Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.8
      1 /*	$NetBSD: if_bnx.c,v 1.8 2007/08/09 18:10:20 bouyer Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.8 2007/08/09 18:10:20 bouyer Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(struct device *, struct device *, void *);
    246 #if 0
    247 void	bnx_detach(void *);
    248 #endif
    249 void	bnx_shutdown(void *);
    250 
    251 /****************************************************************************/
    252 /* BNX Debug Data Structure Dump Routines                                   */
    253 /****************************************************************************/
    254 #ifdef BNX_DEBUG
    255 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    256 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    257 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    258 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    259 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    260 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    261 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    262 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    263 void	bnx_dump_status_block(struct bnx_softc *);
    264 void	bnx_dump_stats_block(struct bnx_softc *);
    265 void	bnx_dump_driver_state(struct bnx_softc *);
    266 void	bnx_dump_hw_state(struct bnx_softc *);
    267 void	bnx_breakpoint(struct bnx_softc *);
    268 #endif
    269 
    270 /****************************************************************************/
    271 /* BNX Register/Memory Access Routines                                      */
    272 /****************************************************************************/
    273 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    274 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    275 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    276 int	bnx_miibus_read_reg(struct device *, int, int);
    277 void	bnx_miibus_write_reg(struct device *, int, int, int);
    278 void	bnx_miibus_statchg(struct device *);
    279 
    280 /****************************************************************************/
    281 /* BNX NVRAM Access Routines                                                */
    282 /****************************************************************************/
    283 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    284 int	bnx_release_nvram_lock(struct bnx_softc *);
    285 void	bnx_enable_nvram_access(struct bnx_softc *);
    286 void	bnx_disable_nvram_access(struct bnx_softc *);
    287 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    288 	    u_int32_t);
    289 int	bnx_init_nvram(struct bnx_softc *);
    290 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    291 int	bnx_nvram_test(struct bnx_softc *);
    292 #ifdef BNX_NVRAM_WRITE_SUPPORT
    293 int	bnx_enable_nvram_write(struct bnx_softc *);
    294 void	bnx_disable_nvram_write(struct bnx_softc *);
    295 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    296 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    297 	    u_int32_t);
    298 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    299 #endif
    300 
    301 /****************************************************************************/
    302 /*                                                                          */
    303 /****************************************************************************/
    304 int	bnx_dma_alloc(struct bnx_softc *);
    305 void	bnx_dma_free(struct bnx_softc *);
    306 void	bnx_release_resources(struct bnx_softc *);
    307 
    308 /****************************************************************************/
    309 /* BNX Firmware Synchronization and Load                                    */
    310 /****************************************************************************/
    311 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    312 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    313 	    u_int32_t);
    314 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    315 	    struct fw_info *);
    316 void	bnx_init_cpus(struct bnx_softc *);
    317 
    318 void	bnx_stop(struct bnx_softc *);
    319 int	bnx_reset(struct bnx_softc *, u_int32_t);
    320 int	bnx_chipinit(struct bnx_softc *);
    321 int	bnx_blockinit(struct bnx_softc *);
    322 int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    323 	    u_int16_t *, u_int32_t *);
    324 
    325 int	bnx_init_tx_chain(struct bnx_softc *);
    326 int	bnx_init_rx_chain(struct bnx_softc *);
    327 void	bnx_free_rx_chain(struct bnx_softc *);
    328 void	bnx_free_tx_chain(struct bnx_softc *);
    329 
    330 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    331 void	bnx_start(struct ifnet *);
    332 int	bnx_ioctl(struct ifnet *, u_long, void *);
    333 void	bnx_watchdog(struct ifnet *);
    334 int	bnx_ifmedia_upd(struct ifnet *);
    335 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    336 int	bnx_init(struct ifnet *);
    337 
    338 void	bnx_init_context(struct bnx_softc *);
    339 void	bnx_get_mac_addr(struct bnx_softc *);
    340 void	bnx_set_mac_addr(struct bnx_softc *);
    341 void	bnx_phy_intr(struct bnx_softc *);
    342 void	bnx_rx_intr(struct bnx_softc *);
    343 void	bnx_tx_intr(struct bnx_softc *);
    344 void	bnx_disable_intr(struct bnx_softc *);
    345 void	bnx_enable_intr(struct bnx_softc *);
    346 
    347 int	bnx_intr(void *);
    348 void	bnx_set_rx_mode(struct bnx_softc *);
    349 void	bnx_stats_update(struct bnx_softc *);
    350 void	bnx_tick(void *);
    351 
    352 /****************************************************************************/
    353 /* OpenBSD device dispatch table.                                           */
    354 /****************************************************************************/
    355 CFATTACH_DECL(bnx, sizeof(struct bnx_softc),
    356     bnx_probe, bnx_attach, NULL, NULL);
    357 
    358 /****************************************************************************/
    359 /* Device probe function.                                                   */
    360 /*                                                                          */
    361 /* Compares the device to the driver's list of supported devices and        */
    362 /* reports back to the OS whether this is the right driver for the device.  */
    363 /*                                                                          */
    364 /* Returns:                                                                 */
    365 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    366 /****************************************************************************/
    367 static const struct bnx_product *
    368 bnx_lookup(const struct pci_attach_args *pa)
    369 {
    370 	int i;
    371 	pcireg_t subid;
    372 
    373 	for (i = 0; i < sizeof(bnx_devices)/sizeof(struct bnx_product); i++) {
    374 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    375 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    376 			continue;
    377 		if (!bnx_devices[i].bp_subvendor)
    378 			return &bnx_devices[i];
    379 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    380 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    381 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    382 			return &bnx_devices[i];
    383 	}
    384 
    385 	return NULL;
    386 }
    387 static int
    388 bnx_probe(device_t parent, cfdata_t match, void *aux)
    389 {
    390 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    391 
    392 	if (bnx_lookup(pa) != NULL)
    393 		return (1);
    394 
    395 	return (0);
    396 }
    397 
    398 /****************************************************************************/
    399 /* Device attach function.                                                  */
    400 /*                                                                          */
    401 /* Allocates device resources, performs secondary chip identification,      */
    402 /* resets and initializes the hardware, and initializes driver instance     */
    403 /* variables.                                                               */
    404 /*                                                                          */
    405 /* Returns:                                                                 */
    406 /*   0 on success, positive value on failure.                               */
    407 /****************************************************************************/
    408 void
    409 bnx_attach(struct device *parent, struct device *self, void *aux)
    410 {
    411 	const struct bnx_product *bp;
    412 	struct bnx_softc	*sc = (struct bnx_softc *)self;
    413 	struct pci_attach_args	*pa = aux;
    414 	pci_chipset_tag_t	pc = pa->pa_pc;
    415 	pci_intr_handle_t	ih;
    416 	const char 		*intrstr = NULL;
    417 	u_int32_t		command;
    418 	struct ifnet		*ifp;
    419 	u_int32_t		val;
    420 	pcireg_t		memtype;
    421 
    422 	bp = bnx_lookup(pa);
    423 	if (bp == NULL)
    424 		panic("unknown device");
    425 
    426 	aprint_naive("\n");
    427 	aprint_normal(": %s", bp->bp_name);
    428 
    429 	sc->bnx_pa = *pa;
    430 
    431 	/*
    432 	 * Map control/status registers.
    433 	*/
    434 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    435 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    436 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    437 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    438 
    439 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    440 		aprint_error("%s: failed to enable memory mapping!\n",
    441 		    sc->bnx_dev.dv_xname);
    442 		return;
    443 	}
    444 
    445 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    446 	switch (memtype) {
    447 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    448 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    449 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    450 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    451 		    NULL, &sc->bnx_size) == 0)
    452 			break;
    453 	default:
    454 		aprint_error("%s: can't find mem space\n",
    455 		    sc->bnx_dev.dv_xname);
    456 		return;
    457 	}
    458 
    459 	if (pci_intr_map(pa, &ih)) {
    460 		aprint_error("%s: couldn't map interrupt\n",
    461 		    sc->bnx_dev.dv_xname);
    462 		goto bnx_attach_fail;
    463 	}
    464 
    465 	intrstr = pci_intr_string(pc, ih);
    466 
    467 	/*
    468 	 * Configure byte swap and enable indirect register access.
    469 	 * Rely on CPU to do target byte swapping on big endian systems.
    470 	 * Access to registers outside of PCI configurtion space are not
    471 	 * valid until this is done.
    472 	 */
    473 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    474 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    475 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    476 
    477 	/* Save ASIC revsion info. */
    478 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    479 
    480 	/* Weed out any non-production controller revisions. */
    481 	switch(BNX_CHIP_ID(sc)) {
    482 	case BNX_CHIP_ID_5706_A0:
    483 	case BNX_CHIP_ID_5706_A1:
    484 	case BNX_CHIP_ID_5708_A0:
    485 	case BNX_CHIP_ID_5708_B0:
    486 		aprint_error("%s: unsupported controller revision (%c%d)!\n",
    487 		    sc->bnx_dev.dv_xname,
    488 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    489 		    PCI_REVISION(pa->pa_class) & 0x0f);
    490 		goto bnx_attach_fail;
    491 	}
    492 
    493 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    494 		aprint_error("%s: SerDes controllers are not supported!\n",
    495 		    sc->bnx_dev.dv_xname);
    496 		goto bnx_attach_fail;
    497 	}
    498 
    499 	/*
    500 	 * Find the base address for shared memory access.
    501 	 * Newer versions of bootcode use a signature and offset
    502 	 * while older versions use a fixed address.
    503 	 */
    504 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    505 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    506 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    507 	else
    508 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    509 
    510 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    511 
    512 	/* Set initial device and PHY flags */
    513 	sc->bnx_flags = 0;
    514 	sc->bnx_phy_flags = 0;
    515 
    516 	/* Get PCI bus information (speed and type). */
    517 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    518 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    519 		u_int32_t clkreg;
    520 
    521 		sc->bnx_flags |= BNX_PCIX_FLAG;
    522 
    523 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    524 
    525 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    526 		switch (clkreg) {
    527 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    528 			sc->bus_speed_mhz = 133;
    529 			break;
    530 
    531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    532 			sc->bus_speed_mhz = 100;
    533 			break;
    534 
    535 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    537 			sc->bus_speed_mhz = 66;
    538 			break;
    539 
    540 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    541 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    542 			sc->bus_speed_mhz = 50;
    543 			break;
    544 
    545 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    546 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    547 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    548 			sc->bus_speed_mhz = 33;
    549 			break;
    550 		}
    551 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    552 			sc->bus_speed_mhz = 66;
    553 		else
    554 			sc->bus_speed_mhz = 33;
    555 
    556 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    557 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    558 
    559 	/* Reset the controller. */
    560 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    561 		goto bnx_attach_fail;
    562 
    563 	/* Initialize the controller. */
    564 	if (bnx_chipinit(sc)) {
    565 		aprint_error("%s: Controller initialization failed!\n",
    566 		    sc->bnx_dev.dv_xname);
    567 		goto bnx_attach_fail;
    568 	}
    569 
    570 	/* Perform NVRAM test. */
    571 	if (bnx_nvram_test(sc)) {
    572 		aprint_error("%s: NVRAM test failed!\n", sc->bnx_dev.dv_xname);
    573 		goto bnx_attach_fail;
    574 	}
    575 
    576 	/* Fetch the permanent Ethernet MAC address. */
    577 	bnx_get_mac_addr(sc);
    578 	aprint_normal("%s: Ethernet address %s\n", sc->bnx_dev.dv_xname,
    579 	    ether_sprintf(sc->eaddr));
    580 
    581 	/*
    582 	 * Trip points control how many BDs
    583 	 * should be ready before generating an
    584 	 * interrupt while ticks control how long
    585 	 * a BD can sit in the chain before
    586 	 * generating an interrupt.  Set the default
    587 	 * values for the RX and TX rings.
    588 	 */
    589 
    590 #ifdef BNX_DEBUG
    591 	/* Force more frequent interrupts. */
    592 	sc->bnx_tx_quick_cons_trip_int = 1;
    593 	sc->bnx_tx_quick_cons_trip     = 1;
    594 	sc->bnx_tx_ticks_int           = 0;
    595 	sc->bnx_tx_ticks               = 0;
    596 
    597 	sc->bnx_rx_quick_cons_trip_int = 1;
    598 	sc->bnx_rx_quick_cons_trip     = 1;
    599 	sc->bnx_rx_ticks_int           = 0;
    600 	sc->bnx_rx_ticks               = 0;
    601 #else
    602 	sc->bnx_tx_quick_cons_trip_int = 20;
    603 	sc->bnx_tx_quick_cons_trip     = 20;
    604 	sc->bnx_tx_ticks_int           = 80;
    605 	sc->bnx_tx_ticks               = 80;
    606 
    607 	sc->bnx_rx_quick_cons_trip_int = 6;
    608 	sc->bnx_rx_quick_cons_trip     = 6;
    609 	sc->bnx_rx_ticks_int           = 18;
    610 	sc->bnx_rx_ticks               = 18;
    611 #endif
    612 
    613 	/* Update statistics once every second. */
    614 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    615 
    616 	/*
    617 	 * The copper based NetXtreme II controllers
    618 	 * use an integrated PHY at address 1 while
    619 	 * the SerDes controllers use a PHY at
    620 	 * address 2.
    621 	 */
    622 	sc->bnx_phy_addr = 1;
    623 
    624 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    625 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    626 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    627 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
    628 			sc->bnx_phy_addr = 2;
    629 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    630 					 BNX_SHARED_HW_CFG_CONFIG);
    631 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    632 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    633 		}
    634 	}
    635 
    636 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    637 		aprint_error("%s: SerDes is not supported by this driver!\n",
    638 		    sc->bnx_dev.dv_xname);
    639 		goto bnx_attach_fail;
    640 	}
    641 
    642 	/* Allocate DMA memory resources. */
    643 	sc->bnx_dmatag = pa->pa_dmat;
    644 	if (bnx_dma_alloc(sc)) {
    645 		aprint_error("%s: DMA resource allocation failed!\n",
    646 		    sc->bnx_dev.dv_xname);
    647 		goto bnx_attach_fail;
    648 	}
    649 
    650 	/* Initialize the ifnet interface. */
    651 	ifp = &sc->ethercom.ec_if;
    652 	ifp->if_softc = sc;
    653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    654 	ifp->if_ioctl = bnx_ioctl;
    655 	ifp->if_start = bnx_start;
    656 	ifp->if_init = bnx_init;
    657 	ifp->if_timer = 0;
    658 	ifp->if_watchdog = bnx_watchdog;
    659         if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
    660                 ifp->if_baudrate = IF_Gbps(2.5);
    661         else
    662                 ifp->if_baudrate = IF_Gbps(1);
    663 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    664 	IFQ_SET_READY(&ifp->if_snd);
    665 	bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    666 
    667 	sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    668 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    669 
    670 	ifp->if_capabilities |=
    671 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    672 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    673 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    674 
    675 	/* Hookup IRQ last. */
    676 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    677 	if (sc->bnx_intrhand == NULL) {
    678 		aprint_error("%s: couldn't establish interrupt",
    679 		    sc->bnx_dev.dv_xname);
    680 		if (intrstr != NULL)
    681 			aprint_error(" at %s", intrstr);
    682 		aprint_error("\n");
    683 		goto bnx_attach_fail;
    684 	}
    685 
    686 	sc->bnx_mii.mii_ifp = ifp;
    687 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    688 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    689 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    690 
    691 	/* Look for our PHY. */
    692 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
    693 	    bnx_ifmedia_sts);
    694 	mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
    695 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    696 
    697 	if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
    698 		aprint_error("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
    699 		ifmedia_add(&sc->bnx_mii.mii_media,
    700 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    701 		ifmedia_set(&sc->bnx_mii.mii_media,
    702 		    IFM_ETHER|IFM_MANUAL);
    703 	} else {
    704 		ifmedia_set(&sc->bnx_mii.mii_media,
    705 		    IFM_ETHER|IFM_AUTO);
    706 	}
    707 
    708 	/* Attach to the Ethernet interface list. */
    709 	if_attach(ifp);
    710 	ether_ifattach(ifp,sc->eaddr);
    711 
    712 	callout_init(&sc->bnx_timeout, 0);
    713 
    714 	/* Print some important debugging info. */
    715 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    716 
    717 	goto bnx_attach_exit;
    718 
    719 bnx_attach_fail:
    720 	bnx_release_resources(sc);
    721 
    722 bnx_attach_exit:
    723 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
    724 }
    725 
    726 /****************************************************************************/
    727 /* Device detach function.                                                  */
    728 /*                                                                          */
    729 /* Stops the controller, resets the controller, and releases resources.     */
    730 /*                                                                          */
    731 /* Returns:                                                                 */
    732 /*   0 on success, positive value on failure.                               */
    733 /****************************************************************************/
    734 #if 0
    735 void
    736 bnx_detach(void *xsc)
    737 {
    738 	struct bnx_softc *sc;
    739 	struct ifnet *ifp = &sc->arpcom.ac_if;
    740 
    741 	sc = device_get_softc(dev);
    742 
    743 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
    744 
    745 	/* Stop and reset the controller. */
    746 	bnx_stop(sc);
    747 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    748 
    749 	ether_ifdetach(ifp);
    750 
    751 	/* If we have a child device on the MII bus remove it too. */
    752 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    753 		ifmedia_removeall(&sc->bnx_ifmedia);
    754 	} else {
    755 		bus_generic_detach(dev);
    756 		device_delete_child(dev, sc->bnx_mii);
    757 	}
    758 
    759 	/* Release all remaining resources. */
    760 	bnx_release_resources(sc);
    761 
    762 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
    763 
    764 	return(0);
    765 }
    766 #endif
    767 
    768 /****************************************************************************/
    769 /* Device shutdown function.                                                */
    770 /*                                                                          */
    771 /* Stops and resets the controller.                                         */
    772 /*                                                                          */
    773 /* Returns:                                                                 */
    774 /*   Nothing                                                                */
    775 /****************************************************************************/
    776 void
    777 bnx_shutdown(void *xsc)
    778 {
    779 	struct bnx_softc	*sc = (struct bnx_softc *)xsc;
    780 
    781 	bnx_stop(sc);
    782 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    783 }
    784 
    785 /****************************************************************************/
    786 /* Indirect register read.                                                  */
    787 /*                                                                          */
    788 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    789 /* configuration space.  Using this mechanism avoids issues with posted     */
    790 /* reads but is much slower than memory-mapped I/O.                         */
    791 /*                                                                          */
    792 /* Returns:                                                                 */
    793 /*   The value of the register.                                             */
    794 /****************************************************************************/
    795 u_int32_t
    796 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    797 {
    798 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    799 
    800 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    801 	    offset);
    802 #ifdef BNX_DEBUG
    803 	{
    804 		u_int32_t val;
    805 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    806 		    BNX_PCICFG_REG_WINDOW);
    807 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    808 		    "val = 0x%08X\n", __FUNCTION__, offset, val);
    809 		return (val);
    810 	}
    811 #else
    812 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    813 #endif
    814 }
    815 
    816 /****************************************************************************/
    817 /* Indirect register write.                                                 */
    818 /*                                                                          */
    819 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    820 /* configuration space.  Using this mechanism avoids issues with posted     */
    821 /* writes but is muchh slower than memory-mapped I/O.                       */
    822 /*                                                                          */
    823 /* Returns:                                                                 */
    824 /*   Nothing.                                                               */
    825 /****************************************************************************/
    826 void
    827 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    828 {
    829 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    830 
    831 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    832 		__FUNCTION__, offset, val);
    833 
    834 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    835 	    offset);
    836 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    837 }
    838 
    839 /****************************************************************************/
    840 /* Context memory write.                                                    */
    841 /*                                                                          */
    842 /* The NetXtreme II controller uses context memory to track connection      */
    843 /* information for L2 and higher network protocols.                         */
    844 /*                                                                          */
    845 /* Returns:                                                                 */
    846 /*   Nothing.                                                               */
    847 /****************************************************************************/
    848 void
    849 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    850     u_int32_t val)
    851 {
    852 
    853 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    854 		"val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
    855 
    856 	offset += cid_addr;
    857 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    858 	REG_WR(sc, BNX_CTX_DATA, val);
    859 }
    860 
    861 /****************************************************************************/
    862 /* PHY register read.                                                       */
    863 /*                                                                          */
    864 /* Implements register reads on the MII bus.                                */
    865 /*                                                                          */
    866 /* Returns:                                                                 */
    867 /*   The value of the register.                                             */
    868 /****************************************************************************/
    869 int
    870 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
    871 {
    872 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
    873 	u_int32_t		val;
    874 	int			i;
    875 
    876 	/* Make sure we are accessing the correct PHY address. */
    877 	if (phy != sc->bnx_phy_addr) {
    878 		DBPRINT(sc, BNX_VERBOSE,
    879 		    "Invalid PHY address %d for PHY read!\n", phy);
    880 		return(0);
    881 	}
    882 
    883 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    884 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    885 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    886 
    887 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    888 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    889 
    890 		DELAY(40);
    891 	}
    892 
    893 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    894 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    895 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    896 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    897 
    898 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    899 		DELAY(10);
    900 
    901 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    902 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    903 			DELAY(5);
    904 
    905 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    906 			val &= BNX_EMAC_MDIO_COMM_DATA;
    907 
    908 			break;
    909 		}
    910 	}
    911 
    912 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    913 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    914 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    915 		val = 0x0;
    916 	} else
    917 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    918 
    919 	DBPRINT(sc, BNX_EXCESSIVE,
    920 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy,
    921 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    922 
    923 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    924 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    925 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    926 
    927 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    928 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    929 
    930 		DELAY(40);
    931 	}
    932 
    933 	return (val & 0xffff);
    934 }
    935 
    936 /****************************************************************************/
    937 /* PHY register write.                                                      */
    938 /*                                                                          */
    939 /* Implements register writes on the MII bus.                               */
    940 /*                                                                          */
    941 /* Returns:                                                                 */
    942 /*   The value of the register.                                             */
    943 /****************************************************************************/
    944 void
    945 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
    946 {
    947 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
    948 	u_int32_t		val1;
    949 	int			i;
    950 
    951 	/* Make sure we are accessing the correct PHY address. */
    952 	if (phy != sc->bnx_phy_addr) {
    953 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    954 		    phy);
    955 		return;
    956 	}
    957 
    958 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    959 	    "val = 0x%04X\n", __FUNCTION__,
    960 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    961 
    962 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    963 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    964 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    965 
    966 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    967 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    968 
    969 		DELAY(40);
    970 	}
    971 
    972 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    973 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    974 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    975 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    976 
    977 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    978 		DELAY(10);
    979 
    980 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    981 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    982 			DELAY(5);
    983 			break;
    984 		}
    985 	}
    986 
    987 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    988 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    989 		    __LINE__);
    990 	}
    991 
    992 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    993 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    994 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    995 
    996 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    997 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    998 
    999 		DELAY(40);
   1000 	}
   1001 }
   1002 
   1003 /****************************************************************************/
   1004 /* MII bus status change.                                                   */
   1005 /*                                                                          */
   1006 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1007 /* MAC interface registers.                                                 */
   1008 /*                                                                          */
   1009 /* Returns:                                                                 */
   1010 /*   Nothing.                                                               */
   1011 /****************************************************************************/
   1012 void
   1013 bnx_miibus_statchg(struct device *dev)
   1014 {
   1015 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
   1016 	struct mii_data		*mii = &sc->bnx_mii;
   1017 
   1018 	BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
   1019 
   1020 	/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
   1021 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
   1022 		DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
   1023 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
   1024 	} else {
   1025 		DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
   1026 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
   1027 	}
   1028 
   1029 	/* Set half or full duplex based on the duplicity
   1030 	 * negotiated by the PHY.
