd_chain_map[i])) {
   2501 			aprint_error_dev(sc->bnx_dev,
   2502 			    "Could not create Tx desc %d DMA map!\n", i);
   2503 			rc = ENOMEM;
   2504 			goto bnx_dma_alloc_exit;
   2505 		}
   2506 
   2507 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2508 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2509 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2510 			aprint_error_dev(sc->bnx_dev,
   2511 			    "Could not allocate TX desc %d DMA memory!\n",
   2512 			    i);
   2513 			rc = ENOMEM;
   2514 			goto bnx_dma_alloc_exit;
   2515 		}
   2516 
   2517 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2518 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2519 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2520 			aprint_error_dev(sc->bnx_dev,
   2521 			    "Could not map TX desc %d DMA memory!\n", i);
   2522 			rc = ENOMEM;
   2523 			goto bnx_dma_alloc_exit;
   2524 		}
   2525 
   2526 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2527 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2528 		    BUS_DMA_NOWAIT)) {
   2529 			aprint_error_dev(sc->bnx_dev,
   2530 			    "Could not load TX desc %d DMA memory!\n", i);
   2531 			rc = ENOMEM;
   2532 			goto bnx_dma_alloc_exit;
   2533 		}
   2534 
   2535 		sc->tx_bd_chain_paddr[i] =
   2536 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2537 
   2538 		/* DRC - Fix for 64 bit systems. */
   2539 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2540 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2541 	}
   2542 
   2543 	/*
   2544 	 * Create lists to hold TX mbufs.
   2545 	 */
   2546 	TAILQ_INIT(&sc->tx_free_pkts);
   2547 	TAILQ_INIT(&sc->tx_used_pkts);
   2548 	sc->tx_pkt_count = 0;
   2549 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2550 
   2551 	/*
   2552 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2553 	 * and fetch the physical address of the block.
   2554 	 */
   2555 	for (i = 0; i < RX_PAGES; i++) {
   2556 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2557 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2558 		    &sc->rx_bd_chain_map[i])) {
   2559 			aprint_error_dev(sc->bnx_dev,
   2560 			    "Could not create Rx desc %d DMA map!\n", i);
   2561 			rc = ENOMEM;
   2562 			goto bnx_dma_alloc_exit;
   2563 		}
   2564 
   2565 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2566 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2567 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2568 			aprint_error_dev(sc->bnx_dev,
   2569 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2570 			rc = ENOMEM;
   2571 			goto bnx_dma_alloc_exit;
   2572 		}
   2573 
   2574 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2575 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2576 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2577 			aprint_error_dev(sc->bnx_dev,
   2578 			    "Could not map Rx desc %d DMA memory!\n", i);
   2579 			rc = ENOMEM;
   2580 			goto bnx_dma_alloc_exit;
   2581 		}
   2582 
   2583 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2584 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2585 		    BUS_DMA_NOWAIT)) {
   2586 			aprint_error_dev(sc->bnx_dev,
   2587 			    "Could not load Rx desc %d DMA memory!\n", i);
   2588 			rc = ENOMEM;
   2589 			goto bnx_dma_alloc_exit;
   2590 		}
   2591 
   2592 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2593 		sc->rx_bd_chain_paddr[i] =
   2594 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2595 
   2596 		/* DRC - Fix for 64 bit systems. */
   2597 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2598 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2599 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2600 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2601 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2602 	}
   2603 
   2604 	/*
   2605 	 * Create DMA maps for the Rx buffer mbufs.
   2606 	 */
   2607 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2608 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2609 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2610 		    &sc->rx_mbuf_map[i])) {
   2611 			aprint_error_dev(sc->bnx_dev,
   2612 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2613 			rc = ENOMEM;
   2614 			goto bnx_dma_alloc_exit;
   2615 		}
   2616 	}
   2617 
   2618  bnx_dma_alloc_exit:
   2619 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2620 
   2621 	return rc;
   2622 }
   2623 
   2624 /****************************************************************************/
   2625 /* Release all resources used by the driver.                                */
   2626 /*                                                                          */
   2627 /* Releases all resources acquired by the driver including interrupts,      */
   2628 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2629 /*                                                                          */
   2630 /* Returns:                                                                 */
   2631 /*   Nothing.                                                               */
   2632 /****************************************************************************/
   2633 void
   2634 bnx_release_resources(struct bnx_softc *sc)
   2635 {
   2636 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2637 
   2638 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2639 
   2640 	bnx_dma_free(sc);
   2641 
   2642 	if (sc->bnx_intrhand != NULL)
   2643 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2644 
   2645 	if (sc->bnx_size)
   2646 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2647 
   2648 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2649 }
   2650 
   2651 /****************************************************************************/
   2652 /* Firmware synchronization.                                                */
   2653 /*                                                                          */
   2654 /* Before performing certain events such as a chip reset, synchronize with  */
   2655 /* the firmware first.                                                      */
   2656 /*                                                                          */
   2657 /* Returns:                                                                 */
   2658 /*   0 for success, positive value for failure.                             */
   2659 /****************************************************************************/
   2660 int
   2661 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2662 {
   2663 	int			i, rc = 0;
   2664 	uint32_t		val;
   2665 
   2666 	/* Don't waste any time if we've timed out before. */
   2667 	if (sc->bnx_fw_timed_out) {
   2668 		rc = EBUSY;
   2669 		goto bnx_fw_sync_exit;
   2670 	}
   2671 
   2672 	/* Increment the message sequence number. */
   2673 	sc->bnx_fw_wr_seq++;
   2674 	msg_data |= sc->bnx_fw_wr_seq;
   2675 
   2676  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2677 	    msg_data);
   2678 
   2679 	/* Send the message to the bootcode driver mailbox. */
   2680 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2681 
   2682 	/* Wait for the bootcode to acknowledge the message. */
   2683 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2684 		/* Check for a response in the bootcode firmware mailbox. */
   2685 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2686 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2687 			break;
   2688 		DELAY(1000);
   2689 	}
   2690 
   2691 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2692 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2693 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2694 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2695 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2696 
   2697 		msg_data &= ~BNX_DRV_MSG_CODE;
   2698 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2699 
   2700 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2701 
   2702 		sc->bnx_fw_timed_out = 1;
   2703 		rc = EBUSY;
   2704 	}
   2705 
   2706 bnx_fw_sync_exit:
   2707 	return rc;
   2708 }
   2709 
   2710 /****************************************************************************/
   2711 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2712 /*                                                                          */
   2713 /* Returns:                                                                 */
   2714 /*   Nothing.                                                               */
   2715 /****************************************************************************/
   2716 void
   2717 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2718     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2719 {
   2720 	int			i;
   2721 	uint32_t		val;
   2722 
   2723 	/* Set the page size used by RV2P. */
   2724 	if (rv2p_proc == RV2P_PROC2) {
   2725 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2726 		    USABLE_RX_BD_PER_PAGE);
   2727 	}
   2728 
   2729 	for (i = 0; i < rv2p_code_len; i += 8) {
   2730 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2731 		rv2p_code++;
   2732 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2733 		rv2p_code++;
   2734 
   2735 		if (rv2p_proc == RV2P_PROC1) {
   2736 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2737 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2738 		} else {
   2739 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2740 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2741 		}
   2742 	}
   2743 
   2744 	/* Reset the processor, un-stall is done later. */
   2745 	if (rv2p_proc == RV2P_PROC1)
   2746 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2747 	else
   2748 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2749 }
   2750 
   2751 /****************************************************************************/
   2752 /* Load RISC processor firmware.                                            */
   2753 /*                                                                          */
   2754 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2755 /* associated with a particular processor.                                  */
   2756 /*                                                                          */
   2757 /* Returns:                                                                 */
   2758 /*   Nothing.                                                               */
   2759 /****************************************************************************/
   2760 void
   2761 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2762     struct fw_info *fw)
   2763 {
   2764 	uint32_t		offset;
   2765 	uint32_t		val;
   2766 
   2767 	/* Halt the CPU. */
   2768 	val = REG_RD_IND(sc, cpu_reg->mode);
   2769 	val |= cpu_reg->mode_value_halt;
   2770 	REG_WR_IND(sc, cpu_reg->mode, val);
   2771 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2772 
   2773 	/* Load the Text area. */
   2774 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2775 	if (fw->text) {
   2776 		int j;
   2777 
   2778 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2779 			REG_WR_IND(sc, offset, fw->text[j]);
   2780 	}
   2781 
   2782 	/* Load the Data area. */
   2783 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2784 	if (fw->data) {
   2785 		int j;
   2786 
   2787 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2788 			REG_WR_IND(sc, offset, fw->data[j]);
   2789 	}
   2790 
   2791 	/* Load the SBSS area. */
   2792 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2793 	if (fw->sbss) {
   2794 		int j;
   2795 
   2796 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2797 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2798 	}
   2799 
   2800 	/* Load the BSS area. */
   2801 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2802 	if (fw->bss) {
   2803 		int j;
   2804 
   2805 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2806 			REG_WR_IND(sc, offset, fw->bss[j]);
   2807 	}
   2808 
   2809 	/* Load the Read-Only area. */
   2810 	offset = cpu_reg->spad_base +
   2811 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2812 	if (fw->rodata) {
   2813 		int j;
   2814 
   2815 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2816 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2817 	}
   2818 
   2819 	/* Clear the pre-fetch instruction. */
   2820 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2821 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2822 
   2823 	/* Start the CPU. */
   2824 	val = REG_RD_IND(sc, cpu_reg->mode);
   2825 	val &= ~cpu_reg->mode_value_halt;
   2826 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2827 	REG_WR_IND(sc, cpu_reg->mode, val);
   2828 }
   2829 
   2830 /****************************************************************************/
   2831 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2832 /*                                                                          */
   2833 /* Loads the firmware for each CPU and starts the CPU.                      */
   2834 /*                                                                          */
   2835 /* Returns:                                                                 */
   2836 /*   Nothing.                                                               */
   2837 /****************************************************************************/
   2838 void
   2839 bnx_init_cpus(struct bnx_softc *sc)
   2840 {
   2841 	struct cpu_reg cpu_reg;
   2842 	struct fw_info fw;
   2843 
   2844 	switch(BNX_CHIP_NUM(sc)) {
   2845 	case BNX_CHIP_NUM_5709:
   2846 		/* Initialize the RV2P processor. */
   2847 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2848 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2849 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2850 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2851 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2852 		} else {
   2853 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2854 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2855 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2856 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2857 		}
   2858 
   2859 		/* Initialize the RX Processor. */
   2860 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2861 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2862 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2863 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2864 		cpu_reg.state_value_clear = 0xffffff;
   2865 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2866 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2867 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2868 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2869 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2870 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2871 		cpu_reg.mips_view_base = 0x8000000;
   2872 
   2873 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2874 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2875 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2876 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2877 
   2878 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2879 		fw.text_len = bnx_RXP_b09FwTextLen;
   2880 		fw.text_index = 0;
   2881 		fw.text = bnx_RXP_b09FwText;
   2882 
   2883 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2884 		fw.data_len = bnx_RXP_b09FwDataLen;
   2885 		fw.data_index = 0;
   2886 		fw.data = bnx_RXP_b09FwData;
   2887 
   2888 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2889 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2890 		fw.sbss_index = 0;
   2891 		fw.sbss = bnx_RXP_b09FwSbss;
   2892 
   2893 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2894 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2895 		fw.bss_index = 0;
   2896 		fw.bss = bnx_RXP_b09FwBss;
   2897 
   2898 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2899 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2900 		fw.rodata_index = 0;
   2901 		fw.rodata = bnx_RXP_b09FwRodata;
   2902 
   2903 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2904 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2905 
   2906 		/* Initialize the TX Processor. */
   2907 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2908 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2909 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2910 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2911 		cpu_reg.state_value_clear = 0xffffff;
   2912 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2913 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2914 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2915 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2916 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2917 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2918 		cpu_reg.mips_view_base = 0x8000000;
   2919 
   2920 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2921 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2922 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2923 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2924 
   2925 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2926 		fw.text_len = bnx_TXP_b09FwTextLen;
   2927 		fw.text_index = 0;
   2928 		fw.text = bnx_TXP_b09FwText;
   2929 
   2930 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2931 		fw.data_len = bnx_TXP_b09FwDataLen;
   2932 		fw.data_index = 0;
   2933 		fw.data = bnx_TXP_b09FwData;
   2934 
   2935 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2936 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2937 		fw.sbss_index = 0;
   2938 		fw.sbss = bnx_TXP_b09FwSbss;
   2939 
   2940 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2941 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2942 		fw.bss_index = 0;
   2943 		fw.bss = bnx_TXP_b09FwBss;
   2944 
   2945 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2946 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2947 		fw.rodata_index = 0;
   2948 		fw.rodata = bnx_TXP_b09FwRodata;
   2949 
   2950 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2951 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2952 
   2953 		/* Initialize the TX Patch-up Processor. */
   2954 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2955 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2956 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2957 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2958 		cpu_reg.state_value_clear = 0xffffff;
   2959 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2960 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2961 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2962 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2963 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2964 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2965 		cpu_reg.mips_view_base = 0x8000000;
   2966 
   2967 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2968 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2969 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2970 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2971 
   2972 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2973 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2974 		fw.text_index = 0;
   2975 		fw.text = bnx_TPAT_b09FwText;
   2976 
   2977 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2978 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2979 		fw.data_index = 0;
   2980 		fw.data = bnx_TPAT_b09FwData;
   2981 
   2982 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2983 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2984 		fw.sbss_index = 0;
   2985 		fw.sbss = bnx_TPAT_b09FwSbss;
   2986 
   2987 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2988 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2989 		fw.bss_index = 0;
   2990 		fw.bss = bnx_TPAT_b09FwBss;
   2991 
   2992 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2993 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2994 		fw.rodata_index = 0;
   2995 		fw.rodata = bnx_TPAT_b09FwRodata;
   2996 
   2997 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2998 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2999 
   3000 		/* Initialize the Completion Processor. */
   3001 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3002 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3003 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3004 		cpu_reg.state = BNX_COM_CPU_STATE;
   3005 		cpu_reg.state_value_clear = 0xffffff;
   3006 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3007 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3008 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3009 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3010 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3011 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3012 		cpu_reg.mips_view_base = 0x8000000;
   3013 
   3014 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3015 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3016 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3017 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3018 
   3019 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3020 		fw.text_len = bnx_COM_b09FwTextLen;
   3021 		fw.text_index = 0;
   3022 		fw.text = bnx_COM_b09FwText;
   3023 
   3024 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3025 		fw.data_len = bnx_COM_b09FwDataLen;
   3026 		fw.data_index = 0;
   3027 		fw.data = bnx_COM_b09FwData;
   3028 
   3029 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3030 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3031 		fw.sbss_index = 0;
   3032 		fw.sbss = bnx_COM_b09FwSbss;
   3033 
