if_bnx.c revision 1.76 1 /* $NetBSD: if_bnx.c,v 1.76 2019/04/04 08:16:24 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.76 2019/04/04 08:16:24 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465
466 aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
467 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
468 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
469 ? "Serdes " : "", sc->bnx_chipid);
470
471 /* Bus info. */
472 if (sc->bnx_flags & BNX_PCIE_FLAG) {
473 aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
474 sc->link_width);
475 switch (sc->link_speed) {
476 case 1: aprint_normal("2.5Gbps\n"); break;
477 case 2: aprint_normal("5Gbps\n"); break;
478 default: aprint_normal("Unknown link speed\n");
479 }
480 } else {
481 aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
482 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
483 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
484 sc->bus_speed_mhz);
485 }
486
487 aprint_normal_dev(sc->bnx_dev,
488 "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
489 sc->bnx_rx_quick_cons_trip_int,
490 sc->bnx_rx_quick_cons_trip,
491 sc->bnx_rx_ticks_int,
492 sc->bnx_rx_ticks,
493 sc->bnx_tx_quick_cons_trip_int,
494 sc->bnx_tx_quick_cons_trip,
495 sc->bnx_tx_ticks_int,
496 sc->bnx_tx_ticks);
497 }
498
499
500 /****************************************************************************/
501 /* PCI Capabilities Probe Function. */
502 /* */
503 /* Walks the PCI capabiites list for the device to find what features are */
504 /* supported. */
505 /* */
506 /* Returns: */
507 /* None. */
508 /****************************************************************************/
509 static void
510 bnx_probe_pci_caps(struct bnx_softc *sc)
511 {
512 struct pci_attach_args *pa = &(sc->bnx_pa);
513 pcireg_t reg;
514
515 /* Check if PCI-X capability is enabled. */
516 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
517 NULL) != 0) {
518 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
519 }
520
521 /* Check if PCIe capability is enabled. */
522 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
523 NULL) != 0) {
524 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
525 reg + PCIE_LCSR);
526 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
527 "0x%08X\n", link_status);
528 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
529 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
530 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
531 sc->bnx_flags |= BNX_PCIE_FLAG;
532 }
533
534 /* Check if MSI capability is enabled. */
535 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
536 NULL) != 0)
537 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
538
539 /* Check if MSI-X capability is enabled. */
540 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
541 NULL) != 0)
542 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
543 }
544
545
546 /****************************************************************************/
547 /* Device attach function. */
548 /* */
549 /* Allocates device resources, performs secondary chip identification, */
550 /* resets and initializes the hardware, and initializes driver instance */
551 /* variables. */
552 /* */
553 /* Returns: */
554 /* 0 on success, positive value on failure. */
555 /****************************************************************************/
556 void
557 bnx_attach(device_t parent, device_t self, void *aux)
558 {
559 const struct bnx_product *bp;
560 struct bnx_softc *sc = device_private(self);
561 prop_dictionary_t dict;
562 struct pci_attach_args *pa = aux;
563 pci_chipset_tag_t pc = pa->pa_pc;
564 pci_intr_handle_t ih;
565 const char *intrstr = NULL;
566 uint32_t command;
567 struct ifnet *ifp;
568 uint32_t val;
569 int mii_flags = MIIF_FORCEANEG;
570 pcireg_t memtype;
571 char intrbuf[PCI_INTRSTR_LEN];
572
573 if (bnx_tx_pool == NULL) {
574 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
575 if (bnx_tx_pool != NULL) {
576 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
577 0, 0, 0, "bnxpkts", NULL, IPL_NET);
578 } else {
579 aprint_error(": can't alloc bnx_tx_pool\n");
580 return;
581 }
582 }
583
584 bp = bnx_lookup(pa);
585 if (bp == NULL)
586 panic("unknown device");
587
588 sc->bnx_dev = self;
589
590 aprint_naive("\n");
591 aprint_normal(": %s\n", bp->bp_name);
592
593 sc->bnx_pa = *pa;
594
595 /*
596 * Map control/status registers.
597 */
598 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
599 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
600 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
601 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
602
603 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
604 aprint_error_dev(sc->bnx_dev,
605 "failed to enable memory mapping!\n");
606 return;
607 }
608
609 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
610 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
611 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
612 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
613 return;
614 }
615
616 if (pci_intr_map(pa, &ih)) {
617 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
618 goto bnx_attach_fail;
619 }
620 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
621
622 /*
623 * Configure byte swap and enable indirect register access.
624 * Rely on CPU to do target byte swapping on big endian systems.
625 * Access to registers outside of PCI configurtion space are not
626 * valid until this is done.
627 */
628 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
629 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
630 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
631
632 /* Save ASIC revsion info. */
633 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
634
635 /*
636 * Find the base address for shared memory access.
637 * Newer versions of bootcode use a signature and offset
638 * while older versions use a fixed address.
639 */
640 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
641 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
642 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
643 (sc->bnx_pa.pa_function << 2));
644 else
645 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
646
647 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
648
649 /* Set initial device and PHY flags */
650 sc->bnx_flags = 0;
651 sc->bnx_phy_flags = 0;
652
653 bnx_probe_pci_caps(sc);
654
655 /* Get PCI bus information (speed and type). */
656 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
657 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
658 uint32_t clkreg;
659
660 sc->bnx_flags |= BNX_PCIX_FLAG;
661
662 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
663
664 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
665 switch (clkreg) {
666 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
667 sc->bus_speed_mhz = 133;
668 break;
669
670 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
671 sc->bus_speed_mhz = 100;
672 break;
673
674 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
675 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
676 sc->bus_speed_mhz = 66;
677 break;
678
679 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
680 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
681 sc->bus_speed_mhz = 50;
682 break;
683
684 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
685 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
686 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
687 sc->bus_speed_mhz = 33;
688 break;
689 }
690 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
691 sc->bus_speed_mhz = 66;
692 else
693 sc->bus_speed_mhz = 33;
694
695 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
696 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
697
698 /* Reset the controller. */
699 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
700 goto bnx_attach_fail;
701
702 /* Initialize the controller. */
703 if (bnx_chipinit(sc)) {
704 aprint_error_dev(sc->bnx_dev,
705 "Controller initialization failed!\n");
706 goto bnx_attach_fail;
707 }
708
709 /* Perform NVRAM test. */
710 if (bnx_nvram_test(sc)) {
711 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
712 goto bnx_attach_fail;
713 }
714
715 /* Fetch the permanent Ethernet MAC address. */
716 bnx_get_mac_addr(sc);
717 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
718 ether_sprintf(sc->eaddr));
719
720 /*
721 * Trip points control how many BDs
722 * should be ready before generating an
723 * interrupt while ticks control how long
724 * a BD can sit in the chain before
725 * generating an interrupt. Set the default
726 * values for the RX and TX rings.
727 */
728
729 #ifdef BNX_DEBUG
730 /* Force more frequent interrupts. */
731 sc->bnx_tx_quick_cons_trip_int = 1;
732 sc->bnx_tx_quick_cons_trip = 1;
733 sc->bnx_tx_ticks_int = 0;
734 sc->bnx_tx_ticks = 0;
735
736 sc->bnx_rx_quick_cons_trip_int = 1;
737 sc->bnx_rx_quick_cons_trip = 1;
738 sc->bnx_rx_ticks_int = 0;
739 sc->bnx_rx_ticks = 0;
740 #else
741 sc->bnx_tx_quick_cons_trip_int = 20;
742 sc->bnx_tx_quick_cons_trip = 20;
743 sc->bnx_tx_ticks_int = 80;
744 sc->bnx_tx_ticks = 80;
745
746 sc->bnx_rx_quick_cons_trip_int = 6;
747 sc->bnx_rx_quick_cons_trip = 6;
748 sc->bnx_rx_ticks_int = 18;
749 sc->bnx_rx_ticks = 18;
750 #endif
751
752 /* Update statistics once every second. */
753 sc->bnx_stats_ticks = 1000000 & 0xffff00;
754
755 /* Find the media type for the adapter. */
756 bnx_get_media(sc);
757
758 /*
759 * Store config data needed by the PHY driver for
760 * backplane applications
761 */
762 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
763 BNX_SHARED_HW_CFG_CONFIG);
764 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
765 BNX_PORT_HW_CFG_CONFIG);
766
767 /* Allocate DMA memory resources. */
768 sc->bnx_dmatag = pa->pa_dmat;
769 if (bnx_dma_alloc(sc)) {
770 aprint_error_dev(sc->bnx_dev,
771 "DMA resource allocation failed!\n");
772 goto bnx_attach_fail;
773 }
774
775 /* Initialize the ifnet interface. */
776 ifp = &sc->bnx_ec.ec_if;
777 ifp->if_softc = sc;
778 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
779 ifp->if_ioctl = bnx_ioctl;
780 ifp->if_stop = bnx_stop;
781 ifp->if_start = bnx_start;
782 ifp->if_init = bnx_init;
783 ifp->if_watchdog = bnx_watchdog;
784 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
785 IFQ_SET_READY(&ifp->if_snd);
786 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
787
788 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
789 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
790
791 ifp->if_capabilities |=
792 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
793 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
794 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
795
796 /* create workqueue to handle packet allocations */
797 if (workqueue_create(&sc->bnx_wq, device_xname(self),
798 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
799 aprint_error_dev(self, "failed to create workqueue\n");
800 goto bnx_attach_fail;
801 }
802
803 sc->bnx_mii.mii_ifp = ifp;
804 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
805 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
806 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
807
808 /* Handle any special PHY initialization for SerDes PHYs. */
809 bnx_init_media(sc);
810
811 sc->bnx_ec.ec_mii = &sc->bnx_mii;
812 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
813 bnx_ifmedia_sts);
814
815 /* set phyflags and chipid before mii_attach() */
816 dict = device_properties(self);
817 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
818 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
819 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
820 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
821
822 /* Print some useful adapter info */
823 bnx_print_adapter_info(sc);
824
825 mii_flags |= MIIF_DOPAUSE;
826 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
827 mii_flags |= MIIF_HAVEFIBER;
828 mii_attach(self, &sc->bnx_mii, 0xffffffff,
829 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
830
831 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
832 aprint_error_dev(self, "no PHY found!\n");
833 ifmedia_add(&sc->bnx_mii.mii_media,
834 IFM_ETHER|IFM_MANUAL, 0, NULL);
835 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
836 } else
837 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
838
839 /* Attach to the Ethernet interface list. */
840 if_attach(ifp);
841 if_deferred_start_init(ifp, NULL);
842 ether_ifattach(ifp,sc->eaddr);
843
844 callout_init(&sc->bnx_timeout, 0);
845
846 /* Hookup IRQ last. */
847 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
848 sc, device_xname(self));
849 if (sc->bnx_intrhand == NULL) {
850 aprint_error_dev(self, "couldn't establish interrupt");
851 if (intrstr != NULL)
852 aprint_error(" at %s", intrstr);
853 aprint_error("\n");
854 goto bnx_attach_fail;
855 }
856 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
857
858 if (pmf_device_register(self, NULL, NULL))
859 pmf_class_network_register(self, ifp);
860 else
861 aprint_error_dev(self, "couldn't establish power handler\n");
862
863 /* Print some important debugging info. */
864 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
865
866 /* Get the firmware running so ASF still works. */
867 bnx_mgmt_init(sc);
868
869 goto bnx_attach_exit;
870
871 bnx_attach_fail:
872 bnx_release_resources(sc);
873
874 bnx_attach_exit:
875 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
876 }
877
878 /****************************************************************************/
879 /* Device detach function. */
880 /* */
881 /* Stops the controller, resets the controller, and releases resources. */
882 /* */
883 /* Returns: */
884 /* 0 on success, positive value on failure. */
885 /****************************************************************************/
886 int
887 bnx_detach(device_t dev, int flags)
888 {
889 int s;
890 struct bnx_softc *sc;
891 struct ifnet *ifp;
892
893 sc = device_private(dev);
894 ifp = &sc->bnx_ec.ec_if;
895
896 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
897
898 /* Stop and reset the controller. */
899 s = splnet();
900 bnx_stop(ifp, 1);
901 splx(s);
902
903 pmf_device_deregister(dev);
904 callout_destroy(&sc->bnx_timeout);
905 ether_ifdetach(ifp);
906 workqueue_destroy(sc->bnx_wq);
907
908 /* Delete all remaining media. */
909 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
910
911 if_detach(ifp);
912 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
913
914 /* Release all remaining resources. */
915 bnx_release_resources(sc);
916
917 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
918
919 return 0;
920 }
921
922 /****************************************************************************/
923 /* Indirect register read. */
924 /* */
925 /* Reads NetXtreme II registers using an index/data register pair in PCI */
926 /* configuration space. Using this mechanism avoids issues with posted */
927 /* reads but is much slower than memory-mapped I/O. */
928 /* */
929 /* Returns: */
930 /* The value of the register. */
931 /****************************************************************************/
932 uint32_t
933 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
934 {
935 struct pci_attach_args *pa = &(sc->bnx_pa);
936
937 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
938 offset);
939 #ifdef BNX_DEBUG
940 {
941 uint32_t val;
942 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
943 BNX_PCICFG_REG_WINDOW);
944 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
945 "val = 0x%08X\n", __func__, offset, val);
946 return val;
947 }
948 #else
949 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
950 #endif
951 }
952
953 /****************************************************************************/
954 /* Indirect register write. */
955 /* */
956 /* Writes NetXtreme II registers using an index/data register pair in PCI */
957 /* configuration space. Using this mechanism avoids issues with posted */
958 /* writes but is muchh slower than memory-mapped I/O. */
959 /* */
960 /* Returns: */
961 /* Nothing. */
962 /****************************************************************************/
963 void
964 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
965 {
966 struct pci_attach_args *pa = &(sc->bnx_pa);
967
968 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
969 __func__, offset, val);
970
971 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
972 offset);
973 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
974 }
975
976 /****************************************************************************/
977 /* Context memory write. */
978 /* */
979 /* The NetXtreme II controller uses context memory to track connection */
980 /* information for L2 and higher network protocols. */
981 /* */
982 /* Returns: */
983 /* Nothing. */
984 /****************************************************************************/
985 void
986 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
987 uint32_t ctx_val)
988 {
989 uint32_t idx, offset = ctx_offset + cid_addr;
990 uint32_t val, retry_cnt = 5;
991
992 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
993 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
994 REG_WR(sc, BNX_CTX_CTX_CTRL,
995 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
996
997 for (idx = 0; idx < retry_cnt; idx++) {
998 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
999 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1000 break;
1001 DELAY(5);
1002 }
1003
1004 #if 0
1005 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1006 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1007 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1008 __FILE__, __LINE__, cid_addr, ctx_offset);
1009 #endif
1010
1011 } else {
1012 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1013 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1014 }
1015 }
1016
1017 /****************************************************************************/
1018 /* PHY register read. */
1019 /* */
1020 /* Implements register reads on the MII bus. */
1021 /* */
1022 /* Returns: */
1023 /* The value of the register. */
1024 /****************************************************************************/
1025 int
1026 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1027 {
1028 struct bnx_softc *sc = device_private(dev);
1029 uint32_t data;
1030 int i, rv = 0;
1031
1032 /*
1033 * The BCM5709S PHY is an IEEE Clause 45 PHY
1034 * with special mappings to work with IEEE
1035 * Clause 22 register accesses.
1036 */
1037 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1038 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1039 reg += 0x10;
1040 }
1041
1042 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1043 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1044 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1045
1046 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1047 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1048
1049 DELAY(40);
1050 }
1051
1052 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1053 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1054 BNX_EMAC_MDIO_COMM_START_BUSY;
1055 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1056
1057 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1058 DELAY(10);
1059
1060 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1061 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1062 DELAY(5);
1063
1064 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1065 data &= BNX_EMAC_MDIO_COMM_DATA;
1066
1067 break;
1068 }
1069 }
1070
1071 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1072 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1073 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1074 rv = ETIMEDOUT;
1075 } else {
1076 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1077 *val = data & 0xffff;
1078
1079 DBPRINT(sc, BNX_EXCESSIVE,
1080 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1081 phy, (uint16_t) reg & 0xffff, *val);
1082 }
1083
1084 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1085 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1086 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1087
1088 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1089 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1090
1091 DELAY(40);
1092 }
1093
1094 return rv;
1095 }
1096
1097 /****************************************************************************/
1098 /* PHY register write. */
1099 /* */
1100 /* Implements register writes on the MII bus. */
1101 /* */
1102 /* Returns: */
1103 /* The value of the register. */
1104 /****************************************************************************/
1105 int
1106 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1107 {
1108 struct bnx_softc *sc = device_private(dev);
1109 uint32_t val1;
1110 int i, rv = 0;
1111
1112 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1113 "val = 0x%04hX\n", __func__,
1114 phy, (uint16_t) reg & 0xffff, val);
1115
1116 /*
1117 * The BCM5709S PHY is an IEEE Clause 45 PHY
1118 * with special mappings to work with IEEE
1119 * Clause 22 register accesses.
1120 */
1121 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1122 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1123 reg += 0x10;
1124 }
1125
1126 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1127 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1128 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1129
1130 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1131 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1132
1133 DELAY(40);
1134 }
1135
1136 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1137 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1138 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1139 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1140
1141 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1142 DELAY(10);
1143
1144 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1145 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1146 DELAY(5);
1147 break;
1148 }
1149 }
1150
1151 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1152 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1153 __LINE__);
1154 rv = ETIMEDOUT;
1155 }
1156
1157 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1158 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1159 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1160
1161 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1162 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1163
1164 DELAY(40);
1165 }
1166
1167 return rv;
1168 }
1169
1170 /****************************************************************************/
1171 /* MII bus status change. */
1172 /* */
1173 /* Called by the MII bus driver when the PHY establishes link to set the */
1174 /* MAC interface registers. */
1175 /* */
1176 /* Returns: */
1177 /* Nothing. */
1178 /****************************************************************************/
1179 void
1180 bnx_miibus_statchg(struct ifnet *ifp)
1181 {
1182 struct bnx_softc *sc = ifp->if_softc;
1183 struct mii_data *mii = &sc->bnx_mii;
1184 uint32_t rx_mode = sc->rx_mode;
1185 int val;
1186
1187 val = REG_RD(sc, BNX_EMAC_MODE);
1188 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1189 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1190 BNX_EMAC_MODE_25G);
1191
1192 /*
1193 * Get flow control negotiation result.
1194 */
1195 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1196 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1197 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1198 mii->mii_media_active &= ~IFM_ETH_FMASK;
1199 }
1200
1201 /* Set MII or GMII interface based on the speed
1202 * negotiated by the PHY.
1203 */
1204 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1205 case IFM_10_T:
1206 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1207 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1208 val |= BNX_EMAC_MODE_PORT_MII_10;
1209 break;
1210 }
1211 /* FALLTHROUGH */
1212 case IFM_100_TX:
1213 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1214 val |= BNX_EMAC_MODE_PORT_MII;
1215 break;
1216 case IFM_2500_SX:
1217 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1218 val |= BNX_EMAC_MODE_25G;
1219 /* FALLTHROUGH */
1220 case IFM_1000_T:
1221 case IFM_1000_SX:
1222 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1223 val |= BNX_EMAC_MODE_PORT_GMII;
1224 break;
1225 default:
1226 val |= BNX_EMAC_MODE_PORT_GMII;
1227 break;
1228 }
1229
1230 /* Set half or full duplex based on the duplicity
1231 * negotiated by the PHY.