   1031 	 */
   1032 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1033 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1034 		BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1035 	} else {
   1036 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1037 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1038 	}
   1039 }
   1040 
   1041 /****************************************************************************/
   1042 /* Acquire NVRAM lock.                                                      */
   1043 /*                                                                          */
   1044 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1045 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1046 /* for use by the driver.                                                   */
   1047 /*                                                                          */
   1048 /* Returns:                                                                 */
   1049 /*   0 on success, positive value on failure.                               */
   1050 /****************************************************************************/
   1051 int
   1052 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1053 {
   1054 	u_int32_t		val;
   1055 	int			j;
   1056 
   1057 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1058 
   1059 	/* Request access to the flash interface. */
   1060 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1061 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1062 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1063 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1064 			break;
   1065 
   1066 		DELAY(5);
   1067 	}
   1068 
   1069 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1070 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1071 		return (EBUSY);
   1072 	}
   1073 
   1074 	return (0);
   1075 }
   1076 
   1077 /****************************************************************************/
   1078 /* Release NVRAM lock.                                                      */
   1079 /*                                                                          */
   1080 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1081 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1082 /* for use by the driver.                                                   */
   1083 /*                                                                          */
   1084 /* Returns:                                                                 */
   1085 /*   0 on success, positive value on failure.                               */
   1086 /****************************************************************************/
   1087 int
   1088 bnx_release_nvram_lock(struct bnx_softc *sc)
   1089 {
   1090 	int			j;
   1091 	u_int32_t		val;
   1092 
   1093 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1094 
   1095 	/* Relinquish nvram interface. */
   1096 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1097 
   1098 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1099 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1100 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1101 			break;
   1102 
   1103 		DELAY(5);
   1104 	}
   1105 
   1106 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1107 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1108 		return (EBUSY);
   1109 	}
   1110 
   1111 	return (0);
   1112 }
   1113 
   1114 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1115 /****************************************************************************/
   1116 /* Enable NVRAM write access.                                               */
   1117 /*                                                                          */
   1118 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1119 /*                                                                          */
   1120 /* Returns:                                                                 */
   1121 /*   0 on success, positive value on failure.                               */
   1122 /****************************************************************************/
   1123 int
   1124 bnx_enable_nvram_write(struct bnx_softc *sc)
   1125 {
   1126 	u_int32_t		val;
   1127 
   1128 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1129 
   1130 	val = REG_RD(sc, BNX_MISC_CFG);
   1131 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1132 
   1133 	if (!sc->bnx_flash_info->buffered) {
   1134 		int j;
   1135 
   1136 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1137 		REG_WR(sc, BNX_NVM_COMMAND,
   1138 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1139 
   1140 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1141 			DELAY(5);
   1142 
   1143 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1144 			if (val & BNX_NVM_COMMAND_DONE)
   1145 				break;
   1146 		}
   1147 
   1148 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1149 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1150 			return (EBUSY);
   1151 		}
   1152 	}
   1153 
   1154 	return (0);
   1155 }
   1156 
   1157 /****************************************************************************/
   1158 /* Disable NVRAM write access.                                              */
   1159 /*                                                                          */
   1160 /* When the caller is finished writing to NVRAM write access must be        */
   1161 /* disabled.                                                                */
   1162 /*                                                                          */
   1163 /* Returns:                                                                 */
   1164 /*   Nothing.                                                               */
   1165 /****************************************************************************/
   1166 void
   1167 bnx_disable_nvram_write(struct bnx_softc *sc)
   1168 {
   1169 	u_int32_t		val;
   1170 
   1171 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1172 
   1173 	val = REG_RD(sc, BNX_MISC_CFG);
   1174 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1175 }
   1176 #endif
   1177 
   1178 /****************************************************************************/
   1179 /* Enable NVRAM access.                                                     */
   1180 /*                                                                          */
   1181 /* Before accessing NVRAM for read or write operations the caller must      */
   1182 /* enabled NVRAM access.                                                    */
   1183 /*                                                                          */
   1184 /* Returns:                                                                 */
   1185 /*   Nothing.                                                               */
   1186 /****************************************************************************/
   1187 void
   1188 bnx_enable_nvram_access(struct bnx_softc *sc)
   1189 {
   1190 	u_int32_t		val;
   1191 
   1192 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1193 
   1194 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1195 	/* Enable both bits, even on read. */
   1196 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1197 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1198 }
   1199 
   1200 /****************************************************************************/
   1201 /* Disable NVRAM access.                                                    */
   1202 /*                                                                          */
   1203 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1204 /*                                                                          */
   1205 /* Returns:                                                                 */
   1206 /*   Nothing.                                                               */
   1207 /****************************************************************************/
   1208 void
   1209 bnx_disable_nvram_access(struct bnx_softc *sc)
   1210 {
   1211 	u_int32_t		val;
   1212 
   1213 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1214 
   1215 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1216 
   1217 	/* Disable both bits, even after read. */
   1218 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1219 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1220 }
   1221 
   1222 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1223 /****************************************************************************/
   1224 /* Erase NVRAM page before writing.                                         */
   1225 /*                                                                          */
   1226 /* Non-buffered flash parts require that a page be erased before it is      */
   1227 /* written.                                                                 */
   1228 /*                                                                          */
   1229 /* Returns:                                                                 */
   1230 /*   0 on success, positive value on failure.                               */
   1231 /****************************************************************************/
   1232 int
   1233 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1234 {
   1235 	u_int32_t		cmd;
   1236 	int			j;
   1237 
   1238 	/* Buffered flash doesn't require an erase. */
   1239 	if (sc->bnx_flash_info->buffered)
   1240 		return (0);
   1241 
   1242 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1243 
   1244 	/* Build an erase command. */
   1245 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1246 	    BNX_NVM_COMMAND_DOIT;
   1247 
   1248 	/*
   1249 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1250 	 * and issue the erase command.
   1251 	 */
   1252 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1253 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1254 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1255 
   1256 	/* Wait for completion. */
   1257 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1258 		u_int32_t val;
   1259 
   1260 		DELAY(5);
   1261 
   1262 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1263 		if (val & BNX_NVM_COMMAND_DONE)
   1264 			break;
   1265 	}
   1266 
   1267 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1268 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1269 		return (EBUSY);
   1270 	}
   1271 
   1272 	return (0);
   1273 }
   1274 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1275 
   1276 /****************************************************************************/
   1277 /* Read a dword (32 bits) from NVRAM.                                       */
   1278 /*                                                                          */
   1279 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1280 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1281 /*                                                                          */
   1282 /* Returns:                                                                 */
   1283 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1284 /****************************************************************************/
   1285 int
   1286 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1287     u_int8_t *ret_val, u_int32_t cmd_flags)
   1288 {
   1289 	u_int32_t		cmd;
   1290 	int			i, rc = 0;
   1291 
   1292 	/* Build the command word. */
   1293 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1294 
   1295 	/* Calculate the offset for buffered flash. */
   1296 	if (sc->bnx_flash_info->buffered)
   1297 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1298 		    sc->bnx_flash_info->page_bits) +
   1299 		    (offset % sc->bnx_flash_info->page_size);
   1300 
   1301 	/*
   1302 	 * Clear the DONE bit separately, set the address to read,
   1303 	 * and issue the read.
   1304 	 */
   1305 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1306 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1307 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1308 
   1309 	/* Wait for completion. */
   1310 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1311 		u_int32_t val;
   1312 
   1313 		DELAY(5);
   1314 
   1315 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1316 		if (val & BNX_NVM_COMMAND_DONE) {
   1317 			val = REG_RD(sc, BNX_NVM_READ);
   1318 
   1319 			val = bnx_be32toh(val);
   1320 			memcpy(ret_val, &val, 4);
   1321 			break;
   1322 		}
   1323 	}
   1324 
   1325 	/* Check for errors. */
   1326 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1327 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1328 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1329 		rc = EBUSY;
   1330 	}
   1331 
   1332 	return(rc);
   1333 }
   1334 
   1335 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1336 /****************************************************************************/
   1337 /* Write a dword (32 bits) to NVRAM.                                        */
   1338 /*                                                                          */
   1339 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1340 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1341 /* enabled NVRAM write access.                                              */
   1342 /*                                                                          */
   1343 /* Returns:                                                                 */
   1344 /*   0 on success, positive value on failure.                               */
   1345 /****************************************************************************/
   1346 int
   1347 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1348     u_int32_t cmd_flags)
   1349 {
   1350 	u_int32_t		cmd, val32;
   1351 	int			j;
   1352 
   1353 	/* Build the command word. */
   1354 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1355 
   1356 	/* Calculate the offset for buffered flash. */
   1357 	if (sc->bnx_flash_info->buffered)
   1358 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1359 		    sc->bnx_flash_info->page_bits) +
   1360 		    (offset % sc->bnx_flash_info->page_size);
   1361 
   1362 	/*
   1363 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1364 	 * set the NVRAM address to write, and issue the write command
   1365 	 */
   1366 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1367 	memcpy(&val32, val, 4);
   1368 	val32 = htobe32(val32);
   1369 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1370 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1371 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1372 
   1373 	/* Wait for completion. */
   1374 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1375 		DELAY(5);
   1376 
   1377 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1378 			break;
   1379 	}
   1380 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1381 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1382 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1383 		return (EBUSY);
   1384 	}
   1385 
   1386 	return (0);
   1387 }
   1388 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1389 
   1390 /****************************************************************************/
   1391 /* Initialize NVRAM access.                                                 */
   1392 /*                                                                          */
   1393 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1394 /* access that device.                                                      */
   1395 /*                                                                          */
   1396 /* Returns:                                                                 */
   1397 /*   0 on success, positive value on failure.                               */
   1398 /****************************************************************************/
   1399 int
   1400 bnx_init_nvram(struct bnx_softc *sc)
   1401 {
   1402 	u_int32_t		val;
   1403 	int			j, entry_count, rc;
   1404 	struct flash_spec	*flash;
   1405 
   1406 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1407 
   1408 	/* Determine the selected interface. */
   1409 	val = REG_RD(sc, BNX_NVM_CFG1);
   1410 
   1411 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1412 
   1413 	rc = 0;
   1414 
   1415 	/*
   1416 	 * Flash reconfiguration is required to support additional
   1417 	 * NVRAM devices not directly supported in hardware.
   1418 	 * Check if the flash interface was reconfigured
   1419 	 * by the bootcode.
   1420 	 */
   1421 
   1422 	if (val & 0x40000000) {
   1423 		/* Flash interface reconfigured by bootcode. */
   1424 
   1425 		DBPRINT(sc,BNX_INFO_LOAD,
   1426 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1427 
   1428 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1429 		     j++, flash++) {
   1430 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1431 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1432 				sc->bnx_flash_info = flash;
   1433 				break;
   1434 			}
   1435 		}
   1436 	} else {
   1437 		/* Flash interface not yet reconfigured. */
   1438 		u_int32_t mask;
   1439 
   1440 		DBPRINT(sc,BNX_INFO_LOAD,
   1441 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1442 
   1443 		if (val & (1 << 23))
   1444 			mask = FLASH_BACKUP_STRAP_MASK;
   1445 		else
   1446 			mask = FLASH_STRAP_MASK;
   1447 
   1448 		/* Look for the matching NVRAM device configuration data. */
   1449 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1450 		    j++, flash++) {
   1451 			/* Check if the dev matches any of the known devices. */
   1452 			if ((val & mask) == (flash->strapping & mask)) {
   1453 				/* Found a device match. */
   1454 				sc->bnx_flash_info = flash;
   1455 
   1456 				/* Request access to the flash interface. */
   1457 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1458 					return (rc);
   1459 
   1460 				/* Reconfigure the flash interface. */
   1461 				bnx_enable_nvram_access(sc);
   1462 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1463 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1464 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1465 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1466 				bnx_disable_nvram_access(sc);
   1467 				bnx_release_nvram_lock(sc);
   1468 
   1469 				break;
   1470 			}
   1471 		}
   1472 	}
   1473 
   1474 	/* Check if a matching device was found. */
   1475 	if (j == entry_count) {
   1476 		sc->bnx_flash_info = NULL;
   1477 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1478 			__FILE__, __LINE__);
   1479 		rc = ENODEV;
   1480 	}
   1481 
   1482 	/* Write the flash config data to the shared memory interface. */
   1483 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1484 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1485 	if (val)
   1486 		sc->bnx_flash_size = val;
   1487 	else
   1488 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1489 
   1490 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1491 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1492 
   1493 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   1494 
   1495 	return (rc);
   1496 }
   1497 
   1498 /****************************************************************************/
   1499 /* Read an arbitrary range of data from NVRAM.                              */
   1500 /*                                                                          */
   1501 /* Prepares the NVRAM interface for access and reads the requested data     */
   1502 /* into the supplied buffer.                                                */
   1503 /*                                                                          */
   1504 /* Returns:                                                                 */
   1505 /*   0 on success and the data read, positive value on failure.             */
   1506 /****************************************************************************/
   1507 int
   1508 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1509     int buf_size)
   1510 {
   1511 	int			rc = 0;
   1512 	u_int32_t		cmd_flags, offset32, len32, extra;
   1513 
   1514 	if (buf_size == 0)
   1515 		return (0);
   1516 
   1517 	/* Request access to the flash interface. */
   1518 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1519 		return (rc);
   1520 
   1521 	/* Enable access to flash interface */
   1522 	bnx_enable_nvram_access(sc);
   1523 
   1524 	len32 = buf_size;
   1525 	offset32 = offset;
   1526 	extra = 0;
   1527 
   1528 	cmd_flags = 0;
   1529 
   1530 	if (offset32 & 3) {
   1531 		u_int8_t buf[4];
   1532 		u_int32_t pre_len;
   1533 
   1534 		offset32 &= ~3;
   1535 		pre_len = 4 - (offset & 3);
   1536 
   1537 		if (pre_len >= len32) {
   1538 			pre_len = len32;
   1539 			cmd_flags =
   1540 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1541 		} else
   1542 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1543 
   1544 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1545 
   1546 		if (rc)
   1547 			return (rc);
   1548 
   1549 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1550 
   1551 		offset32 += 4;
   1552 		ret_buf += pre_len;
   1553 		len32 -= pre_len;
   1554 	}
   1555 
   1556 	if (len32 & 3) {
   1557 		extra = 4 - (len32 & 3);
   1558 		len32 = (len32 + 4) & ~3;
   1559 	}
   1560 
   1561 	if (len32 == 4) {
   1562 		u_int8_t buf[4];
   1563 
   1564 		if (cmd_flags)
   1565 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1566 		else
   1567 			cmd_flags =
   1568 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1569 
   1570 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1571 
   1572 		memcpy(ret_buf, buf, 4 - extra);
   1573 	} else if (len32 > 0) {
   1574 		u_int8_t buf[4];
   1575 
   1576 		/* Read the first word. */
   1577 		if (cmd_flags)
   1578 			cmd_flags = 0;
   1579 		else
   1580 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1581 
   1582 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1583 
   1584 		/* Advance to the next dword. */
   1585 		offset32 += 4;
   1586 		ret_buf += 4;
   1587 		len32 -= 4;
   1588 
   1589 		while (len32 > 4 && rc == 0) {
   1590 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1591 
   1592 			/* Advance to the next dword. */
   1593 			offset32 += 4;
   1594 			ret_buf += 4;
   1595 			len32 -= 4;
   1596 		}
   1597 
   1598 		if (rc)
   1599 			return (rc);
   1600 
   1601 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1602 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1603 
   1604 		memcpy(ret_buf, buf, 4 - extra);
   1605 	}
   1606 
   1607 	/* Disable access to flash interface and release the lock. */
   1608 	bnx_disable_nvram_access(sc);
   1609 	bnx_release_nvram_lock(sc);
   1610 
   1611 	return (rc);
   1612 }
   1613 
   1614 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1615 /****************************************************************************/
   1616 /* Write an arbitrary range of data from NVRAM.                             */
   1617 /*                                                                          */
   1618 /* Prepares the NVRAM interface for write access and writes the requested   */
   1619 /* data from the supplied buffer.  The caller is responsible for            */
   1620 /* calculating any appropriate CRCs.                                        */
   1621 /*                                                                          */
   1622 /* Returns:                                                                 */
   1623 /*   0 on success, positive value on failure.                               */
   1624 /****************************************************************************/
   1625 int
   1626 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1627     int buf_size)
   1628 {
   1629 	u_int32_t		written, offset32, len32;
   1630 	u_int8_t		*buf, start[4], end[4];
   1631 	int			rc = 0;
   1632 	int			align_start, align_end;
   1633 
   1634 	buf = data_buf;
   1635 	offset32 = offset;
   1636 	len32 = buf_size;
   1637 	align_start = align_end = 0;
   1638 
   1639 	if ((align_start = (offset32 & 3))) {
   1640 		offset32 &= ~3;
   1641 		len32 += align_start;
   1642 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1643 			return (rc);
   1644 	}
   1645 
   1646 	if (len32 & 3) {
   1647 	       	if ((len32 > 4) || !align_start) {
   1648 			align_end = 4 - (len32 & 3);
   1649 			len32 += align_end;
   1650 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1651 			    end, 4))) {
   1652 				return (rc);
   1653 			}
   1654 		}
   1655 	}
   1656 
   1657 	if (align_start || align_end) {
   1658 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1659 		if (buf == 0)
   1660 			return (ENOMEM);
   1661 
   1662 		if (align_start)
   1663 			memcpy(buf, start, 4);
   1664 
   1665 		if (align_end)
   1666 			memcpy(buf + len32 - 4, end, 4);
   1667 
   1668 		memcpy(buf + align_start, data_buf, buf_size);
   1669 	}
   1670 
   1671 	written = 0;
   1672 	while ((written < len32) && (rc == 0)) {
   1673 		u_int32_t page_start, page_end, data_start, data_end;
   1674 		u_int32_t addr, cmd_flags;
   1675 		int i;
   1676 		u_int8_t flash_buffer[264];
   1677 
   1678 	    /* Find the page_start addr */
   1679 		page_start = offset32 + written;
   1680 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1681 		/* Find the page_end addr */
   1682 		page_end = page_start + sc->bnx_flash_info->page_size;
   1683 		/* Find the data_start addr */
   1684 		data_start = (written == 0) ? offset32 : page_start;
   1685 		/* Find the data_end addr */
   1686 		data_end = (page_end > offset32 + len32) ?