   3034 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3035 		fw.bss_len = bnx_COM_b09FwBssLen;
   3036 		fw.bss_index = 0;
   3037 		fw.bss = bnx_COM_b09FwBss;
   3038 
   3039 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3040 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3041 		fw.rodata_index = 0;
   3042 		fw.rodata = bnx_COM_b09FwRodata;
   3043 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3044 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3045 		break;
   3046 	default:
   3047 		/* Initialize the RV2P processor. */
   3048 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3049 		    RV2P_PROC1);
   3050 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3051 		    RV2P_PROC2);
   3052 
   3053 		/* Initialize the RX Processor. */
   3054 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3055 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3056 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3057 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3058 		cpu_reg.state_value_clear = 0xffffff;
   3059 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3060 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3061 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3062 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3063 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3064 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3065 		cpu_reg.mips_view_base = 0x8000000;
   3066 
   3067 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3068 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3069 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3070 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3071 
   3072 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3073 		fw.text_len = bnx_RXP_b06FwTextLen;
   3074 		fw.text_index = 0;
   3075 		fw.text = bnx_RXP_b06FwText;
   3076 
   3077 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3078 		fw.data_len = bnx_RXP_b06FwDataLen;
   3079 		fw.data_index = 0;
   3080 		fw.data = bnx_RXP_b06FwData;
   3081 
   3082 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3083 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3084 		fw.sbss_index = 0;
   3085 		fw.sbss = bnx_RXP_b06FwSbss;
   3086 
   3087 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3088 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3089 		fw.bss_index = 0;
   3090 		fw.bss = bnx_RXP_b06FwBss;
   3091 
   3092 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3093 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3094 		fw.rodata_index = 0;
   3095 		fw.rodata = bnx_RXP_b06FwRodata;
   3096 
   3097 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3098 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3099 
   3100 		/* Initialize the TX Processor. */
   3101 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3102 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3103 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3104 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3105 		cpu_reg.state_value_clear = 0xffffff;
   3106 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3107 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3108 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3109 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3110 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3111 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3112 		cpu_reg.mips_view_base = 0x8000000;
   3113 
   3114 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3115 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3116 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3117 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3118 
   3119 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3120 		fw.text_len = bnx_TXP_b06FwTextLen;
   3121 		fw.text_index = 0;
   3122 		fw.text = bnx_TXP_b06FwText;
   3123 
   3124 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3125 		fw.data_len = bnx_TXP_b06FwDataLen;
   3126 		fw.data_index = 0;
   3127 		fw.data = bnx_TXP_b06FwData;
   3128 
   3129 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3130 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3131 		fw.sbss_index = 0;
   3132 		fw.sbss = bnx_TXP_b06FwSbss;
   3133 
   3134 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3135 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3136 		fw.bss_index = 0;
   3137 		fw.bss = bnx_TXP_b06FwBss;
   3138 
   3139 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3140 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3141 		fw.rodata_index = 0;
   3142 		fw.rodata = bnx_TXP_b06FwRodata;
   3143 
   3144 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3145 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3146 
   3147 		/* Initialize the TX Patch-up Processor. */
   3148 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3149 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3150 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3151 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3152 		cpu_reg.state_value_clear = 0xffffff;
   3153 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3154 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3155 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3156 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3157 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3158 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3159 		cpu_reg.mips_view_base = 0x8000000;
   3160 
   3161 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3162 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3163 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3164 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3165 
   3166 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3167 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3168 		fw.text_index = 0;
   3169 		fw.text = bnx_TPAT_b06FwText;
   3170 
   3171 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3172 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3173 		fw.data_index = 0;
   3174 		fw.data = bnx_TPAT_b06FwData;
   3175 
   3176 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3177 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3178 		fw.sbss_index = 0;
   3179 		fw.sbss = bnx_TPAT_b06FwSbss;
   3180 
   3181 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3182 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3183 		fw.bss_index = 0;
   3184 		fw.bss = bnx_TPAT_b06FwBss;
   3185 
   3186 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3187 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3188 		fw.rodata_index = 0;
   3189 		fw.rodata = bnx_TPAT_b06FwRodata;
   3190 
   3191 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3192 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3193 
   3194 		/* Initialize the Completion Processor. */
   3195 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3196 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3197 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3198 		cpu_reg.state = BNX_COM_CPU_STATE;
   3199 		cpu_reg.state_value_clear = 0xffffff;
   3200 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3201 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3202 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3203 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3204 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3205 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3206 		cpu_reg.mips_view_base = 0x8000000;
   3207 
   3208 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3209 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3210 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3211 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3212 
   3213 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3214 		fw.text_len = bnx_COM_b06FwTextLen;
   3215 		fw.text_index = 0;
   3216 		fw.text = bnx_COM_b06FwText;
   3217 
   3218 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3219 		fw.data_len = bnx_COM_b06FwDataLen;
   3220 		fw.data_index = 0;
   3221 		fw.data = bnx_COM_b06FwData;
   3222 
   3223 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3224 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3225 		fw.sbss_index = 0;
   3226 		fw.sbss = bnx_COM_b06FwSbss;
   3227 
   3228 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3229 		fw.bss_len = bnx_COM_b06FwBssLen;
   3230 		fw.bss_index = 0;
   3231 		fw.bss = bnx_COM_b06FwBss;
   3232 
   3233 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3234 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3235 		fw.rodata_index = 0;
   3236 		fw.rodata = bnx_COM_b06FwRodata;
   3237 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3238 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3239 		break;
   3240 	}
   3241 }
   3242 
   3243 /****************************************************************************/
   3244 /* Initialize context memory.                                               */
   3245 /*                                                                          */
   3246 /* Clears the memory associated with each Context ID (CID).                 */
   3247 /*                                                                          */
   3248 /* Returns:                                                                 */
   3249 /*   Nothing.                                                               */
   3250 /****************************************************************************/
   3251 void
   3252 bnx_init_context(struct bnx_softc *sc)
   3253 {
   3254 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3255 		/* DRC: Replace this constant value with a #define. */
   3256 		int i, retry_cnt = 10;
   3257 		uint32_t val;
   3258 
   3259 		/*
   3260 		 * BCM5709 context memory may be cached
   3261 		 * in host memory so prepare the host memory
   3262 		 * for access.
   3263 		 */
   3264 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3265 		    | (1 << 12);
   3266 		val |= (BCM_PAGE_BITS - 8) << 16;
   3267 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3268 
   3269 		/* Wait for mem init command to complete. */
   3270 		for (i = 0; i < retry_cnt; i++) {
   3271 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3272 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3273 				break;
   3274 			DELAY(2);
   3275 		}
   3276 
   3277 		/* ToDo: Consider returning an error here. */
   3278 
   3279 		for (i = 0; i < sc->ctx_pages; i++) {
   3280 			int j;
   3281 
   3282 			/* Set the physaddr of the context memory cache. */
   3283 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3284 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3285 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3286 			val = (uint32_t)
   3287 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3288 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3289 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3290 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3291 
   3292 			/* Verify that the context memory write was successful. */
   3293 			for (j = 0; j < retry_cnt; j++) {
   3294 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3295 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3296 					break;
   3297 				DELAY(5);
   3298 			}
   3299 
   3300 			/* ToDo: Consider returning an error here. */
   3301 		}
   3302 	} else {
   3303 		uint32_t vcid_addr, offset;
   3304 
   3305 		/*
   3306 		 * For the 5706/5708, context memory is local to the
   3307 		 * controller, so initialize the controller context memory.
   3308 		 */
   3309 
   3310 		vcid_addr = GET_CID_ADDR(96);
   3311 		while (vcid_addr) {
   3312 
   3313 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3314 
   3315 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3316 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3317 
   3318 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3319 			     offset += 4)
   3320 				CTX_WR(sc, 0x00, offset, 0);
   3321 
   3322 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3323 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3324 		}
   3325 	}
   3326 }
   3327 
   3328 /****************************************************************************/
   3329 /* Fetch the permanent MAC address of the controller.                       */
   3330 /*                                                                          */
   3331 /* Returns:                                                                 */
   3332 /*   Nothing.                                                               */
   3333 /****************************************************************************/
   3334 void
   3335 bnx_get_mac_addr(struct bnx_softc *sc)
   3336 {
   3337 	uint32_t		mac_lo = 0, mac_hi = 0;
   3338 
   3339 	/*
   3340 	 * The NetXtreme II bootcode populates various NIC
   3341 	 * power-on and runtime configuration items in a
   3342 	 * shared memory area.  The factory configured MAC
   3343 	 * address is available from both NVRAM and the
   3344 	 * shared memory area so we'll read the value from
   3345 	 * shared memory for speed.
   3346 	 */
   3347 
   3348 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3349 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3350 
   3351 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3352 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3353 		    __FILE__, __LINE__);
   3354 	} else {
   3355 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3356 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3357 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3358 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3359 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3360 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3361 	}
   3362 
   3363 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3364 	    "%s\n", ether_sprintf(sc->eaddr));
   3365 }
   3366 
   3367 /****************************************************************************/
   3368 /* Program the MAC address.                                                 */
   3369 /*                                                                          */
   3370 /* Returns:                                                                 */
   3371 /*   Nothing.                                                               */
   3372 /****************************************************************************/
   3373 void
   3374 bnx_set_mac_addr(struct bnx_softc *sc)
   3375 {
   3376 	uint32_t		val;
   3377 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3378 
   3379 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3380 	    "%s\n", ether_sprintf(sc->eaddr));
   3381 
   3382 	val = (mac_addr[0] << 8) | mac_addr[1];
   3383 
   3384 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3385 
   3386 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3387 		(mac_addr[4] << 8) | mac_addr[5];
   3388 
   3389 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3390 }
   3391 
   3392 /****************************************************************************/
   3393 /* Stop the controller.                                                     */
   3394 /*                                                                          */
   3395 /* Returns:                                                                 */
   3396 /*   Nothing.                                                               */
   3397 /****************************************************************************/
   3398 void
   3399 bnx_stop(struct ifnet *ifp, int disable)
   3400 {
   3401 	struct bnx_softc *sc = ifp->if_softc;
   3402 
   3403 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3404 
   3405 	if (disable) {
   3406 		sc->bnx_detaching = 1;
   3407 		callout_halt(&sc->bnx_timeout, NULL);
   3408 	} else
   3409 		callout_stop(&sc->bnx_timeout);
   3410 
   3411 	mii_down(&sc->bnx_mii);
   3412 
   3413 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3414 
   3415 	/* Disable the transmit/receive blocks. */
   3416 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3417 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3418 	DELAY(20);
   3419 
   3420 	bnx_disable_intr(sc);
   3421 
   3422 	/* Tell firmware that the driver is going away. */
   3423 	if (disable)
   3424 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3425 	else
   3426 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3427 
   3428 	/* Free RX buffers. */
   3429 	bnx_free_rx_chain(sc);
   3430 
   3431 	/* Free TX buffers. */
   3432 	bnx_free_tx_chain(sc);
   3433 
   3434 	ifp->if_timer = 0;
   3435 
   3436 	sc->bnx_link = 0;
   3437 
   3438 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3439 
   3440 	bnx_mgmt_init(sc);
   3441 }
   3442 
   3443 int
   3444 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3445 {
   3446 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3447 	uint32_t		val;
   3448 	int			i, rc = 0;
   3449 
   3450 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3451 
   3452 	/* Wait for pending PCI transactions to complete. */
   3453 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3454 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3455 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3456 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3457 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3458 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3459 	DELAY(5);
   3460 
   3461 	/* Disable DMA */
   3462 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3463 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3464 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3465 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3466 	}
   3467 
   3468 	/* Assume bootcode is running. */
   3469 	sc->bnx_fw_timed_out = 0;
   3470 
   3471 	/* Give the firmware a chance to prepare for the reset. */
   3472 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3473 	if (rc)
   3474 		goto bnx_reset_exit;
   3475 
   3476 	/* Set a firmware reminder that this is a soft reset. */
   3477 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3478 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3479 
   3480 	/* Dummy read to force the chip to complete all current transactions. */
   3481 	val = REG_RD(sc, BNX_MISC_ID);
   3482 
   3483 	/* Chip reset. */
   3484 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3485 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3486 		REG_RD(sc, BNX_MISC_COMMAND);
   3487 		DELAY(5);
   3488 
   3489 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3490 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3491 
   3492 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3493 		    val);
   3494 	} else {
   3495 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3496 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3497 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3498 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3499 
   3500 		/* Allow up to 30us for reset to complete. */
   3501 		for (i = 0; i < 10; i++) {
   3502 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3503 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3504 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3505 				break;
   3506 			}
   3507 			DELAY(10);
   3508 		}
   3509 
   3510 		/* Check that reset completed successfully. */
   3511 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3512 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3513 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3514 			    __FILE__, __LINE__);
   3515 			rc = EBUSY;
   3516 			goto bnx_reset_exit;
   3517 		}
   3518 	}
   3519 
   3520 	/* Make sure byte swapping is properly configured. */
   3521 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3522 	if (val != 0x01020304) {
   3523 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3524 		    __FILE__, __LINE__);
   3525 		rc = ENODEV;
   3526 		goto bnx_reset_exit;
   3527 	}
   3528 
   3529 	/* Just completed a reset, assume that firmware is running again. */
   3530 	sc->bnx_fw_timed_out = 0;
   3531 
   3532 	/* Wait for the firmware to finish its initialization. */
   3533 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3534 	if (rc)
   3535 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3536 		    "initialization!\n", __FILE__, __LINE__);
   3537 
   3538 bnx_reset_exit:
   3539 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3540 
   3541 	return rc;
   3542 }
   3543 
   3544 int
   3545 bnx_chipinit(struct bnx_softc *sc)
   3546 {
   3547 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3548 	uint32_t		val;
   3549 	int			rc = 0;
   3550 
   3551 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3552 
   3553 	/* Make sure the interrupt is not active. */
   3554 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3555 
   3556 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3557 	/* channels and PCI clock compensation delay.                      */
   3558 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3559 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3560 #if BYTE_ORDER == BIG_ENDIAN
   3561 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3562 #endif
   3563 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3564 	    DMA_READ_CHANS << 12 |
   3565 	    DMA_WRITE_CHANS << 16;
   3566 
   3567 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3568 
   3569 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3570 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3571 
   3572 	/*
   3573 	 * This setting resolves a problem observed on certain Intel PCI
   3574 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3575 	 * See errata E9_5706A1_65.
