Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.80
      1 /*	$NetBSD: if_bnx.c,v 1.80 2019/04/08 03:56:08 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.80 2019/04/08 03:56:08 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 	device_t dev = sc->bnx_dev;
    466 	int i = 0;
    467 
    468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    471 	    ? "Serdes " : "", sc->bnx_chipid);
    472 
    473 	/* Bus info. */
    474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
    476 		switch (sc->link_speed) {
    477 		case 1: aprint_normal("2.5GT/s\n"); break;
    478 		case 2:	aprint_normal("5GT/s\n"); break;
    479 		default: aprint_normal("Unknown link speed\n");
    480 		}
    481 	} else {
    482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
    483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    485 		    sc->bus_speed_mhz);
    486 	}
    487 
    488 	/* Firmware version and device features. */
    489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
    490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
    491 
    492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
    493 		if (i > 0) aprint_normal("|");
    494 		aprint_normal("2.5G"); i++;
    495 	}
    496 
    497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
    498 		if (i > 0) aprint_normal("|");
    499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
    500 	} else {
    501 		aprint_normal(")\n");
    502 	}
    503 
    504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    505 	    sc->bnx_rx_quick_cons_trip_int,
    506 	    sc->bnx_rx_quick_cons_trip,
    507 	    sc->bnx_rx_ticks_int,
    508 	    sc->bnx_rx_ticks,
    509 	    sc->bnx_tx_quick_cons_trip_int,
    510 	    sc->bnx_tx_quick_cons_trip,
    511 	    sc->bnx_tx_ticks_int,
    512 	    sc->bnx_tx_ticks);
    513 }
    514 
    515 
    516 /****************************************************************************/
    517 /* PCI Capabilities Probe Function.                                         */
    518 /*                                                                          */
    519 /* Walks the PCI capabiites list for the device to find what features are   */
    520 /* supported.                                                               */
    521 /*                                                                          */
    522 /* Returns:                                                                 */
    523 /*   None.                                                                  */
    524 /****************************************************************************/
    525 static void
    526 bnx_probe_pci_caps(struct bnx_softc *sc)
    527 {
    528 	struct pci_attach_args *pa = &(sc->bnx_pa);
    529 	pcireg_t reg;
    530 
    531 	/* Check if PCI-X capability is enabled. */
    532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    533 		NULL) != 0) {
    534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    535 	}
    536 
    537 	/* Check if PCIe capability is enabled. */
    538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    539 		NULL) != 0) {
    540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    541 		    reg + PCIE_LCSR);
    542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    543 		    "0x%08X\n",	link_status);
    544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    547 		sc->bnx_flags |= BNX_PCIE_FLAG;
    548 	}
    549 
    550 	/* Check if MSI capability is enabled. */
    551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    552 		NULL) != 0)
    553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    554 
    555 	/* Check if MSI-X capability is enabled. */
    556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    557 		NULL) != 0)
    558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    559 }
    560 
    561 
    562 /****************************************************************************/
    563 /* Device attach function.                                                  */
    564 /*                                                                          */
    565 /* Allocates device resources, performs secondary chip identification,      */
    566 /* resets and initializes the hardware, and initializes driver instance     */
    567 /* variables.                                                               */
    568 /*                                                                          */
    569 /* Returns:                                                                 */
    570 /*   0 on success, positive value on failure.                               */
    571 /****************************************************************************/
    572 void
    573 bnx_attach(device_t parent, device_t self, void *aux)
    574 {
    575 	const struct bnx_product *bp;
    576 	struct bnx_softc	*sc = device_private(self);
    577 	prop_dictionary_t	dict;
    578 	struct pci_attach_args	*pa = aux;
    579 	pci_chipset_tag_t	pc = pa->pa_pc;
    580 	pci_intr_handle_t	ih;
    581 	const char 		*intrstr = NULL;
    582 	uint32_t		command;
    583 	struct ifnet		*ifp;
    584 	uint32_t		val;
    585 	int			mii_flags = MIIF_FORCEANEG;
    586 	pcireg_t		memtype;
    587 	char intrbuf[PCI_INTRSTR_LEN];
    588 	int i, j;
    589 
    590 	if (bnx_tx_pool == NULL) {
    591 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    592 		if (bnx_tx_pool != NULL) {
    593 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    594 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    595 		} else {
    596 			aprint_error(": can't alloc bnx_tx_pool\n");
    597 			return;
    598 		}
    599 	}
    600 
    601 	bp = bnx_lookup(pa);
    602 	if (bp == NULL)
    603 		panic("unknown device");
    604 
    605 	sc->bnx_dev = self;
    606 
    607 	aprint_naive("\n");
    608 	aprint_normal(": %s\n", bp->bp_name);
    609 
    610 	sc->bnx_pa = *pa;
    611 
    612 	/*
    613 	 * Map control/status registers.
    614 	*/
    615 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    616 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    617 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    618 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    619 
    620 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    621 		aprint_error_dev(sc->bnx_dev,
    622 		    "failed to enable memory mapping!\n");
    623 		return;
    624 	}
    625 
    626 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    627 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    628 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    629 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    630 		return;
    631 	}
    632 
    633 	if (pci_intr_map(pa, &ih)) {
    634 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    635 		goto bnx_attach_fail;
    636 	}
    637 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    638 
    639 	/*
    640 	 * Configure byte swap and enable indirect register access.
    641 	 * Rely on CPU to do target byte swapping on big endian systems.
    642 	 * Access to registers outside of PCI configurtion space are not
    643 	 * valid until this is done.
    644 	 */
    645 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    646 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    647 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    648 
    649 	/* Save ASIC revsion info. */
    650 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    651 
    652 	/*
    653 	 * Find the base address for shared memory access.
    654 	 * Newer versions of bootcode use a signature and offset
    655 	 * while older versions use a fixed address.
    656 	 */
    657 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    658 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    659 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    660 		    (sc->bnx_pa.pa_function << 2));
    661 	else
    662 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    663 
    664 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    665 
    666 	/* Set initial device and PHY flags */
    667 	sc->bnx_flags = 0;
    668 	sc->bnx_phy_flags = 0;
    669 
    670 	/* Fetch the bootcode revision. */
    671 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
    672 	for (i = 0, j = 0; i < 3; i++) {
    673 		uint8_t num;
    674 		int k, skip0;
    675 
    676 		num = (uint8_t)(val >> (24 - (i * 8)));
    677 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
    678 			if (num >= k || !skip0 || k == 1) {
    679 				sc->bnx_bc_ver[j++] = (num / k) + '0';
    680 				skip0 = 0;
    681 			}
    682 		}
    683 		if (i != 2)
    684 			sc->bnx_bc_ver[j++] = '.';
    685 	}
    686 
    687 	/* Check if any management firmware is enabled. */
    688 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
    689 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
    690 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
    691 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
    692 
    693 		/* Allow time for firmware to enter the running state. */
    694 		for (i = 0; i < 30; i++) {
    695 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    696 			    BNX_BC_STATE_CONDITION);
    697 			if (val & BNX_CONDITION_MFW_RUN_MASK)
    698 				break;
    699 			DELAY(10000);
    700 		}
    701 
    702 		/* Check if management firmware is running. */
    703 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
    704 		    BNX_BC_STATE_CONDITION);
    705 		val &= BNX_CONDITION_MFW_RUN_MASK;
    706 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
    707 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
    708 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
    709 			    BNX_MFW_VER_PTR);
    710 
    711 			/* Read the management firmware version string. */
    712 			for (j = 0; j < 3; j++) {
    713 				val = bnx_reg_rd_ind(sc, addr + j * 4);
    714 				val = bswap32(val);
    715 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
    716 				i += 4;
    717 			}
    718 		} else {
    719 			/* May cause firmware synchronization timeouts. */
    720 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
    721 			    "but not running!\n", __FILE__, __LINE__);
    722 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
    723 
    724 			/* ToDo: Any action the driver should take? */
    725 		}
    726 	}
    727 
    728 	bnx_probe_pci_caps(sc);
    729 
    730 	/* Get PCI bus information (speed and type). */
    731 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    732 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    733 		uint32_t clkreg;
    734 
    735 		sc->bnx_flags |= BNX_PCIX_FLAG;
    736 
    737 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    738 
    739 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    740 		switch (clkreg) {
    741 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    742 			sc->bus_speed_mhz = 133;
    743 			break;
    744 
    745 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    746 			sc->bus_speed_mhz = 100;
    747 			break;
    748 
    749 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    750 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    751 			sc->bus_speed_mhz = 66;
    752 			break;
    753 
    754 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    755 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    756 			sc->bus_speed_mhz = 50;
    757 			break;
    758 
    759 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    760 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    761 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    762 			sc->bus_speed_mhz = 33;
    763 			break;
    764 		}
    765 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    766 			sc->bus_speed_mhz = 66;
    767 		else
    768 			sc->bus_speed_mhz = 33;
    769 
    770 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    771 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    772 
    773 	/* Reset the controller. */
    774 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    775 		goto bnx_attach_fail;
    776 
    777 	/* Initialize the controller. */
    778 	if (bnx_chipinit(sc)) {
    779 		aprint_error_dev(sc->bnx_dev,
    780 		    "Controller initialization failed!\n");
    781 		goto bnx_attach_fail;
    782 	}
    783 
    784 	/* Perform NVRAM test. */
    785 	if (bnx_nvram_test(sc)) {
    786 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    787 		goto bnx_attach_fail;
    788 	}
    789 
    790 	/* Fetch the permanent Ethernet MAC address. */
    791 	bnx_get_mac_addr(sc);
    792 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    793 	    ether_sprintf(sc->eaddr));
    794 
    795 	/*
    796 	 * Trip points control how many BDs
    797 	 * should be ready before generating an
    798 	 * interrupt while ticks control how long
    799 	 * a BD can sit in the chain before
    800 	 * generating an interrupt.  Set the default
    801 	 * values for the RX and TX rings.