1232 */
1233 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1234 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1235 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1236 } else
1237 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1238
1239 REG_WR(sc, BNX_EMAC_MODE, val);
1240
1241 /*
1242 * 802.3x flow control
1243 */
1244 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1245 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1246 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1247 } else {
1248 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1249 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1250 }
1251
1252 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1253 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1254 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1255 } else {
1256 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1257 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1258 }
1259
1260 /* Only make changes if the recive mode has actually changed. */
1261 if (rx_mode != sc->rx_mode) {
1262 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1263 rx_mode);
1264
1265 sc->rx_mode = rx_mode;
1266 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1267
1268 bnx_init_rx_context(sc);
1269 }
1270 }
1271
1272 /****************************************************************************/
1273 /* Acquire NVRAM lock. */
1274 /* */
1275 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1276 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1277 /* for use by the driver. */
1278 /* */
1279 /* Returns: */
1280 /* 0 on success, positive value on failure. */
1281 /****************************************************************************/
1282 int
1283 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1284 {
1285 uint32_t val;
1286 int j;
1287
1288 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1289
1290 /* Request access to the flash interface. */
1291 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1292 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1293 val = REG_RD(sc, BNX_NVM_SW_ARB);
1294 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1295 break;
1296
1297 DELAY(5);
1298 }
1299
1300 if (j >= NVRAM_TIMEOUT_COUNT) {
1301 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1302 return EBUSY;
1303 }
1304
1305 return 0;
1306 }
1307
1308 /****************************************************************************/
1309 /* Release NVRAM lock. */
1310 /* */
1311 /* When the caller is finished accessing NVRAM the lock must be released. */
1312 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1313 /* for use by the driver. */
1314 /* */
1315 /* Returns: */
1316 /* 0 on success, positive value on failure. */
1317 /****************************************************************************/
1318 int
1319 bnx_release_nvram_lock(struct bnx_softc *sc)
1320 {
1321 int j;
1322 uint32_t val;
1323
1324 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1325
1326 /* Relinquish nvram interface. */
1327 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1328
1329 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1330 val = REG_RD(sc, BNX_NVM_SW_ARB);
1331 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1332 break;
1333
1334 DELAY(5);
1335 }
1336
1337 if (j >= NVRAM_TIMEOUT_COUNT) {
1338 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1339 return EBUSY;
1340 }
1341
1342 return 0;
1343 }
1344
1345 #ifdef BNX_NVRAM_WRITE_SUPPORT
1346 /****************************************************************************/
1347 /* Enable NVRAM write access. */
1348 /* */
1349 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1350 /* */
1351 /* Returns: */
1352 /* 0 on success, positive value on failure. */
1353 /****************************************************************************/
1354 int
1355 bnx_enable_nvram_write(struct bnx_softc *sc)
1356 {
1357 uint32_t val;
1358
1359 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1360
1361 val = REG_RD(sc, BNX_MISC_CFG);
1362 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1363
1364 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1365 int j;
1366
1367 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1368 REG_WR(sc, BNX_NVM_COMMAND,
1369 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1370
1371 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1372 DELAY(5);
1373
1374 val = REG_RD(sc, BNX_NVM_COMMAND);
1375 if (val & BNX_NVM_COMMAND_DONE)
1376 break;
1377 }
1378
1379 if (j >= NVRAM_TIMEOUT_COUNT) {
1380 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1381 return EBUSY;
1382 }
1383 }
1384
1385 return 0;
1386 }
1387
1388 /****************************************************************************/
1389 /* Disable NVRAM write access. */
1390 /* */
1391 /* When the caller is finished writing to NVRAM write access must be */
1392 /* disabled. */
1393 /* */
1394 /* Returns: */
1395 /* Nothing. */
1396 /****************************************************************************/
1397 void
1398 bnx_disable_nvram_write(struct bnx_softc *sc)
1399 {
1400 uint32_t val;
1401
1402 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1403
1404 val = REG_RD(sc, BNX_MISC_CFG);
1405 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1406 }
1407 #endif
1408
1409 /****************************************************************************/
1410 /* Enable NVRAM access. */
1411 /* */
1412 /* Before accessing NVRAM for read or write operations the caller must */
1413 /* enabled NVRAM access. */
1414 /* */
1415 /* Returns: */
1416 /* Nothing. */
1417 /****************************************************************************/
1418 void
1419 bnx_enable_nvram_access(struct bnx_softc *sc)
1420 {
1421 uint32_t val;
1422
1423 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1424
1425 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1426 /* Enable both bits, even on read. */
1427 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1428 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1429 }
1430
1431 /****************************************************************************/
1432 /* Disable NVRAM access. */
1433 /* */
1434 /* When the caller is finished accessing NVRAM access must be disabled. */
1435 /* */
1436 /* Returns: */
1437 /* Nothing. */
1438 /****************************************************************************/
1439 void
1440 bnx_disable_nvram_access(struct bnx_softc *sc)
1441 {
1442 uint32_t val;
1443
1444 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1445
1446 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1447
1448 /* Disable both bits, even after read. */
1449 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1450 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1451 }
1452
1453 #ifdef BNX_NVRAM_WRITE_SUPPORT
1454 /****************************************************************************/
1455 /* Erase NVRAM page before writing. */
1456 /* */
1457 /* Non-buffered flash parts require that a page be erased before it is */
1458 /* written. */
1459 /* */
1460 /* Returns: */
1461 /* 0 on success, positive value on failure. */
1462 /****************************************************************************/
1463 int
1464 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1465 {
1466 uint32_t cmd;
1467 int j;
1468
1469 /* Buffered flash doesn't require an erase. */
1470 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1471 return 0;
1472
1473 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1474
1475 /* Build an erase command. */
1476 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1477 BNX_NVM_COMMAND_DOIT;
1478
1479 /*
1480 * Clear the DONE bit separately, set the NVRAM address to erase,
1481 * and issue the erase command.
1482 */
1483 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1484 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1485 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1486
1487 /* Wait for completion. */
1488 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1489 uint32_t val;
1490
1491 DELAY(5);
1492
1493 val = REG_RD(sc, BNX_NVM_COMMAND);
1494 if (val & BNX_NVM_COMMAND_DONE)
1495 break;
1496 }
1497
1498 if (j >= NVRAM_TIMEOUT_COUNT) {
1499 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1500 return EBUSY;
1501 }
1502
1503 return 0;
1504 }
1505 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1506
1507 /****************************************************************************/
1508 /* Read a dword (32 bits) from NVRAM. */
1509 /* */
1510 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1511 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1512 /* */
1513 /* Returns: */
1514 /* 0 on success and the 32 bit value read, positive value on failure. */
1515 /****************************************************************************/
1516 int
1517 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1518 uint8_t *ret_val, uint32_t cmd_flags)
1519 {
1520 uint32_t cmd;
1521 int i, rc = 0;
1522
1523 /* Build the command word. */
1524 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1525
1526 /* Calculate the offset for buffered flash if translation is used. */
1527 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1528 offset = ((offset / sc->bnx_flash_info->page_size) <<
1529 sc->bnx_flash_info->page_bits) +
1530 (offset % sc->bnx_flash_info->page_size);
1531 }
1532
1533 /*
1534 * Clear the DONE bit separately, set the address to read,
1535 * and issue the read.
1536 */
1537 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1538 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1539 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1540
1541 /* Wait for completion. */
1542 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1543 uint32_t val;
1544
1545 DELAY(5);
1546
1547 val = REG_RD(sc, BNX_NVM_COMMAND);
1548 if (val & BNX_NVM_COMMAND_DONE) {
1549 val = REG_RD(sc, BNX_NVM_READ);
1550
1551 val = bnx_be32toh(val);
1552 memcpy(ret_val, &val, 4);
1553 break;
1554 }
1555 }
1556
1557 /* Check for errors. */
1558 if (i >= NVRAM_TIMEOUT_COUNT) {
1559 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1560 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1561 rc = EBUSY;
1562 }
1563
1564 return rc;
1565 }
1566
1567 #ifdef BNX_NVRAM_WRITE_SUPPORT
1568 /****************************************************************************/
1569 /* Write a dword (32 bits) to NVRAM. */
1570 /* */
1571 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1572 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1573 /* enabled NVRAM write access. */
1574 /* */
1575 /* Returns: */
1576 /* 0 on success, positive value on failure. */
1577 /****************************************************************************/
1578 int
1579 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1580 uint32_t cmd_flags)
1581 {
1582 uint32_t cmd, val32;
1583 int j;
1584
1585 /* Build the command word. */
1586 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1587
1588 /* Calculate the offset for buffered flash if translation is used. */
1589 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1590 offset = ((offset / sc->bnx_flash_info->page_size) <<
1591 sc->bnx_flash_info->page_bits) +
1592 (offset % sc->bnx_flash_info->page_size);
1593 }
1594
1595 /*
1596 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1597 * set the NVRAM address to write, and issue the write command
1598 */
1599 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1600 memcpy(&val32, val, 4);
1601 val32 = htobe32(val32);
1602 REG_WR(sc, BNX_NVM_WRITE, val32);
1603 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1604 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1605
1606 /* Wait for completion. */
1607 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1608 DELAY(5);
1609
1610 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1611 break;
1612 }
1613 if (j >= NVRAM_TIMEOUT_COUNT) {
1614 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1615 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1616 return EBUSY;
1617 }
1618
1619 return 0;
1620 }
1621 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1622
1623 /****************************************************************************/
1624 /* Initialize NVRAM access. */
1625 /* */
1626 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1627 /* access that device. */
1628 /* */
1629 /* Returns: */
1630 /* 0 on success, positive value on failure. */
1631 /****************************************************************************/
1632 int
1633 bnx_init_nvram(struct bnx_softc *sc)
1634 {
1635 uint32_t val;
1636 int j, entry_count, rc = 0;
1637 struct flash_spec *flash;
1638
1639 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1640
1641 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1642 sc->bnx_flash_info = &flash_5709;
1643 goto bnx_init_nvram_get_flash_size;
1644 }
1645
1646 /* Determine the selected interface. */
1647 val = REG_RD(sc, BNX_NVM_CFG1);
1648
1649 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1650
1651 /*
1652 * Flash reconfiguration is required to support additional
1653 * NVRAM devices not directly supported in hardware.
1654 * Check if the flash interface was reconfigured
1655 * by the bootcode.
1656 */
1657
1658 if (val & 0x40000000) {
1659 /* Flash interface reconfigured by bootcode. */
1660
1661 DBPRINT(sc,BNX_INFO_LOAD,
1662 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1663
1664 for (j = 0, flash = &flash_table[0]; j < entry_count;
1665 j++, flash++) {
1666 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1667 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1668 sc->bnx_flash_info = flash;
1669 break;
1670 }
1671 }
1672 } else {
1673 /* Flash interface not yet reconfigured. */
1674 uint32_t mask;
1675
1676 DBPRINT(sc,BNX_INFO_LOAD,
1677 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1678
1679 if (val & (1 << 23))
1680 mask = FLASH_BACKUP_STRAP_MASK;
1681 else
1682 mask = FLASH_STRAP_MASK;
1683
1684 /* Look for the matching NVRAM device configuration data. */
1685 for (j = 0, flash = &flash_table[0]; j < entry_count;
1686 j++, flash++) {
1687 /* Check if the dev matches any of the known devices. */
1688 if ((val & mask) == (flash->strapping & mask)) {
1689 /* Found a device match. */
1690 sc->bnx_flash_info = flash;
1691
1692 /* Request access to the flash interface. */
1693 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1694 return rc;
1695
1696 /* Reconfigure the flash interface. */
1697 bnx_enable_nvram_access(sc);
1698 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1699 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1700 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1701 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1702 bnx_disable_nvram_access(sc);
1703 bnx_release_nvram_lock(sc);
1704
1705 break;
1706 }
1707 }
1708 }
1709
1710 /* Check if a matching device was found. */
1711 if (j == entry_count) {
1712 sc->bnx_flash_info = NULL;
1713 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1714 __FILE__, __LINE__);
1715 rc = ENODEV;
1716 }
1717
1718 bnx_init_nvram_get_flash_size:
1719 /* Write the flash config data to the shared memory interface. */
1720 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1721 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1722 if (val)
1723 sc->bnx_flash_size = val;
1724 else
1725 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1726
1727 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1728 "0x%08X\n", sc->bnx_flash_info->total_size);
1729
1730 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1731
1732 return rc;
1733 }
1734
1735 /****************************************************************************/
1736 /* Read an arbitrary range of data from NVRAM. */
1737 /* */
1738 /* Prepares the NVRAM interface for access and reads the requested data */
1739 /* into the supplied buffer. */
1740 /* */
1741 /* Returns: */
1742 /* 0 on success and the data read, positive value on failure. */
1743 /****************************************************************************/
1744 int
1745 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1746 int buf_size)
1747 {
1748 int rc = 0;
1749 uint32_t cmd_flags, offset32, len32, extra;
1750
1751 if (buf_size == 0)
1752 return 0;
1753
1754 /* Request access to the flash interface. */
1755 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1756 return rc;
1757
1758 /* Enable access to flash interface */
1759 bnx_enable_nvram_access(sc);
1760
1761 len32 = buf_size;
1762 offset32 = offset;
1763 extra = 0;
1764
1765 cmd_flags = 0;
1766
1767 if (offset32 & 3) {
1768 uint8_t buf[4];
1769 uint32_t pre_len;
1770
1771 offset32 &= ~3;
1772 pre_len = 4 - (offset & 3);
1773
1774 if (pre_len >= len32) {
1775 pre_len = len32;
1776 cmd_flags =
1777 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1778 } else
1779 cmd_flags = BNX_NVM_COMMAND_FIRST;
1780
1781 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1782
1783 if (rc)
1784 return rc;
1785
1786 memcpy(ret_buf, buf + (offset & 3), pre_len);
1787
1788 offset32 += 4;
1789 ret_buf += pre_len;
1790 len32 -= pre_len;
1791 }
1792
1793 if (len32 & 3) {
1794 extra = 4 - (len32 & 3);
1795 len32 = (len32 + 4) & ~3;
1796 }
1797
1798 if (len32 == 4) {
1799 uint8_t buf[4];
1800
1801 if (cmd_flags)
1802 cmd_flags = BNX_NVM_COMMAND_LAST;
1803 else
1804 cmd_flags =
1805 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1806
1807 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1808
1809 memcpy(ret_buf, buf, 4 - extra);
1810 } else if (len32 > 0) {
1811 uint8_t buf[4];
1812
1813 /* Read the first word. */
1814 if (cmd_flags)
1815 cmd_flags = 0;
1816 else
1817 cmd_flags = BNX_NVM_COMMAND_FIRST;
1818
1819 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1820
1821 /* Advance to the next dword. */
1822 offset32 += 4;
1823 ret_buf += 4;
1824 len32 -= 4;
1825
1826 while (len32 > 4 && rc == 0) {
1827 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1828
1829 /* Advance to the next dword. */
1830 offset32 += 4;
1831 ret_buf += 4;
1832 len32 -= 4;
1833 }
1834
1835 if (rc)
1836 return rc;
1837
1838 cmd_flags = BNX_NVM_COMMAND_LAST;
1839 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1840
1841 memcpy(ret_buf, buf, 4 - extra);
1842 }
1843
1844 /* Disable access to flash interface and release the lock. */
1845 bnx_disable_nvram_access(sc);
1846 bnx_release_nvram_lock(sc);
1847
1848 return rc;
1849 }
1850
1851 #ifdef BNX_NVRAM_WRITE_SUPPORT
1852 /****************************************************************************/
1853 /* Write an arbitrary range of data from NVRAM. */
1854 /* */
1855 /* Prepares the NVRAM interface for write access and writes the requested */
1856 /* data from the supplied buffer. The caller is responsible for */
1857 /* calculating any appropriate CRCs. */
1858 /* */
1859 /* Returns: */
1860 /* 0 on success, positive value on failure. */
1861 /****************************************************************************/
1862 int
1863 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1864 int buf_size)
1865 {
1866 uint32_t written, offset32, len32;
1867 uint8_t *buf, start[4], end[4];
1868 int rc = 0;
1869 int align_start, align_end;
1870
1871 buf = data_buf;
1872 offset32 = offset;
1873 len32 = buf_size;
1874 align_start = align_end = 0;
1875
1876 if ((align_start = (offset32 & 3))) {
1877 offset32 &= ~3;
1878 len32 += align_start;
1879 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1880 return rc;
1881 }
1882
1883 if (len32 & 3) {
1884 if ((len32 > 4) || !align_start) {
1885 align_end = 4 - (len32 & 3);
1886 len32 += align_end;
1887 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1888 end, 4)))
1889 return rc;
1890 }
1891 }
1892
1893 if (align_start || align_end) {
1894 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1895 if (buf == NULL)
1896 return ENOMEM;
1897
1898 if (align_start)
1899 memcpy(buf, start, 4);
1900
1901 if (align_end)
1902 memcpy(buf + len32 - 4, end, 4);
1903
1904 memcpy(buf + align_start, data_buf, buf_size);
1905 }
1906
1907 written = 0;
1908 while ((written < len32) && (rc == 0)) {
1909 uint32_t page_start, page_end, data_start, data_end;
1910 uint32_t addr, cmd_flags;
1911 int i;
1912 uint8_t flash_buffer[264];
1913
1914 /* Find the page_start addr */
1915 page_start = offset32 + written;
1916 page_start -= (page_start % sc->bnx_flash_info->page_size);
1917 /* Find the page_end addr */
1918 page_end = page_start + sc->bnx_flash_info->page_size;
1919 /* Find the data_start addr */
1920 data_start = (written == 0) ? offset32 : page_start;
1921 /* Find the data_end addr */
1922 data_end = (page_end > offset32 + len32) ?
1923 (offset32 + len32) : page_end;
1924
1925 /* Request access to the flash interface. */
1926 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1927 goto nvram_write_end;
1928
1929 /* Enable access to flash interface */
1930 bnx_enable_nvram_access(sc);
1931
1932 cmd_flags = BNX_NVM_COMMAND_FIRST;
1933 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1934 int j;
1935
1936 /* Read the whole page into the buffer
1937 * (non-buffer flash only) */
1938 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1939 if (j == (sc->bnx_flash_info->page_size - 4))
1940 cmd_flags |= BNX_NVM_COMMAND_LAST;
1941
1942 rc = bnx_nvram_read_dword(sc,
1943 page_start + j,
1944 &flash_buffer[j],
1945 cmd_flags);
1946
1947 if (rc)
1948 goto nvram_write_end;
1949
1950 cmd_flags = 0;
1951 }
1952 }
1953
1954 /* Enable writes to flash interface (unlock write-protect) */
1955 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1956 goto nvram_write_end;
1957
1958 /* Erase the page */
1959 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1960 goto nvram_write_end;
1961
1962 /* Re-enable the write again for the actual write */
1963 bnx_enable_nvram_write(sc);
1964
1965 /* Loop to write back the buffer data from page_start to
1966 * data_start */
1967 i = 0;
1968 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1969 for (addr = page_start; addr < data_start;
1970 addr += 4, i += 4) {
1971
1972 rc = bnx_nvram_write_dword(sc, addr,
1973 &flash_buffer[i], cmd_flags);
1974
1975 if (rc != 0)
1976 goto nvram_write_end;
1977
1978 cmd_flags = 0;
1979 }
1980 }
1981
1982 /* Loop to write the new data from data_start to data_end */
1983 for (addr = data_start; addr < data_end; addr += 4, i++) {
1984 if ((addr == page_end - 4) ||
1985 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1986 && (addr == data_end - 4))) {
1987
1988 cmd_flags |= BNX_NVM_COMMAND_LAST;
1989 }
1990
1991 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1992
1993 if (rc != 0)
1994 goto nvram_write_end;
1995
1996 cmd_flags = 0;
1997 buf += 4;
1998 }
1999
2000 /* Loop to write back the buffer data from data_end
2001 * to page_end */
2002 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2003 for (addr = data_end; addr < page_end;
2004 addr += 4, i += 4) {
2005
2006 if (addr == page_end-4)
2007 cmd_flags = BNX_NVM_COMMAND_LAST;
2008
2009 rc = bnx_nvram_write_dword(sc, addr,
2010 &flash_buffer[i], cmd_flags);
2011
2012 if (rc != 0)
2013 goto nvram_write_end;
2014
2015 cmd_flags = 0;
2016 }
2017 }
2018
2019 /* Disable writes to flash interface (lock write-protect) */
2020 bnx_disable_nvram_write(sc);
2021
2022 /* Disable access to flash interface */
2023 bnx_disable_nvram_access(sc);
2024 bnx_release_nvram_lock(sc);
2025
2026 /* Increment written */
2027 written += data_end - data_start;
2028 }
2029
2030 nvram_write_end:
2031 if (align_start || align_end)
2032 free(buf, M_DEVBUF);
2033
2034 return rc;
2035 }
2036 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2037
2038 /****************************************************************************/
2039 /* Verifies that NVRAM is accessible and contains valid data. */
2040 /* */
2041 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2042 /* correct. */
2043 /* */
2044 /* Returns: */
2045 /* 0 on success, positive value on failure. */
2046 /****************************************************************************/
2047 int
2048 bnx_nvram_test(struct bnx_softc *sc)
2049 {
2050 uint32_t buf[BNX_NVRAM_SIZE / 4];
2051 uint8_t *data = (uint8_t *) buf;
2052 int rc = 0;
2053 uint32_t magic, csum;
2054
2055 /*
2056 * Check that the device NVRAM is valid by reading
2057 * the magic value at offset 0.
2058 */
2059 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2060 goto bnx_nvram_test_done;
2061
2062 magic = bnx_be32toh(buf[0]);
2063 if (magic != BNX_NVRAM_MAGIC) {
2064 rc = ENODEV;
2065 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2066 "Expected: 0x%08X, Found: 0x%08X\n",
2067 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2068 goto bnx_nvram_test_done;
2069 }
2070
2071 /*
2072 * Verify that the device NVRAM includes valid
2073 * configuration data.
