if_bnx.c revision 1.78 1 /* $NetBSD: if_bnx.c,v 1.78 2019/04/05 07:15:26 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.78 2019/04/05 07:15:26 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 pci_intr_handle_t ih;
581 const char *intrstr = NULL;
582 uint32_t command;
583 struct ifnet *ifp;
584 uint32_t val;
585 int mii_flags = MIIF_FORCEANEG;
586 pcireg_t memtype;
587 char intrbuf[PCI_INTRSTR_LEN];
588 int i, j;
589
590 if (bnx_tx_pool == NULL) {
591 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
592 if (bnx_tx_pool != NULL) {
593 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
594 0, 0, 0, "bnxpkts", NULL, IPL_NET);
595 } else {
596 aprint_error(": can't alloc bnx_tx_pool\n");
597 return;
598 }
599 }
600
601 bp = bnx_lookup(pa);
602 if (bp == NULL)
603 panic("unknown device");
604
605 sc->bnx_dev = self;
606
607 aprint_naive("\n");
608 aprint_normal(": %s\n", bp->bp_name);
609
610 sc->bnx_pa = *pa;
611
612 /*
613 * Map control/status registers.
614 */
615 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
616 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
617 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
618 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
619
620 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
621 aprint_error_dev(sc->bnx_dev,
622 "failed to enable memory mapping!\n");
623 return;
624 }
625
626 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
627 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
628 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
629 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
630 return;
631 }
632
633 if (pci_intr_map(pa, &ih)) {
634 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
635 goto bnx_attach_fail;
636 }
637 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
638
639 /*
640 * Configure byte swap and enable indirect register access.
641 * Rely on CPU to do target byte swapping on big endian systems.
642 * Access to registers outside of PCI configurtion space are not
643 * valid until this is done.
644 */
645 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
646 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
647 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
648
649 /* Save ASIC revsion info. */
650 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
651
652 /*
653 * Find the base address for shared memory access.
654 * Newer versions of bootcode use a signature and offset
655 * while older versions use a fixed address.
656 */
657 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
658 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
659 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
660 (sc->bnx_pa.pa_function << 2));
661 else
662 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
663
664 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
665
666 /* Set initial device and PHY flags */
667 sc->bnx_flags = 0;
668 sc->bnx_phy_flags = 0;
669
670 /* Fetch the bootcode revision. */
671 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
672 for (i = 0, j = 0; i < 3; i++) {
673 uint8_t num;
674 int k, skip0;
675
676 num = (uint8_t)(val >> (24 - (i * 8)));
677 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
678 if (num >= k || !skip0 || k == 1) {
679 sc->bnx_bc_ver[j++] = (num / k) + '0';
680 skip0 = 0;
681 }
682 }
683 if (i != 2)
684 sc->bnx_bc_ver[j++] = '.';
685 }
686
687 /* Check if any management firmware is enabled. */
688 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
689 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
690 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
691 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
692
693 /* Allow time for firmware to enter the running state. */
694 for (i = 0; i < 30; i++) {
695 val = REG_RD_IND(sc, sc->bnx_shmem_base +
696 BNX_BC_STATE_CONDITION);
697 if (val & BNX_CONDITION_MFW_RUN_MASK)
698 break;
699 DELAY(10000);
700 }
701
702 /* Check if management firmware is running. */
703 val = REG_RD_IND(sc, sc->bnx_shmem_base +
704 BNX_BC_STATE_CONDITION);
705 val &= BNX_CONDITION_MFW_RUN_MASK;
706 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
707 (val != BNX_CONDITION_MFW_RUN_NONE)) {
708 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
709 BNX_MFW_VER_PTR);
710
711 /* Read the management firmware version string. */
712 for (j = 0; j < 3; j++) {
713 val = bnx_reg_rd_ind(sc, addr + j * 4);
714 val = bswap32(val);
715 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
716 i += 4;
717 }
718 } else {
719 /* May cause firmware synchronization timeouts. */
720 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
721 "but not running!\n", __FILE__, __LINE__);
722 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
723
724 /* ToDo: Any action the driver should take? */
725 }
726 }
727
728 bnx_probe_pci_caps(sc);
729
730 /* Get PCI bus information (speed and type). */
731 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
732 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
733 uint32_t clkreg;
734
735 sc->bnx_flags |= BNX_PCIX_FLAG;
736
737 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
738
739 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
740 switch (clkreg) {
741 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
742 sc->bus_speed_mhz = 133;
743 break;
744
745 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
746 sc->bus_speed_mhz = 100;
747 break;
748
749 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
750 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
751 sc->bus_speed_mhz = 66;
752 break;
753
754 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
755 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
756 sc->bus_speed_mhz = 50;
757 break;
758
759 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
760 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
761 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
762 sc->bus_speed_mhz = 33;
763 break;
764 }
765 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
766 sc->bus_speed_mhz = 66;
767 else
768 sc->bus_speed_mhz = 33;
769
770 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
771 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
772
773 /* Reset the controller. */
774 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
775 goto bnx_attach_fail;
776
777 /* Initialize the controller. */
778 if (bnx_chipinit(sc)) {
779 aprint_error_dev(sc->bnx_dev,
780 "Controller initialization failed!\n");
781 goto bnx_attach_fail;
782 }
783
784 /* Perform NVRAM test. */
785 if (bnx_nvram_test(sc)) {
786 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
787 goto bnx_attach_fail;
788 }
789
790 /* Fetch the permanent Ethernet MAC address. */
791 bnx_get_mac_addr(sc);
792 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
793 ether_sprintf(sc->eaddr));
794
795 /*
796 * Trip points control how many BDs
797 * should be ready before generating an
798 * interrupt while ticks control how long
799 * a BD can sit in the chain before
800 * generating an interrupt. Set the default
801 * values for the RX and TX rings.
802 */
803
804 #ifdef BNX_DEBUG
805 /* Force more frequent interrupts. */
806 sc->bnx_tx_quick_cons_trip_int = 1;
807 sc->bnx_tx_quick_cons_trip = 1;
808 sc->bnx_tx_ticks_int = 0;
809 sc->bnx_tx_ticks = 0;
810
811 sc->bnx_rx_quick_cons_trip_int = 1;
812 sc->bnx_rx_quick_cons_trip = 1;
813 sc->bnx_rx_ticks_int = 0;
814 sc->bnx_rx_ticks = 0;
815 #else
816 sc->bnx_tx_quick_cons_trip_int = 20;
817 sc->bnx_tx_quick_cons_trip = 20;
818 sc->bnx_tx_ticks_int = 80;
819 sc->bnx_tx_ticks = 80;
820
821 sc->bnx_rx_quick_cons_trip_int = 6;
822 sc->bnx_rx_quick_cons_trip = 6;
823 sc->bnx_rx_ticks_int = 18;
824 sc->bnx_rx_ticks = 18;
825 #endif
826
827 /* Update statistics once every second. */
828 sc->bnx_stats_ticks = 1000000 & 0xffff00;
829
830 /* Find the media type for the adapter. */
831 bnx_get_media(sc);
832
833 /*
834 * Store config data needed by the PHY driver for
835 * backplane applications
836 */
837 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
838 BNX_SHARED_HW_CFG_CONFIG);
839 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
840 BNX_PORT_HW_CFG_CONFIG);
841
842 /* Allocate DMA memory resources. */
843 sc->bnx_dmatag = pa->pa_dmat;
844 if (bnx_dma_alloc(sc)) {
845 aprint_error_dev(sc->bnx_dev,
846 "DMA resource allocation failed!\n");
847 goto bnx_attach_fail;
848 }
849
850 /* Initialize the ifnet interface. */
851 ifp = &sc->bnx_ec.ec_if;
852 ifp->if_softc = sc;
853 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
854 ifp->if_ioctl = bnx_ioctl;
855 ifp->if_stop = bnx_stop;
856 ifp->if_start = bnx_start;
857 ifp->if_init = bnx_init;
858 ifp->if_watchdog = bnx_watchdog;
859 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
860 IFQ_SET_READY(&ifp->if_snd);
861 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
862
863 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
864 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
865
866 ifp->if_capabilities |=
867 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
868 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
869 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
870
871 /* create workqueue to handle packet allocations */
872 if (workqueue_create(&sc->bnx_wq, device_xname(self),
873 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
874 aprint_error_dev(self, "failed to create workqueue\n");
875 goto bnx_attach_fail;
876 }
877
878 sc->bnx_mii.mii_ifp = ifp;
879 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
880 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
881 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
882
883 /* Handle any special PHY initialization for SerDes PHYs. */
884 bnx_init_media(sc);
885
886 sc->bnx_ec.ec_mii = &sc->bnx_mii;
887 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
888 bnx_ifmedia_sts);
889
890 /* set phyflags and chipid before mii_attach() */
891 dict = device_properties(self);
892 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
893 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
894 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
895 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
896
897 /* Print some useful adapter info */
898 bnx_print_adapter_info(sc);
899
900 mii_flags |= MIIF_DOPAUSE;
901 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
902 mii_flags |= MIIF_HAVEFIBER;
903 mii_attach(self, &sc->bnx_mii, 0xffffffff,
904 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
905
906 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
907 aprint_error_dev(self, "no PHY found!\n");
908 ifmedia_add(&sc->bnx_mii.mii_media,
909 IFM_ETHER|IFM_MANUAL, 0, NULL);
910 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
911 } else
912 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
913
914 /* Attach to the Ethernet interface list. */
915 if_attach(ifp);
916 if_deferred_start_init(ifp, NULL);
917 ether_ifattach(ifp,sc->eaddr);
918
919 callout_init(&sc->bnx_timeout, 0);
920
921 /* Hookup IRQ last. */
922 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
923 sc, device_xname(self));
924 if (sc->bnx_intrhand == NULL) {
925 aprint_error_dev(self, "couldn't establish interrupt");
926 if (intrstr != NULL)
927 aprint_error(" at %s", intrstr);
928 aprint_error("\n");
929 goto bnx_attach_fail;
930 }
931 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
932
933 if (pmf_device_register(self, NULL, NULL))
934 pmf_class_network_register(self, ifp);
935 else
936 aprint_error_dev(self, "couldn't establish power handler\n");
937
938 /* Print some important debugging info. */
939 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
940
941 /* Get the firmware running so ASF still works. */
942 bnx_mgmt_init(sc);
943
944 goto bnx_attach_exit;
945
946 bnx_attach_fail:
947 bnx_release_resources(sc);
948
949 bnx_attach_exit:
950 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
951 }
952
953 /****************************************************************************/
954 /* Device detach function. */
955 /* */
956 /* Stops the controller, resets the controller, and releases resources. */
957 /* */
958 /* Returns: */
959 /* 0 on success, positive value on failure. */
960 /****************************************************************************/
961 int
962 bnx_detach(device_t dev, int flags)
963 {
964 int s;
965 struct bnx_softc *sc;
966 struct ifnet *ifp;
967
968 sc = device_private(dev);
969 ifp = &sc->bnx_ec.ec_if;
970
971 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
972
973 /* Stop and reset the controller. */
974 s = splnet();
975 bnx_stop(ifp, 1);
976 splx(s);
977
978 pmf_device_deregister(dev);
979 callout_destroy(&sc->bnx_timeout);
980 ether_ifdetach(ifp);
981 workqueue_destroy(sc->bnx_wq);
982
983 /* Delete all remaining media. */
984 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
985
986 if_detach(ifp);
987 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
988
989 /* Release all remaining resources. */
990 bnx_release_resources(sc);
991
992 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
993
994 return 0;
995 }
996
997 /****************************************************************************/
998 /* Indirect register read. */
999 /* */
1000 /* Reads NetXtreme II registers using an index/data register pair in PCI */
1001 /* configuration space. Using this mechanism avoids issues with posted */
1002 /* reads but is much slower than memory-mapped I/O. */
1003 /* */
1004 /* Returns: */
1005 /* The value of the register. */
1006 /****************************************************************************/
1007 uint32_t
1008 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1009 {
1010 struct pci_attach_args *pa = &(sc->bnx_pa);
1011
1012 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1013 offset);
1014 #ifdef BNX_DEBUG
1015 {
1016 uint32_t val;
1017 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1018 BNX_PCICFG_REG_WINDOW);
1019 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1020 "val = 0x%08X\n", __func__, offset, val);
1021 return val;
1022 }
1023 #else
1024 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1025 #endif
1026 }
1027
1028 /****************************************************************************/
1029 /* Indirect register write. */
1030 /* */
1031 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1032 /* configuration space. Using this mechanism avoids issues with posted */
1033 /* writes but is muchh slower than memory-mapped I/O. */
1034 /* */
1035 /* Returns: */
1036 /* Nothing. */
1037 /****************************************************************************/
1038 void
1039 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1040 {
1041 struct pci_attach_args *pa = &(sc->bnx_pa);
1042
1043 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1044 __func__, offset, val);
1045
1046 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1047 offset);
1048 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1049 }
1050
1051 /****************************************************************************/
1052 /* Context memory write. */
1053 /* */
1054 /* The NetXtreme II controller uses context memory to track connection */
1055 /* information for L2 and higher network protocols. */
1056 /* */
1057 /* Returns: */
1058 /* Nothing. */
1059 /****************************************************************************/
1060 void
1061 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1062 uint32_t ctx_val)
1063 {
1064 uint32_t idx, offset = ctx_offset + cid_addr;
1065 uint32_t val, retry_cnt = 5;
1066
1067 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1068 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1069 REG_WR(sc, BNX_CTX_CTX_CTRL,
1070 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1071
1072 for (idx = 0; idx < retry_cnt; idx++) {
1073 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1074 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1075 break;
1076 DELAY(5);
1077 }
1078
1079 #if 0
1080 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1081 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1082 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1083 __FILE__, __LINE__, cid_addr, ctx_offset);
1084 #endif
1085
1086 } else {
1087 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1088 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1089 }
1090 }
1091
1092 /****************************************************************************/
1093 /* PHY register read. */
1094 /* */
1095 /* Implements register reads on the MII bus. */
1096 /* */
1097 /* Returns: */
1098 /* The value of the register. */
1099 /****************************************************************************/
1100 int
1101 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1102 {
1103 struct bnx_softc *sc = device_private(dev);
1104 uint32_t data;
1105 int i, rv = 0;
1106
1107 /*
1108 * The BCM5709S PHY is an IEEE Clause 45 PHY
1109 * with special mappings to work with IEEE
1110 * Clause 22 register accesses.
1111 */
1112 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1113 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1114 reg += 0x10;
1115 }
1116
1117 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1118 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1119 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1120
1121 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1122 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1123
1124 DELAY(40);
1125 }
1126
1127 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1128 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1129 BNX_EMAC_MDIO_COMM_START_BUSY;
1130 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1131
1132 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1133 DELAY(10);
1134
1135 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1136 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1137 DELAY(5);
1138
1139 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1140 data &= BNX_EMAC_MDIO_COMM_DATA;
1141
1142 break;
1143 }
1144 }
1145
1146 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1147 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1148 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1149 rv = ETIMEDOUT;
1150 } else {
1151 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1152 *val = data & 0xffff;
1153
1154 DBPRINT(sc, BNX_EXCESSIVE,
1155 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1156 phy, (uint16_t) reg & 0xffff, *val);
1157 }
1158
1159 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1160 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1161 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1162
1163 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1164 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1165
1166 DELAY(40);
1167 }
1168
1169 return rv;
1170 }
1171
1172 /****************************************************************************/
1173 /* PHY register write. */
1174 /* */
1175 /* Implements register writes on the MII bus. */
1176 /* */
1177 /* Returns: */
1178 /* The value of the register. */
1179 /****************************************************************************/
1180 int
1181 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1182 {
1183 struct bnx_softc *sc = device_private(dev);
1184 uint32_t val1;
1185 int i, rv = 0;
1186
1187 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1188 "val = 0x%04hX\n", __func__,
1189 phy, (uint16_t) reg & 0xffff, val);
1190
1191 /*
1192 * The BCM5709S PHY is an IEEE Clause 45 PHY
1193 * with special mappings to work with IEEE
1194 * Clause 22 register accesses.
1195 */
1196 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1197 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1198 reg += 0x10;
1199 }
1200
1201 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1202 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1203 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1204
1205 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1206 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1207
1208 DELAY(40);
1209 }
1210
1211 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1212 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1213 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1214 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1215
1216 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1217 DELAY(10);
1218
1219 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1220 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1221 DELAY(5);
1222 break;
1223 }
1224 }
1225
1226 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1227 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1228 __LINE__);
1229 rv = ETIMEDOUT;
1230 }
1231
1232 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1233 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1234 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1235
1236 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1237 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1238
1239 DELAY(40);
1240 }
1241
1242 return rv;
1243 }
1244
1245 /****************************************************************************/
1246 /* MII bus status change. */
1247 /* */
1248 /* Called by the MII bus driver when the PHY establishes link to set the */
1249 /* MAC interface registers. */
1250 /* */
1251 /* Returns: */
1252 /* Nothing. */
1253 /****************************************************************************/
1254 void
1255 bnx_miibus_statchg(struct ifnet *ifp)
1256 {
1257 struct bnx_softc *sc = ifp->if_softc;
1258 struct mii_data *mii = &sc->bnx_mii;
1259 uint32_t rx_mode = sc->rx_mode;
1260 int val;
1261
1262 val = REG_RD(sc, BNX_EMAC_MODE);
1263 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1264 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1265 BNX_EMAC_MODE_25G);
1266
1267 /*
1268 * Get flow control negotiation result.
1269 */
1270 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1271 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1272 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1273 mii->mii_media_active &= ~IFM_ETH_FMASK;
1274 }
1275
1276 /* Set MII or GMII interface based on the speed
1277 * negotiated by the PHY.
1278 */
1279 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1280 case IFM_10_T:
1281 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1282 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1283 val |= BNX_EMAC_MODE_PORT_MII_10;
1284 break;
1285 }
1286 /* FALLTHROUGH */
1287 case IFM_100_TX:
1288 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1289 val |= BNX_EMAC_MODE_PORT_MII;
1290 break;
1291 case IFM_2500_SX:
1292 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1293 val |= BNX_EMAC_MODE_25G;
1294 /* FALLTHROUGH */
1295 case IFM_1000_T:
1296 case IFM_1000_SX:
1297 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1298 val |= BNX_EMAC_MODE_PORT_GMII;
1299 break;
1300 default:
1301 val |= BNX_EMAC_MODE_PORT_GMII;
1302 break;
1303 }
1304
1305 /* Set half or full duplex based on the duplicity
1306 * negotiated by the PHY.