   3576 	 */
   3577 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3578 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3579 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3580 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3581 
   3582 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3583 
   3584 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3585 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3586 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3587 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3588 		    val & ~0x20000);
   3589 	}
   3590 
   3591 	/* Enable the RX_V2P and Context state machines before access. */
   3592 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3593 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3594 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3595 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3596 
   3597 	/* Initialize context mapping and zero out the quick contexts. */
   3598 	bnx_init_context(sc);
   3599 
   3600 	/* Initialize the on-boards CPUs */
   3601 	bnx_init_cpus(sc);
   3602 
   3603 	/* Prepare NVRAM for access. */
   3604 	if (bnx_init_nvram(sc)) {
   3605 		rc = ENODEV;
   3606 		goto bnx_chipinit_exit;
   3607 	}
   3608 
   3609 	/* Set the kernel bypass block size */
   3610 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3611 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3612 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3613 
   3614 	/* Enable bins used on the 5709. */
   3615 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3616 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3617 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3618 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3619 	}
   3620 
   3621 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3622 
   3623 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3624 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3625 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3626 
   3627 	val = (BCM_PAGE_BITS - 8) << 24;
   3628 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3629 
   3630 	/* Configure page size. */
   3631 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3632 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3633 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3634 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3635 
   3636 #if 0
   3637 	/* Set the perfect match control register to default. */
   3638 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3639 #endif
   3640 
   3641 bnx_chipinit_exit:
   3642 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3643 
   3644 	return rc;
   3645 }
   3646 
   3647 /****************************************************************************/
   3648 /* Initialize the controller in preparation to send/receive traffic.        */
   3649 /*                                                                          */
   3650 /* Returns:                                                                 */
   3651 /*   0 for success, positive value for failure.                             */
   3652 /****************************************************************************/
   3653 int
   3654 bnx_blockinit(struct bnx_softc *sc)
   3655 {
   3656 	uint32_t		reg, val;
   3657 	int 			rc = 0;
   3658 
   3659 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3660 
   3661 	/* Load the hardware default MAC address. */
   3662 	bnx_set_mac_addr(sc);
   3663 
   3664 	/* Set the Ethernet backoff seed value */
   3665 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3666 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3667 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3668 
   3669 	sc->last_status_idx = 0;
   3670 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3671 
   3672 	/* Set up link change interrupt generation. */
   3673 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3674 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3675 
   3676 	/* Program the physical address of the status block. */
   3677 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3678 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3679 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3680 
   3681 	/* Program the physical address of the statistics block. */
   3682 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3683 	    (uint32_t)(sc->stats_block_paddr));
   3684 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3685 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3686 
   3687 	/* Program various host coalescing parameters. */
   3688 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3689 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3690 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3691 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3692 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3693 	    sc->bnx_comp_prod_trip);
   3694 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3695 	    sc->bnx_tx_ticks);
   3696 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3697 	    sc->bnx_rx_ticks);
   3698 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3699 	    sc->bnx_com_ticks);
   3700 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3701 	    sc->bnx_cmd_ticks);
   3702 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3703 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3704 	REG_WR(sc, BNX_HC_CONFIG,
   3705 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3706 	    BNX_HC_CONFIG_COLLECT_STATS));
   3707 
   3708 	/* Clear the internal statistics counters. */
   3709 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3710 
   3711 	/* Verify that bootcode is running. */
   3712 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3713 
   3714 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3715 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3716 	    __FILE__, __LINE__); reg = 0);
   3717 
   3718 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3719 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3720 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3721 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3722 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3723 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3724 		rc = ENODEV;
   3725 		goto bnx_blockinit_exit;
   3726 	}
   3727 
   3728 	/* Check if any management firmware is running. */
   3729 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3730 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3731 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3732 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3733 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3734 	}
   3735 
   3736 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3737 	    BNX_DEV_INFO_BC_REV);
   3738 
   3739 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3740 
   3741 	/* Enable DMA */
   3742 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3743 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3744 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3745 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3746 	}
   3747 
   3748 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3749 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3750 
   3751 	/* Enable link state change interrupt generation. */
   3752 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3753 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3754 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3755 	} else
   3756 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3757 
   3758 	/* Enable all remaining blocks in the MAC. */
   3759 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3760 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3761 	DELAY(20);
   3762 
   3763 bnx_blockinit_exit:
   3764 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3765 
   3766 	return rc;
   3767 }
   3768 
   3769 static int
   3770 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3771     uint16_t *chain_prod, uint32_t *prod_bseq)
   3772 {
   3773 	bus_dmamap_t		map;
   3774 	struct rx_bd		*rxbd;
   3775 	uint32_t		addr;
   3776 	int i;
   3777 #ifdef BNX_DEBUG
   3778 	uint16_t debug_chain_prod =	*chain_prod;
   3779 #endif
   3780 	uint16_t first_chain_prod;
   3781 
   3782 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3783 
   3784 	/* Map the mbuf cluster into device memory. */
   3785 	map = sc->rx_mbuf_map[*chain_prod];
   3786 	first_chain_prod = *chain_prod;
   3787 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3788 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3789 		    __FILE__, __LINE__);
   3790 
   3791 		m_freem(m_new);
   3792 
   3793 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3794 
   3795 		return ENOBUFS;
   3796 	}
   3797 	/* Make sure there is room in the receive chain. */
   3798 	if (map->dm_nsegs > sc->free_rx_bd) {
   3799 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3800 		m_freem(m_new);
   3801 		return EFBIG;
   3802 	}
   3803 #ifdef BNX_DEBUG
   3804 	/* Track the distribution of buffer segments. */
   3805 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3806 #endif
   3807 
   3808 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3809 	    BUS_DMASYNC_PREREAD);
   3810 
   3811 	/* Update some debug statistics counters */
   3812 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3813 	    sc->rx_low_watermark = sc->free_rx_bd);
   3814 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3815 
   3816 	/*
   3817 	 * Setup the rx_bd for the first segment
   3818 	 */
   3819 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3820 
   3821 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3822 	rxbd->rx_bd_haddr_lo = addr;
   3823 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3824 	rxbd->rx_bd_haddr_hi = addr;
   3825 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3826 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3827 	*prod_bseq += map->dm_segs[0].ds_len;
   3828 	bus_dmamap_sync(sc->bnx_dmatag,
   3829 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3830 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3831 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3832 
   3833 	for (i = 1; i < map->dm_nsegs; i++) {
   3834 		*prod = NEXT_RX_BD(*prod);
   3835 		*chain_prod = RX_CHAIN_IDX(*prod);
   3836 
   3837 		rxbd =
   3838 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3839 
   3840 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3841 		rxbd->rx_bd_haddr_lo = addr;
   3842 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3843 		rxbd->rx_bd_haddr_hi = addr;
   3844 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3845 		rxbd->rx_bd_flags = 0;
   3846 		*prod_bseq += map->dm_segs[i].ds_len;
   3847 		bus_dmamap_sync(sc->bnx_dmatag,
   3848 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3849 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3850 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3851 	}
   3852 
   3853 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3854 	bus_dmamap_sync(sc->bnx_dmatag,
   3855 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3856 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3857 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3858 
   3859 	/*
   3860 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3861 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3862 	 * and update our counter.
   3863 	 */
   3864 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3865 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3866 	sc->rx_mbuf_map[*chain_prod] = map;
   3867 	sc->free_rx_bd -= map->dm_nsegs;
   3868 
   3869 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3870 	    map->dm_nsegs));
   3871 	*prod = NEXT_RX_BD(*prod);
   3872 	*chain_prod = RX_CHAIN_IDX(*prod);
   3873 
   3874 	return 0;
   3875 }
   3876 
   3877 /****************************************************************************/
   3878 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3879 /*                                                                          */
   3880 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3881 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3882 /* necessary.                                                               */
   3883 /*                                                                          */
   3884 /* Returns:                                                                 */
   3885 /*   0 for success, positive value for failure.                             */
   3886 /****************************************************************************/
   3887 int
   3888 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3889     uint16_t *chain_prod, uint32_t *prod_bseq)
   3890 {
   3891 	struct mbuf 		*m_new = NULL;
   3892 	int			rc = 0;
   3893 	uint16_t min_free_bd;
   3894 
   3895 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3896 	    __func__);
   3897 
   3898 	/* Make sure the inputs are valid. */
   3899 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3900 	    aprint_error_dev(sc->bnx_dev,
   3901 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3902 		*chain_prod, (uint16_t)MAX_RX_BD));
   3903 
   3904 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3905 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3906 	    *prod_bseq);
   3907 
   3908 	/* try to get in as many mbufs as possible */
   3909 	if (sc->mbuf_alloc_size == MCLBYTES)
   3910 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3911 	else
   3912 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3913 	while (sc->free_rx_bd >= min_free_bd) {
   3914 		/* Simulate an mbuf allocation failure. */
   3915 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3916 		    aprint_error_dev(sc->bnx_dev,
   3917 		    "Simulating mbuf allocation failure.\n");
   3918 			sc->mbuf_sim_alloc_failed++;
   3919 			rc = ENOBUFS;
   3920 			goto bnx_get_buf_exit);
   3921 
   3922 		/* This is a new mbuf allocation. */
   3923 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3924 		if (m_new == NULL) {
   3925 			DBPRINT(sc, BNX_WARN,
   3926 			    "%s(%d): RX mbuf header allocation failed!\n",
   3927 			    __FILE__, __LINE__);
   3928 
   3929 			sc->mbuf_alloc_failed++;
   3930 
   3931 			rc = ENOBUFS;
   3932 			goto bnx_get_buf_exit;
   3933 		}
   3934 
   3935 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3936 
   3937 		/* Simulate an mbuf cluster allocation failure. */
   3938 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3939 			m_freem(m_new);
   3940 			sc->rx_mbuf_alloc--;
   3941 			sc->mbuf_alloc_failed++;
   3942 			sc->mbuf_sim_alloc_failed++;
   3943 			rc = ENOBUFS;
   3944 			goto bnx_get_buf_exit);
   3945 
   3946 		if (sc->mbuf_alloc_size == MCLBYTES)
   3947 			MCLGET(m_new, M_DONTWAIT);
   3948 		else
   3949 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3950 			    M_DONTWAIT);
   3951 		if (!(m_new->m_flags & M_EXT)) {
   3952 			DBPRINT(sc, BNX_WARN,
   3953 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3954 			    __FILE__, __LINE__);
   3955 
   3956 			m_freem(m_new);
   3957 
   3958 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3959 			sc->mbuf_alloc_failed++;
   3960 
   3961 			rc = ENOBUFS;
   3962 			goto bnx_get_buf_exit;
   3963 		}
   3964 
   3965 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3966 		if (rc != 0)
   3967 			goto bnx_get_buf_exit;
   3968 	}
   3969 
   3970 bnx_get_buf_exit:
   3971 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3972 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3973 	    *chain_prod, *prod_bseq);
   3974 
   3975 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3976 	    __func__);
   3977 
   3978 	return rc;
   3979 }
   3980 
   3981 void
   3982 bnx_alloc_pkts(struct work * unused, void * arg)
   3983 {
   3984 	struct bnx_softc *sc = arg;
   3985 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3986 	struct bnx_pkt *pkt;
   3987 	int i, s;
   3988 
   3989 	for (i = 0; i < 4; i++) { /* magic! */
   3990 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3991 		if (pkt == NULL)
   3992 			break;
   3993 
   3994 		if (bus_dmamap_create(sc->bnx_dmatag,
   3995 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3996 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3997 		    &pkt->pkt_dmamap) != 0)
   3998 			goto put;
   3999 
   4000 		if (!ISSET(ifp->if_flags, IFF_UP))
   4001 			goto stopping;
   4002 
   4003 		mutex_enter(&sc->tx_pkt_mtx);
   4004 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4005 		sc->tx_pkt_count++;
   4006 		mutex_exit(&sc->tx_pkt_mtx);
   4007 	}
   4008 
   4009 	mutex_enter(&sc->tx_pkt_mtx);
   4010 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4011 	mutex_exit(&sc->tx_pkt_mtx);
   4012 
   4013 	/* fire-up TX now that allocations have been done */
   4014 	s = splnet();
   4015 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4016 		bnx_start(ifp);
   4017 	splx(s);
   4018 
   4019 	return;
   4020 
   4021 stopping:
   4022 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4023 put:
   4024 	pool_put(bnx_tx_pool, pkt);
   4025 	return;
   4026 }
   4027 
   4028 /****************************************************************************/
   4029 /* Initialize the TX context memory.                                        */
   4030 /*                                                                          */
   4031 /* Returns:                                                                 */
   4032 /*   Nothing                                                                */
   4033 /****************************************************************************/
   4034 void
   4035 bnx_init_tx_context(struct bnx_softc *sc)
   4036 {
   4037 	uint32_t val;
   4038 
   4039 	/* Initialize the context ID for an L2 TX chain. */
   4040 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4041 		/* Set the CID type to support an L2 connection. */
   4042 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4043 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4044 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4045 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4046 
   4047 		/* Point the hardware to the first page in the chain. */
   4048 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4049 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4050 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4051 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4052 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4053 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4054 	} else {
   4055 		/* Set the CID type to support an L2 connection. */
   4056 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4057 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4058 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4059 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4060 
   4061 		/* Point the hardware to the first page in the chain. */
   4062 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4063 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4064 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4065 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4066 	}
   4067 }
   4068 
   4069 
   4070 /****************************************************************************/
   4071 /* Allocate memory and initialize the TX data structures.                   */
   4072 /*                                                                          */
   4073 /* Returns:                                                                 */
   4074 /*   0 for success, positive value for failure.                             */
   4075 /****************************************************************************/
   4076 int
   4077 bnx_init_tx_chain(struct bnx_softc *sc)
   4078 {
   4079 	struct tx_bd		*txbd;
   4080 	uint32_t		addr;
   4081 	int			i, rc = 0;
   4082 
   4083 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4084 
   4085 	/* Force an allocation of some dmamaps for tx up front */
   4086 	bnx_alloc_pkts(NULL, sc);
   4087 
   4088 	/* Set the initial TX producer/consumer indices. */
   4089 	sc->tx_prod = 0;
   4090 	sc->tx_cons = 0;
   4091 	sc->tx_prod_bseq = 0;
   4092 	sc->used_tx_bd = 0;
   4093 	sc->max_tx_bd = USABLE_TX_BD;
   4094 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4095 	DBRUNIF(1, sc->tx_full_count = 0);
   4096 
   4097 	/*
   4098 	 * The NetXtreme II supports a linked-list structure called
   4099 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4100 	 * consists of a series of 1 or more chain pages, each of which
   4101 	 * consists of a fixed number of BD entries.
   4102 	 * The last BD entry on each page is a pointer to the next page
   4103 	 * in the chain, and the last pointer in the BD chain
   4104 	 * points back to the beginning of the chain.
   4105 	 */
   4106 
   4107 	/* Set the TX next pointer chain entries. */
   4108 	for (i = 0; i < TX_PAGES; i++) {
   4109 		int j;
   4110 
   4111 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4112 
   4113 		/* Check if we've reached the last page. */
   4114 		if (i == (TX_PAGES - 1))
   4115 			j = 0;
   4116 		else
   4117 			j = i + 1;
   4118 
   4119 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4120 		txbd->tx_bd_haddr_lo = addr;
   4121 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4122 		txbd->tx_bd_haddr_hi = addr;
   4123 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4124 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4125 	}
   4126 
   4127 	/*
   4128 	 * Initialize the context ID for an L2 TX chain.