2074 */
2075 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2076 goto bnx_nvram_test_done;
2077
2078 csum = ether_crc32_le(data, 0x100);
2079 if (csum != BNX_CRC32_RESIDUAL) {
2080 rc = ENODEV;
2081 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2082 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2083 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2084 goto bnx_nvram_test_done;
2085 }
2086
2087 csum = ether_crc32_le(data + 0x100, 0x100);
2088 if (csum != BNX_CRC32_RESIDUAL) {
2089 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2090 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2091 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2092 rc = ENODEV;
2093 }
2094
2095 bnx_nvram_test_done:
2096 return rc;
2097 }
2098
2099 /****************************************************************************/
2100 /* Identifies the current media type of the controller and sets the PHY */
2101 /* address. */
2102 /* */
2103 /* Returns: */
2104 /* Nothing. */
2105 /****************************************************************************/
2106 void
2107 bnx_get_media(struct bnx_softc *sc)
2108 {
2109 sc->bnx_phy_addr = 1;
2110
2111 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2112 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2113 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2114 uint32_t strap;
2115
2116 /*
2117 * The BCM5709S is software configurable
2118 * for Copper or SerDes operation.
2119 */
2120 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2121 DBPRINT(sc, BNX_INFO_LOAD,
2122 "5709 bonded for copper.\n");
2123 goto bnx_get_media_exit;
2124 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2125 DBPRINT(sc, BNX_INFO_LOAD,
2126 "5709 bonded for dual media.\n");
2127 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2128 goto bnx_get_media_exit;
2129 }
2130
2131 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2132 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2133 else {
2134 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2135 >> 8;
2136 }
2137
2138 if (sc->bnx_pa.pa_function == 0) {
2139 switch (strap) {
2140 case 0x4:
2141 case 0x5:
2142 case 0x6:
2143 DBPRINT(sc, BNX_INFO_LOAD,
2144 "BCM5709 s/w configured for SerDes.\n");
2145 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2146 break;
2147 default:
2148 DBPRINT(sc, BNX_INFO_LOAD,
2149 "BCM5709 s/w configured for Copper.\n");
2150 }
2151 } else {
2152 switch (strap) {
2153 case 0x1:
2154 case 0x2:
2155 case 0x4:
2156 DBPRINT(sc, BNX_INFO_LOAD,
2157 "BCM5709 s/w configured for SerDes.\n");
2158 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2159 break;
2160 default:
2161 DBPRINT(sc, BNX_INFO_LOAD,
2162 "BCM5709 s/w configured for Copper.\n");
2163 }
2164 }
2165
2166 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2167 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2168
2169 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2170 uint32_t val;
2171
2172 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2173
2174 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2175 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2176
2177 /*
2178 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2179 * separate PHY for SerDes.
2180 */
2181 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2182 sc->bnx_phy_addr = 2;
2183 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2184 BNX_SHARED_HW_CFG_CONFIG);
2185 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2186 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2187 DBPRINT(sc, BNX_INFO_LOAD,
2188 "Found 2.5Gb capable adapter\n");
2189 }
2190 }
2191 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2192 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2193 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2194
2195 bnx_get_media_exit:
2196 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2197 "Using PHY address %d.\n", sc->bnx_phy_addr);
2198 }
2199
2200 /****************************************************************************/
2201 /* Performs PHY initialization required before MII drivers access the */
2202 /* device. */
2203 /* */
2204 /* Returns: */
2205 /* Nothing. */
2206 /****************************************************************************/
2207 void
2208 bnx_init_media(struct bnx_softc *sc)
2209 {
2210 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2211 /*
2212 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2213 * IEEE Clause 22 method. Otherwise we have no way to attach
2214 * the PHY to the mii(4) layer. PHY specific configuration
2215 * is done by the mii(4) layer.
2216 */
2217
2218 /* Select auto-negotiation MMD of the PHY. */
2219 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2220 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2221
2222 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2223 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2224
2225 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2226 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2227 }
2228 }
2229
2230 /****************************************************************************/
2231 /* Free any DMA memory owned by the driver. */
2232 /* */
2233 /* Scans through each data structre that requires DMA memory and frees */
2234 /* the memory if allocated. */
2235 /* */
2236 /* Returns: */
2237 /* Nothing. */
2238 /****************************************************************************/
2239 void
2240 bnx_dma_free(struct bnx_softc *sc)
2241 {
2242 int i;
2243
2244 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2245
2246 /* Destroy the status block. */
2247 if (sc->status_block != NULL && sc->status_map != NULL) {
2248 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2249 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2250 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2251 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2252 BNX_STATUS_BLK_SZ);
2253 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2254 sc->status_rseg);
2255 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2256 sc->status_block = NULL;
2257 sc->status_map = NULL;
2258 }
2259
2260 /* Destroy the statistics block. */
2261 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2262 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2263 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2264 BNX_STATS_BLK_SZ);
2265 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2266 sc->stats_rseg);
2267 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2268 sc->stats_block = NULL;
2269 sc->stats_map = NULL;
2270 }
2271
2272 /* Free, unmap and destroy all context memory pages. */
2273 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2274 for (i = 0; i < sc->ctx_pages; i++) {
2275 if (sc->ctx_block[i] != NULL) {
2276 bus_dmamap_unload(sc->bnx_dmatag,
2277 sc->ctx_map[i]);
2278 bus_dmamem_unmap(sc->bnx_dmatag,
2279 (void *)sc->ctx_block[i],
2280 BCM_PAGE_SIZE);
2281 bus_dmamem_free(sc->bnx_dmatag,
2282 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2283 bus_dmamap_destroy(sc->bnx_dmatag,
2284 sc->ctx_map[i]);
2285 sc->ctx_block[i] = NULL;
2286 }
2287 }
2288 }
2289
2290 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2291 for (i = 0; i < TX_PAGES; i++ ) {
2292 if (sc->tx_bd_chain[i] != NULL &&
2293 sc->tx_bd_chain_map[i] != NULL) {
2294 bus_dmamap_unload(sc->bnx_dmatag,
2295 sc->tx_bd_chain_map[i]);
2296 bus_dmamem_unmap(sc->bnx_dmatag,
2297 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2298 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2299 sc->tx_bd_chain_rseg[i]);
2300 bus_dmamap_destroy(sc->bnx_dmatag,
2301 sc->tx_bd_chain_map[i]);
2302 sc->tx_bd_chain[i] = NULL;
2303 sc->tx_bd_chain_map[i] = NULL;
2304 }
2305 }
2306
2307 /* Destroy the TX dmamaps. */
2308 /* This isn't necessary since we dont allocate them up front */
2309
2310 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2311 for (i = 0; i < RX_PAGES; i++ ) {
2312 if (sc->rx_bd_chain[i] != NULL &&
2313 sc->rx_bd_chain_map[i] != NULL) {
2314 bus_dmamap_unload(sc->bnx_dmatag,
2315 sc->rx_bd_chain_map[i]);
2316 bus_dmamem_unmap(sc->bnx_dmatag,
2317 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2318 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2319 sc->rx_bd_chain_rseg[i]);
2320
2321 bus_dmamap_destroy(sc->bnx_dmatag,
2322 sc->rx_bd_chain_map[i]);
2323 sc->rx_bd_chain[i] = NULL;
2324 sc->rx_bd_chain_map[i] = NULL;
2325 }
2326 }
2327
2328 /* Unload and destroy the RX mbuf maps. */
2329 for (i = 0; i < TOTAL_RX_BD; i++) {
2330 if (sc->rx_mbuf_map[i] != NULL) {
2331 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2332 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2333 }
2334 }
2335
2336 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2337 }
2338
2339 /****************************************************************************/
2340 /* Allocate any DMA memory needed by the driver. */
2341 /* */
2342 /* Allocates DMA memory needed for the various global structures needed by */
2343 /* hardware. */
2344 /* */
2345 /* Returns: */
2346 /* 0 for success, positive value for failure. */
2347 /****************************************************************************/
2348 int
2349 bnx_dma_alloc(struct bnx_softc *sc)
2350 {
2351 int i, rc = 0;
2352
2353 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2354
2355 /*
2356 * Allocate DMA memory for the status block, map the memory into DMA
2357 * space, and fetch the physical address of the block.
2358 */
2359 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2360 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2361 aprint_error_dev(sc->bnx_dev,
2362 "Could not create status block DMA map!\n");
2363 rc = ENOMEM;
2364 goto bnx_dma_alloc_exit;
2365 }
2366
2367 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2368 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2369 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2370 aprint_error_dev(sc->bnx_dev,
2371 "Could not allocate status block DMA memory!\n");
2372 rc = ENOMEM;
2373 goto bnx_dma_alloc_exit;
2374 }
2375
2376 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2377 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2378 aprint_error_dev(sc->bnx_dev,
2379 "Could not map status block DMA memory!\n");
2380 rc = ENOMEM;
2381 goto bnx_dma_alloc_exit;
2382 }
2383
2384 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2385 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2386 aprint_error_dev(sc->bnx_dev,
2387 "Could not load status block DMA memory!\n");
2388 rc = ENOMEM;
2389 goto bnx_dma_alloc_exit;
2390 }
2391
2392 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2393 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2394
2395 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2396 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2397
2398 /* DRC - Fix for 64 bit addresses. */
2399 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2400 (uint32_t) sc->status_block_paddr);
2401
2402 /* BCM5709 uses host memory as cache for context memory. */
2403 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2404 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2405 if (sc->ctx_pages == 0)
2406 sc->ctx_pages = 1;
2407 if (sc->ctx_pages > 4) /* XXX */
2408 sc->ctx_pages = 4;
2409
2410 DBRUNIF((sc->ctx_pages > 512),
2411 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2412 __FILE__, __LINE__, sc->ctx_pages));
2413
2414
2415 for (i = 0; i < sc->ctx_pages; i++) {
2416 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2417 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2418 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2419 &sc->ctx_map[i]) != 0) {
2420 rc = ENOMEM;
2421 goto bnx_dma_alloc_exit;
2422 }
2423
2424 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2425 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2426 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2427 rc = ENOMEM;
2428 goto bnx_dma_alloc_exit;
2429 }
2430
2431 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2432 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2433 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2434 rc = ENOMEM;
2435 goto bnx_dma_alloc_exit;
2436 }
2437
2438 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2439 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2440 BUS_DMA_NOWAIT) != 0) {
2441 rc = ENOMEM;
2442 goto bnx_dma_alloc_exit;
2443 }
2444
2445 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2446 }
2447 }
2448
2449 /*
2450 * Allocate DMA memory for the statistics block, map the memory into
2451 * DMA space, and fetch the physical address of the block.
2452 */
2453 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2454 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2455 aprint_error_dev(sc->bnx_dev,
2456 "Could not create stats block DMA map!\n");
2457 rc = ENOMEM;
2458 goto bnx_dma_alloc_exit;
2459 }
2460
2461 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2462 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2463 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2464 aprint_error_dev(sc->bnx_dev,
2465 "Could not allocate stats block DMA memory!\n");
2466 rc = ENOMEM;
2467 goto bnx_dma_alloc_exit;
2468 }
2469
2470 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2471 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2472 aprint_error_dev(sc->bnx_dev,
2473 "Could not map stats block DMA memory!\n");
2474 rc = ENOMEM;
2475 goto bnx_dma_alloc_exit;
2476 }
2477
2478 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2479 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2480 aprint_error_dev(sc->bnx_dev,
2481 "Could not load status block DMA memory!\n");
2482 rc = ENOMEM;
2483 goto bnx_dma_alloc_exit;
2484 }
2485
2486 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2487 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2488
2489 /* DRC - Fix for 64 bit address. */
2490 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2491 (uint32_t) sc->stats_block_paddr);
2492
2493 /*
2494 * Allocate DMA memory for the TX buffer descriptor chain,
2495 * and fetch the physical address of the block.
2496 */
2497 for (i = 0; i < TX_PAGES; i++) {
2498 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2499 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2500 &sc->tx_bd_chain_map[i])) {
2501 aprint_error_dev(sc->bnx_dev,
2502 "Could not create Tx desc %d DMA map!\n", i);
2503 rc = ENOMEM;
2504 goto bnx_dma_alloc_exit;
2505 }
2506
2507 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2508 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2509 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2510 aprint_error_dev(sc->bnx_dev,
2511 "Could not allocate TX desc %d DMA memory!\n",
2512 i);
2513 rc = ENOMEM;
2514 goto bnx_dma_alloc_exit;
2515 }
2516
2517 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2518 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2519 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2520 aprint_error_dev(sc->bnx_dev,
2521 "Could not map TX desc %d DMA memory!\n", i);
2522 rc = ENOMEM;
2523 goto bnx_dma_alloc_exit;
2524 }
2525
2526 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2527 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2528 BUS_DMA_NOWAIT)) {
2529 aprint_error_dev(sc->bnx_dev,
2530 "Could not load TX desc %d DMA memory!\n", i);
2531 rc = ENOMEM;
2532 goto bnx_dma_alloc_exit;
2533 }
2534
2535 sc->tx_bd_chain_paddr[i] =
2536 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2537
2538 /* DRC - Fix for 64 bit systems. */
2539 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2540 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2541 }
2542
2543 /*
2544 * Create lists to hold TX mbufs.
2545 */
2546 TAILQ_INIT(&sc->tx_free_pkts);
2547 TAILQ_INIT(&sc->tx_used_pkts);
2548 sc->tx_pkt_count = 0;
2549 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2550
2551 /*
2552 * Allocate DMA memory for the Rx buffer descriptor chain,
2553 * and fetch the physical address of the block.
2554 */
2555 for (i = 0; i < RX_PAGES; i++) {
2556 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2557 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2558 &sc->rx_bd_chain_map[i])) {
2559 aprint_error_dev(sc->bnx_dev,
2560 "Could not create Rx desc %d DMA map!\n", i);
2561 rc = ENOMEM;
2562 goto bnx_dma_alloc_exit;
2563 }
2564
2565 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2566 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2567 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2568 aprint_error_dev(sc->bnx_dev,
2569 "Could not allocate Rx desc %d DMA memory!\n", i);
2570 rc = ENOMEM;
2571 goto bnx_dma_alloc_exit;
2572 }
2573
2574 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2575 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2576 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2577 aprint_error_dev(sc->bnx_dev,
2578 "Could not map Rx desc %d DMA memory!\n", i);
2579 rc = ENOMEM;
2580 goto bnx_dma_alloc_exit;
2581 }
2582
2583 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2584 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2585 BUS_DMA_NOWAIT)) {
2586 aprint_error_dev(sc->bnx_dev,
2587 "Could not load Rx desc %d DMA memory!\n", i);
2588 rc = ENOMEM;
2589 goto bnx_dma_alloc_exit;
2590 }
2591
2592 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2593 sc->rx_bd_chain_paddr[i] =
2594 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2595
2596 /* DRC - Fix for 64 bit systems. */
2597 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2598 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2599 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2600 0, BNX_RX_CHAIN_PAGE_SZ,
2601 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2602 }
2603
2604 /*
2605 * Create DMA maps for the Rx buffer mbufs.
2606 */
2607 for (i = 0; i < TOTAL_RX_BD; i++) {
2608 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2609 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2610 &sc->rx_mbuf_map[i])) {
2611 aprint_error_dev(sc->bnx_dev,
2612 "Could not create Rx mbuf %d DMA map!\n", i);
2613 rc = ENOMEM;
2614 goto bnx_dma_alloc_exit;
2615 }
2616 }
2617
2618 bnx_dma_alloc_exit:
2619 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2620
2621 return rc;
2622 }
2623
2624 /****************************************************************************/
2625 /* Release all resources used by the driver. */
2626 /* */
2627 /* Releases all resources acquired by the driver including interrupts, */
2628 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2629 /* */
2630 /* Returns: */
2631 /* Nothing. */
2632 /****************************************************************************/
2633 void
2634 bnx_release_resources(struct bnx_softc *sc)
2635 {
2636 struct pci_attach_args *pa = &(sc->bnx_pa);
2637
2638 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2639
2640 bnx_dma_free(sc);
2641
2642 if (sc->bnx_intrhand != NULL)
2643 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2644
2645 if (sc->bnx_size)
2646 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2647
2648 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2649 }
2650
2651 /****************************************************************************/
2652 /* Firmware synchronization. */
2653 /* */
2654 /* Before performing certain events such as a chip reset, synchronize with */
2655 /* the firmware first. */
2656 /* */
2657 /* Returns: */
2658 /* 0 for success, positive value for failure. */
2659 /****************************************************************************/
2660 int
2661 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2662 {
2663 int i, rc = 0;
2664 uint32_t val;
2665
2666 /* Don't waste any time if we've timed out before. */
2667 if (sc->bnx_fw_timed_out) {
2668 rc = EBUSY;
2669 goto bnx_fw_sync_exit;
2670 }
2671
2672 /* Increment the message sequence number. */
2673 sc->bnx_fw_wr_seq++;
2674 msg_data |= sc->bnx_fw_wr_seq;
2675
2676 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2677 msg_data);
2678
2679 /* Send the message to the bootcode driver mailbox. */
2680 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2681
2682 /* Wait for the bootcode to acknowledge the message. */
2683 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2684 /* Check for a response in the bootcode firmware mailbox. */
2685 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2686 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2687 break;
2688 DELAY(1000);
2689 }
2690
2691 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2692 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2693 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2694 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2695 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2696
2697 msg_data &= ~BNX_DRV_MSG_CODE;
2698 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2699
2700 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2701
2702 sc->bnx_fw_timed_out = 1;
2703 rc = EBUSY;
2704 }
2705
2706 bnx_fw_sync_exit:
2707 return rc;
2708 }
2709
2710 /****************************************************************************/
2711 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2712 /* */
2713 /* Returns: */
2714 /* Nothing. */
2715 /****************************************************************************/
2716 void
2717 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2718 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2719 {
2720 int i;
2721 uint32_t val;
2722
2723 /* Set the page size used by RV2P. */
2724 if (rv2p_proc == RV2P_PROC2) {
2725 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2726 USABLE_RX_BD_PER_PAGE);
2727 }
2728
2729 for (i = 0; i < rv2p_code_len; i += 8) {
2730 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2731 rv2p_code++;
2732 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2733 rv2p_code++;
2734
2735 if (rv2p_proc == RV2P_PROC1) {
2736 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2737 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2738 } else {
2739 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2740 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2741 }
2742 }
2743
2744 /* Reset the processor, un-stall is done later. */
2745 if (rv2p_proc == RV2P_PROC1)
2746 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2747 else
2748 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2749 }
2750
2751 /****************************************************************************/
2752 /* Load RISC processor firmware. */
2753 /* */
2754 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2755 /* associated with a particular processor. */
2756 /* */
2757 /* Returns: */
2758 /* Nothing. */
2759 /****************************************************************************/
2760 void
2761 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2762 struct fw_info *fw)
2763 {
2764 uint32_t offset;
2765 uint32_t val;
2766
2767 /* Halt the CPU. */
2768 val = REG_RD_IND(sc, cpu_reg->mode);
2769 val |= cpu_reg->mode_value_halt;
2770 REG_WR_IND(sc, cpu_reg->mode, val);
2771 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2772
2773 /* Load the Text area. */
2774 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2775 if (fw->text) {
2776 int j;
2777
2778 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2779 REG_WR_IND(sc, offset, fw->text[j]);
2780 }
2781
2782 /* Load the Data area. */
2783 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2784 if (fw->data) {
2785 int j;
2786
2787 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2788 REG_WR_IND(sc, offset, fw->data[j]);
2789 }
2790
2791 /* Load the SBSS area. */
2792 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2793 if (fw->sbss) {
2794 int j;
2795
2796 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2797 REG_WR_IND(sc, offset, fw->sbss[j]);
2798 }
2799
2800 /* Load the BSS area. */
2801 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2802 if (fw->bss) {
2803 int j;
2804
2805 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2806 REG_WR_IND(sc, offset, fw->bss[j]);
2807 }
2808
2809 /* Load the Read-Only area. */
2810 offset = cpu_reg->spad_base +
2811 (fw->rodata_addr - cpu_reg->mips_view_base);
2812 if (fw->rodata) {
2813 int j;
2814
2815 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2816 REG_WR_IND(sc, offset, fw->rodata[j]);
2817 }
2818
2819 /* Clear the pre-fetch instruction. */
2820 REG_WR_IND(sc, cpu_reg->inst, 0);
2821 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2822
2823 /* Start the CPU. */
2824 val = REG_RD_IND(sc, cpu_reg->mode);
2825 val &= ~cpu_reg->mode_value_halt;
2826 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2827 REG_WR_IND(sc, cpu_reg->mode, val);
2828 }
2829
2830 /****************************************************************************/
2831 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2832 /* */
2833 /* Loads the firmware for each CPU and starts the CPU. */
2834 /* */
2835 /* Returns: */
2836 /* Nothing. */
2837 /****************************************************************************/
2838 void
2839 bnx_init_cpus(struct bnx_softc *sc)
2840 {
2841 struct cpu_reg cpu_reg;
2842 struct fw_info fw;
2843
2844 switch(BNX_CHIP_NUM(sc)) {
2845 case BNX_CHIP_NUM_5709:
2846 /* Initialize the RV2P processor. */
2847 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2848 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2849 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2850 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2851 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2852 } else {
2853 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2854 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2855 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2856 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2857 }