   1687 		    (offset32 + len32) : page_end;
   1688 
   1689 		/* Request access to the flash interface. */
   1690 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1691 			goto nvram_write_end;
   1692 
   1693 		/* Enable access to flash interface */
   1694 		bnx_enable_nvram_access(sc);
   1695 
   1696 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1697 		if (sc->bnx_flash_info->buffered == 0) {
   1698 			int j;
   1699 
   1700 			/* Read the whole page into the buffer
   1701 			 * (non-buffer flash only) */
   1702 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1703 				if (j == (sc->bnx_flash_info->page_size - 4))
   1704 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1705 
   1706 				rc = bnx_nvram_read_dword(sc,
   1707 					page_start + j,
   1708 					&flash_buffer[j],
   1709 					cmd_flags);
   1710 
   1711 				if (rc)
   1712 					goto nvram_write_end;
   1713 
   1714 				cmd_flags = 0;
   1715 			}
   1716 		}
   1717 
   1718 		/* Enable writes to flash interface (unlock write-protect) */
   1719 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1720 			goto nvram_write_end;
   1721 
   1722 		/* Erase the page */
   1723 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1724 			goto nvram_write_end;
   1725 
   1726 		/* Re-enable the write again for the actual write */
   1727 		bnx_enable_nvram_write(sc);
   1728 
   1729 		/* Loop to write back the buffer data from page_start to
   1730 		 * data_start */
   1731 		i = 0;
   1732 		if (sc->bnx_flash_info->buffered == 0) {
   1733 			for (addr = page_start; addr < data_start;
   1734 				addr += 4, i += 4) {
   1735 
   1736 				rc = bnx_nvram_write_dword(sc, addr,
   1737 				    &flash_buffer[i], cmd_flags);
   1738 
   1739 				if (rc != 0)
   1740 					goto nvram_write_end;
   1741 
   1742 				cmd_flags = 0;
   1743 			}
   1744 		}
   1745 
   1746 		/* Loop to write the new data from data_start to data_end */
   1747 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1748 			if ((addr == page_end - 4) ||
   1749 			    ((sc->bnx_flash_info->buffered) &&
   1750 			    (addr == data_end - 4))) {
   1751 
   1752 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1753 			}
   1754 
   1755 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1756 
   1757 			if (rc != 0)
   1758 				goto nvram_write_end;
   1759 
   1760 			cmd_flags = 0;
   1761 			buf += 4;
   1762 		}
   1763 
   1764 		/* Loop to write back the buffer data from data_end
   1765 		 * to page_end */
   1766 		if (sc->bnx_flash_info->buffered == 0) {
   1767 			for (addr = data_end; addr < page_end;
   1768 			    addr += 4, i += 4) {
   1769 
   1770 				if (addr == page_end-4)
   1771 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1772 
   1773 				rc = bnx_nvram_write_dword(sc, addr,
   1774 				    &flash_buffer[i], cmd_flags);
   1775 
   1776 				if (rc != 0)
   1777 					goto nvram_write_end;
   1778 
   1779 				cmd_flags = 0;
   1780 			}
   1781 		}
   1782 
   1783 		/* Disable writes to flash interface (lock write-protect) */
   1784 		bnx_disable_nvram_write(sc);
   1785 
   1786 		/* Disable access to flash interface */
   1787 		bnx_disable_nvram_access(sc);
   1788 		bnx_release_nvram_lock(sc);
   1789 
   1790 		/* Increment written */
   1791 		written += data_end - data_start;
   1792 	}
   1793 
   1794 nvram_write_end:
   1795 	if (align_start || align_end)
   1796 		free(buf, M_DEVBUF);
   1797 
   1798 	return (rc);
   1799 }
   1800 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1801 
   1802 /****************************************************************************/
   1803 /* Verifies that NVRAM is accessible and contains valid data.               */
   1804 /*                                                                          */
   1805 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1806 /* correct.                                                                 */
   1807 /*                                                                          */
   1808 /* Returns:                                                                 */
   1809 /*   0 on success, positive value on failure.                               */
   1810 /****************************************************************************/
   1811 int
   1812 bnx_nvram_test(struct bnx_softc *sc)
   1813 {
   1814 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1815 	u_int8_t		*data = (u_int8_t *) buf;
   1816 	int			rc = 0;
   1817 	u_int32_t		magic, csum;
   1818 
   1819 	/*
   1820 	 * Check that the device NVRAM is valid by reading
   1821 	 * the magic value at offset 0.
   1822 	 */
   1823 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1824 		goto bnx_nvram_test_done;
   1825 
   1826 	magic = bnx_be32toh(buf[0]);
   1827 	if (magic != BNX_NVRAM_MAGIC) {
   1828 		rc = ENODEV;
   1829 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1830 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1831 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1832 		goto bnx_nvram_test_done;
   1833 	}
   1834 
   1835 	/*
   1836 	 * Verify that the device NVRAM includes valid
   1837 	 * configuration data.
   1838 	 */
   1839 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1840 		goto bnx_nvram_test_done;
   1841 
   1842 	csum = ether_crc32_le(data, 0x100);
   1843 	if (csum != BNX_CRC32_RESIDUAL) {
   1844 		rc = ENODEV;
   1845 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1846 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1847 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1848 		goto bnx_nvram_test_done;
   1849 	}
   1850 
   1851 	csum = ether_crc32_le(data + 0x100, 0x100);
   1852 	if (csum != BNX_CRC32_RESIDUAL) {
   1853 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1854 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1855 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1856 		rc = ENODEV;
   1857 	}
   1858 
   1859 bnx_nvram_test_done:
   1860 	return (rc);
   1861 }
   1862 
   1863 /****************************************************************************/
   1864 /* Free any DMA memory owned by the driver.                                 */
   1865 /*                                                                          */
   1866 /* Scans through each data structre that requires DMA memory and frees      */
   1867 /* the memory if allocated.                                                 */
   1868 /*                                                                          */
   1869 /* Returns:                                                                 */
   1870 /*   Nothing.                                                               */
   1871 /****************************************************************************/
   1872 void
   1873 bnx_dma_free(struct bnx_softc *sc)
   1874 {
   1875 	int			i;
   1876 
   1877 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1878 
   1879 	/* Destroy the status block. */
   1880 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1881 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1882 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1883 		    BNX_STATUS_BLK_SZ);
   1884 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1885 		    sc->status_rseg);
   1886 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1887 		sc->status_block = NULL;
   1888 		sc->status_map = NULL;
   1889 	}
   1890 
   1891 	/* Destroy the statistics block. */
   1892 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1893 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1894 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1895 		    BNX_STATS_BLK_SZ);
   1896 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1897 		    sc->stats_rseg);
   1898 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1899 		sc->stats_block = NULL;
   1900 		sc->stats_map = NULL;
   1901 	}
   1902 
   1903 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1904 	for (i = 0; i < TX_PAGES; i++ ) {
   1905 		if (sc->tx_bd_chain[i] != NULL &&
   1906 		    sc->tx_bd_chain_map[i] != NULL) {
   1907 			bus_dmamap_unload(sc->bnx_dmatag,
   1908 			    sc->tx_bd_chain_map[i]);
   1909 			bus_dmamem_unmap(sc->bnx_dmatag,
   1910 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1911 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1912 			    sc->tx_bd_chain_rseg[i]);
   1913 			bus_dmamap_destroy(sc->bnx_dmatag,
   1914 			    sc->tx_bd_chain_map[i]);
   1915 			sc->tx_bd_chain[i] = NULL;
   1916 			sc->tx_bd_chain_map[i] = NULL;
   1917 		}
   1918 	}
   1919 
   1920 	/* Unload and destroy the TX mbuf maps. */
   1921 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1922 		if (sc->tx_mbuf_map[i] != NULL) {
   1923 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1924 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1925 		}
   1926 	}
   1927 
   1928 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1929 	for (i = 0; i < RX_PAGES; i++ ) {
   1930 		if (sc->rx_bd_chain[i] != NULL &&
   1931 		    sc->rx_bd_chain_map[i] != NULL) {
   1932 			bus_dmamap_unload(sc->bnx_dmatag,
   1933 			    sc->rx_bd_chain_map[i]);
   1934 			bus_dmamem_unmap(sc->bnx_dmatag,
   1935 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1936 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1937 			    sc->rx_bd_chain_rseg[i]);
   1938 
   1939 			bus_dmamap_destroy(sc->bnx_dmatag,
   1940 			    sc->rx_bd_chain_map[i]);
   1941 			sc->rx_bd_chain[i] = NULL;
   1942 			sc->rx_bd_chain_map[i] = NULL;
   1943 		}
   1944 	}
   1945 
   1946 	/* Unload and destroy the RX mbuf maps. */
   1947 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1948 		if (sc->rx_mbuf_map[i] != NULL) {
   1949 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1950 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1951 		}
   1952 	}
   1953 
   1954 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   1955 }
   1956 
   1957 /****************************************************************************/
   1958 /* Allocate any DMA memory needed by the driver.                            */
   1959 /*                                                                          */
   1960 /* Allocates DMA memory needed for the various global structures needed by  */
   1961 /* hardware.                                                                */
   1962 /*                                                                          */
   1963 /* Returns:                                                                 */
   1964 /*   0 for success, positive value for failure.                             */
   1965 /****************************************************************************/
   1966 int
   1967 bnx_dma_alloc(struct bnx_softc *sc)
   1968 {
   1969 	int			i, rc = 0;
   1970 
   1971 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1972 
   1973 	/*
   1974 	 * Allocate DMA memory for the status block, map the memory into DMA
   1975 	 * space, and fetch the physical address of the block.
   1976 	 */
   1977 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1978 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1979 		aprint_error("%s: Could not create status block DMA map!\n",
   1980 		    sc->bnx_dev.dv_xname);
   1981 		rc = ENOMEM;
   1982 		goto bnx_dma_alloc_exit;
   1983 	}
   1984 
   1985 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1986 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1987 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1988 		aprint_error(
   1989 		    "%s: Could not allocate status block DMA memory!\n",
   1990 		    sc->bnx_dev.dv_xname);
   1991 		rc = ENOMEM;
   1992 		goto bnx_dma_alloc_exit;
   1993 	}
   1994 
   1995 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1996 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1997 		aprint_error("%s: Could not map status block DMA memory!\n",
   1998 		    sc->bnx_dev.dv_xname);
   1999 		rc = ENOMEM;
   2000 		goto bnx_dma_alloc_exit;
   2001 	}
   2002 
   2003 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2004 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2005 		aprint_error("%s: Could not load status block DMA memory!\n",
   2006 		    sc->bnx_dev.dv_xname);
   2007 		rc = ENOMEM;
   2008 		goto bnx_dma_alloc_exit;
   2009 	}
   2010 
   2011 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2012 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   2013 
   2014 	/* DRC - Fix for 64 bit addresses. */
   2015 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2016 		(u_int32_t) sc->status_block_paddr);
   2017 
   2018 	/*
   2019 	 * Allocate DMA memory for the statistics block, map the memory into
   2020 	 * DMA space, and fetch the physical address of the block.
   2021 	 */
   2022 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2023 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2024 		aprint_error("%s: Could not create stats block DMA map!\n",
   2025 		    sc->bnx_dev.dv_xname);
   2026 		rc = ENOMEM;
   2027 		goto bnx_dma_alloc_exit;
   2028 	}
   2029 
   2030 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2031 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2032 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2033 		aprint_error("%s: Could not allocate stats block DMA memory!\n",
   2034 		    sc->bnx_dev.dv_xname);
   2035 		rc = ENOMEM;
   2036 		goto bnx_dma_alloc_exit;
   2037 	}
   2038 
   2039 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2040 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2041 		aprint_error("%s: Could not map stats block DMA memory!\n",
   2042 		    sc->bnx_dev.dv_xname);
   2043 		rc = ENOMEM;
   2044 		goto bnx_dma_alloc_exit;
   2045 	}
   2046 
   2047 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2048 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2049 		aprint_error("%s: Could not load status block DMA memory!\n",
   2050 		    sc->bnx_dev.dv_xname);
   2051 		rc = ENOMEM;
   2052 		goto bnx_dma_alloc_exit;
   2053 	}
   2054 
   2055 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2056 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2057 
   2058 	/* DRC - Fix for 64 bit address. */
   2059 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2060 	    (u_int32_t) sc->stats_block_paddr);
   2061 
   2062 	/*
   2063 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2064 	 * and fetch the physical address of the block.
   2065 	 */
   2066 	for (i = 0; i < TX_PAGES; i++) {
   2067 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2068 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2069 		    &sc->tx_bd_chain_map[i])) {
   2070 			aprint_error(
   2071 			    "%s: Could not create Tx desc %d DMA map!\n",
   2072 			    sc->bnx_dev.dv_xname, i);
   2073 			rc = ENOMEM;
   2074 			goto bnx_dma_alloc_exit;
   2075 		}
   2076 
   2077 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2078 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2079 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2080 			aprint_error(
   2081 			    "%s: Could not allocate TX desc %d DMA memory!\n",
   2082 			    sc->bnx_dev.dv_xname, i);
   2083 			rc = ENOMEM;
   2084 			goto bnx_dma_alloc_exit;
   2085 		}
   2086 
   2087 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2088 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2089 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2090 			aprint_error(
   2091 			    "%s: Could not map TX desc %d DMA memory!\n",
   2092 			    sc->bnx_dev.dv_xname, i);
   2093 			rc = ENOMEM;
   2094 			goto bnx_dma_alloc_exit;
   2095 		}
   2096 
   2097 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2098 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2099 		    BUS_DMA_NOWAIT)) {
   2100 			aprint_error(
   2101 			    "%s: Could not load TX desc %d DMA memory!\n",
   2102 			    sc->bnx_dev.dv_xname, i);
   2103 			rc = ENOMEM;
   2104 			goto bnx_dma_alloc_exit;
   2105 		}
   2106 
   2107 		sc->tx_bd_chain_paddr[i] =
   2108 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2109 
   2110 		/* DRC - Fix for 64 bit systems. */
   2111 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2112 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2113 	}
   2114 
   2115 	/*
   2116 	 * Create DMA maps for the TX buffer mbufs.
   2117 	 */
   2118 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2119 		if (bus_dmamap_create(sc->bnx_dmatag,
   2120 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2121 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2122 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2123 		    &sc->tx_mbuf_map[i])) {
   2124 			aprint_error(
   2125 			    "%s: Could not create Tx mbuf %d DMA map!\n",
   2126 			    sc->bnx_dev.dv_xname, i);
   2127 			rc = ENOMEM;
   2128 			goto bnx_dma_alloc_exit;
   2129 		}
   2130 	}
   2131 
   2132 	/*
   2133 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2134 	 * and fetch the physical address of the block.
   2135 	 */
   2136 	for (i = 0; i < RX_PAGES; i++) {
   2137 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2138 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2139 		    &sc->rx_bd_chain_map[i])) {
   2140 			aprint_error(
   2141 			    "%s: Could not create Rx desc %d DMA map!\n",
   2142 			    sc->bnx_dev.dv_xname, i);
   2143 			rc = ENOMEM;
   2144 			goto bnx_dma_alloc_exit;
   2145 		}
   2146 
   2147 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2148 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2149 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2150 			aprint_error(
   2151 			    "%s: Could not allocate Rx desc %d DMA memory!\n",
   2152 			    sc->bnx_dev.dv_xname, i);
   2153 			rc = ENOMEM;
   2154 			goto bnx_dma_alloc_exit;
   2155 		}
   2156 
   2157 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2158 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2159 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2160 			aprint_error(
   2161 			    "%s: Could not map Rx desc %d DMA memory!\n",
   2162 			    sc->bnx_dev.dv_xname, i);
   2163 			rc = ENOMEM;
   2164 			goto bnx_dma_alloc_exit;
   2165 		}
   2166 
   2167 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2168 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2169 		    BUS_DMA_NOWAIT)) {
   2170 			aprint_error(
   2171 			    "%s: Could not load Rx desc %d DMA memory!\n",
   2172 			    sc->bnx_dev.dv_xname, i);
   2173 			rc = ENOMEM;
   2174 			goto bnx_dma_alloc_exit;
   2175 		}
   2176 
   2177 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2178 		sc->rx_bd_chain_paddr[i] =
   2179 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2180 
   2181 		/* DRC - Fix for 64 bit systems. */
   2182 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2183 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2184 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2185 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2186 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2187 	}
   2188 
   2189 	/*
   2190 	 * Create DMA maps for the Rx buffer mbufs.