   4129 	 */
   4130 	bnx_init_tx_context(sc);
   4131 
   4132 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4133 
   4134 	return rc;
   4135 }
   4136 
   4137 /****************************************************************************/
   4138 /* Free memory and clear the TX data structures.                            */
   4139 /*                                                                          */
   4140 /* Returns:                                                                 */
   4141 /*   Nothing.                                                               */
   4142 /****************************************************************************/
   4143 void
   4144 bnx_free_tx_chain(struct bnx_softc *sc)
   4145 {
   4146 	struct bnx_pkt		*pkt;
   4147 	int			i;
   4148 
   4149 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4150 
   4151 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4152 	mutex_enter(&sc->tx_pkt_mtx);
   4153 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4154 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4155 		mutex_exit(&sc->tx_pkt_mtx);
   4156 
   4157 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4158 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4159 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4160 
   4161 		m_freem(pkt->pkt_mbuf);
   4162 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4163 
   4164 		mutex_enter(&sc->tx_pkt_mtx);
   4165 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4166 	}
   4167 
   4168 	/* Destroy all the dmamaps we allocated for TX */
   4169 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4170 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4171 		sc->tx_pkt_count--;
   4172 		mutex_exit(&sc->tx_pkt_mtx);
   4173 
   4174 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4175 		pool_put(bnx_tx_pool, pkt);
   4176 
   4177 		mutex_enter(&sc->tx_pkt_mtx);
   4178 	}
   4179 	mutex_exit(&sc->tx_pkt_mtx);
   4180 
   4181 
   4182 
   4183 	/* Clear each TX chain page. */
   4184 	for (i = 0; i < TX_PAGES; i++) {
   4185 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4186 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4187 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4188 	}
   4189 
   4190 	sc->used_tx_bd = 0;
   4191 
   4192 	/* Check if we lost any mbufs in the process. */
   4193 	DBRUNIF((sc->tx_mbuf_alloc),
   4194 	    aprint_error_dev(sc->bnx_dev,
   4195 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4196 		sc->tx_mbuf_alloc));
   4197 
   4198 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4199 }
   4200 
   4201 /****************************************************************************/
   4202 /* Initialize the RX context memory.                                        */
   4203 /*                                                                          */
   4204 /* Returns:                                                                 */
   4205 /*   Nothing                                                                */
   4206 /****************************************************************************/
   4207 void
   4208 bnx_init_rx_context(struct bnx_softc *sc)
   4209 {
   4210 	uint32_t val;
   4211 
   4212 	/* Initialize the context ID for an L2 RX chain. */
   4213 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4214 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4215 
   4216 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4217 		val |= 0x000000ff;
   4218 
   4219  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4220 
   4221 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4222 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4223 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4224 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4225 	}
   4226 
   4227 	/* Point the hardware to the first page in the chain. */
   4228 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4229 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4230 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4231 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4232 }
   4233 
   4234 /****************************************************************************/
   4235 /* Allocate memory and initialize the RX data structures.                   */
   4236 /*                                                                          */
   4237 /* Returns:                                                                 */
   4238 /*   0 for success, positive value for failure.                             */
   4239 /****************************************************************************/
   4240 int
   4241 bnx_init_rx_chain(struct bnx_softc *sc)
   4242 {
   4243 	struct rx_bd		*rxbd;
   4244 	int			i, rc = 0;
   4245 	uint16_t		prod, chain_prod;
   4246 	uint32_t		prod_bseq, addr;
   4247 
   4248 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4249 
   4250 	/* Initialize the RX producer and consumer indices. */
   4251 	sc->rx_prod = 0;
   4252 	sc->rx_cons = 0;
   4253 	sc->rx_prod_bseq = 0;
   4254 	sc->free_rx_bd = USABLE_RX_BD;
   4255 	sc->max_rx_bd = USABLE_RX_BD;
   4256 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4257 	DBRUNIF(1, sc->rx_empty_count = 0);
   4258 
   4259 	/* Initialize the RX next pointer chain entries. */
   4260 	for (i = 0; i < RX_PAGES; i++) {
   4261 		int j;
   4262 
   4263 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4264 
   4265 		/* Check if we've reached the last page. */
   4266 		if (i == (RX_PAGES - 1))
   4267 			j = 0;
   4268 		else
   4269 			j = i + 1;
   4270 
   4271 		/* Setup the chain page pointers. */
   4272 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4273 		rxbd->rx_bd_haddr_hi = addr;
   4274 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4275 		rxbd->rx_bd_haddr_lo = addr;
   4276 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4277 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4278 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4279 	}
   4280 
   4281 	/* Allocate mbuf clusters for the rx_bd chain. */
   4282 	prod = prod_bseq = 0;
   4283 	chain_prod = RX_CHAIN_IDX(prod);
   4284 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4285 		BNX_PRINTF(sc,
   4286 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4287 	}
   4288 
   4289 	/* Save the RX chain producer index. */
   4290 	sc->rx_prod = prod;
   4291 	sc->rx_prod_bseq = prod_bseq;
   4292 
   4293 	for (i = 0; i < RX_PAGES; i++)
   4294 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4295 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4296 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4297 
   4298 	/* Tell the chip about the waiting rx_bd's. */
   4299 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4300 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4301 
   4302 	bnx_init_rx_context(sc);
   4303 
   4304 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4305 
   4306 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4307 
   4308 	return rc;
   4309 }
   4310 
   4311 /****************************************************************************/
   4312 /* Free memory and clear the RX data structures.                            */
   4313 /*                                                                          */
   4314 /* Returns:                                                                 */
   4315 /*   Nothing.                                                               */
   4316 /****************************************************************************/
   4317 void
   4318 bnx_free_rx_chain(struct bnx_softc *sc)
   4319 {
   4320 	int			i;
   4321 
   4322 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4323 
   4324 	/* Free any mbufs still in the RX mbuf chain. */
   4325 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4326 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4327 			if (sc->rx_mbuf_map[i] != NULL) {
   4328 				bus_dmamap_sync(sc->bnx_dmatag,
   4329 				    sc->rx_mbuf_map[i],	0,
   4330 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4331 				    BUS_DMASYNC_POSTREAD);
   4332 				bus_dmamap_unload(sc->bnx_dmatag,
   4333 				    sc->rx_mbuf_map[i]);
   4334 			}
   4335 			m_freem(sc->rx_mbuf_ptr[i]);
   4336 			sc->rx_mbuf_ptr[i] = NULL;
   4337 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4338 		}
   4339 	}
   4340 
   4341 	/* Clear each RX chain page. */
   4342 	for (i = 0; i < RX_PAGES; i++)
   4343 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4344 
   4345 	sc->free_rx_bd = sc->max_rx_bd;
   4346 
   4347 	/* Check if we lost any mbufs in the process. */
   4348 	DBRUNIF((sc->rx_mbuf_alloc),
   4349 	    aprint_error_dev(sc->bnx_dev,
   4350 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4351 		sc->rx_mbuf_alloc));
   4352 
   4353 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4354 }
   4355 
   4356 /****************************************************************************/
   4357 /* Set media options.                                                       */
   4358 /*                                                                          */
   4359 /* Returns:                                                                 */
   4360 /*   0 for success, positive value for failure.                             */
   4361 /****************************************************************************/
   4362 int
   4363 bnx_ifmedia_upd(struct ifnet *ifp)
   4364 {
   4365 	struct bnx_softc	*sc;
   4366 	struct mii_data		*mii;
   4367 	int			rc = 0;
   4368 
   4369 	sc = ifp->if_softc;
   4370 
   4371 	mii = &sc->bnx_mii;
   4372 	sc->bnx_link = 0;
   4373 	if (mii->mii_instance) {
   4374 		struct mii_softc *miisc;
   4375 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4376 			mii_phy_reset(miisc);
   4377 	}
   4378 	mii_mediachg(mii);
   4379 
   4380 	return rc;
   4381 }
   4382 
   4383 /****************************************************************************/
   4384 /* Reports current media status.                                            */
   4385 /*                                                                          */
   4386 /* Returns:                                                                 */
   4387 /*   Nothing.                                                               */
   4388 /****************************************************************************/
   4389 void
   4390 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4391 {
   4392 	struct bnx_softc	*sc;
   4393 	struct mii_data		*mii;
   4394 	int			s;
   4395 
   4396 	sc = ifp->if_softc;
   4397 
   4398 	s = splnet();
   4399 
   4400 	mii = &sc->bnx_mii;
   4401 
   4402 	mii_pollstat(mii);
   4403 	ifmr->ifm_status = mii->mii_media_status;
   4404 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4405 	    sc->bnx_flowflags;
   4406 
   4407 	splx(s);
   4408 }
   4409 
   4410 /****************************************************************************/
   4411 /* Handles PHY generated interrupt events.                                  */
   4412 /*                                                                          */
   4413 /* Returns:                                                                 */
   4414 /*   Nothing.                                                               */
   4415 /****************************************************************************/
   4416 void
   4417 bnx_phy_intr(struct bnx_softc *sc)
   4418 {
   4419 	uint32_t		new_link_state, old_link_state;
   4420 
   4421 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4422 	    BUS_DMASYNC_POSTREAD);
   4423 	new_link_state = sc->status_block->status_attn_bits &
   4424 	    STATUS_ATTN_BITS_LINK_STATE;
   4425 	old_link_state = sc->status_block->status_attn_bits_ack &
   4426 	    STATUS_ATTN_BITS_LINK_STATE;
   4427 
   4428 	/* Handle any changes if the link state has changed. */
   4429 	if (new_link_state != old_link_state) {
   4430 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4431 
   4432 		sc->bnx_link = 0;
   4433 		callout_stop(&sc->bnx_timeout);
   4434 		bnx_tick(sc);
   4435 
   4436 		/* Update the status_attn_bits_ack field in the status block. */
   4437 		if (new_link_state) {
   4438 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4439 			    STATUS_ATTN_BITS_LINK_STATE);
   4440 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4441 		} else {
   4442 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4443 			    STATUS_ATTN_BITS_LINK_STATE);
   4444 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4445 		}
   4446 	}
   4447 
   4448 	/* Acknowledge the link change interrupt. */
   4449 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4450 }
   4451 
   4452 /****************************************************************************/
   4453 /* Handles received frame interrupt events.                                 */
   4454 /*                                                                          */
   4455 /* Returns:                                                                 */
   4456 /*   Nothing.                                                               */
   4457 /****************************************************************************/
   4458 void
   4459 bnx_rx_intr(struct bnx_softc *sc)
   4460 {
   4461 	struct status_block	*sblk = sc->status_block;
   4462 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4463 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4464 	uint16_t		sw_prod, sw_chain_prod;
   4465 	uint32_t		sw_prod_bseq;
   4466 	struct l2_fhdr		*l2fhdr;
   4467 	int			i;
   4468 
   4469 	DBRUNIF(1, sc->rx_interrupts++);
   4470 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4471 	    BUS_DMASYNC_POSTREAD);
   4472 
   4473 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4474 	for (i = 0; i < RX_PAGES; i++)
   4475 		bus_dmamap_sync(sc->bnx_dmatag,
   4476 		    sc->rx_bd_chain_map[i], 0,
   4477 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4478 		    BUS_DMASYNC_POSTWRITE);
   4479 
   4480 	/* Get the hardware's view of the RX consumer index. */
   4481 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4482 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4483 		hw_cons++;
   4484 
   4485 	/* Get working copies of the driver's view of the RX indices. */
   4486 	sw_cons = sc->rx_cons;
   4487 	sw_prod = sc->rx_prod;
   4488 	sw_prod_bseq = sc->rx_prod_bseq;
   4489 
   4490 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4491 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4492 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4493 
   4494 	/* Prevent speculative reads from getting ahead of the status block. */
   4495 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4496 	    BUS_SPACE_BARRIER_READ);
   4497 
   4498 	/* Update some debug statistics counters */
   4499 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4500 	    sc->rx_low_watermark = sc->free_rx_bd);
   4501 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4502 
   4503 	/*
   4504 	 * Scan through the receive chain as long
   4505 	 * as there is work to do.
   4506 	 */
   4507 	while (sw_cons != hw_cons) {
   4508 		struct mbuf *m;
   4509 		struct rx_bd *rxbd __diagused;
   4510 		unsigned int len;
   4511 		uint32_t status;
   4512 
   4513 		/* Convert the producer/consumer indices to an actual
   4514 		 * rx_bd index.
   4515 		 */
   4516 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4517 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4518 
   4519 		/* Get the used rx_bd. */
   4520 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4521 		sc->free_rx_bd++;
   4522 
   4523 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4524 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4525 
   4526 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4527 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4528 #ifdef DIAGNOSTIC
   4529 			/* Validate that this is the last rx_bd. */
   4530 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4531 			    printf("%s: Unexpected mbuf found in "
   4532 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4533 			        sw_chain_cons);
   4534 			}
   4535 #endif
   4536 
   4537 			/* DRC - ToDo: If the received packet is small, say
   4538 			 *             less than 128 bytes, allocate a new mbuf
   4539 			 *             here, copy the data to that mbuf, and
   4540 			 *             recycle the mapped jumbo frame.
   4541 			 */
   4542 
   4543 			/* Unmap the mbuf from DMA space. */
   4544 #ifdef DIAGNOSTIC
   4545 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4546 				printf("invalid map sw_cons 0x%x "
   4547 				"sw_prod 0x%x "
   4548 				"sw_chain_cons 0x%x "
   4549 				"sw_chain_prod 0x%x "
   4550 				"hw_cons 0x%x "
   4551 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4552 				"TOTAL_RX_BD 0x%x\n",
   4553 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4554 				hw_cons,
   4555 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4556 			}
   4557 #endif
   4558 			bus_dmamap_sync(sc->bnx_dmatag,
   4559 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4560 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4561 			    BUS_DMASYNC_POSTREAD);
   4562 			bus_dmamap_unload(sc->bnx_dmatag,
   4563 			    sc->rx_mbuf_map[sw_chain_cons]);
   4564 
   4565 			/* Remove the mbuf from the driver's chain. */
   4566 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4567 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4568 
   4569 			/*
   4570 			 * Frames received on the NetXteme II are prepended
   4571 			 * with the l2_fhdr structure which provides status
   4572 			 * information about the received frame (including
   4573 			 * VLAN tags and checksum info) and are also
   4574 			 * automatically adjusted to align the IP header
   4575 			 * (i.e. two null bytes are inserted before the
   4576 			 * Ethernet header).