2858
2859 /* Initialize the RX Processor. */
2860 cpu_reg.mode = BNX_RXP_CPU_MODE;
2861 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2862 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2863 cpu_reg.state = BNX_RXP_CPU_STATE;
2864 cpu_reg.state_value_clear = 0xffffff;
2865 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2866 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2867 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2868 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2869 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2870 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2871 cpu_reg.mips_view_base = 0x8000000;
2872
2873 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2874 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2875 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2876 fw.start_addr = bnx_RXP_b09FwStartAddr;
2877
2878 fw.text_addr = bnx_RXP_b09FwTextAddr;
2879 fw.text_len = bnx_RXP_b09FwTextLen;
2880 fw.text_index = 0;
2881 fw.text = bnx_RXP_b09FwText;
2882
2883 fw.data_addr = bnx_RXP_b09FwDataAddr;
2884 fw.data_len = bnx_RXP_b09FwDataLen;
2885 fw.data_index = 0;
2886 fw.data = bnx_RXP_b09FwData;
2887
2888 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2889 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2890 fw.sbss_index = 0;
2891 fw.sbss = bnx_RXP_b09FwSbss;
2892
2893 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2894 fw.bss_len = bnx_RXP_b09FwBssLen;
2895 fw.bss_index = 0;
2896 fw.bss = bnx_RXP_b09FwBss;
2897
2898 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2899 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2900 fw.rodata_index = 0;
2901 fw.rodata = bnx_RXP_b09FwRodata;
2902
2903 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2904 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2905
2906 /* Initialize the TX Processor. */
2907 cpu_reg.mode = BNX_TXP_CPU_MODE;
2908 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2909 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2910 cpu_reg.state = BNX_TXP_CPU_STATE;
2911 cpu_reg.state_value_clear = 0xffffff;
2912 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2913 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2914 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2915 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2916 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2917 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2918 cpu_reg.mips_view_base = 0x8000000;
2919
2920 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2921 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2922 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2923 fw.start_addr = bnx_TXP_b09FwStartAddr;
2924
2925 fw.text_addr = bnx_TXP_b09FwTextAddr;
2926 fw.text_len = bnx_TXP_b09FwTextLen;
2927 fw.text_index = 0;
2928 fw.text = bnx_TXP_b09FwText;
2929
2930 fw.data_addr = bnx_TXP_b09FwDataAddr;
2931 fw.data_len = bnx_TXP_b09FwDataLen;
2932 fw.data_index = 0;
2933 fw.data = bnx_TXP_b09FwData;
2934
2935 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2936 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2937 fw.sbss_index = 0;
2938 fw.sbss = bnx_TXP_b09FwSbss;
2939
2940 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2941 fw.bss_len = bnx_TXP_b09FwBssLen;
2942 fw.bss_index = 0;
2943 fw.bss = bnx_TXP_b09FwBss;
2944
2945 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2946 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2947 fw.rodata_index = 0;
2948 fw.rodata = bnx_TXP_b09FwRodata;
2949
2950 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2951 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2952
2953 /* Initialize the TX Patch-up Processor. */
2954 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2955 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2956 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2957 cpu_reg.state = BNX_TPAT_CPU_STATE;
2958 cpu_reg.state_value_clear = 0xffffff;
2959 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2960 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2961 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2962 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2963 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2964 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2965 cpu_reg.mips_view_base = 0x8000000;
2966
2967 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2968 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2969 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2970 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2971
2972 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2973 fw.text_len = bnx_TPAT_b09FwTextLen;
2974 fw.text_index = 0;
2975 fw.text = bnx_TPAT_b09FwText;
2976
2977 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2978 fw.data_len = bnx_TPAT_b09FwDataLen;
2979 fw.data_index = 0;
2980 fw.data = bnx_TPAT_b09FwData;
2981
2982 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2983 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2984 fw.sbss_index = 0;
2985 fw.sbss = bnx_TPAT_b09FwSbss;
2986
2987 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2988 fw.bss_len = bnx_TPAT_b09FwBssLen;
2989 fw.bss_index = 0;
2990 fw.bss = bnx_TPAT_b09FwBss;
2991
2992 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2993 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2994 fw.rodata_index = 0;
2995 fw.rodata = bnx_TPAT_b09FwRodata;
2996
2997 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2998 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2999
3000 /* Initialize the Completion Processor. */
3001 cpu_reg.mode = BNX_COM_CPU_MODE;
3002 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3003 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3004 cpu_reg.state = BNX_COM_CPU_STATE;
3005 cpu_reg.state_value_clear = 0xffffff;
3006 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3007 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3008 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3009 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3010 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3011 cpu_reg.spad_base = BNX_COM_SCRATCH;
3012 cpu_reg.mips_view_base = 0x8000000;
3013
3014 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3015 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3016 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3017 fw.start_addr = bnx_COM_b09FwStartAddr;
3018
3019 fw.text_addr = bnx_COM_b09FwTextAddr;
3020 fw.text_len = bnx_COM_b09FwTextLen;
3021 fw.text_index = 0;
3022 fw.text = bnx_COM_b09FwText;
3023
3024 fw.data_addr = bnx_COM_b09FwDataAddr;
3025 fw.data_len = bnx_COM_b09FwDataLen;
3026 fw.data_index = 0;
3027 fw.data = bnx_COM_b09FwData;
3028
3029 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3030 fw.sbss_len = bnx_COM_b09FwSbssLen;
3031 fw.sbss_index = 0;
3032 fw.sbss = bnx_COM_b09FwSbss;
3033
3034 fw.bss_addr = bnx_COM_b09FwBssAddr;
3035 fw.bss_len = bnx_COM_b09FwBssLen;
3036 fw.bss_index = 0;
3037 fw.bss = bnx_COM_b09FwBss;
3038
3039 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3040 fw.rodata_len = bnx_COM_b09FwRodataLen;
3041 fw.rodata_index = 0;
3042 fw.rodata = bnx_COM_b09FwRodata;
3043 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3044 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3045 break;
3046 default:
3047 /* Initialize the RV2P processor. */
3048 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3049 RV2P_PROC1);
3050 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3051 RV2P_PROC2);
3052
3053 /* Initialize the RX Processor. */
3054 cpu_reg.mode = BNX_RXP_CPU_MODE;
3055 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3056 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3057 cpu_reg.state = BNX_RXP_CPU_STATE;
3058 cpu_reg.state_value_clear = 0xffffff;
3059 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3060 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3061 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3062 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3063 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3064 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3065 cpu_reg.mips_view_base = 0x8000000;
3066
3067 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3068 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3069 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3070 fw.start_addr = bnx_RXP_b06FwStartAddr;
3071
3072 fw.text_addr = bnx_RXP_b06FwTextAddr;
3073 fw.text_len = bnx_RXP_b06FwTextLen;
3074 fw.text_index = 0;
3075 fw.text = bnx_RXP_b06FwText;
3076
3077 fw.data_addr = bnx_RXP_b06FwDataAddr;
3078 fw.data_len = bnx_RXP_b06FwDataLen;
3079 fw.data_index = 0;
3080 fw.data = bnx_RXP_b06FwData;
3081
3082 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3083 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3084 fw.sbss_index = 0;
3085 fw.sbss = bnx_RXP_b06FwSbss;
3086
3087 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3088 fw.bss_len = bnx_RXP_b06FwBssLen;
3089 fw.bss_index = 0;
3090 fw.bss = bnx_RXP_b06FwBss;
3091
3092 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3093 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3094 fw.rodata_index = 0;
3095 fw.rodata = bnx_RXP_b06FwRodata;
3096
3097 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3098 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3099
3100 /* Initialize the TX Processor. */
3101 cpu_reg.mode = BNX_TXP_CPU_MODE;
3102 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3103 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3104 cpu_reg.state = BNX_TXP_CPU_STATE;
3105 cpu_reg.state_value_clear = 0xffffff;
3106 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3107 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3108 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3109 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3110 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3111 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3112 cpu_reg.mips_view_base = 0x8000000;
3113
3114 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3115 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3116 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3117 fw.start_addr = bnx_TXP_b06FwStartAddr;
3118
3119 fw.text_addr = bnx_TXP_b06FwTextAddr;
3120 fw.text_len = bnx_TXP_b06FwTextLen;
3121 fw.text_index = 0;
3122 fw.text = bnx_TXP_b06FwText;
3123
3124 fw.data_addr = bnx_TXP_b06FwDataAddr;
3125 fw.data_len = bnx_TXP_b06FwDataLen;
3126 fw.data_index = 0;
3127 fw.data = bnx_TXP_b06FwData;
3128
3129 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3130 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3131 fw.sbss_index = 0;
3132 fw.sbss = bnx_TXP_b06FwSbss;
3133
3134 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3135 fw.bss_len = bnx_TXP_b06FwBssLen;
3136 fw.bss_index = 0;
3137 fw.bss = bnx_TXP_b06FwBss;
3138
3139 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3140 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3141 fw.rodata_index = 0;
3142 fw.rodata = bnx_TXP_b06FwRodata;
3143
3144 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3145 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3146
3147 /* Initialize the TX Patch-up Processor. */
3148 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3149 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3150 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3151 cpu_reg.state = BNX_TPAT_CPU_STATE;
3152 cpu_reg.state_value_clear = 0xffffff;
3153 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3154 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3155 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3156 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3157 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3158 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3159 cpu_reg.mips_view_base = 0x8000000;
3160
3161 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3162 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3163 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3164 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3165
3166 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3167 fw.text_len = bnx_TPAT_b06FwTextLen;
3168 fw.text_index = 0;
3169 fw.text = bnx_TPAT_b06FwText;
3170
3171 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3172 fw.data_len = bnx_TPAT_b06FwDataLen;
3173 fw.data_index = 0;
3174 fw.data = bnx_TPAT_b06FwData;
3175
3176 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3177 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3178 fw.sbss_index = 0;
3179 fw.sbss = bnx_TPAT_b06FwSbss;
3180
3181 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3182 fw.bss_len = bnx_TPAT_b06FwBssLen;
3183 fw.bss_index = 0;
3184 fw.bss = bnx_TPAT_b06FwBss;
3185
3186 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3187 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3188 fw.rodata_index = 0;
3189 fw.rodata = bnx_TPAT_b06FwRodata;
3190
3191 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3192 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3193
3194 /* Initialize the Completion Processor. */
3195 cpu_reg.mode = BNX_COM_CPU_MODE;
3196 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3197 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3198 cpu_reg.state = BNX_COM_CPU_STATE;
3199 cpu_reg.state_value_clear = 0xffffff;
3200 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3201 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3202 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3203 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3204 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3205 cpu_reg.spad_base = BNX_COM_SCRATCH;
3206 cpu_reg.mips_view_base = 0x8000000;
3207
3208 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3209 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3210 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3211 fw.start_addr = bnx_COM_b06FwStartAddr;
3212
3213 fw.text_addr = bnx_COM_b06FwTextAddr;
3214 fw.text_len = bnx_COM_b06FwTextLen;
3215 fw.text_index = 0;
3216 fw.text = bnx_COM_b06FwText;
3217
3218 fw.data_addr = bnx_COM_b06FwDataAddr;
3219 fw.data_len = bnx_COM_b06FwDataLen;
3220 fw.data_index = 0;
3221 fw.data = bnx_COM_b06FwData;
3222
3223 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3224 fw.sbss_len = bnx_COM_b06FwSbssLen;
3225 fw.sbss_index = 0;
3226 fw.sbss = bnx_COM_b06FwSbss;
3227
3228 fw.bss_addr = bnx_COM_b06FwBssAddr;
3229 fw.bss_len = bnx_COM_b06FwBssLen;
3230 fw.bss_index = 0;
3231 fw.bss = bnx_COM_b06FwBss;
3232
3233 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3234 fw.rodata_len = bnx_COM_b06FwRodataLen;
3235 fw.rodata_index = 0;
3236 fw.rodata = bnx_COM_b06FwRodata;
3237 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3238 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3239 break;
3240 }
3241 }
3242
3243 /****************************************************************************/
3244 /* Initialize context memory. */
3245 /* */
3246 /* Clears the memory associated with each Context ID (CID). */
3247 /* */
3248 /* Returns: */
3249 /* Nothing. */
3250 /****************************************************************************/
3251 void
3252 bnx_init_context(struct bnx_softc *sc)
3253 {
3254 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3255 /* DRC: Replace this constant value with a #define. */
3256 int i, retry_cnt = 10;
3257 uint32_t val;
3258
3259 /*
3260 * BCM5709 context memory may be cached
3261 * in host memory so prepare the host memory
3262 * for access.
3263 */
3264 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3265 | (1 << 12);
3266 val |= (BCM_PAGE_BITS - 8) << 16;
3267 REG_WR(sc, BNX_CTX_COMMAND, val);
3268
3269 /* Wait for mem init command to complete. */
3270 for (i = 0; i < retry_cnt; i++) {
3271 val = REG_RD(sc, BNX_CTX_COMMAND);
3272 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3273 break;
3274 DELAY(2);
3275 }
3276
3277 /* ToDo: Consider returning an error here. */
3278
3279 for (i = 0; i < sc->ctx_pages; i++) {
3280 int j;
3281
3282 /* Set the physaddr of the context memory cache. */
3283 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3284 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3285 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3286 val = (uint32_t)
3287 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3288 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3289 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3290 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3291
3292 /* Verify that the context memory write was successful. */
3293 for (j = 0; j < retry_cnt; j++) {
3294 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3295 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3296 break;
3297 DELAY(5);
3298 }
3299
3300 /* ToDo: Consider returning an error here. */
3301 }
3302 } else {
3303 uint32_t vcid_addr, offset;
3304
3305 /*
3306 * For the 5706/5708, context memory is local to the
3307 * controller, so initialize the controller context memory.
3308 */
3309
3310 vcid_addr = GET_CID_ADDR(96);
3311 while (vcid_addr) {
3312
3313 vcid_addr -= BNX_PHY_CTX_SIZE;
3314
3315 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3316 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3317
3318 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3319 offset += 4)
3320 CTX_WR(sc, 0x00, offset, 0);
3321
3322 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3323 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3324 }
3325 }
3326 }
3327
3328 /****************************************************************************/
3329 /* Fetch the permanent MAC address of the controller. */
3330 /* */
3331 /* Returns: */
3332 /* Nothing. */
3333 /****************************************************************************/
3334 void
3335 bnx_get_mac_addr(struct bnx_softc *sc)
3336 {
3337 uint32_t mac_lo = 0, mac_hi = 0;
3338
3339 /*
3340 * The NetXtreme II bootcode populates various NIC
3341 * power-on and runtime configuration items in a
3342 * shared memory area. The factory configured MAC
3343 * address is available from both NVRAM and the
3344 * shared memory area so we'll read the value from
3345 * shared memory for speed.
3346 */
3347
3348 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3349 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3350
3351 if ((mac_lo == 0) && (mac_hi == 0)) {
3352 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3353 __FILE__, __LINE__);
3354 } else {
3355 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3356 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3357 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3358 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3359 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3360 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3361 }
3362
3363 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3364 "%s\n", ether_sprintf(sc->eaddr));
3365 }
3366
3367 /****************************************************************************/
3368 /* Program the MAC address. */
3369 /* */
3370 /* Returns: */
3371 /* Nothing. */
3372 /****************************************************************************/
3373 void
3374 bnx_set_mac_addr(struct bnx_softc *sc)
3375 {
3376 uint32_t val;
3377 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3378
3379 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3380 "%s\n", ether_sprintf(sc->eaddr));
3381
3382 val = (mac_addr[0] << 8) | mac_addr[1];
3383
3384 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3385
3386 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3387 (mac_addr[4] << 8) | mac_addr[5];
3388
3389 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3390 }
3391
3392 /****************************************************************************/
3393 /* Stop the controller. */
3394 /* */
3395 /* Returns: */
3396 /* Nothing. */
3397 /****************************************************************************/
3398 void
3399 bnx_stop(struct ifnet *ifp, int disable)
3400 {
3401 struct bnx_softc *sc = ifp->if_softc;
3402
3403 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3404
3405 if (disable) {
3406 sc->bnx_detaching = 1;
3407 callout_halt(&sc->bnx_timeout, NULL);
3408 } else
3409 callout_stop(&sc->bnx_timeout);
3410
3411 mii_down(&sc->bnx_mii);
3412
3413 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3414
3415 /* Disable the transmit/receive blocks. */
3416 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3417 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3418 DELAY(20);
3419
3420 bnx_disable_intr(sc);
3421
3422 /* Tell firmware that the driver is going away. */
3423 if (disable)
3424 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3425 else
3426 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3427
3428 /* Free RX buffers. */
3429 bnx_free_rx_chain(sc);
3430
3431 /* Free TX buffers. */
3432 bnx_free_tx_chain(sc);
3433
3434 ifp->if_timer = 0;
3435
3436 sc->bnx_link = 0;
3437
3438 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3439
3440 bnx_mgmt_init(sc);
3441 }
3442
3443 int
3444 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3445 {
3446 struct pci_attach_args *pa = &(sc->bnx_pa);
3447 uint32_t val;
3448 int i, rc = 0;
3449
3450 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3451
3452 /* Wait for pending PCI transactions to complete. */
3453 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3454 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3455 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3456 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3457 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3458 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3459 DELAY(5);
3460
3461 /* Disable DMA */
3462 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3463 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3464 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3465 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3466 }
3467
3468 /* Assume bootcode is running. */
3469 sc->bnx_fw_timed_out = 0;
3470
3471 /* Give the firmware a chance to prepare for the reset. */
3472 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3473 if (rc)
3474 goto bnx_reset_exit;
3475
3476 /* Set a firmware reminder that this is a soft reset. */
3477 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3478 BNX_DRV_RESET_SIGNATURE_MAGIC);
3479
3480 /* Dummy read to force the chip to complete all current transactions. */
3481 val = REG_RD(sc, BNX_MISC_ID);
3482
3483 /* Chip reset. */
3484 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3485 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3486 REG_RD(sc, BNX_MISC_COMMAND);
3487 DELAY(5);
3488
3489 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3490 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3491
3492 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3493 val);
3494 } else {
3495 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3496 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3497 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3498 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3499
3500 /* Allow up to 30us for reset to complete. */
3501 for (i = 0; i < 10; i++) {
3502 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3503 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3504 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3505 break;
3506 }
3507 DELAY(10);
3508 }
3509
3510 /* Check that reset completed successfully. */
3511 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3512 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3513 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3514 __FILE__, __LINE__);
3515 rc = EBUSY;
3516 goto bnx_reset_exit;
3517 }
3518 }
3519
3520 /* Make sure byte swapping is properly configured. */
3521 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3522 if (val != 0x01020304) {
3523 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3524 __FILE__, __LINE__);
3525 rc = ENODEV;
3526 goto bnx_reset_exit;
3527 }
3528
3529 /* Just completed a reset, assume that firmware is running again. */
3530 sc->bnx_fw_timed_out = 0;
3531
3532 /* Wait for the firmware to finish its initialization. */
3533 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3534 if (rc)
3535 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3536 "initialization!\n", __FILE__, __LINE__);
3537
3538 bnx_reset_exit:
3539 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3540
3541 return rc;
3542 }
3543
3544 int
3545 bnx_chipinit(struct bnx_softc *sc)
3546 {
3547 struct pci_attach_args *pa = &(sc->bnx_pa);
3548 uint32_t val;
3549 int rc = 0;
3550
3551 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3552
3553 /* Make sure the interrupt is not active. */
3554 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3555
3556 /* Initialize DMA byte/word swapping, configure the number of DMA */
3557 /* channels and PCI clock compensation delay. */
3558 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3559 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3560 #if BYTE_ORDER == BIG_ENDIAN
3561 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3562 #endif
3563 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3564 DMA_READ_CHANS << 12 |
3565 DMA_WRITE_CHANS << 16;
3566
3567 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3568
3569 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3570 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3571
3572 /*
3573 * This setting resolves a problem observed on certain Intel PCI
3574 * chipsets that cannot handle multiple outstanding DMA operations.
3575 * See errata E9_5706A1_65.