   2191 	 */
   2192 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2193 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2194 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2195 		    &sc->rx_mbuf_map[i])) {
   2196 			aprint_error(
   2197 			    "%s: Could not create Rx mbuf %d DMA map!\n",
   2198 			    sc->bnx_dev.dv_xname, i);
   2199 			rc = ENOMEM;
   2200 			goto bnx_dma_alloc_exit;
   2201 		}
   2202 	}
   2203 
   2204  bnx_dma_alloc_exit:
   2205 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2206 
   2207 	return(rc);
   2208 }
   2209 
   2210 /****************************************************************************/
   2211 /* Release all resources used by the driver.                                */
   2212 /*                                                                          */
   2213 /* Releases all resources acquired by the driver including interrupts,      */
   2214 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2215 /*                                                                          */
   2216 /* Returns:                                                                 */
   2217 /*   Nothing.                                                               */
   2218 /****************************************************************************/
   2219 void
   2220 bnx_release_resources(struct bnx_softc *sc)
   2221 {
   2222 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2223 
   2224 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2225 
   2226 	bnx_dma_free(sc);
   2227 
   2228 	if (sc->bnx_intrhand != NULL)
   2229 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2230 
   2231 	if (sc->bnx_size)
   2232 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2233 
   2234 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2235 }
   2236 
   2237 /****************************************************************************/
   2238 /* Firmware synchronization.                                                */
   2239 /*                                                                          */
   2240 /* Before performing certain events such as a chip reset, synchronize with  */
   2241 /* the firmware first.                                                      */
   2242 /*                                                                          */
   2243 /* Returns:                                                                 */
   2244 /*   0 for success, positive value for failure.                             */
   2245 /****************************************************************************/
   2246 int
   2247 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2248 {
   2249 	int			i, rc = 0;
   2250 	u_int32_t		val;
   2251 
   2252 	/* Don't waste any time if we've timed out before. */
   2253 	if (sc->bnx_fw_timed_out) {
   2254 		rc = EBUSY;
   2255 		goto bnx_fw_sync_exit;
   2256 	}
   2257 
   2258 	/* Increment the message sequence number. */
   2259 	sc->bnx_fw_wr_seq++;
   2260 	msg_data |= sc->bnx_fw_wr_seq;
   2261 
   2262  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2263 	    msg_data);
   2264 
   2265 	/* Send the message to the bootcode driver mailbox. */
   2266 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2267 
   2268 	/* Wait for the bootcode to acknowledge the message. */
   2269 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2270 		/* Check for a response in the bootcode firmware mailbox. */
   2271 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2272 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2273 			break;
   2274 		DELAY(1000);
   2275 	}
   2276 
   2277 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2278 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2279 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2280 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2281 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2282 
   2283 		msg_data &= ~BNX_DRV_MSG_CODE;
   2284 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2285 
   2286 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2287 
   2288 		sc->bnx_fw_timed_out = 1;
   2289 		rc = EBUSY;
   2290 	}
   2291 
   2292 bnx_fw_sync_exit:
   2293 	return (rc);
   2294 }
   2295 
   2296 /****************************************************************************/
   2297 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2298 /*                                                                          */
   2299 /* Returns:                                                                 */
   2300 /*   Nothing.                                                               */
   2301 /****************************************************************************/
   2302 void
   2303 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2304     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2305 {
   2306 	int			i;
   2307 	u_int32_t		val;
   2308 
   2309 	for (i = 0; i < rv2p_code_len; i += 8) {
   2310 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2311 		rv2p_code++;
   2312 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2313 		rv2p_code++;
   2314 
   2315 		if (rv2p_proc == RV2P_PROC1) {
   2316 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2317 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2318 		}
   2319 		else {
   2320 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2321 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2322 		}
   2323 	}
   2324 
   2325 	/* Reset the processor, un-stall is done later. */
   2326 	if (rv2p_proc == RV2P_PROC1)
   2327 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2328 	else
   2329 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2330 }
   2331 
   2332 /****************************************************************************/
   2333 /* Load RISC processor firmware.                                            */
   2334 /*                                                                          */
   2335 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2336 /* associated with a particular processor.                                  */
   2337 /*                                                                          */
   2338 /* Returns:                                                                 */
   2339 /*   Nothing.                                                               */
   2340 /****************************************************************************/
   2341 void
   2342 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2343     struct fw_info *fw)
   2344 {
   2345 	u_int32_t		offset;
   2346 	u_int32_t		val;
   2347 
   2348 	/* Halt the CPU. */
   2349 	val = REG_RD_IND(sc, cpu_reg->mode);
   2350 	val |= cpu_reg->mode_value_halt;
   2351 	REG_WR_IND(sc, cpu_reg->mode, val);
   2352 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2353 
   2354 	/* Load the Text area. */
   2355 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2356 	if (fw->text) {
   2357 		int j;
   2358 
   2359 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2360 			REG_WR_IND(sc, offset, fw->text[j]);
   2361 	}
   2362 
   2363 	/* Load the Data area. */
   2364 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2365 	if (fw->data) {
   2366 		int j;
   2367 
   2368 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2369 			REG_WR_IND(sc, offset, fw->data[j]);
   2370 	}
   2371 
   2372 	/* Load the SBSS area. */
   2373 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2374 	if (fw->sbss) {
   2375 		int j;
   2376 
   2377 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2378 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2379 	}
   2380 
   2381 	/* Load the BSS area. */
   2382 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2383 	if (fw->bss) {
   2384 		int j;
   2385 
   2386 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2387 			REG_WR_IND(sc, offset, fw->bss[j]);
   2388 	}
   2389 
   2390 	/* Load the Read-Only area. */
   2391 	offset = cpu_reg->spad_base +
   2392 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2393 	if (fw->rodata) {
   2394 		int j;
   2395 
   2396 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2397 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2398 	}
   2399 
   2400 	/* Clear the pre-fetch instruction. */
   2401 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2402 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2403 
   2404 	/* Start the CPU. */
   2405 	val = REG_RD_IND(sc, cpu_reg->mode);
   2406 	val &= ~cpu_reg->mode_value_halt;
   2407 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2408 	REG_WR_IND(sc, cpu_reg->mode, val);
   2409 }
   2410 
   2411 /****************************************************************************/
   2412 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2413 /*                                                                          */
   2414 /* Loads the firmware for each CPU and starts the CPU.                      */
   2415 /*                                                                          */
   2416 /* Returns:                                                                 */
   2417 /*   Nothing.                                                               */
   2418 /****************************************************************************/
   2419 void
   2420 bnx_init_cpus(struct bnx_softc *sc)
   2421 {
   2422 	struct cpu_reg cpu_reg;
   2423 	struct fw_info fw;
   2424 
   2425 	/* Initialize the RV2P processor. */
   2426 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2427 	    RV2P_PROC1);
   2428 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2429 	    RV2P_PROC2);
   2430 
   2431 	/* Initialize the RX Processor. */
   2432 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2433 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2434 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2435 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2436 	cpu_reg.state_value_clear = 0xffffff;
   2437 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2438 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2439 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2440 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2441 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2442 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2443 	cpu_reg.mips_view_base = 0x8000000;
   2444 
   2445 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2446 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2447 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2448 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2449 
   2450 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2451 	fw.text_len = bnx_RXP_b06FwTextLen;
   2452 	fw.text_index = 0;
   2453 	fw.text = bnx_RXP_b06FwText;
   2454 
   2455 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2456 	fw.data_len = bnx_RXP_b06FwDataLen;
   2457 	fw.data_index = 0;
   2458 	fw.data = bnx_RXP_b06FwData;
   2459 
   2460 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2461 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2462 	fw.sbss_index = 0;
   2463 	fw.sbss = bnx_RXP_b06FwSbss;
   2464 
   2465 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2466 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2467 	fw.bss_index = 0;
   2468 	fw.bss = bnx_RXP_b06FwBss;
   2469 
   2470 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2471 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2472 	fw.rodata_index = 0;
   2473 	fw.rodata = bnx_RXP_b06FwRodata;
   2474 
   2475 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2476 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2477 
   2478 	/* Initialize the TX Processor. */
   2479 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2480 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2481 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2482 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2483 	cpu_reg.state_value_clear = 0xffffff;
   2484 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2485 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2486 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2487 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2488 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2489 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2490 	cpu_reg.mips_view_base = 0x8000000;
   2491 
   2492 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2493 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2494 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2495 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2496 
   2497 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2498 	fw.text_len = bnx_TXP_b06FwTextLen;
   2499 	fw.text_index = 0;
   2500 	fw.text = bnx_TXP_b06FwText;
   2501 
   2502 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2503 	fw.data_len = bnx_TXP_b06FwDataLen;
   2504 	fw.data_index = 0;
   2505 	fw.data = bnx_TXP_b06FwData;
   2506 
   2507 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2508 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2509 	fw.sbss_index = 0;
   2510 	fw.sbss = bnx_TXP_b06FwSbss;
   2511 
   2512 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2513 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2514 	fw.bss_index = 0;
   2515 	fw.bss = bnx_TXP_b06FwBss;
   2516 
   2517 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2518 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2519 	fw.rodata_index = 0;
   2520 	fw.rodata = bnx_TXP_b06FwRodata;
   2521 
   2522 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2523 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2524 
   2525 	/* Initialize the TX Patch-up Processor. */
   2526 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2527 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2528 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2529 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2530 	cpu_reg.state_value_clear = 0xffffff;
   2531 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2532 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2533 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2534 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2535 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2536 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2537 	cpu_reg.mips_view_base = 0x8000000;
   2538 
   2539 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2540 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2541 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2542 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2543 
   2544 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2545 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2546 	fw.text_index = 0;
   2547 	fw.text = bnx_TPAT_b06FwText;
   2548 
   2549 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2550 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2551 	fw.data_index = 0;
   2552 	fw.data = bnx_TPAT_b06FwData;
   2553 
   2554 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2555 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2556 	fw.sbss_index = 0;
   2557 	fw.sbss = bnx_TPAT_b06FwSbss;
   2558 
   2559 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2560 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2561 	fw.bss_index = 0;
   2562 	fw.bss = bnx_TPAT_b06FwBss;
   2563 
   2564 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2565 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2566 	fw.rodata_index = 0;
   2567 	fw.rodata = bnx_TPAT_b06FwRodata;
   2568 
   2569 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2570 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2571 
   2572 	/* Initialize the Completion Processor. */
   2573 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2574 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2575 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2576 	cpu_reg.state = BNX_COM_CPU_STATE;
   2577 	cpu_reg.state_value_clear = 0xffffff;
   2578 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2579 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2580 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2581 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2582 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2583 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2584 	cpu_reg.mips_view_base = 0x8000000;
   2585 
   2586 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2587 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2588 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2589 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2590 
   2591 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2592 	fw.text_len = bnx_COM_b06FwTextLen;
   2593 	fw.text_index = 0;
   2594 	fw.text = bnx_COM_b06FwText;
   2595 
   2596 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2597 	fw.data_len = bnx_COM_b06FwDataLen;
   2598 	fw.data_index = 0;
   2599 	fw.data = bnx_COM_b06FwData;
   2600 
   2601 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2602 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2603 	fw.sbss_index = 0;
   2604 	fw.sbss = bnx_COM_b06FwSbss;
   2605 
   2606 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2607 	fw.bss_len = bnx_COM_b06FwBssLen;
   2608 	fw.bss_index = 0;
   2609 	fw.bss = bnx_COM_b06FwBss;
   2610 
   2611 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2612 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2613 	fw.rodata_index = 0;
   2614 	fw.rodata = bnx_COM_b06FwRodata;
   2615 
   2616 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2617 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2618 }
   2619 
   2620 /****************************************************************************/
   2621 /* Initialize context memory.                                               */
   2622 /*                                                                          */
   2623 /* Clears the memory associated with each Context ID (CID).                 */
   2624 /*                                                                          */
   2625 /* Returns:                                                                 */
   2626 /*   Nothing.                                                               */
   2627 /****************************************************************************/
   2628 void
   2629 bnx_init_context(struct bnx_softc *sc)
   2630 {
   2631 	u_int32_t		vcid;
   2632 
   2633 	vcid = 96;
   2634 	while (vcid) {
   2635 		u_int32_t vcid_addr, pcid_addr, offset;
   2636 
   2637 		vcid--;
   2638 
   2639    		vcid_addr = GET_CID_ADDR(vcid);
   2640 		pcid_addr = vcid_addr;
   2641 
   2642 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2643 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2644 
   2645 		/* Zero out the context. */
   2646 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2647 			CTX_WR(sc, 0x00, offset, 0);
   2648 
   2649 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2650 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2651 	}
   2652 }
   2653 
   2654 /****************************************************************************/
   2655 /* Fetch the permanent MAC address of the controller.                       */
   2656 /*                                                                          */
   2657 /* Returns:                                                                 */
   2658 /*   Nothing.                                                               */
   2659 /****************************************************************************/
   2660 void
   2661 bnx_get_mac_addr(struct bnx_softc *sc)
   2662 {
   2663 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2664 
   2665 	/*
   2666 	 * The NetXtreme II bootcode populates various NIC
   2667 	 * power-on and runtime configuration items in a
   2668 	 * shared memory area.  The factory configured MAC
   2669 	 * address is available from both NVRAM and the
   2670 	 * shared memory area so we'll read the value from
   2671 	 * shared memory for speed.
   2672 	 */
   2673 
   2674 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2675 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2676 
   2677 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2678 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2679 		    __FILE__, __LINE__);
   2680 	} else {
   2681 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2682 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2683 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2684 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2685 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2686 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2687 	}
   2688 
   2689 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2690 	    "%s\n", ether_sprintf(sc->eaddr));
   2691 }
   2692 
   2693 /****************************************************************************/
   2694 /* Program the MAC address.                                                 */
   2695 /*                                                                          */
   2696 /* Returns:                                                                 */
   2697 /*   Nothing.                                                               */
   2698 /****************************************************************************/
   2699 void
   2700 bnx_set_mac_addr(struct bnx_softc *sc)
   2701 {
   2702 	u_int32_t		val;
   2703 	u_int8_t		*mac_addr = LLADDR(sc->ethercom.ec_if.if_sadl);
   2704 
   2705 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2706 	    "%s\n", ether_sprintf(sc->eaddr));
   2707 
   2708 	val = (mac_addr[0] << 8) | mac_addr[1];
   2709 
   2710 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2711 
   2712 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2713 		(mac_addr[4] << 8) | mac_addr[5];
   2714 
   2715 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2716 }
   2717 
   2718 /****************************************************************************/
   2719 /* Stop the controller.                                                     */
   2720 /*                                                                          */
   2721 /* Returns:                                                                 */
   2722 /*   Nothing.                                                               */
   2723 /****************************************************************************/
   2724 void
   2725 bnx_stop(struct bnx_softc *sc)
   2726 {
   2727 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   2728 	struct mii_data		*mii = NULL;
   2729 
   2730 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2731 
   2732 	mii = &sc->bnx_mii;
   2733 
   2734 	callout_stop(&sc->bnx_timeout);
   2735 
   2736 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2737 
   2738 	/* Disable the transmit/receive blocks. */
   2739 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2740 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2741 	DELAY(20);
   2742 
   2743 	bnx_disable_intr(sc);
   2744 
   2745 	/* Tell firmware that the driver is going away. */
   2746 	bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2747 
   2748 	/* Free the RX lists. */
   2749 	bnx_free_rx_chain(sc);
   2750 
   2751 	/* Free TX buffers. */
   2752 	bnx_free_tx_chain(sc);
   2753 
   2754 	ifp->if_timer = 0;
   2755 
   2756 	sc->bnx_link = 0;
   2757 
   2758 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2759 
   2760 }
   2761 
   2762 int
   2763 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2764 {
   2765 	u_int32_t		val;
   2766 	int			i, rc = 0;
   2767 
   2768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2769 
   2770 	/* Wait for pending PCI transactions to complete. */
   2771 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2772 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2773 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2774 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2775 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2776 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2777 	DELAY(5);
   2778 
   2779 	/* Assume bootcode is running. */
   2780 	sc->bnx_fw_timed_out = 0;
   2781 
   2782 	/* Give the firmware a chance to prepare for the reset. */
   2783 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2784 	if (rc)
   2785 		goto bnx_reset_exit;
   2786 
   2787 	/* Set a firmware reminder that this is a soft reset. */
   2788 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2789 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2790 
   2791 	/* Dummy read to force the chip to complete all current transactions. */
   2792 	val = REG_RD(sc, BNX_MISC_ID);
   2793 
   2794 	/* Chip reset. */
   2795 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2796 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2797 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2798 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2799 
   2800 	/* Allow up to 30us for reset to complete. */
   2801 	for (i = 0; i < 10; i++) {
   2802 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2803 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2804 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2805 			break;
   2806 
   2807 		DELAY(10);
   2808 	}
   2809 
   2810 	/* Check that reset completed successfully. */
   2811 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2812 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2813 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2814 		rc = EBUSY;
   2815 		goto bnx_reset_exit;
   2816 	}
   2817 
   2818 	/* Make sure byte swapping is properly configured. */
   2819 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2820 	if (val != 0x01020304) {
   2821 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2822 		    __FILE__, __LINE__);
   2823 		rc = ENODEV;
   2824 		goto bnx_reset_exit;
   2825 	}
   2826 
   2827 	/* Just completed a reset, assume that firmware is running again. */
   2828 	sc->bnx_fw_timed_out = 0;
   2829 
   2830 	/* Wait for the firmware to finish its initialization. */
   2831 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2832 	if (rc)
   2833 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2834 		    "initialization!\n", __FILE__, __LINE__);
   2835 
   2836 bnx_reset_exit:
   2837 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2838 
   2839 	return (rc);
   2840 }
   2841 
   2842 int
   2843 bnx_chipinit(struct bnx_softc *sc)
   2844 {
   2845 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2846 	u_int32_t		val;
   2847 	int			rc = 0;
   2848 
   2849 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2850 
   2851 	/* Make sure the interrupt is not active. */
   2852 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2853 
   2854 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2855 	/* channels and PCI clock compensation delay.                      */
   2856 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2857 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2858 #if BYTE_ORDER == BIG_ENDIAN
   2859 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2860 #endif
   2861 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2862 	    DMA_READ_CHANS << 12 |
   2863 	    DMA_WRITE_CHANS << 16;
   2864 
   2865 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2866 
   2867 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2868 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2869 
   2870 	/*
   2871 	 * This setting resolves a problem observed on certain Intel PCI
   2872 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2873 	 * See errata E9_5706A1_65.