    802 	 */
    803 
    804 #ifdef BNX_DEBUG
    805 	/* Force more frequent interrupts. */
    806 	sc->bnx_tx_quick_cons_trip_int = 1;
    807 	sc->bnx_tx_quick_cons_trip     = 1;
    808 	sc->bnx_tx_ticks_int           = 0;
    809 	sc->bnx_tx_ticks               = 0;
    810 
    811 	sc->bnx_rx_quick_cons_trip_int = 1;
    812 	sc->bnx_rx_quick_cons_trip     = 1;
    813 	sc->bnx_rx_ticks_int           = 0;
    814 	sc->bnx_rx_ticks               = 0;
    815 #else
    816 	sc->bnx_tx_quick_cons_trip_int = 20;
    817 	sc->bnx_tx_quick_cons_trip     = 20;
    818 	sc->bnx_tx_ticks_int           = 80;
    819 	sc->bnx_tx_ticks               = 80;
    820 
    821 	sc->bnx_rx_quick_cons_trip_int = 6;
    822 	sc->bnx_rx_quick_cons_trip     = 6;
    823 	sc->bnx_rx_ticks_int           = 18;
    824 	sc->bnx_rx_ticks               = 18;
    825 #endif
    826 
    827 	/* Update statistics once every second. */
    828 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    829 
    830 	/* Find the media type for the adapter. */
    831 	bnx_get_media(sc);
    832 
    833 	/*
    834 	 * Store config data needed by the PHY driver for
    835 	 * backplane applications
    836 	 */
    837 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    838 	    BNX_SHARED_HW_CFG_CONFIG);
    839 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    840 	    BNX_PORT_HW_CFG_CONFIG);
    841 
    842 	/* Allocate DMA memory resources. */
    843 	sc->bnx_dmatag = pa->pa_dmat;
    844 	if (bnx_dma_alloc(sc)) {
    845 		aprint_error_dev(sc->bnx_dev,
    846 		    "DMA resource allocation failed!\n");
    847 		goto bnx_attach_fail;
    848 	}
    849 
    850 	/* Initialize the ifnet interface. */
    851 	ifp = &sc->bnx_ec.ec_if;
    852 	ifp->if_softc = sc;
    853 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    854 	ifp->if_ioctl = bnx_ioctl;
    855 	ifp->if_stop = bnx_stop;
    856 	ifp->if_start = bnx_start;
    857 	ifp->if_init = bnx_init;
    858 	ifp->if_watchdog = bnx_watchdog;
    859 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    860 	IFQ_SET_READY(&ifp->if_snd);
    861 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    862 
    863 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    864 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    865 
    866 	ifp->if_capabilities |=
    867 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    868 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    869 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    870 
    871 	/* create workqueue to handle packet allocations */
    872 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    873 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    874 		aprint_error_dev(self, "failed to create workqueue\n");
    875 		goto bnx_attach_fail;
    876 	}
    877 
    878 	sc->bnx_mii.mii_ifp = ifp;
    879 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    880 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    881 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    882 
    883 	/* Handle any special PHY initialization for SerDes PHYs. */
    884 	bnx_init_media(sc);
    885 
    886 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    887 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
    888 	    bnx_ifmedia_sts);
    889 
    890 	/* set phyflags and chipid before mii_attach() */
    891 	dict = device_properties(self);
    892 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    893 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    894 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    895 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    896 
    897 	/* Print some useful adapter info */
    898 	bnx_print_adapter_info(sc);
    899 
    900 	mii_flags |= MIIF_DOPAUSE;
    901 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    902 		mii_flags |= MIIF_HAVEFIBER;
    903 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    904 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    905 
    906 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    907 		aprint_error_dev(self, "no PHY found!\n");
    908 		ifmedia_add(&sc->bnx_mii.mii_media,
    909 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    910 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    911 	} else
    912 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    913 
    914 	/* Attach to the Ethernet interface list. */
    915 	if_attach(ifp);
    916 	if_deferred_start_init(ifp, NULL);
    917 	ether_ifattach(ifp,sc->eaddr);
    918 
    919 	callout_init(&sc->bnx_timeout, 0);
    920 
    921 	/* Hookup IRQ last. */
    922 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    923 	    sc, device_xname(self));
    924 	if (sc->bnx_intrhand == NULL) {
    925 		aprint_error_dev(self, "couldn't establish interrupt");
    926 		if (intrstr != NULL)
    927 			aprint_error(" at %s", intrstr);
    928 		aprint_error("\n");
    929 		goto bnx_attach_fail;
    930 	}
    931 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    932 
    933 	if (pmf_device_register(self, NULL, NULL))
    934 		pmf_class_network_register(self, ifp);
    935 	else
    936 		aprint_error_dev(self, "couldn't establish power handler\n");
    937 
    938 	/* Print some important debugging info. */
    939 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    940 
    941 	/* Get the firmware running so ASF still works. */
    942 	bnx_mgmt_init(sc);
    943 
    944 	goto bnx_attach_exit;
    945 
    946 bnx_attach_fail:
    947 	bnx_release_resources(sc);
    948 
    949 bnx_attach_exit:
    950 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    951 }
    952 
    953 /****************************************************************************/
    954 /* Device detach function.                                                  */
    955 /*                                                                          */
    956 /* Stops the controller, resets the controller, and releases resources.     */
    957 /*                                                                          */
    958 /* Returns:                                                                 */
    959 /*   0 on success, positive value on failure.                               */
    960 /****************************************************************************/
    961 int
    962 bnx_detach(device_t dev, int flags)
    963 {
    964 	int s;
    965 	struct bnx_softc *sc;
    966 	struct ifnet *ifp;
    967 
    968 	sc = device_private(dev);
    969 	ifp = &sc->bnx_ec.ec_if;
    970 
    971 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    972 
    973 	/* Stop and reset the controller. */
    974 	s = splnet();
    975 	bnx_stop(ifp, 1);
    976 	splx(s);
    977 
    978 	pmf_device_deregister(dev);
    979 	callout_destroy(&sc->bnx_timeout);
    980 	ether_ifdetach(ifp);
    981 	workqueue_destroy(sc->bnx_wq);
    982 
    983 	/* Delete all remaining media. */
    984 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    985 
    986 	if_detach(ifp);
    987 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    988 
    989 	/* Release all remaining resources. */
    990 	bnx_release_resources(sc);
    991 
    992 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    993 
    994 	return 0;
    995 }
    996 
    997 /****************************************************************************/
    998 /* Indirect register read.                                                  */
    999 /*                                                                          */
   1000 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
   1001 /* configuration space.  Using this mechanism avoids issues with posted     */
   1002 /* reads but is much slower than memory-mapped I/O.                         */
   1003 /*                                                                          */
   1004 /* Returns:                                                                 */
   1005 /*   The value of the register.                                             */
   1006 /****************************************************************************/
   1007 uint32_t
   1008 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
   1009 {
   1010 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1011 
   1012 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1013 	    offset);
   1014 #ifdef BNX_DEBUG
   1015 	{
   1016 		uint32_t val;
   1017 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1018 		    BNX_PCICFG_REG_WINDOW);
   1019 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
   1020 		    "val = 0x%08X\n", __func__, offset, val);
   1021 		return val;
   1022 	}
   1023 #else
   1024 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
   1025 #endif
   1026 }
   1027 
   1028 /****************************************************************************/
   1029 /* Indirect register write.                                                 */
   1030 /*                                                                          */
   1031 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
   1032 /* configuration space.  Using this mechanism avoids issues with posted     */
   1033 /* writes but is muchh slower than memory-mapped I/O.                       */
   1034 /*                                                                          */
   1035 /* Returns:                                                                 */
   1036 /*   Nothing.                                                               */
   1037 /****************************************************************************/
   1038 void
   1039 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
   1040 {
   1041 	struct pci_attach_args  *pa = &(sc->bnx_pa);
   1042 
   1043 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
   1044 		__func__, offset, val);
   1045 
   1046 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1047 	    offset);
   1048 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
   1049 }
   1050 
   1051 /****************************************************************************/
   1052 /* Context memory write.                                                    */
   1053 /*                                                                          */
   1054 /* The NetXtreme II controller uses context memory to track connection      */
   1055 /* information for L2 and higher network protocols.                         */
   1056 /*                                                                          */
   1057 /* Returns:                                                                 */
   1058 /*   Nothing.                                                               */
   1059 /****************************************************************************/
   1060 void
   1061 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
   1062     uint32_t ctx_val)
   1063 {
   1064 	uint32_t idx, offset = ctx_offset + cid_addr;
   1065 	uint32_t val, retry_cnt = 5;
   1066 
   1067 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1068 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
   1069 		REG_WR(sc, BNX_CTX_CTX_CTRL,
   1070 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
   1071 
   1072 		for (idx = 0; idx < retry_cnt; idx++) {
   1073 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1074 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1075 				break;
   1076 			DELAY(5);
   1077 		}
   1078 
   1079 #if 0
   1080 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1081 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1082 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1083 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1084 #endif
   1085 
   1086 	} else {
   1087 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1088 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1089 	}
   1090 }
   1091 
   1092 /****************************************************************************/
   1093 /* PHY register read.                                                       */
   1094 /*                                                                          */
   1095 /* Implements register reads on the MII bus.                                */
   1096 /*                                                                          */
   1097 /* Returns:                                                                 */
   1098 /*   The value of the register.                                             */
   1099 /****************************************************************************/
   1100 int
   1101 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1102 {
   1103 	struct bnx_softc	*sc = device_private(dev);
   1104 	uint32_t		data;
   1105 	int			i, rv = 0;
   1106 
   1107 	/*
   1108 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1109 	 * with special mappings to work with IEEE
   1110 	 * Clause 22 register accesses.