3576 */
3577 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3578 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3579 !(sc->bnx_flags & BNX_PCIX_FLAG))
3580 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3581
3582 REG_WR(sc, BNX_DMA_CONFIG, val);
3583
3584 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3585 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3586 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3587 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3588 val & ~0x20000);
3589 }
3590
3591 /* Enable the RX_V2P and Context state machines before access. */
3592 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3593 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3594 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3595 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3596
3597 /* Initialize context mapping and zero out the quick contexts. */
3598 bnx_init_context(sc);
3599
3600 /* Initialize the on-boards CPUs */
3601 bnx_init_cpus(sc);
3602
3603 /* Prepare NVRAM for access. */
3604 if (bnx_init_nvram(sc)) {
3605 rc = ENODEV;
3606 goto bnx_chipinit_exit;
3607 }
3608
3609 /* Set the kernel bypass block size */
3610 val = REG_RD(sc, BNX_MQ_CONFIG);
3611 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3612 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3613
3614 /* Enable bins used on the 5709. */
3615 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3616 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3617 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3618 val |= BNX_MQ_CONFIG_HALT_DIS;
3619 }
3620
3621 REG_WR(sc, BNX_MQ_CONFIG, val);
3622
3623 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3624 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3625 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3626
3627 val = (BCM_PAGE_BITS - 8) << 24;
3628 REG_WR(sc, BNX_RV2P_CONFIG, val);
3629
3630 /* Configure page size. */
3631 val = REG_RD(sc, BNX_TBDR_CONFIG);
3632 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3633 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3634 REG_WR(sc, BNX_TBDR_CONFIG, val);
3635
3636 #if 0
3637 /* Set the perfect match control register to default. */
3638 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3639 #endif
3640
3641 bnx_chipinit_exit:
3642 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3643
3644 return rc;
3645 }
3646
3647 /****************************************************************************/
3648 /* Initialize the controller in preparation to send/receive traffic. */
3649 /* */
3650 /* Returns: */
3651 /* 0 for success, positive value for failure. */
3652 /****************************************************************************/
3653 int
3654 bnx_blockinit(struct bnx_softc *sc)
3655 {
3656 uint32_t reg, val;
3657 int rc = 0;
3658
3659 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3660
3661 /* Load the hardware default MAC address. */
3662 bnx_set_mac_addr(sc);
3663
3664 /* Set the Ethernet backoff seed value */
3665 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3666 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3667 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3668
3669 sc->last_status_idx = 0;
3670 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3671
3672 /* Set up link change interrupt generation. */
3673 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3674 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3675
3676 /* Program the physical address of the status block. */
3677 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3678 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3679 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3680
3681 /* Program the physical address of the statistics block. */
3682 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3683 (uint32_t)(sc->stats_block_paddr));
3684 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3685 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3686
3687 /* Program various host coalescing parameters. */
3688 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3689 << 16) | sc->bnx_tx_quick_cons_trip);
3690 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3691 << 16) | sc->bnx_rx_quick_cons_trip);
3692 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3693 sc->bnx_comp_prod_trip);
3694 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3695 sc->bnx_tx_ticks);
3696 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3697 sc->bnx_rx_ticks);
3698 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3699 sc->bnx_com_ticks);
3700 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3701 sc->bnx_cmd_ticks);
3702 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3703 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3704 REG_WR(sc, BNX_HC_CONFIG,
3705 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3706 BNX_HC_CONFIG_COLLECT_STATS));
3707
3708 /* Clear the internal statistics counters. */
3709 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3710
3711 /* Verify that bootcode is running. */
3712 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3713
3714 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3715 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3716 __FILE__, __LINE__); reg = 0);
3717
3718 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3719 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3720 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3721 "Expected: 08%08X\n", __FILE__, __LINE__,
3722 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3723 BNX_DEV_INFO_SIGNATURE_MAGIC);
3724 rc = ENODEV;
3725 goto bnx_blockinit_exit;
3726 }
3727
3728 /* Check if any management firmware is running. */
3729 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3730 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3731 BNX_PORT_FEATURE_IMD_ENABLED)) {
3732 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3733 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3734 }
3735
3736 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3737 BNX_DEV_INFO_BC_REV);
3738
3739 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3740
3741 /* Enable DMA */
3742 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3743 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3744 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3745 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3746 }
3747
3748 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3749 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3750
3751 /* Enable link state change interrupt generation. */
3752 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3753 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3754 BNX_MISC_ENABLE_DEFAULT_XI);
3755 } else
3756 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3757
3758 /* Enable all remaining blocks in the MAC. */
3759 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3760 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3761 DELAY(20);
3762
3763 bnx_blockinit_exit:
3764 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3765
3766 return rc;
3767 }
3768
3769 static int
3770 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3771 uint16_t *chain_prod, uint32_t *prod_bseq)
3772 {
3773 bus_dmamap_t map;
3774 struct rx_bd *rxbd;
3775 uint32_t addr;
3776 int i;
3777 #ifdef BNX_DEBUG
3778 uint16_t debug_chain_prod = *chain_prod;
3779 #endif
3780 uint16_t first_chain_prod;
3781
3782 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3783
3784 /* Map the mbuf cluster into device memory. */
3785 map = sc->rx_mbuf_map[*chain_prod];
3786 first_chain_prod = *chain_prod;
3787 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3788 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3789 __FILE__, __LINE__);
3790
3791 m_freem(m_new);
3792
3793 DBRUNIF(1, sc->rx_mbuf_alloc--);
3794
3795 return ENOBUFS;
3796 }
3797 /* Make sure there is room in the receive chain. */
3798 if (map->dm_nsegs > sc->free_rx_bd) {
3799 bus_dmamap_unload(sc->bnx_dmatag, map);
3800 m_freem(m_new);
3801 return EFBIG;
3802 }
3803 #ifdef BNX_DEBUG
3804 /* Track the distribution of buffer segments. */
3805 sc->rx_mbuf_segs[map->dm_nsegs]++;
3806 #endif
3807
3808 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3809 BUS_DMASYNC_PREREAD);
3810
3811 /* Update some debug statistics counters */
3812 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3813 sc->rx_low_watermark = sc->free_rx_bd);
3814 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3815
3816 /*
3817 * Setup the rx_bd for the first segment
3818 */
3819 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3820
3821 addr = (uint32_t)map->dm_segs[0].ds_addr;
3822 rxbd->rx_bd_haddr_lo = addr;
3823 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3824 rxbd->rx_bd_haddr_hi = addr;
3825 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3826 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3827 *prod_bseq += map->dm_segs[0].ds_len;
3828 bus_dmamap_sync(sc->bnx_dmatag,
3829 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3830 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3831 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3832
3833 for (i = 1; i < map->dm_nsegs; i++) {
3834 *prod = NEXT_RX_BD(*prod);
3835 *chain_prod = RX_CHAIN_IDX(*prod);
3836
3837 rxbd =
3838 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3839
3840 addr = (uint32_t)map->dm_segs[i].ds_addr;
3841 rxbd->rx_bd_haddr_lo = addr;
3842 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3843 rxbd->rx_bd_haddr_hi = addr;
3844 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3845 rxbd->rx_bd_flags = 0;
3846 *prod_bseq += map->dm_segs[i].ds_len;
3847 bus_dmamap_sync(sc->bnx_dmatag,
3848 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3849 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3850 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3851 }
3852
3853 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3854 bus_dmamap_sync(sc->bnx_dmatag,
3855 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3856 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3857 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3858
3859 /*
3860 * Save the mbuf, adjust the map pointer (swap map for first and
3861 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3862 * and update our counter.
3863 */
3864 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3865 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3866 sc->rx_mbuf_map[*chain_prod] = map;
3867 sc->free_rx_bd -= map->dm_nsegs;
3868
3869 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3870 map->dm_nsegs));
3871 *prod = NEXT_RX_BD(*prod);
3872 *chain_prod = RX_CHAIN_IDX(*prod);
3873
3874 return 0;
3875 }
3876
3877 /****************************************************************************/
3878 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3879 /* */
3880 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3881 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3882 /* necessary. */
3883 /* */
3884 /* Returns: */
3885 /* 0 for success, positive value for failure. */
3886 /****************************************************************************/
3887 int
3888 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3889 uint16_t *chain_prod, uint32_t *prod_bseq)
3890 {
3891 struct mbuf *m_new = NULL;
3892 int rc = 0;
3893 uint16_t min_free_bd;
3894
3895 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3896 __func__);
3897
3898 /* Make sure the inputs are valid. */
3899 DBRUNIF((*chain_prod > MAX_RX_BD),
3900 aprint_error_dev(sc->bnx_dev,
3901 "RX producer out of range: 0x%04X > 0x%04X\n",
3902 *chain_prod, (uint16_t)MAX_RX_BD));
3903
3904 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3905 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3906 *prod_bseq);
3907
3908 /* try to get in as many mbufs as possible */
3909 if (sc->mbuf_alloc_size == MCLBYTES)
3910 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3911 else
3912 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3913 while (sc->free_rx_bd >= min_free_bd) {
3914 /* Simulate an mbuf allocation failure. */
3915 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3916 aprint_error_dev(sc->bnx_dev,
3917 "Simulating mbuf allocation failure.\n");
3918 sc->mbuf_sim_alloc_failed++;
3919 rc = ENOBUFS;
3920 goto bnx_get_buf_exit);
3921
3922 /* This is a new mbuf allocation. */
3923 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3924 if (m_new == NULL) {
3925 DBPRINT(sc, BNX_WARN,
3926 "%s(%d): RX mbuf header allocation failed!\n",
3927 __FILE__, __LINE__);
3928
3929 sc->mbuf_alloc_failed++;
3930
3931 rc = ENOBUFS;
3932 goto bnx_get_buf_exit;
3933 }
3934
3935 DBRUNIF(1, sc->rx_mbuf_alloc++);
3936
3937 /* Simulate an mbuf cluster allocation failure. */
3938 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3939 m_freem(m_new);
3940 sc->rx_mbuf_alloc--;
3941 sc->mbuf_alloc_failed++;
3942 sc->mbuf_sim_alloc_failed++;
3943 rc = ENOBUFS;
3944 goto bnx_get_buf_exit);
3945
3946 if (sc->mbuf_alloc_size == MCLBYTES)
3947 MCLGET(m_new, M_DONTWAIT);
3948 else
3949 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3950 M_DONTWAIT);
3951 if (!(m_new->m_flags & M_EXT)) {
3952 DBPRINT(sc, BNX_WARN,
3953 "%s(%d): RX mbuf chain allocation failed!\n",
3954 __FILE__, __LINE__);
3955
3956 m_freem(m_new);
3957
3958 DBRUNIF(1, sc->rx_mbuf_alloc--);
3959 sc->mbuf_alloc_failed++;
3960
3961 rc = ENOBUFS;
3962 goto bnx_get_buf_exit;
3963 }
3964
3965 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3966 if (rc != 0)
3967 goto bnx_get_buf_exit;
3968 }
3969
3970 bnx_get_buf_exit:
3971 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3972 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3973 *chain_prod, *prod_bseq);
3974
3975 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3976 __func__);
3977
3978 return rc;
3979 }
3980
3981 void
3982 bnx_alloc_pkts(struct work * unused, void * arg)
3983 {
3984 struct bnx_softc *sc = arg;
3985 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3986 struct bnx_pkt *pkt;
3987 int i, s;
3988
3989 for (i = 0; i < 4; i++) { /* magic! */
3990 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3991 if (pkt == NULL)
3992 break;
3993
3994 if (bus_dmamap_create(sc->bnx_dmatag,
3995 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3996 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3997 &pkt->pkt_dmamap) != 0)
3998 goto put;
3999
4000 if (!ISSET(ifp->if_flags, IFF_UP))
4001 goto stopping;
4002
4003 mutex_enter(&sc->tx_pkt_mtx);
4004 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4005 sc->tx_pkt_count++;
4006 mutex_exit(&sc->tx_pkt_mtx);
4007 }
4008
4009 mutex_enter(&sc->tx_pkt_mtx);
4010 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4011 mutex_exit(&sc->tx_pkt_mtx);
4012
4013 /* fire-up TX now that allocations have been done */
4014 s = splnet();
4015 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4016 bnx_start(ifp);
4017 splx(s);
4018
4019 return;
4020
4021 stopping:
4022 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4023 put:
4024 pool_put(bnx_tx_pool, pkt);
4025 return;
4026 }
4027
4028 /****************************************************************************/
4029 /* Initialize the TX context memory. */
4030 /* */
4031 /* Returns: */
4032 /* Nothing */
4033 /****************************************************************************/
4034 void
4035 bnx_init_tx_context(struct bnx_softc *sc)
4036 {
4037 uint32_t val;
4038
4039 /* Initialize the context ID for an L2 TX chain. */
4040 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4041 /* Set the CID type to support an L2 connection. */
4042 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4043 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4044 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4045 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4046
4047 /* Point the hardware to the first page in the chain. */
4048 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4049 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4050 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4051 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4052 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4053 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4054 } else {
4055 /* Set the CID type to support an L2 connection. */
4056 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4057 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4058 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4059 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4060
4061 /* Point the hardware to the first page in the chain. */
4062 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4063 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4064 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4065 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4066 }
4067 }
4068
4069
4070 /****************************************************************************/
4071 /* Allocate memory and initialize the TX data structures. */
4072 /* */
4073 /* Returns: */
4074 /* 0 for success, positive value for failure. */
4075 /****************************************************************************/
4076 int
4077 bnx_init_tx_chain(struct bnx_softc *sc)
4078 {
4079 struct tx_bd *txbd;
4080 uint32_t addr;
4081 int i, rc = 0;
4082
4083 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4084
4085 /* Force an allocation of some dmamaps for tx up front */
4086 bnx_alloc_pkts(NULL, sc);
4087
4088 /* Set the initial TX producer/consumer indices. */
4089 sc->tx_prod = 0;
4090 sc->tx_cons = 0;
4091 sc->tx_prod_bseq = 0;
4092 sc->used_tx_bd = 0;
4093 sc->max_tx_bd = USABLE_TX_BD;
4094 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4095 DBRUNIF(1, sc->tx_full_count = 0);
4096
4097 /*
4098 * The NetXtreme II supports a linked-list structure called
4099 * a Buffer Descriptor Chain (or BD chain). A BD chain
4100 * consists of a series of 1 or more chain pages, each of which
4101 * consists of a fixed number of BD entries.
4102 * The last BD entry on each page is a pointer to the next page
4103 * in the chain, and the last pointer in the BD chain
4104 * points back to the beginning of the chain.
4105 */
4106
4107 /* Set the TX next pointer chain entries. */
4108 for (i = 0; i < TX_PAGES; i++) {
4109 int j;
4110
4111 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4112
4113 /* Check if we've reached the last page. */
4114 if (i == (TX_PAGES - 1))
4115 j = 0;
4116 else
4117 j = i + 1;
4118
4119 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4120 txbd->tx_bd_haddr_lo = addr;
4121 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4122 txbd->tx_bd_haddr_hi = addr;
4123 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4124 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4125 }
4126
4127 /*
4128 * Initialize the context ID for an L2 TX chain.
4129 */
4130 bnx_init_tx_context(sc);
4131
4132 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4133
4134 return rc;
4135 }
4136
4137 /****************************************************************************/
4138 /* Free memory and clear the TX data structures. */
4139 /* */
4140 /* Returns: */
4141 /* Nothing. */
4142 /****************************************************************************/
4143 void
4144 bnx_free_tx_chain(struct bnx_softc *sc)
4145 {
4146 struct bnx_pkt *pkt;
4147 int i;
4148
4149 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4150
4151 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4152 mutex_enter(&sc->tx_pkt_mtx);
4153 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4154 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4155 mutex_exit(&sc->tx_pkt_mtx);
4156
4157 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4158 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4159 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4160
4161 m_freem(pkt->pkt_mbuf);
4162 DBRUNIF(1, sc->tx_mbuf_alloc--);
4163
4164 mutex_enter(&sc->tx_pkt_mtx);
4165 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4166 }
4167
4168 /* Destroy all the dmamaps we allocated for TX */
4169 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4170 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4171 sc->tx_pkt_count--;
4172 mutex_exit(&sc->tx_pkt_mtx);
4173
4174 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4175 pool_put(bnx_tx_pool, pkt);
4176
4177 mutex_enter(&sc->tx_pkt_mtx);
4178 }
4179 mutex_exit(&sc->tx_pkt_mtx);
4180
4181
4182
4183 /* Clear each TX chain page. */
4184 for (i = 0; i < TX_PAGES; i++) {
4185 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4186 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4187 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4188 }
4189
4190 sc->used_tx_bd = 0;
4191
4192 /* Check if we lost any mbufs in the process. */
4193 DBRUNIF((sc->tx_mbuf_alloc),
4194 aprint_error_dev(sc->bnx_dev,
4195 "Memory leak! Lost %d mbufs from tx chain!\n",
4196 sc->tx_mbuf_alloc));
4197
4198 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4199 }
4200
4201 /****************************************************************************/
4202 /* Initialize the RX context memory. */
4203 /* */
4204 /* Returns: */
4205 /* Nothing */
4206 /****************************************************************************/
4207 void
4208 bnx_init_rx_context(struct bnx_softc *sc)
4209 {
4210 uint32_t val;
4211
4212 /* Initialize the context ID for an L2 RX chain. */
4213 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4214 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4215
4216 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4217 val |= 0x000000ff;
4218
4219 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4220
4221 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4222 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4223 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4224 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4225 }
4226
4227 /* Point the hardware to the first page in the chain. */
4228 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4229 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4230 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4231 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4232 }
4233
4234 /****************************************************************************/
4235 /* Allocate memory and initialize the RX data structures. */
4236 /* */
4237 /* Returns: */
4238 /* 0 for success, positive value for failure. */
4239 /****************************************************************************/
4240 int
4241 bnx_init_rx_chain(struct bnx_softc *sc)
4242 {
4243 struct rx_bd *rxbd;
4244 int i, rc = 0;
4245 uint16_t prod, chain_prod;
4246 uint32_t prod_bseq, addr;
4247
4248 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4249
4250 /* Initialize the RX producer and consumer indices. */
4251 sc->rx_prod = 0;
4252 sc->rx_cons = 0;
4253 sc->rx_prod_bseq = 0;
4254 sc->free_rx_bd = USABLE_RX_BD;
4255 sc->max_rx_bd = USABLE_RX_BD;
4256 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4257 DBRUNIF(1, sc->rx_empty_count = 0);
4258
4259 /* Initialize the RX next pointer chain entries. */
4260 for (i = 0; i < RX_PAGES; i++) {
4261 int j;
4262
4263 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4264
4265 /* Check if we've reached the last page. */
4266 if (i == (RX_PAGES - 1))
4267 j = 0;
4268 else
4269 j = i + 1;
4270
4271 /* Setup the chain page pointers. */
4272 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4273 rxbd->rx_bd_haddr_hi = addr;
4274 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4275 rxbd->rx_bd_haddr_lo = addr;
4276 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4277 0, BNX_RX_CHAIN_PAGE_SZ,
4278 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4279 }
4280
4281 /* Allocate mbuf clusters for the rx_bd chain. */
4282 prod = prod_bseq = 0;
4283 chain_prod = RX_CHAIN_IDX(prod);
4284 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4285 BNX_PRINTF(sc,
4286 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4287 }
4288
4289 /* Save the RX chain producer index. */
4290 sc->rx_prod = prod;
4291 sc->rx_prod_bseq = prod_bseq;
4292
4293 for (i = 0; i < RX_PAGES; i++)
4294 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4295 sc->rx_bd_chain_map[i]->dm_mapsize,
4296 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4297
4298 /* Tell the chip about the waiting rx_bd's. */
4299 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4300 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4301
4302 bnx_init_rx_context(sc);
4303
4304 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4305
4306 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4307
4308 return rc;
4309 }
4310
4311 /****************************************************************************/
4312 /* Free memory and clear the RX data structures. */
4313 /* */
4314 /* Returns: */
4315 /* Nothing. */
4316 /****************************************************************************/
4317 void
4318 bnx_free_rx_chain(struct bnx_softc *sc)
4319 {
4320 int i;
4321
4322 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4323
4324 /* Free any mbufs still in the RX mbuf chain. */
4325 for (i = 0; i < TOTAL_RX_BD; i++) {
4326 if (sc->rx_mbuf_ptr[i] != NULL) {
4327 if (sc->rx_mbuf_map[i] != NULL) {
4328 bus_dmamap_sync(sc->bnx_dmatag,
4329 sc->rx_mbuf_map[i], 0,
4330 sc->rx_mbuf_map[i]->dm_mapsize,
4331 BUS_DMASYNC_POSTREAD);
4332 bus_dmamap_unload(sc->bnx_dmatag,
4333 sc->rx_mbuf_map[i]);
4334 }
4335 m_freem(sc->rx_mbuf_ptr[i]);
4336 sc->rx_mbuf_ptr[i] = NULL;
4337 DBRUNIF(1, sc->rx_mbuf_alloc--);
4338 }
4339 }
4340
4341 /* Clear each RX chain page. */
4342 for (i = 0; i < RX_PAGES; i++)
4343 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4344
4345 sc->free_rx_bd = sc->max_rx_bd;
4346
4347 /* Check if we lost any mbufs in the process. */
4348 DBRUNIF((sc->rx_mbuf_alloc),
4349 aprint_error_dev(sc->bnx_dev,
4350 "Memory leak! Lost %d mbufs from rx chain!\n",
4351 sc->rx_mbuf_alloc));
4352
4353 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4354 }
4355
4356 /****************************************************************************/
4357 /* Set media options. */
4358 /* */
4359 /* Returns: */
4360 /* 0 for success, positive value for failure. */
4361 /****************************************************************************/
4362 int
4363 bnx_ifmedia_upd(struct ifnet *ifp)
4364 {
4365 struct bnx_softc *sc;
4366 struct mii_data *mii;
4367 int rc = 0;
4368
4369 sc = ifp->if_softc;
4370
4371 mii = &sc->bnx_mii;
4372 sc->bnx_link = 0;
4373 if (mii->mii_instance) {
4374 struct mii_softc *miisc;
4375 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4376 mii_phy_reset(miisc);
4377 }
4378 mii_mediachg(mii);
4379
4380 return rc;
4381 }
4382
4383 /****************************************************************************/
4384 /* Reports current media status. */
4385 /* */
4386 /* Returns: */
4387 /* Nothing. */
4388 /****************************************************************************/
4389 void
4390 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4391 {
4392 struct bnx_softc *sc;
4393 struct mii_data *mii;
4394 int s;
4395
4396 sc = ifp->if_softc;
4397
4398 s = splnet();
4399
4400 mii = &sc->bnx_mii;
4401
4402 mii_pollstat(mii);
4403 ifmr->ifm_status = mii->mii_media_status;
4404 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4405 sc->bnx_flowflags;
4406
4407 splx(s);
4408 }
4409
4410 /****************************************************************************/
4411 /* Handles PHY generated interrupt events. */
4412 /* */
4413 /* Returns: */
4414 /* Nothing. */
4415 /****************************************************************************/
4416 void
4417 bnx_phy_intr(struct bnx_softc *sc)
4418 {
4419 uint32_t new_link_state, old_link_state;
4420
4421 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4422 BUS_DMASYNC_POSTREAD);
4423 new_link_state = sc->status_block->status_attn_bits &
4424 STATUS_ATTN_BITS_LINK_STATE;
4425 old_link_state = sc->status_block->status_attn_bits_ack &
4426 STATUS_ATTN_BITS_LINK_STATE;
4427
4428 /* Handle any changes if the link state has changed. */
4429 if (new_link_state != old_link_state) {
4430 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4431
4432 sc->bnx_link = 0;
4433 callout_stop(&sc->bnx_timeout);
4434 bnx_tick(sc);
4435
4436 /* Update the status_attn_bits_ack field in the status block. */
4437 if (new_link_state) {
4438 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4439 STATUS_ATTN_BITS_LINK_STATE);
4440 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4441 } else {
4442 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4443 STATUS_ATTN_BITS_LINK_STATE);
4444 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4445 }
4446 }
4447
4448 /* Acknowledge the link change interrupt. */
4449 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4450 }
4451
4452 /****************************************************************************/
4453 /* Handles received frame interrupt events. */
4454 /* */
4455 /* Returns: */
4456 /* Nothing. */
4457 /****************************************************************************/
4458 void
4459 bnx_rx_intr(struct bnx_softc *sc)
4460 {
4461 struct status_block *sblk = sc->status_block;
4462 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4463 uint16_t hw_cons, sw_cons, sw_chain_cons;
4464 uint16_t sw_prod, sw_chain_prod;
4465 uint32_t sw_prod_bseq;
4466 struct l2_fhdr *l2fhdr;
4467 int i;
4468
4469 DBRUNIF(1, sc->rx_interrupts++);
4470 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4471 BUS_DMASYNC_POSTREAD);
4472
4473 /* Prepare the RX chain pages to be accessed by the host CPU. */
4474 for (i = 0; i < RX_PAGES; i++)
4475 bus_dmamap_sync(sc->bnx_dmatag,
4476 sc->rx_bd_chain_map[i], 0,
4477 sc->rx_bd_chain_map[i]->dm_mapsize,
4478 BUS_DMASYNC_POSTWRITE);
4479
4480 /* Get the hardware's view of the RX consumer index. */
4481 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4482 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4483 hw_cons++;
4484
4485 /* Get working copies of the driver's view of the RX indices. */
4486 sw_cons = sc->rx_cons;
4487 sw_prod = sc->rx_prod;
4488 sw_prod_bseq = sc->rx_prod_bseq;
4489
4490 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4491 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4492 __func__, sw_prod, sw_cons, sw_prod_bseq);
4493
4494 /* Prevent speculative reads from getting ahead of the status block. */
4495 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4496 BUS_SPACE_BARRIER_READ);
4497
4498 /* Update some debug statistics counters */
4499 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4500 sc->rx_low_watermark = sc->free_rx_bd);
4501 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4502
4503 /*
4504 * Scan through the receive chain as long
4505 * as there is work to do.