1307 */
1308 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1309 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1310 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1311 } else
1312 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1313
1314 REG_WR(sc, BNX_EMAC_MODE, val);
1315
1316 /*
1317 * 802.3x flow control
1318 */
1319 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1320 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1321 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1322 } else {
1323 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1324 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1325 }
1326
1327 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1328 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1329 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1330 } else {
1331 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1332 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1333 }
1334
1335 /* Only make changes if the recive mode has actually changed. */
1336 if (rx_mode != sc->rx_mode) {
1337 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1338 rx_mode);
1339
1340 sc->rx_mode = rx_mode;
1341 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1342
1343 bnx_init_rx_context(sc);
1344 }
1345 }
1346
1347 /****************************************************************************/
1348 /* Acquire NVRAM lock. */
1349 /* */
1350 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1351 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1352 /* for use by the driver. */
1353 /* */
1354 /* Returns: */
1355 /* 0 on success, positive value on failure. */
1356 /****************************************************************************/
1357 int
1358 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1359 {
1360 uint32_t val;
1361 int j;
1362
1363 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1364
1365 /* Request access to the flash interface. */
1366 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1367 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1368 val = REG_RD(sc, BNX_NVM_SW_ARB);
1369 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1370 break;
1371
1372 DELAY(5);
1373 }
1374
1375 if (j >= NVRAM_TIMEOUT_COUNT) {
1376 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1377 return EBUSY;
1378 }
1379
1380 return 0;
1381 }
1382
1383 /****************************************************************************/
1384 /* Release NVRAM lock. */
1385 /* */
1386 /* When the caller is finished accessing NVRAM the lock must be released. */
1387 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1388 /* for use by the driver. */
1389 /* */
1390 /* Returns: */
1391 /* 0 on success, positive value on failure. */
1392 /****************************************************************************/
1393 int
1394 bnx_release_nvram_lock(struct bnx_softc *sc)
1395 {
1396 int j;
1397 uint32_t val;
1398
1399 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1400
1401 /* Relinquish nvram interface. */
1402 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1403
1404 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1405 val = REG_RD(sc, BNX_NVM_SW_ARB);
1406 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1407 break;
1408
1409 DELAY(5);
1410 }
1411
1412 if (j >= NVRAM_TIMEOUT_COUNT) {
1413 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1414 return EBUSY;
1415 }
1416
1417 return 0;
1418 }
1419
1420 #ifdef BNX_NVRAM_WRITE_SUPPORT
1421 /****************************************************************************/
1422 /* Enable NVRAM write access. */
1423 /* */
1424 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1425 /* */
1426 /* Returns: */
1427 /* 0 on success, positive value on failure. */
1428 /****************************************************************************/
1429 int
1430 bnx_enable_nvram_write(struct bnx_softc *sc)
1431 {
1432 uint32_t val;
1433
1434 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1435
1436 val = REG_RD(sc, BNX_MISC_CFG);
1437 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1438
1439 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1440 int j;
1441
1442 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1443 REG_WR(sc, BNX_NVM_COMMAND,
1444 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1445
1446 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1447 DELAY(5);
1448
1449 val = REG_RD(sc, BNX_NVM_COMMAND);
1450 if (val & BNX_NVM_COMMAND_DONE)
1451 break;
1452 }
1453
1454 if (j >= NVRAM_TIMEOUT_COUNT) {
1455 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1456 return EBUSY;
1457 }
1458 }
1459
1460 return 0;
1461 }
1462
1463 /****************************************************************************/
1464 /* Disable NVRAM write access. */
1465 /* */
1466 /* When the caller is finished writing to NVRAM write access must be */
1467 /* disabled. */
1468 /* */
1469 /* Returns: */
1470 /* Nothing. */
1471 /****************************************************************************/
1472 void
1473 bnx_disable_nvram_write(struct bnx_softc *sc)
1474 {
1475 uint32_t val;
1476
1477 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1478
1479 val = REG_RD(sc, BNX_MISC_CFG);
1480 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1481 }
1482 #endif
1483
1484 /****************************************************************************/
1485 /* Enable NVRAM access. */
1486 /* */
1487 /* Before accessing NVRAM for read or write operations the caller must */
1488 /* enabled NVRAM access. */
1489 /* */
1490 /* Returns: */
1491 /* Nothing. */
1492 /****************************************************************************/
1493 void
1494 bnx_enable_nvram_access(struct bnx_softc *sc)
1495 {
1496 uint32_t val;
1497
1498 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1499
1500 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1501 /* Enable both bits, even on read. */
1502 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1503 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1504 }
1505
1506 /****************************************************************************/
1507 /* Disable NVRAM access. */
1508 /* */
1509 /* When the caller is finished accessing NVRAM access must be disabled. */
1510 /* */
1511 /* Returns: */
1512 /* Nothing. */
1513 /****************************************************************************/
1514 void
1515 bnx_disable_nvram_access(struct bnx_softc *sc)
1516 {
1517 uint32_t val;
1518
1519 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1520
1521 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1522
1523 /* Disable both bits, even after read. */
1524 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1525 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1526 }
1527
1528 #ifdef BNX_NVRAM_WRITE_SUPPORT
1529 /****************************************************************************/
1530 /* Erase NVRAM page before writing. */
1531 /* */
1532 /* Non-buffered flash parts require that a page be erased before it is */
1533 /* written. */
1534 /* */
1535 /* Returns: */
1536 /* 0 on success, positive value on failure. */
1537 /****************************************************************************/
1538 int
1539 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1540 {
1541 uint32_t cmd;
1542 int j;
1543
1544 /* Buffered flash doesn't require an erase. */
1545 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1546 return 0;
1547
1548 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1549
1550 /* Build an erase command. */
1551 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1552 BNX_NVM_COMMAND_DOIT;
1553
1554 /*
1555 * Clear the DONE bit separately, set the NVRAM address to erase,
1556 * and issue the erase command.
1557 */
1558 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1559 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1560 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1561
1562 /* Wait for completion. */
1563 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1564 uint32_t val;
1565
1566 DELAY(5);
1567
1568 val = REG_RD(sc, BNX_NVM_COMMAND);
1569 if (val & BNX_NVM_COMMAND_DONE)
1570 break;
1571 }
1572
1573 if (j >= NVRAM_TIMEOUT_COUNT) {
1574 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1575 return EBUSY;
1576 }
1577
1578 return 0;
1579 }
1580 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1581
1582 /****************************************************************************/
1583 /* Read a dword (32 bits) from NVRAM. */
1584 /* */
1585 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1586 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1587 /* */
1588 /* Returns: */
1589 /* 0 on success and the 32 bit value read, positive value on failure. */
1590 /****************************************************************************/
1591 int
1592 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1593 uint8_t *ret_val, uint32_t cmd_flags)
1594 {
1595 uint32_t cmd;
1596 int i, rc = 0;
1597
1598 /* Build the command word. */
1599 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1600
1601 /* Calculate the offset for buffered flash if translation is used. */
1602 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1603 offset = ((offset / sc->bnx_flash_info->page_size) <<
1604 sc->bnx_flash_info->page_bits) +
1605 (offset % sc->bnx_flash_info->page_size);
1606 }
1607
1608 /*
1609 * Clear the DONE bit separately, set the address to read,
1610 * and issue the read.
1611 */
1612 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1613 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1614 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1615
1616 /* Wait for completion. */
1617 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1618 uint32_t val;
1619
1620 DELAY(5);
1621
1622 val = REG_RD(sc, BNX_NVM_COMMAND);
1623 if (val & BNX_NVM_COMMAND_DONE) {
1624 val = REG_RD(sc, BNX_NVM_READ);
1625
1626 val = be32toh(val);
1627 memcpy(ret_val, &val, 4);
1628 break;
1629 }
1630 }
1631
1632 /* Check for errors. */
1633 if (i >= NVRAM_TIMEOUT_COUNT) {
1634 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1635 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1636 rc = EBUSY;
1637 }
1638
1639 return rc;
1640 }
1641
1642 #ifdef BNX_NVRAM_WRITE_SUPPORT
1643 /****************************************************************************/
1644 /* Write a dword (32 bits) to NVRAM. */
1645 /* */
1646 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1647 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1648 /* enabled NVRAM write access. */
1649 /* */
1650 /* Returns: */
1651 /* 0 on success, positive value on failure. */
1652 /****************************************************************************/
1653 int
1654 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1655 uint32_t cmd_flags)
1656 {
1657 uint32_t cmd, val32;
1658 int j;
1659
1660 /* Build the command word. */
1661 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1662
1663 /* Calculate the offset for buffered flash if translation is used. */
1664 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1665 offset = ((offset / sc->bnx_flash_info->page_size) <<
1666 sc->bnx_flash_info->page_bits) +
1667 (offset % sc->bnx_flash_info->page_size);
1668 }
1669
1670 /*
1671 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1672 * set the NVRAM address to write, and issue the write command
1673 */
1674 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1675 memcpy(&val32, val, 4);
1676 val32 = htobe32(val32);
1677 REG_WR(sc, BNX_NVM_WRITE, val32);
1678 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1679 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1680
1681 /* Wait for completion. */
1682 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1683 DELAY(5);
1684
1685 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1686 break;
1687 }
1688 if (j >= NVRAM_TIMEOUT_COUNT) {
1689 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1690 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1691 return EBUSY;
1692 }
1693
1694 return 0;
1695 }
1696 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1697
1698 /****************************************************************************/
1699 /* Initialize NVRAM access. */
1700 /* */
1701 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1702 /* access that device. */
1703 /* */
1704 /* Returns: */
1705 /* 0 on success, positive value on failure. */
1706 /****************************************************************************/
1707 int
1708 bnx_init_nvram(struct bnx_softc *sc)
1709 {
1710 uint32_t val;
1711 int j, entry_count, rc = 0;
1712 struct flash_spec *flash;
1713
1714 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1715
1716 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1717 sc->bnx_flash_info = &flash_5709;
1718 goto bnx_init_nvram_get_flash_size;
1719 }
1720
1721 /* Determine the selected interface. */
1722 val = REG_RD(sc, BNX_NVM_CFG1);
1723
1724 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1725
1726 /*
1727 * Flash reconfiguration is required to support additional
1728 * NVRAM devices not directly supported in hardware.
1729 * Check if the flash interface was reconfigured
1730 * by the bootcode.
1731 */
1732
1733 if (val & 0x40000000) {
1734 /* Flash interface reconfigured by bootcode. */
1735
1736 DBPRINT(sc,BNX_INFO_LOAD,
1737 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1738
1739 for (j = 0, flash = &flash_table[0]; j < entry_count;
1740 j++, flash++) {
1741 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1742 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1743 sc->bnx_flash_info = flash;
1744 break;
1745 }
1746 }
1747 } else {
1748 /* Flash interface not yet reconfigured. */
1749 uint32_t mask;
1750
1751 DBPRINT(sc,BNX_INFO_LOAD,
1752 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1753
1754 if (val & (1 << 23))
1755 mask = FLASH_BACKUP_STRAP_MASK;
1756 else
1757 mask = FLASH_STRAP_MASK;
1758
1759 /* Look for the matching NVRAM device configuration data. */
1760 for (j = 0, flash = &flash_table[0]; j < entry_count;
1761 j++, flash++) {
1762 /* Check if the dev matches any of the known devices. */
1763 if ((val & mask) == (flash->strapping & mask)) {
1764 /* Found a device match. */
1765 sc->bnx_flash_info = flash;
1766
1767 /* Request access to the flash interface. */
1768 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1769 return rc;
1770
1771 /* Reconfigure the flash interface. */
1772 bnx_enable_nvram_access(sc);
1773 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1774 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1775 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1776 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1777 bnx_disable_nvram_access(sc);
1778 bnx_release_nvram_lock(sc);
1779
1780 break;
1781 }
1782 }
1783 }
1784
1785 /* Check if a matching device was found. */
1786 if (j == entry_count) {
1787 sc->bnx_flash_info = NULL;
1788 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1789 __FILE__, __LINE__);
1790 rc = ENODEV;
1791 }
1792
1793 bnx_init_nvram_get_flash_size:
1794 /* Write the flash config data to the shared memory interface. */
1795 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1796 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1797 if (val)
1798 sc->bnx_flash_size = val;
1799 else
1800 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1801
1802 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1803 "0x%08X\n", sc->bnx_flash_info->total_size);
1804
1805 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1806
1807 return rc;
1808 }
1809
1810 /****************************************************************************/
1811 /* Read an arbitrary range of data from NVRAM. */
1812 /* */
1813 /* Prepares the NVRAM interface for access and reads the requested data */
1814 /* into the supplied buffer. */
1815 /* */
1816 /* Returns: */
1817 /* 0 on success and the data read, positive value on failure. */
1818 /****************************************************************************/
1819 int
1820 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1821 int buf_size)
1822 {
1823 int rc = 0;
1824 uint32_t cmd_flags, offset32, len32, extra;
1825
1826 if (buf_size == 0)
1827 return 0;
1828
1829 /* Request access to the flash interface. */
1830 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1831 return rc;
1832
1833 /* Enable access to flash interface */
1834 bnx_enable_nvram_access(sc);
1835
1836 len32 = buf_size;
1837 offset32 = offset;
1838 extra = 0;
1839
1840 cmd_flags = 0;
1841
1842 if (offset32 & 3) {
1843 uint8_t buf[4];
1844 uint32_t pre_len;
1845
1846 offset32 &= ~3;
1847 pre_len = 4 - (offset & 3);
1848
1849 if (pre_len >= len32) {
1850 pre_len = len32;
1851 cmd_flags =
1852 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1853 } else
1854 cmd_flags = BNX_NVM_COMMAND_FIRST;
1855
1856 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1857
1858 if (rc)
1859 return rc;
1860
1861 memcpy(ret_buf, buf + (offset & 3), pre_len);
1862
1863 offset32 += 4;
1864 ret_buf += pre_len;
1865 len32 -= pre_len;
1866 }
1867
1868 if (len32 & 3) {
1869 extra = 4 - (len32 & 3);
1870 len32 = (len32 + 4) & ~3;
1871 }
1872
1873 if (len32 == 4) {
1874 uint8_t buf[4];
1875
1876 if (cmd_flags)
1877 cmd_flags = BNX_NVM_COMMAND_LAST;
1878 else
1879 cmd_flags =
1880 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1881
1882 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1883
1884 memcpy(ret_buf, buf, 4 - extra);
1885 } else if (len32 > 0) {
1886 uint8_t buf[4];
1887
1888 /* Read the first word. */
1889 if (cmd_flags)
1890 cmd_flags = 0;
1891 else
1892 cmd_flags = BNX_NVM_COMMAND_FIRST;
1893
1894 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1895
1896 /* Advance to the next dword. */
1897 offset32 += 4;
1898 ret_buf += 4;
1899 len32 -= 4;
1900
1901 while (len32 > 4 && rc == 0) {
1902 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1903
1904 /* Advance to the next dword. */
1905 offset32 += 4;
1906 ret_buf += 4;
1907 len32 -= 4;
1908 }
1909
1910 if (rc)
1911 return rc;
1912
1913 cmd_flags = BNX_NVM_COMMAND_LAST;
1914 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1915
1916 memcpy(ret_buf, buf, 4 - extra);
1917 }
1918
1919 /* Disable access to flash interface and release the lock. */
1920 bnx_disable_nvram_access(sc);
1921 bnx_release_nvram_lock(sc);
1922
1923 return rc;
1924 }
1925
1926 #ifdef BNX_NVRAM_WRITE_SUPPORT
1927 /****************************************************************************/
1928 /* Write an arbitrary range of data from NVRAM. */
1929 /* */
1930 /* Prepares the NVRAM interface for write access and writes the requested */
1931 /* data from the supplied buffer. The caller is responsible for */
1932 /* calculating any appropriate CRCs. */
1933 /* */
1934 /* Returns: */
1935 /* 0 on success, positive value on failure. */
1936 /****************************************************************************/
1937 int
1938 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1939 int buf_size)
1940 {
1941 uint32_t written, offset32, len32;
1942 uint8_t *buf, start[4], end[4];
1943 int rc = 0;
1944 int align_start, align_end;
1945
1946 buf = data_buf;
1947 offset32 = offset;
1948 len32 = buf_size;
1949 align_start = align_end = 0;
1950
1951 if ((align_start = (offset32 & 3))) {
1952 offset32 &= ~3;
1953 len32 += align_start;
1954 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1955 return rc;
1956 }
1957
1958 if (len32 & 3) {
1959 if ((len32 > 4) || !align_start) {
1960 align_end = 4 - (len32 & 3);
1961 len32 += align_end;
1962 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1963 end, 4)))
1964 return rc;
1965 }
1966 }
1967
1968 if (align_start || align_end) {
1969 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1970 if (buf == NULL)
1971 return ENOMEM;
1972
1973 if (align_start)
1974 memcpy(buf, start, 4);
1975
1976 if (align_end)
1977 memcpy(buf + len32 - 4, end, 4);
1978
1979 memcpy(buf + align_start, data_buf, buf_size);
1980 }
1981
1982 written = 0;
1983 while ((written < len32) && (rc == 0)) {
1984 uint32_t page_start, page_end, data_start, data_end;
1985 uint32_t addr, cmd_flags;
1986 int i;
1987 uint8_t flash_buffer[264];
1988
1989 /* Find the page_start addr */
1990 page_start = offset32 + written;
1991 page_start -= (page_start % sc->bnx_flash_info->page_size);
1992 /* Find the page_end addr */
1993 page_end = page_start + sc->bnx_flash_info->page_size;
1994 /* Find the data_start addr */
1995 data_start = (written == 0) ? offset32 : page_start;
1996 /* Find the data_end addr */
1997 data_end = (page_end > offset32 + len32) ?
1998 (offset32 + len32) : page_end;
1999
2000 /* Request access to the flash interface. */
2001 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
2002 goto nvram_write_end;
2003
2004 /* Enable access to flash interface */
2005 bnx_enable_nvram_access(sc);
2006
2007 cmd_flags = BNX_NVM_COMMAND_FIRST;
2008 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2009 int j;
2010
2011 /* Read the whole page into the buffer
2012 * (non-buffer flash only) */
2013 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2014 if (j == (sc->bnx_flash_info->page_size - 4))
2015 cmd_flags |= BNX_NVM_COMMAND_LAST;
2016
2017 rc = bnx_nvram_read_dword(sc,
2018 page_start + j,
2019 &flash_buffer[j],
2020 cmd_flags);
2021
2022 if (rc)
2023 goto nvram_write_end;
2024
2025 cmd_flags = 0;
2026 }
2027 }
2028
2029 /* Enable writes to flash interface (unlock write-protect) */
2030 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2031 goto nvram_write_end;
2032
2033 /* Erase the page */
2034 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2035 goto nvram_write_end;
2036
2037 /* Re-enable the write again for the actual write */
2038 bnx_enable_nvram_write(sc);
2039
2040 /* Loop to write back the buffer data from page_start to
2041 * data_start */
2042 i = 0;
2043 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2044 for (addr = page_start; addr < data_start;
2045 addr += 4, i += 4) {
2046
2047 rc = bnx_nvram_write_dword(sc, addr,
2048 &flash_buffer[i], cmd_flags);
2049
2050 if (rc != 0)
2051 goto nvram_write_end;
2052
2053 cmd_flags = 0;
2054 }
2055 }
2056
2057 /* Loop to write the new data from data_start to data_end */
2058 for (addr = data_start; addr < data_end; addr += 4, i++) {
2059 if ((addr == page_end - 4) ||
2060 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2061 && (addr == data_end - 4))) {
2062
2063 cmd_flags |= BNX_NVM_COMMAND_LAST;
2064 }
2065
2066 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2067
2068 if (rc != 0)
2069 goto nvram_write_end;
2070
2071 cmd_flags = 0;
2072 buf += 4;
2073 }
2074
2075 /* Loop to write back the buffer data from data_end
2076 * to page_end */
2077 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2078 for (addr = data_end; addr < page_end;
2079 addr += 4, i += 4) {
2080
2081 if (addr == page_end-4)
2082 cmd_flags = BNX_NVM_COMMAND_LAST;
2083
2084 rc = bnx_nvram_write_dword(sc, addr,
2085 &flash_buffer[i], cmd_flags);
2086
2087 if (rc != 0)
2088 goto nvram_write_end;
2089
2090 cmd_flags = 0;
2091 }
2092 }
2093
2094 /* Disable writes to flash interface (lock write-protect) */
2095 bnx_disable_nvram_write(sc);
2096
2097 /* Disable access to flash interface */
2098 bnx_disable_nvram_access(sc);
2099 bnx_release_nvram_lock(sc);
2100
2101 /* Increment written */
2102 written += data_end - data_start;
2103 }
2104
2105 nvram_write_end:
2106 if (align_start || align_end)
2107 free(buf, M_DEVBUF);
2108
2109 return rc;
2110 }
2111 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2112
2113 /****************************************************************************/
2114 /* Verifies that NVRAM is accessible and contains valid data. */
2115 /* */
2116 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2117 /* correct. */
2118 /* */
2119 /* Returns: */
2120 /* 0 on success, positive value on failure. */
2121 /****************************************************************************/
2122 int
2123 bnx_nvram_test(struct bnx_softc *sc)
2124 {
2125 uint32_t buf[BNX_NVRAM_SIZE / 4];
2126 uint8_t *data = (uint8_t *) buf;
2127 int rc = 0;
2128 uint32_t magic, csum;
2129
2130 /*
2131 * Check that the device NVRAM is valid by reading
2132 * the magic value at offset 0.
2133 */
2134 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2135 goto bnx_nvram_test_done;
2136
2137 magic = be32toh(buf[0]);
2138 if (magic != BNX_NVRAM_MAGIC) {
2139 rc = ENODEV;
2140 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2141 "Expected: 0x%08X, Found: 0x%08X\n",
2142 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2143 goto bnx_nvram_test_done;
2144 }
2145
2146 /*
2147 * Verify that the device NVRAM includes valid
2148 * configuration data.
2149 */
2150 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2151 goto bnx_nvram_test_done;
2152
2153 csum = ether_crc32_le(data, 0x100);
2154 if (csum != BNX_CRC32_RESIDUAL) {
2155 rc = ENODEV;
2156 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2157 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2158 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2159 goto bnx_nvram_test_done;
2160 }
2161
2162 csum = ether_crc32_le(data + 0x100, 0x100);
2163 if (csum != BNX_CRC32_RESIDUAL) {
2164 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2165 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2166 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2167 rc = ENODEV;
2168 }
2169
2170 bnx_nvram_test_done:
2171 return rc;
2172 }
2173
2174 /****************************************************************************/
2175 /* Identifies the current media type of the controller and sets the PHY */
2176 /* address. */
2177 /* */
2178 /* Returns: */
2179 /* Nothing. */
2180 /****************************************************************************/
2181 void
2182 bnx_get_media(struct bnx_softc *sc)
2183 {
2184 sc->bnx_phy_addr = 1;
2185
2186 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2187 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2188 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2189 uint32_t strap;
2190
2191 /*
2192 * The BCM5709S is software configurable
2193 * for Copper or SerDes operation.