   4577 			 */
   4578 			l2fhdr = mtod(m, struct l2_fhdr *);
   4579 
   4580 			len    = l2fhdr->l2_fhdr_pkt_len;
   4581 			status = l2fhdr->l2_fhdr_status;
   4582 
   4583 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4584 			    aprint_error("Simulating l2_fhdr status error.\n");
   4585 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4586 
   4587 			/* Watch for unusual sized frames. */
   4588 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4589 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4590 			    aprint_error_dev(sc->bnx_dev,
   4591 			        "Unusual frame size found. "
   4592 				"Min(%d), Actual(%d), Max(%d)\n",
   4593 				(int)BNX_MIN_MTU, len,
   4594 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4595 
   4596 			bnx_dump_mbuf(sc, m);
   4597 			bnx_breakpoint(sc));
   4598 
   4599 			len -= ETHER_CRC_LEN;
   4600 
   4601 			/* Check the received frame for errors. */
   4602 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4603 			    L2_FHDR_ERRORS_PHY_DECODE |
   4604 			    L2_FHDR_ERRORS_ALIGNMENT |
   4605 			    L2_FHDR_ERRORS_TOO_SHORT |
   4606 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4607 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4608 			    len >
   4609 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4610 				ifp->if_ierrors++;
   4611 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4612 
   4613 				/* Reuse the mbuf for a new frame. */
   4614 				if (bnx_add_buf(sc, m, &sw_prod,
   4615 				    &sw_chain_prod, &sw_prod_bseq)) {
   4616 					DBRUNIF(1, bnx_breakpoint(sc));
   4617 					panic("%s: Can't reuse RX mbuf!\n",
   4618 					    device_xname(sc->bnx_dev));
   4619 				}
   4620 				continue;
   4621 			}
   4622 
   4623 			/*
   4624 			 * Get a new mbuf for the rx_bd.   If no new
   4625 			 * mbufs are available then reuse the current mbuf,
   4626 			 * log an ierror on the interface, and generate
   4627 			 * an error in the system log.
   4628 			 */
   4629 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4630 			    &sw_prod_bseq)) {
   4631 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4632 				    "Failed to allocate "
   4633 				    "new mbuf, incoming frame dropped!\n"));
   4634 
   4635 				ifp->if_ierrors++;
   4636 
   4637 				/* Try and reuse the exisitng mbuf. */
   4638 				if (bnx_add_buf(sc, m, &sw_prod,
   4639 				    &sw_chain_prod, &sw_prod_bseq)) {
   4640 					DBRUNIF(1, bnx_breakpoint(sc));
   4641 					panic("%s: Double mbuf allocation "
   4642 					    "failure!",
   4643 					    device_xname(sc->bnx_dev));
   4644 				}
   4645 				continue;
   4646 			}
   4647 
   4648 			/* Skip over the l2_fhdr when passing the data up
   4649 			 * the stack.
   4650 			 */
   4651 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4652 
   4653 			/* Adjust the pckt length to match the received data. */
   4654 			m->m_pkthdr.len = m->m_len = len;
   4655 
   4656 			/* Send the packet to the appropriate interface. */
   4657 			m_set_rcvif(m, ifp);
   4658 
   4659 			DBRUN(BNX_VERBOSE_RECV,
   4660 			    struct ether_header *eh;
   4661 			    eh = mtod(m, struct ether_header *);
   4662 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4663 			    __func__, ether_sprintf(eh->ether_dhost),
   4664 			    ether_sprintf(eh->ether_shost),
   4665 			    htons(eh->ether_type)));
   4666 
   4667 			/* Validate the checksum. */
   4668 
   4669 			/* Check for an IP datagram. */
   4670 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4671 				/* Check if the IP checksum is valid. */
   4672 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4673 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4674 #ifdef BNX_DEBUG
   4675 				else
   4676 					DBPRINT(sc, BNX_WARN_SEND,
   4677 					    "%s(): Invalid IP checksum "
   4678 					        "= 0x%04X!\n",
   4679 						__func__,
   4680 						l2fhdr->l2_fhdr_ip_xsum
   4681 						);
   4682 #endif
   4683 			}
   4684 
   4685 			/* Check for a valid TCP/UDP frame. */
   4686 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4687 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4688 				/* Check for a good TCP/UDP checksum. */
   4689 				if ((status &
   4690 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4691 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4692 					m->m_pkthdr.csum_flags |=
   4693 					    M_CSUM_TCPv4 |
   4694 					    M_CSUM_UDPv4;
   4695 				} else {
   4696 					DBPRINT(sc, BNX_WARN_SEND,
   4697 					    "%s(): Invalid TCP/UDP "
   4698 					    "checksum = 0x%04X!\n",
   4699 					    __func__,
   4700 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4701 				}
   4702 			}
   4703 
   4704 			/*
   4705 			 * If we received a packet with a vlan tag,
   4706 			 * attach that information to the packet.
   4707 			 */
   4708 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4709 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4710 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4711 			}
   4712 
   4713 			/* Pass the mbuf off to the upper layers. */
   4714 
   4715 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4716 			    "%s(): Passing received frame up.\n", __func__);
   4717 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4718 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4719 
   4720 		}
   4721 
   4722 		sw_cons = NEXT_RX_BD(sw_cons);
   4723 
   4724 		/* Refresh hw_cons to see if there's new work */
   4725 		if (sw_cons == hw_cons) {
   4726 			hw_cons = sc->hw_rx_cons =
   4727 			    sblk->status_rx_quick_consumer_index0;
   4728 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4729 			    USABLE_RX_BD_PER_PAGE)
   4730 				hw_cons++;
   4731 		}
   4732 
   4733 		/* Prevent speculative reads from getting ahead of
   4734 		 * the status block.
   4735 		 */
   4736 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4737 		    BUS_SPACE_BARRIER_READ);
   4738 	}
   4739 
   4740 	for (i = 0; i < RX_PAGES; i++)
   4741 		bus_dmamap_sync(sc->bnx_dmatag,
   4742 		    sc->rx_bd_chain_map[i], 0,
   4743 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4744 		    BUS_DMASYNC_PREWRITE);
   4745 
   4746 	sc->rx_cons = sw_cons;
   4747 	sc->rx_prod = sw_prod;
   4748 	sc->rx_prod_bseq = sw_prod_bseq;
   4749 
   4750 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4751 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4752 
   4753 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4754 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4755 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4756 }
   4757 
   4758 /****************************************************************************/
   4759 /* Handles transmit completion interrupt events.                            */
   4760 /*                                                                          */
   4761 /* Returns:                                                                 */
   4762 /*   Nothing.                                                               */
   4763 /****************************************************************************/
   4764 void
   4765 bnx_tx_intr(struct bnx_softc *sc)
   4766 {
   4767 	struct status_block	*sblk = sc->status_block;
   4768 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4769 	struct bnx_pkt		*pkt;
   4770 	bus_dmamap_t		map;
   4771 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4772 
   4773 	DBRUNIF(1, sc->tx_interrupts++);
   4774 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4775 	    BUS_DMASYNC_POSTREAD);
   4776 
   4777 	/* Get the hardware's view of the TX consumer index. */
   4778 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4779 
   4780 	/* Skip to the next entry if this is a chain page pointer. */
   4781 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4782 		hw_tx_cons++;
   4783 
   4784 	sw_tx_cons = sc->tx_cons;
   4785 
   4786 	/* Prevent speculative reads from getting ahead of the status block. */
   4787 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4788 	    BUS_SPACE_BARRIER_READ);
   4789 
   4790 	/* Cycle through any completed TX chain page entries. */
   4791 	while (sw_tx_cons != hw_tx_cons) {
   4792 #ifdef BNX_DEBUG
   4793 		struct tx_bd *txbd = NULL;
   4794 #endif
   4795 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4796 
   4797 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4798 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4799 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4800 
   4801 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4802 		    aprint_error_dev(sc->bnx_dev,
   4803 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4804 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4805 
   4806 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4807 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4808 
   4809 		DBRUNIF((txbd == NULL),
   4810 		    aprint_error_dev(sc->bnx_dev,
   4811 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4812 		    bnx_breakpoint(sc));
   4813 
   4814 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4815 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4816 
   4817 
   4818 		mutex_enter(&sc->tx_pkt_mtx);
   4819 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4820 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4821 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4822 			mutex_exit(&sc->tx_pkt_mtx);
   4823 			/*
   4824 			 * Free the associated mbuf. Remember
   4825 			 * that only the last tx_bd of a packet
   4826 			 * has an mbuf pointer and DMA map.
   4827 			 */
   4828 			map = pkt->pkt_dmamap;
   4829 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4830 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4831 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4832 
   4833 			m_freem(pkt->pkt_mbuf);
   4834 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4835 
   4836 			ifp->if_opackets++;
   4837 
   4838 			mutex_enter(&sc->tx_pkt_mtx);
   4839 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4840 		}
   4841 		mutex_exit(&sc->tx_pkt_mtx);
   4842 
   4843 		sc->used_tx_bd--;
   4844 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4845 			__FILE__, __LINE__, sc->used_tx_bd);
   4846 
   4847 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4848 
   4849 		/* Refresh hw_cons to see if there's new work. */
   4850 		hw_tx_cons = sc->hw_tx_cons =
   4851 		    sblk->status_tx_quick_consumer_index0;
   4852 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4853 		    USABLE_TX_BD_PER_PAGE)
   4854 			hw_tx_cons++;
   4855 
   4856 		/* Prevent speculative reads from getting ahead of
   4857 		 * the status block.
   4858 		 */
   4859 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4860 		    BUS_SPACE_BARRIER_READ);
   4861 	}
   4862 
   4863 	/* Clear the TX timeout timer. */
   4864 	ifp->if_timer = 0;
   4865 
   4866 	/* Clear the tx hardware queue full flag. */
   4867 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4868 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4869 		    aprint_debug_dev(sc->bnx_dev,
   4870 		        "Open TX chain! %d/%d (used/total)\n",
   4871 			sc->used_tx_bd, sc->max_tx_bd));
   4872 		ifp->if_flags &= ~IFF_OACTIVE;
   4873 	}
   4874 
   4875 	sc->tx_cons = sw_tx_cons;
   4876 }
   4877 
   4878 /****************************************************************************/
   4879 /* Disables interrupt generation.                                           */
   4880 /*                                                                          */
   4881 /* Returns:                                                                 */
   4882 /*   Nothing.                                                               */
   4883 /****************************************************************************/
   4884 void
   4885 bnx_disable_intr(struct bnx_softc *sc)
   4886 {
   4887 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4888 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4889 }
   4890 
   4891 /****************************************************************************/
   4892 /* Enables interrupt generation.                                            */
   4893 /*                                                                          */
   4894 /* Returns:                                                                 */
   4895 /*   Nothing.                                                               */
   4896 /****************************************************************************/
   4897 void
   4898 bnx_enable_intr(struct bnx_softc *sc)
   4899 {
   4900 	uint32_t		val;
   4901 
   4902 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4903 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4904 
   4905 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4906 	    sc->last_status_idx);
   4907 
   4908 	val = REG_RD(sc, BNX_HC_COMMAND);
   4909 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4910 }
   4911 
   4912 /****************************************************************************/
   4913 /* Handles controller initialization.                                       */
   4914 /*                                                                          */
   4915 /****************************************************************************/
   4916 int
   4917 bnx_init(struct ifnet *ifp)
   4918 {
   4919 	struct bnx_softc	*sc = ifp->if_softc;
   4920 	uint32_t		ether_mtu;
   4921 	int			s, error = 0;
   4922 
   4923 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4924 
   4925 	s = splnet();
   4926 
   4927 	bnx_stop(ifp, 0);
   4928 
   4929 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4930 		aprint_error_dev(sc->bnx_dev,
   4931 		    "Controller reset failed!\n");
   4932 		goto bnx_init_exit;
   4933 	}
   4934 
   4935 	if ((error = bnx_chipinit(sc)) != 0) {
   4936 		aprint_error_dev(sc->bnx_dev,
   4937 		    "Controller initialization failed!\n");
   4938 		goto bnx_init_exit;
   4939 	}
   4940 
   4941 	if ((error = bnx_blockinit(sc)) != 0) {
   4942 		aprint_error_dev(sc->bnx_dev,
   4943 		    "Block initialization failed!\n");
   4944 		goto bnx_init_exit;
   4945 	}
   4946 
   4947 	/* Calculate and program the Ethernet MRU size. */
   4948 	if (ifp->if_mtu <= ETHERMTU) {
   4949 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4950 		sc->mbuf_alloc_size = MCLBYTES;
   4951 	} else {
   4952 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4953 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4954 	}
   4955 
   4956 
   4957 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   4958 
   4959 	/*
   4960 	 * Program the MRU and enable Jumbo frame
   4961 	 * support.