   1111 	 */
   1112 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1113 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1114 			reg += 0x10;
   1115 	}
   1116 
   1117 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1118 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1119 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1120 
   1121 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1122 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1123 
   1124 		DELAY(40);
   1125 	}
   1126 
   1127 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1128 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1129 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1130 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1131 
   1132 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1133 		DELAY(10);
   1134 
   1135 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1136 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1137 			DELAY(5);
   1138 
   1139 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1140 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1141 
   1142 			break;
   1143 		}
   1144 	}
   1145 
   1146 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1147 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1148 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1149 		rv = ETIMEDOUT;
   1150 	} else {
   1151 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1152 		*val = data & 0xffff;
   1153 
   1154 		DBPRINT(sc, BNX_EXCESSIVE,
   1155 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1156 		    phy, (uint16_t) reg & 0xffff, *val);
   1157 	}
   1158 
   1159 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1160 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1161 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1162 
   1163 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1164 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1165 
   1166 		DELAY(40);
   1167 	}
   1168 
   1169 	return rv;
   1170 }
   1171 
   1172 /****************************************************************************/
   1173 /* PHY register write.                                                      */
   1174 /*                                                                          */
   1175 /* Implements register writes on the MII bus.                               */
   1176 /*                                                                          */
   1177 /* Returns:                                                                 */
   1178 /*   The value of the register.                                             */
   1179 /****************************************************************************/
   1180 int
   1181 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1182 {
   1183 	struct bnx_softc	*sc = device_private(dev);
   1184 	uint32_t		val1;
   1185 	int			i, rv = 0;
   1186 
   1187 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1188 	    "val = 0x%04hX\n", __func__,
   1189 	    phy, (uint16_t) reg & 0xffff, val);
   1190 
   1191 	/*
   1192 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1193 	 * with special mappings to work with IEEE
   1194 	 * Clause 22 register accesses.
   1195 	 */
   1196 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1197 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1198 			reg += 0x10;
   1199 	}
   1200 
   1201 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1202 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1203 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1204 
   1205 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1206 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1207 
   1208 		DELAY(40);
   1209 	}
   1210 
   1211 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1212 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1213 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1214 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1215 
   1216 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1217 		DELAY(10);
   1218 
   1219 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1220 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1221 			DELAY(5);
   1222 			break;
   1223 		}
   1224 	}
   1225 
   1226 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1227 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1228 		    __LINE__);
   1229 		rv = ETIMEDOUT;
   1230 	}
   1231 
   1232 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1233 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1234 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1235 
   1236 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1237 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1238 
   1239 		DELAY(40);
   1240 	}
   1241 
   1242 	return rv;
   1243 }
   1244 
   1245 /****************************************************************************/
   1246 /* MII bus status change.                                                   */
   1247 /*                                                                          */
   1248 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1249 /* MAC interface registers.                                                 */
   1250 /*                                                                          */
   1251 /* Returns:                                                                 */
   1252 /*   Nothing.                                                               */
   1253 /****************************************************************************/
   1254 void
   1255 bnx_miibus_statchg(struct ifnet *ifp)
   1256 {
   1257 	struct bnx_softc	*sc = ifp->if_softc;
   1258 	struct mii_data		*mii = &sc->bnx_mii;
   1259 	uint32_t		rx_mode = sc->rx_mode;
   1260 	int			val;
   1261 
   1262 	val = REG_RD(sc, BNX_EMAC_MODE);
   1263 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1264 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1265 	    BNX_EMAC_MODE_25G);
   1266 
   1267 	/*
   1268 	 * Get flow control negotiation result.
   1269 	 */
   1270 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1271 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1272 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1273 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1274 	}
   1275 
   1276 	/* Set MII or GMII interface based on the speed
   1277 	 * negotiated by the PHY.
   1278 	 */
   1279 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1280 	case IFM_10_T:
   1281 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1282 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1283 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1284 			break;
   1285 		}
   1286 		/* FALLTHROUGH */
   1287 	case IFM_100_TX:
   1288 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1289 		val |= BNX_EMAC_MODE_PORT_MII;
   1290 		break;
   1291 	case IFM_2500_SX:
   1292 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1293 		val |= BNX_EMAC_MODE_25G;
   1294 		/* FALLTHROUGH */
   1295 	case IFM_1000_T:
   1296 	case IFM_1000_SX:
   1297 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1298 		val |= BNX_EMAC_MODE_PORT_GMII;
   1299 		break;
   1300 	default:
   1301 		val |= BNX_EMAC_MODE_PORT_GMII;
   1302 		break;
   1303 	}
   1304 
   1305 	/* Set half or full duplex based on the duplicity
   1306 	 * negotiated by the PHY.
   1307 	 */
   1308 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1309 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1310 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1311 	} else
   1312 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1313 
   1314 	REG_WR(sc, BNX_EMAC_MODE, val);
   1315 
   1316 	/*
   1317 	 * 802.3x flow control
   1318 	 */
   1319 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1320 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1321 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1322 	} else {
   1323 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1324 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1325 	}
   1326 
   1327 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1328 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1329 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1330 	} else {
   1331 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1332 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1333 	}
   1334 
   1335 	/* Only make changes if the recive mode has actually changed. */
   1336 	if (rx_mode != sc->rx_mode) {
   1337 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1338 		    rx_mode);
   1339 
   1340 		sc->rx_mode = rx_mode;
   1341 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1342 
   1343 		bnx_init_rx_context(sc);
   1344 	}
   1345 }
   1346 
   1347 /****************************************************************************/
   1348 /* Acquire NVRAM lock.                                                      */
   1349 /*                                                                          */
   1350 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1351 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1352 /* for use by the driver.                                                   */
   1353 /*                                                                          */
   1354 /* Returns:                                                                 */
   1355 /*   0 on success, positive value on failure.                               */
   1356 /****************************************************************************/
   1357 int
   1358 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1359 {
   1360 	uint32_t		val;
   1361 	int			j;
   1362 
   1363 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1364 
   1365 	/* Request access to the flash interface. */
   1366 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1367 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1368 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1369 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1370 			break;
   1371 
   1372 		DELAY(5);
   1373 	}
   1374 
   1375 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1376 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1377 		return EBUSY;
   1378 	}
   1379 
   1380 	return 0;
   1381 }
   1382 
   1383 /****************************************************************************/
   1384 /* Release NVRAM lock.                                                      */
   1385 /*                                                                          */
   1386 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1387 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1388 /* for use by the driver.                                                   */
   1389 /*                                                                          */
   1390 /* Returns:                                                                 */
   1391 /*   0 on success, positive value on failure.                               */
   1392 /****************************************************************************/
   1393 int
   1394 bnx_release_nvram_lock(struct bnx_softc *sc)
   1395 {
   1396 	int			j;
   1397 	uint32_t		val;
   1398 
   1399 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1400 
   1401 	/* Relinquish nvram interface. */
   1402 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1403 
   1404 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1405 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1406 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1407 			break;
   1408 
   1409 		DELAY(5);
   1410 	}
   1411 
   1412 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1413 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1414 		return EBUSY;
   1415 	}
   1416 
   1417 	return 0;
   1418 }
   1419 
   1420 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1421 /****************************************************************************/
   1422 /* Enable NVRAM write access.                                               */
   1423 /*                                                                          */
   1424 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1425 /*                                                                          */
   1426 /* Returns:                                                                 */
   1427 /*   0 on success, positive value on failure.                               */
   1428 /****************************************************************************/
   1429 int
   1430 bnx_enable_nvram_write(struct bnx_softc *sc)
   1431 {
   1432 	uint32_t		val;