2194 */
2195 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2196 DBPRINT(sc, BNX_INFO_LOAD,
2197 "5709 bonded for copper.\n");
2198 goto bnx_get_media_exit;
2199 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2200 DBPRINT(sc, BNX_INFO_LOAD,
2201 "5709 bonded for dual media.\n");
2202 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2203 goto bnx_get_media_exit;
2204 }
2205
2206 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2207 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2208 else {
2209 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2210 >> 8;
2211 }
2212
2213 if (sc->bnx_pa.pa_function == 0) {
2214 switch (strap) {
2215 case 0x4:
2216 case 0x5:
2217 case 0x6:
2218 DBPRINT(sc, BNX_INFO_LOAD,
2219 "BCM5709 s/w configured for SerDes.\n");
2220 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2221 break;
2222 default:
2223 DBPRINT(sc, BNX_INFO_LOAD,
2224 "BCM5709 s/w configured for Copper.\n");
2225 }
2226 } else {
2227 switch (strap) {
2228 case 0x1:
2229 case 0x2:
2230 case 0x4:
2231 DBPRINT(sc, BNX_INFO_LOAD,
2232 "BCM5709 s/w configured for SerDes.\n");
2233 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2234 break;
2235 default:
2236 DBPRINT(sc, BNX_INFO_LOAD,
2237 "BCM5709 s/w configured for Copper.\n");
2238 }
2239 }
2240
2241 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2242 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2243
2244 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2245 uint32_t val;
2246
2247 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2248
2249 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2250 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2251
2252 /*
2253 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2254 * separate PHY for SerDes.
2255 */
2256 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2257 sc->bnx_phy_addr = 2;
2258 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2259 BNX_SHARED_HW_CFG_CONFIG);
2260 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2261 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2262 DBPRINT(sc, BNX_INFO_LOAD,
2263 "Found 2.5Gb capable adapter\n");
2264 }
2265 }
2266 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2267 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2268 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2269
2270 bnx_get_media_exit:
2271 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2272 "Using PHY address %d.\n", sc->bnx_phy_addr);
2273 }
2274
2275 /****************************************************************************/
2276 /* Performs PHY initialization required before MII drivers access the */
2277 /* device. */
2278 /* */
2279 /* Returns: */
2280 /* Nothing. */
2281 /****************************************************************************/
2282 void
2283 bnx_init_media(struct bnx_softc *sc)
2284 {
2285 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2286 /*
2287 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2288 * IEEE Clause 22 method. Otherwise we have no way to attach
2289 * the PHY to the mii(4) layer. PHY specific configuration
2290 * is done by the mii(4) layer.
2291 */
2292
2293 /* Select auto-negotiation MMD of the PHY. */
2294 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2295 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2296
2297 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2298 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2299
2300 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2301 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2302 }
2303 }
2304
2305 /****************************************************************************/
2306 /* Free any DMA memory owned by the driver. */
2307 /* */
2308 /* Scans through each data structre that requires DMA memory and frees */
2309 /* the memory if allocated. */
2310 /* */
2311 /* Returns: */
2312 /* Nothing. */
2313 /****************************************************************************/
2314 void
2315 bnx_dma_free(struct bnx_softc *sc)
2316 {
2317 int i;
2318
2319 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2320
2321 /* Destroy the status block. */
2322 if (sc->status_block != NULL && sc->status_map != NULL) {
2323 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2324 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2325 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2326 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2327 BNX_STATUS_BLK_SZ);
2328 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2329 sc->status_rseg);
2330 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2331 sc->status_block = NULL;
2332 sc->status_map = NULL;
2333 }
2334
2335 /* Destroy the statistics block. */
2336 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2337 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2338 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2339 BNX_STATS_BLK_SZ);
2340 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2341 sc->stats_rseg);
2342 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2343 sc->stats_block = NULL;
2344 sc->stats_map = NULL;
2345 }
2346
2347 /* Free, unmap and destroy all context memory pages. */
2348 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2349 for (i = 0; i < sc->ctx_pages; i++) {
2350 if (sc->ctx_block[i] != NULL) {
2351 bus_dmamap_unload(sc->bnx_dmatag,
2352 sc->ctx_map[i]);
2353 bus_dmamem_unmap(sc->bnx_dmatag,
2354 (void *)sc->ctx_block[i],
2355 BCM_PAGE_SIZE);
2356 bus_dmamem_free(sc->bnx_dmatag,
2357 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2358 bus_dmamap_destroy(sc->bnx_dmatag,
2359 sc->ctx_map[i]);
2360 sc->ctx_block[i] = NULL;
2361 }
2362 }
2363 }
2364
2365 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2366 for (i = 0; i < TX_PAGES; i++ ) {
2367 if (sc->tx_bd_chain[i] != NULL &&
2368 sc->tx_bd_chain_map[i] != NULL) {
2369 bus_dmamap_unload(sc->bnx_dmatag,
2370 sc->tx_bd_chain_map[i]);
2371 bus_dmamem_unmap(sc->bnx_dmatag,
2372 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2373 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2374 sc->tx_bd_chain_rseg[i]);
2375 bus_dmamap_destroy(sc->bnx_dmatag,
2376 sc->tx_bd_chain_map[i]);
2377 sc->tx_bd_chain[i] = NULL;
2378 sc->tx_bd_chain_map[i] = NULL;
2379 }
2380 }
2381
2382 /* Destroy the TX dmamaps. */
2383 /* This isn't necessary since we dont allocate them up front */
2384
2385 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2386 for (i = 0; i < RX_PAGES; i++ ) {
2387 if (sc->rx_bd_chain[i] != NULL &&
2388 sc->rx_bd_chain_map[i] != NULL) {
2389 bus_dmamap_unload(sc->bnx_dmatag,
2390 sc->rx_bd_chain_map[i]);
2391 bus_dmamem_unmap(sc->bnx_dmatag,
2392 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2393 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2394 sc->rx_bd_chain_rseg[i]);
2395
2396 bus_dmamap_destroy(sc->bnx_dmatag,
2397 sc->rx_bd_chain_map[i]);
2398 sc->rx_bd_chain[i] = NULL;
2399 sc->rx_bd_chain_map[i] = NULL;
2400 }
2401 }
2402
2403 /* Unload and destroy the RX mbuf maps. */
2404 for (i = 0; i < TOTAL_RX_BD; i++) {
2405 if (sc->rx_mbuf_map[i] != NULL) {
2406 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2407 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2408 }
2409 }
2410
2411 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2412 }
2413
2414 /****************************************************************************/
2415 /* Allocate any DMA memory needed by the driver. */
2416 /* */
2417 /* Allocates DMA memory needed for the various global structures needed by */
2418 /* hardware. */
2419 /* */
2420 /* Returns: */
2421 /* 0 for success, positive value for failure. */
2422 /****************************************************************************/
2423 int
2424 bnx_dma_alloc(struct bnx_softc *sc)
2425 {
2426 int i, rc = 0;
2427
2428 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2429
2430 /*
2431 * Allocate DMA memory for the status block, map the memory into DMA
2432 * space, and fetch the physical address of the block.
2433 */
2434 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2435 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2436 aprint_error_dev(sc->bnx_dev,
2437 "Could not create status block DMA map!\n");
2438 rc = ENOMEM;
2439 goto bnx_dma_alloc_exit;
2440 }
2441
2442 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2443 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2444 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2445 aprint_error_dev(sc->bnx_dev,
2446 "Could not allocate status block DMA memory!\n");
2447 rc = ENOMEM;
2448 goto bnx_dma_alloc_exit;
2449 }
2450
2451 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2452 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2453 aprint_error_dev(sc->bnx_dev,
2454 "Could not map status block DMA memory!\n");
2455 rc = ENOMEM;
2456 goto bnx_dma_alloc_exit;
2457 }
2458
2459 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2460 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2461 aprint_error_dev(sc->bnx_dev,
2462 "Could not load status block DMA memory!\n");
2463 rc = ENOMEM;
2464 goto bnx_dma_alloc_exit;
2465 }
2466
2467 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2468 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2469
2470 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2471 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2472
2473 /* DRC - Fix for 64 bit addresses. */
2474 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2475 (uint32_t) sc->status_block_paddr);
2476
2477 /* BCM5709 uses host memory as cache for context memory. */
2478 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2479 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2480 if (sc->ctx_pages == 0)
2481 sc->ctx_pages = 1;
2482 if (sc->ctx_pages > 4) /* XXX */
2483 sc->ctx_pages = 4;
2484
2485 DBRUNIF((sc->ctx_pages > 512),
2486 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2487 __FILE__, __LINE__, sc->ctx_pages));
2488
2489
2490 for (i = 0; i < sc->ctx_pages; i++) {
2491 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2492 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2493 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2494 &sc->ctx_map[i]) != 0) {
2495 rc = ENOMEM;
2496 goto bnx_dma_alloc_exit;
2497 }
2498
2499 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2500 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2501 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2502 rc = ENOMEM;
2503 goto bnx_dma_alloc_exit;
2504 }
2505
2506 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2507 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2508 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2509 rc = ENOMEM;
2510 goto bnx_dma_alloc_exit;
2511 }
2512
2513 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2514 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2515 BUS_DMA_NOWAIT) != 0) {
2516 rc = ENOMEM;
2517 goto bnx_dma_alloc_exit;
2518 }
2519
2520 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2521 }
2522 }
2523
2524 /*
2525 * Allocate DMA memory for the statistics block, map the memory into
2526 * DMA space, and fetch the physical address of the block.
2527 */
2528 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2529 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2530 aprint_error_dev(sc->bnx_dev,
2531 "Could not create stats block DMA map!\n");
2532 rc = ENOMEM;
2533 goto bnx_dma_alloc_exit;
2534 }
2535
2536 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2537 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2538 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2539 aprint_error_dev(sc->bnx_dev,
2540 "Could not allocate stats block DMA memory!\n");
2541 rc = ENOMEM;
2542 goto bnx_dma_alloc_exit;
2543 }
2544
2545 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2546 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2547 aprint_error_dev(sc->bnx_dev,
2548 "Could not map stats block DMA memory!\n");
2549 rc = ENOMEM;
2550 goto bnx_dma_alloc_exit;
2551 }
2552
2553 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2554 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2555 aprint_error_dev(sc->bnx_dev,
2556 "Could not load status block DMA memory!\n");
2557 rc = ENOMEM;
2558 goto bnx_dma_alloc_exit;
2559 }
2560
2561 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2562 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2563
2564 /* DRC - Fix for 64 bit address. */
2565 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2566 (uint32_t) sc->stats_block_paddr);
2567
2568 /*
2569 * Allocate DMA memory for the TX buffer descriptor chain,
2570 * and fetch the physical address of the block.
2571 */
2572 for (i = 0; i < TX_PAGES; i++) {
2573 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2574 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2575 &sc->tx_bd_chain_map[i])) {
2576 aprint_error_dev(sc->bnx_dev,
2577 "Could not create Tx desc %d DMA map!\n", i);
2578 rc = ENOMEM;
2579 goto bnx_dma_alloc_exit;
2580 }
2581
2582 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2583 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2584 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2585 aprint_error_dev(sc->bnx_dev,
2586 "Could not allocate TX desc %d DMA memory!\n",
2587 i);
2588 rc = ENOMEM;
2589 goto bnx_dma_alloc_exit;
2590 }
2591
2592 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2593 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2594 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2595 aprint_error_dev(sc->bnx_dev,
2596 "Could not map TX desc %d DMA memory!\n", i);
2597 rc = ENOMEM;
2598 goto bnx_dma_alloc_exit;
2599 }
2600
2601 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2602 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2603 BUS_DMA_NOWAIT)) {
2604 aprint_error_dev(sc->bnx_dev,
2605 "Could not load TX desc %d DMA memory!\n", i);
2606 rc = ENOMEM;
2607 goto bnx_dma_alloc_exit;
2608 }
2609
2610 sc->tx_bd_chain_paddr[i] =
2611 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2612
2613 /* DRC - Fix for 64 bit systems. */
2614 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2615 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2616 }
2617
2618 /*
2619 * Create lists to hold TX mbufs.
2620 */
2621 TAILQ_INIT(&sc->tx_free_pkts);
2622 TAILQ_INIT(&sc->tx_used_pkts);
2623 sc->tx_pkt_count = 0;
2624 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2625
2626 /*
2627 * Allocate DMA memory for the Rx buffer descriptor chain,
2628 * and fetch the physical address of the block.
2629 */
2630 for (i = 0; i < RX_PAGES; i++) {
2631 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2632 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2633 &sc->rx_bd_chain_map[i])) {
2634 aprint_error_dev(sc->bnx_dev,
2635 "Could not create Rx desc %d DMA map!\n", i);
2636 rc = ENOMEM;
2637 goto bnx_dma_alloc_exit;
2638 }
2639
2640 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2641 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2642 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2643 aprint_error_dev(sc->bnx_dev,
2644 "Could not allocate Rx desc %d DMA memory!\n", i);
2645 rc = ENOMEM;
2646 goto bnx_dma_alloc_exit;
2647 }
2648
2649 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2650 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2651 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2652 aprint_error_dev(sc->bnx_dev,
2653 "Could not map Rx desc %d DMA memory!\n", i);
2654 rc = ENOMEM;
2655 goto bnx_dma_alloc_exit;
2656 }
2657
2658 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2659 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2660 BUS_DMA_NOWAIT)) {
2661 aprint_error_dev(sc->bnx_dev,
2662 "Could not load Rx desc %d DMA memory!\n", i);
2663 rc = ENOMEM;
2664 goto bnx_dma_alloc_exit;
2665 }
2666
2667 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2668 sc->rx_bd_chain_paddr[i] =
2669 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2670
2671 /* DRC - Fix for 64 bit systems. */
2672 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2673 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2674 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2675 0, BNX_RX_CHAIN_PAGE_SZ,
2676 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2677 }
2678
2679 /*
2680 * Create DMA maps for the Rx buffer mbufs.
2681 */
2682 for (i = 0; i < TOTAL_RX_BD; i++) {
2683 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2684 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2685 &sc->rx_mbuf_map[i])) {
2686 aprint_error_dev(sc->bnx_dev,
2687 "Could not create Rx mbuf %d DMA map!\n", i);
2688 rc = ENOMEM;
2689 goto bnx_dma_alloc_exit;
2690 }
2691 }
2692
2693 bnx_dma_alloc_exit:
2694 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2695
2696 return rc;
2697 }
2698
2699 /****************************************************************************/
2700 /* Release all resources used by the driver. */
2701 /* */
2702 /* Releases all resources acquired by the driver including interrupts, */
2703 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2704 /* */
2705 /* Returns: */
2706 /* Nothing. */
2707 /****************************************************************************/
2708 void
2709 bnx_release_resources(struct bnx_softc *sc)
2710 {
2711 struct pci_attach_args *pa = &(sc->bnx_pa);
2712
2713 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2714
2715 bnx_dma_free(sc);
2716
2717 if (sc->bnx_intrhand != NULL)
2718 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2719
2720 if (sc->bnx_size)
2721 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2722
2723 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2724 }
2725
2726 /****************************************************************************/
2727 /* Firmware synchronization. */
2728 /* */
2729 /* Before performing certain events such as a chip reset, synchronize with */
2730 /* the firmware first. */
2731 /* */
2732 /* Returns: */
2733 /* 0 for success, positive value for failure. */
2734 /****************************************************************************/
2735 int
2736 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2737 {
2738 int i, rc = 0;
2739 uint32_t val;
2740
2741 /* Don't waste any time if we've timed out before. */
2742 if (sc->bnx_fw_timed_out) {
2743 rc = EBUSY;
2744 goto bnx_fw_sync_exit;
2745 }
2746
2747 /* Increment the message sequence number. */
2748 sc->bnx_fw_wr_seq++;
2749 msg_data |= sc->bnx_fw_wr_seq;
2750
2751 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2752 msg_data);
2753
2754 /* Send the message to the bootcode driver mailbox. */
2755 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2756
2757 /* Wait for the bootcode to acknowledge the message. */
2758 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2759 /* Check for a response in the bootcode firmware mailbox. */
2760 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2761 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2762 break;
2763 DELAY(1000);
2764 }
2765
2766 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2767 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2768 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2769 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2770 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2771
2772 msg_data &= ~BNX_DRV_MSG_CODE;
2773 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2774
2775 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2776
2777 sc->bnx_fw_timed_out = 1;
2778 rc = EBUSY;
2779 }
2780
2781 bnx_fw_sync_exit:
2782 return rc;
2783 }
2784
2785 /****************************************************************************/
2786 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2787 /* */
2788 /* Returns: */
2789 /* Nothing. */
2790 /****************************************************************************/
2791 void
2792 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2793 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2794 {
2795 int i;
2796 uint32_t val;
2797
2798 /* Set the page size used by RV2P. */
2799 if (rv2p_proc == RV2P_PROC2) {
2800 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2801 USABLE_RX_BD_PER_PAGE);
2802 }
2803
2804 for (i = 0; i < rv2p_code_len; i += 8) {
2805 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2806 rv2p_code++;
2807 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2808 rv2p_code++;
2809
2810 if (rv2p_proc == RV2P_PROC1) {
2811 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2812 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2813 } else {
2814 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2815 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2816 }
2817 }
2818
2819 /* Reset the processor, un-stall is done later. */
2820 if (rv2p_proc == RV2P_PROC1)
2821 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2822 else
2823 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2824 }
2825
2826 /****************************************************************************/
2827 /* Load RISC processor firmware. */
2828 /* */
2829 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2830 /* associated with a particular processor. */
2831 /* */
2832 /* Returns: */
2833 /* Nothing. */
2834 /****************************************************************************/
2835 void
2836 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2837 struct fw_info *fw)
2838 {
2839 uint32_t offset;
2840 uint32_t val;
2841
2842 /* Halt the CPU. */
2843 val = REG_RD_IND(sc, cpu_reg->mode);
2844 val |= cpu_reg->mode_value_halt;
2845 REG_WR_IND(sc, cpu_reg->mode, val);
2846 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2847
2848 /* Load the Text area. */
2849 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2850 if (fw->text) {
2851 int j;
2852
2853 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2854 REG_WR_IND(sc, offset, fw->text[j]);
2855 }
2856
2857 /* Load the Data area. */
2858 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2859 if (fw->data) {
2860 int j;
2861
2862 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2863 REG_WR_IND(sc, offset, fw->data[j]);
2864 }
2865
2866 /* Load the SBSS area. */
2867 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2868 if (fw->sbss) {
2869 int j;
2870
2871 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2872 REG_WR_IND(sc, offset, fw->sbss[j]);
2873 }
2874
2875 /* Load the BSS area. */
2876 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2877 if (fw->bss) {
2878 int j;
2879
2880 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2881 REG_WR_IND(sc, offset, fw->bss[j]);
2882 }
2883
2884 /* Load the Read-Only area. */
2885 offset = cpu_reg->spad_base +
2886 (fw->rodata_addr - cpu_reg->mips_view_base);
2887 if (fw->rodata) {
2888 int j;
2889
2890 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2891 REG_WR_IND(sc, offset, fw->rodata[j]);
2892 }
2893
2894 /* Clear the pre-fetch instruction. */
2895 REG_WR_IND(sc, cpu_reg->inst, 0);
2896 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2897
2898 /* Start the CPU. */
2899 val = REG_RD_IND(sc, cpu_reg->mode);
2900 val &= ~cpu_reg->mode_value_halt;
2901 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2902 REG_WR_IND(sc, cpu_reg->mode, val);
2903 }
2904
2905 /****************************************************************************/
2906 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2907 /* */
2908 /* Loads the firmware for each CPU and starts the CPU. */
2909 /* */
2910 /* Returns: */
2911 /* Nothing. */
2912 /****************************************************************************/
2913 void
2914 bnx_init_cpus(struct bnx_softc *sc)
2915 {
2916 struct cpu_reg cpu_reg;
2917 struct fw_info fw;
2918
2919 switch (BNX_CHIP_NUM(sc)) {
2920 case BNX_CHIP_NUM_5709:
2921 /* Initialize the RV2P processor. */
2922 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2923 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2924 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2925 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2926 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2927 } else {
2928 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2929 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2930 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2931 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2932 }
2933
2934 /* Initialize the RX Processor. */
2935 cpu_reg.mode = BNX_RXP_CPU_MODE;
2936 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2937 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2938 cpu_reg.state = BNX_RXP_CPU_STATE;
2939 cpu_reg.state_value_clear = 0xffffff;
2940 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2941 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2942 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2943 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2944 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2945 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2946 cpu_reg.mips_view_base = 0x8000000;
2947