   4962 	 */
   4963 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4964 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4965 
   4966 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4967 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4968 
   4969 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4970 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4971 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4972 
   4973 	/* Program appropriate promiscuous/multicast filtering. */
   4974 	bnx_iff(sc);
   4975 
   4976 	/* Init RX buffer descriptor chain. */
   4977 	bnx_init_rx_chain(sc);
   4978 
   4979 	/* Init TX buffer descriptor chain. */
   4980 	bnx_init_tx_chain(sc);
   4981 
   4982 	/* Enable host interrupts. */
   4983 	bnx_enable_intr(sc);
   4984 
   4985 	bnx_ifmedia_upd(ifp);
   4986 
   4987 	SET(ifp->if_flags, IFF_RUNNING);
   4988 	CLR(ifp->if_flags, IFF_OACTIVE);
   4989 
   4990 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4991 
   4992 bnx_init_exit:
   4993 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4994 
   4995 	splx(s);
   4996 
   4997 	return error;
   4998 }
   4999 
   5000 void
   5001 bnx_mgmt_init(struct bnx_softc *sc)
   5002 {
   5003 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5004 	uint32_t	val;
   5005 
   5006 	/* Check if the driver is still running and bail out if it is. */
   5007 	if (ifp->if_flags & IFF_RUNNING)
   5008 		goto bnx_mgmt_init_exit;
   5009 
   5010 	/* Initialize the on-boards CPUs */
   5011 	bnx_init_cpus(sc);
   5012 
   5013 	val = (BCM_PAGE_BITS - 8) << 24;
   5014 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5015 
   5016 	/* Enable all critical blocks in the MAC. */
   5017 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5018 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5019 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5020 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5021 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5022 	DELAY(20);
   5023 
   5024 	bnx_ifmedia_upd(ifp);
   5025 
   5026 bnx_mgmt_init_exit:
   5027  	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5028 }
   5029 
   5030 /****************************************************************************/
   5031 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5032 /* memory visible to the controller.                                        */
   5033 /*                                                                          */
   5034 /* Returns:                                                                 */
   5035 /*   0 for success, positive value for failure.                             */
   5036 /****************************************************************************/
   5037 int
   5038 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5039 {
   5040 	struct bnx_pkt		*pkt;
   5041 	bus_dmamap_t		map;
   5042 	struct tx_bd		*txbd = NULL;
   5043 	uint16_t		vlan_tag = 0, flags = 0;
   5044 	uint16_t		chain_prod, prod;
   5045 #ifdef BNX_DEBUG
   5046 	uint16_t		debug_prod;
   5047 #endif
   5048 	uint32_t		addr, prod_bseq;
   5049 	int			i, error;
   5050 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   5051 	bool			remap = true;
   5052 
   5053 	mutex_enter(&sc->tx_pkt_mtx);
   5054 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5055 	if (pkt == NULL) {
   5056 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5057 			mutex_exit(&sc->tx_pkt_mtx);
   5058 			return ENETDOWN;
   5059 		}
   5060 
   5061 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5062 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5063 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   5064 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5065 		}
   5066 
   5067 		mutex_exit(&sc->tx_pkt_mtx);
   5068 		return ENOMEM;
   5069 	}
   5070 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5071 	mutex_exit(&sc->tx_pkt_mtx);
   5072 
   5073 	/* Transfer any checksum offload flags to the bd. */
   5074 	if (m->m_pkthdr.csum_flags) {
   5075 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5076 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5077 		if (m->m_pkthdr.csum_flags &
   5078 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5079 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5080 	}
   5081 
   5082 	/* Transfer any VLAN tags to the bd. */
   5083 	if (vlan_has_tag(m)) {
   5084 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5085 		vlan_tag = vlan_get_tag(m);
   5086 	}
   5087 
   5088 	/* Map the mbuf into DMAable memory. */
   5089 	prod = sc->tx_prod;
   5090 	chain_prod = TX_CHAIN_IDX(prod);
   5091 	map = pkt->pkt_dmamap;
   5092 
   5093 	/* Map the mbuf into our DMA address space. */
   5094 retry:
   5095 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5096 	if (__predict_false(error)) {
   5097 		if (error == EFBIG) {
   5098 			if (remap == true) {
   5099 				struct mbuf *newm;
   5100 
   5101 				remap = false;
   5102 				newm = m_defrag(m, M_NOWAIT);
   5103 				if (newm != NULL) {
   5104 					m = newm;
   5105 					goto retry;
   5106 				}
   5107 			}
   5108 		}
   5109 		sc->tx_dma_map_failures++;
   5110 		goto maperr;
   5111 	}
   5112 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5113 	    BUS_DMASYNC_PREWRITE);
   5114 	/* Make sure there's room in the chain */
   5115 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5116 		goto nospace;
   5117 
   5118 	/* prod points to an empty tx_bd at this point. */
   5119 	prod_bseq = sc->tx_prod_bseq;
   5120 #ifdef BNX_DEBUG
   5121 	debug_prod = chain_prod;
   5122 #endif
   5123 	DBPRINT(sc, BNX_INFO_SEND,
   5124 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5125 		"prod_bseq = 0x%08X\n",
   5126 		__func__, prod, chain_prod, prod_bseq);
   5127 
   5128 	/*
   5129 	 * Cycle through each mbuf segment that makes up
   5130 	 * the outgoing frame, gathering the mapping info
   5131 	 * for that segment and creating a tx_bd for the
   5132 	 * mbuf.
   5133 	 */
   5134 	for (i = 0; i < map->dm_nsegs ; i++) {
   5135 		chain_prod = TX_CHAIN_IDX(prod);
   5136 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5137 
   5138 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5139 		txbd->tx_bd_haddr_lo = addr;
   5140 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5141 		txbd->tx_bd_haddr_hi = addr;
   5142 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5143 		txbd->tx_bd_vlan_tag = vlan_tag;
   5144 		txbd->tx_bd_flags = flags;
   5145 		prod_bseq += map->dm_segs[i].ds_len;
   5146 		if (i == 0)
   5147 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5148 		prod = NEXT_TX_BD(prod);
   5149 	}
   5150 
   5151 	/* Set the END flag on the last TX buffer descriptor. */
   5152 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5153 
   5154 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5155 
   5156 	DBPRINT(sc, BNX_INFO_SEND,
   5157 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5158 		"prod_bseq = 0x%08X\n",
   5159 		__func__, prod, chain_prod, prod_bseq);
   5160 
   5161 	pkt->pkt_mbuf = m;
   5162 	pkt->pkt_end_desc = chain_prod;
   5163 
   5164 	mutex_enter(&sc->tx_pkt_mtx);
   5165 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5166 	mutex_exit(&sc->tx_pkt_mtx);
   5167 
   5168 	sc->used_tx_bd += map->dm_nsegs;
   5169 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5170 		__FILE__, __LINE__, sc->used_tx_bd);
   5171 
   5172 	/* Update some debug statistics counters */
   5173 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5174 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5175 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5176 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5177 
   5178 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5179 	    map->dm_nsegs));
   5180 
   5181 	/* prod points to the next free tx_bd at this point. */
   5182 	sc->tx_prod = prod;
   5183 	sc->tx_prod_bseq = prod_bseq;
   5184 
   5185 	return 0;
   5186 
   5187 
   5188 nospace:
   5189 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5190 maperr:
   5191 	mutex_enter(&sc->tx_pkt_mtx);
   5192 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5193 	mutex_exit(&sc->tx_pkt_mtx);
   5194 
   5195 	return ENOMEM;
   5196 }
   5197 
   5198 /****************************************************************************/
   5199 /* Main transmit routine.                                                   */
   5200 /*                                                                          */
   5201 /* Returns:                                                                 */
   5202 /*   Nothing.                                                               */
   5203 /****************************************************************************/
   5204 void
   5205 bnx_start(struct ifnet *ifp)
   5206 {
   5207 	struct bnx_softc	*sc = ifp->if_softc;
   5208 	struct mbuf		*m_head = NULL;
   5209 	int			count = 0;
   5210 #ifdef BNX_DEBUG
   5211 	uint16_t		tx_chain_prod;
   5212 #endif
   5213 
   5214 	/* If there's no link or the transmit queue is empty then just exit. */
   5215 	if (!sc->bnx_link
   5216 	    ||(ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5217 		DBPRINT(sc, BNX_INFO_SEND,
   5218 		    "%s(): output active or device not running.\n", __func__);
   5219 		goto bnx_start_exit;
   5220 	}
   5221 
   5222 	/* prod points to the next free tx_bd. */
   5223 #ifdef BNX_DEBUG
   5224 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5225 #endif
   5226 
   5227 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5228 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5229 	    "used_tx %d max_tx %d\n",
   5230 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5231 	    sc->used_tx_bd, sc->max_tx_bd);
   5232 
   5233 	/*
   5234 	 * Keep adding entries while there is space in the ring.
   5235 	 */
   5236 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5237 		/* Check for any frames to send. */
   5238 		IFQ_POLL(&ifp->if_snd, m_head);
   5239 		if (m_head == NULL)
   5240 			break;
   5241 
   5242 		/*
   5243 		 * Pack the data into the transmit ring. If we
   5244 		 * don't have room, set the OACTIVE flag to wait
   5245 		 * for the NIC to drain the chain.
   5246 		 */
   5247 		if (bnx_tx_encap(sc, m_head)) {
   5248 			ifp->if_flags |= IFF_OACTIVE;
   5249 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5250 			    "business! Total tx_bd used = %d\n",
   5251 			    sc->used_tx_bd);
   5252 			break;
   5253 		}
   5254 
   5255 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5256 		count++;
   5257 
   5258 		/* Send a copy of the frame to any BPF listeners. */
   5259 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5260 	}
   5261 
   5262 	if (count == 0) {
   5263 		/* no packets were dequeued */
   5264 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5265 		    "%s(): No packets were dequeued\n", __func__);
   5266 		goto bnx_start_exit;
   5267 	}
   5268 
   5269 	/* Update the driver's counters. */
   5270 #ifdef BNX_DEBUG
   5271 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5272 #endif
   5273 
   5274 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5275 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5276 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5277 
   5278 	/* Start the transmit. */
   5279 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5280 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5281 
   5282 	/* Set the tx timeout. */
   5283 	ifp->if_timer = BNX_TX_TIMEOUT;
   5284 
   5285 bnx_start_exit:
   5286 	return;
   5287 }
   5288 
   5289 /****************************************************************************/
   5290 /* Handles any IOCTL calls from the operating system.                       */
   5291 /*                                                                          */
   5292 /* Returns:                                                                 */
   5293 /*   0 for success, positive value for failure.                             */
   5294 /****************************************************************************/
   5295 int
   5296 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5297 {
   5298 	struct bnx_softc	*sc = ifp->if_softc;
   5299 	struct ifreq		*ifr = (struct ifreq *) data;
   5300 	struct mii_data		*mii = &sc->bnx_mii;
   5301 	int			s, error = 0;
   5302 
   5303 	s = splnet();
   5304 
   5305 	switch (command) {
   5306 	case SIOCSIFFLAGS:
   5307 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5308 			break;
   5309 		/* XXX set an ifflags callback and let ether_ioctl
   5310 		 * handle all of this.
   5311 		 */
   5312 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5313 			if (ifp->if_flags & IFF_RUNNING)
   5314 				error = ENETRESET;
   5315 			else
   5316 				bnx_init(ifp);
   5317 		} else if (ifp->if_flags & IFF_RUNNING)
   5318 			bnx_stop(ifp, 1);
   5319 		break;
   5320 
   5321 	case SIOCSIFMEDIA:
   5322 		/* Flow control requires full-duplex mode. */
   5323 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5324 		    (ifr->ifr_media & IFM_FDX) == 0)
   5325 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5326 
   5327 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5328 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5329 				/* We can do both TXPAUSE and RXPAUSE. */
   5330 				ifr->ifr_media |=
   5331 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5332 			}
   5333 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5334 		}
   5335 		/* FALLTHROUGH */
   5336 	case SIOCGIFMEDIA:
   5337 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5338 		    sc->bnx_phy_flags);
   5339 
   5340 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5341 		break;
   5342 
   5343 	default:
   5344 		error = ether_ioctl(ifp, command, data);
   5345 	}
   5346 
   5347 	if (error == ENETRESET) {
   5348 		if (ifp->if_flags & IFF_RUNNING)
   5349 			bnx_iff(sc);
   5350 		error = 0;
   5351 	}
   5352 
   5353 	splx(s);
   5354 	return error;
   5355 }
   5356 
   5357 /****************************************************************************/
   5358 /* Transmit timeout handler.                                                */
   5359 /*                                                                          */
   5360 /* Returns:                                                                 */
   5361 /*   Nothing.                                                               */
   5362 /****************************************************************************/
   5363 void
   5364 bnx_watchdog(struct ifnet *ifp)
   5365 {
   5366 	struct bnx_softc	*sc = ifp->if_softc;
   5367 
   5368 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5369 	    bnx_dump_status_block(sc));
   5370 	/*
   5371 	 * If we are in this routine because of pause frames, then
   5372 	 * don't reset the hardware.
   5373 	 */
   5374 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5375 		return;
   5376 
   5377 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5378 
   5379 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5380 
   5381 	bnx_init(ifp);
   5382 
   5383 	ifp->if_oerrors++;
   5384 }
   5385 
   5386 /*
   5387  * Interrupt handler.
   5388  */
   5389 /****************************************************************************/
   5390 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5391 /* interrupt and then calls a separate routine for handle the various       */
   5392 /* interrupt causes (PHY, TX, RX).                                          */
   5393 /*                                                                          */
   5394 /* Returns:                                                                 */
   5395 /*   0 for success, positive value for failure.                             */
   5396 /****************************************************************************/
   5397 int
   5398 bnx_intr(void *xsc)
   5399 {
   5400 	struct bnx_softc	*sc = xsc;
   5401 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5402 	uint32_t		status_attn_bits;
   5403 	uint16_t		status_idx;
   5404 	const struct status_block *sblk;
   5405 	int			rv = 0;
   5406 
   5407 	if (!device_is_active(sc->bnx_dev) ||
   5408 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5409 		return 0;
   5410 
   5411 	DBRUNIF(1, sc->interrupts_generated++);
   5412 
   5413 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5414 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5415 
   5416 	sblk = sc->status_block;
   5417 	/*
   5418 	 * If the hardware status block index
   5419 	 * matches the last value read by the
   5420 	 * driver and we haven't asserted our
   5421 	 * interrupt then there's nothing to do.
   5422 	 */
   5423 	status_idx = sblk->status_idx;
   5424 	if ((status_idx != sc->last_status_idx) ||
   5425 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5426 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5427 		rv = 1;
   5428 
   5429 		/* Ack the interrupt */
   5430 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5431 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5432 
   5433 		status_attn_bits = sblk->status_attn_bits;
   5434 
   5435 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5436 		    aprint_debug("Simulating unexpected status attention bit set.");
   5437 		    status_attn_bits = status_attn_bits |
   5438 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5439 
   5440 		/* Was it a link change interrupt? */
   5441 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5442 		    (sblk->status_attn_bits_ack &
   5443 		    STATUS_ATTN_BITS_LINK_STATE))
   5444 			bnx_phy_intr(sc);
   5445 
   5446 		/* If any other attention is asserted then the chip is toast. */
   5447 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5448 		    (sblk->status_attn_bits_ack &
   5449 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5450 			DBRUN(sc->unexpected_attentions++);
   5451 
   5452 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5453 			    sblk->status_attn_bits);
   5454 
   5455 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5456 				    bnx_breakpoint(sc));
   5457 
   5458 			bnx_init(ifp);
   5459 			goto out;
   5460 		}
   5461 
   5462 		/* Check for any completed RX frames. */
   5463 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5464 			bnx_rx_intr(sc);
   5465 
   5466 		/* Check for any completed TX frames. */
   5467 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5468 			bnx_tx_intr(sc);
   5469 
   5470 		/*
   5471 		 * Save the status block index value for use during the
   5472 		 * next interrupt.
   5473 		 */
   5474 		sc->last_status_idx = status_idx;
   5475 
   5476 		/* Start moving packets again */
   5477 		if (ifp->if_flags & IFF_RUNNING)
   5478 			if_schedule_deferred_start(ifp);
   5479 	}
   5480 
   5481 out:
   5482 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5483 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5484 
   5485 	return rv;
   5486 }
   5487 
   5488 /****************************************************************************/
   5489 /* Programs the various packet receive modes (broadcast and multicast).     */
   5490 /*                                                                          */
   5491 /* Returns:                                                                 */
   5492 /*   Nothing.                                                               */
   5493 /****************************************************************************/
   5494 void
   5495 bnx_iff(struct bnx_softc *sc)
   5496 {
   5497 	struct ethercom		*ec = &sc->bnx_ec;
   5498 	struct ifnet		*ifp = &ec->ec_if;
   5499 	struct ether_multi	*enm;
   5500 	struct ether_multistep	step;
   5501 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5502 	uint32_t		rx_mode, sort_mode;
   5503 	int			h, i;
   5504 
   5505 	/* Initialize receive mode default settings. */
   5506 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5507 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5508 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5509 	ifp->if_flags &= ~IFF_ALLMULTI;
   5510 
   5511 	/*
   5512 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5513 	 * be enbled.