   1433 
   1434 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1435 
   1436 	val = REG_RD(sc, BNX_MISC_CFG);
   1437 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1438 
   1439 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1440 		int j;
   1441 
   1442 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1443 		REG_WR(sc, BNX_NVM_COMMAND,
   1444 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1445 
   1446 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1447 			DELAY(5);
   1448 
   1449 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1450 			if (val & BNX_NVM_COMMAND_DONE)
   1451 				break;
   1452 		}
   1453 
   1454 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1455 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1456 			return EBUSY;
   1457 		}
   1458 	}
   1459 
   1460 	return 0;
   1461 }
   1462 
   1463 /****************************************************************************/
   1464 /* Disable NVRAM write access.                                              */
   1465 /*                                                                          */
   1466 /* When the caller is finished writing to NVRAM write access must be        */
   1467 /* disabled.                                                                */
   1468 /*                                                                          */
   1469 /* Returns:                                                                 */
   1470 /*   Nothing.                                                               */
   1471 /****************************************************************************/
   1472 void
   1473 bnx_disable_nvram_write(struct bnx_softc *sc)
   1474 {
   1475 	uint32_t		val;
   1476 
   1477 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1478 
   1479 	val = REG_RD(sc, BNX_MISC_CFG);
   1480 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1481 }
   1482 #endif
   1483 
   1484 /****************************************************************************/
   1485 /* Enable NVRAM access.                                                     */
   1486 /*                                                                          */
   1487 /* Before accessing NVRAM for read or write operations the caller must      */
   1488 /* enabled NVRAM access.                                                    */
   1489 /*                                                                          */
   1490 /* Returns:                                                                 */
   1491 /*   Nothing.                                                               */
   1492 /****************************************************************************/
   1493 void
   1494 bnx_enable_nvram_access(struct bnx_softc *sc)
   1495 {
   1496 	uint32_t		val;
   1497 
   1498 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1499 
   1500 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1501 	/* Enable both bits, even on read. */
   1502 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1503 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1504 }
   1505 
   1506 /****************************************************************************/
   1507 /* Disable NVRAM access.                                                    */
   1508 /*                                                                          */
   1509 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1510 /*                                                                          */
   1511 /* Returns:                                                                 */
   1512 /*   Nothing.                                                               */
   1513 /****************************************************************************/
   1514 void
   1515 bnx_disable_nvram_access(struct bnx_softc *sc)
   1516 {
   1517 	uint32_t		val;
   1518 
   1519 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1520 
   1521 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1522 
   1523 	/* Disable both bits, even after read. */
   1524 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1525 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1526 }
   1527 
   1528 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1529 /****************************************************************************/
   1530 /* Erase NVRAM page before writing.                                         */
   1531 /*                                                                          */
   1532 /* Non-buffered flash parts require that a page be erased before it is      */
   1533 /* written.                                                                 */
   1534 /*                                                                          */
   1535 /* Returns:                                                                 */
   1536 /*   0 on success, positive value on failure.                               */
   1537 /****************************************************************************/
   1538 int
   1539 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1540 {
   1541 	uint32_t		cmd;
   1542 	int			j;
   1543 
   1544 	/* Buffered flash doesn't require an erase. */
   1545 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1546 		return 0;
   1547 
   1548 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1549 
   1550 	/* Build an erase command. */
   1551 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1552 	    BNX_NVM_COMMAND_DOIT;
   1553 
   1554 	/*
   1555 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1556 	 * and issue the erase command.
   1557 	 */
   1558 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1559 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1560 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1561 
   1562 	/* Wait for completion. */
   1563 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1564 		uint32_t val;
   1565 
   1566 		DELAY(5);
   1567 
   1568 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1569 		if (val & BNX_NVM_COMMAND_DONE)
   1570 			break;
   1571 	}
   1572 
   1573 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1574 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1575 		return EBUSY;
   1576 	}
   1577 
   1578 	return 0;
   1579 }
   1580 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1581 
   1582 /****************************************************************************/
   1583 /* Read a dword (32 bits) from NVRAM.                                       */
   1584 /*                                                                          */
   1585 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1586 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1587 /*                                                                          */
   1588 /* Returns:                                                                 */
   1589 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1590 /****************************************************************************/
   1591 int
   1592 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1593     uint8_t *ret_val, uint32_t cmd_flags)
   1594 {
   1595 	uint32_t		cmd;
   1596 	int			i, rc = 0;
   1597 
   1598 	/* Build the command word. */
   1599 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1600 
   1601 	/* Calculate the offset for buffered flash if translation is used. */
   1602 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1603 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1604 		    sc->bnx_flash_info->page_bits) +
   1605 		    (offset % sc->bnx_flash_info->page_size);
   1606 	}
   1607 
   1608 	/*
   1609 	 * Clear the DONE bit separately, set the address to read,
   1610 	 * and issue the read.
   1611 	 */
   1612 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1613 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1614 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1615 
   1616 	/* Wait for completion. */
   1617 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1618 		uint32_t val;
   1619 
   1620 		DELAY(5);
   1621 
   1622 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1623 		if (val & BNX_NVM_COMMAND_DONE) {
   1624 			val = REG_RD(sc, BNX_NVM_READ);
   1625 
   1626 			val = be32toh(val);
   1627 			memcpy(ret_val, &val, 4);
   1628 			break;
   1629 		}
   1630 	}
   1631 
   1632 	/* Check for errors. */
   1633 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1634 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1635 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1636 		rc = EBUSY;
   1637 	}
   1638 
   1639 	return rc;
   1640 }
   1641 
   1642 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1643 /****************************************************************************/
   1644 /* Write a dword (32 bits) to NVRAM.                                        */
   1645 /*                                                                          */
   1646 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1647 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1648 /* enabled NVRAM write access.                                              */
   1649 /*                                                                          */
   1650 /* Returns:                                                                 */
   1651 /*   0 on success, positive value on failure.                               */
   1652 /****************************************************************************/
   1653 int
   1654 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1655     uint32_t cmd_flags)
   1656 {
   1657 	uint32_t		cmd, val32;
   1658 	int			j;
   1659 
   1660 	/* Build the command word. */
   1661 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1662 
   1663 	/* Calculate the offset for buffered flash if translation is used. */
   1664 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1665 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1666 		    sc->bnx_flash_info->page_bits) +
   1667 		    (offset % sc->bnx_flash_info->page_size);
   1668 	}
   1669 
   1670 	/*
   1671 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1672 	 * set the NVRAM address to write, and issue the write command
   1673 	 */
   1674 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1675 	memcpy(&val32, val, 4);
   1676 	val32 = htobe32(val32);
   1677 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1678 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1679 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1680 
   1681 	/* Wait for completion. */
   1682 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1683 		DELAY(5);
   1684 
   1685 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1686 			break;
   1687 	}
   1688 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1689 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1690 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1691 		return EBUSY;
   1692 	}
   1693 
   1694 	return 0;
   1695 }
   1696 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1697 
   1698 /****************************************************************************/
   1699 /* Initialize NVRAM access.                                                 */
   1700 /*                                                                          */
   1701 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1702 /* access that device.                                                      */
   1703 /*                                                                          */
   1704 /* Returns:                                                                 */
   1705 /*   0 on success, positive value on failure.                               */
   1706 /****************************************************************************/
   1707 int
   1708 bnx_init_nvram(struct bnx_softc *sc)
   1709 {
   1710 	uint32_t		val;
   1711 	int			j, entry_count, rc = 0;
   1712 	struct flash_spec	*flash;
   1713 
   1714 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1715 
   1716 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1717 		sc->bnx_flash_info = &flash_5709;
   1718 		goto bnx_init_nvram_get_flash_size;
   1719 	}
   1720 
   1721 	/* Determine the selected interface. */
   1722 	val = REG_RD(sc, BNX_NVM_CFG1);
   1723 
   1724 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1725 
   1726 	/*
   1727 	 * Flash reconfiguration is required to support additional
   1728 	 * NVRAM devices not directly supported in hardware.
   1729 	 * Check if the flash interface was reconfigured
   1730 	 * by the bootcode.