   2874 	 */
   2875 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2876 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2877 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2878 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2879 
   2880 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2881 
   2882 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2883 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2884 		u_int16_t nval;
   2885 
   2886 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2887 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2888 		    nval & ~0x2);
   2889 	}
   2890 
   2891 	/* Enable the RX_V2P and Context state machines before access. */
   2892 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2893 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2894 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2895 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2896 
   2897 	/* Initialize context mapping and zero out the quick contexts. */
   2898 	bnx_init_context(sc);
   2899 
   2900 	/* Initialize the on-boards CPUs */
   2901 	bnx_init_cpus(sc);
   2902 
   2903 	/* Prepare NVRAM for access. */
   2904 	if (bnx_init_nvram(sc)) {
   2905 		rc = ENODEV;
   2906 		goto bnx_chipinit_exit;
   2907 	}
   2908 
   2909 	/* Set the kernel bypass block size */
   2910 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2911 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2912 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2913 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2914 
   2915 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2916 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2917 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2918 
   2919 	val = (BCM_PAGE_BITS - 8) << 24;
   2920 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2921 
   2922 	/* Configure page size. */
   2923 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2924 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2925 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2926 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2927 
   2928 bnx_chipinit_exit:
   2929 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2930 
   2931 	return(rc);
   2932 }
   2933 
   2934 /****************************************************************************/
   2935 /* Initialize the controller in preparation to send/receive traffic.        */
   2936 /*                                                                          */
   2937 /* Returns:                                                                 */
   2938 /*   0 for success, positive value for failure.                             */
   2939 /****************************************************************************/
   2940 int
   2941 bnx_blockinit(struct bnx_softc *sc)
   2942 {
   2943 	u_int32_t		reg, val;
   2944 	int 			rc = 0;
   2945 
   2946 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2947 
   2948 	/* Load the hardware default MAC address. */
   2949 	bnx_set_mac_addr(sc);
   2950 
   2951 	/* Set the Ethernet backoff seed value */
   2952 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2953 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2954 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2955 
   2956 	sc->last_status_idx = 0;
   2957 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2958 
   2959 	/* Set up link change interrupt generation. */
   2960 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2961 
   2962 	/* Program the physical address of the status block. */
   2963 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2964 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2965 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2966 
   2967 	/* Program the physical address of the statistics block. */
   2968 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2969 	    (u_int32_t)(sc->stats_block_paddr));
   2970 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2971 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2972 
   2973 	/* Program various host coalescing parameters. */
   2974 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2975 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2976 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2977 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2978 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2979 	    sc->bnx_comp_prod_trip);
   2980 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2981 	    sc->bnx_tx_ticks);
   2982 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2983 	    sc->bnx_rx_ticks);
   2984 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2985 	    sc->bnx_com_ticks);
   2986 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2987 	    sc->bnx_cmd_ticks);
   2988 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2989 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2990 	REG_WR(sc, BNX_HC_CONFIG,
   2991 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2992 	    BNX_HC_CONFIG_COLLECT_STATS));
   2993 
   2994 	/* Clear the internal statistics counters. */
   2995 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2996 
   2997 	/* Verify that bootcode is running. */
   2998 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   2999 
   3000 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3001 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3002 	    __FILE__, __LINE__); reg = 0);
   3003 
   3004 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3005 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3006 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3007 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3008 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3009 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3010 		rc = ENODEV;
   3011 		goto bnx_blockinit_exit;
   3012 	}
   3013 
   3014 	/* Check if any management firmware is running. */
   3015 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3016 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3017 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3018 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3019 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3020 	}
   3021 
   3022 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3023 	    BNX_DEV_INFO_BC_REV);
   3024 
   3025 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3026 
   3027 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3028 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3029 
   3030 	/* Enable link state change interrupt generation. */
   3031 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3032 
   3033 	/* Enable all remaining blocks in the MAC. */
   3034 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3035 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3036 	DELAY(20);
   3037 
   3038 bnx_blockinit_exit:
   3039 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3040 
   3041 	return (rc);
   3042 }
   3043 
   3044 /****************************************************************************/
   3045 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3046 /*                                                                          */
   3047 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3048 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3049 /* necessary.                                                               */
   3050 /*                                                                          */
   3051 /* Returns:                                                                 */
   3052 /*   0 for success, positive value for failure.                             */
   3053 /****************************************************************************/
   3054 int
   3055 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
   3056     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3057 {
   3058 	bus_dmamap_t		map;
   3059 	struct mbuf 		*m_new = NULL;
   3060 	struct rx_bd		*rxbd;
   3061 	int			i, rc = 0;
   3062 	u_int32_t		addr;
   3063 #ifdef BNX_DEBUG
   3064 	u_int16_t debug_chain_prod =	*chain_prod;
   3065 #endif
   3066 	u_int16_t first_chain_prod;
   3067 	u_int16_t min_free_bd;
   3068 
   3069 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3070 	    __FUNCTION__);
   3071 
   3072 	/* Make sure the inputs are valid. */
   3073 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3074 	    aprint_error("%s: RX producer out of range: 0x%04X > 0x%04X\n",
   3075 	    sc->bnx_dev.dv_xname, *chain_prod, (u_int16_t) MAX_RX_BD));
   3076 
   3077 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3078 	    "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod,
   3079 	    *prod_bseq);
   3080 
   3081 	/* try to get in as many mbufs as possible */
   3082 	if (sc->mbuf_alloc_size == MCLBYTES)
   3083 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3084 	else
   3085 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3086 	while (sc->free_rx_bd >= min_free_bd) {
   3087 		if (m == NULL) {
   3088 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3089 			    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3090 
   3091 				sc->mbuf_alloc_failed++;
   3092 				rc = ENOBUFS;
   3093 				goto bnx_get_buf_exit);
   3094 
   3095 			/* This is a new mbuf allocation. */
   3096 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3097 			if (m_new == NULL) {
   3098 				DBPRINT(sc, BNX_WARN,
   3099 				    "%s(%d): RX mbuf header allocation failed!\n",
   3100 				    __FILE__, __LINE__);
   3101 
   3102 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3103 
   3104 				rc = ENOBUFS;
   3105 				goto bnx_get_buf_exit;
   3106 			}
   3107 
   3108 			DBRUNIF(1, sc->rx_mbuf_alloc++);
   3109 			if (sc->mbuf_alloc_size == MCLBYTES)
   3110 				MCLGET(m_new, M_DONTWAIT);
   3111 			else
   3112 				MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3113 				    M_DONTWAIT);
   3114 			if (!(m_new->m_flags & M_EXT)) {
   3115 				DBPRINT(sc, BNX_WARN,
   3116 				    "%s(%d): RX mbuf chain allocation failed!\n",
   3117 				    __FILE__, __LINE__);
   3118 
   3119 				m_freem(m_new);
   3120 
   3121 				DBRUNIF(1, sc->rx_mbuf_alloc--);
   3122 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3123 
   3124 				rc = ENOBUFS;
   3125 				goto bnx_get_buf_exit;
   3126 			}
   3127 
   3128 		} else {
   3129 			m_new = m;
   3130 			m = NULL;
   3131 			m_new->m_data = m_new->m_ext.ext_buf;
   3132 		}
   3133 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3134 
   3135 		/* Map the mbuf cluster into device memory. */
   3136 		map = sc->rx_mbuf_map[*chain_prod];
   3137 		first_chain_prod = *chain_prod;
   3138 		if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3139 			BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3140 			    __FILE__, __LINE__);
   3141 
   3142 			m_freem(m_new);
   3143 
   3144 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3145 
   3146 			rc = ENOBUFS;
   3147 			goto bnx_get_buf_exit;
   3148 		}
   3149 		bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3150 		    BUS_DMASYNC_PREREAD);
   3151 
   3152 		/* Watch for overflow. */
   3153 		DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3154 		    aprint_error("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3155 		    sc->bnx_dev.dv_xname,
   3156 		    sc->free_rx_bd, (u_int16_t) USABLE_RX_BD));
   3157 
   3158 		DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3159 		    sc->rx_low_watermark = sc->free_rx_bd);
   3160 
   3161 		/*
   3162 		 * Setup the rx_bd for the first segment
   3163 		 */
   3164 		rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3165 
   3166 		addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3167 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3168 		addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3169 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3170 		rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3171 		rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3172 		*prod_bseq += map->dm_segs[0].ds_len;
   3173 		bus_dmamap_sync(sc->bnx_dmatag,
   3174 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3175 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3176 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3177 
   3178 		for (i = 1; i < map->dm_nsegs; i++) {
   3179 			*prod = NEXT_RX_BD(*prod);
   3180 			*chain_prod = RX_CHAIN_IDX(*prod);
   3181 
   3182 			rxbd =
   3183 			    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3184 
   3185 			addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3186 			rxbd->rx_bd_haddr_lo = htole32(addr);
   3187 			addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3188 			rxbd->rx_bd_haddr_hi = htole32(addr);
   3189 			rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3190 			rxbd->rx_bd_flags = 0;
   3191 			*prod_bseq += map->dm_segs[i].ds_len;
   3192 			bus_dmamap_sync(sc->bnx_dmatag,
   3193 			    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3194 			    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3195 			    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3196 		}
   3197 
   3198 		rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3199 		bus_dmamap_sync(sc->bnx_dmatag,
   3200 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3201 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3202 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3203 
   3204 		/*
   3205 		 * Save the mbuf, ajust the map pointer (swap map for first and
   3206 		 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3207 		 * and update counter.
   3208 		 */
   3209 		sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3210 		sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3211 		sc->rx_mbuf_map[*chain_prod] = map;
   3212 		sc->free_rx_bd -= map->dm_nsegs;
   3213 
   3214 		DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3215 		    map->dm_nsegs));
   3216 		*prod = NEXT_RX_BD(*prod);
   3217 		*chain_prod = RX_CHAIN_IDX(*prod);
   3218 	}
   3219 
   3220 bnx_get_buf_exit:
   3221 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3222 	    "= 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod,
   3223 	    *chain_prod, *prod_bseq);
   3224 
   3225 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3226 	    __FUNCTION__);
   3227 
   3228 	return(rc);
   3229 }
   3230 
   3231 /****************************************************************************/
   3232 /* Allocate memory and initialize the TX data structures.                   */
   3233 /*                                                                          */
   3234 /* Returns:                                                                 */
   3235 /*   0 for success, positive value for failure.                             */
   3236 /****************************************************************************/
   3237 int
   3238 bnx_init_tx_chain(struct bnx_softc *sc)
   3239 {
   3240 	struct tx_bd		*txbd;
   3241 	u_int32_t		val, addr;
   3242 	int			i, rc = 0;
   3243 
   3244 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3245 
   3246 	/* Set the initial TX producer/consumer indices. */
   3247 	sc->tx_prod = 0;
   3248 	sc->tx_cons = 0;
   3249 	sc->tx_prod_bseq = 0;
   3250 	sc->used_tx_bd = 0;
   3251 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3252 
   3253 	/*
   3254 	 * The NetXtreme II supports a linked-list structure called
   3255 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3256 	 * consists of a series of 1 or more chain pages, each of which
   3257 	 * consists of a fixed number of BD entries.
   3258 	 * The last BD entry on each page is a pointer to the next page
   3259 	 * in the chain, and the last pointer in the BD chain
   3260 	 * points back to the beginning of the chain.
   3261 	 */
   3262 
   3263 	/* Set the TX next pointer chain entries. */
   3264 	for (i = 0; i < TX_PAGES; i++) {
   3265 		int j;
   3266 
   3267 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3268 
   3269 		/* Check if we've reached the last page. */
   3270 		if (i == (TX_PAGES - 1))
   3271 			j = 0;
   3272 		else
   3273 			j = i + 1;
   3274 
   3275 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3276 		txbd->tx_bd_haddr_lo = htole32(addr);
   3277 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3278 		txbd->tx_bd_haddr_hi = htole32(addr);
   3279 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3280 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3281 	}
   3282 
   3283 	/*
   3284 	 * Initialize the context ID for an L2 TX chain.
   3285 	 */
   3286 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3287 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3288 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3289 
   3290 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3291 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3292 
   3293 	/* Point the hardware to the first page in the chain. */
   3294 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3295 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3296 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3297 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3298 
   3299 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3300 
   3301 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3302 
   3303 	return(rc);
   3304 }
   3305 
   3306 /****************************************************************************/
   3307 /* Free memory and clear the TX data structures.                            */
   3308 /*                                                                          */
   3309 /* Returns:                                                                 */
   3310 /*   Nothing.                                                               */
   3311 /****************************************************************************/
   3312 void
   3313 bnx_free_tx_chain(struct bnx_softc *sc)
   3314 {
   3315 	int			i;
   3316 
   3317 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3318 
   3319 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3320 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3321 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3322 			if (sc->tx_mbuf_map != NULL)
   3323 				bus_dmamap_sync(sc->bnx_dmatag,
   3324 				    sc->tx_mbuf_map[i], 0,
   3325 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3326 				    BUS_DMASYNC_POSTWRITE);
   3327 			m_freem(sc->tx_mbuf_ptr[i]);
   3328 			sc->tx_mbuf_ptr[i] = NULL;
   3329 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3330 		}
   3331 	}
   3332 
   3333 	/* Clear each TX chain page. */
   3334 	for (i = 0; i < TX_PAGES; i++) {
   3335 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3336 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3337 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3338 	}
   3339 
   3340 	/* Check if we lost any mbufs in the process. */
   3341 	DBRUNIF((sc->tx_mbuf_alloc),
   3342 	    aprint_error("%s: Memory leak! Lost %d mbufs from tx chain!\n",
   3343 	    sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc));
   3344 
   3345 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3346 }
   3347 
   3348 /****************************************************************************/
   3349 /* Allocate memory and initialize the RX data structures.                   */
   3350 /*                                                                          */
   3351 /* Returns:                                                                 */
   3352 /*   0 for success, positive value for failure.                             */
   3353 /****************************************************************************/
   3354 int
   3355 bnx_init_rx_chain(struct bnx_softc *sc)
   3356 {
   3357 	struct rx_bd		*rxbd;
   3358 	int			i, rc = 0;
   3359 	u_int16_t		prod, chain_prod;
   3360 	u_int32_t		prod_bseq, val, addr;
   3361 
   3362 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3363 
   3364 	/* Initialize the RX producer and consumer indices. */
   3365 	sc->rx_prod = 0;
   3366 	sc->rx_cons = 0;
   3367 	sc->rx_prod_bseq = 0;
   3368 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3369 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3370 
   3371 	/* Initialize the RX next pointer chain entries. */
   3372 	for (i = 0; i < RX_PAGES; i++) {
   3373 		int j;
   3374 
   3375 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3376 
   3377 		/* Check if we've reached the last page. */
   3378 		if (i == (RX_PAGES - 1))
   3379 			j = 0;
   3380 		else
   3381 			j = i + 1;
   3382 
   3383 		/* Setup the chain page pointers. */
   3384 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3385 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3386 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3387 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3388 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3389 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3390 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3391 	}
   3392 
   3393 	/* Initialize the context ID for an L2 RX chain. */
   3394 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3395 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3396 	val |= 0x02 << 8;
   3397 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3398 
   3399 	/* Point the hardware to the first page in the chain. */
   3400 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3401 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3402 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3403 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3404 
   3405 	/* Allocate mbuf clusters for the rx_bd chain. */
   3406 	prod = prod_bseq = 0;
   3407 	chain_prod = RX_CHAIN_IDX(prod);
   3408 	if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
   3409 		BNX_PRINTF(sc,
   3410 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   3411 	}
   3412 
   3413 	/* Save the RX chain producer index. */
   3414 	sc->rx_prod = prod;
   3415 	sc->rx_prod_bseq = prod_bseq;
   3416 
   3417 	for (i = 0; i < RX_PAGES; i++)
   3418 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3419 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3420 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3421 
   3422 	/* Tell the chip about the waiting rx_bd's. */
   3423 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3424 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3425 
   3426 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3427 
   3428 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3429 
   3430 	return(rc);
   3431 }
   3432 
   3433 /****************************************************************************/
   3434 /* Free memory and clear the RX data structures.                            */
   3435 /*                                                                          */
   3436 /* Returns:                                                                 */
   3437 /*   Nothing.                                                               */
   3438 /****************************************************************************/
   3439 void
   3440 bnx_free_rx_chain(struct bnx_softc *sc)
   3441 {
   3442 	int			i;
   3443 
   3444 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3445 
   3446 	/* Free any mbufs still in the RX mbuf chain. */
   3447 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3448 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3449 			if (sc->rx_mbuf_map[i] != NULL)
   3450 				bus_dmamap_sync(sc->bnx_dmatag,
   3451 				    sc->rx_mbuf_map[i],	0,
   3452 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3453 				    BUS_DMASYNC_POSTREAD);
   3454 			m_freem(sc->rx_mbuf_ptr[i]);
   3455 			sc->rx_mbuf_ptr[i] = NULL;
   3456 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3457 		}
   3458 	}
   3459 
   3460 	/* Clear each RX chain page. */
   3461 	for (i = 0; i < RX_PAGES; i++)
   3462 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   3463 
   3464 	/* Check if we lost any mbufs in the process. */
   3465 	DBRUNIF((sc->rx_mbuf_alloc),
   3466 	    aprint_error("%s: Memory leak! Lost %d mbufs from rx chain!\n",
   3467 	    sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc));
   3468 
   3469 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3470 }
   3471 
   3472 /****************************************************************************/
   3473 /* Set media options.                                                       */
   3474 /*                                                                          */
   3475 /* Returns:                                                                 */
   3476 /*   0 for success, positive value for failure.                             */
   3477 /****************************************************************************/
   3478 int
   3479 bnx_ifmedia_upd(struct ifnet *ifp)
   3480 {
   3481 	struct bnx_softc	*sc;
   3482 	struct mii_data		*mii;
   3483 	struct ifmedia		*ifm;
   3484 	int			rc = 0;
   3485 
   3486 	sc = ifp->if_softc;
   3487 	ifm = &sc->bnx_ifmedia;
   3488 
   3489 	/* DRC - ToDo: Add SerDes support. */
   3490 
   3491 	mii = &sc->bnx_mii;
   3492 	sc->bnx_link = 0;
   3493 	if (mii->mii_instance) {
   3494 		struct mii_softc *miisc;
   3495 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   3496 			mii_phy_reset(miisc);
   3497 	}
   3498 	mii_mediachg(mii);
   3499 
   3500 	return(rc);
   3501 }
   3502 
   3503 /****************************************************************************/
   3504 /* Reports current media status.                                            */
   3505 /*                                                                          */
   3506 /* Returns:                                                                 */
   3507 /*   Nothing.                                                               */
   3508 /****************************************************************************/
   3509 void
   3510 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   3511 {
   3512 	struct bnx_softc	*sc;
   3513 	struct mii_data		*mii;
   3514 	int			s;
   3515 
   3516 	sc = ifp->if_softc;
   3517 
   3518 	s = splnet();
   3519 
   3520 	mii = &sc->bnx_mii;
   3521 
   3522 	/* DRC - ToDo: Add SerDes support. */
   3523 
   3524 	mii_pollstat(mii);
   3525 	ifmr->ifm_active = mii->mii_media_active;
   3526 	ifmr->ifm_status = mii->mii_media_status;
   3527 
   3528 	splx(s);
   3529 }
   3530 
   3531 /****************************************************************************/
   3532 /* Handles PHY generated interrupt events.                                  */
   3533 /*                                                                          */
   3534 /* Returns:                                                                 */
   3535 /*   Nothing.                                                               */
   3536 /****************************************************************************/
   3537 void
   3538 bnx_phy_intr(struct bnx_softc *sc)
   3539 {
   3540 	u_int32_t		new_link_state, old_link_state;
   3541 
   3542 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3543 	    BUS_DMASYNC_POSTREAD);
   3544 	new_link_state = sc->status_block->status_attn_bits &
   3545 	    STATUS_ATTN_BITS_LINK_STATE;
   3546 	old_link_state = sc->status_block->status_attn_bits_ack &
   3547 	    STATUS_ATTN_BITS_LINK_STATE;
   3548 
   3549 	/* Handle any changes if the link state has changed. */
   3550 	if (new_link_state != old_link_state) {
   3551 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3552 
   3553 		sc->bnx_link = 0;
   3554 		callout_stop(&sc->bnx_timeout);
   3555 		bnx_tick(sc);
   3556 
   3557 		/* Update the status_attn_bits_ack field in the status block. */
   3558 		if (new_link_state) {
   3559 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3560 			    STATUS_ATTN_BITS_LINK_STATE);
   3561 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3562 		} else {
   3563 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3564 			    STATUS_ATTN_BITS_LINK_STATE);
   3565 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3566 		}
   3567 	}
   3568 
   3569 	/* Acknowledge the link change interrupt. */
   3570 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3571 }
   3572 
   3573 /****************************************************************************/
   3574 /* Handles received frame interrupt events.                                 */
   3575 /*                                                                          */
   3576 /* Returns:                                                                 */
   3577 /*   Nothing.                                                               */
   3578 /****************************************************************************/
   3579 void
   3580 bnx_rx_intr(struct bnx_softc *sc)
   3581 {
   3582 	struct status_block	*sblk = sc->status_block;
   3583 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   3584 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3585 	u_int16_t		sw_prod, sw_chain_prod;
   3586 	u_int32_t		sw_prod_bseq;
   3587 	struct l2_fhdr		*l2fhdr;
   3588 	int			i;
   3589 
   3590 	DBRUNIF(1, sc->rx_interrupts++);
   3591 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3592 	    BUS_DMASYNC_POSTREAD);
   3593 
   3594 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3595 	for (i = 0; i < RX_PAGES; i++)
   3596 		bus_dmamap_sync(sc->bnx_dmatag,
   3597 		    sc->rx_bd_chain_map[i], 0,
   3598 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3599 		    BUS_DMASYNC_POSTWRITE);
   3600 
   3601 	/* Get the hardware's view of the RX consumer index. */
   3602 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3603 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3604 		hw_cons++;
   3605 
   3606 	/* Get working copies of the driver's view of the RX indices. */
   3607 	sw_cons = sc->rx_cons;
   3608 	sw_prod = sc->rx_prod;
   3609 	sw_prod_bseq = sc->rx_prod_bseq;
   3610 
   3611 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3612 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3613 	    __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq);
   3614 
   3615 	/* Prevent speculative reads from getting ahead of the status block. */
   3616 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3617 	    BUS_SPACE_BARRIER_READ);
   3618 
   3619 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3620 	    sc->rx_low_watermark = sc->free_rx_bd);
   3621 
   3622 	/*
   3623 	 * Scan through the receive chain as long
   3624 	 * as there is work to do.
   3625 	 */
   3626 	while (sw_cons != hw_cons) {
   3627 		struct mbuf *m;
   3628 		struct rx_bd *rxbd;
   3629 		unsigned int len;
   3630 		u_int32_t status;
   3631 
   3632 		/* Convert the producer/consumer indices to an actual
   3633 		 * rx_bd index.
   3634 		 */
   3635 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3636 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3637 
   3638 		/* Get the used rx_bd. */
   3639 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3640 		sc->free_rx_bd++;
   3641 
   3642 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __FUNCTION__);
   3643 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3644 
   3645 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3646 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3647 #ifdef DIAGNOSTIC
   3648 			/* Validate that this is the last rx_bd. */
   3649 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   3650 			    printf("%s: Unexpected mbuf found in "
   3651 			        "rx_bd[0x%04X]!\n", sc->bnx_dev.dv_xname,
   3652 			        sw_chain_cons);
   3653 			}
   3654 #endif
   3655 
   3656 			/* DRC - ToDo: If the received packet is small, say less
   3657 			 *             than 128 bytes, allocate a new mbuf here,
   3658 			 *             copy the data to that mbuf, and recycle
   3659 			 *             the mapped jumbo frame.