2948 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2949 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2950 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2951 fw.start_addr = bnx_RXP_b09FwStartAddr;
2952
2953 fw.text_addr = bnx_RXP_b09FwTextAddr;
2954 fw.text_len = bnx_RXP_b09FwTextLen;
2955 fw.text_index = 0;
2956 fw.text = bnx_RXP_b09FwText;
2957
2958 fw.data_addr = bnx_RXP_b09FwDataAddr;
2959 fw.data_len = bnx_RXP_b09FwDataLen;
2960 fw.data_index = 0;
2961 fw.data = bnx_RXP_b09FwData;
2962
2963 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2964 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2965 fw.sbss_index = 0;
2966 fw.sbss = bnx_RXP_b09FwSbss;
2967
2968 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2969 fw.bss_len = bnx_RXP_b09FwBssLen;
2970 fw.bss_index = 0;
2971 fw.bss = bnx_RXP_b09FwBss;
2972
2973 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2974 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2975 fw.rodata_index = 0;
2976 fw.rodata = bnx_RXP_b09FwRodata;
2977
2978 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2979 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2980
2981 /* Initialize the TX Processor. */
2982 cpu_reg.mode = BNX_TXP_CPU_MODE;
2983 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2984 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2985 cpu_reg.state = BNX_TXP_CPU_STATE;
2986 cpu_reg.state_value_clear = 0xffffff;
2987 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2988 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2989 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2990 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2991 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2992 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2993 cpu_reg.mips_view_base = 0x8000000;
2994
2995 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2996 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2997 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2998 fw.start_addr = bnx_TXP_b09FwStartAddr;
2999
3000 fw.text_addr = bnx_TXP_b09FwTextAddr;
3001 fw.text_len = bnx_TXP_b09FwTextLen;
3002 fw.text_index = 0;
3003 fw.text = bnx_TXP_b09FwText;
3004
3005 fw.data_addr = bnx_TXP_b09FwDataAddr;
3006 fw.data_len = bnx_TXP_b09FwDataLen;
3007 fw.data_index = 0;
3008 fw.data = bnx_TXP_b09FwData;
3009
3010 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3011 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3012 fw.sbss_index = 0;
3013 fw.sbss = bnx_TXP_b09FwSbss;
3014
3015 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3016 fw.bss_len = bnx_TXP_b09FwBssLen;
3017 fw.bss_index = 0;
3018 fw.bss = bnx_TXP_b09FwBss;
3019
3020 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3021 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3022 fw.rodata_index = 0;
3023 fw.rodata = bnx_TXP_b09FwRodata;
3024
3025 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3026 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3027
3028 /* Initialize the TX Patch-up Processor. */
3029 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3030 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3031 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3032 cpu_reg.state = BNX_TPAT_CPU_STATE;
3033 cpu_reg.state_value_clear = 0xffffff;
3034 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3035 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3036 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3037 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3038 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3039 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3040 cpu_reg.mips_view_base = 0x8000000;
3041
3042 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3043 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3044 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3045 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3046
3047 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3048 fw.text_len = bnx_TPAT_b09FwTextLen;
3049 fw.text_index = 0;
3050 fw.text = bnx_TPAT_b09FwText;
3051
3052 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3053 fw.data_len = bnx_TPAT_b09FwDataLen;
3054 fw.data_index = 0;
3055 fw.data = bnx_TPAT_b09FwData;
3056
3057 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3058 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3059 fw.sbss_index = 0;
3060 fw.sbss = bnx_TPAT_b09FwSbss;
3061
3062 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3063 fw.bss_len = bnx_TPAT_b09FwBssLen;
3064 fw.bss_index = 0;
3065 fw.bss = bnx_TPAT_b09FwBss;
3066
3067 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3068 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3069 fw.rodata_index = 0;
3070 fw.rodata = bnx_TPAT_b09FwRodata;
3071
3072 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3073 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3074
3075 /* Initialize the Completion Processor. */
3076 cpu_reg.mode = BNX_COM_CPU_MODE;
3077 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3078 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3079 cpu_reg.state = BNX_COM_CPU_STATE;
3080 cpu_reg.state_value_clear = 0xffffff;
3081 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3082 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3083 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3084 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3085 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3086 cpu_reg.spad_base = BNX_COM_SCRATCH;
3087 cpu_reg.mips_view_base = 0x8000000;
3088
3089 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3090 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3091 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3092 fw.start_addr = bnx_COM_b09FwStartAddr;
3093
3094 fw.text_addr = bnx_COM_b09FwTextAddr;
3095 fw.text_len = bnx_COM_b09FwTextLen;
3096 fw.text_index = 0;
3097 fw.text = bnx_COM_b09FwText;
3098
3099 fw.data_addr = bnx_COM_b09FwDataAddr;
3100 fw.data_len = bnx_COM_b09FwDataLen;
3101 fw.data_index = 0;
3102 fw.data = bnx_COM_b09FwData;
3103
3104 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3105 fw.sbss_len = bnx_COM_b09FwSbssLen;
3106 fw.sbss_index = 0;
3107 fw.sbss = bnx_COM_b09FwSbss;
3108
3109 fw.bss_addr = bnx_COM_b09FwBssAddr;
3110 fw.bss_len = bnx_COM_b09FwBssLen;
3111 fw.bss_index = 0;
3112 fw.bss = bnx_COM_b09FwBss;
3113
3114 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3115 fw.rodata_len = bnx_COM_b09FwRodataLen;
3116 fw.rodata_index = 0;
3117 fw.rodata = bnx_COM_b09FwRodata;
3118 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3119 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3120 break;
3121 default:
3122 /* Initialize the RV2P processor. */
3123 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3124 RV2P_PROC1);
3125 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3126 RV2P_PROC2);
3127
3128 /* Initialize the RX Processor. */
3129 cpu_reg.mode = BNX_RXP_CPU_MODE;
3130 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3131 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3132 cpu_reg.state = BNX_RXP_CPU_STATE;
3133 cpu_reg.state_value_clear = 0xffffff;
3134 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3135 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3136 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3137 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3138 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3139 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3140 cpu_reg.mips_view_base = 0x8000000;
3141
3142 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3143 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3144 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3145 fw.start_addr = bnx_RXP_b06FwStartAddr;
3146
3147 fw.text_addr = bnx_RXP_b06FwTextAddr;
3148 fw.text_len = bnx_RXP_b06FwTextLen;
3149 fw.text_index = 0;
3150 fw.text = bnx_RXP_b06FwText;
3151
3152 fw.data_addr = bnx_RXP_b06FwDataAddr;
3153 fw.data_len = bnx_RXP_b06FwDataLen;
3154 fw.data_index = 0;
3155 fw.data = bnx_RXP_b06FwData;
3156
3157 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3158 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3159 fw.sbss_index = 0;
3160 fw.sbss = bnx_RXP_b06FwSbss;
3161
3162 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3163 fw.bss_len = bnx_RXP_b06FwBssLen;
3164 fw.bss_index = 0;
3165 fw.bss = bnx_RXP_b06FwBss;
3166
3167 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3168 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3169 fw.rodata_index = 0;
3170 fw.rodata = bnx_RXP_b06FwRodata;
3171
3172 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3173 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3174
3175 /* Initialize the TX Processor. */
3176 cpu_reg.mode = BNX_TXP_CPU_MODE;
3177 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3178 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3179 cpu_reg.state = BNX_TXP_CPU_STATE;
3180 cpu_reg.state_value_clear = 0xffffff;
3181 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3182 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3183 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3184 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3185 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3186 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3187 cpu_reg.mips_view_base = 0x8000000;
3188
3189 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3190 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3191 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3192 fw.start_addr = bnx_TXP_b06FwStartAddr;
3193
3194 fw.text_addr = bnx_TXP_b06FwTextAddr;
3195 fw.text_len = bnx_TXP_b06FwTextLen;
3196 fw.text_index = 0;
3197 fw.text = bnx_TXP_b06FwText;
3198
3199 fw.data_addr = bnx_TXP_b06FwDataAddr;
3200 fw.data_len = bnx_TXP_b06FwDataLen;
3201 fw.data_index = 0;
3202 fw.data = bnx_TXP_b06FwData;
3203
3204 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3205 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3206 fw.sbss_index = 0;
3207 fw.sbss = bnx_TXP_b06FwSbss;
3208
3209 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3210 fw.bss_len = bnx_TXP_b06FwBssLen;
3211 fw.bss_index = 0;
3212 fw.bss = bnx_TXP_b06FwBss;
3213
3214 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3215 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3216 fw.rodata_index = 0;
3217 fw.rodata = bnx_TXP_b06FwRodata;
3218
3219 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3220 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3221
3222 /* Initialize the TX Patch-up Processor. */
3223 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3224 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3225 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3226 cpu_reg.state = BNX_TPAT_CPU_STATE;
3227 cpu_reg.state_value_clear = 0xffffff;
3228 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3229 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3230 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3231 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3232 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3233 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3234 cpu_reg.mips_view_base = 0x8000000;
3235
3236 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3237 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3238 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3239 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3240
3241 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3242 fw.text_len = bnx_TPAT_b06FwTextLen;
3243 fw.text_index = 0;
3244 fw.text = bnx_TPAT_b06FwText;
3245
3246 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3247 fw.data_len = bnx_TPAT_b06FwDataLen;
3248 fw.data_index = 0;
3249 fw.data = bnx_TPAT_b06FwData;
3250
3251 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3252 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3253 fw.sbss_index = 0;
3254 fw.sbss = bnx_TPAT_b06FwSbss;
3255
3256 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3257 fw.bss_len = bnx_TPAT_b06FwBssLen;
3258 fw.bss_index = 0;
3259 fw.bss = bnx_TPAT_b06FwBss;
3260
3261 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3262 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3263 fw.rodata_index = 0;
3264 fw.rodata = bnx_TPAT_b06FwRodata;
3265
3266 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3267 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3268
3269 /* Initialize the Completion Processor. */
3270 cpu_reg.mode = BNX_COM_CPU_MODE;
3271 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3272 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3273 cpu_reg.state = BNX_COM_CPU_STATE;
3274 cpu_reg.state_value_clear = 0xffffff;
3275 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3276 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3277 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3278 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3279 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3280 cpu_reg.spad_base = BNX_COM_SCRATCH;
3281 cpu_reg.mips_view_base = 0x8000000;
3282
3283 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3284 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3285 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3286 fw.start_addr = bnx_COM_b06FwStartAddr;
3287
3288 fw.text_addr = bnx_COM_b06FwTextAddr;
3289 fw.text_len = bnx_COM_b06FwTextLen;
3290 fw.text_index = 0;
3291 fw.text = bnx_COM_b06FwText;
3292
3293 fw.data_addr = bnx_COM_b06FwDataAddr;
3294 fw.data_len = bnx_COM_b06FwDataLen;
3295 fw.data_index = 0;
3296 fw.data = bnx_COM_b06FwData;
3297
3298 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3299 fw.sbss_len = bnx_COM_b06FwSbssLen;
3300 fw.sbss_index = 0;
3301 fw.sbss = bnx_COM_b06FwSbss;
3302
3303 fw.bss_addr = bnx_COM_b06FwBssAddr;
3304 fw.bss_len = bnx_COM_b06FwBssLen;
3305 fw.bss_index = 0;
3306 fw.bss = bnx_COM_b06FwBss;
3307
3308 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3309 fw.rodata_len = bnx_COM_b06FwRodataLen;
3310 fw.rodata_index = 0;
3311 fw.rodata = bnx_COM_b06FwRodata;
3312 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3313 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3314 break;
3315 }
3316 }
3317
3318 /****************************************************************************/
3319 /* Initialize context memory. */
3320 /* */
3321 /* Clears the memory associated with each Context ID (CID). */
3322 /* */
3323 /* Returns: */
3324 /* Nothing. */
3325 /****************************************************************************/
3326 void
3327 bnx_init_context(struct bnx_softc *sc)
3328 {
3329 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3330 /* DRC: Replace this constant value with a #define. */
3331 int i, retry_cnt = 10;
3332 uint32_t val;
3333
3334 /*
3335 * BCM5709 context memory may be cached
3336 * in host memory so prepare the host memory
3337 * for access.
3338 */
3339 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3340 | (1 << 12);
3341 val |= (BCM_PAGE_BITS - 8) << 16;
3342 REG_WR(sc, BNX_CTX_COMMAND, val);
3343
3344 /* Wait for mem init command to complete. */
3345 for (i = 0; i < retry_cnt; i++) {
3346 val = REG_RD(sc, BNX_CTX_COMMAND);
3347 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3348 break;
3349 DELAY(2);
3350 }
3351
3352 /* ToDo: Consider returning an error here. */
3353
3354 for (i = 0; i < sc->ctx_pages; i++) {
3355 int j;
3356
3357 /* Set the physaddr of the context memory cache. */
3358 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3359 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3360 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3361 val = (uint32_t)
3362 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3363 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3364 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3365 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3366
3367 /* Verify that the context memory write was successful. */
3368 for (j = 0; j < retry_cnt; j++) {
3369 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3370 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3371 break;
3372 DELAY(5);
3373 }
3374
3375 /* ToDo: Consider returning an error here. */
3376 }
3377 } else {
3378 uint32_t vcid_addr, offset;
3379
3380 /*
3381 * For the 5706/5708, context memory is local to the
3382 * controller, so initialize the controller context memory.
3383 */
3384
3385 vcid_addr = GET_CID_ADDR(96);
3386 while (vcid_addr) {
3387
3388 vcid_addr -= BNX_PHY_CTX_SIZE;
3389
3390 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3391 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3392
3393 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3394 offset += 4)
3395 CTX_WR(sc, 0x00, offset, 0);
3396
3397 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3398 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3399 }
3400 }
3401 }
3402
3403 /****************************************************************************/
3404 /* Fetch the permanent MAC address of the controller. */
3405 /* */
3406 /* Returns: */
3407 /* Nothing. */
3408 /****************************************************************************/
3409 void
3410 bnx_get_mac_addr(struct bnx_softc *sc)
3411 {
3412 uint32_t mac_lo = 0, mac_hi = 0;
3413
3414 /*
3415 * The NetXtreme II bootcode populates various NIC
3416 * power-on and runtime configuration items in a
3417 * shared memory area. The factory configured MAC
3418 * address is available from both NVRAM and the
3419 * shared memory area so we'll read the value from
3420 * shared memory for speed.
3421 */
3422
3423 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3424 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3425
3426 if ((mac_lo == 0) && (mac_hi == 0)) {
3427 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3428 __FILE__, __LINE__);
3429 } else {
3430 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3431 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3432 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3433 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3434 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3435 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3436 }
3437
3438 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3439 "%s\n", ether_sprintf(sc->eaddr));
3440 }
3441
3442 /****************************************************************************/
3443 /* Program the MAC address. */
3444 /* */
3445 /* Returns: */
3446 /* Nothing. */
3447 /****************************************************************************/
3448 void
3449 bnx_set_mac_addr(struct bnx_softc *sc)
3450 {
3451 uint32_t val;
3452 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3453
3454 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3455 "%s\n", ether_sprintf(sc->eaddr));
3456
3457 val = (mac_addr[0] << 8) | mac_addr[1];
3458
3459 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3460
3461 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3462 (mac_addr[4] << 8) | mac_addr[5];
3463
3464 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3465 }
3466
3467 /****************************************************************************/
3468 /* Stop the controller. */
3469 /* */
3470 /* Returns: */
3471 /* Nothing. */
3472 /****************************************************************************/
3473 void
3474 bnx_stop(struct ifnet *ifp, int disable)
3475 {
3476 struct bnx_softc *sc = ifp->if_softc;
3477
3478 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3479
3480 if (disable) {
3481 sc->bnx_detaching = 1;
3482 callout_halt(&sc->bnx_timeout, NULL);
3483 } else
3484 callout_stop(&sc->bnx_timeout);
3485
3486 mii_down(&sc->bnx_mii);
3487
3488 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3489
3490 /* Disable the transmit/receive blocks. */
3491 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3492 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3493 DELAY(20);
3494
3495 bnx_disable_intr(sc);
3496
3497 /* Tell firmware that the driver is going away. */
3498 if (disable)
3499 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3500 else
3501 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3502
3503 /* Free RX buffers. */
3504 bnx_free_rx_chain(sc);
3505
3506 /* Free TX buffers. */
3507 bnx_free_tx_chain(sc);
3508
3509 ifp->if_timer = 0;
3510
3511 sc->bnx_link = 0;
3512
3513 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3514
3515 bnx_mgmt_init(sc);
3516 }
3517
3518 int
3519 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3520 {
3521 struct pci_attach_args *pa = &(sc->bnx_pa);
3522 uint32_t val;
3523 int i, rc = 0;
3524
3525 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3526
3527 /* Wait for pending PCI transactions to complete. */
3528 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3529 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3530 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3531 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3532 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3533 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3534 DELAY(5);
3535
3536 /* Disable DMA */
3537 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3538 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3539 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3540 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3541 }
3542
3543 /* Assume bootcode is running. */
3544 sc->bnx_fw_timed_out = 0;
3545
3546 /* Give the firmware a chance to prepare for the reset. */
3547 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3548 if (rc)
3549 goto bnx_reset_exit;
3550
3551 /* Set a firmware reminder that this is a soft reset. */
3552 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3553 BNX_DRV_RESET_SIGNATURE_MAGIC);
3554
3555 /* Dummy read to force the chip to complete all current transactions. */
3556 val = REG_RD(sc, BNX_MISC_ID);
3557
3558 /* Chip reset. */
3559 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3560 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3561 REG_RD(sc, BNX_MISC_COMMAND);
3562 DELAY(5);
3563
3564 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3565 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3566
3567 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3568 val);
3569 } else {
3570 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3571 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3572 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3573 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3574
3575 /* Allow up to 30us for reset to complete. */
3576 for (i = 0; i < 10; i++) {
3577 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3578 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3579 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3580 break;
3581 }
3582 DELAY(10);
3583 }
3584
3585 /* Check that reset completed successfully. */
3586 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3587 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3588 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3589 __FILE__, __LINE__);
3590 rc = EBUSY;
3591 goto bnx_reset_exit;
3592 }
3593 }
3594
3595 /* Make sure byte swapping is properly configured. */
3596 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3597 if (val != 0x01020304) {
3598 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3599 __FILE__, __LINE__);
3600 rc = ENODEV;
3601 goto bnx_reset_exit;
3602 }
3603
3604 /* Just completed a reset, assume that firmware is running again. */
3605 sc->bnx_fw_timed_out = 0;
3606
3607 /* Wait for the firmware to finish its initialization. */
3608 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3609 if (rc)
3610 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3611 "initialization!\n", __FILE__, __LINE__);
3612
3613 bnx_reset_exit:
3614 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3615
3616 return rc;
3617 }
3618
3619 int
3620 bnx_chipinit(struct bnx_softc *sc)
3621 {
3622 struct pci_attach_args *pa = &(sc->bnx_pa);
3623 uint32_t val;
3624 int rc = 0;
3625
3626 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3627
3628 /* Make sure the interrupt is not active. */
3629 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3630
3631 /* Initialize DMA byte/word swapping, configure the number of DMA */
3632 /* channels and PCI clock compensation delay. */
3633 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3634 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3635 #if BYTE_ORDER == BIG_ENDIAN
3636 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3637 #endif
3638 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3639 DMA_READ_CHANS << 12 |
3640 DMA_WRITE_CHANS << 16;
3641
3642 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3643
3644 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3645 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3646
3647 /*
3648 * This setting resolves a problem observed on certain Intel PCI
3649 * chipsets that cannot handle multiple outstanding DMA operations.
3650 * See errata E9_5706A1_65.