4506 */
4507 while (sw_cons != hw_cons) {
4508 struct mbuf *m;
4509 struct rx_bd *rxbd __diagused;
4510 unsigned int len;
4511 uint32_t status;
4512
4513 /* Convert the producer/consumer indices to an actual
4514 * rx_bd index.
4515 */
4516 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4517 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4518
4519 /* Get the used rx_bd. */
4520 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4521 sc->free_rx_bd++;
4522
4523 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4524 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4525
4526 /* The mbuf is stored with the last rx_bd entry of a packet. */
4527 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4528 #ifdef DIAGNOSTIC
4529 /* Validate that this is the last rx_bd. */
4530 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4531 printf("%s: Unexpected mbuf found in "
4532 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4533 sw_chain_cons);
4534 }
4535 #endif
4536
4537 /* DRC - ToDo: If the received packet is small, say
4538 * less than 128 bytes, allocate a new mbuf
4539 * here, copy the data to that mbuf, and
4540 * recycle the mapped jumbo frame.
4541 */
4542
4543 /* Unmap the mbuf from DMA space. */
4544 #ifdef DIAGNOSTIC
4545 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4546 printf("invalid map sw_cons 0x%x "
4547 "sw_prod 0x%x "
4548 "sw_chain_cons 0x%x "
4549 "sw_chain_prod 0x%x "
4550 "hw_cons 0x%x "
4551 "TOTAL_RX_BD_PER_PAGE 0x%x "
4552 "TOTAL_RX_BD 0x%x\n",
4553 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4554 hw_cons,
4555 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4556 }
4557 #endif
4558 bus_dmamap_sync(sc->bnx_dmatag,
4559 sc->rx_mbuf_map[sw_chain_cons], 0,
4560 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4561 BUS_DMASYNC_POSTREAD);
4562 bus_dmamap_unload(sc->bnx_dmatag,
4563 sc->rx_mbuf_map[sw_chain_cons]);
4564
4565 /* Remove the mbuf from the driver's chain. */
4566 m = sc->rx_mbuf_ptr[sw_chain_cons];
4567 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4568
4569 /*
4570 * Frames received on the NetXteme II are prepended
4571 * with the l2_fhdr structure which provides status
4572 * information about the received frame (including
4573 * VLAN tags and checksum info) and are also
4574 * automatically adjusted to align the IP header
4575 * (i.e. two null bytes are inserted before the
4576 * Ethernet header).
4577 */
4578 l2fhdr = mtod(m, struct l2_fhdr *);
4579
4580 len = l2fhdr->l2_fhdr_pkt_len;
4581 status = l2fhdr->l2_fhdr_status;
4582
4583 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4584 aprint_error("Simulating l2_fhdr status error.\n");
4585 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4586
4587 /* Watch for unusual sized frames. */
4588 DBRUNIF(((len < BNX_MIN_MTU) ||
4589 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4590 aprint_error_dev(sc->bnx_dev,
4591 "Unusual frame size found. "
4592 "Min(%d), Actual(%d), Max(%d)\n",
4593 (int)BNX_MIN_MTU, len,
4594 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4595
4596 bnx_dump_mbuf(sc, m);
4597 bnx_breakpoint(sc));
4598
4599 len -= ETHER_CRC_LEN;
4600
4601 /* Check the received frame for errors. */
4602 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4603 L2_FHDR_ERRORS_PHY_DECODE |
4604 L2_FHDR_ERRORS_ALIGNMENT |
4605 L2_FHDR_ERRORS_TOO_SHORT |
4606 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4607 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4608 len >
4609 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4610 ifp->if_ierrors++;
4611 DBRUNIF(1, sc->l2fhdr_status_errors++);
4612
4613 /* Reuse the mbuf for a new frame. */
4614 if (bnx_add_buf(sc, m, &sw_prod,
4615 &sw_chain_prod, &sw_prod_bseq)) {
4616 DBRUNIF(1, bnx_breakpoint(sc));
4617 panic("%s: Can't reuse RX mbuf!\n",
4618 device_xname(sc->bnx_dev));
4619 }
4620 continue;
4621 }
4622
4623 /*
4624 * Get a new mbuf for the rx_bd. If no new
4625 * mbufs are available then reuse the current mbuf,
4626 * log an ierror on the interface, and generate
4627 * an error in the system log.
4628 */
4629 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4630 &sw_prod_bseq)) {
4631 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4632 "Failed to allocate "
4633 "new mbuf, incoming frame dropped!\n"));
4634
4635 ifp->if_ierrors++;
4636
4637 /* Try and reuse the exisitng mbuf. */
4638 if (bnx_add_buf(sc, m, &sw_prod,
4639 &sw_chain_prod, &sw_prod_bseq)) {
4640 DBRUNIF(1, bnx_breakpoint(sc));
4641 panic("%s: Double mbuf allocation "
4642 "failure!",
4643 device_xname(sc->bnx_dev));
4644 }
4645 continue;
4646 }
4647
4648 /* Skip over the l2_fhdr when passing the data up
4649 * the stack.
4650 */
4651 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4652
4653 /* Adjust the pckt length to match the received data. */
4654 m->m_pkthdr.len = m->m_len = len;
4655
4656 /* Send the packet to the appropriate interface. */
4657 m_set_rcvif(m, ifp);
4658
4659 DBRUN(BNX_VERBOSE_RECV,
4660 struct ether_header *eh;
4661 eh = mtod(m, struct ether_header *);
4662 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4663 __func__, ether_sprintf(eh->ether_dhost),
4664 ether_sprintf(eh->ether_shost),
4665 htons(eh->ether_type)));
4666
4667 /* Validate the checksum. */
4668
4669 /* Check for an IP datagram. */
4670 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4671 /* Check if the IP checksum is valid. */
4672 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4673 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4674 #ifdef BNX_DEBUG
4675 else
4676 DBPRINT(sc, BNX_WARN_SEND,
4677 "%s(): Invalid IP checksum "
4678 "= 0x%04X!\n",
4679 __func__,
4680 l2fhdr->l2_fhdr_ip_xsum
4681 );
4682 #endif
4683 }
4684
4685 /* Check for a valid TCP/UDP frame. */
4686 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4687 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4688 /* Check for a good TCP/UDP checksum. */
4689 if ((status &
4690 (L2_FHDR_ERRORS_TCP_XSUM |
4691 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4692 m->m_pkthdr.csum_flags |=
4693 M_CSUM_TCPv4 |
4694 M_CSUM_UDPv4;
4695 } else {
4696 DBPRINT(sc, BNX_WARN_SEND,
4697 "%s(): Invalid TCP/UDP "
4698 "checksum = 0x%04X!\n",
4699 __func__,
4700 l2fhdr->l2_fhdr_tcp_udp_xsum);
4701 }
4702 }
4703
4704 /*
4705 * If we received a packet with a vlan tag,
4706 * attach that information to the packet.
4707 */
4708 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4709 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4710 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4711 }
4712
4713 /* Pass the mbuf off to the upper layers. */
4714
4715 DBPRINT(sc, BNX_VERBOSE_RECV,
4716 "%s(): Passing received frame up.\n", __func__);
4717 if_percpuq_enqueue(ifp->if_percpuq, m);
4718 DBRUNIF(1, sc->rx_mbuf_alloc--);
4719
4720 }
4721
4722 sw_cons = NEXT_RX_BD(sw_cons);
4723
4724 /* Refresh hw_cons to see if there's new work */
4725 if (sw_cons == hw_cons) {
4726 hw_cons = sc->hw_rx_cons =
4727 sblk->status_rx_quick_consumer_index0;
4728 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4729 USABLE_RX_BD_PER_PAGE)
4730 hw_cons++;
4731 }
4732
4733 /* Prevent speculative reads from getting ahead of
4734 * the status block.
4735 */
4736 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4737 BUS_SPACE_BARRIER_READ);
4738 }
4739
4740 for (i = 0; i < RX_PAGES; i++)
4741 bus_dmamap_sync(sc->bnx_dmatag,
4742 sc->rx_bd_chain_map[i], 0,
4743 sc->rx_bd_chain_map[i]->dm_mapsize,
4744 BUS_DMASYNC_PREWRITE);
4745
4746 sc->rx_cons = sw_cons;
4747 sc->rx_prod = sw_prod;
4748 sc->rx_prod_bseq = sw_prod_bseq;
4749
4750 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4751 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4752
4753 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4754 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4755 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4756 }
4757
4758 /****************************************************************************/
4759 /* Handles transmit completion interrupt events. */
4760 /* */
4761 /* Returns: */
4762 /* Nothing. */
4763 /****************************************************************************/
4764 void
4765 bnx_tx_intr(struct bnx_softc *sc)
4766 {
4767 struct status_block *sblk = sc->status_block;
4768 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4769 struct bnx_pkt *pkt;
4770 bus_dmamap_t map;
4771 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4772
4773 DBRUNIF(1, sc->tx_interrupts++);
4774 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4775 BUS_DMASYNC_POSTREAD);
4776
4777 /* Get the hardware's view of the TX consumer index. */
4778 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4779
4780 /* Skip to the next entry if this is a chain page pointer. */
4781 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4782 hw_tx_cons++;
4783
4784 sw_tx_cons = sc->tx_cons;
4785
4786 /* Prevent speculative reads from getting ahead of the status block. */
4787 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4788 BUS_SPACE_BARRIER_READ);
4789
4790 /* Cycle through any completed TX chain page entries. */
4791 while (sw_tx_cons != hw_tx_cons) {
4792 #ifdef BNX_DEBUG
4793 struct tx_bd *txbd = NULL;
4794 #endif
4795 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4796
4797 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4798 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4799 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4800
4801 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4802 aprint_error_dev(sc->bnx_dev,
4803 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4804 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4805
4806 DBRUNIF(1, txbd = &sc->tx_bd_chain
4807 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4808
4809 DBRUNIF((txbd == NULL),
4810 aprint_error_dev(sc->bnx_dev,
4811 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4812 bnx_breakpoint(sc));
4813
4814 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4815 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4816
4817
4818 mutex_enter(&sc->tx_pkt_mtx);
4819 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4820 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4821 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4822 mutex_exit(&sc->tx_pkt_mtx);
4823 /*
4824 * Free the associated mbuf. Remember
4825 * that only the last tx_bd of a packet
4826 * has an mbuf pointer and DMA map.
4827 */
4828 map = pkt->pkt_dmamap;
4829 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4830 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4831 bus_dmamap_unload(sc->bnx_dmatag, map);
4832
4833 m_freem(pkt->pkt_mbuf);
4834 DBRUNIF(1, sc->tx_mbuf_alloc--);
4835
4836 ifp->if_opackets++;
4837
4838 mutex_enter(&sc->tx_pkt_mtx);
4839 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4840 }
4841 mutex_exit(&sc->tx_pkt_mtx);
4842
4843 sc->used_tx_bd--;
4844 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4845 __FILE__, __LINE__, sc->used_tx_bd);
4846
4847 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4848
4849 /* Refresh hw_cons to see if there's new work. */
4850 hw_tx_cons = sc->hw_tx_cons =
4851 sblk->status_tx_quick_consumer_index0;
4852 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4853 USABLE_TX_BD_PER_PAGE)
4854 hw_tx_cons++;
4855
4856 /* Prevent speculative reads from getting ahead of
4857 * the status block.
4858 */
4859 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4860 BUS_SPACE_BARRIER_READ);
4861 }
4862
4863 /* Clear the TX timeout timer. */
4864 ifp->if_timer = 0;
4865
4866 /* Clear the tx hardware queue full flag. */
4867 if (sc->used_tx_bd < sc->max_tx_bd) {
4868 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4869 aprint_debug_dev(sc->bnx_dev,
4870 "Open TX chain! %d/%d (used/total)\n",
4871 sc->used_tx_bd, sc->max_tx_bd));
4872 ifp->if_flags &= ~IFF_OACTIVE;
4873 }
4874
4875 sc->tx_cons = sw_tx_cons;
4876 }
4877
4878 /****************************************************************************/
4879 /* Disables interrupt generation. */
4880 /* */
4881 /* Returns: */
4882 /* Nothing. */
4883 /****************************************************************************/
4884 void
4885 bnx_disable_intr(struct bnx_softc *sc)
4886 {
4887 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4888 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4889 }
4890
4891 /****************************************************************************/
4892 /* Enables interrupt generation. */
4893 /* */
4894 /* Returns: */
4895 /* Nothing. */
4896 /****************************************************************************/
4897 void
4898 bnx_enable_intr(struct bnx_softc *sc)
4899 {
4900 uint32_t val;
4901
4902 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4903 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4904
4905 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4906 sc->last_status_idx);
4907
4908 val = REG_RD(sc, BNX_HC_COMMAND);
4909 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4910 }
4911
4912 /****************************************************************************/
4913 /* Handles controller initialization. */
4914 /* */
4915 /****************************************************************************/
4916 int
4917 bnx_init(struct ifnet *ifp)
4918 {
4919 struct bnx_softc *sc = ifp->if_softc;
4920 uint32_t ether_mtu;
4921 int s, error = 0;
4922
4923 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4924
4925 s = splnet();
4926
4927 bnx_stop(ifp, 0);
4928
4929 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4930 aprint_error_dev(sc->bnx_dev,
4931 "Controller reset failed!\n");
4932 goto bnx_init_exit;
4933 }
4934
4935 if ((error = bnx_chipinit(sc)) != 0) {
4936 aprint_error_dev(sc->bnx_dev,
4937 "Controller initialization failed!\n");
4938 goto bnx_init_exit;
4939 }
4940
4941 if ((error = bnx_blockinit(sc)) != 0) {
4942 aprint_error_dev(sc->bnx_dev,
4943 "Block initialization failed!\n");
4944 goto bnx_init_exit;
4945 }
4946
4947 /* Calculate and program the Ethernet MRU size. */
4948 if (ifp->if_mtu <= ETHERMTU) {
4949 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4950 sc->mbuf_alloc_size = MCLBYTES;
4951 } else {
4952 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4953 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4954 }
4955
4956
4957 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
4958
4959 /*
4960 * Program the MRU and enable Jumbo frame
4961 * support.
4962 */
4963 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4964 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4965
4966 /* Calculate the RX Ethernet frame size for rx_bd's. */
4967 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4968
4969 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4970 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4971 sc->mbuf_alloc_size, sc->max_frame_size);
4972
4973 /* Program appropriate promiscuous/multicast filtering. */
4974 bnx_iff(sc);
4975
4976 /* Init RX buffer descriptor chain. */
4977 bnx_init_rx_chain(sc);
4978
4979 /* Init TX buffer descriptor chain. */
4980 bnx_init_tx_chain(sc);
4981
4982 /* Enable host interrupts. */
4983 bnx_enable_intr(sc);
4984
4985 bnx_ifmedia_upd(ifp);
4986
4987 SET(ifp->if_flags, IFF_RUNNING);
4988 CLR(ifp->if_flags, IFF_OACTIVE);
4989
4990 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4991
4992 bnx_init_exit:
4993 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4994
4995 splx(s);
4996
4997 return error;
4998 }
4999
5000 void
5001 bnx_mgmt_init(struct bnx_softc *sc)
5002 {
5003 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5004 uint32_t val;
5005
5006 /* Check if the driver is still running and bail out if it is. */
5007 if (ifp->if_flags & IFF_RUNNING)
5008 goto bnx_mgmt_init_exit;
5009
5010 /* Initialize the on-boards CPUs */
5011 bnx_init_cpus(sc);
5012
5013 val = (BCM_PAGE_BITS - 8) << 24;
5014 REG_WR(sc, BNX_RV2P_CONFIG, val);
5015
5016 /* Enable all critical blocks in the MAC. */
5017 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5018 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5019 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5020 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5021 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5022 DELAY(20);
5023
5024 bnx_ifmedia_upd(ifp);
5025
5026 bnx_mgmt_init_exit:
5027 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5028 }
5029
5030 /****************************************************************************/
5031 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5032 /* memory visible to the controller. */
5033 /* */
5034 /* Returns: */
5035 /* 0 for success, positive value for failure. */
5036 /****************************************************************************/
5037 int
5038 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5039 {
5040 struct bnx_pkt *pkt;
5041 bus_dmamap_t map;
5042 struct tx_bd *txbd = NULL;
5043 uint16_t vlan_tag = 0, flags = 0;
5044 uint16_t chain_prod, prod;
5045 #ifdef BNX_DEBUG
5046 uint16_t debug_prod;
5047 #endif
5048 uint32_t addr, prod_bseq;
5049 int i, error;
5050 static struct work bnx_wk; /* Dummy work. Statically allocated. */
5051 bool remap = true;
5052
5053 mutex_enter(&sc->tx_pkt_mtx);
5054 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5055 if (pkt == NULL) {
5056 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5057 mutex_exit(&sc->tx_pkt_mtx);
5058 return ENETDOWN;
5059 }
5060
5061 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5062 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5063 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
5064 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5065 }
5066
5067 mutex_exit(&sc->tx_pkt_mtx);
5068 return ENOMEM;
5069 }
5070 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5071 mutex_exit(&sc->tx_pkt_mtx);
5072
5073 /* Transfer any checksum offload flags to the bd. */
5074 if (m->m_pkthdr.csum_flags) {
5075 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5076 flags |= TX_BD_FLAGS_IP_CKSUM;
5077 if (m->m_pkthdr.csum_flags &
5078 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5079 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5080 }
5081
5082 /* Transfer any VLAN tags to the bd. */
5083 if (vlan_has_tag(m)) {
5084 flags |= TX_BD_FLAGS_VLAN_TAG;
5085 vlan_tag = vlan_get_tag(m);
5086 }
5087
5088 /* Map the mbuf into DMAable memory. */
5089 prod = sc->tx_prod;
5090 chain_prod = TX_CHAIN_IDX(prod);
5091 map = pkt->pkt_dmamap;
5092
5093 /* Map the mbuf into our DMA address space. */
5094 retry:
5095 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5096 if (__predict_false(error)) {
5097 if (error == EFBIG) {
5098 if (remap == true) {
5099 struct mbuf *newm;
5100
5101 remap = false;
5102 newm = m_defrag(m, M_NOWAIT);
5103 if (newm != NULL) {
5104 m = newm;
5105 goto retry;
5106 }
5107 }
5108 }
5109 sc->tx_dma_map_failures++;
5110 goto maperr;
5111 }
5112 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5113 BUS_DMASYNC_PREWRITE);
5114 /* Make sure there's room in the chain */
5115 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5116 goto nospace;
5117
5118 /* prod points to an empty tx_bd at this point. */
5119 prod_bseq = sc->tx_prod_bseq;
5120 #ifdef BNX_DEBUG
5121 debug_prod = chain_prod;
5122 #endif
5123 DBPRINT(sc, BNX_INFO_SEND,
5124 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5125 "prod_bseq = 0x%08X\n",
5126 __func__, prod, chain_prod, prod_bseq);
5127
5128 /*
5129 * Cycle through each mbuf segment that makes up
5130 * the outgoing frame, gathering the mapping info
5131 * for that segment and creating a tx_bd for the
5132 * mbuf.