   1731 	 */
   1732 
   1733 	if (val & 0x40000000) {
   1734 		/* Flash interface reconfigured by bootcode. */
   1735 
   1736 		DBPRINT(sc,BNX_INFO_LOAD,
   1737 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1738 
   1739 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1740 		     j++, flash++) {
   1741 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1742 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1743 				sc->bnx_flash_info = flash;
   1744 				break;
   1745 			}
   1746 		}
   1747 	} else {
   1748 		/* Flash interface not yet reconfigured. */
   1749 		uint32_t mask;
   1750 
   1751 		DBPRINT(sc,BNX_INFO_LOAD,
   1752 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1753 
   1754 		if (val & (1 << 23))
   1755 			mask = FLASH_BACKUP_STRAP_MASK;
   1756 		else
   1757 			mask = FLASH_STRAP_MASK;
   1758 
   1759 		/* Look for the matching NVRAM device configuration data. */
   1760 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1761 		    j++, flash++) {
   1762 			/* Check if the dev matches any of the known devices. */
   1763 			if ((val & mask) == (flash->strapping & mask)) {
   1764 				/* Found a device match. */
   1765 				sc->bnx_flash_info = flash;
   1766 
   1767 				/* Request access to the flash interface. */
   1768 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1769 					return rc;
   1770 
   1771 				/* Reconfigure the flash interface. */
   1772 				bnx_enable_nvram_access(sc);
   1773 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1774 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1775 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1776 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1777 				bnx_disable_nvram_access(sc);
   1778 				bnx_release_nvram_lock(sc);
   1779 
   1780 				break;
   1781 			}
   1782 		}
   1783 	}
   1784 
   1785 	/* Check if a matching device was found. */
   1786 	if (j == entry_count) {
   1787 		sc->bnx_flash_info = NULL;
   1788 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1789 			__FILE__, __LINE__);
   1790 		rc = ENODEV;
   1791 	}
   1792 
   1793 bnx_init_nvram_get_flash_size:
   1794 	/* Write the flash config data to the shared memory interface. */
   1795 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1796 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1797 	if (val)
   1798 		sc->bnx_flash_size = val;
   1799 	else
   1800 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1801 
   1802 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1803 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1804 
   1805 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1806 
   1807 	return rc;
   1808 }
   1809 
   1810 /****************************************************************************/
   1811 /* Read an arbitrary range of data from NVRAM.                              */
   1812 /*                                                                          */
   1813 /* Prepares the NVRAM interface for access and reads the requested data     */
   1814 /* into the supplied buffer.                                                */
   1815 /*                                                                          */
   1816 /* Returns:                                                                 */
   1817 /*   0 on success and the data read, positive value on failure.             */
   1818 /****************************************************************************/
   1819 int
   1820 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1821     int buf_size)
   1822 {
   1823 	int			rc = 0;
   1824 	uint32_t		cmd_flags, offset32, len32, extra;
   1825 
   1826 	if (buf_size == 0)
   1827 		return 0;
   1828 
   1829 	/* Request access to the flash interface. */
   1830 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1831 		return rc;
   1832 
   1833 	/* Enable access to flash interface */
   1834 	bnx_enable_nvram_access(sc);
   1835 
   1836 	len32 = buf_size;
   1837 	offset32 = offset;
   1838 	extra = 0;
   1839 
   1840 	cmd_flags = 0;
   1841 
   1842 	if (offset32 & 3) {
   1843 		uint8_t buf[4];
   1844 		uint32_t pre_len;
   1845 
   1846 		offset32 &= ~3;
   1847 		pre_len = 4 - (offset & 3);
   1848 
   1849 		if (pre_len >= len32) {
   1850 			pre_len = len32;
   1851 			cmd_flags =
   1852 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1853 		} else
   1854 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1855 
   1856 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1857 
   1858 		if (rc)
   1859 			return rc;
   1860 
   1861 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1862 
   1863 		offset32 += 4;
   1864 		ret_buf += pre_len;
   1865 		len32 -= pre_len;
   1866 	}
   1867 
   1868 	if (len32 & 3) {
   1869 		extra = 4 - (len32 & 3);
   1870 		len32 = (len32 + 4) & ~3;
   1871 	}
   1872 
   1873 	if (len32 == 4) {
   1874 		uint8_t buf[4];
   1875 
   1876 		if (cmd_flags)
   1877 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1878 		else
   1879 			cmd_flags =
   1880 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1881 
   1882 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1883 
   1884 		memcpy(ret_buf, buf, 4 - extra);
   1885 	} else if (len32 > 0) {
   1886 		uint8_t buf[4];
   1887 
   1888 		/* Read the first word. */
   1889 		if (cmd_flags)
   1890 			cmd_flags = 0;
   1891 		else
   1892 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1893 
   1894 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1895 
   1896 		/* Advance to the next dword. */
   1897 		offset32 += 4;
   1898 		ret_buf += 4;
   1899 		len32 -= 4;
   1900 
   1901 		while (len32 > 4 && rc == 0) {
   1902 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1903 
   1904 			/* Advance to the next dword. */
   1905 			offset32 += 4;
   1906 			ret_buf += 4;
   1907 			len32 -= 4;
   1908 		}
   1909 
   1910 		if (rc)
   1911 			return rc;
   1912 
   1913 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1914 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1915 
   1916 		memcpy(ret_buf, buf, 4 - extra);
   1917 	}
   1918 
   1919 	/* Disable access to flash interface and release the lock. */
   1920 	bnx_disable_nvram_access(sc);
   1921 	bnx_release_nvram_lock(sc);
   1922 
   1923 	return rc;
   1924 }
   1925 
   1926 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1927 /****************************************************************************/
   1928 /* Write an arbitrary range of data from NVRAM.                             */
   1929 /*                                                                          */
   1930 /* Prepares the NVRAM interface for write access and writes the requested   */
   1931 /* data from the supplied buffer.  The caller is responsible for            */
   1932 /* calculating any appropriate CRCs.                                        */
   1933 /*                                                                          */
   1934 /* Returns:                                                                 */
   1935 /*   0 on success, positive value on failure.                               */
   1936 /****************************************************************************/
   1937 int
   1938 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1939     int buf_size)
   1940 {
   1941 	uint32_t		written, offset32, len32;
   1942 	uint8_t		*buf, start[4], end[4];
   1943 	int			rc = 0;
   1944 	int			align_start, align_end;
   1945 
   1946 	buf = data_buf;
   1947 	offset32 = offset;
   1948 	len32 = buf_size;
   1949 	align_start = align_end = 0;
   1950 
   1951 	if ((align_start = (offset32 & 3))) {
   1952 		offset32 &= ~3;
   1953 		len32 += align_start;
   1954 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1955 			return rc;
   1956 	}
   1957 
   1958 	if (len32 & 3) {
   1959 		if ((len32 > 4) || !align_start) {
   1960 			align_end = 4 - (len32 & 3);
   1961 			len32 += align_end;
   1962 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1963 			    end, 4)))
   1964 				return rc;
   1965 		}
   1966 	}
   1967 
   1968 	if (align_start || align_end) {
   1969 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1970 		if (buf == NULL)
   1971 			return ENOMEM;
   1972 
   1973 		if (align_start)
   1974 			memcpy(buf, start, 4);
   1975 
   1976 		if (align_end)
   1977 			memcpy(buf + len32 - 4, end, 4);
   1978 
   1979 		memcpy(buf + align_start, data_buf, buf_size);
   1980 	}
   1981 
   1982 	written = 0;
   1983 	while ((written < len32) && (rc == 0)) {
   1984 		uint32_t page_start, page_end, data_start, data_end;
   1985 		uint32_t addr, cmd_flags;
   1986 		int i;
   1987 		uint8_t flash_buffer[264];
   1988 
   1989 	    /* Find the page_start addr */
   1990 		page_start = offset32 + written;
   1991 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1992 		/* Find the page_end addr */
   1993 		page_end = page_start + sc->bnx_flash_info->page_size;
   1994 		/* Find the data_start addr */
   1995 		data_start = (written == 0) ? offset32 : page_start;
   1996 		/* Find the data_end addr */
   1997 		data_end = (page_end > offset32 + len32) ?
   1998 		    (offset32 + len32) : page_end;
   1999 
   2000 		/* Request access to the flash interface. */
   2001 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   2002 			goto nvram_write_end;
   2003 
   2004 		/* Enable access to flash interface */
   2005 		bnx_enable_nvram_access(sc);
   2006 
   2007 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   2008 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2009 			int j;
   2010 
   2011 			/* Read the whole page into the buffer
   2012 			 * (non-buffer flash only) */
   2013 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   2014 				if (j == (sc->bnx_flash_info->page_size - 4))
   2015 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   2016 
   2017 				rc = bnx_nvram_read_dword(sc,
   2018 					page_start + j,
   2019 					&flash_buffer[j],
   2020 					cmd_flags);
   2021 
   2022 				if (rc)
   2023 					goto nvram_write_end;
   2024 
   2025 				cmd_flags = 0;
   2026 			}
   2027 		}
   2028 
   2029 		/* Enable writes to flash interface (unlock write-protect) */
   2030 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   2031 			goto nvram_write_end;
   2032 
   2033 		/* Erase the page */
   2034 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   2035 			goto nvram_write_end;
   2036 
   2037 		/* Re-enable the write again for the actual write */
   2038 		bnx_enable_nvram_write(sc);
   2039 
   2040 		/* Loop to write back the buffer data from page_start to
   2041 		 * data_start */
   2042 		i = 0;
   2043 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2044 			for (addr = page_start; addr < data_start;
   2045 				addr += 4, i += 4) {
   2046 
   2047 				rc = bnx_nvram_write_dword(sc, addr,
   2048 				    &flash_buffer[i], cmd_flags);
   2049 
   2050 				if (rc != 0)
   2051 					goto nvram_write_end;
   2052 
   2053 				cmd_flags = 0;
   2054 			}
   2055 		}
   2056 
   2057 		/* Loop to write the new data from data_start to data_end */
   2058 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   2059 			if ((addr == page_end - 4) ||
   2060 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   2061 			    && (addr == data_end - 4))) {
   2062 
   2063 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   2064 			}
   2065 
   2066 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2067 
   2068 			if (rc != 0)
   2069 				goto nvram_write_end;
   2070 
   2071 			cmd_flags = 0;
   2072 			buf += 4;
   2073 		}
   2074 
   2075 		/* Loop to write back the buffer data from data_end
   2076 		 * to page_end */
   2077 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2078 			for (addr = data_end; addr < page_end;
   2079 			    addr += 4, i += 4) {
   2080 
   2081 				if (addr == page_end-4)
   2082 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2083 
   2084 				rc = bnx_nvram_write_dword(sc, addr,
   2085 				    &flash_buffer[i], cmd_flags);
   2086 
   2087 				if (rc != 0)
   2088 					goto nvram_write_end;
   2089 
   2090 				cmd_flags = 0;
   2091 			}
   2092 		}
   2093 
   2094 		/* Disable writes to flash interface (lock write-protect) */
   2095 		bnx_disable_nvram_write(sc);
   2096 
   2097 		/* Disable access to flash interface */
   2098 		bnx_disable_nvram_access(sc);
   2099 		bnx_release_nvram_lock(sc);
   2100 
   2101 		/* Increment written */
   2102 		written += data_end - data_start;
   2103 	}
   2104 
   2105 nvram_write_end:
   2106 	if (align_start || align_end)
   2107 		free(buf, M_DEVBUF);
   2108 
   2109 	return rc;
   2110 }
   2111 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2112 
   2113 /****************************************************************************/
   2114 /* Verifies that NVRAM is accessible and contains valid data.               */
   2115 /*                                                                          */
   2116 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2117 /* correct.                                                                 */
   2118 /*                                                                          */
   2119 /* Returns:                                                                 */
   2120 /*   0 on success, positive value on failure.                               */
   2121 /****************************************************************************/
   2122 int
   2123 bnx_nvram_test(struct bnx_softc *sc)
   2124 {
   2125 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2126 	uint8_t		*data = (uint8_t *) buf;
   2127 	int			rc = 0;
   2128 	uint32_t		magic, csum;
   2129 
   2130 	/*
   2131 	 * Check that the device NVRAM is valid by reading
   2132 	 * the magic value at offset 0.