   3660 			 */
   3661 
   3662 			/* Unmap the mbuf from DMA space. */
   3663 #ifdef DIAGNOSTIC
   3664 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   3665 				printf("invalid map sw_cons 0x%x "
   3666 				"sw_prod 0x%x "
   3667 				"sw_chain_cons 0x%x "
   3668 				"sw_chain_prod 0x%x "
   3669 				"hw_cons 0x%x "
   3670 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   3671 				"TOTAL_RX_BD 0x%x\n",
   3672 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   3673 				hw_cons,
   3674 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   3675 			}
   3676 #endif
   3677 			bus_dmamap_sync(sc->bnx_dmatag,
   3678 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3679 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3680 			    BUS_DMASYNC_POSTREAD);
   3681 			bus_dmamap_unload(sc->bnx_dmatag,
   3682 			    sc->rx_mbuf_map[sw_chain_cons]);
   3683 
   3684 			/* Remove the mbuf from the driver's chain. */
   3685 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3686 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3687 
   3688 			/*
   3689 			 * Frames received on the NetXteme II are prepended
   3690 			 * with the l2_fhdr structure which provides status
   3691 			 * information about the received frame (including
   3692 			 * VLAN tags and checksum info) and are also
   3693 			 * automatically adjusted to align the IP header
   3694 			 * (i.e. two null bytes are inserted before the
   3695 			 * Ethernet header).
   3696 			 */
   3697 			l2fhdr = mtod(m, struct l2_fhdr *);
   3698 
   3699 			len    = l2fhdr->l2_fhdr_pkt_len;
   3700 			status = l2fhdr->l2_fhdr_status;
   3701 
   3702 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3703 			    aprint_error("Simulating l2_fhdr status error.\n");
   3704 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3705 
   3706 			/* Watch for unusual sized frames. */
   3707 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3708 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3709 			    aprint_error("%s: Unusual frame size found. "
   3710 			    "Min(%d), Actual(%d), Max(%d)\n",
   3711 			    sc->bnx_dev.dv_xname, (int)BNX_MIN_MTU, len,
   3712 			    (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3713 
   3714 			bnx_dump_mbuf(sc, m);
   3715 			bnx_breakpoint(sc));
   3716 
   3717 			len -= ETHER_CRC_LEN;
   3718 
   3719 			/* Check the received frame for errors. */
   3720 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3721 			    L2_FHDR_ERRORS_PHY_DECODE |
   3722 			    L2_FHDR_ERRORS_ALIGNMENT |
   3723 			    L2_FHDR_ERRORS_TOO_SHORT |
   3724 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3725 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3726 			    len >
   3727 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3728 				ifp->if_ierrors++;
   3729 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3730 
   3731 				/* Reuse the mbuf for a new frame. */
   3732 				if (bnx_get_buf(sc, m, &sw_prod,
   3733 				    &sw_chain_prod, &sw_prod_bseq)) {
   3734 					DBRUNIF(1, bnx_breakpoint(sc));
   3735 					panic("%s: Can't reuse RX mbuf!\n",
   3736 					    sc->bnx_dev.dv_xname);
   3737 				}
   3738 				continue;
   3739 			}
   3740 
   3741 			/*
   3742 			 * Get a new mbuf for the rx_bd.   If no new
   3743 			 * mbufs are available then reuse the current mbuf,
   3744 			 * log an ierror on the interface, and generate
   3745 			 * an error in the system log.
   3746 			 */
   3747 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
   3748 			    &sw_prod_bseq)) {
   3749 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3750 					"new mbuf, incoming frame dropped!\n"));
   3751 
   3752 				ifp->if_ierrors++;
   3753 
   3754 				/* Try and reuse the exisitng mbuf. */
   3755 				if (bnx_get_buf(sc, m, &sw_prod,
   3756 				    &sw_chain_prod, &sw_prod_bseq)) {
   3757 					DBRUNIF(1, bnx_breakpoint(sc));
   3758 					panic("%s: Double mbuf allocation "
   3759 					    "failure!", sc->bnx_dev.dv_xname);
   3760 				}
   3761 				continue;
   3762 			}
   3763 
   3764 			/* Skip over the l2_fhdr when passing the data up
   3765 			 * the stack.
   3766 			 */
   3767 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3768 
   3769 			/* Adjust the pckt length to match the received data. */
   3770 			m->m_pkthdr.len = m->m_len = len;
   3771 
   3772 			/* Send the packet to the appropriate interface. */
   3773 			m->m_pkthdr.rcvif = ifp;
   3774 
   3775 			DBRUN(BNX_VERBOSE_RECV,
   3776 			    struct ether_header *eh;
   3777 			    eh = mtod(m, struct ether_header *);
   3778 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3779 			    __FUNCTION__, ether_sprintf(eh->ether_dhost),
   3780 			    ether_sprintf(eh->ether_shost),
   3781 			    htons(eh->ether_type)));
   3782 
   3783 			/* Validate the checksum. */
   3784 
   3785 			/* Check for an IP datagram. */
   3786 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3787 				/* Check if the IP checksum is valid. */
   3788 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3789 				    == 0)
   3790 					m->m_pkthdr.csum_flags |=
   3791 					    M_CSUM_IPv4;
   3792 #ifdef BNX_DEBUG
   3793 				else
   3794 					DBPRINT(sc, BNX_WARN_SEND,
   3795 					    "%s(): Invalid IP checksum "
   3796 					        "= 0x%04X!\n",
   3797 						__FUNCTION__,
   3798 						l2fhdr->l2_fhdr_ip_xsum
   3799 						);
   3800 #endif
   3801 			}
   3802 
   3803 			/* Check for a valid TCP/UDP frame. */
   3804 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3805 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3806 				/* Check for a good TCP/UDP checksum. */
   3807 				if ((status &
   3808 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3809 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3810 					m->m_pkthdr.csum_flags |=
   3811 					    M_CSUM_TCPv4 |
   3812 					    M_CSUM_UDPv4;
   3813 				} else {
   3814 					DBPRINT(sc, BNX_WARN_SEND,
   3815 					    "%s(): Invalid TCP/UDP "
   3816 					    "checksum = 0x%04X!\n",
   3817 					    __FUNCTION__,
   3818 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3819 				}
   3820 			}
   3821 
   3822 			/*
   3823 			 * If we received a packet with a vlan tag,
   3824 			 * attach that information to the packet.
   3825 			 */
   3826 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3827 #if 0
   3828 				struct ether_vlan_header vh;
   3829 
   3830 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3831 				    "%s(): VLAN tag = 0x%04X\n",
   3832 				    __FUNCTION__,
   3833 				    l2fhdr->l2_fhdr_vlan_tag);
   3834 
   3835 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3836 					m_freem(m);
   3837 					continue;
   3838 				}
   3839 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3840 				vh.evl_proto = vh.evl_encap_proto;
   3841 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3842 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3843 				m_adj(m, ETHER_HDR_LEN);
   3844 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3845 					continue;
   3846 				m->m_pkthdr.len += sizeof(vh);
   3847 				if (m->m_len < sizeof(vh) &&
   3848 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3849 					goto bnx_rx_int_next_rx;
   3850 				m_copyback(m, 0, sizeof(vh), &vh);
   3851 #else
   3852 				VLAN_INPUT_TAG(ifp, m,
   3853 				    l2fhdr->l2_fhdr_vlan_tag,
   3854 				    continue);
   3855 #endif
   3856 			}
   3857 
   3858 #if NBPFILTER > 0
   3859 			/*
   3860 			 * Handle BPF listeners. Let the BPF
   3861 			 * user see the packet.
   3862 			 */
   3863 			if (ifp->if_bpf)
   3864 				bpf_mtap(ifp->if_bpf, m);
   3865 #endif
   3866 
   3867 			/* Pass the mbuf off to the upper layers. */
   3868 			ifp->if_ipackets++;
   3869 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3870 			    "%s(): Passing received frame up.\n", __FUNCTION__);
   3871 			(*ifp->if_input)(ifp, m);
   3872 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3873 
   3874 		}
   3875 
   3876 		sw_cons = NEXT_RX_BD(sw_cons);
   3877 
   3878 		/* Refresh hw_cons to see if there's new work */
   3879 		if (sw_cons == hw_cons) {
   3880 			hw_cons = sc->hw_rx_cons =
   3881 			    sblk->status_rx_quick_consumer_index0;
   3882 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3883 			    USABLE_RX_BD_PER_PAGE)
   3884 				hw_cons++;
   3885 		}
   3886 
   3887 		/* Prevent speculative reads from getting ahead of
   3888 		 * the status block.
   3889 		 */
   3890 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3891 		    BUS_SPACE_BARRIER_READ);
   3892 	}
   3893 
   3894 	for (i = 0; i < RX_PAGES; i++)
   3895 		bus_dmamap_sync(sc->bnx_dmatag,
   3896 		    sc->rx_bd_chain_map[i], 0,
   3897 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3898 		    BUS_DMASYNC_PREWRITE);
   3899 
   3900 	sc->rx_cons = sw_cons;
   3901 	sc->rx_prod = sw_prod;
   3902 	sc->rx_prod_bseq = sw_prod_bseq;
   3903 
   3904 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3905 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3906 
   3907 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3908 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3909 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3910 }
   3911 
   3912 /****************************************************************************/
   3913 /* Handles transmit completion interrupt events.                            */
   3914 /*                                                                          */
   3915 /* Returns:                                                                 */
   3916 /*   Nothing.                                                               */
   3917 /****************************************************************************/
   3918 void
   3919 bnx_tx_intr(struct bnx_softc *sc)
   3920 {
   3921 	struct status_block	*sblk = sc->status_block;
   3922 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   3923 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3924 
   3925 	DBRUNIF(1, sc->tx_interrupts++);
   3926 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3927 	    BUS_DMASYNC_POSTREAD);
   3928 
   3929 	/* Get the hardware's view of the TX consumer index. */
   3930 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3931 
   3932 	/* Skip to the next entry if this is a chain page pointer. */
   3933 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3934 		hw_tx_cons++;
   3935 
   3936 	sw_tx_cons = sc->tx_cons;
   3937 
   3938 	/* Prevent speculative reads from getting ahead of the status block. */
   3939 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3940 	    BUS_SPACE_BARRIER_READ);
   3941 
   3942 	/* Cycle through any completed TX chain page entries. */
   3943 	while (sw_tx_cons != hw_tx_cons) {
   3944 #ifdef BNX_DEBUG
   3945 		struct tx_bd *txbd = NULL;
   3946 #endif
   3947 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3948 
   3949 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3950 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3951 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3952 
   3953 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3954 		    aprint_error("%s: TX chain consumer out of range! "
   3955 		    " 0x%04X > 0x%04X\n", sc->bnx_dev.dv_xname,
   3956 		    sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3957 
   3958 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3959 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3960 
   3961 		DBRUNIF((txbd == NULL),
   3962 		    aprint_error("%s: Unexpected NULL tx_bd[0x%04X]!\n",
   3963 		    sc->bnx_dev.dv_xname, sw_tx_chain_cons);
   3964 		    bnx_breakpoint(sc));
   3965 
   3966 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __FUNCTION__);
   3967 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3968 
   3969 		/*
   3970 		 * Free the associated mbuf. Remember
   3971 		 * that only the last tx_bd of a packet
   3972 		 * has an mbuf pointer and DMA map.
   3973 		 */
   3974 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3975 			/* Validate that this is the last tx_bd. */
   3976 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3977 			    TX_BD_FLAGS_END)),
   3978 			    aprint_error("%s: tx_bd END flag not set but "
   3979 			    "txmbuf == NULL!\n", sc->bnx_dev.dv_xname);
   3980 			    bnx_breakpoint(sc));
   3981 
   3982 			DBRUN(BNX_INFO_SEND,
   3983 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3984 			    "from tx_bd[0x%04X]\n",
   3985 			    __FUNCTION__, sw_tx_chain_cons));
   3986 
   3987 			/* Unmap the mbuf. */
   3988 			bus_dmamap_unload(sc->bnx_dmatag,
   3989 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3990 
   3991 			/* Free the mbuf. */
   3992 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3993 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3994 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3995 
   3996 			ifp->if_opackets++;
   3997 		}
   3998 
   3999 		sc->used_tx_bd--;
   4000 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4001 
   4002 		/* Refresh hw_cons to see if there's new work. */
   4003 		hw_tx_cons = sc->hw_tx_cons =
   4004 		    sblk->status_tx_quick_consumer_index0;
   4005 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4006 		    USABLE_TX_BD_PER_PAGE)
   4007 			hw_tx_cons++;
   4008 
   4009 		/* Prevent speculative reads from getting ahead of
   4010 		 * the status block.
   4011 		 */
   4012 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4013 		    BUS_SPACE_BARRIER_READ);
   4014 	}
   4015 
   4016 	/* Clear the TX timeout timer. */
   4017 	ifp->if_timer = 0;
   4018 
   4019 	/* Clear the tx hardware queue full flag. */
   4020 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   4021 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4022 		    aprint_debug("%s: TX chain is open for business! Used "
   4023 		    "tx_bd = %d\n", sc->bnx_dev.dv_xname,
   4024 		    sc->used_tx_bd));
   4025 		ifp->if_flags &= ~IFF_OACTIVE;
   4026 	}
   4027 
   4028 	sc->tx_cons = sw_tx_cons;
   4029 }
   4030 
   4031 /****************************************************************************/
   4032 /* Disables interrupt generation.                                           */
   4033 /*                                                                          */
   4034 /* Returns:                                                                 */
   4035 /*   Nothing.                                                               */
   4036 /****************************************************************************/
   4037 void
   4038 bnx_disable_intr(struct bnx_softc *sc)
   4039 {
   4040 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4041 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4042 }
   4043 
   4044 /****************************************************************************/
   4045 /* Enables interrupt generation.                                            */
   4046 /*                                                                          */
   4047 /* Returns:                                                                 */
   4048 /*   Nothing.                                                               */
   4049 /****************************************************************************/
   4050 void
   4051 bnx_enable_intr(struct bnx_softc *sc)
   4052 {
   4053 	u_int32_t		val;
   4054 
   4055 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4056 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4057 
   4058 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4059 	    sc->last_status_idx);
   4060 
   4061 	val = REG_RD(sc, BNX_HC_COMMAND);
   4062 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4063 }
   4064 
   4065 /****************************************************************************/
   4066 /* Handles controller initialization.                                       */
   4067 /*                                                                          */
   4068 /****************************************************************************/
   4069 int
   4070 bnx_init(struct ifnet *ifp)
   4071 {
   4072 	struct bnx_softc	*sc = ifp->if_softc;
   4073 	u_int32_t		ether_mtu;
   4074 	int			s, error = 0;
   4075 
   4076 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   4077 
   4078 	s = splnet();
   4079 
   4080 	bnx_stop(sc);
   4081 
   4082 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4083 		aprint_error("bnx: Controller reset failed!\n");
   4084 		goto bnx_init_exit;
   4085 	}
   4086 
   4087 	if ((error = bnx_chipinit(sc)) != 0) {
   4088 		aprint_error("bnx: Controller initialization failed!\n");
   4089 		goto bnx_init_exit;
   4090 	}
   4091 
   4092 	if ((error = bnx_blockinit(sc)) != 0) {
   4093 		aprint_error("bnx: Block initialization failed!\n");
   4094 		goto bnx_init_exit;
   4095 	}
   4096 
   4097 	/* Calculate and program the Ethernet MRU size. */
   4098 	if (ifp->if_mtu <= ETHERMTU) {
   4099 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4100 		sc->mbuf_alloc_size = MCLBYTES;
   4101 	} else {
   4102 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4103 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4104 	}
   4105 
   4106 
   4107 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4108 	    __FUNCTION__, ether_mtu);
   4109 
   4110 	/*
   4111 	 * Program the MRU and enable Jumbo frame
   4112 	 * support.
   4113 	 */
   4114 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4115 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4116 
   4117 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4118 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4119 
   4120 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4121 	    "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES,
   4122 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4123 
   4124 	/* Program appropriate promiscuous/multicast filtering. */
   4125 	bnx_set_rx_mode(sc);
   4126 
   4127 	/* Init RX buffer descriptor chain. */
   4128 	bnx_init_rx_chain(sc);
   4129 
   4130 	/* Init TX buffer descriptor chain. */
   4131 	bnx_init_tx_chain(sc);
   4132 
   4133 	/* Enable host interrupts. */
   4134 	bnx_enable_intr(sc);
   4135 
   4136 	bnx_ifmedia_upd(ifp);
   4137 
   4138 	ifp->if_flags |= IFF_RUNNING;
   4139 	ifp->if_flags &= ~IFF_OACTIVE;
   4140 
   4141 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4142 
   4143 bnx_init_exit:
   4144 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   4145 
   4146 	splx(s);
   4147 
   4148 	return(error);
   4149 }
   4150 
   4151 /****************************************************************************/
   4152 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4153 /* memory visible to the controller.                                        */
   4154 /*                                                                          */
   4155 /* Returns:                                                                 */
   4156 /*   0 for success, positive value for failure.                             */
   4157 /****************************************************************************/
   4158 int
   4159 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4160 {
   4161 	bus_dmamap_t		map;
   4162 	struct tx_bd		*txbd = NULL;
   4163 	struct mbuf		*m0;
   4164 	u_int16_t		vlan_tag = 0, flags = 0;
   4165 	u_int16_t		chain_prod, prod;
   4166 #ifdef BNX_DEBUG
   4167 	u_int16_t		debug_prod;
   4168 #endif
   4169 	u_int32_t		addr, prod_bseq;
   4170 	int			i, error, rc = 0;
   4171 	struct m_tag		*mtag;
   4172 
   4173 	m0 = *m_head;
   4174 
   4175 	/* Transfer any checksum offload flags to the bd. */
   4176 	if (m0->m_pkthdr.csum_flags) {
   4177 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4178 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4179 		if (m0->m_pkthdr.csum_flags &
   4180 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4181 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4182 	}
   4183 
   4184 	/* Transfer any VLAN tags to the bd. */
   4185 	mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m0);
   4186 	if (mtag != NULL) {
   4187 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4188 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4189 	}
   4190 
   4191 	/* Map the mbuf into DMAable memory. */
   4192 	prod = sc->tx_prod;
   4193 	chain_prod = TX_CHAIN_IDX(prod);
   4194 	map = sc->tx_mbuf_map[chain_prod];
   4195 
   4196 	/* Map the mbuf into our DMA address space. */
   4197 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4198 	if (error != 0) {
   4199 		aprint_error("%s: Error mapping mbuf into TX chain!\n",
   4200 		    sc->bnx_dev.dv_xname);
   4201 		m_freem(m0);
   4202 		*m_head = NULL;
   4203 		return (error);
   4204 	}
   4205 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4206 	    BUS_DMASYNC_PREWRITE);
   4207         /*
   4208          * The chip seems to require that at least 16 descriptors be kept
   4209          * empty at all times.  Make sure we honor that.
   4210          * XXX Would it be faster to assume worst case scenario for
   4211          * map->dm_nsegs and do this calculation higher up?
   4212          */
   4213         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4214                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4215                 return (ENOBUFS);
   4216         }
   4217 
   4218 	/* prod points to an empty tx_bd at this point. */
   4219 	prod_bseq = sc->tx_prod_bseq;
   4220 #ifdef BNX_DEBUG
   4221 	debug_prod = chain_prod;
   4222 #endif
   4223 	DBPRINT(sc, BNX_INFO_SEND,
   4224 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4225 		"prod_bseq = 0x%08X\n",
   4226 		__FUNCTION__, *prod, chain_prod, prod_bseq);
   4227 
   4228 	/*
   4229 	 * Cycle through each mbuf segment that makes up
   4230 	 * the outgoing frame, gathering the mapping info
   4231 	 * for that segment and creating a tx_bd for the
   4232 	 * mbuf.
   4233 	 */
   4234 	for (i = 0; i < map->dm_nsegs ; i++) {
   4235 		chain_prod = TX_CHAIN_IDX(prod);
   4236 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4237 
   4238 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4239 		txbd->tx_bd_haddr_lo = htole32(addr);
   4240 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4241 		txbd->tx_bd_haddr_hi = htole32(addr);
   4242 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4243 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4244 		txbd->tx_bd_flags = htole16(flags);
   4245 		prod_bseq += map->dm_segs[i].ds_len;
   4246 		if (i == 0)
   4247 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4248 		prod = NEXT_TX_BD(prod);
   4249 	}
   4250 	/* Set the END flag on the last TX buffer descriptor. */
   4251 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4252 
   4253 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4254 
   4255 	DBPRINT(sc, BNX_INFO_SEND,
   4256 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4257 		"prod_bseq = 0x%08X\n",
   4258 		__FUNCTION__, prod, chain_prod, prod_bseq);
   4259 
   4260 	/*
   4261 	 * Ensure that the mbuf pointer for this
   4262 	 * transmission is placed at the array
   4263 	 * index of the last descriptor in this
   4264 	 * chain.  This is done because a single
   4265 	 * map is used for all segments of the mbuf
   4266 	 * and we don't want to unload the map before
   4267 	 * all of the segments have been freed.