5133 */
5134 for (i = 0; i < map->dm_nsegs ; i++) {
5135 chain_prod = TX_CHAIN_IDX(prod);
5136 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5137
5138 addr = (uint32_t)map->dm_segs[i].ds_addr;
5139 txbd->tx_bd_haddr_lo = addr;
5140 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5141 txbd->tx_bd_haddr_hi = addr;
5142 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5143 txbd->tx_bd_vlan_tag = vlan_tag;
5144 txbd->tx_bd_flags = flags;
5145 prod_bseq += map->dm_segs[i].ds_len;
5146 if (i == 0)
5147 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5148 prod = NEXT_TX_BD(prod);
5149 }
5150
5151 /* Set the END flag on the last TX buffer descriptor. */
5152 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5153
5154 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5155
5156 DBPRINT(sc, BNX_INFO_SEND,
5157 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5158 "prod_bseq = 0x%08X\n",
5159 __func__, prod, chain_prod, prod_bseq);
5160
5161 pkt->pkt_mbuf = m;
5162 pkt->pkt_end_desc = chain_prod;
5163
5164 mutex_enter(&sc->tx_pkt_mtx);
5165 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5166 mutex_exit(&sc->tx_pkt_mtx);
5167
5168 sc->used_tx_bd += map->dm_nsegs;
5169 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5170 __FILE__, __LINE__, sc->used_tx_bd);
5171
5172 /* Update some debug statistics counters */
5173 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5174 sc->tx_hi_watermark = sc->used_tx_bd);
5175 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5176 DBRUNIF(1, sc->tx_mbuf_alloc++);
5177
5178 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5179 map->dm_nsegs));
5180
5181 /* prod points to the next free tx_bd at this point. */
5182 sc->tx_prod = prod;
5183 sc->tx_prod_bseq = prod_bseq;
5184
5185 return 0;
5186
5187
5188 nospace:
5189 bus_dmamap_unload(sc->bnx_dmatag, map);
5190 maperr:
5191 mutex_enter(&sc->tx_pkt_mtx);
5192 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5193 mutex_exit(&sc->tx_pkt_mtx);
5194
5195 return ENOMEM;
5196 }
5197
5198 /****************************************************************************/
5199 /* Main transmit routine. */
5200 /* */
5201 /* Returns: */
5202 /* Nothing. */
5203 /****************************************************************************/
5204 void
5205 bnx_start(struct ifnet *ifp)
5206 {
5207 struct bnx_softc *sc = ifp->if_softc;
5208 struct mbuf *m_head = NULL;
5209 int count = 0;
5210 #ifdef BNX_DEBUG
5211 uint16_t tx_chain_prod;
5212 #endif
5213
5214 /* If there's no link or the transmit queue is empty then just exit. */
5215 if (!sc->bnx_link
5216 ||(ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5217 DBPRINT(sc, BNX_INFO_SEND,
5218 "%s(): output active or device not running.\n", __func__);
5219 goto bnx_start_exit;
5220 }
5221
5222 /* prod points to the next free tx_bd. */
5223 #ifdef BNX_DEBUG
5224 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5225 #endif
5226
5227 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5228 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5229 "used_tx %d max_tx %d\n",
5230 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5231 sc->used_tx_bd, sc->max_tx_bd);
5232
5233 /*
5234 * Keep adding entries while there is space in the ring.
5235 */
5236 while (sc->used_tx_bd < sc->max_tx_bd) {
5237 /* Check for any frames to send. */
5238 IFQ_POLL(&ifp->if_snd, m_head);
5239 if (m_head == NULL)
5240 break;
5241
5242 /*
5243 * Pack the data into the transmit ring. If we
5244 * don't have room, set the OACTIVE flag to wait
5245 * for the NIC to drain the chain.
5246 */
5247 if (bnx_tx_encap(sc, m_head)) {
5248 ifp->if_flags |= IFF_OACTIVE;
5249 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5250 "business! Total tx_bd used = %d\n",
5251 sc->used_tx_bd);
5252 break;
5253 }
5254
5255 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5256 count++;
5257
5258 /* Send a copy of the frame to any BPF listeners. */
5259 bpf_mtap(ifp, m_head, BPF_D_OUT);
5260 }
5261
5262 if (count == 0) {
5263 /* no packets were dequeued */
5264 DBPRINT(sc, BNX_VERBOSE_SEND,
5265 "%s(): No packets were dequeued\n", __func__);
5266 goto bnx_start_exit;
5267 }
5268
5269 /* Update the driver's counters. */
5270 #ifdef BNX_DEBUG
5271 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5272 #endif
5273
5274 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5275 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5276 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5277
5278 /* Start the transmit. */
5279 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5280 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5281
5282 /* Set the tx timeout. */
5283 ifp->if_timer = BNX_TX_TIMEOUT;
5284
5285 bnx_start_exit:
5286 return;
5287 }
5288
5289 /****************************************************************************/
5290 /* Handles any IOCTL calls from the operating system. */
5291 /* */
5292 /* Returns: */
5293 /* 0 for success, positive value for failure. */
5294 /****************************************************************************/
5295 int
5296 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5297 {
5298 struct bnx_softc *sc = ifp->if_softc;
5299 struct ifreq *ifr = (struct ifreq *) data;
5300 struct mii_data *mii = &sc->bnx_mii;
5301 int s, error = 0;
5302
5303 s = splnet();
5304
5305 switch (command) {
5306 case SIOCSIFFLAGS:
5307 if ((error = ifioctl_common(ifp, command, data)) != 0)
5308 break;
5309 /* XXX set an ifflags callback and let ether_ioctl
5310 * handle all of this.
5311 */
5312 if (ISSET(ifp->if_flags, IFF_UP)) {
5313 if (ifp->if_flags & IFF_RUNNING)
5314 error = ENETRESET;
5315 else
5316 bnx_init(ifp);
5317 } else if (ifp->if_flags & IFF_RUNNING)
5318 bnx_stop(ifp, 1);
5319 break;
5320
5321 case SIOCSIFMEDIA:
5322 /* Flow control requires full-duplex mode. */
5323 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5324 (ifr->ifr_media & IFM_FDX) == 0)
5325 ifr->ifr_media &= ~IFM_ETH_FMASK;
5326
5327 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5328 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5329 /* We can do both TXPAUSE and RXPAUSE. */
5330 ifr->ifr_media |=
5331 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5332 }
5333 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5334 }
5335 /* FALLTHROUGH */
5336 case SIOCGIFMEDIA:
5337 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5338 sc->bnx_phy_flags);
5339
5340 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5341 break;
5342
5343 default:
5344 error = ether_ioctl(ifp, command, data);
5345 }
5346
5347 if (error == ENETRESET) {
5348 if (ifp->if_flags & IFF_RUNNING)
5349 bnx_iff(sc);
5350 error = 0;
5351 }
5352
5353 splx(s);
5354 return error;
5355 }
5356
5357 /****************************************************************************/
5358 /* Transmit timeout handler. */
5359 /* */
5360 /* Returns: */
5361 /* Nothing. */
5362 /****************************************************************************/
5363 void
5364 bnx_watchdog(struct ifnet *ifp)
5365 {
5366 struct bnx_softc *sc = ifp->if_softc;
5367
5368 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5369 bnx_dump_status_block(sc));
5370 /*
5371 * If we are in this routine because of pause frames, then
5372 * don't reset the hardware.
5373 */
5374 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5375 return;
5376
5377 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5378
5379 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5380
5381 bnx_init(ifp);
5382
5383 ifp->if_oerrors++;
5384 }
5385
5386 /*
5387 * Interrupt handler.
5388 */
5389 /****************************************************************************/
5390 /* Main interrupt entry point. Verifies that the controller generated the */
5391 /* interrupt and then calls a separate routine for handle the various */
5392 /* interrupt causes (PHY, TX, RX). */
5393 /* */
5394 /* Returns: */
5395 /* 0 for success, positive value for failure. */
5396 /****************************************************************************/
5397 int
5398 bnx_intr(void *xsc)
5399 {
5400 struct bnx_softc *sc = xsc;
5401 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5402 uint32_t status_attn_bits;
5403 uint16_t status_idx;
5404 const struct status_block *sblk;
5405 int rv = 0;
5406
5407 if (!device_is_active(sc->bnx_dev) ||
5408 (ifp->if_flags & IFF_RUNNING) == 0)
5409 return 0;
5410
5411 DBRUNIF(1, sc->interrupts_generated++);
5412
5413 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5414 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5415
5416 sblk = sc->status_block;
5417 /*
5418 * If the hardware status block index
5419 * matches the last value read by the
5420 * driver and we haven't asserted our
5421 * interrupt then there's nothing to do.
5422 */
5423 status_idx = sblk->status_idx;
5424 if ((status_idx != sc->last_status_idx) ||
5425 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5426 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5427 rv = 1;
5428
5429 /* Ack the interrupt */
5430 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5431 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5432
5433 status_attn_bits = sblk->status_attn_bits;
5434
5435 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5436 aprint_debug("Simulating unexpected status attention bit set.");
5437 status_attn_bits = status_attn_bits |
5438 STATUS_ATTN_BITS_PARITY_ERROR);
5439
5440 /* Was it a link change interrupt? */
5441 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5442 (sblk->status_attn_bits_ack &
5443 STATUS_ATTN_BITS_LINK_STATE))
5444 bnx_phy_intr(sc);
5445
5446 /* If any other attention is asserted then the chip is toast. */
5447 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5448 (sblk->status_attn_bits_ack &
5449 ~STATUS_ATTN_BITS_LINK_STATE))) {
5450 DBRUN(sc->unexpected_attentions++);
5451
5452 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5453 sblk->status_attn_bits);
5454
5455 DBRUNIF((bnx_debug_unexpected_attention == 0),
5456 bnx_breakpoint(sc));
5457
5458 bnx_init(ifp);
5459 goto out;
5460 }
5461
5462 /* Check for any completed RX frames. */
5463 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5464 bnx_rx_intr(sc);
5465
5466 /* Check for any completed TX frames. */
5467 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5468 bnx_tx_intr(sc);
5469
5470 /*
5471 * Save the status block index value for use during the
5472 * next interrupt.
5473 */
5474 sc->last_status_idx = status_idx;
5475
5476 /* Start moving packets again */
5477 if (ifp->if_flags & IFF_RUNNING)
5478 if_schedule_deferred_start(ifp);
5479 }
5480
5481 out:
5482 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5483 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5484
5485 return rv;
5486 }
5487
5488 /****************************************************************************/
5489 /* Programs the various packet receive modes (broadcast and multicast). */
5490 /* */
5491 /* Returns: */
5492 /* Nothing. */
5493 /****************************************************************************/
5494 void
5495 bnx_iff(struct bnx_softc *sc)
5496 {
5497 struct ethercom *ec = &sc->bnx_ec;
5498 struct ifnet *ifp = &ec->ec_if;
5499 struct ether_multi *enm;
5500 struct ether_multistep step;
5501 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5502 uint32_t rx_mode, sort_mode;
5503 int h, i;
5504
5505 /* Initialize receive mode default settings. */
5506 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5507 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5508 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5509 ifp->if_flags &= ~IFF_ALLMULTI;
5510
5511 /*
5512 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5513 * be enbled.
5514 */
5515 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5516 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5517
5518 /*
5519 * Check for promiscuous, all multicast, or selected
5520 * multicast address filtering.
5521 */
5522 if (ifp->if_flags & IFF_PROMISC) {
5523 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5524
5525 ifp->if_flags |= IFF_ALLMULTI;
5526 /* Enable promiscuous mode. */
5527 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5528 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5529 } else if (ifp->if_flags & IFF_ALLMULTI) {
5530 allmulti:
5531 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5532
5533 ifp->if_flags |= IFF_ALLMULTI;
5534 /* Enable all multicast addresses. */
5535 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5536 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5537 0xffffffff);
5538 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5539 } else {
5540 /* Accept one or more multicast(s). */
5541 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5542
5543 ETHER_FIRST_MULTI(step, ec, enm);
5544 while (enm != NULL) {
5545 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5546 ETHER_ADDR_LEN)) {
5547 goto allmulti;
5548 }
5549 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5550 0xFF;
5551 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5552 ETHER_NEXT_MULTI(step, enm);
5553 }
5554
5555 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5556 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5557 hashes[i]);
5558
5559 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5560 }
5561
5562 /* Only make changes if the recive mode has actually changed. */
5563 if (rx_mode != sc->rx_mode) {
5564 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5565 rx_mode);
5566
5567 sc->rx_mode = rx_mode;
5568 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5569 }
5570
5571 /* Disable and clear the exisitng sort before enabling a new sort. */
5572 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5573 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5574 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5575 }
5576
5577 /****************************************************************************/
5578 /* Called periodically to updates statistics from the controllers */
5579 /* statistics block. */
5580 /* */
5581 /* Returns: */
5582 /* Nothing. */
5583 /****************************************************************************/
5584 void
5585 bnx_stats_update(struct bnx_softc *sc)
5586 {
5587 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5588 struct statistics_block *stats;
5589
5590 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5591 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5592 BUS_DMASYNC_POSTREAD);
5593
5594 stats = (struct statistics_block *)sc->stats_block;
5595
5596 /*
5597 * Update the interface statistics from the
5598 * hardware statistics.
5599 */
5600 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5601
5602 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5603 (u_long)stats->stat_EtherStatsOverrsizePkts +
5604 (u_long)stats->stat_IfInMBUFDiscards +
5605 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5606 (u_long)stats->stat_Dot3StatsFCSErrors;
5607
5608 ifp->if_oerrors = (u_long)
5609 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5610 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5611 (u_long)stats->stat_Dot3StatsLateCollisions;
5612
5613 /*
5614 * Certain controllers don't report
5615 * carrier sense errors correctly.
5616 * See errata E11_5708CA0_1165.
5617 */
5618 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5619 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5620 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5621
5622 /*
5623 * Update the sysctl statistics from the
5624 * hardware statistics.
5625 */
5626 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5627 (uint64_t) stats->stat_IfHCInOctets_lo;
5628
5629 sc->stat_IfHCInBadOctets =
5630 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5631 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5632
5633 sc->stat_IfHCOutOctets =
5634 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5635 (uint64_t) stats->stat_IfHCOutOctets_lo;
5636
5637 sc->stat_IfHCOutBadOctets =
5638 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5639 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5640
5641 sc->stat_IfHCInUcastPkts =
5642 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5643 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5644
5645 sc->stat_IfHCInMulticastPkts =
5646 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5647 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5648
5649 sc->stat_IfHCInBroadcastPkts =
5650 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5651 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5652
5653 sc->stat_IfHCOutUcastPkts =
5654 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5655 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5656
5657 sc->stat_IfHCOutMulticastPkts =
5658 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5659 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5660
5661 sc->stat_IfHCOutBroadcastPkts =
5662 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5663 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5664
5665 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5666 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5667
5668 sc->stat_Dot3StatsCarrierSenseErrors =
5669 stats->stat_Dot3StatsCarrierSenseErrors;
5670
5671 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5672
5673 sc->stat_Dot3StatsAlignmentErrors =
5674 stats->stat_Dot3StatsAlignmentErrors;
5675
5676 sc->stat_Dot3StatsSingleCollisionFrames =
5677 stats->stat_Dot3StatsSingleCollisionFrames;
5678
5679 sc->stat_Dot3StatsMultipleCollisionFrames =
5680 stats->stat_Dot3StatsMultipleCollisionFrames;
5681
5682 sc->stat_Dot3StatsDeferredTransmissions =
5683 stats->stat_Dot3StatsDeferredTransmissions;
5684
5685 sc->stat_Dot3StatsExcessiveCollisions =
5686 stats->stat_Dot3StatsExcessiveCollisions;
5687
5688 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5689
5690 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5691
5692 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5693
5694 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5695
5696 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5697
5698 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5699
5700 sc->stat_EtherStatsPktsRx64Octets =
5701 stats->stat_EtherStatsPktsRx64Octets;
5702
5703 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5704 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5705
5706 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5707 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5708
5709 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5710 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5711
5712 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5713 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5714
5715 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5716 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5717
5718 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5719 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5720
5721 sc->stat_EtherStatsPktsTx64Octets =
5722 stats->stat_EtherStatsPktsTx64Octets;
5723
5724 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5725 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5726
5727 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5728 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5729
5730 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5731 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5732
5733 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5734 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5735
5736 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5737 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5738
5739 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5740 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5741
5742 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5743
5744 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5745
5746 sc->stat_OutXonSent = stats->stat_OutXonSent;
5747
5748 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5749
5750 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5751
5752 sc->stat_MacControlFramesReceived =
5753 stats->stat_MacControlFramesReceived;
5754
5755 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5756
5757 sc->stat_IfInFramesL2FilterDiscards =
5758 stats->stat_IfInFramesL2FilterDiscards;
5759
5760 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5761
5762 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5763
5764 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5765
5766 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5767
5768 sc->stat_CatchupInRuleCheckerDiscards =
5769 stats->stat_CatchupInRuleCheckerDiscards;
5770
5771 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5772
5773 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5774
5775 sc->stat_CatchupInRuleCheckerP4Hit =
5776 stats->stat_CatchupInRuleCheckerP4Hit;
5777
5778 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5779 }
5780
5781 void
5782 bnx_tick(void *xsc)
5783 {
5784 struct bnx_softc *sc = xsc;
5785 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5786 struct mii_data *mii;
5787 uint32_t msg;
5788 uint16_t prod, chain_prod;
5789 uint32_t prod_bseq;
5790 int s = splnet();
5791
5792 /* Tell the firmware that the driver is still running. */
5793 #ifdef BNX_DEBUG
5794 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5795 #else
5796 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5797 #endif
5798 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5799
5800 /* Update the statistics from the hardware statistics block. */
5801 bnx_stats_update(sc);
5802
5803 /* Schedule the next tick. */
5804 if (!sc->bnx_detaching)
5805 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5806
5807 if (sc->bnx_link)
5808 goto bnx_tick_exit;
5809
5810 mii = &sc->bnx_mii;
5811 mii_tick(mii);
5812
5813 /* Check if the link has come up. */
5814 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5815 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5816 sc->bnx_link++;
5817 /* Now that link is up, handle any outstanding TX traffic. */
5818 if_schedule_deferred_start(ifp);
5819 }
5820
5821 bnx_tick_exit:
5822 /* try to get more RX buffers, just in case */
5823 prod = sc->rx_prod;
5824 prod_bseq = sc->rx_prod_bseq;
5825 chain_prod = RX_CHAIN_IDX(prod);
5826 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5827 sc->rx_prod = prod;
5828 sc->rx_prod_bseq = prod_bseq;
5829
5830 splx(s);
5831 return;
5832 }
5833
5834 /****************************************************************************/
5835 /* BNX Debug Routines */
5836 /****************************************************************************/
5837 #ifdef BNX_DEBUG
5838
5839 /****************************************************************************/
5840 /* Prints out information about an mbuf. */
5841 /* */
5842 /* Returns: */
5843 /* Nothing. */
5844 /****************************************************************************/
5845 void
5846 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5847 {
5848 struct mbuf *mp = m;
5849
5850 if (m == NULL) {
5851 /* Index out of range. */
5852 aprint_error("mbuf ptr is null!\n");
5853 return;
5854 }
5855
5856 while (mp) {
5857 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5858 mp, mp->m_len);
5859
5860 if (mp->m_flags & M_EXT)
5861 aprint_debug("M_EXT ");
5862 if (mp->m_flags & M_PKTHDR)
5863 aprint_debug("M_PKTHDR ");
5864 aprint_debug("\n");
5865
5866 if (mp->m_flags & M_EXT)
5867 aprint_debug("- m_ext: vaddr = %p, "
5868 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5869
5870 mp = mp->m_next;
5871 }
5872 }
5873
5874 /****************************************************************************/
5875 /* Prints out the mbufs in the TX mbuf chain. */
5876 /* */
5877 /* Returns: */
5878 /* Nothing. */
5879 /****************************************************************************/
5880 void
5881 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5882 {
5883 #if 0
5884 struct mbuf *m;
5885 int i;
5886
5887 aprint_debug_dev(sc->bnx_dev,
5888 "----------------------------"
5889 " tx mbuf data "
5890 "----------------------------\n");
5891
5892 for (i = 0; i < count; i++) {
5893 m = sc->tx_mbuf_ptr[chain_prod];
5894 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5895 bnx_dump_mbuf(sc, m);
5896 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5897 }
5898
5899 aprint_debug_dev(sc->bnx_dev,
5900 "--------------------------------------------"
5901 "----------------------------\n");
5902 #endif
5903 }
5904
5905 /*
5906 * This routine prints the RX mbuf chain.