3651 */
3652 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3653 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3654 !(sc->bnx_flags & BNX_PCIX_FLAG))
3655 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3656
3657 REG_WR(sc, BNX_DMA_CONFIG, val);
3658
3659 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3660 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3661 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3662 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3663 val & ~0x20000);
3664 }
3665
3666 /* Enable the RX_V2P and Context state machines before access. */
3667 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3668 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3669 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3670 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3671
3672 /* Initialize context mapping and zero out the quick contexts. */
3673 bnx_init_context(sc);
3674
3675 /* Initialize the on-boards CPUs */
3676 bnx_init_cpus(sc);
3677
3678 /* Enable management frames (NC-SI) to flow to the MCP. */
3679 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3680 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3681 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3682 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3683 }
3684
3685 /* Prepare NVRAM for access. */
3686 if (bnx_init_nvram(sc)) {
3687 rc = ENODEV;
3688 goto bnx_chipinit_exit;
3689 }
3690
3691 /* Set the kernel bypass block size */
3692 val = REG_RD(sc, BNX_MQ_CONFIG);
3693 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3694 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3695
3696 /* Enable bins used on the 5709. */
3697 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3698 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3699 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3700 val |= BNX_MQ_CONFIG_HALT_DIS;
3701 }
3702
3703 REG_WR(sc, BNX_MQ_CONFIG, val);
3704
3705 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3706 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3707 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3708
3709 val = (BCM_PAGE_BITS - 8) << 24;
3710 REG_WR(sc, BNX_RV2P_CONFIG, val);
3711
3712 /* Configure page size. */
3713 val = REG_RD(sc, BNX_TBDR_CONFIG);
3714 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3715 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3716 REG_WR(sc, BNX_TBDR_CONFIG, val);
3717
3718 #if 0
3719 /* Set the perfect match control register to default. */
3720 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3721 #endif
3722
3723 bnx_chipinit_exit:
3724 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3725
3726 return rc;
3727 }
3728
3729 /****************************************************************************/
3730 /* Initialize the controller in preparation to send/receive traffic. */
3731 /* */
3732 /* Returns: */
3733 /* 0 for success, positive value for failure. */
3734 /****************************************************************************/
3735 int
3736 bnx_blockinit(struct bnx_softc *sc)
3737 {
3738 uint32_t reg, val;
3739 int rc = 0;
3740
3741 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3742
3743 /* Load the hardware default MAC address. */
3744 bnx_set_mac_addr(sc);
3745
3746 /* Set the Ethernet backoff seed value */
3747 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3748 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3749 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3750
3751 sc->last_status_idx = 0;
3752 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3753
3754 /* Set up link change interrupt generation. */
3755 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3756 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3757
3758 /* Program the physical address of the status block. */
3759 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3760 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3761 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3762
3763 /* Program the physical address of the statistics block. */
3764 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3765 (uint32_t)(sc->stats_block_paddr));
3766 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3767 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3768
3769 /* Program various host coalescing parameters. */
3770 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3771 << 16) | sc->bnx_tx_quick_cons_trip);
3772 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3773 << 16) | sc->bnx_rx_quick_cons_trip);
3774 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3775 sc->bnx_comp_prod_trip);
3776 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3777 sc->bnx_tx_ticks);
3778 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3779 sc->bnx_rx_ticks);
3780 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3781 sc->bnx_com_ticks);
3782 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3783 sc->bnx_cmd_ticks);
3784 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3785 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3786 REG_WR(sc, BNX_HC_CONFIG,
3787 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3788 BNX_HC_CONFIG_COLLECT_STATS));
3789
3790 /* Clear the internal statistics counters. */
3791 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3792
3793 /* Verify that bootcode is running. */
3794 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3795
3796 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3797 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3798 __FILE__, __LINE__); reg = 0);
3799
3800 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3801 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3802 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3803 "Expected: 08%08X\n", __FILE__, __LINE__,
3804 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3805 BNX_DEV_INFO_SIGNATURE_MAGIC);
3806 rc = ENODEV;
3807 goto bnx_blockinit_exit;
3808 }
3809
3810 /* Enable DMA */
3811 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3812 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3813 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3814 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3815 }
3816
3817 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3818 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3819
3820 /* Disable management frames (NC-SI) from flowing to the MCP. */
3821 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3822 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3823 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3824 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3825 }
3826
3827 /* Enable all remaining blocks in the MAC. */
3828 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3829 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3830 BNX_MISC_ENABLE_DEFAULT_XI);
3831 } else
3832 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3833
3834 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3835 DELAY(20);
3836
3837 bnx_blockinit_exit:
3838 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3839
3840 return rc;
3841 }
3842
3843 static int
3844 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3845 uint16_t *chain_prod, uint32_t *prod_bseq)
3846 {
3847 bus_dmamap_t map;
3848 struct rx_bd *rxbd;
3849 uint32_t addr;
3850 int i;
3851 #ifdef BNX_DEBUG
3852 uint16_t debug_chain_prod = *chain_prod;
3853 #endif
3854 uint16_t first_chain_prod;
3855
3856 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3857
3858 /* Map the mbuf cluster into device memory. */
3859 map = sc->rx_mbuf_map[*chain_prod];
3860 first_chain_prod = *chain_prod;
3861 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3862 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3863 __FILE__, __LINE__);
3864
3865 m_freem(m_new);
3866
3867 DBRUNIF(1, sc->rx_mbuf_alloc--);
3868
3869 return ENOBUFS;
3870 }
3871 /* Make sure there is room in the receive chain. */
3872 if (map->dm_nsegs > sc->free_rx_bd) {
3873 bus_dmamap_unload(sc->bnx_dmatag, map);
3874 m_freem(m_new);
3875 return EFBIG;
3876 }
3877 #ifdef BNX_DEBUG
3878 /* Track the distribution of buffer segments. */
3879 sc->rx_mbuf_segs[map->dm_nsegs]++;
3880 #endif
3881
3882 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3883 BUS_DMASYNC_PREREAD);
3884
3885 /* Update some debug statistics counters */
3886 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3887 sc->rx_low_watermark = sc->free_rx_bd);
3888 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3889
3890 /*
3891 * Setup the rx_bd for the first segment
3892 */
3893 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3894
3895 addr = (uint32_t)map->dm_segs[0].ds_addr;
3896 rxbd->rx_bd_haddr_lo = addr;
3897 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3898 rxbd->rx_bd_haddr_hi = addr;
3899 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3900 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3901 *prod_bseq += map->dm_segs[0].ds_len;
3902 bus_dmamap_sync(sc->bnx_dmatag,
3903 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3904 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3905 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3906
3907 for (i = 1; i < map->dm_nsegs; i++) {
3908 *prod = NEXT_RX_BD(*prod);
3909 *chain_prod = RX_CHAIN_IDX(*prod);
3910
3911 rxbd =
3912 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3913
3914 addr = (uint32_t)map->dm_segs[i].ds_addr;
3915 rxbd->rx_bd_haddr_lo = addr;
3916 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3917 rxbd->rx_bd_haddr_hi = addr;
3918 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3919 rxbd->rx_bd_flags = 0;
3920 *prod_bseq += map->dm_segs[i].ds_len;
3921 bus_dmamap_sync(sc->bnx_dmatag,
3922 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3923 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3924 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3925 }
3926
3927 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3928 bus_dmamap_sync(sc->bnx_dmatag,
3929 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3930 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3931 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3932
3933 /*
3934 * Save the mbuf, adjust the map pointer (swap map for first and
3935 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3936 * and update our counter.
3937 */
3938 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3939 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3940 sc->rx_mbuf_map[*chain_prod] = map;
3941 sc->free_rx_bd -= map->dm_nsegs;
3942
3943 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3944 map->dm_nsegs));
3945 *prod = NEXT_RX_BD(*prod);
3946 *chain_prod = RX_CHAIN_IDX(*prod);
3947
3948 return 0;
3949 }
3950
3951 /****************************************************************************/
3952 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3953 /* */
3954 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3955 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3956 /* necessary. */
3957 /* */
3958 /* Returns: */
3959 /* 0 for success, positive value for failure. */
3960 /****************************************************************************/
3961 int
3962 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3963 uint16_t *chain_prod, uint32_t *prod_bseq)
3964 {
3965 struct mbuf *m_new = NULL;
3966 int rc = 0;
3967 uint16_t min_free_bd;
3968
3969 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3970 __func__);
3971
3972 /* Make sure the inputs are valid. */
3973 DBRUNIF((*chain_prod > MAX_RX_BD),
3974 aprint_error_dev(sc->bnx_dev,
3975 "RX producer out of range: 0x%04X > 0x%04X\n",
3976 *chain_prod, (uint16_t)MAX_RX_BD));
3977
3978 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3979 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3980 *prod_bseq);
3981
3982 /* try to get in as many mbufs as possible */
3983 if (sc->mbuf_alloc_size == MCLBYTES)
3984 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3985 else
3986 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3987 while (sc->free_rx_bd >= min_free_bd) {
3988 /* Simulate an mbuf allocation failure. */
3989 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3990 aprint_error_dev(sc->bnx_dev,
3991 "Simulating mbuf allocation failure.\n");
3992 sc->mbuf_sim_alloc_failed++;
3993 rc = ENOBUFS;
3994 goto bnx_get_buf_exit);
3995
3996 /* This is a new mbuf allocation. */
3997 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3998 if (m_new == NULL) {
3999 DBPRINT(sc, BNX_WARN,
4000 "%s(%d): RX mbuf header allocation failed!\n",
4001 __FILE__, __LINE__);
4002
4003 sc->mbuf_alloc_failed++;
4004
4005 rc = ENOBUFS;
4006 goto bnx_get_buf_exit;
4007 }
4008
4009 DBRUNIF(1, sc->rx_mbuf_alloc++);
4010
4011 /* Simulate an mbuf cluster allocation failure. */
4012 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4013 m_freem(m_new);
4014 sc->rx_mbuf_alloc--;
4015 sc->mbuf_alloc_failed++;
4016 sc->mbuf_sim_alloc_failed++;
4017 rc = ENOBUFS;
4018 goto bnx_get_buf_exit);
4019
4020 if (sc->mbuf_alloc_size == MCLBYTES)
4021 MCLGET(m_new, M_DONTWAIT);
4022 else
4023 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4024 M_DONTWAIT);
4025 if (!(m_new->m_flags & M_EXT)) {
4026 DBPRINT(sc, BNX_WARN,
4027 "%s(%d): RX mbuf chain allocation failed!\n",
4028 __FILE__, __LINE__);
4029
4030 m_freem(m_new);
4031
4032 DBRUNIF(1, sc->rx_mbuf_alloc--);
4033 sc->mbuf_alloc_failed++;
4034
4035 rc = ENOBUFS;
4036 goto bnx_get_buf_exit;
4037 }
4038
4039 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4040 if (rc != 0)
4041 goto bnx_get_buf_exit;
4042 }
4043
4044 bnx_get_buf_exit:
4045 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4046 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4047 *chain_prod, *prod_bseq);
4048
4049 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4050 __func__);
4051
4052 return rc;
4053 }
4054
4055 void
4056 bnx_alloc_pkts(struct work * unused, void * arg)
4057 {
4058 struct bnx_softc *sc = arg;
4059 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4060 struct bnx_pkt *pkt;
4061 int i, s;
4062
4063 for (i = 0; i < 4; i++) { /* magic! */
4064 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4065 if (pkt == NULL)
4066 break;
4067
4068 if (bus_dmamap_create(sc->bnx_dmatag,
4069 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4070 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4071 &pkt->pkt_dmamap) != 0)
4072 goto put;
4073
4074 if (!ISSET(ifp->if_flags, IFF_UP))
4075 goto stopping;
4076
4077 mutex_enter(&sc->tx_pkt_mtx);
4078 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4079 sc->tx_pkt_count++;
4080 mutex_exit(&sc->tx_pkt_mtx);
4081 }
4082
4083 mutex_enter(&sc->tx_pkt_mtx);
4084 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4085 mutex_exit(&sc->tx_pkt_mtx);
4086
4087 /* fire-up TX now that allocations have been done */
4088 s = splnet();
4089 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4090 bnx_start(ifp);
4091 splx(s);
4092
4093 return;
4094
4095 stopping:
4096 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4097 put:
4098 pool_put(bnx_tx_pool, pkt);
4099 return;
4100 }
4101
4102 /****************************************************************************/
4103 /* Initialize the TX context memory. */
4104 /* */
4105 /* Returns: */
4106 /* Nothing */
4107 /****************************************************************************/
4108 void
4109 bnx_init_tx_context(struct bnx_softc *sc)
4110 {
4111 uint32_t val;
4112
4113 /* Initialize the context ID for an L2 TX chain. */
4114 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4115 /* Set the CID type to support an L2 connection. */
4116 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4117 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4118 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4119 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4120
4121 /* Point the hardware to the first page in the chain. */
4122 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4123 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4124 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4125 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4126 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4127 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4128 } else {
4129 /* Set the CID type to support an L2 connection. */
4130 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4131 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4132 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4133 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4134
4135 /* Point the hardware to the first page in the chain. */
4136 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4137 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4138 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4139 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4140 }
4141 }
4142
4143
4144 /****************************************************************************/
4145 /* Allocate memory and initialize the TX data structures. */
4146 /* */
4147 /* Returns: */
4148 /* 0 for success, positive value for failure. */
4149 /****************************************************************************/
4150 int
4151 bnx_init_tx_chain(struct bnx_softc *sc)
4152 {
4153 struct tx_bd *txbd;
4154 uint32_t addr;
4155 int i, rc = 0;
4156
4157 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4158
4159 /* Force an allocation of some dmamaps for tx up front */
4160 bnx_alloc_pkts(NULL, sc);
4161
4162 /* Set the initial TX producer/consumer indices. */
4163 sc->tx_prod = 0;
4164 sc->tx_cons = 0;
4165 sc->tx_prod_bseq = 0;
4166 sc->used_tx_bd = 0;
4167 sc->max_tx_bd = USABLE_TX_BD;
4168 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4169 DBRUNIF(1, sc->tx_full_count = 0);
4170
4171 /*
4172 * The NetXtreme II supports a linked-list structure called
4173 * a Buffer Descriptor Chain (or BD chain). A BD chain
4174 * consists of a series of 1 or more chain pages, each of which
4175 * consists of a fixed number of BD entries.
4176 * The last BD entry on each page is a pointer to the next page
4177 * in the chain, and the last pointer in the BD chain
4178 * points back to the beginning of the chain.
4179 */
4180
4181 /* Set the TX next pointer chain entries. */
4182 for (i = 0; i < TX_PAGES; i++) {
4183 int j;
4184
4185 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4186
4187 /* Check if we've reached the last page. */
4188 if (i == (TX_PAGES - 1))
4189 j = 0;
4190 else
4191 j = i + 1;
4192
4193 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4194 txbd->tx_bd_haddr_lo = addr;
4195 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4196 txbd->tx_bd_haddr_hi = addr;
4197 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4198 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4199 }
4200
4201 /*
4202 * Initialize the context ID for an L2 TX chain.
4203 */
4204 bnx_init_tx_context(sc);
4205
4206 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4207
4208 return rc;
4209 }
4210
4211 /****************************************************************************/
4212 /* Free memory and clear the TX data structures. */
4213 /* */
4214 /* Returns: */
4215 /* Nothing. */
4216 /****************************************************************************/
4217 void
4218 bnx_free_tx_chain(struct bnx_softc *sc)
4219 {
4220 struct bnx_pkt *pkt;
4221 int i;
4222
4223 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4224
4225 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4226 mutex_enter(&sc->tx_pkt_mtx);
4227 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4228 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4229 mutex_exit(&sc->tx_pkt_mtx);
4230
4231 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4232 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4233 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4234
4235 m_freem(pkt->pkt_mbuf);
4236 DBRUNIF(1, sc->tx_mbuf_alloc--);
4237
4238 mutex_enter(&sc->tx_pkt_mtx);
4239 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4240 }
4241
4242 /* Destroy all the dmamaps we allocated for TX */
4243 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4244 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4245 sc->tx_pkt_count--;
4246 mutex_exit(&sc->tx_pkt_mtx);
4247
4248 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4249 pool_put(bnx_tx_pool, pkt);
4250
4251 mutex_enter(&sc->tx_pkt_mtx);
4252 }
4253 mutex_exit(&sc->tx_pkt_mtx);
4254
4255
4256
4257 /* Clear each TX chain page. */
4258 for (i = 0; i < TX_PAGES; i++) {
4259 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4260 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4261 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4262 }
4263
4264 sc->used_tx_bd = 0;
4265
4266 /* Check if we lost any mbufs in the process. */
4267 DBRUNIF((sc->tx_mbuf_alloc),
4268 aprint_error_dev(sc->bnx_dev,
4269 "Memory leak! Lost %d mbufs from tx chain!\n",
4270 sc->tx_mbuf_alloc));
4271
4272 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4273 }
4274
4275 /****************************************************************************/
4276 /* Initialize the RX context memory. */
4277 /* */
4278 /* Returns: */
4279 /* Nothing */
4280 /****************************************************************************/
4281 void
4282 bnx_init_rx_context(struct bnx_softc *sc)
4283 {
4284 uint32_t val;
4285
4286 /* Initialize the context ID for an L2 RX chain. */
4287 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4288 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4289
4290 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4291 val |= 0x000000ff;
4292
4293 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4294
4295 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4296 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4297 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4298 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4299 }
4300
4301 /* Point the hardware to the first page in the chain. */
4302 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4303 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4304 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4305 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4306 }
4307
4308 /****************************************************************************/
4309 /* Allocate memory and initialize the RX data structures. */
4310 /* */
4311 /* Returns: */
4312 /* 0 for success, positive value for failure. */
4313 /****************************************************************************/
4314 int
4315 bnx_init_rx_chain(struct bnx_softc *sc)
4316 {
4317 struct rx_bd *rxbd;
4318 int i, rc = 0;
4319 uint16_t prod, chain_prod;
4320 uint32_t prod_bseq, addr;
4321
4322 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4323
4324 /* Initialize the RX producer and consumer indices. */
4325 sc->rx_prod = 0;
4326 sc->rx_cons = 0;
4327 sc->rx_prod_bseq = 0;
4328 sc->free_rx_bd = USABLE_RX_BD;
4329 sc->max_rx_bd = USABLE_RX_BD;
4330 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4331 DBRUNIF(1, sc->rx_empty_count = 0);
4332
4333 /* Initialize the RX next pointer chain entries. */
4334 for (i = 0; i < RX_PAGES; i++) {
4335 int j;
4336
4337 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4338
4339 /* Check if we've reached the last page. */
4340 if (i == (RX_PAGES - 1))
4341 j = 0;
4342 else
4343 j = i + 1;
4344
4345 /* Setup the chain page pointers. */
4346 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4347 rxbd->rx_bd_haddr_hi = addr;
4348 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4349 rxbd->rx_bd_haddr_lo = addr;
4350 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4351 0, BNX_RX_CHAIN_PAGE_SZ,
4352 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4353 }
4354
4355 /* Allocate mbuf clusters for the rx_bd chain. */
4356 prod = prod_bseq = 0;
4357 chain_prod = RX_CHAIN_IDX(prod);
4358 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4359 BNX_PRINTF(sc,
4360 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4361 }
4362
4363 /* Save the RX chain producer index. */
4364 sc->rx_prod = prod;
4365 sc->rx_prod_bseq = prod_bseq;
4366
4367 for (i = 0; i < RX_PAGES; i++)
4368 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4369 sc->rx_bd_chain_map[i]->dm_mapsize,
4370 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4371
4372 /* Tell the chip about the waiting rx_bd's. */
4373 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4374 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4375
4376 bnx_init_rx_context(sc);
4377
4378 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4379
4380 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4381
4382 return rc;
4383 }
4384
4385 /****************************************************************************/
4386 /* Free memory and clear the RX data structures. */
4387 /* */
4388 /* Returns: */
4389 /* Nothing. */
4390 /****************************************************************************/
4391 void
4392 bnx_free_rx_chain(struct bnx_softc *sc)
4393 {
4394 int i;
4395
4396 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4397
4398 /* Free any mbufs still in the RX mbuf chain. */
4399 for (i = 0; i < TOTAL_RX_BD; i++) {
4400 if (sc->rx_mbuf_ptr[i] != NULL) {
4401 if (sc->rx_mbuf_map[i] != NULL) {
4402 bus_dmamap_sync(sc->bnx_dmatag,
4403 sc->rx_mbuf_map[i], 0,
4404 sc->rx_mbuf_map[i]->dm_mapsize,
4405 BUS_DMASYNC_POSTREAD);
4406 bus_dmamap_unload(sc->bnx_dmatag,
4407 sc->rx_mbuf_map[i]);
4408 }
4409 m_freem(sc->rx_mbuf_ptr[i]);
4410 sc->rx_mbuf_ptr[i] = NULL;
4411 DBRUNIF(1, sc->rx_mbuf_alloc--);
4412 }
4413 }
4414
4415 /* Clear each RX chain page. */
4416 for (i = 0; i < RX_PAGES; i++)
4417 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4418
4419 sc->free_rx_bd = sc->max_rx_bd;
4420
4421 /* Check if we lost any mbufs in the process. */
4422 DBRUNIF((sc->rx_mbuf_alloc),
4423 aprint_error_dev(sc->bnx_dev,
4424 "Memory leak! Lost %d mbufs from rx chain!\n",
4425 sc->rx_mbuf_alloc));
4426
4427 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4428 }
4429
4430 /****************************************************************************/
4431 /* Set media options. */
4432 /* */
4433 /* Returns: */
4434 /* 0 for success, positive value for failure. */
4435 /****************************************************************************/
4436 int
4437 bnx_ifmedia_upd(struct ifnet *ifp)
4438 {
4439 struct bnx_softc *sc;
4440 struct mii_data *mii;
4441 int rc = 0;
4442
4443 sc = ifp->if_softc;
4444
4445 mii = &sc->bnx_mii;
4446 sc->bnx_link = 0;
4447 if (mii->mii_instance) {
4448 struct mii_softc *miisc;
4449 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4450 mii_phy_reset(miisc);
4451 }
4452 mii_mediachg(mii);
4453
4454 return rc;
4455 }
4456
4457 /****************************************************************************/
4458 /* Reports current media status. */
4459 /* */
4460 /* Returns: */
4461 /* Nothing. */
4462 /****************************************************************************/
4463 void
4464 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4465 {
4466 struct bnx_softc *sc;
4467 struct mii_data *mii;
4468 int s;
4469
4470 sc = ifp->if_softc;
4471
4472 s = splnet();
4473
4474 mii = &sc->bnx_mii;
4475
4476 mii_pollstat(mii);
4477 ifmr->ifm_status = mii->mii_media_status;
4478 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4479 sc->bnx_flowflags;
4480
4481 splx(s);
4482 }
4483
4484 /****************************************************************************/
4485 /* Handles PHY generated interrupt events. */
4486 /* */
4487 /* Returns: */
4488 /* Nothing. */
4489 /****************************************************************************/
4490 void
4491 bnx_phy_intr(struct bnx_softc *sc)
4492 {
4493 uint32_t new_link_state, old_link_state;
4494
4495 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4496 BUS_DMASYNC_POSTREAD);
4497 new_link_state = sc->status_block->status_attn_bits &
4498 STATUS_ATTN_BITS_LINK_STATE;
4499 old_link_state = sc->status_block->status_attn_bits_ack &
4500 STATUS_ATTN_BITS_LINK_STATE;
4501
4502 /* Handle any changes if the link state has changed. */
4503 if (new_link_state != old_link_state) {
4504 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4505
4506 sc->bnx_link = 0;
4507 callout_stop(&sc->bnx_timeout);
4508 bnx_tick(sc);
4509
4510 /* Update the status_attn_bits_ack field in the status block. */
4511 if (new_link_state) {
4512 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4513 STATUS_ATTN_BITS_LINK_STATE);
4514 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4515 } else {
4516 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4517 STATUS_ATTN_BITS_LINK_STATE);
4518 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4519 }
4520 }
4521
4522 /* Acknowledge the link change interrupt. */
4523 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4524 }
4525
4526 /****************************************************************************/
4527 /* Handles received frame interrupt events. */
4528 /* */
4529 /* Returns: */
4530 /* Nothing. */
4531 /****************************************************************************/
4532 void
4533 bnx_rx_intr(struct bnx_softc *sc)
4534 {
4535 struct status_block *sblk = sc->status_block;
4536 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4537 uint16_t hw_cons, sw_cons, sw_chain_cons;
4538 uint16_t sw_prod, sw_chain_prod;
4539 uint32_t sw_prod_bseq;
4540 struct l2_fhdr *l2fhdr;
4541 int i;
4542
4543 DBRUNIF(1, sc->rx_interrupts++);
4544 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4545 BUS_DMASYNC_POSTREAD);
4546
4547 /* Prepare the RX chain pages to be accessed by the host CPU. */
4548 for (i = 0; i < RX_PAGES; i++)
4549 bus_dmamap_sync(sc->bnx_dmatag,
4550 sc->rx_bd_chain_map[i], 0,
4551 sc->rx_bd_chain_map[i]->dm_mapsize,
4552 BUS_DMASYNC_POSTWRITE);
4553
4554 /* Get the hardware's view of the RX consumer index. */
4555 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4556 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4557 hw_cons++;
4558
4559 /* Get working copies of the driver's view of the RX indices. */
4560 sw_cons = sc->rx_cons;
4561 sw_prod = sc->rx_prod;
4562 sw_prod_bseq = sc->rx_prod_bseq;
4563
4564 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4565 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4566 __func__, sw_prod, sw_cons, sw_prod_bseq);
4567
4568 /* Prevent speculative reads from getting ahead of the status block. */
4569 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4570 BUS_SPACE_BARRIER_READ);
4571
4572 /* Update some debug statistics counters */
4573 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4574 sc->rx_low_watermark = sc->free_rx_bd);
4575 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4576
4577 /*
4578 * Scan through the receive chain as long
4579 * as there is work to do.