   5514 	 */
   5515 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5516 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5517 
   5518 	/*
   5519 	 * Check for promiscuous, all multicast, or selected
   5520 	 * multicast address filtering.
   5521 	 */
   5522 	if (ifp->if_flags & IFF_PROMISC) {
   5523 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5524 
   5525 		ifp->if_flags |= IFF_ALLMULTI;
   5526 		/* Enable promiscuous mode. */
   5527 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5528 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5529 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5530 allmulti:
   5531 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5532 
   5533 		ifp->if_flags |= IFF_ALLMULTI;
   5534 		/* Enable all multicast addresses. */
   5535 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5536 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5537 			    0xffffffff);
   5538 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5539 	} else {
   5540 		/* Accept one or more multicast(s). */
   5541 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5542 
   5543 		ETHER_FIRST_MULTI(step, ec, enm);
   5544 		while (enm != NULL) {
   5545 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5546 			    ETHER_ADDR_LEN)) {
   5547 				goto allmulti;
   5548 			}
   5549 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5550 			    0xFF;
   5551 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5552 			ETHER_NEXT_MULTI(step, enm);
   5553 		}
   5554 
   5555 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5556 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5557 			    hashes[i]);
   5558 
   5559 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5560 	}
   5561 
   5562 	/* Only make changes if the recive mode has actually changed. */
   5563 	if (rx_mode != sc->rx_mode) {
   5564 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5565 		    rx_mode);
   5566 
   5567 		sc->rx_mode = rx_mode;
   5568 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5569 	}
   5570 
   5571 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5572 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5573 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5574 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5575 }
   5576 
   5577 /****************************************************************************/
   5578 /* Called periodically to updates statistics from the controllers           */
   5579 /* statistics block.                                                        */
   5580 /*                                                                          */
   5581 /* Returns:                                                                 */
   5582 /*   Nothing.                                                               */
   5583 /****************************************************************************/
   5584 void
   5585 bnx_stats_update(struct bnx_softc *sc)
   5586 {
   5587 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5588 	struct statistics_block	*stats;
   5589 
   5590 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5591 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5592 	    BUS_DMASYNC_POSTREAD);
   5593 
   5594 	stats = (struct statistics_block *)sc->stats_block;
   5595 
   5596 	/*
   5597 	 * Update the interface statistics from the
   5598 	 * hardware statistics.
   5599 	 */
   5600 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5601 
   5602 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5603 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5604 	    (u_long)stats->stat_IfInMBUFDiscards +
   5605 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5606 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5607 
   5608 	ifp->if_oerrors = (u_long)
   5609 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5610 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5611 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5612 
   5613 	/*
   5614 	 * Certain controllers don't report
   5615 	 * carrier sense errors correctly.
   5616 	 * See errata E11_5708CA0_1165.
   5617 	 */
   5618 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5619 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5620 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5621 
   5622 	/*
   5623 	 * Update the sysctl statistics from the
   5624 	 * hardware statistics.
   5625 	 */
   5626 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5627 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5628 
   5629 	sc->stat_IfHCInBadOctets =
   5630 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5631 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5632 
   5633 	sc->stat_IfHCOutOctets =
   5634 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5635 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5636 
   5637 	sc->stat_IfHCOutBadOctets =
   5638 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5639 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5640 
   5641 	sc->stat_IfHCInUcastPkts =
   5642 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5643 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5644 
   5645 	sc->stat_IfHCInMulticastPkts =
   5646 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5647 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5648 
   5649 	sc->stat_IfHCInBroadcastPkts =
   5650 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5651 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5652 
   5653 	sc->stat_IfHCOutUcastPkts =
   5654 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5655 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5656 
   5657 	sc->stat_IfHCOutMulticastPkts =
   5658 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5659 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5660 
   5661 	sc->stat_IfHCOutBroadcastPkts =
   5662 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5663 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5664 
   5665 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5666 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5667 
   5668 	sc->stat_Dot3StatsCarrierSenseErrors =
   5669 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5670 
   5671 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5672 
   5673 	sc->stat_Dot3StatsAlignmentErrors =
   5674 	    stats->stat_Dot3StatsAlignmentErrors;
   5675 
   5676 	sc->stat_Dot3StatsSingleCollisionFrames =
   5677 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5678 
   5679 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5680 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5681 
   5682 	sc->stat_Dot3StatsDeferredTransmissions =
   5683 	    stats->stat_Dot3StatsDeferredTransmissions;
   5684 
   5685 	sc->stat_Dot3StatsExcessiveCollisions =
   5686 	    stats->stat_Dot3StatsExcessiveCollisions;
   5687 
   5688 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5689 
   5690 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5691 
   5692 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5693 
   5694 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5695 
   5696 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5697 
   5698 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5699 
   5700 	sc->stat_EtherStatsPktsRx64Octets =
   5701 	    stats->stat_EtherStatsPktsRx64Octets;
   5702 
   5703 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5704 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5705 
   5706 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5707 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5708 
   5709 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5710 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5711 
   5712 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5713 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5714 
   5715 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5716 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5717 
   5718 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5719 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5720 
   5721 	sc->stat_EtherStatsPktsTx64Octets =
   5722 	    stats->stat_EtherStatsPktsTx64Octets;
   5723 
   5724 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5725 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5726 
   5727 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5728 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5729 
   5730 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5731 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5732 
   5733 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5734 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5735 
   5736 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5737 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5738 
   5739 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5740 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5741 
   5742 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5743 
   5744 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5745 
   5746 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5747 
   5748 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5749 
   5750 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5751 
   5752 	sc->stat_MacControlFramesReceived =
   5753 	    stats->stat_MacControlFramesReceived;
   5754 
   5755 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5756 
   5757 	sc->stat_IfInFramesL2FilterDiscards =
   5758 	    stats->stat_IfInFramesL2FilterDiscards;
   5759 
   5760 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5761 
   5762 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5763 
   5764 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5765 
   5766 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5767 
   5768 	sc->stat_CatchupInRuleCheckerDiscards =
   5769 	    stats->stat_CatchupInRuleCheckerDiscards;
   5770 
   5771 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5772 
   5773 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5774 
   5775 	sc->stat_CatchupInRuleCheckerP4Hit =
   5776 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5777 
   5778 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5779 }
   5780 
   5781 void
   5782 bnx_tick(void *xsc)
   5783 {
   5784 	struct bnx_softc	*sc = xsc;
   5785 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5786 	struct mii_data		*mii;
   5787 	uint32_t		msg;
   5788 	uint16_t		prod, chain_prod;
   5789 	uint32_t		prod_bseq;
   5790 	int s = splnet();
   5791 
   5792 	/* Tell the firmware that the driver is still running. */
   5793 #ifdef BNX_DEBUG
   5794 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5795 #else
   5796 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5797 #endif
   5798 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5799 
   5800 	/* Update the statistics from the hardware statistics block. */
   5801 	bnx_stats_update(sc);
   5802 
   5803 	/* Schedule the next tick. */
   5804 	if (!sc->bnx_detaching)
   5805 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5806 
   5807 	if (sc->bnx_link)
   5808 		goto bnx_tick_exit;
   5809 
   5810 	mii = &sc->bnx_mii;
   5811 	mii_tick(mii);
   5812 
   5813 	/* Check if the link has come up. */
   5814 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5815 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5816 		sc->bnx_link++;
   5817 		/* Now that link is up, handle any outstanding TX traffic. */
   5818 		if_schedule_deferred_start(ifp);
   5819 	}
   5820 
   5821 bnx_tick_exit:
   5822 	/* try to get more RX buffers, just in case */
   5823 	prod = sc->rx_prod;
   5824 	prod_bseq = sc->rx_prod_bseq;
   5825 	chain_prod = RX_CHAIN_IDX(prod);
   5826 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5827 	sc->rx_prod = prod;
   5828 	sc->rx_prod_bseq = prod_bseq;
   5829 
   5830 	splx(s);
   5831 	return;
   5832 }
   5833 
   5834 /****************************************************************************/
   5835 /* BNX Debug Routines                                                       */
   5836 /****************************************************************************/
   5837 #ifdef BNX_DEBUG
   5838 
   5839 /****************************************************************************/
   5840 /* Prints out information about an mbuf.                                    */
   5841 /*                                                                          */
   5842 /* Returns:                                                                 */
   5843 /*   Nothing.                                                               */
   5844 /****************************************************************************/
   5845 void
   5846 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5847 {
   5848 	struct mbuf		*mp = m;
   5849 
   5850 	if (m == NULL) {
   5851 		/* Index out of range. */
   5852 		aprint_error("mbuf ptr is null!\n");
   5853 		return;
   5854 	}
   5855 
   5856 	while (mp) {
   5857 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5858 		    mp, mp->m_len);
   5859 
   5860 		if (mp->m_flags & M_EXT)
   5861 			aprint_debug("M_EXT ");
   5862 		if (mp->m_flags & M_PKTHDR)
   5863 			aprint_debug("M_PKTHDR ");
   5864 		aprint_debug("\n");
   5865 
   5866 		if (mp->m_flags & M_EXT)
   5867 			aprint_debug("- m_ext: vaddr = %p, "
   5868 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5869 
   5870 		mp = mp->m_next;
   5871 	}
   5872 }
   5873 
   5874 /****************************************************************************/
   5875 /* Prints out the mbufs in the TX mbuf chain.                               */
   5876 /*                                                                          */
   5877 /* Returns:                                                                 */
   5878 /*   Nothing.                                                               */
   5879 /****************************************************************************/
   5880 void
   5881 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5882 {
   5883 #if 0
   5884 	struct mbuf		*m;
   5885 	int			i;
   5886 
   5887 	aprint_debug_dev(sc->bnx_dev,
   5888 	    "----------------------------"
   5889 	    "  tx mbuf data  "
   5890 	    "----------------------------\n");
   5891 
   5892 	for (i = 0; i < count; i++) {
   5893 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5894 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5895 		bnx_dump_mbuf(sc, m);
   5896 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5897 	}
   5898 
   5899 	aprint_debug_dev(sc->bnx_dev,
   5900 	    "--------------------------------------------"
   5901 	    "----------------------------\n");
   5902 #endif
   5903 }
   5904 
   5905 /*
   5906  * This routine prints the RX mbuf chain.
   5907  */
   5908 void
   5909 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5910 {
   5911 	struct mbuf		*m;
   5912 	int			i;
   5913 
   5914 	aprint_debug_dev(sc->bnx_dev,
   5915 	    "----------------------------"
   5916 	    "  rx mbuf data  "
   5917 	    "----------------------------\n");
   5918 
   5919 	for (i = 0; i < count; i++) {
   5920 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5921 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5922 		bnx_dump_mbuf(sc, m);
   5923 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5924 	}
   5925 
   5926 
   5927 	aprint_debug_dev(sc->bnx_dev,
   5928 	    "--------------------------------------------"
   5929 	    "----------------------------\n");
   5930 }
   5931 
   5932 void
   5933 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5934 {
   5935 	if (idx > MAX_TX_BD)
   5936 		/* Index out of range. */
   5937 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5938 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5939 		/* TX Chain page pointer. */
   5940 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5941 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5942 		    txbd->tx_bd_haddr_lo);
   5943 	else
   5944 		/* Normal tx_bd entry. */
   5945 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5946 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5947 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5948 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5949 		    txbd->tx_bd_flags);
   5950 }
   5951 
   5952 void
   5953 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5954 {
   5955 	if (idx > MAX_RX_BD)
   5956 		/* Index out of range. */
   5957 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5958 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5959 		/* TX Chain page pointer. */
   5960 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5961 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5962 		    rxbd->rx_bd_haddr_lo);
   5963 	else
   5964 		/* Normal tx_bd entry. */
   5965 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5966 		    "0x%08X, flags = 0x%08X\n", idx,
   5967 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5968 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5969 }
   5970 
   5971 void
   5972 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5973 {
   5974 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5975 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5976 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5977 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5978 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5979 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5980 }
   5981 
   5982 /*
   5983  * This routine prints the TX chain.
   5984  */
   5985 void
   5986 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5987 {
   5988 	struct tx_bd		*txbd;
   5989 	int			i;
   5990 
   5991 	/* First some info about the tx_bd chain structure. */
   5992 	aprint_debug_dev(sc->bnx_dev,
   5993 	    "----------------------------"
   5994 	    "  tx_bd  chain  "
   5995 	    "----------------------------\n");
   5996 
   5997 	BNX_PRINTF(sc,
   5998 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5999 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6000 
   6001 	BNX_PRINTF(sc,
   6002 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6003 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6004 
   6005 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6006 
   6007 	aprint_error_dev(sc->bnx_dev, ""
   6008 	    "-----------------------------"
   6009 	    "   tx_bd data   "
   6010 	    "-----------------------------\n");
   6011 
   6012 	/* Now print out the tx_bd's themselves. */
   6013 	for (i = 0; i < count; i++) {
   6014 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6015 		bnx_dump_txbd(sc, tx_prod, txbd);
   6016 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6017 	}
   6018 
   6019 	aprint_debug_dev(sc->bnx_dev,
   6020 	    "-----------------------------"
   6021 	    "--------------"
   6022 	    "-----------------------------\n");
   6023 }
   6024 
   6025 /*
   6026  * This routine prints the RX chain.
   6027  */
   6028 void
   6029 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6030 {
   6031 	struct rx_bd		*rxbd;
   6032 	int			i;
   6033 
   6034 	/* First some info about the tx_bd chain structure. */
   6035 	aprint_debug_dev(sc->bnx_dev,
   6036 	    "----------------------------"
   6037 	    "  rx_bd  chain  "
   6038 	    "----------------------------\n");
   6039 
   6040 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6041 
   6042 	BNX_PRINTF(sc,
   6043 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6044 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6045 
   6046 	BNX_PRINTF(sc,
   6047 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6048 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6049 
   6050 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6051 
   6052 	aprint_error_dev(sc->bnx_dev,
   6053 	    "----------------------------"
   6054 	    "   rx_bd data   "
   6055 	    "----------------------------\n");
   6056 
   6057 	/* Now print out the rx_bd's themselves. */
   6058 	for (i = 0; i < count; i++) {
   6059 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6060 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6061 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6062 	}
   6063 
   6064 	aprint_debug_dev(sc->bnx_dev,
   6065 	    "----------------------------"
   6066 	    "--------------"
   6067 	    "----------------------------\n");
   6068 }
   6069 
   6070 /*
   6071  * This routine prints the status block.