5907 */
5908 void
5909 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5910 {
5911 struct mbuf *m;
5912 int i;
5913
5914 aprint_debug_dev(sc->bnx_dev,
5915 "----------------------------"
5916 " rx mbuf data "
5917 "----------------------------\n");
5918
5919 for (i = 0; i < count; i++) {
5920 m = sc->rx_mbuf_ptr[chain_prod];
5921 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5922 bnx_dump_mbuf(sc, m);
5923 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5924 }
5925
5926
5927 aprint_debug_dev(sc->bnx_dev,
5928 "--------------------------------------------"
5929 "----------------------------\n");
5930 }
5931
5932 void
5933 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5934 {
5935 if (idx > MAX_TX_BD)
5936 /* Index out of range. */
5937 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5938 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5939 /* TX Chain page pointer. */
5940 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5941 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5942 txbd->tx_bd_haddr_lo);
5943 else
5944 /* Normal tx_bd entry. */
5945 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5946 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5947 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5948 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5949 txbd->tx_bd_flags);
5950 }
5951
5952 void
5953 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5954 {
5955 if (idx > MAX_RX_BD)
5956 /* Index out of range. */
5957 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5958 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5959 /* TX Chain page pointer. */
5960 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5961 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5962 rxbd->rx_bd_haddr_lo);
5963 else
5964 /* Normal tx_bd entry. */
5965 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5966 "0x%08X, flags = 0x%08X\n", idx,
5967 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5968 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5969 }
5970
5971 void
5972 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5973 {
5974 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5975 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5976 "tcp_udp_xsum = 0x%04X\n", idx,
5977 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5978 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5979 l2fhdr->l2_fhdr_tcp_udp_xsum);
5980 }
5981
5982 /*
5983 * This routine prints the TX chain.
5984 */
5985 void
5986 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5987 {
5988 struct tx_bd *txbd;
5989 int i;
5990
5991 /* First some info about the tx_bd chain structure. */
5992 aprint_debug_dev(sc->bnx_dev,
5993 "----------------------------"
5994 " tx_bd chain "
5995 "----------------------------\n");
5996
5997 BNX_PRINTF(sc,
5998 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5999 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6000
6001 BNX_PRINTF(sc,
6002 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6003 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6004
6005 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6006
6007 aprint_error_dev(sc->bnx_dev, ""
6008 "-----------------------------"
6009 " tx_bd data "
6010 "-----------------------------\n");
6011
6012 /* Now print out the tx_bd's themselves. */
6013 for (i = 0; i < count; i++) {
6014 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6015 bnx_dump_txbd(sc, tx_prod, txbd);
6016 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6017 }
6018
6019 aprint_debug_dev(sc->bnx_dev,
6020 "-----------------------------"
6021 "--------------"
6022 "-----------------------------\n");
6023 }
6024
6025 /*
6026 * This routine prints the RX chain.
6027 */
6028 void
6029 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6030 {
6031 struct rx_bd *rxbd;
6032 int i;
6033
6034 /* First some info about the tx_bd chain structure. */
6035 aprint_debug_dev(sc->bnx_dev,
6036 "----------------------------"
6037 " rx_bd chain "
6038 "----------------------------\n");
6039
6040 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6041
6042 BNX_PRINTF(sc,
6043 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6044 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6045
6046 BNX_PRINTF(sc,
6047 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6048 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6049
6050 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6051
6052 aprint_error_dev(sc->bnx_dev,
6053 "----------------------------"
6054 " rx_bd data "
6055 "----------------------------\n");
6056
6057 /* Now print out the rx_bd's themselves. */
6058 for (i = 0; i < count; i++) {
6059 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6060 bnx_dump_rxbd(sc, rx_prod, rxbd);
6061 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6062 }
6063
6064 aprint_debug_dev(sc->bnx_dev,
6065 "----------------------------"
6066 "--------------"
6067 "----------------------------\n");
6068 }
6069
6070 /*
6071 * This routine prints the status block.
6072 */
6073 void
6074 bnx_dump_status_block(struct bnx_softc *sc)
6075 {
6076 struct status_block *sblk;
6077 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6078 BUS_DMASYNC_POSTREAD);
6079
6080 sblk = sc->status_block;
6081
6082 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6083 "Status Block -----------------------------\n");
6084
6085 BNX_PRINTF(sc,
6086 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6087 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6088 sblk->status_idx);
6089
6090 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6091 sblk->status_rx_quick_consumer_index0,
6092 sblk->status_tx_quick_consumer_index0);
6093
6094 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6095
6096 /* Theses indices are not used for normal L2 drivers. */
6097 if (sblk->status_rx_quick_consumer_index1 ||
6098 sblk->status_tx_quick_consumer_index1)
6099 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6100 sblk->status_rx_quick_consumer_index1,
6101 sblk->status_tx_quick_consumer_index1);
6102
6103 if (sblk->status_rx_quick_consumer_index2 ||
6104 sblk->status_tx_quick_consumer_index2)
6105 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6106 sblk->status_rx_quick_consumer_index2,
6107 sblk->status_tx_quick_consumer_index2);
6108
6109 if (sblk->status_rx_quick_consumer_index3 ||
6110 sblk->status_tx_quick_consumer_index3)
6111 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6112 sblk->status_rx_quick_consumer_index3,
6113 sblk->status_tx_quick_consumer_index3);
6114
6115 if (sblk->status_rx_quick_consumer_index4 ||
6116 sblk->status_rx_quick_consumer_index5)
6117 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6118 sblk->status_rx_quick_consumer_index4,
6119 sblk->status_rx_quick_consumer_index5);
6120
6121 if (sblk->status_rx_quick_consumer_index6 ||
6122 sblk->status_rx_quick_consumer_index7)
6123 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6124 sblk->status_rx_quick_consumer_index6,
6125 sblk->status_rx_quick_consumer_index7);
6126
6127 if (sblk->status_rx_quick_consumer_index8 ||
6128 sblk->status_rx_quick_consumer_index9)
6129 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6130 sblk->status_rx_quick_consumer_index8,
6131 sblk->status_rx_quick_consumer_index9);
6132
6133 if (sblk->status_rx_quick_consumer_index10 ||
6134 sblk->status_rx_quick_consumer_index11)
6135 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6136 sblk->status_rx_quick_consumer_index10,
6137 sblk->status_rx_quick_consumer_index11);
6138
6139 if (sblk->status_rx_quick_consumer_index12 ||
6140 sblk->status_rx_quick_consumer_index13)
6141 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6142 sblk->status_rx_quick_consumer_index12,
6143 sblk->status_rx_quick_consumer_index13);
6144
6145 if (sblk->status_rx_quick_consumer_index14 ||
6146 sblk->status_rx_quick_consumer_index15)
6147 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6148 sblk->status_rx_quick_consumer_index14,
6149 sblk->status_rx_quick_consumer_index15);
6150
6151 if (sblk->status_completion_producer_index ||
6152 sblk->status_cmd_consumer_index)
6153 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6154 sblk->status_completion_producer_index,
6155 sblk->status_cmd_consumer_index);
6156
6157 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6158 "-----------------------------\n");
6159 }
6160
6161 /*
6162 * This routine prints the statistics block.
6163 */
6164 void
6165 bnx_dump_stats_block(struct bnx_softc *sc)
6166 {
6167 struct statistics_block *sblk;
6168 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6169 BUS_DMASYNC_POSTREAD);
6170
6171 sblk = sc->stats_block;
6172
6173 aprint_debug_dev(sc->bnx_dev, ""
6174 "-----------------------------"
6175 " Stats Block "
6176 "-----------------------------\n");
6177
6178 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6179 "IfHcInBadOctets = 0x%08X:%08X\n",
6180 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6181 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6182
6183 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6184 "IfHcOutBadOctets = 0x%08X:%08X\n",
6185 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6186 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6187
6188 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6189 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6190 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6191 sblk->stat_IfHCInMulticastPkts_hi,
6192 sblk->stat_IfHCInMulticastPkts_lo);
6193
6194 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6195 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6196 sblk->stat_IfHCInBroadcastPkts_hi,
6197 sblk->stat_IfHCInBroadcastPkts_lo,
6198 sblk->stat_IfHCOutUcastPkts_hi,
6199 sblk->stat_IfHCOutUcastPkts_lo);
6200
6201 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6202 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6203 sblk->stat_IfHCOutMulticastPkts_hi,
6204 sblk->stat_IfHCOutMulticastPkts_lo,
6205 sblk->stat_IfHCOutBroadcastPkts_hi,
6206 sblk->stat_IfHCOutBroadcastPkts_lo);
6207
6208 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6209 BNX_PRINTF(sc, "0x%08X : "
6210 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6211 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6212
6213 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6214 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6215 sblk->stat_Dot3StatsCarrierSenseErrors);
6216
6217 if (sblk->stat_Dot3StatsFCSErrors)
6218 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6219 sblk->stat_Dot3StatsFCSErrors);
6220
6221 if (sblk->stat_Dot3StatsAlignmentErrors)
6222 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6223 sblk->stat_Dot3StatsAlignmentErrors);
6224
6225 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6226 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6227 sblk->stat_Dot3StatsSingleCollisionFrames);
6228
6229 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6230 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6231 sblk->stat_Dot3StatsMultipleCollisionFrames);
6232
6233 if (sblk->stat_Dot3StatsDeferredTransmissions)
6234 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6235 sblk->stat_Dot3StatsDeferredTransmissions);
6236
6237 if (sblk->stat_Dot3StatsExcessiveCollisions)
6238 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6239 sblk->stat_Dot3StatsExcessiveCollisions);
6240
6241 if (sblk->stat_Dot3StatsLateCollisions)
6242 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6243 sblk->stat_Dot3StatsLateCollisions);
6244
6245 if (sblk->stat_EtherStatsCollisions)
6246 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6247 sblk->stat_EtherStatsCollisions);
6248
6249 if (sblk->stat_EtherStatsFragments)
6250 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6251 sblk->stat_EtherStatsFragments);
6252
6253 if (sblk->stat_EtherStatsJabbers)
6254 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6255 sblk->stat_EtherStatsJabbers);
6256
6257 if (sblk->stat_EtherStatsUndersizePkts)
6258 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6259 sblk->stat_EtherStatsUndersizePkts);
6260
6261 if (sblk->stat_EtherStatsOverrsizePkts)
6262 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6263 sblk->stat_EtherStatsOverrsizePkts);
6264
6265 if (sblk->stat_EtherStatsPktsRx64Octets)
6266 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6267 sblk->stat_EtherStatsPktsRx64Octets);
6268
6269 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6270 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6271 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6272
6273 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6274 BNX_PRINTF(sc, "0x%08X : "
6275 "EtherStatsPktsRx128Octetsto255Octets\n",
6276 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6277
6278 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6279 BNX_PRINTF(sc, "0x%08X : "
6280 "EtherStatsPktsRx256Octetsto511Octets\n",
6281 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6282
6283 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6284 BNX_PRINTF(sc, "0x%08X : "
6285 "EtherStatsPktsRx512Octetsto1023Octets\n",
6286 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6287
6288 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6289 BNX_PRINTF(sc, "0x%08X : "
6290 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6291 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6292
6293 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6294 BNX_PRINTF(sc, "0x%08X : "
6295 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6296 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6297
6298 if (sblk->stat_EtherStatsPktsTx64Octets)
6299 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6300 sblk->stat_EtherStatsPktsTx64Octets);
6301
6302 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6303 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6304 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6305
6306 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6307 BNX_PRINTF(sc, "0x%08X : "
6308 "EtherStatsPktsTx128Octetsto255Octets\n",
6309 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6310
6311 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6312 BNX_PRINTF(sc, "0x%08X : "
6313 "EtherStatsPktsTx256Octetsto511Octets\n",
6314 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6315
6316 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6317 BNX_PRINTF(sc, "0x%08X : "
6318 "EtherStatsPktsTx512Octetsto1023Octets\n",
6319 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6320
6321 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6322 BNX_PRINTF(sc, "0x%08X : "
6323 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6324 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6325
6326 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6327 BNX_PRINTF(sc, "0x%08X : "
6328 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6329 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6330
6331 if (sblk->stat_XonPauseFramesReceived)
6332 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6333 sblk->stat_XonPauseFramesReceived);
6334
6335 if (sblk->stat_XoffPauseFramesReceived)
6336 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6337 sblk->stat_XoffPauseFramesReceived);
6338
6339 if (sblk->stat_OutXonSent)
6340 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6341 sblk->stat_OutXonSent);
6342
6343 if (sblk->stat_OutXoffSent)
6344 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6345 sblk->stat_OutXoffSent);
6346
6347 if (sblk->stat_FlowControlDone)
6348 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6349 sblk->stat_FlowControlDone);
6350
6351 if (sblk->stat_MacControlFramesReceived)
6352 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6353 sblk->stat_MacControlFramesReceived);
6354
6355 if (sblk->stat_XoffStateEntered)
6356 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6357 sblk->stat_XoffStateEntered);
6358
6359 if (sblk->stat_IfInFramesL2FilterDiscards)
6360 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6361 sblk->stat_IfInFramesL2FilterDiscards);
6362
6363 if (sblk->stat_IfInRuleCheckerDiscards)
6364 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6365 sblk->stat_IfInRuleCheckerDiscards);
6366
6367 if (sblk->stat_IfInFTQDiscards)
6368 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6369 sblk->stat_IfInFTQDiscards);
6370
6371 if (sblk->stat_IfInMBUFDiscards)
6372 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6373 sblk->stat_IfInMBUFDiscards);
6374
6375 if (sblk->stat_IfInRuleCheckerP4Hit)
6376 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6377 sblk->stat_IfInRuleCheckerP4Hit);
6378
6379 if (sblk->stat_CatchupInRuleCheckerDiscards)
6380 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6381 sblk->stat_CatchupInRuleCheckerDiscards);
6382
6383 if (sblk->stat_CatchupInFTQDiscards)
6384 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6385 sblk->stat_CatchupInFTQDiscards);
6386
6387 if (sblk->stat_CatchupInMBUFDiscards)
6388 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6389 sblk->stat_CatchupInMBUFDiscards);
6390
6391 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6392 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6393 sblk->stat_CatchupInRuleCheckerP4Hit);
6394
6395 aprint_debug_dev(sc->bnx_dev,
6396 "-----------------------------"
6397 "--------------"
6398 "-----------------------------\n");
6399 }
6400
6401 void
6402 bnx_dump_driver_state(struct bnx_softc *sc)
6403 {
6404 aprint_debug_dev(sc->bnx_dev,
6405 "-----------------------------"
6406 " Driver State "
6407 "-----------------------------\n");
6408
6409 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6410 "address\n", sc);
6411
6412 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6413 sc->status_block);
6414
6415 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6416 "address\n", sc->stats_block);
6417
6418 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6419 "address\n", sc->tx_bd_chain);
6420
6421 #if 0
6422 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6423 sc->rx_bd_chain);
6424
6425 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6426 sc->tx_mbuf_ptr);
6427 #endif
6428
6429 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6430 sc->rx_mbuf_ptr);
6431
6432 BNX_PRINTF(sc,
6433 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6434 sc->interrupts_generated);
6435
6436 BNX_PRINTF(sc,
6437 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6438 sc->rx_interrupts);
6439
6440 BNX_PRINTF(sc,
6441 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6442 sc->tx_interrupts);
6443
6444 BNX_PRINTF(sc,
6445 " 0x%08X - (sc->last_status_idx) status block index\n",
6446 sc->last_status_idx);
6447
6448 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6449 sc->tx_prod);
6450
6451 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6452 sc->tx_cons);
6453
6454 BNX_PRINTF(sc,
6455 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6456 sc->tx_prod_bseq);
6457 BNX_PRINTF(sc,
6458 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6459 sc->tx_mbuf_alloc);
6460
6461 BNX_PRINTF(sc,
6462 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6463 sc->used_tx_bd);
6464
6465 BNX_PRINTF(sc,
6466 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6467 sc->tx_hi_watermark, sc->max_tx_bd);
6468
6469
6470 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6471 sc->rx_prod);
6472
6473 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6474 sc->rx_cons);
6475
6476 BNX_PRINTF(sc,
6477 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6478 sc->rx_prod_bseq);
6479
6480 BNX_PRINTF(sc,
6481 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6482 sc->rx_mbuf_alloc);
6483
6484 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6485 sc->free_rx_bd);
6486
6487 BNX_PRINTF(sc,
6488 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6489 sc->rx_low_watermark, sc->max_rx_bd);
6490
6491 BNX_PRINTF(sc,
6492 " 0x%08X - (sc->mbuf_alloc_failed) "
6493 "mbuf alloc failures\n",
6494 sc->mbuf_alloc_failed);
6495
6496 BNX_PRINTF(sc,
6497 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6498 "simulated mbuf alloc failures\n",
6499 sc->mbuf_sim_alloc_failed);
6500
6501 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6502 "-----------------------------\n");
6503 }
6504
6505 void
6506 bnx_dump_hw_state(struct bnx_softc *sc)
6507 {
6508 uint32_t val1;
6509 int i;
6510
6511 aprint_debug_dev(sc->bnx_dev,
6512 "----------------------------"
6513 " Hardware State "
6514 "----------------------------\n");
6515
6516 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6517
6518 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6519 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6520 val1, BNX_MISC_ENABLE_STATUS_BITS);
6521
6522 val1 = REG_RD(sc, BNX_DMA_STATUS);
6523 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6524
6525 val1 = REG_RD(sc, BNX_CTX_STATUS);
6526 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6527
6528 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6529 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6530 BNX_EMAC_STATUS);
6531
6532 val1 = REG_RD(sc, BNX_RPM_STATUS);
6533 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6534
6535 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6536 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6537 BNX_TBDR_STATUS);
6538
6539 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6540 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6541 BNX_TDMA_STATUS);
6542
6543 val1 = REG_RD(sc, BNX_HC_STATUS);
6544 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6545
6546 aprint_debug_dev(sc->bnx_dev,
6547 "----------------------------"
6548 "----------------"
6549 "----------------------------\n");
6550
6551 aprint_debug_dev(sc->bnx_dev,
6552 "----------------------------"
6553 " Register Dump "
6554 "----------------------------\n");
6555
6556 for (i = 0x400; i < 0x8000; i += 0x10)
6557 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6558 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6559 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6560
6561 aprint_debug_dev(sc->bnx_dev,
6562 "----------------------------"
6563 "----------------"
6564 "----------------------------\n");
6565 }
6566
6567 void
6568 bnx_breakpoint(struct bnx_softc *sc)
6569 {
6570 /* Unreachable code to shut the compiler up about unused functions. */
6571 if (0) {
6572 bnx_dump_txbd(sc, 0, NULL);
6573 bnx_dump_rxbd(sc, 0, NULL);
6574 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6575 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6576 bnx_dump_l2fhdr(sc, 0, NULL);
6577 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6578 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6579 bnx_dump_status_block(sc);
6580 bnx_dump_stats_block(sc);
6581 bnx_dump_driver_state(sc);
6582 bnx_dump_hw_state(sc);
6583 }
6584
6585 bnx_dump_driver_state(sc);
6586 /* Print the important status block fields. */
6587 bnx_dump_status_block(sc);
6588
6589 #if 0
6590 /* Call the debugger. */
6591 breakpoint();
6592 #endif
6593
6594 return;
6595 }
6596 #endif
6597