   4268 	 */
   4269 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4270 	sc->used_tx_bd += map->dm_nsegs;
   4271 
   4272 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4273 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4274 
   4275 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4276 
   4277 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4278 	    map_arg.maxsegs));
   4279 
   4280 	/* prod points to the next free tx_bd at this point. */
   4281 	sc->tx_prod = prod;
   4282 	sc->tx_prod_bseq = prod_bseq;
   4283 
   4284 	return (rc);
   4285 }
   4286 
   4287 /****************************************************************************/
   4288 /* Main transmit routine.                                                   */
   4289 /*                                                                          */
   4290 /* Returns:                                                                 */
   4291 /*   Nothing.                                                               */
   4292 /****************************************************************************/
   4293 void
   4294 bnx_start(struct ifnet *ifp)
   4295 {
   4296 	struct bnx_softc	*sc = ifp->if_softc;
   4297 	struct mbuf		*m_head = NULL;
   4298 	int			count = 0;
   4299 	u_int16_t		tx_prod, tx_chain_prod;
   4300 
   4301 	/* If there's no link or the transmit queue is empty then just exit. */
   4302 	if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
   4303 		DBPRINT(sc, BNX_INFO_SEND,
   4304 		    "%s(): No link or transmit queue empty.\n", __FUNCTION__);
   4305 		goto bnx_start_exit;
   4306 	}
   4307 
   4308 	/* prod points to the next free tx_bd. */
   4309 	tx_prod = sc->tx_prod;
   4310 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4311 
   4312 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4313 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4314 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4315 
   4316 	/*
   4317 	 * Keep adding entries while there is space in the ring.  We keep
   4318 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4319 	 */
   4320 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4321 		/* Check for any frames to send. */
   4322 		IFQ_POLL(&ifp->if_snd, m_head);
   4323 		if (m_head == NULL)
   4324 			break;
   4325 
   4326 		/*
   4327 		 * Pack the data into the transmit ring. If we
   4328 		 * don't have room, set the OACTIVE flag to wait
   4329 		 * for the NIC to drain the chain.
   4330 		 */
   4331 		if (bnx_tx_encap(sc, &m_head)) {
   4332 			ifp->if_flags |= IFF_OACTIVE;
   4333 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4334 			    "business! Total tx_bd used = %d\n",
   4335 			    sc->used_tx_bd);
   4336 			break;
   4337 		}
   4338 
   4339 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4340 		count++;
   4341 
   4342 #if NBPFILTER > 0
   4343 		/* Send a copy of the frame to any BPF listeners. */
   4344 		if (ifp->if_bpf)
   4345 			bpf_mtap(ifp->if_bpf, m_head);
   4346 #endif
   4347 	}
   4348 
   4349 	if (count == 0) {
   4350 		/* no packets were dequeued */
   4351 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4352 		    "%s(): No packets were dequeued\n", __FUNCTION__);
   4353 		goto bnx_start_exit;
   4354 	}
   4355 
   4356 	/* Update the driver's counters. */
   4357 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4358 
   4359 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4360 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod,
   4361 	    tx_chain_prod, sc->tx_prod_bseq);
   4362 
   4363 	/* Start the transmit. */
   4364 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4365 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4366 
   4367 	/* Set the tx timeout. */
   4368 	ifp->if_timer = BNX_TX_TIMEOUT;
   4369 
   4370 bnx_start_exit:
   4371 	return;
   4372 }
   4373 
   4374 /****************************************************************************/
   4375 /* Handles any IOCTL calls from the operating system.                       */
   4376 /*                                                                          */
   4377 /* Returns:                                                                 */
   4378 /*   0 for success, positive value for failure.                             */
   4379 /****************************************************************************/
   4380 int
   4381 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4382 {
   4383 	struct bnx_softc	*sc = ifp->if_softc;
   4384 	struct ifreq		*ifr = (struct ifreq *) data;
   4385 	struct mii_data		*mii;
   4386 	int			s, error = 0;
   4387 
   4388 	s = splnet();
   4389 
   4390 	switch (command) {
   4391 	case SIOCSIFFLAGS:
   4392 		if (ifp->if_flags & IFF_UP) {
   4393 			if ((ifp->if_flags & IFF_RUNNING) &&
   4394 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4395 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4396 				bnx_set_rx_mode(sc);
   4397 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4398 				bnx_init(ifp);
   4399 
   4400 		} else if (ifp->if_flags & IFF_RUNNING)
   4401 			bnx_stop(sc);
   4402 
   4403 		sc->bnx_if_flags = ifp->if_flags;
   4404 		break;
   4405 
   4406 	case SIOCSIFMEDIA:
   4407 	case SIOCGIFMEDIA:
   4408 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4409 		    sc->bnx_phy_flags);
   4410 
   4411 		if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
   4412 			error = ifmedia_ioctl(ifp, ifr,
   4413 			    &sc->bnx_ifmedia, command);
   4414 		else {
   4415 			mii = &sc->bnx_mii;
   4416 			error = ifmedia_ioctl(ifp, ifr,
   4417 			    &mii->mii_media, command);
   4418 		}
   4419 		break;
   4420 
   4421 	default:
   4422 		error = ether_ioctl(ifp, command, data);
   4423 		if (error == ENETRESET) {
   4424 #if 0
   4425 			if (ifp->if_flags & IFF_RUNNING)
   4426 				/*bnx_setmulti(sc)*/;
   4427 #endif
   4428 			error = 0;
   4429 		}
   4430 		break;
   4431 	}
   4432 
   4433 	splx(s);
   4434 
   4435 	return (error);
   4436 }
   4437 
   4438 /****************************************************************************/
   4439 /* Transmit timeout handler.                                                */
   4440 /*                                                                          */
   4441 /* Returns:                                                                 */
   4442 /*   Nothing.                                                               */
   4443 /****************************************************************************/
   4444 void
   4445 bnx_watchdog(struct ifnet *ifp)
   4446 {
   4447 	struct bnx_softc	*sc = ifp->if_softc;
   4448 
   4449 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4450 	    bnx_dump_status_block(sc));
   4451 
   4452 	aprint_error("%s: Watchdog timeout -- resetting!\n",
   4453 	    sc->bnx_dev.dv_xname);
   4454 
   4455 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4456 
   4457 	bnx_init(ifp);
   4458 
   4459 	ifp->if_oerrors++;
   4460 }
   4461 
   4462 /*
   4463  * Interrupt handler.
   4464  */
   4465 /****************************************************************************/
   4466 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4467 /* interrupt and then calls a separate routine for handle the various       */
   4468 /* interrupt causes (PHY, TX, RX).                                          */
   4469 /*                                                                          */
   4470 /* Returns:                                                                 */
   4471 /*   0 for success, positive value for failure.                             */
   4472 /****************************************************************************/
   4473 int
   4474 bnx_intr(void *xsc)
   4475 {
   4476 	struct bnx_softc	*sc;
   4477 	struct ifnet		*ifp;
   4478 	u_int32_t		status_attn_bits;
   4479 
   4480 	sc = xsc;
   4481 	ifp = &sc->ethercom.ec_if;
   4482 
   4483 	DBRUNIF(1, sc->interrupts_generated++);
   4484 
   4485 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4486 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4487 
   4488 	/*
   4489 	 * If the hardware status block index
   4490 	 * matches the last value read by the
   4491 	 * driver and we haven't asserted our
   4492 	 * interrupt then there's nothing to do.
   4493 	 */
   4494 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4495 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4496 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4497 		return (0);
   4498 
   4499 	/* Ack the interrupt and stop others from occuring. */
   4500 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4501 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4502 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4503 
   4504 	/* Keep processing data as long as there is work to do. */
   4505 	for (;;) {
   4506 		status_attn_bits = sc->status_block->status_attn_bits;
   4507 
   4508 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4509 		    aprint_debug("Simulating unexpected status attention bit set.");
   4510 		    status_attn_bits = status_attn_bits |
   4511 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4512 
   4513 		/* Was it a link change interrupt? */
   4514 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4515 		    (sc->status_block->status_attn_bits_ack &
   4516 		    STATUS_ATTN_BITS_LINK_STATE))
   4517 			bnx_phy_intr(sc);
   4518 
   4519 		/* If any other attention is asserted then the chip is toast. */
   4520 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4521 		    (sc->status_block->status_attn_bits_ack &
   4522 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4523 			DBRUN(1, sc->unexpected_attentions++);
   4524 
   4525 			aprint_error("%s: Fatal attention detected: 0x%08X\n",
   4526 			    sc->bnx_dev.dv_xname,
   4527 			    sc->status_block->status_attn_bits);
   4528 
   4529 			DBRUN(BNX_FATAL,
   4530 			    if (bnx_debug_unexpected_attention == 0)
   4531 			    bnx_breakpoint(sc));
   4532 
   4533 			bnx_init(ifp);
   4534 			return (1);
   4535 		}
   4536 
   4537 		/* Check for any completed RX frames. */
   4538 		if (sc->status_block->status_rx_quick_consumer_index0 !=
   4539 		    sc->hw_rx_cons)
   4540 			bnx_rx_intr(sc);
   4541 
   4542 		/* Check for any completed TX frames. */
   4543 		if (sc->status_block->status_tx_quick_consumer_index0 !=
   4544 		    sc->hw_tx_cons)
   4545 			bnx_tx_intr(sc);
   4546 
   4547 		/* Save the status block index value for use during the
   4548 		 * next interrupt.
   4549 		 */
   4550 		sc->last_status_idx = sc->status_block->status_idx;
   4551 
   4552 		/* Prevent speculative reads from getting ahead of the
   4553 		 * status block.
   4554 		 */
   4555 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4556 		    BUS_SPACE_BARRIER_READ);
   4557 
   4558 		/* If there's no work left then exit the isr. */
   4559 		if ((sc->status_block->status_rx_quick_consumer_index0 ==
   4560 		    sc->hw_rx_cons) &&
   4561 		    (sc->status_block->status_tx_quick_consumer_index0 ==
   4562 		    sc->hw_tx_cons))
   4563 			break;
   4564 	}
   4565 
   4566 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4567 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4568 
   4569 	/* Re-enable interrupts. */
   4570 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4571 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4572 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4573 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4574 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4575 
   4576 	/* Handle any frames that arrived while handling the interrupt. */
   4577 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4578 		bnx_start(ifp);
   4579 
   4580 	return (1);
   4581 }
   4582 
   4583 /****************************************************************************/
   4584 /* Programs the various packet receive modes (broadcast and multicast).     */
   4585 /*                                                                          */
   4586 /* Returns:                                                                 */
   4587 /*   Nothing.                                                               */
   4588 /****************************************************************************/
   4589 void
   4590 bnx_set_rx_mode(struct bnx_softc *sc)
   4591 {
   4592 	struct ethercom		*ec = &sc->ethercom;
   4593 	struct ifnet		*ifp = &ec->ec_if;
   4594 	struct ether_multi	*enm;
   4595 	struct ether_multistep	step;
   4596 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4597 	u_int32_t		rx_mode, sort_mode;
   4598 	int			h, i;
   4599 
   4600 	/* Initialize receive mode default settings. */
   4601 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4602 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4603 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4604 
   4605 	/*
   4606 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4607 	 * be enbled.
   4608 	 */
   4609 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4610 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4611 
   4612 	/*
   4613 	 * Check for promiscuous, all multicast, or selected
   4614 	 * multicast address filtering.
   4615 	 */
   4616 	if (ifp->if_flags & IFF_PROMISC) {
   4617 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4618 
   4619 		/* Enable promiscuous mode. */
   4620 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4621 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4622 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4623 allmulti:
   4624 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4625 
   4626 		/* Enable all multicast addresses. */
   4627 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4628 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4629 			    0xffffffff);
   4630 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4631 	} else {
   4632 		/* Accept one or more multicast(s). */
   4633 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4634 
   4635 		ETHER_FIRST_MULTI(step, ec, enm);
   4636 		while (enm != NULL) {
   4637 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
   4638 			    ETHER_ADDR_LEN)) {
   4639 				ifp->if_flags |= IFF_ALLMULTI;
   4640 				goto allmulti;
   4641 			}
   4642 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4643 			    0xFF;
   4644 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4645 			ETHER_NEXT_MULTI(step, enm);
   4646 		}
   4647 
   4648 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4649 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4650 			    hashes[i]);
   4651 
   4652 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4653 	}
   4654 
   4655 	/* Only make changes if the recive mode has actually changed. */
   4656 	if (rx_mode != sc->rx_mode) {
   4657 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4658 		    rx_mode);
   4659 
   4660 		sc->rx_mode = rx_mode;
   4661 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4662 	}
   4663 
   4664 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4665 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4666 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4667 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4668 }
   4669 
   4670 /****************************************************************************/
   4671 /* Called periodically to updates statistics from the controllers           */
   4672 /* statistics block.                                                        */
   4673 /*                                                                          */
   4674 /* Returns:                                                                 */
   4675 /*   Nothing.                                                               */
   4676 /****************************************************************************/
   4677 void
   4678 bnx_stats_update(struct bnx_softc *sc)
   4679 {
   4680 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   4681 	struct statistics_block	*stats;
   4682 
   4683 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
   4684 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4685 	    BUS_DMASYNC_POSTREAD);
   4686 
   4687 	stats = (struct statistics_block *)sc->stats_block;
   4688 
   4689 	/*
   4690 	 * Update the interface statistics from the
   4691 	 * hardware statistics.
   4692 	 */
   4693 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4694 
   4695 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4696 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4697 	    (u_long)stats->stat_IfInMBUFDiscards +
   4698 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4699 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4700 
   4701 	ifp->if_oerrors = (u_long)
   4702 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4703 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4704 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4705 
   4706 	/*
   4707 	 * Certain controllers don't report
   4708 	 * carrier sense errors correctly.
   4709 	 * See errata E11_5708CA0_1165.
   4710 	 */
   4711 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4712 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4713 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4714 
   4715 	/*
   4716 	 * Update the sysctl statistics from the
   4717 	 * hardware statistics.
   4718 	 */
   4719 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4720 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4721 
   4722 	sc->stat_IfHCInBadOctets =
   4723 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4724 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4725 
   4726 	sc->stat_IfHCOutOctets =
   4727 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4728 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4729 
   4730 	sc->stat_IfHCOutBadOctets =
   4731 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4732 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4733 
   4734 	sc->stat_IfHCInUcastPkts =
   4735 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4736 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4737 
   4738 	sc->stat_IfHCInMulticastPkts =
   4739 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4740 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4741 
   4742 	sc->stat_IfHCInBroadcastPkts =
   4743 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4744 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4745 
   4746 	sc->stat_IfHCOutUcastPkts =
   4747 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4748 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4749 
   4750 	sc->stat_IfHCOutMulticastPkts =
   4751 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4752 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4753 
   4754 	sc->stat_IfHCOutBroadcastPkts =
   4755 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4756 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4757 
   4758 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4759 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4760 
   4761 	sc->stat_Dot3StatsCarrierSenseErrors =
   4762 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4763 
   4764 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4765 
   4766 	sc->stat_Dot3StatsAlignmentErrors =
   4767 	    stats->stat_Dot3StatsAlignmentErrors;
   4768 
   4769 	sc->stat_Dot3StatsSingleCollisionFrames =
   4770 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4771 
   4772 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4773 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4774 
   4775 	sc->stat_Dot3StatsDeferredTransmissions =
   4776 	    stats->stat_Dot3StatsDeferredTransmissions;
   4777 
   4778 	sc->stat_Dot3StatsExcessiveCollisions =
   4779 	    stats->stat_Dot3StatsExcessiveCollisions;
   4780 
   4781 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4782 
   4783 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4784 
   4785 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4786 
   4787 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4788 
   4789 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4790 
   4791 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4792 
   4793 	sc->stat_EtherStatsPktsRx64Octets =
   4794 	    stats->stat_EtherStatsPktsRx64Octets;
   4795 
   4796 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4797 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4798 
   4799 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4800 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4801 
   4802 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4803 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4804 
   4805 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4806 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4807 
   4808 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4809 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4810 
   4811 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4812 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4813 
   4814 	sc->stat_EtherStatsPktsTx64Octets =
   4815 	    stats->stat_EtherStatsPktsTx64Octets;
   4816 
   4817 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4818 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4819 
   4820 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4821 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4822 
   4823 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4824 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4825 
   4826 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4827 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4828 
   4829 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4830 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4831 
   4832 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4833 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4834 
   4835 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4836 
   4837 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4838 
   4839 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4840 
   4841 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4842 
   4843 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4844 
   4845 	sc->stat_MacControlFramesReceived =
   4846 	    stats->stat_MacControlFramesReceived;
   4847 
   4848 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4849 
   4850 	sc->stat_IfInFramesL2FilterDiscards =
   4851 	    stats->stat_IfInFramesL2FilterDiscards;
   4852 
   4853 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4854 
   4855 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4856 
   4857 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4858 
   4859 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4860 
   4861 	sc->stat_CatchupInRuleCheckerDiscards =
   4862 	    stats->stat_CatchupInRuleCheckerDiscards;
   4863 
   4864 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4865 
   4866 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4867 
   4868 	sc->stat_CatchupInRuleCheckerP4Hit =
   4869 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4870 
   4871 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
   4872 }
   4873 
   4874 void
   4875 bnx_tick(void *xsc)
   4876 {
   4877 	struct bnx_softc	*sc = xsc;
   4878 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   4879 	struct mii_data		*mii = NULL;
   4880 	u_int32_t		msg;
   4881 	u_int16_t		prod, chain_prod;
   4882 	u_int32_t		prod_bseq;
   4883 	int s = splnet();
   4884 
   4885 	/* Tell the firmware that the driver is still running. */
   4886 #ifdef BNX_DEBUG
   4887 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4888 #else
   4889 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4890 #endif
   4891 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4892 
   4893 	/* Update the statistics from the hardware statistics block. */
   4894 	bnx_stats_update(sc);
   4895 
   4896 	/* Schedule the next tick. */
   4897 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4898 
   4899 	/* If link is up already up then we're done. */
   4900 	if (sc->bnx_link)
   4901 		goto bnx_tick_exit;
   4902 
   4903 	/* DRC - ToDo: Add SerDes support and check SerDes link here. */
   4904 
   4905 	mii = &sc->bnx_mii;
   4906 	mii_tick(mii);
   4907 
   4908 	/* Check if the link has come up. */
   4909 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   4910 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   4911 		sc->bnx_link++;
   4912 		/* Now that link is up, handle any outstanding TX traffic. */
   4913 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4914 			bnx_start(ifp);
   4915 	}
   4916 
   4917 bnx_tick_exit:
   4918 	/* try to get more RX buffers, just in case */
   4919 	prod = sc->rx_prod;
   4920 	prod_bseq = sc->rx_prod_bseq;
   4921 	chain_prod = RX_CHAIN_IDX(prod);
   4922 	bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
   4923 	sc->rx_prod = prod;
   4924 	sc->rx_prod_bseq = prod_bseq;
   4925 	splx(s);
   4926 	return;
   4927 }
   4928 
   4929 /****************************************************************************/
   4930 /* BNX Debug Routines                                                       */
   4931 /****************************************************************************/
   4932 #ifdef BNX_DEBUG
   4933 
   4934 /****************************************************************************/
   4935 /* Prints out information about an mbuf.                                    */
   4936 /*                                                                          */
   4937 /* Returns:                                                                 */
   4938 /*   Nothing.                                                               */
   4939 /****************************************************************************/
   4940 void
   4941 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4942 {
   4943 	struct mbuf		*mp = m;
   4944 
   4945 	if (m == NULL) {
   4946 		/* Index out of range. */
   4947 		aprint_error("mbuf ptr is null!\n");
   4948 		return;
   4949 	}
   4950 
   4951 	while (mp) {
   4952 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4953 		    mp, mp->m_len);
   4954 
   4955 		if (mp->m_flags & M_EXT)
   4956 			aprint_debug("M_EXT ");
   4957 		if (mp->m_flags & M_PKTHDR)
   4958 			aprint_debug("M_PKTHDR ");
   4959 		aprint_debug("\n");
   4960 
   4961 		if (mp->m_flags & M_EXT)
   4962 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4963 			    mp, mp->m_ext.ext_size);
   4964 
   4965 		mp = mp->m_next;
   4966 	}
   4967 }
   4968 
   4969 /****************************************************************************/
   4970 /* Prints out the mbufs in the TX mbuf chain.                               */
   4971 /*                                                                          */
   4972 /* Returns:                                                                 */
   4973 /*   Nothing.                                                               */
   4974 /****************************************************************************/
   4975 void
   4976 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4977 {
   4978 	struct mbuf		*m;
   4979 	int			i;
   4980 
   4981 	BNX_PRINTF(sc,
   4982 	    "----------------------------"
   4983 	    "  tx mbuf data  "
   4984 	    "----------------------------\n");
   4985 
   4986 	for (i = 0; i < count; i++) {
   4987 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4988 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4989 		bnx_dump_mbuf(sc, m);
   4990 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4991 	}
   4992 
   4993 	BNX_PRINTF(sc,
   4994 	    "--------------------------------------------"
   4995 	    "----------------------------\n");
   4996 }
   4997 
   4998 /*
   4999  * This routine prints the RX mbuf chain.