   6072  */
   6073 void
   6074 bnx_dump_status_block(struct bnx_softc *sc)
   6075 {
   6076 	struct status_block	*sblk;
   6077 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6078 	    BUS_DMASYNC_POSTREAD);
   6079 
   6080 	sblk = sc->status_block;
   6081 
   6082    	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6083 	    "Status Block -----------------------------\n");
   6084 
   6085 	BNX_PRINTF(sc,
   6086 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6087 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6088 	    sblk->status_idx);
   6089 
   6090 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6091 	    sblk->status_rx_quick_consumer_index0,
   6092 	    sblk->status_tx_quick_consumer_index0);
   6093 
   6094 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6095 
   6096 	/* Theses indices are not used for normal L2 drivers. */
   6097 	if (sblk->status_rx_quick_consumer_index1 ||
   6098 		sblk->status_tx_quick_consumer_index1)
   6099 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6100 		    sblk->status_rx_quick_consumer_index1,
   6101 		    sblk->status_tx_quick_consumer_index1);
   6102 
   6103 	if (sblk->status_rx_quick_consumer_index2 ||
   6104 		sblk->status_tx_quick_consumer_index2)
   6105 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6106 		    sblk->status_rx_quick_consumer_index2,
   6107 		    sblk->status_tx_quick_consumer_index2);
   6108 
   6109 	if (sblk->status_rx_quick_consumer_index3 ||
   6110 		sblk->status_tx_quick_consumer_index3)
   6111 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6112 		    sblk->status_rx_quick_consumer_index3,
   6113 		    sblk->status_tx_quick_consumer_index3);
   6114 
   6115 	if (sblk->status_rx_quick_consumer_index4 ||
   6116 		sblk->status_rx_quick_consumer_index5)
   6117 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6118 		    sblk->status_rx_quick_consumer_index4,
   6119 		    sblk->status_rx_quick_consumer_index5);
   6120 
   6121 	if (sblk->status_rx_quick_consumer_index6 ||
   6122 		sblk->status_rx_quick_consumer_index7)
   6123 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6124 		    sblk->status_rx_quick_consumer_index6,
   6125 		    sblk->status_rx_quick_consumer_index7);
   6126 
   6127 	if (sblk->status_rx_quick_consumer_index8 ||
   6128 		sblk->status_rx_quick_consumer_index9)
   6129 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6130 		    sblk->status_rx_quick_consumer_index8,
   6131 		    sblk->status_rx_quick_consumer_index9);
   6132 
   6133 	if (sblk->status_rx_quick_consumer_index10 ||
   6134 		sblk->status_rx_quick_consumer_index11)
   6135 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6136 		    sblk->status_rx_quick_consumer_index10,
   6137 		    sblk->status_rx_quick_consumer_index11);
   6138 
   6139 	if (sblk->status_rx_quick_consumer_index12 ||
   6140 		sblk->status_rx_quick_consumer_index13)
   6141 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6142 		    sblk->status_rx_quick_consumer_index12,
   6143 		    sblk->status_rx_quick_consumer_index13);
   6144 
   6145 	if (sblk->status_rx_quick_consumer_index14 ||
   6146 		sblk->status_rx_quick_consumer_index15)
   6147 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6148 		    sblk->status_rx_quick_consumer_index14,
   6149 		    sblk->status_rx_quick_consumer_index15);
   6150 
   6151 	if (sblk->status_completion_producer_index ||
   6152 		sblk->status_cmd_consumer_index)
   6153 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6154 		    sblk->status_completion_producer_index,
   6155 		    sblk->status_cmd_consumer_index);
   6156 
   6157 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6158 	    "-----------------------------\n");
   6159 }
   6160 
   6161 /*
   6162  * This routine prints the statistics block.
   6163  */
   6164 void
   6165 bnx_dump_stats_block(struct bnx_softc *sc)
   6166 {
   6167 	struct statistics_block	*sblk;
   6168 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6169 	    BUS_DMASYNC_POSTREAD);
   6170 
   6171 	sblk = sc->stats_block;
   6172 
   6173 	aprint_debug_dev(sc->bnx_dev, ""
   6174 	    "-----------------------------"
   6175 	    " Stats  Block "
   6176 	    "-----------------------------\n");
   6177 
   6178 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6179 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6180 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6181 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6182 
   6183 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6184 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6185 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6186 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6187 
   6188 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6189 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6190 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6191 	    sblk->stat_IfHCInMulticastPkts_hi,
   6192 	    sblk->stat_IfHCInMulticastPkts_lo);
   6193 
   6194 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6195 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6196 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6197 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6198 	    sblk->stat_IfHCOutUcastPkts_hi,
   6199 	    sblk->stat_IfHCOutUcastPkts_lo);
   6200 
   6201 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6202 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6203 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6204 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6205 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6206 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6207 
   6208 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6209 		BNX_PRINTF(sc, "0x%08X : "
   6210 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6211 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6212 
   6213 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6214 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6215 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6216 
   6217 	if (sblk->stat_Dot3StatsFCSErrors)
   6218 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6219 		    sblk->stat_Dot3StatsFCSErrors);
   6220 
   6221 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6222 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6223 		    sblk->stat_Dot3StatsAlignmentErrors);
   6224 
   6225 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6226 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6227 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6228 
   6229 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6230 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6231 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6232 
   6233 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6234 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6235 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6236 
   6237 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6238 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6239 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6240 
   6241 	if (sblk->stat_Dot3StatsLateCollisions)
   6242 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6243 		    sblk->stat_Dot3StatsLateCollisions);
   6244 
   6245 	if (sblk->stat_EtherStatsCollisions)
   6246 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6247 		    sblk->stat_EtherStatsCollisions);
   6248 
   6249 	if (sblk->stat_EtherStatsFragments)
   6250 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6251 		    sblk->stat_EtherStatsFragments);
   6252 
   6253 	if (sblk->stat_EtherStatsJabbers)
   6254 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6255 		    sblk->stat_EtherStatsJabbers);
   6256 
   6257 	if (sblk->stat_EtherStatsUndersizePkts)
   6258 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6259 		    sblk->stat_EtherStatsUndersizePkts);
   6260 
   6261 	if (sblk->stat_EtherStatsOverrsizePkts)
   6262 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6263 		    sblk->stat_EtherStatsOverrsizePkts);
   6264 
   6265 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6266 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6267 		    sblk->stat_EtherStatsPktsRx64Octets);
   6268 
   6269 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6270 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6271 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6272 
   6273 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6274 		BNX_PRINTF(sc, "0x%08X : "
   6275 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6276 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6277 
   6278 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6279 		BNX_PRINTF(sc, "0x%08X : "
   6280 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6281 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6282 
   6283 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6284 		BNX_PRINTF(sc, "0x%08X : "
   6285 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6286 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6287 
   6288 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6289 		BNX_PRINTF(sc, "0x%08X : "
   6290 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6291 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6292 
   6293 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6294 		BNX_PRINTF(sc, "0x%08X : "
   6295 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6296 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6297 
   6298 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6299 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6300 		    sblk->stat_EtherStatsPktsTx64Octets);
   6301 
   6302 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6303 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6304 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6305 
   6306 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6307 		BNX_PRINTF(sc, "0x%08X : "
   6308 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6309 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6310 
   6311 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6312 		BNX_PRINTF(sc, "0x%08X : "
   6313 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6314 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6315 
   6316 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6317 		BNX_PRINTF(sc, "0x%08X : "
   6318 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6319 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6320 
   6321 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6322 		BNX_PRINTF(sc, "0x%08X : "
   6323 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6324 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6325 
   6326 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6327 		BNX_PRINTF(sc, "0x%08X : "
   6328 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6329 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6330 
   6331 	if (sblk->stat_XonPauseFramesReceived)
   6332 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6333 		    sblk->stat_XonPauseFramesReceived);
   6334 
   6335 	if (sblk->stat_XoffPauseFramesReceived)
   6336 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6337 		    sblk->stat_XoffPauseFramesReceived);
   6338 
   6339 	if (sblk->stat_OutXonSent)
   6340 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6341 		    sblk->stat_OutXonSent);
   6342 
   6343 	if (sblk->stat_OutXoffSent)
   6344 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6345 		    sblk->stat_OutXoffSent);
   6346 
   6347 	if (sblk->stat_FlowControlDone)
   6348 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6349 		    sblk->stat_FlowControlDone);
   6350 
   6351 	if (sblk->stat_MacControlFramesReceived)
   6352 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6353 		    sblk->stat_MacControlFramesReceived);
   6354 
   6355 	if (sblk->stat_XoffStateEntered)
   6356 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6357 		    sblk->stat_XoffStateEntered);
   6358 
   6359 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6360 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6361 		    sblk->stat_IfInFramesL2FilterDiscards);
   6362 
   6363 	if (sblk->stat_IfInRuleCheckerDiscards)
   6364 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6365 		    sblk->stat_IfInRuleCheckerDiscards);
   6366 
   6367 	if (sblk->stat_IfInFTQDiscards)
   6368 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6369 		    sblk->stat_IfInFTQDiscards);
   6370 
   6371 	if (sblk->stat_IfInMBUFDiscards)
   6372 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6373 		    sblk->stat_IfInMBUFDiscards);
   6374 
   6375 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6376 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6377 		    sblk->stat_IfInRuleCheckerP4Hit);
   6378 
   6379 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6380 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6381 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6382 
   6383 	if (sblk->stat_CatchupInFTQDiscards)
   6384 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6385 		    sblk->stat_CatchupInFTQDiscards);
   6386 
   6387 	if (sblk->stat_CatchupInMBUFDiscards)
   6388 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6389 		    sblk->stat_CatchupInMBUFDiscards);
   6390 
   6391 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6392 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6393 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6394 
   6395 	aprint_debug_dev(sc->bnx_dev,
   6396 	    "-----------------------------"
   6397 	    "--------------"
   6398 	    "-----------------------------\n");
   6399 }
   6400 
   6401 void
   6402 bnx_dump_driver_state(struct bnx_softc *sc)
   6403 {
   6404 	aprint_debug_dev(sc->bnx_dev,
   6405 	    "-----------------------------"
   6406 	    " Driver State "
   6407 	    "-----------------------------\n");
   6408 
   6409 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6410 	    "address\n", sc);
   6411 
   6412 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6413 	    sc->status_block);
   6414 
   6415 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6416 	    "address\n", sc->stats_block);
   6417 
   6418 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6419 	    "address\n", sc->tx_bd_chain);
   6420 
   6421 #if 0
   6422 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6423 	    sc->rx_bd_chain);
   6424 
   6425 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6426 	    sc->tx_mbuf_ptr);
   6427 #endif
   6428 
   6429 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6430 	    sc->rx_mbuf_ptr);
   6431 
   6432 	BNX_PRINTF(sc,
   6433 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6434 	    sc->interrupts_generated);
   6435 
   6436 	BNX_PRINTF(sc,
   6437 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6438 	    sc->rx_interrupts);
   6439 
   6440 	BNX_PRINTF(sc,
   6441 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6442 	    sc->tx_interrupts);
   6443 
   6444 	BNX_PRINTF(sc,
   6445 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6446 	    sc->last_status_idx);
   6447 
   6448 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6449 	    sc->tx_prod);
   6450 
   6451 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6452 	    sc->tx_cons);
   6453 
   6454 	BNX_PRINTF(sc,
   6455 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6456 	    sc->tx_prod_bseq);
   6457 	BNX_PRINTF(sc,
   6458 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6459 	    sc->tx_mbuf_alloc);
   6460 
   6461 	BNX_PRINTF(sc,
   6462 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6463 	    sc->used_tx_bd);
   6464 
   6465 	BNX_PRINTF(sc,
   6466 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6467 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6468 
   6469 
   6470 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6471 	    sc->rx_prod);
   6472 
   6473 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6474 	    sc->rx_cons);
   6475 
   6476 	BNX_PRINTF(sc,
   6477 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6478 	    sc->rx_prod_bseq);
   6479 
   6480 	BNX_PRINTF(sc,
   6481 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6482 	    sc->rx_mbuf_alloc);
   6483 
   6484 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6485 	    sc->free_rx_bd);
   6486 
   6487 	BNX_PRINTF(sc,
   6488 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6489 	    sc->rx_low_watermark, sc->max_rx_bd);
   6490 
   6491 	BNX_PRINTF(sc,
   6492 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6493 	    "mbuf alloc failures\n",
   6494 	    sc->mbuf_alloc_failed);
   6495 
   6496 	BNX_PRINTF(sc,
   6497 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6498 	    "simulated mbuf alloc failures\n",
   6499 	    sc->mbuf_sim_alloc_failed);
   6500 
   6501 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6502 	    "-----------------------------\n");
   6503 }
   6504 
   6505 void
   6506 bnx_dump_hw_state(struct bnx_softc *sc)
   6507 {
   6508 	uint32_t		val1;
   6509 	int			i;
   6510 
   6511 	aprint_debug_dev(sc->bnx_dev,
   6512 	    "----------------------------"
   6513 	    " Hardware State "
   6514 	    "----------------------------\n");
   6515 
   6516 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6517 
   6518 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6519 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6520 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6521 
   6522 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6523 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6524 
   6525 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6526 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6527 
   6528 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6529 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6530 	    BNX_EMAC_STATUS);
   6531 
   6532 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6533 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6534 
   6535 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6536 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6537 	    BNX_TBDR_STATUS);
   6538 
   6539 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6540 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6541 	    BNX_TDMA_STATUS);
   6542 
   6543 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6544 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6545 
   6546 	aprint_debug_dev(sc->bnx_dev,
   6547 	    "----------------------------"
   6548 	    "----------------"
   6549 	    "----------------------------\n");
   6550 
   6551 	aprint_debug_dev(sc->bnx_dev,
   6552 	    "----------------------------"
   6553 	    " Register  Dump "
   6554 	    "----------------------------\n");
   6555 
   6556 	for (i = 0x400; i < 0x8000; i += 0x10)
   6557 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6558 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6559 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6560 
   6561 	aprint_debug_dev(sc->bnx_dev,
   6562 	    "----------------------------"
   6563 	    "----------------"
   6564 	    "----------------------------\n");
   6565 }
   6566 
   6567 void
   6568 bnx_breakpoint(struct bnx_softc *sc)
   6569 {
   6570 	/* Unreachable code to shut the compiler up about unused functions. */
   6571 	if (0) {
   6572    		bnx_dump_txbd(sc, 0, NULL);
   6573 		bnx_dump_rxbd(sc, 0, NULL);
   6574 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6575 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6576 		bnx_dump_l2fhdr(sc, 0, NULL);
   6577 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6578 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6579 		bnx_dump_status_block(sc);
   6580 		bnx_dump_stats_block(sc);
   6581 		bnx_dump_driver_state(sc);
   6582 		bnx_dump_hw_state(sc);
   6583 	}
   6584 
   6585 	bnx_dump_driver_state(sc);
   6586 	/* Print the important status block fields. */
   6587 	bnx_dump_status_block(sc);
   6588 
   6589 #if 0
   6590 	/* Call the debugger. */
   6591 	breakpoint();
   6592 #endif
   6593 
   6594 	return;
   6595 }
   6596 #endif
   6597