4580 */
4581 while (sw_cons != hw_cons) {
4582 struct mbuf *m;
4583 struct rx_bd *rxbd __diagused;
4584 unsigned int len;
4585 uint32_t status;
4586
4587 /* Convert the producer/consumer indices to an actual
4588 * rx_bd index.
4589 */
4590 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4591 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4592
4593 /* Get the used rx_bd. */
4594 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4595 sc->free_rx_bd++;
4596
4597 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4598 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4599
4600 /* The mbuf is stored with the last rx_bd entry of a packet. */
4601 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4602 #ifdef DIAGNOSTIC
4603 /* Validate that this is the last rx_bd. */
4604 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4605 printf("%s: Unexpected mbuf found in "
4606 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4607 sw_chain_cons);
4608 }
4609 #endif
4610
4611 /* DRC - ToDo: If the received packet is small, say
4612 * less than 128 bytes, allocate a new mbuf
4613 * here, copy the data to that mbuf, and
4614 * recycle the mapped jumbo frame.
4615 */
4616
4617 /* Unmap the mbuf from DMA space. */
4618 #ifdef DIAGNOSTIC
4619 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4620 printf("invalid map sw_cons 0x%x "
4621 "sw_prod 0x%x "
4622 "sw_chain_cons 0x%x "
4623 "sw_chain_prod 0x%x "
4624 "hw_cons 0x%x "
4625 "TOTAL_RX_BD_PER_PAGE 0x%x "
4626 "TOTAL_RX_BD 0x%x\n",
4627 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4628 hw_cons,
4629 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4630 }
4631 #endif
4632 bus_dmamap_sync(sc->bnx_dmatag,
4633 sc->rx_mbuf_map[sw_chain_cons], 0,
4634 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4635 BUS_DMASYNC_POSTREAD);
4636 bus_dmamap_unload(sc->bnx_dmatag,
4637 sc->rx_mbuf_map[sw_chain_cons]);
4638
4639 /* Remove the mbuf from the driver's chain. */
4640 m = sc->rx_mbuf_ptr[sw_chain_cons];
4641 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4642
4643 /*
4644 * Frames received on the NetXteme II are prepended
4645 * with the l2_fhdr structure which provides status
4646 * information about the received frame (including
4647 * VLAN tags and checksum info) and are also
4648 * automatically adjusted to align the IP header
4649 * (i.e. two null bytes are inserted before the
4650 * Ethernet header).
4651 */
4652 l2fhdr = mtod(m, struct l2_fhdr *);
4653
4654 len = l2fhdr->l2_fhdr_pkt_len;
4655 status = l2fhdr->l2_fhdr_status;
4656
4657 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4658 aprint_error("Simulating l2_fhdr status error.\n");
4659 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4660
4661 /* Watch for unusual sized frames. */
4662 DBRUNIF(((len < BNX_MIN_MTU) ||
4663 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4664 aprint_error_dev(sc->bnx_dev,
4665 "Unusual frame size found. "
4666 "Min(%d), Actual(%d), Max(%d)\n",
4667 (int)BNX_MIN_MTU, len,
4668 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4669
4670 bnx_dump_mbuf(sc, m);
4671 bnx_breakpoint(sc));
4672
4673 len -= ETHER_CRC_LEN;
4674
4675 /* Check the received frame for errors. */
4676 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4677 L2_FHDR_ERRORS_PHY_DECODE |
4678 L2_FHDR_ERRORS_ALIGNMENT |
4679 L2_FHDR_ERRORS_TOO_SHORT |
4680 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4681 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4682 len >
4683 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4684 ifp->if_ierrors++;
4685 DBRUNIF(1, sc->l2fhdr_status_errors++);
4686
4687 /* Reuse the mbuf for a new frame. */
4688 if (bnx_add_buf(sc, m, &sw_prod,
4689 &sw_chain_prod, &sw_prod_bseq)) {
4690 DBRUNIF(1, bnx_breakpoint(sc));
4691 panic("%s: Can't reuse RX mbuf!\n",
4692 device_xname(sc->bnx_dev));
4693 }
4694 continue;
4695 }
4696
4697 /*
4698 * Get a new mbuf for the rx_bd. If no new
4699 * mbufs are available then reuse the current mbuf,
4700 * log an ierror on the interface, and generate
4701 * an error in the system log.
4702 */
4703 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4704 &sw_prod_bseq)) {
4705 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4706 "Failed to allocate "
4707 "new mbuf, incoming frame dropped!\n"));
4708
4709 ifp->if_ierrors++;
4710
4711 /* Try and reuse the exisitng mbuf. */
4712 if (bnx_add_buf(sc, m, &sw_prod,
4713 &sw_chain_prod, &sw_prod_bseq)) {
4714 DBRUNIF(1, bnx_breakpoint(sc));
4715 panic("%s: Double mbuf allocation "
4716 "failure!",
4717 device_xname(sc->bnx_dev));
4718 }
4719 continue;
4720 }
4721
4722 /* Skip over the l2_fhdr when passing the data up
4723 * the stack.
4724 */
4725 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4726
4727 /* Adjust the pckt length to match the received data. */
4728 m->m_pkthdr.len = m->m_len = len;
4729
4730 /* Send the packet to the appropriate interface. */
4731 m_set_rcvif(m, ifp);
4732
4733 DBRUN(BNX_VERBOSE_RECV,
4734 struct ether_header *eh;
4735 eh = mtod(m, struct ether_header *);
4736 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4737 __func__, ether_sprintf(eh->ether_dhost),
4738 ether_sprintf(eh->ether_shost),
4739 htons(eh->ether_type)));
4740
4741 /* Validate the checksum. */
4742
4743 /* Check for an IP datagram. */
4744 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4745 /* Check if the IP checksum is valid. */
4746 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4747 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4748 #ifdef BNX_DEBUG
4749 else
4750 DBPRINT(sc, BNX_WARN_SEND,
4751 "%s(): Invalid IP checksum "
4752 "= 0x%04X!\n",
4753 __func__,
4754 l2fhdr->l2_fhdr_ip_xsum
4755 );
4756 #endif
4757 }
4758
4759 /* Check for a valid TCP/UDP frame. */
4760 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4761 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4762 /* Check for a good TCP/UDP checksum. */
4763 if ((status &
4764 (L2_FHDR_ERRORS_TCP_XSUM |
4765 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4766 m->m_pkthdr.csum_flags |=
4767 M_CSUM_TCPv4 |
4768 M_CSUM_UDPv4;
4769 } else {
4770 DBPRINT(sc, BNX_WARN_SEND,
4771 "%s(): Invalid TCP/UDP "
4772 "checksum = 0x%04X!\n",
4773 __func__,
4774 l2fhdr->l2_fhdr_tcp_udp_xsum);
4775 }
4776 }
4777
4778 /*
4779 * If we received a packet with a vlan tag,
4780 * attach that information to the packet.
4781 */
4782 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4783 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4784 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4785 }
4786
4787 /* Pass the mbuf off to the upper layers. */
4788
4789 DBPRINT(sc, BNX_VERBOSE_RECV,
4790 "%s(): Passing received frame up.\n", __func__);
4791 if_percpuq_enqueue(ifp->if_percpuq, m);
4792 DBRUNIF(1, sc->rx_mbuf_alloc--);
4793
4794 }
4795
4796 sw_cons = NEXT_RX_BD(sw_cons);
4797
4798 /* Refresh hw_cons to see if there's new work */
4799 if (sw_cons == hw_cons) {
4800 hw_cons = sc->hw_rx_cons =
4801 sblk->status_rx_quick_consumer_index0;
4802 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4803 USABLE_RX_BD_PER_PAGE)
4804 hw_cons++;
4805 }
4806
4807 /* Prevent speculative reads from getting ahead of
4808 * the status block.
4809 */
4810 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4811 BUS_SPACE_BARRIER_READ);
4812 }
4813
4814 for (i = 0; i < RX_PAGES; i++)
4815 bus_dmamap_sync(sc->bnx_dmatag,
4816 sc->rx_bd_chain_map[i], 0,
4817 sc->rx_bd_chain_map[i]->dm_mapsize,
4818 BUS_DMASYNC_PREWRITE);
4819
4820 sc->rx_cons = sw_cons;
4821 sc->rx_prod = sw_prod;
4822 sc->rx_prod_bseq = sw_prod_bseq;
4823
4824 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4825 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4826
4827 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4828 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4829 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4830 }
4831
4832 /****************************************************************************/
4833 /* Handles transmit completion interrupt events. */
4834 /* */
4835 /* Returns: */
4836 /* Nothing. */
4837 /****************************************************************************/
4838 void
4839 bnx_tx_intr(struct bnx_softc *sc)
4840 {
4841 struct status_block *sblk = sc->status_block;
4842 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4843 struct bnx_pkt *pkt;
4844 bus_dmamap_t map;
4845 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4846
4847 DBRUNIF(1, sc->tx_interrupts++);
4848 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4849 BUS_DMASYNC_POSTREAD);
4850
4851 /* Get the hardware's view of the TX consumer index. */
4852 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4853
4854 /* Skip to the next entry if this is a chain page pointer. */
4855 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4856 hw_tx_cons++;
4857
4858 sw_tx_cons = sc->tx_cons;
4859
4860 /* Prevent speculative reads from getting ahead of the status block. */
4861 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4862 BUS_SPACE_BARRIER_READ);
4863
4864 /* Cycle through any completed TX chain page entries. */
4865 while (sw_tx_cons != hw_tx_cons) {
4866 #ifdef BNX_DEBUG
4867 struct tx_bd *txbd = NULL;
4868 #endif
4869 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4870
4871 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4872 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4873 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4874
4875 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4876 aprint_error_dev(sc->bnx_dev,
4877 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4878 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4879
4880 DBRUNIF(1, txbd = &sc->tx_bd_chain
4881 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4882
4883 DBRUNIF((txbd == NULL),
4884 aprint_error_dev(sc->bnx_dev,
4885 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4886 bnx_breakpoint(sc));
4887
4888 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4889 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4890
4891
4892 mutex_enter(&sc->tx_pkt_mtx);
4893 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4894 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4895 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4896 mutex_exit(&sc->tx_pkt_mtx);
4897 /*
4898 * Free the associated mbuf. Remember
4899 * that only the last tx_bd of a packet
4900 * has an mbuf pointer and DMA map.
4901 */
4902 map = pkt->pkt_dmamap;
4903 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4904 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4905 bus_dmamap_unload(sc->bnx_dmatag, map);
4906
4907 m_freem(pkt->pkt_mbuf);
4908 DBRUNIF(1, sc->tx_mbuf_alloc--);
4909
4910 ifp->if_opackets++;
4911
4912 mutex_enter(&sc->tx_pkt_mtx);
4913 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4914 }
4915 mutex_exit(&sc->tx_pkt_mtx);
4916
4917 sc->used_tx_bd--;
4918 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4919 __FILE__, __LINE__, sc->used_tx_bd);
4920
4921 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4922
4923 /* Refresh hw_cons to see if there's new work. */
4924 hw_tx_cons = sc->hw_tx_cons =
4925 sblk->status_tx_quick_consumer_index0;
4926 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4927 USABLE_TX_BD_PER_PAGE)
4928 hw_tx_cons++;
4929
4930 /* Prevent speculative reads from getting ahead of
4931 * the status block.
4932 */
4933 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4934 BUS_SPACE_BARRIER_READ);
4935 }
4936
4937 /* Clear the TX timeout timer. */
4938 ifp->if_timer = 0;
4939
4940 /* Clear the tx hardware queue full flag. */
4941 if (sc->used_tx_bd < sc->max_tx_bd) {
4942 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4943 aprint_debug_dev(sc->bnx_dev,
4944 "Open TX chain! %d/%d (used/total)\n",
4945 sc->used_tx_bd, sc->max_tx_bd));
4946 ifp->if_flags &= ~IFF_OACTIVE;
4947 }
4948
4949 sc->tx_cons = sw_tx_cons;
4950 }
4951
4952 /****************************************************************************/
4953 /* Disables interrupt generation. */
4954 /* */
4955 /* Returns: */
4956 /* Nothing. */
4957 /****************************************************************************/
4958 void
4959 bnx_disable_intr(struct bnx_softc *sc)
4960 {
4961 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4962 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4963 }
4964
4965 /****************************************************************************/
4966 /* Enables interrupt generation. */
4967 /* */
4968 /* Returns: */
4969 /* Nothing. */
4970 /****************************************************************************/
4971 void
4972 bnx_enable_intr(struct bnx_softc *sc)
4973 {
4974 uint32_t val;
4975
4976 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4977 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4978
4979 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4980 sc->last_status_idx);
4981
4982 val = REG_RD(sc, BNX_HC_COMMAND);
4983 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4984 }
4985
4986 /****************************************************************************/
4987 /* Handles controller initialization. */
4988 /* */
4989 /****************************************************************************/
4990 int
4991 bnx_init(struct ifnet *ifp)
4992 {
4993 struct bnx_softc *sc = ifp->if_softc;
4994 uint32_t ether_mtu;
4995 int s, error = 0;
4996
4997 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4998
4999 s = splnet();
5000
5001 bnx_stop(ifp, 0);
5002
5003 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
5004 aprint_error_dev(sc->bnx_dev,
5005 "Controller reset failed!\n");
5006 goto bnx_init_exit;
5007 }
5008
5009 if ((error = bnx_chipinit(sc)) != 0) {
5010 aprint_error_dev(sc->bnx_dev,
5011 "Controller initialization failed!\n");
5012 goto bnx_init_exit;
5013 }
5014
5015 if ((error = bnx_blockinit(sc)) != 0) {
5016 aprint_error_dev(sc->bnx_dev,
5017 "Block initialization failed!\n");
5018 goto bnx_init_exit;
5019 }
5020
5021 /* Calculate and program the Ethernet MRU size. */
5022 if (ifp->if_mtu <= ETHERMTU) {
5023 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5024 sc->mbuf_alloc_size = MCLBYTES;
5025 } else {
5026 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5027 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5028 }
5029
5030
5031 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5032
5033 /*
5034 * Program the MRU and enable Jumbo frame
5035 * support.
5036 */
5037 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5038 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5039
5040 /* Calculate the RX Ethernet frame size for rx_bd's. */
5041 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5042
5043 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5044 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5045 sc->mbuf_alloc_size, sc->max_frame_size);
5046
5047 /* Program appropriate promiscuous/multicast filtering. */
5048 bnx_iff(sc);
5049
5050 /* Init RX buffer descriptor chain. */
5051 bnx_init_rx_chain(sc);
5052
5053 /* Init TX buffer descriptor chain. */
5054 bnx_init_tx_chain(sc);
5055
5056 /* Enable host interrupts. */
5057 bnx_enable_intr(sc);
5058
5059 bnx_ifmedia_upd(ifp);
5060
5061 SET(ifp->if_flags, IFF_RUNNING);
5062 CLR(ifp->if_flags, IFF_OACTIVE);
5063
5064 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5065
5066 bnx_init_exit:
5067 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5068
5069 splx(s);
5070
5071 return error;
5072 }
5073
5074 void
5075 bnx_mgmt_init(struct bnx_softc *sc)
5076 {
5077 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5078 uint32_t val;
5079
5080 /* Check if the driver is still running and bail out if it is. */
5081 if (ifp->if_flags & IFF_RUNNING)
5082 goto bnx_mgmt_init_exit;
5083
5084 /* Initialize the on-boards CPUs */
5085 bnx_init_cpus(sc);
5086
5087 val = (BCM_PAGE_BITS - 8) << 24;
5088 REG_WR(sc, BNX_RV2P_CONFIG, val);
5089
5090 /* Enable all critical blocks in the MAC. */
5091 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5092 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5093 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5094 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5095 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5096 DELAY(20);
5097
5098 bnx_ifmedia_upd(ifp);
5099
5100 bnx_mgmt_init_exit:
5101 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5102 }
5103
5104 /****************************************************************************/
5105 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5106 /* memory visible to the controller. */
5107 /* */
5108 /* Returns: */
5109 /* 0 for success, positive value for failure. */
5110 /****************************************************************************/
5111 int
5112 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5113 {
5114 struct bnx_pkt *pkt;
5115 bus_dmamap_t map;
5116 struct tx_bd *txbd = NULL;
5117 uint16_t vlan_tag = 0, flags = 0;
5118 uint16_t chain_prod, prod;
5119 #ifdef BNX_DEBUG
5120 uint16_t debug_prod;
5121 #endif
5122 uint32_t addr, prod_bseq;
5123 int i, error;
5124 static struct work bnx_wk; /* Dummy work. Statically allocated. */
5125 bool remap = true;
5126
5127 mutex_enter(&sc->tx_pkt_mtx);
5128 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5129 if (pkt == NULL) {
5130 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5131 mutex_exit(&sc->tx_pkt_mtx);
5132 return ENETDOWN;
5133 }
5134
5135 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5136 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5137 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
5138 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5139 }
5140
5141 mutex_exit(&sc->tx_pkt_mtx);
5142 return ENOMEM;
5143 }
5144 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5145 mutex_exit(&sc->tx_pkt_mtx);
5146
5147 /* Transfer any checksum offload flags to the bd. */
5148 if (m->m_pkthdr.csum_flags) {
5149 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5150 flags |= TX_BD_FLAGS_IP_CKSUM;
5151 if (m->m_pkthdr.csum_flags &
5152 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5153 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5154 }
5155
5156 /* Transfer any VLAN tags to the bd. */
5157 if (vlan_has_tag(m)) {
5158 flags |= TX_BD_FLAGS_VLAN_TAG;
5159 vlan_tag = vlan_get_tag(m);
5160 }
5161
5162 /* Map the mbuf into DMAable memory. */
5163 prod = sc->tx_prod;
5164 chain_prod = TX_CHAIN_IDX(prod);
5165 map = pkt->pkt_dmamap;
5166
5167 /* Map the mbuf into our DMA address space. */
5168 retry:
5169 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5170 if (__predict_false(error)) {
5171 if (error == EFBIG) {
5172 if (remap == true) {
5173 struct mbuf *newm;
5174
5175 remap = false;
5176 newm = m_defrag(m, M_NOWAIT);
5177 if (newm != NULL) {
5178 m = newm;
5179 goto retry;
5180 }
5181 }
5182 }
5183 sc->tx_dma_map_failures++;
5184 goto maperr;
5185 }
5186 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5187 BUS_DMASYNC_PREWRITE);
5188 /* Make sure there's room in the chain */
5189 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5190 goto nospace;
5191
5192 /* prod points to an empty tx_bd at this point. */
5193 prod_bseq = sc->tx_prod_bseq;
5194 #ifdef BNX_DEBUG
5195 debug_prod = chain_prod;
5196 #endif
5197 DBPRINT(sc, BNX_INFO_SEND,
5198 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5199 "prod_bseq = 0x%08X\n",
5200 __func__, prod, chain_prod, prod_bseq);
5201
5202 /*
5203 * Cycle through each mbuf segment that makes up
5204 * the outgoing frame, gathering the mapping info
5205 * for that segment and creating a tx_bd for the
5206 * mbuf.