   5000  */
   5001 void
   5002 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5003 {
   5004 	struct mbuf		*m;
   5005 	int			i;
   5006 
   5007 	BNX_PRINTF(sc,
   5008 	    "----------------------------"
   5009 	    "  rx mbuf data  "
   5010 	    "----------------------------\n");
   5011 
   5012 	for (i = 0; i < count; i++) {
   5013 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5014 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5015 		bnx_dump_mbuf(sc, m);
   5016 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5017 	}
   5018 
   5019 
   5020 	BNX_PRINTF(sc,
   5021 	    "--------------------------------------------"
   5022 	    "----------------------------\n");
   5023 }
   5024 
   5025 void
   5026 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5027 {
   5028 	if (idx > MAX_TX_BD)
   5029 		/* Index out of range. */
   5030 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5031 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5032 		/* TX Chain page pointer. */
   5033 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5034 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5035 		    txbd->tx_bd_haddr_lo);
   5036 	else
   5037 		/* Normal tx_bd entry. */
   5038 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5039 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5040 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5041 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5042 		    txbd->tx_bd_flags);
   5043 }
   5044 
   5045 void
   5046 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5047 {
   5048 	if (idx > MAX_RX_BD)
   5049 		/* Index out of range. */
   5050 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5051 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5052 		/* TX Chain page pointer. */
   5053 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5054 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5055 		    rxbd->rx_bd_haddr_lo);
   5056 	else
   5057 		/* Normal tx_bd entry. */
   5058 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5059 		    "0x%08X, flags = 0x%08X\n", idx,
   5060 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5061 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5062 }
   5063 
   5064 void
   5065 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5066 {
   5067 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5068 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5069 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5070 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5071 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5072 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5073 }
   5074 
   5075 /*
   5076  * This routine prints the TX chain.
   5077  */
   5078 void
   5079 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5080 {
   5081 	struct tx_bd		*txbd;
   5082 	int			i;
   5083 
   5084 	/* First some info about the tx_bd chain structure. */
   5085 	BNX_PRINTF(sc,
   5086 	    "----------------------------"
   5087 	    "  tx_bd  chain  "
   5088 	    "----------------------------\n");
   5089 
   5090 	BNX_PRINTF(sc,
   5091 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5092 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5093 
   5094 	BNX_PRINTF(sc,
   5095 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5096 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5097 
   5098 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5099 
   5100 	BNX_PRINTF(sc, ""
   5101 	    "-----------------------------"
   5102 	    "   tx_bd data   "
   5103 	    "-----------------------------\n");
   5104 
   5105 	/* Now print out the tx_bd's themselves. */
   5106 	for (i = 0; i < count; i++) {
   5107 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5108 		bnx_dump_txbd(sc, tx_prod, txbd);
   5109 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5110 	}
   5111 
   5112 	BNX_PRINTF(sc,
   5113 	    "-----------------------------"
   5114 	    "--------------"
   5115 	    "-----------------------------\n");
   5116 }
   5117 
   5118 /*
   5119  * This routine prints the RX chain.
   5120  */
   5121 void
   5122 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5123 {
   5124 	struct rx_bd		*rxbd;
   5125 	int			i;
   5126 
   5127 	/* First some info about the tx_bd chain structure. */
   5128 	BNX_PRINTF(sc,
   5129 	    "----------------------------"
   5130 	    "  rx_bd  chain  "
   5131 	    "----------------------------\n");
   5132 
   5133 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5134 
   5135 	BNX_PRINTF(sc,
   5136 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5137 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5138 
   5139 	BNX_PRINTF(sc,
   5140 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5141 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5142 
   5143 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5144 
   5145 	BNX_PRINTF(sc,
   5146 	    "----------------------------"
   5147 	    "   rx_bd data   "
   5148 	    "----------------------------\n");
   5149 
   5150 	/* Now print out the rx_bd's themselves. */
   5151 	for (i = 0; i < count; i++) {
   5152 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5153 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5154 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5155 	}
   5156 
   5157 	BNX_PRINTF(sc,
   5158 	    "----------------------------"
   5159 	    "--------------"
   5160 	    "----------------------------\n");
   5161 }
   5162 
   5163 /*
   5164  * This routine prints the status block.
   5165  */
   5166 void
   5167 bnx_dump_status_block(struct bnx_softc *sc)
   5168 {
   5169 	struct status_block	*sblk;
   5170 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5171 	    BUS_DMASYNC_POSTREAD);
   5172 
   5173 	sblk = sc->status_block;
   5174 
   5175    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5176 	    "-----------------------------\n");
   5177 
   5178 	BNX_PRINTF(sc,
   5179 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5180 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5181 	    sblk->status_idx);
   5182 
   5183 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5184 	    sblk->status_rx_quick_consumer_index0,
   5185 	    sblk->status_tx_quick_consumer_index0);
   5186 
   5187 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5188 
   5189 	/* Theses indices are not used for normal L2 drivers. */
   5190 	if (sblk->status_rx_quick_consumer_index1 ||
   5191 		sblk->status_tx_quick_consumer_index1)
   5192 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5193 		    sblk->status_rx_quick_consumer_index1,
   5194 		    sblk->status_tx_quick_consumer_index1);
   5195 
   5196 	if (sblk->status_rx_quick_consumer_index2 ||
   5197 		sblk->status_tx_quick_consumer_index2)
   5198 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5199 		    sblk->status_rx_quick_consumer_index2,
   5200 		    sblk->status_tx_quick_consumer_index2);
   5201 
   5202 	if (sblk->status_rx_quick_consumer_index3 ||
   5203 		sblk->status_tx_quick_consumer_index3)
   5204 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5205 		    sblk->status_rx_quick_consumer_index3,
   5206 		    sblk->status_tx_quick_consumer_index3);
   5207 
   5208 	if (sblk->status_rx_quick_consumer_index4 ||
   5209 		sblk->status_rx_quick_consumer_index5)
   5210 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5211 		    sblk->status_rx_quick_consumer_index4,
   5212 		    sblk->status_rx_quick_consumer_index5);
   5213 
   5214 	if (sblk->status_rx_quick_consumer_index6 ||
   5215 		sblk->status_rx_quick_consumer_index7)
   5216 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5217 		    sblk->status_rx_quick_consumer_index6,
   5218 		    sblk->status_rx_quick_consumer_index7);
   5219 
   5220 	if (sblk->status_rx_quick_consumer_index8 ||
   5221 		sblk->status_rx_quick_consumer_index9)
   5222 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5223 		    sblk->status_rx_quick_consumer_index8,
   5224 		    sblk->status_rx_quick_consumer_index9);
   5225 
   5226 	if (sblk->status_rx_quick_consumer_index10 ||
   5227 		sblk->status_rx_quick_consumer_index11)
   5228 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5229 		    sblk->status_rx_quick_consumer_index10,
   5230 		    sblk->status_rx_quick_consumer_index11);
   5231 
   5232 	if (sblk->status_rx_quick_consumer_index12 ||
   5233 		sblk->status_rx_quick_consumer_index13)
   5234 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5235 		    sblk->status_rx_quick_consumer_index12,
   5236 		    sblk->status_rx_quick_consumer_index13);
   5237 
   5238 	if (sblk->status_rx_quick_consumer_index14 ||
   5239 		sblk->status_rx_quick_consumer_index15)
   5240 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5241 		    sblk->status_rx_quick_consumer_index14,
   5242 		    sblk->status_rx_quick_consumer_index15);
   5243 
   5244 	if (sblk->status_completion_producer_index ||
   5245 		sblk->status_cmd_consumer_index)
   5246 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5247 		    sblk->status_completion_producer_index,
   5248 		    sblk->status_cmd_consumer_index);
   5249 
   5250 	BNX_PRINTF(sc, "-------------------------------------------"
   5251 	    "-----------------------------\n");
   5252 }
   5253 
   5254 /*
   5255  * This routine prints the statistics block.
   5256  */
   5257 void
   5258 bnx_dump_stats_block(struct bnx_softc *sc)
   5259 {
   5260 	struct statistics_block	*sblk;
   5261 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5262 	    BUS_DMASYNC_POSTREAD);
   5263 
   5264 	sblk = sc->stats_block;
   5265 
   5266 	BNX_PRINTF(sc, ""
   5267 	    "-----------------------------"
   5268 	    " Stats  Block "
   5269 	    "-----------------------------\n");
   5270 
   5271 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5272 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5273 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5274 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5275 
   5276 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5277 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5278 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5279 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5280 
   5281 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5282 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5283 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5284 	    sblk->stat_IfHCInMulticastPkts_hi,
   5285 	    sblk->stat_IfHCInMulticastPkts_lo);
   5286 
   5287 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5288 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5289 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5290 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5291 	    sblk->stat_IfHCOutUcastPkts_hi,
   5292 	    sblk->stat_IfHCOutUcastPkts_lo);
   5293 
   5294 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5295 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5296 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5297 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5298 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5299 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5300 
   5301 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5302 		BNX_PRINTF(sc, "0x%08X : "
   5303 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5304 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5305 
   5306 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5307 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5308 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5309 
   5310 	if (sblk->stat_Dot3StatsFCSErrors)
   5311 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5312 		    sblk->stat_Dot3StatsFCSErrors);
   5313 
   5314 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5315 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5316 		    sblk->stat_Dot3StatsAlignmentErrors);
   5317 
   5318 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5319 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5320 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5321 
   5322 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5323 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5324 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5325 
   5326 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5327 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5328 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5329 
   5330 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5331 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5332 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5333 
   5334 	if (sblk->stat_Dot3StatsLateCollisions)
   5335 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5336 		    sblk->stat_Dot3StatsLateCollisions);
   5337 
   5338 	if (sblk->stat_EtherStatsCollisions)
   5339 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5340 		    sblk->stat_EtherStatsCollisions);
   5341 
   5342 	if (sblk->stat_EtherStatsFragments)
   5343 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5344 		    sblk->stat_EtherStatsFragments);
   5345 
   5346 	if (sblk->stat_EtherStatsJabbers)
   5347 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5348 		    sblk->stat_EtherStatsJabbers);
   5349 
   5350 	if (sblk->stat_EtherStatsUndersizePkts)
   5351 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5352 		    sblk->stat_EtherStatsUndersizePkts);
   5353 
   5354 	if (sblk->stat_EtherStatsOverrsizePkts)
   5355 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5356 		    sblk->stat_EtherStatsOverrsizePkts);
   5357 
   5358 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5359 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5360 		    sblk->stat_EtherStatsPktsRx64Octets);
   5361 
   5362 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5363 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5364 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5365 
   5366 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5367 		BNX_PRINTF(sc, "0x%08X : "
   5368 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5369 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5370 
   5371 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5372 		BNX_PRINTF(sc, "0x%08X : "
   5373 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5374 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5375 
   5376 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5377 		BNX_PRINTF(sc, "0x%08X : "
   5378 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5379 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5380 
   5381 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5382 		BNX_PRINTF(sc, "0x%08X : "
   5383 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5384 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5385 
   5386 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5387 		BNX_PRINTF(sc, "0x%08X : "
   5388 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5389 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5390 
   5391 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5392 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5393 		    sblk->stat_EtherStatsPktsTx64Octets);
   5394 
   5395 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5396 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5397 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5398 
   5399 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5400 		BNX_PRINTF(sc, "0x%08X : "
   5401 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5402 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5403 
   5404 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5405 		BNX_PRINTF(sc, "0x%08X : "
   5406 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5407 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5408 
   5409 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5410 		BNX_PRINTF(sc, "0x%08X : "
   5411 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5412 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5413 
   5414 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5415 		BNX_PRINTF(sc, "0x%08X : "
   5416 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5417 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5418 
   5419 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5420 		BNX_PRINTF(sc, "0x%08X : "
   5421 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5422 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5423 
   5424 	if (sblk->stat_XonPauseFramesReceived)
   5425 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5426 		    sblk->stat_XonPauseFramesReceived);
   5427 
   5428 	if (sblk->stat_XoffPauseFramesReceived)
   5429 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5430 		    sblk->stat_XoffPauseFramesReceived);
   5431 
   5432 	if (sblk->stat_OutXonSent)
   5433 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5434 		    sblk->stat_OutXonSent);
   5435 
   5436 	if (sblk->stat_OutXoffSent)
   5437 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5438 		    sblk->stat_OutXoffSent);
   5439 
   5440 	if (sblk->stat_FlowControlDone)
   5441 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5442 		    sblk->stat_FlowControlDone);
   5443 
   5444 	if (sblk->stat_MacControlFramesReceived)
   5445 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5446 		    sblk->stat_MacControlFramesReceived);
   5447 
   5448 	if (sblk->stat_XoffStateEntered)
   5449 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5450 		    sblk->stat_XoffStateEntered);
   5451 
   5452 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5453 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5454 		    sblk->stat_IfInFramesL2FilterDiscards);
   5455 
   5456 	if (sblk->stat_IfInRuleCheckerDiscards)
   5457 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5458 		    sblk->stat_IfInRuleCheckerDiscards);
   5459 
   5460 	if (sblk->stat_IfInFTQDiscards)
   5461 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5462 		    sblk->stat_IfInFTQDiscards);
   5463 
   5464 	if (sblk->stat_IfInMBUFDiscards)
   5465 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5466 		    sblk->stat_IfInMBUFDiscards);
   5467 
   5468 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5469 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5470 		    sblk->stat_IfInRuleCheckerP4Hit);
   5471 
   5472 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5473 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5474 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5475 
   5476 	if (sblk->stat_CatchupInFTQDiscards)
   5477 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5478 		    sblk->stat_CatchupInFTQDiscards);
   5479 
   5480 	if (sblk->stat_CatchupInMBUFDiscards)
   5481 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5482 		    sblk->stat_CatchupInMBUFDiscards);
   5483 
   5484 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5485 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5486 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5487 
   5488 	BNX_PRINTF(sc,
   5489 	    "-----------------------------"
   5490 	    "--------------"
   5491 	    "-----------------------------\n");
   5492 }
   5493 
   5494 void
   5495 bnx_dump_driver_state(struct bnx_softc *sc)
   5496 {
   5497 	BNX_PRINTF(sc,
   5498 	    "-----------------------------"
   5499 	    " Driver State "
   5500 	    "-----------------------------\n");
   5501 
   5502 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5503 	    "address\n", sc);
   5504 
   5505 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5506 	    sc->status_block);
   5507 
   5508 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5509 	    "address\n", sc->stats_block);
   5510 
   5511 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5512 	    "adddress\n", sc->tx_bd_chain);
   5513 
   5514 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5515 	    sc->rx_bd_chain);
   5516 
   5517 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5518 	    sc->tx_mbuf_ptr);
   5519 
   5520 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5521 	    sc->rx_mbuf_ptr);
   5522 
   5523 	BNX_PRINTF(sc,
   5524 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5525 	    sc->interrupts_generated);
   5526 
   5527 	BNX_PRINTF(sc,
   5528 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5529 	    sc->rx_interrupts);
   5530 
   5531 	BNX_PRINTF(sc,
   5532 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5533 	    sc->tx_interrupts);
   5534 
   5535 	BNX_PRINTF(sc,
   5536 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5537 	    sc->last_status_idx);
   5538 
   5539 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5540 	    sc->tx_prod);
   5541 
   5542 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5543 	    sc->tx_cons);
   5544 
   5545 	BNX_PRINTF(sc,
   5546 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5547 	    sc->tx_prod_bseq);
   5548 
   5549 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5550 	    sc->rx_prod);
   5551 
   5552 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5553 	    sc->rx_cons);
   5554 
   5555 	BNX_PRINTF(sc,
   5556 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5557 	    sc->rx_prod_bseq);
   5558 
   5559 	BNX_PRINTF(sc,
   5560 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5561 	    sc->rx_mbuf_alloc);
   5562 
   5563 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5564 	    sc->free_rx_bd);
   5565 
   5566 	BNX_PRINTF(sc,
   5567 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5568 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5569 
   5570 	BNX_PRINTF(sc,
   5571 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5572 	    sc->tx_mbuf_alloc);
   5573 
   5574 	BNX_PRINTF(sc,
   5575 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5576 	    sc->rx_mbuf_alloc);
   5577 
   5578 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5579 	    sc->used_tx_bd);
   5580 
   5581 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5582 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5583 
   5584 	BNX_PRINTF(sc,
   5585 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5586 	    sc->mbuf_alloc_failed);
   5587 
   5588 	BNX_PRINTF(sc, "-------------------------------------------"
   5589 	    "-----------------------------\n");
   5590 }
   5591 
   5592 void
   5593 bnx_dump_hw_state(struct bnx_softc *sc)
   5594 {
   5595 	u_int32_t		val1;
   5596 	int			i;
   5597 
   5598 	BNX_PRINTF(sc,
   5599 	    "----------------------------"
   5600 	    " Hardware State "
   5601 	    "----------------------------\n");
   5602 
   5603 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5604 
   5605 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5606 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5607 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5608 
   5609 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5610 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5611 
   5612 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5613 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5614 
   5615 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5616 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5617 	    BNX_EMAC_STATUS);
   5618 
   5619 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5620 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5621 
   5622 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5623 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5624 	    BNX_TBDR_STATUS);
   5625 
   5626 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5627 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5628 	    BNX_TDMA_STATUS);
   5629 
   5630 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5631 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5632 
   5633 	BNX_PRINTF(sc,
   5634 	    "----------------------------"
   5635 	    "----------------"
   5636 	    "----------------------------\n");
   5637 
   5638 	BNX_PRINTF(sc,
   5639 	    "----------------------------"
   5640 	    " Register  Dump "
   5641 	    "----------------------------\n");
   5642 
   5643 	for (i = 0x400; i < 0x8000; i += 0x10)
   5644 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5645 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5646 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5647 
   5648 	BNX_PRINTF(sc,
   5649 	    "----------------------------"
   5650 	    "----------------"
   5651 	    "----------------------------\n");
   5652 }
   5653 
   5654 void
   5655 bnx_breakpoint(struct bnx_softc *sc)
   5656 {
   5657 	/* Unreachable code to shut the compiler up about unused functions. */
   5658 	if (0) {
   5659    		bnx_dump_txbd(sc, 0, NULL);
   5660 		bnx_dump_rxbd(sc, 0, NULL);
   5661 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5662 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5663 		bnx_dump_l2fhdr(sc, 0, NULL);
   5664 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5665 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5666 		bnx_dump_status_block(sc);
   5667 		bnx_dump_stats_block(sc);
   5668 		bnx_dump_driver_state(sc);
   5669 		bnx_dump_hw_state(sc);
   5670 	}
   5671 
   5672 	bnx_dump_driver_state(sc);
   5673 	/* Print the important status block fields. */
   5674 	bnx_dump_status_block(sc);
   5675 
   5676 #if 0
   5677 	/* Call the debugger. */
   5678 	breakpoint();
   5679 #endif
   5680 
   5681 	return;
   5682 }
   5683 #endif
   5684