   2133 	 */
   2134 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2135 		goto bnx_nvram_test_done;
   2136 
   2137 	magic = be32toh(buf[0]);
   2138 	if (magic != BNX_NVRAM_MAGIC) {
   2139 		rc = ENODEV;
   2140 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2141 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2142 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2143 		goto bnx_nvram_test_done;
   2144 	}
   2145 
   2146 	/*
   2147 	 * Verify that the device NVRAM includes valid
   2148 	 * configuration data.
   2149 	 */
   2150 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2151 		goto bnx_nvram_test_done;
   2152 
   2153 	csum = ether_crc32_le(data, 0x100);
   2154 	if (csum != BNX_CRC32_RESIDUAL) {
   2155 		rc = ENODEV;
   2156 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2157 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2158 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2159 		goto bnx_nvram_test_done;
   2160 	}
   2161 
   2162 	csum = ether_crc32_le(data + 0x100, 0x100);
   2163 	if (csum != BNX_CRC32_RESIDUAL) {
   2164 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2165 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2166 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2167 		rc = ENODEV;
   2168 	}
   2169 
   2170 bnx_nvram_test_done:
   2171 	return rc;
   2172 }
   2173 
   2174 /****************************************************************************/
   2175 /* Identifies the current media type of the controller and sets the PHY     */
   2176 /* address.                                                                 */
   2177 /*                                                                          */
   2178 /* Returns:                                                                 */
   2179 /*   Nothing.                                                               */
   2180 /****************************************************************************/
   2181 void
   2182 bnx_get_media(struct bnx_softc *sc)
   2183 {
   2184 	sc->bnx_phy_addr = 1;
   2185 
   2186 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2187 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2188 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2189 		uint32_t strap;
   2190 
   2191 		/*
   2192 		 * The BCM5709S is software configurable
   2193 		 * for Copper or SerDes operation.
   2194 		 */
   2195 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2196 			DBPRINT(sc, BNX_INFO_LOAD,
   2197 			    "5709 bonded for copper.\n");
   2198 			goto bnx_get_media_exit;
   2199 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2200 			DBPRINT(sc, BNX_INFO_LOAD,
   2201 			    "5709 bonded for dual media.\n");
   2202 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2203 			goto bnx_get_media_exit;
   2204 		}
   2205 
   2206 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2207 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2208 		else {
   2209 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2210 			    >> 8;
   2211 		}
   2212 
   2213 		if (sc->bnx_pa.pa_function == 0) {
   2214 			switch (strap) {
   2215 			case 0x4:
   2216 			case 0x5:
   2217 			case 0x6:
   2218 				DBPRINT(sc, BNX_INFO_LOAD,
   2219 					"BCM5709 s/w configured for SerDes.\n");
   2220 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2221 				break;
   2222 			default:
   2223 				DBPRINT(sc, BNX_INFO_LOAD,
   2224 					"BCM5709 s/w configured for Copper.\n");
   2225 			}
   2226 		} else {
   2227 			switch (strap) {
   2228 			case 0x1:
   2229 			case 0x2:
   2230 			case 0x4:
   2231 				DBPRINT(sc, BNX_INFO_LOAD,
   2232 					"BCM5709 s/w configured for SerDes.\n");
   2233 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2234 				break;
   2235 			default:
   2236 				DBPRINT(sc, BNX_INFO_LOAD,
   2237 					"BCM5709 s/w configured for Copper.\n");
   2238 			}
   2239 		}
   2240 
   2241 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2242 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2243 
   2244 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2245 		uint32_t val;
   2246 
   2247 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2248 
   2249 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2250 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2251 
   2252 		/*
   2253 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2254 		 * separate PHY for SerDes.
   2255 		 */
   2256 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2257 			sc->bnx_phy_addr = 2;
   2258 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2259 				 BNX_SHARED_HW_CFG_CONFIG);
   2260 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2261 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2262 				DBPRINT(sc, BNX_INFO_LOAD,
   2263 				    "Found 2.5Gb capable adapter\n");
   2264 			}
   2265 		}
   2266 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2267 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2268 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2269 
   2270 bnx_get_media_exit:
   2271 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2272 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2273 }
   2274 
   2275 /****************************************************************************/
   2276 /* Performs PHY initialization required before MII drivers access the       */
   2277 /* device.                                                                  */
   2278 /*                                                                          */
   2279 /* Returns:                                                                 */
   2280 /*   Nothing.                                                               */
   2281 /****************************************************************************/
   2282 void
   2283 bnx_init_media(struct bnx_softc *sc)
   2284 {
   2285 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2286 		/*
   2287 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2288 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2289 		 * the PHY to the mii(4) layer. PHY specific configuration
   2290 		 * is done by the mii(4) layer.
   2291 		 */
   2292 
   2293 		/* Select auto-negotiation MMD of the PHY. */
   2294 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2295 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2296 
   2297 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2298 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2299 
   2300 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2301 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2302 	}
   2303 }
   2304 
   2305 /****************************************************************************/
   2306 /* Free any DMA memory owned by the driver.                                 */
   2307 /*                                                                          */
   2308 /* Scans through each data structre that requires DMA memory and frees      */
   2309 /* the memory if allocated.                                                 */
   2310 /*                                                                          */
   2311 /* Returns:                                                                 */
   2312 /*   Nothing.                                                               */
   2313 /****************************************************************************/
   2314 void
   2315 bnx_dma_free(struct bnx_softc *sc)
   2316 {
   2317 	int			i;
   2318 
   2319 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2320 
   2321 	/* Destroy the status block. */
   2322 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2323 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2324 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2325 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2326 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2327 		    BNX_STATUS_BLK_SZ);
   2328 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2329 		    sc->status_rseg);
   2330 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2331 		sc->status_block = NULL;
   2332 		sc->status_map = NULL;
   2333 	}
   2334 
   2335 	/* Destroy the statistics block. */
   2336 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2337 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2338 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2339 		    BNX_STATS_BLK_SZ);
   2340 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2341 		    sc->stats_rseg);
   2342 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2343 		sc->stats_block = NULL;
   2344 		sc->stats_map = NULL;
   2345 	}
   2346 
   2347 	/* Free, unmap and destroy all context memory pages. */
   2348 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2349 		for (i = 0; i < sc->ctx_pages; i++) {
   2350 			if (sc->ctx_block[i] != NULL) {
   2351 				bus_dmamap_unload(sc->bnx_dmatag,
   2352 				    sc->ctx_map[i]);
   2353 				bus_dmamem_unmap(sc->bnx_dmatag,
   2354 				    (void *)sc->ctx_block[i],
   2355 				    BCM_PAGE_SIZE);
   2356 				bus_dmamem_free(sc->bnx_dmatag,
   2357 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2358 				bus_dmamap_destroy(sc->bnx_dmatag,
   2359 				    sc->ctx_map[i]);
   2360 				sc->ctx_block[i] = NULL;
   2361 			}
   2362 		}
   2363 	}
   2364 
   2365 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2366 	for (i = 0; i < TX_PAGES; i++ ) {
   2367 		if (sc->tx_bd_chain[i] != NULL &&
   2368 		    sc->tx_bd_chain_map[i] != NULL) {
   2369 			bus_dmamap_unload(sc->bnx_dmatag,
   2370 			    sc->tx_bd_chain_map[i]);
   2371 			bus_dmamem_unmap(sc->bnx_dmatag,
   2372 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2373 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2374 			    sc->tx_bd_chain_rseg[i]);
   2375 			bus_dmamap_destroy(sc->bnx_dmatag,
   2376 			    sc->tx_bd_chain_map[i]);
   2377 			sc->tx_bd_chain[i] = NULL;
   2378 			sc->tx_bd_chain_map[i] = NULL;
   2379 		}
   2380 	}
   2381 
   2382 	/* Destroy the TX dmamaps. */
   2383 	/* This isn't necessary since we dont allocate them up front */
   2384 
   2385 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2386 	for (i = 0; i < RX_PAGES; i++ ) {
   2387 		if (sc->rx_bd_chain[i] != NULL &&
   2388 		    sc->rx_bd_chain_map[i] != NULL) {
   2389 			bus_dmamap_unload(sc->bnx_dmatag,
   2390 			    sc->rx_bd_chain_map[i]);
   2391 			bus_dmamem_unmap(sc->bnx_dmatag,
   2392 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2393 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2394 			    sc->rx_bd_chain_rseg[i]);
   2395 
   2396 			bus_dmamap_destroy(sc->bnx_dmatag,
   2397 			    sc->rx_bd_chain_map[i]);
   2398 			sc->rx_bd_chain[i] = NULL;
   2399 			sc->rx_bd_chain_map[i] = NULL;
   2400 		}
   2401 	}
   2402 
   2403 	/* Unload and destroy the RX mbuf maps. */
   2404 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2405 		if (sc->rx_mbuf_map[i] != NULL) {
   2406 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2407 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2408 		}
   2409 	}
   2410 
   2411 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2412 }
   2413 
   2414 /****************************************************************************/
   2415 /* Allocate any DMA memory needed by the driver.                            */
   2416 /*                                                                          */
   2417 /* Allocates DMA memory needed for the various global structures needed by  */
   2418 /* hardware.                                                                */
   2419 /*                                                                          */
   2420 /* Returns:                                                                 */
   2421 /*   0 for success, positive value for failure.                             */
   2422 /****************************************************************************/
   2423 int
   2424 bnx_dma_alloc(struct bnx_softc *sc)
   2425 {
   2426 	int			i, rc = 0;
   2427 
   2428 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2429 
   2430 	/*
   2431 	 * Allocate DMA memory for the status block, map the memory into DMA
   2432 	 * space, and fetch the physical address of the block.