5207 */
5208 for (i = 0; i < map->dm_nsegs ; i++) {
5209 chain_prod = TX_CHAIN_IDX(prod);
5210 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5211
5212 addr = (uint32_t)map->dm_segs[i].ds_addr;
5213 txbd->tx_bd_haddr_lo = addr;
5214 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5215 txbd->tx_bd_haddr_hi = addr;
5216 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5217 txbd->tx_bd_vlan_tag = vlan_tag;
5218 txbd->tx_bd_flags = flags;
5219 prod_bseq += map->dm_segs[i].ds_len;
5220 if (i == 0)
5221 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5222 prod = NEXT_TX_BD(prod);
5223 }
5224
5225 /* Set the END flag on the last TX buffer descriptor. */
5226 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5227
5228 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5229
5230 DBPRINT(sc, BNX_INFO_SEND,
5231 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5232 "prod_bseq = 0x%08X\n",
5233 __func__, prod, chain_prod, prod_bseq);
5234
5235 pkt->pkt_mbuf = m;
5236 pkt->pkt_end_desc = chain_prod;
5237
5238 mutex_enter(&sc->tx_pkt_mtx);
5239 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5240 mutex_exit(&sc->tx_pkt_mtx);
5241
5242 sc->used_tx_bd += map->dm_nsegs;
5243 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5244 __FILE__, __LINE__, sc->used_tx_bd);
5245
5246 /* Update some debug statistics counters */
5247 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5248 sc->tx_hi_watermark = sc->used_tx_bd);
5249 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5250 DBRUNIF(1, sc->tx_mbuf_alloc++);
5251
5252 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5253 map->dm_nsegs));
5254
5255 /* prod points to the next free tx_bd at this point. */
5256 sc->tx_prod = prod;
5257 sc->tx_prod_bseq = prod_bseq;
5258
5259 return 0;
5260
5261
5262 nospace:
5263 bus_dmamap_unload(sc->bnx_dmatag, map);
5264 maperr:
5265 mutex_enter(&sc->tx_pkt_mtx);
5266 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5267 mutex_exit(&sc->tx_pkt_mtx);
5268
5269 return ENOMEM;
5270 }
5271
5272 /****************************************************************************/
5273 /* Main transmit routine. */
5274 /* */
5275 /* Returns: */
5276 /* Nothing. */
5277 /****************************************************************************/
5278 void
5279 bnx_start(struct ifnet *ifp)
5280 {
5281 struct bnx_softc *sc = ifp->if_softc;
5282 struct mbuf *m_head = NULL;
5283 int count = 0;
5284 #ifdef BNX_DEBUG
5285 uint16_t tx_chain_prod;
5286 #endif
5287
5288 /* If there's no link or the transmit queue is empty then just exit. */
5289 if (!sc->bnx_link
5290 ||(ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5291 DBPRINT(sc, BNX_INFO_SEND,
5292 "%s(): output active or device not running.\n", __func__);
5293 goto bnx_start_exit;
5294 }
5295
5296 /* prod points to the next free tx_bd. */
5297 #ifdef BNX_DEBUG
5298 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5299 #endif
5300
5301 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5302 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5303 "used_tx %d max_tx %d\n",
5304 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5305 sc->used_tx_bd, sc->max_tx_bd);
5306
5307 /*
5308 * Keep adding entries while there is space in the ring.
5309 */
5310 while (sc->used_tx_bd < sc->max_tx_bd) {
5311 /* Check for any frames to send. */
5312 IFQ_POLL(&ifp->if_snd, m_head);
5313 if (m_head == NULL)
5314 break;
5315
5316 /*
5317 * Pack the data into the transmit ring. If we
5318 * don't have room, set the OACTIVE flag to wait
5319 * for the NIC to drain the chain.
5320 */
5321 if (bnx_tx_encap(sc, m_head)) {
5322 ifp->if_flags |= IFF_OACTIVE;
5323 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5324 "business! Total tx_bd used = %d\n",
5325 sc->used_tx_bd);
5326 break;
5327 }
5328
5329 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5330 count++;
5331
5332 /* Send a copy of the frame to any BPF listeners. */
5333 bpf_mtap(ifp, m_head, BPF_D_OUT);
5334 }
5335
5336 if (count == 0) {
5337 /* no packets were dequeued */
5338 DBPRINT(sc, BNX_VERBOSE_SEND,
5339 "%s(): No packets were dequeued\n", __func__);
5340 goto bnx_start_exit;
5341 }
5342
5343 /* Update the driver's counters. */
5344 #ifdef BNX_DEBUG
5345 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5346 #endif
5347
5348 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5349 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5350 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5351
5352 /* Start the transmit. */
5353 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5354 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5355
5356 /* Set the tx timeout. */
5357 ifp->if_timer = BNX_TX_TIMEOUT;
5358
5359 bnx_start_exit:
5360 return;
5361 }
5362
5363 /****************************************************************************/
5364 /* Handles any IOCTL calls from the operating system. */
5365 /* */
5366 /* Returns: */
5367 /* 0 for success, positive value for failure. */
5368 /****************************************************************************/
5369 int
5370 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5371 {
5372 struct bnx_softc *sc = ifp->if_softc;
5373 struct ifreq *ifr = (struct ifreq *) data;
5374 struct mii_data *mii = &sc->bnx_mii;
5375 int s, error = 0;
5376
5377 s = splnet();
5378
5379 switch (command) {
5380 case SIOCSIFFLAGS:
5381 if ((error = ifioctl_common(ifp, command, data)) != 0)
5382 break;
5383 /* XXX set an ifflags callback and let ether_ioctl
5384 * handle all of this.
5385 */
5386 if (ISSET(ifp->if_flags, IFF_UP)) {
5387 if (ifp->if_flags & IFF_RUNNING)
5388 error = ENETRESET;
5389 else
5390 bnx_init(ifp);
5391 } else if (ifp->if_flags & IFF_RUNNING)
5392 bnx_stop(ifp, 1);
5393 break;
5394
5395 case SIOCSIFMEDIA:
5396 /* Flow control requires full-duplex mode. */
5397 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5398 (ifr->ifr_media & IFM_FDX) == 0)
5399 ifr->ifr_media &= ~IFM_ETH_FMASK;
5400
5401 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5402 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5403 /* We can do both TXPAUSE and RXPAUSE. */
5404 ifr->ifr_media |=
5405 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5406 }
5407 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5408 }
5409 /* FALLTHROUGH */
5410 case SIOCGIFMEDIA:
5411 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5412 sc->bnx_phy_flags);
5413
5414 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5415 break;
5416
5417 default:
5418 error = ether_ioctl(ifp, command, data);
5419 }
5420
5421 if (error == ENETRESET) {
5422 if (ifp->if_flags & IFF_RUNNING)
5423 bnx_iff(sc);
5424 error = 0;
5425 }
5426
5427 splx(s);
5428 return error;
5429 }
5430
5431 /****************************************************************************/
5432 /* Transmit timeout handler. */
5433 /* */
5434 /* Returns: */
5435 /* Nothing. */
5436 /****************************************************************************/
5437 void
5438 bnx_watchdog(struct ifnet *ifp)
5439 {
5440 struct bnx_softc *sc = ifp->if_softc;
5441
5442 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5443 bnx_dump_status_block(sc));
5444 /*
5445 * If we are in this routine because of pause frames, then
5446 * don't reset the hardware.
5447 */
5448 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5449 return;
5450
5451 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5452
5453 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5454
5455 bnx_init(ifp);
5456
5457 ifp->if_oerrors++;
5458 }
5459
5460 /*
5461 * Interrupt handler.
5462 */
5463 /****************************************************************************/
5464 /* Main interrupt entry point. Verifies that the controller generated the */
5465 /* interrupt and then calls a separate routine for handle the various */
5466 /* interrupt causes (PHY, TX, RX). */
5467 /* */
5468 /* Returns: */
5469 /* 0 for success, positive value for failure. */
5470 /****************************************************************************/
5471 int
5472 bnx_intr(void *xsc)
5473 {
5474 struct bnx_softc *sc = xsc;
5475 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5476 uint32_t status_attn_bits;
5477 uint16_t status_idx;
5478 const struct status_block *sblk;
5479 int rv = 0;
5480
5481 if (!device_is_active(sc->bnx_dev) ||
5482 (ifp->if_flags & IFF_RUNNING) == 0)
5483 return 0;
5484
5485 DBRUNIF(1, sc->interrupts_generated++);
5486
5487 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5488 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5489
5490 sblk = sc->status_block;
5491 /*
5492 * If the hardware status block index
5493 * matches the last value read by the
5494 * driver and we haven't asserted our
5495 * interrupt then there's nothing to do.
5496 */
5497 status_idx = sblk->status_idx;
5498 if ((status_idx != sc->last_status_idx) ||
5499 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5500 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5501 rv = 1;
5502
5503 /* Ack the interrupt */
5504 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5505 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5506
5507 status_attn_bits = sblk->status_attn_bits;
5508
5509 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5510 aprint_debug("Simulating unexpected status attention bit set.");
5511 status_attn_bits = status_attn_bits |
5512 STATUS_ATTN_BITS_PARITY_ERROR);
5513
5514 /* Was it a link change interrupt? */
5515 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5516 (sblk->status_attn_bits_ack &
5517 STATUS_ATTN_BITS_LINK_STATE))
5518 bnx_phy_intr(sc);
5519
5520 /* If any other attention is asserted then the chip is toast. */
5521 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5522 (sblk->status_attn_bits_ack &
5523 ~STATUS_ATTN_BITS_LINK_STATE))) {
5524 DBRUN(sc->unexpected_attentions++);
5525
5526 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5527 sblk->status_attn_bits);
5528
5529 DBRUNIF((bnx_debug_unexpected_attention == 0),
5530 bnx_breakpoint(sc));
5531
5532 bnx_init(ifp);
5533 goto out;
5534 }
5535
5536 /* Check for any completed RX frames. */
5537 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5538 bnx_rx_intr(sc);
5539
5540 /* Check for any completed TX frames. */
5541 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5542 bnx_tx_intr(sc);
5543
5544 /*
5545 * Save the status block index value for use during the
5546 * next interrupt.
5547 */
5548 sc->last_status_idx = status_idx;
5549
5550 /* Start moving packets again */
5551 if (ifp->if_flags & IFF_RUNNING)
5552 if_schedule_deferred_start(ifp);
5553 }
5554
5555 out:
5556 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5557 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5558
5559 return rv;
5560 }
5561
5562 /****************************************************************************/
5563 /* Programs the various packet receive modes (broadcast and multicast). */
5564 /* */
5565 /* Returns: */
5566 /* Nothing. */
5567 /****************************************************************************/
5568 void
5569 bnx_iff(struct bnx_softc *sc)
5570 {
5571 struct ethercom *ec = &sc->bnx_ec;
5572 struct ifnet *ifp = &ec->ec_if;
5573 struct ether_multi *enm;
5574 struct ether_multistep step;
5575 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5576 uint32_t rx_mode, sort_mode;
5577 int h, i;
5578
5579 /* Initialize receive mode default settings. */
5580 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5581 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5582 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5583 ifp->if_flags &= ~IFF_ALLMULTI;
5584
5585 /*
5586 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5587 * be enbled.
5588 */
5589 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5590 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5591
5592 /*
5593 * Check for promiscuous, all multicast, or selected
5594 * multicast address filtering.
5595 */
5596 if (ifp->if_flags & IFF_PROMISC) {
5597 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5598
5599 ifp->if_flags |= IFF_ALLMULTI;
5600 /* Enable promiscuous mode. */
5601 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5602 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5603 } else if (ifp->if_flags & IFF_ALLMULTI) {
5604 allmulti:
5605 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5606
5607 ifp->if_flags |= IFF_ALLMULTI;
5608 /* Enable all multicast addresses. */
5609 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5610 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5611 0xffffffff);
5612 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5613 } else {
5614 /* Accept one or more multicast(s). */
5615 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5616
5617 ETHER_FIRST_MULTI(step, ec, enm);
5618 while (enm != NULL) {
5619 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5620 ETHER_ADDR_LEN)) {
5621 goto allmulti;
5622 }
5623 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5624 0xFF;
5625 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5626 ETHER_NEXT_MULTI(step, enm);
5627 }
5628
5629 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5630 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5631 hashes[i]);
5632
5633 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5634 }
5635
5636 /* Only make changes if the recive mode has actually changed. */
5637 if (rx_mode != sc->rx_mode) {
5638 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5639 rx_mode);
5640
5641 sc->rx_mode = rx_mode;
5642 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5643 }
5644
5645 /* Disable and clear the exisitng sort before enabling a new sort. */
5646 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5647 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5648 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5649 }
5650
5651 /****************************************************************************/
5652 /* Called periodically to updates statistics from the controllers */
5653 /* statistics block. */
5654 /* */
5655 /* Returns: */
5656 /* Nothing. */
5657 /****************************************************************************/
5658 void
5659 bnx_stats_update(struct bnx_softc *sc)
5660 {
5661 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5662 struct statistics_block *stats;
5663
5664 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5665 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5666 BUS_DMASYNC_POSTREAD);
5667
5668 stats = (struct statistics_block *)sc->stats_block;
5669
5670 /*
5671 * Update the interface statistics from the
5672 * hardware statistics.
5673 */
5674 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5675
5676 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5677 (u_long)stats->stat_EtherStatsOverrsizePkts +
5678 (u_long)stats->stat_IfInMBUFDiscards +
5679 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5680 (u_long)stats->stat_Dot3StatsFCSErrors;
5681
5682 ifp->if_oerrors = (u_long)
5683 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5684 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5685 (u_long)stats->stat_Dot3StatsLateCollisions;
5686
5687 /*
5688 * Certain controllers don't report
5689 * carrier sense errors correctly.
5690 * See errata E11_5708CA0_1165.
5691 */
5692 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5693 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5694 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5695
5696 /*
5697 * Update the sysctl statistics from the
5698 * hardware statistics.
5699 */
5700 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5701 (uint64_t) stats->stat_IfHCInOctets_lo;
5702
5703 sc->stat_IfHCInBadOctets =
5704 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5705 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5706
5707 sc->stat_IfHCOutOctets =
5708 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5709 (uint64_t) stats->stat_IfHCOutOctets_lo;
5710
5711 sc->stat_IfHCOutBadOctets =
5712 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5713 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5714
5715 sc->stat_IfHCInUcastPkts =
5716 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5717 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5718
5719 sc->stat_IfHCInMulticastPkts =
5720 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5721 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5722
5723 sc->stat_IfHCInBroadcastPkts =
5724 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5725 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5726
5727 sc->stat_IfHCOutUcastPkts =
5728 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5729 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5730
5731 sc->stat_IfHCOutMulticastPkts =
5732 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5733 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5734
5735 sc->stat_IfHCOutBroadcastPkts =
5736 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5737 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5738
5739 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5740 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5741
5742 sc->stat_Dot3StatsCarrierSenseErrors =
5743 stats->stat_Dot3StatsCarrierSenseErrors;
5744
5745 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5746
5747 sc->stat_Dot3StatsAlignmentErrors =
5748 stats->stat_Dot3StatsAlignmentErrors;
5749
5750 sc->stat_Dot3StatsSingleCollisionFrames =
5751 stats->stat_Dot3StatsSingleCollisionFrames;
5752
5753 sc->stat_Dot3StatsMultipleCollisionFrames =
5754 stats->stat_Dot3StatsMultipleCollisionFrames;
5755
5756 sc->stat_Dot3StatsDeferredTransmissions =
5757 stats->stat_Dot3StatsDeferredTransmissions;
5758
5759 sc->stat_Dot3StatsExcessiveCollisions =
5760 stats->stat_Dot3StatsExcessiveCollisions;
5761
5762 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5763
5764 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5765
5766 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5767
5768 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5769
5770 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5771
5772 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5773
5774 sc->stat_EtherStatsPktsRx64Octets =
5775 stats->stat_EtherStatsPktsRx64Octets;
5776
5777 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5778 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5779
5780 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5781 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5782
5783 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5784 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5785
5786 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5787 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5788
5789 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5790 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5791
5792 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5793 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5794
5795 sc->stat_EtherStatsPktsTx64Octets =
5796 stats->stat_EtherStatsPktsTx64Octets;
5797
5798 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5799 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5800
5801 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5802 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5803
5804 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5805 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5806
5807 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5808 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5809
5810 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5811 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5812
5813 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5814 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5815
5816 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5817
5818 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5819
5820 sc->stat_OutXonSent = stats->stat_OutXonSent;
5821
5822 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5823
5824 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5825
5826 sc->stat_MacControlFramesReceived =
5827 stats->stat_MacControlFramesReceived;
5828
5829 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5830
5831 sc->stat_IfInFramesL2FilterDiscards =
5832 stats->stat_IfInFramesL2FilterDiscards;
5833
5834 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5835
5836 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5837
5838 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5839
5840 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5841
5842 sc->stat_CatchupInRuleCheckerDiscards =
5843 stats->stat_CatchupInRuleCheckerDiscards;
5844
5845 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5846
5847 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5848
5849 sc->stat_CatchupInRuleCheckerP4Hit =
5850 stats->stat_CatchupInRuleCheckerP4Hit;
5851
5852 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5853 }
5854
5855 void
5856 bnx_tick(void *xsc)
5857 {
5858 struct bnx_softc *sc = xsc;
5859 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5860 struct mii_data *mii;
5861 uint32_t msg;
5862 uint16_t prod, chain_prod;
5863 uint32_t prod_bseq;
5864 int s = splnet();
5865
5866 /* Tell the firmware that the driver is still running. */
5867 #ifdef BNX_DEBUG
5868 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5869 #else
5870 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5871 #endif
5872 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5873
5874 /* Update the statistics from the hardware statistics block. */
5875 bnx_stats_update(sc);
5876
5877 /* Schedule the next tick. */
5878 if (!sc->bnx_detaching)
5879 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5880
5881 if (sc->bnx_link)
5882 goto bnx_tick_exit;
5883
5884 mii = &sc->bnx_mii;
5885 mii_tick(mii);
5886
5887 /* Check if the link has come up. */
5888 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5889 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5890 sc->bnx_link++;
5891 /* Now that link is up, handle any outstanding TX traffic. */
5892 if_schedule_deferred_start(ifp);
5893 }
5894
5895 bnx_tick_exit:
5896 /* try to get more RX buffers, just in case */
5897 prod = sc->rx_prod;
5898 prod_bseq = sc->rx_prod_bseq;
5899 chain_prod = RX_CHAIN_IDX(prod);
5900 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5901 sc->rx_prod = prod;
5902 sc->rx_prod_bseq = prod_bseq;
5903
5904 splx(s);
5905 return;
5906 }
5907
5908 /****************************************************************************/
5909 /* BNX Debug Routines */
5910 /****************************************************************************/
5911 #ifdef BNX_DEBUG
5912
5913 /****************************************************************************/
5914 /* Prints out information about an mbuf. */
5915 /* */
5916 /* Returns: */
5917 /* Nothing. */
5918 /****************************************************************************/
5919 void
5920 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5921 {
5922 struct mbuf *mp = m;
5923
5924 if (m == NULL) {
5925 /* Index out of range. */
5926 aprint_error("mbuf ptr is null!\n");
5927 return;
5928 }
5929
5930 while (mp) {
5931 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5932 mp, mp->m_len);
5933
5934 if (mp->m_flags & M_EXT)
5935 aprint_debug("M_EXT ");
5936 if (mp->m_flags & M_PKTHDR)
5937 aprint_debug("M_PKTHDR ");
5938 aprint_debug("\n");
5939
5940 if (mp->m_flags & M_EXT)
5941 aprint_debug("- m_ext: vaddr = %p, "
5942 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5943
5944 mp = mp->m_next;
5945 }
5946 }
5947
5948 /****************************************************************************/
5949 /* Prints out the mbufs in the TX mbuf chain. */
5950 /* */
5951 /* Returns: */
5952 /* Nothing. */
5953 /****************************************************************************/
5954 void
5955 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5956 {
5957 #if 0
5958 struct mbuf *m;
5959 int i;
5960
5961 aprint_debug_dev(sc->bnx_dev,
5962 "----------------------------"
5963 " tx mbuf data "
5964 "----------------------------\n");
5965
5966 for (i = 0; i < count; i++) {
5967 m = sc->tx_mbuf_ptr[chain_prod];
5968 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5969 bnx_dump_mbuf(sc, m);
5970 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5971 }
5972
5973 aprint_debug_dev(sc->bnx_dev,
5974 "--------------------------------------------"
5975 "----------------------------\n");
5976 #endif
5977 }
5978
5979 /*
5980 * This routine prints the RX mbuf chain.