   2433 	 */
   2434 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2435 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2436 		aprint_error_dev(sc->bnx_dev,
   2437 		    "Could not create status block DMA map!\n");
   2438 		rc = ENOMEM;
   2439 		goto bnx_dma_alloc_exit;
   2440 	}
   2441 
   2442 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2443 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2444 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2445 		aprint_error_dev(sc->bnx_dev,
   2446 		    "Could not allocate status block DMA memory!\n");
   2447 		rc = ENOMEM;
   2448 		goto bnx_dma_alloc_exit;
   2449 	}
   2450 
   2451 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2452 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2453 		aprint_error_dev(sc->bnx_dev,
   2454 		    "Could not map status block DMA memory!\n");
   2455 		rc = ENOMEM;
   2456 		goto bnx_dma_alloc_exit;
   2457 	}
   2458 
   2459 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2460 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2461 		aprint_error_dev(sc->bnx_dev,
   2462 		    "Could not load status block DMA memory!\n");
   2463 		rc = ENOMEM;
   2464 		goto bnx_dma_alloc_exit;
   2465 	}
   2466 
   2467 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2468 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2469 
   2470 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2471 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2472 
   2473 	/* DRC - Fix for 64 bit addresses. */
   2474 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2475 		(uint32_t) sc->status_block_paddr);
   2476 
   2477 	/* BCM5709 uses host memory as cache for context memory. */
   2478 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2479 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2480 		if (sc->ctx_pages == 0)
   2481 			sc->ctx_pages = 1;
   2482 		if (sc->ctx_pages > 4) /* XXX */
   2483 			sc->ctx_pages = 4;
   2484 
   2485 		DBRUNIF((sc->ctx_pages > 512),
   2486 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2487 				__FILE__, __LINE__, sc->ctx_pages));
   2488 
   2489 
   2490 		for (i = 0; i < sc->ctx_pages; i++) {
   2491 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2492 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2493 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2494 			    &sc->ctx_map[i]) != 0) {
   2495 				rc = ENOMEM;
   2496 				goto bnx_dma_alloc_exit;
   2497 			}
   2498 
   2499 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2500 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2501 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2502 				rc = ENOMEM;
   2503 				goto bnx_dma_alloc_exit;
   2504 			}
   2505 
   2506 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2507 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2508 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2509 				rc = ENOMEM;
   2510 				goto bnx_dma_alloc_exit;
   2511 			}
   2512 
   2513 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2514 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2515 			    BUS_DMA_NOWAIT) != 0) {
   2516 				rc = ENOMEM;
   2517 				goto bnx_dma_alloc_exit;
   2518 			}
   2519 
   2520 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2521 		}
   2522 	}
   2523 
   2524 	/*
   2525 	 * Allocate DMA memory for the statistics block, map the memory into
   2526 	 * DMA space, and fetch the physical address of the block.
   2527 	 */
   2528 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2529 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2530 		aprint_error_dev(sc->bnx_dev,
   2531 		    "Could not create stats block DMA map!\n");
   2532 		rc = ENOMEM;
   2533 		goto bnx_dma_alloc_exit;
   2534 	}
   2535 
   2536 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2537 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2538 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2539 		aprint_error_dev(sc->bnx_dev,
   2540 		    "Could not allocate stats block DMA memory!\n");
   2541 		rc = ENOMEM;
   2542 		goto bnx_dma_alloc_exit;
   2543 	}
   2544 
   2545 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2546 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2547 		aprint_error_dev(sc->bnx_dev,
   2548 		    "Could not map stats block DMA memory!\n");
   2549 		rc = ENOMEM;
   2550 		goto bnx_dma_alloc_exit;
   2551 	}
   2552 
   2553 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2554 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2555 		aprint_error_dev(sc->bnx_dev,
   2556 		    "Could not load status block DMA memory!\n");
   2557 		rc = ENOMEM;
   2558 		goto bnx_dma_alloc_exit;
   2559 	}
   2560 
   2561 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2562 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2563 
   2564 	/* DRC - Fix for 64 bit address. */
   2565 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2566 	    (uint32_t) sc->stats_block_paddr);
   2567 
   2568 	/*
   2569 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2570 	 * and fetch the physical address of the block.
   2571 	 */
   2572 	for (i = 0; i < TX_PAGES; i++) {
   2573 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2574 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2575 		    &sc->tx_bd_chain_map[i])) {
   2576 			aprint_error_dev(sc->bnx_dev,
   2577 			    "Could not create Tx desc %d DMA map!\n", i);
   2578 			rc = ENOMEM;
   2579 			goto bnx_dma_alloc_exit;
   2580 		}
   2581 
   2582 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2583 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2584 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2585 			aprint_error_dev(sc->bnx_dev,
   2586 			    "Could not allocate TX desc %d DMA memory!\n",
   2587 			    i);
   2588 			rc = ENOMEM;
   2589 			goto bnx_dma_alloc_exit;
   2590 		}
   2591 
   2592 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2593 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2594 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2595 			aprint_error_dev(sc->bnx_dev,
   2596 			    "Could not map TX desc %d DMA memory!\n", i);
   2597 			rc = ENOMEM;
   2598 			goto bnx_dma_alloc_exit;
   2599 		}
   2600 
   2601 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2602 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2603 		    BUS_DMA_NOWAIT)) {
   2604 			aprint_error_dev(sc->bnx_dev,
   2605 			    "Could not load TX desc %d DMA memory!\n", i);
   2606 			rc = ENOMEM;
   2607 			goto bnx_dma_alloc_exit;
   2608 		}
   2609 
   2610 		sc->tx_bd_chain_paddr[i] =
   2611 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2612 
   2613 		/* DRC - Fix for 64 bit systems. */
   2614 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2615 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2616 	}
   2617 
   2618 	/*
   2619 	 * Create lists to hold TX mbufs.
   2620 	 */
   2621 	TAILQ_INIT(&sc->tx_free_pkts);
   2622 	TAILQ_INIT(&sc->tx_used_pkts);
   2623 	sc->tx_pkt_count = 0;
   2624 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2625 
   2626 	/*
   2627 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2628 	 * and fetch the physical address of the block.
   2629 	 */
   2630 	for (i = 0; i < RX_PAGES; i++) {
   2631 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2632 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2633 		    &sc->rx_bd_chain_map[i])) {
   2634 			aprint_error_dev(sc->bnx_dev,
   2635 			    "Could not create Rx desc %d DMA map!\n", i);
   2636 			rc = ENOMEM;
   2637 			goto bnx_dma_alloc_exit;
   2638 		}
   2639 
   2640 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2641 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2642 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2643 			aprint_error_dev(sc->bnx_dev,
   2644 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2645 			rc = ENOMEM;
   2646 			goto bnx_dma_alloc_exit;
   2647 		}
   2648 
   2649 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2650 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2651 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2652 			aprint_error_dev(sc->bnx_dev,
   2653 			    "Could not map Rx desc %d DMA memory!\n", i);
   2654 			rc = ENOMEM;
   2655 			goto bnx_dma_alloc_exit;
   2656 		}
   2657 
   2658 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2659 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2660 		    BUS_DMA_NOWAIT)) {
   2661 			aprint_error_dev(sc->bnx_dev,
   2662 			    "Could not load Rx desc %d DMA memory!\n", i);
   2663 			rc = ENOMEM;
   2664 			goto bnx_dma_alloc_exit;
   2665 		}
   2666 
   2667 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2668 		sc->rx_bd_chain_paddr[i] =
   2669 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2670 
   2671 		/* DRC - Fix for 64 bit systems. */
   2672 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2673 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2674 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2675 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2676 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2677 	}
   2678 
   2679 	/*
   2680 	 * Create DMA maps for the Rx buffer mbufs.