5981 */
5982 void
5983 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5984 {
5985 struct mbuf *m;
5986 int i;
5987
5988 aprint_debug_dev(sc->bnx_dev,
5989 "----------------------------"
5990 " rx mbuf data "
5991 "----------------------------\n");
5992
5993 for (i = 0; i < count; i++) {
5994 m = sc->rx_mbuf_ptr[chain_prod];
5995 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5996 bnx_dump_mbuf(sc, m);
5997 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5998 }
5999
6000
6001 aprint_debug_dev(sc->bnx_dev,
6002 "--------------------------------------------"
6003 "----------------------------\n");
6004 }
6005
6006 void
6007 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6008 {
6009 if (idx > MAX_TX_BD)
6010 /* Index out of range. */
6011 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6012 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6013 /* TX Chain page pointer. */
6014 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6015 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6016 txbd->tx_bd_haddr_lo);
6017 else
6018 /* Normal tx_bd entry. */
6019 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6020 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6021 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6022 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6023 txbd->tx_bd_flags);
6024 }
6025
6026 void
6027 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6028 {
6029 if (idx > MAX_RX_BD)
6030 /* Index out of range. */
6031 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6032 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6033 /* TX Chain page pointer. */
6034 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6035 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6036 rxbd->rx_bd_haddr_lo);
6037 else
6038 /* Normal tx_bd entry. */
6039 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6040 "0x%08X, flags = 0x%08X\n", idx,
6041 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6042 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6043 }
6044
6045 void
6046 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6047 {
6048 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6049 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6050 "tcp_udp_xsum = 0x%04X\n", idx,
6051 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6052 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6053 l2fhdr->l2_fhdr_tcp_udp_xsum);
6054 }
6055
6056 /*
6057 * This routine prints the TX chain.
6058 */
6059 void
6060 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6061 {
6062 struct tx_bd *txbd;
6063 int i;
6064
6065 /* First some info about the tx_bd chain structure. */
6066 aprint_debug_dev(sc->bnx_dev,
6067 "----------------------------"
6068 " tx_bd chain "
6069 "----------------------------\n");
6070
6071 BNX_PRINTF(sc,
6072 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6073 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6074
6075 BNX_PRINTF(sc,
6076 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6077 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6078
6079 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6080
6081 aprint_error_dev(sc->bnx_dev, ""
6082 "-----------------------------"
6083 " tx_bd data "
6084 "-----------------------------\n");
6085
6086 /* Now print out the tx_bd's themselves. */
6087 for (i = 0; i < count; i++) {
6088 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6089 bnx_dump_txbd(sc, tx_prod, txbd);
6090 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6091 }
6092
6093 aprint_debug_dev(sc->bnx_dev,
6094 "-----------------------------"
6095 "--------------"
6096 "-----------------------------\n");
6097 }
6098
6099 /*
6100 * This routine prints the RX chain.
6101 */
6102 void
6103 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6104 {
6105 struct rx_bd *rxbd;
6106 int i;
6107
6108 /* First some info about the tx_bd chain structure. */
6109 aprint_debug_dev(sc->bnx_dev,
6110 "----------------------------"
6111 " rx_bd chain "
6112 "----------------------------\n");
6113
6114 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6115
6116 BNX_PRINTF(sc,
6117 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6118 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6119
6120 BNX_PRINTF(sc,
6121 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6122 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6123
6124 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6125
6126 aprint_error_dev(sc->bnx_dev,
6127 "----------------------------"
6128 " rx_bd data "
6129 "----------------------------\n");
6130
6131 /* Now print out the rx_bd's themselves. */
6132 for (i = 0; i < count; i++) {
6133 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6134 bnx_dump_rxbd(sc, rx_prod, rxbd);
6135 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6136 }
6137
6138 aprint_debug_dev(sc->bnx_dev,
6139 "----------------------------"
6140 "--------------"
6141 "----------------------------\n");
6142 }
6143
6144 /*
6145 * This routine prints the status block.
6146 */
6147 void
6148 bnx_dump_status_block(struct bnx_softc *sc)
6149 {
6150 struct status_block *sblk;
6151 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6152 BUS_DMASYNC_POSTREAD);
6153
6154 sblk = sc->status_block;
6155
6156 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6157 "Status Block -----------------------------\n");
6158
6159 BNX_PRINTF(sc,
6160 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6161 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6162 sblk->status_idx);
6163
6164 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6165 sblk->status_rx_quick_consumer_index0,
6166 sblk->status_tx_quick_consumer_index0);
6167
6168 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6169
6170 /* Theses indices are not used for normal L2 drivers. */
6171 if (sblk->status_rx_quick_consumer_index1 ||
6172 sblk->status_tx_quick_consumer_index1)
6173 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6174 sblk->status_rx_quick_consumer_index1,
6175 sblk->status_tx_quick_consumer_index1);
6176
6177 if (sblk->status_rx_quick_consumer_index2 ||
6178 sblk->status_tx_quick_consumer_index2)
6179 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6180 sblk->status_rx_quick_consumer_index2,
6181 sblk->status_tx_quick_consumer_index2);
6182
6183 if (sblk->status_rx_quick_consumer_index3 ||
6184 sblk->status_tx_quick_consumer_index3)
6185 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6186 sblk->status_rx_quick_consumer_index3,
6187 sblk->status_tx_quick_consumer_index3);
6188
6189 if (sblk->status_rx_quick_consumer_index4 ||
6190 sblk->status_rx_quick_consumer_index5)
6191 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6192 sblk->status_rx_quick_consumer_index4,
6193 sblk->status_rx_quick_consumer_index5);
6194
6195 if (sblk->status_rx_quick_consumer_index6 ||
6196 sblk->status_rx_quick_consumer_index7)
6197 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6198 sblk->status_rx_quick_consumer_index6,
6199 sblk->status_rx_quick_consumer_index7);
6200
6201 if (sblk->status_rx_quick_consumer_index8 ||
6202 sblk->status_rx_quick_consumer_index9)
6203 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6204 sblk->status_rx_quick_consumer_index8,
6205 sblk->status_rx_quick_consumer_index9);
6206
6207 if (sblk->status_rx_quick_consumer_index10 ||
6208 sblk->status_rx_quick_consumer_index11)
6209 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6210 sblk->status_rx_quick_consumer_index10,
6211 sblk->status_rx_quick_consumer_index11);
6212
6213 if (sblk->status_rx_quick_consumer_index12 ||
6214 sblk->status_rx_quick_consumer_index13)
6215 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6216 sblk->status_rx_quick_consumer_index12,
6217 sblk->status_rx_quick_consumer_index13);
6218
6219 if (sblk->status_rx_quick_consumer_index14 ||
6220 sblk->status_rx_quick_consumer_index15)
6221 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6222 sblk->status_rx_quick_consumer_index14,
6223 sblk->status_rx_quick_consumer_index15);
6224
6225 if (sblk->status_completion_producer_index ||
6226 sblk->status_cmd_consumer_index)
6227 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6228 sblk->status_completion_producer_index,
6229 sblk->status_cmd_consumer_index);
6230
6231 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6232 "-----------------------------\n");
6233 }
6234
6235 /*
6236 * This routine prints the statistics block.
6237 */
6238 void
6239 bnx_dump_stats_block(struct bnx_softc *sc)
6240 {
6241 struct statistics_block *sblk;
6242 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6243 BUS_DMASYNC_POSTREAD);
6244
6245 sblk = sc->stats_block;
6246
6247 aprint_debug_dev(sc->bnx_dev, ""
6248 "-----------------------------"
6249 " Stats Block "
6250 "-----------------------------\n");
6251
6252 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6253 "IfHcInBadOctets = 0x%08X:%08X\n",
6254 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6255 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6256
6257 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6258 "IfHcOutBadOctets = 0x%08X:%08X\n",
6259 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6260 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6261
6262 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6263 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6264 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6265 sblk->stat_IfHCInMulticastPkts_hi,
6266 sblk->stat_IfHCInMulticastPkts_lo);
6267
6268 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6269 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6270 sblk->stat_IfHCInBroadcastPkts_hi,
6271 sblk->stat_IfHCInBroadcastPkts_lo,
6272 sblk->stat_IfHCOutUcastPkts_hi,
6273 sblk->stat_IfHCOutUcastPkts_lo);
6274
6275 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6276 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6277 sblk->stat_IfHCOutMulticastPkts_hi,
6278 sblk->stat_IfHCOutMulticastPkts_lo,
6279 sblk->stat_IfHCOutBroadcastPkts_hi,
6280 sblk->stat_IfHCOutBroadcastPkts_lo);
6281
6282 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6283 BNX_PRINTF(sc, "0x%08X : "
6284 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6285 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6286
6287 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6288 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6289 sblk->stat_Dot3StatsCarrierSenseErrors);
6290
6291 if (sblk->stat_Dot3StatsFCSErrors)
6292 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6293 sblk->stat_Dot3StatsFCSErrors);
6294
6295 if (sblk->stat_Dot3StatsAlignmentErrors)
6296 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6297 sblk->stat_Dot3StatsAlignmentErrors);
6298
6299 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6300 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6301 sblk->stat_Dot3StatsSingleCollisionFrames);
6302
6303 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6304 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6305 sblk->stat_Dot3StatsMultipleCollisionFrames);
6306
6307 if (sblk->stat_Dot3StatsDeferredTransmissions)
6308 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6309 sblk->stat_Dot3StatsDeferredTransmissions);
6310
6311 if (sblk->stat_Dot3StatsExcessiveCollisions)
6312 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6313 sblk->stat_Dot3StatsExcessiveCollisions);
6314
6315 if (sblk->stat_Dot3StatsLateCollisions)
6316 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6317 sblk->stat_Dot3StatsLateCollisions);
6318
6319 if (sblk->stat_EtherStatsCollisions)
6320 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6321 sblk->stat_EtherStatsCollisions);
6322
6323 if (sblk->stat_EtherStatsFragments)
6324 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6325 sblk->stat_EtherStatsFragments);
6326
6327 if (sblk->stat_EtherStatsJabbers)
6328 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6329 sblk->stat_EtherStatsJabbers);
6330
6331 if (sblk->stat_EtherStatsUndersizePkts)
6332 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6333 sblk->stat_EtherStatsUndersizePkts);
6334
6335 if (sblk->stat_EtherStatsOverrsizePkts)
6336 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6337 sblk->stat_EtherStatsOverrsizePkts);
6338
6339 if (sblk->stat_EtherStatsPktsRx64Octets)
6340 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6341 sblk->stat_EtherStatsPktsRx64Octets);
6342
6343 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6344 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6345 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6346
6347 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6348 BNX_PRINTF(sc, "0x%08X : "
6349 "EtherStatsPktsRx128Octetsto255Octets\n",
6350 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6351
6352 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6353 BNX_PRINTF(sc, "0x%08X : "
6354 "EtherStatsPktsRx256Octetsto511Octets\n",
6355 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6356
6357 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6358 BNX_PRINTF(sc, "0x%08X : "
6359 "EtherStatsPktsRx512Octetsto1023Octets\n",
6360 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6361
6362 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6363 BNX_PRINTF(sc, "0x%08X : "
6364 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6365 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6366
6367 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6368 BNX_PRINTF(sc, "0x%08X : "
6369 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6370 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6371
6372 if (sblk->stat_EtherStatsPktsTx64Octets)
6373 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6374 sblk->stat_EtherStatsPktsTx64Octets);
6375
6376 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6377 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6378 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6379
6380 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6381 BNX_PRINTF(sc, "0x%08X : "
6382 "EtherStatsPktsTx128Octetsto255Octets\n",
6383 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6384
6385 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6386 BNX_PRINTF(sc, "0x%08X : "
6387 "EtherStatsPktsTx256Octetsto511Octets\n",
6388 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6389
6390 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6391 BNX_PRINTF(sc, "0x%08X : "
6392 "EtherStatsPktsTx512Octetsto1023Octets\n",
6393 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6394
6395 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6396 BNX_PRINTF(sc, "0x%08X : "
6397 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6398 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6399
6400 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6401 BNX_PRINTF(sc, "0x%08X : "
6402 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6403 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6404
6405 if (sblk->stat_XonPauseFramesReceived)
6406 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6407 sblk->stat_XonPauseFramesReceived);
6408
6409 if (sblk->stat_XoffPauseFramesReceived)
6410 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6411 sblk->stat_XoffPauseFramesReceived);
6412
6413 if (sblk->stat_OutXonSent)
6414 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6415 sblk->stat_OutXonSent);
6416
6417 if (sblk->stat_OutXoffSent)
6418 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6419 sblk->stat_OutXoffSent);
6420
6421 if (sblk->stat_FlowControlDone)
6422 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6423 sblk->stat_FlowControlDone);
6424
6425 if (sblk->stat_MacControlFramesReceived)
6426 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6427 sblk->stat_MacControlFramesReceived);
6428
6429 if (sblk->stat_XoffStateEntered)
6430 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6431 sblk->stat_XoffStateEntered);
6432
6433 if (sblk->stat_IfInFramesL2FilterDiscards)
6434 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6435 sblk->stat_IfInFramesL2FilterDiscards);
6436
6437 if (sblk->stat_IfInRuleCheckerDiscards)
6438 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6439 sblk->stat_IfInRuleCheckerDiscards);
6440
6441 if (sblk->stat_IfInFTQDiscards)
6442 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6443 sblk->stat_IfInFTQDiscards);
6444
6445 if (sblk->stat_IfInMBUFDiscards)
6446 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6447 sblk->stat_IfInMBUFDiscards);
6448
6449 if (sblk->stat_IfInRuleCheckerP4Hit)
6450 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6451 sblk->stat_IfInRuleCheckerP4Hit);
6452
6453 if (sblk->stat_CatchupInRuleCheckerDiscards)
6454 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6455 sblk->stat_CatchupInRuleCheckerDiscards);
6456
6457 if (sblk->stat_CatchupInFTQDiscards)
6458 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6459 sblk->stat_CatchupInFTQDiscards);
6460
6461 if (sblk->stat_CatchupInMBUFDiscards)
6462 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6463 sblk->stat_CatchupInMBUFDiscards);
6464
6465 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6466 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6467 sblk->stat_CatchupInRuleCheckerP4Hit);
6468
6469 aprint_debug_dev(sc->bnx_dev,
6470 "-----------------------------"
6471 "--------------"
6472 "-----------------------------\n");
6473 }
6474
6475 void
6476 bnx_dump_driver_state(struct bnx_softc *sc)
6477 {
6478 aprint_debug_dev(sc->bnx_dev,
6479 "-----------------------------"
6480 " Driver State "
6481 "-----------------------------\n");
6482
6483 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6484 "address\n", sc);
6485
6486 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6487 sc->status_block);
6488
6489 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6490 "address\n", sc->stats_block);
6491
6492 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6493 "address\n", sc->tx_bd_chain);
6494
6495 #if 0
6496 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6497 sc->rx_bd_chain);
6498
6499 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6500 sc->tx_mbuf_ptr);
6501 #endif
6502
6503 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6504 sc->rx_mbuf_ptr);
6505
6506 BNX_PRINTF(sc,
6507 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6508 sc->interrupts_generated);
6509
6510 BNX_PRINTF(sc,
6511 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6512 sc->rx_interrupts);
6513
6514 BNX_PRINTF(sc,
6515 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6516 sc->tx_interrupts);
6517
6518 BNX_PRINTF(sc,
6519 " 0x%08X - (sc->last_status_idx) status block index\n",
6520 sc->last_status_idx);
6521
6522 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6523 sc->tx_prod);
6524
6525 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6526 sc->tx_cons);
6527
6528 BNX_PRINTF(sc,
6529 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6530 sc->tx_prod_bseq);
6531 BNX_PRINTF(sc,
6532 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6533 sc->tx_mbuf_alloc);
6534
6535 BNX_PRINTF(sc,
6536 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6537 sc->used_tx_bd);
6538
6539 BNX_PRINTF(sc,
6540 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6541 sc->tx_hi_watermark, sc->max_tx_bd);
6542
6543
6544 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6545 sc->rx_prod);
6546
6547 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6548 sc->rx_cons);
6549
6550 BNX_PRINTF(sc,
6551 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6552 sc->rx_prod_bseq);
6553
6554 BNX_PRINTF(sc,
6555 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6556 sc->rx_mbuf_alloc);
6557
6558 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6559 sc->free_rx_bd);
6560
6561 BNX_PRINTF(sc,
6562 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6563 sc->rx_low_watermark, sc->max_rx_bd);
6564
6565 BNX_PRINTF(sc,
6566 " 0x%08X - (sc->mbuf_alloc_failed) "
6567 "mbuf alloc failures\n",
6568 sc->mbuf_alloc_failed);
6569
6570 BNX_PRINTF(sc,
6571 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6572 "simulated mbuf alloc failures\n",
6573 sc->mbuf_sim_alloc_failed);
6574
6575 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6576 "-----------------------------\n");
6577 }
6578
6579 void
6580 bnx_dump_hw_state(struct bnx_softc *sc)
6581 {
6582 uint32_t val1;
6583 int i;
6584
6585 aprint_debug_dev(sc->bnx_dev,
6586 "----------------------------"
6587 " Hardware State "
6588 "----------------------------\n");
6589
6590 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6591
6592 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6593 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6594 val1, BNX_MISC_ENABLE_STATUS_BITS);
6595
6596 val1 = REG_RD(sc, BNX_DMA_STATUS);
6597 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6598
6599 val1 = REG_RD(sc, BNX_CTX_STATUS);
6600 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6601
6602 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6603 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6604 BNX_EMAC_STATUS);
6605
6606 val1 = REG_RD(sc, BNX_RPM_STATUS);
6607 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6608
6609 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6610 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6611 BNX_TBDR_STATUS);
6612
6613 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6614 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6615 BNX_TDMA_STATUS);
6616
6617 val1 = REG_RD(sc, BNX_HC_STATUS);
6618 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6619
6620 aprint_debug_dev(sc->bnx_dev,
6621 "----------------------------"
6622 "----------------"
6623 "----------------------------\n");
6624
6625 aprint_debug_dev(sc->bnx_dev,
6626 "----------------------------"
6627 " Register Dump "
6628 "----------------------------\n");
6629
6630 for (i = 0x400; i < 0x8000; i += 0x10)
6631 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6632 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6633 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6634
6635 aprint_debug_dev(sc->bnx_dev,
6636 "----------------------------"
6637 "----------------"
6638 "----------------------------\n");
6639 }
6640
6641 void
6642 bnx_breakpoint(struct bnx_softc *sc)
6643 {
6644 /* Unreachable code to shut the compiler up about unused functions. */
6645 if (0) {
6646 bnx_dump_txbd(sc, 0, NULL);
6647 bnx_dump_rxbd(sc, 0, NULL);
6648 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6649 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6650 bnx_dump_l2fhdr(sc, 0, NULL);
6651 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6652 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6653 bnx_dump_status_block(sc);
6654 bnx_dump_stats_block(sc);
6655 bnx_dump_driver_state(sc);
6656 bnx_dump_hw_state(sc);
6657 }
6658
6659 bnx_dump_driver_state(sc);
6660 /* Print the important status block fields. */
6661 bnx_dump_status_block(sc);
6662
6663 #if 0
6664 /* Call the debugger. */
6665 breakpoint();
6666 #endif
6667
6668 return;
6669 }
6670 #endif
6671