   2681 	 */
   2682 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2683 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2684 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2685 		    &sc->rx_mbuf_map[i])) {
   2686 			aprint_error_dev(sc->bnx_dev,
   2687 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2688 			rc = ENOMEM;
   2689 			goto bnx_dma_alloc_exit;
   2690 		}
   2691 	}
   2692 
   2693  bnx_dma_alloc_exit:
   2694 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2695 
   2696 	return rc;
   2697 }
   2698 
   2699 /****************************************************************************/
   2700 /* Release all resources used by the driver.                                */
   2701 /*                                                                          */
   2702 /* Releases all resources acquired by the driver including interrupts,      */
   2703 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2704 /*                                                                          */
   2705 /* Returns:                                                                 */
   2706 /*   Nothing.                                                               */
   2707 /****************************************************************************/
   2708 void
   2709 bnx_release_resources(struct bnx_softc *sc)
   2710 {
   2711 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2712 
   2713 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2714 
   2715 	bnx_dma_free(sc);
   2716 
   2717 	if (sc->bnx_intrhand != NULL)
   2718 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2719 
   2720 	if (sc->bnx_size)
   2721 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2722 
   2723 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2724 }
   2725 
   2726 /****************************************************************************/
   2727 /* Firmware synchronization.                                                */
   2728 /*                                                                          */
   2729 /* Before performing certain events such as a chip reset, synchronize with  */
   2730 /* the firmware first.                                                      */
   2731 /*                                                                          */
   2732 /* Returns:                                                                 */
   2733 /*   0 for success, positive value for failure.                             */
   2734 /****************************************************************************/
   2735 int
   2736 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2737 {
   2738 	int			i, rc = 0;
   2739 	uint32_t		val;
   2740 
   2741 	/* Don't waste any time if we've timed out before. */
   2742 	if (sc->bnx_fw_timed_out) {
   2743 		rc = EBUSY;
   2744 		goto bnx_fw_sync_exit;
   2745 	}
   2746 
   2747 	/* Increment the message sequence number. */
   2748 	sc->bnx_fw_wr_seq++;
   2749 	msg_data |= sc->bnx_fw_wr_seq;
   2750 
   2751  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2752 	    msg_data);
   2753 
   2754 	/* Send the message to the bootcode driver mailbox. */
   2755 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2756 
   2757 	/* Wait for the bootcode to acknowledge the message. */
   2758 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2759 		/* Check for a response in the bootcode firmware mailbox. */
   2760 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2761 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2762 			break;
   2763 		DELAY(1000);
   2764 	}
   2765 
   2766 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2767 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2768 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2769 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2770 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2771 
   2772 		msg_data &= ~BNX_DRV_MSG_CODE;
   2773 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2774 
   2775 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2776 
   2777 		sc->bnx_fw_timed_out = 1;
   2778 		rc = EBUSY;
   2779 	}
   2780 
   2781 bnx_fw_sync_exit:
   2782 	return rc;
   2783 }
   2784 
   2785 /****************************************************************************/
   2786 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2787 /*                                                                          */
   2788 /* Returns:                                                                 */
   2789 /*   Nothing.                                                               */
   2790 /****************************************************************************/
   2791 void
   2792 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2793     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2794 {
   2795 	int			i;
   2796 	uint32_t		val;
   2797 
   2798 	/* Set the page size used by RV2P. */
   2799 	if (rv2p_proc == RV2P_PROC2) {
   2800 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2801 		    USABLE_RX_BD_PER_PAGE);
   2802 	}
   2803 
   2804 	for (i = 0; i < rv2p_code_len; i += 8) {
   2805 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2806 		rv2p_code++;
   2807 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2808 		rv2p_code++;
   2809 
   2810 		if (rv2p_proc == RV2P_PROC1) {
   2811 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2812 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2813 		} else {
   2814 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2815 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2816 		}
   2817 	}
   2818 
   2819 	/* Reset the processor, un-stall is done later. */
   2820 	if (rv2p_proc == RV2P_PROC1)
   2821 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2822 	else
   2823 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2824 }
   2825 
   2826 /****************************************************************************/
   2827 /* Load RISC processor firmware.                                            */
   2828 /*                                                                          */
   2829 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2830 /* associated with a particular processor.                                  */
   2831 /*                                                                          */
   2832 /* Returns:                                                                 */
   2833 /*   Nothing.                                                               */
   2834 /****************************************************************************/
   2835 void
   2836 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2837     struct fw_info *fw)
   2838 {
   2839 	uint32_t		offset;
   2840 	uint32_t		val;
   2841 
   2842 	/* Halt the CPU. */
   2843 	val = REG_RD_IND(sc, cpu_reg->mode);
   2844 	val |= cpu_reg->mode_value_halt;
   2845 	REG_WR_IND(sc, cpu_reg->mode, val);
   2846 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2847 
   2848 	/* Load the Text area. */
   2849 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2850 	if (fw->text) {
   2851 		int j;
   2852 
   2853 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2854 			REG_WR_IND(sc, offset, fw->text[j]);
   2855 	}
   2856 
   2857 	/* Load the Data area. */
   2858 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2859 	if (fw->data) {
   2860 		int j;
   2861 
   2862 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2863 			REG_WR_IND(sc, offset, fw->data[j]);
   2864 	}
   2865 
   2866 	/* Load the SBSS area. */
   2867 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2868 	if (fw->sbss) {
   2869 		int j;
   2870 
   2871 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2872 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2873 	}
   2874 
   2875 	/* Load the BSS area. */
   2876 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2877 	if (fw->bss) {
   2878 		int j;
   2879 
   2880 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2881 			REG_WR_IND(sc, offset, fw->bss[j]);
   2882 	}
   2883 
   2884 	/* Load the Read-Only area. */
   2885 	offset = cpu_reg->spad_base +
   2886 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2887 	if (fw->rodata) {
   2888 		int j;
   2889 
   2890 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2891 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2892 	}
   2893 
   2894 	/* Clear the pre-fetch instruction. */
   2895 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2896 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2897 
   2898 	/* Start the CPU. */
   2899 	val = REG_RD_IND(sc, cpu_reg->mode);
   2900 	val &= ~cpu_reg->mode_value_halt;
   2901 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2902 	REG_WR_IND(sc, cpu_reg->mode, val);
   2903 }
   2904 
   2905 /****************************************************************************/
   2906 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2907 /*                                                                          */
   2908 /* Loads the firmware for each CPU and starts the CPU.                      */
   2909 /*                                                                          */
   2910 /* Returns:                                                                 */
   2911 /*   Nothing.                                                               */
   2912 /****************************************************************************/
   2913 void
   2914 bnx_init_cpus(struct bnx_softc *sc)
   2915 {
   2916 	struct cpu_reg cpu_reg;
   2917 	struct fw_info fw;
   2918 
   2919 	switch (BNX_CHIP_NUM(sc)) {
   2920 	case BNX_CHIP_NUM_5709:
   2921 		/* Initialize the RV2P processor. */
   2922 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2923 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2924 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2925 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2926 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2927 		} else {
   2928 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2929 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2930 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2931 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2932 		}
   2933 
   2934 		/* Initialize the RX Processor. */
   2935 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2936 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2937 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2938 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2939 		cpu_reg.state_value_clear = 0xffffff;
   2940 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2941 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2942 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2943 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2944 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2945 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2946 		cpu_reg.mips_view_base = 0x8000000;
   2947 
   2948 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2949 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2950 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2951 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2952 
   2953 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2954 		fw.text_len = bnx_RXP_b09FwTextLen;
   2955 		fw.text_index = 0;
   2956 		fw.text = bnx_RXP_b09FwText;
   2957 
   2958 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2959 		fw.data_len = bnx_RXP_b09FwDataLen;
   2960 		fw.data_index = 0;
   2961 		fw.data = bnx_RXP_b09FwData;
   2962 
   2963 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2964 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2965 		fw.sbss_index = 0;
   2966 		fw.sbss = bnx_RXP_b09FwSbss;
   2967 
   2968 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2969 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2970 		fw.bss_index = 0;
   2971 		fw.bss = bnx_RXP_b09FwBss;
   2972 
   2973 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2974 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2975 		fw.rodata_index = 0;
   2976 		fw.rodata = bnx_RXP_b09FwRodata;
   2977 
   2978 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2979 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2980 
   2981 		/* Initialize the TX Processor. */
   2982 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2983 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2984 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2985 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2986 		cpu_reg.state_value_clear = 0xffffff;
   2987 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2988 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2989 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2990 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2991 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2992 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2993 		cpu_reg.mips_view_base = 0x8000000;
   2994 
   2995 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2996 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2997 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2998 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2999 
   3000 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   3001 		fw.text_len = bnx_TXP_b09FwTextLen;
   3002 		fw.text_index = 0;
   3003 		fw.text = bnx_TXP_b09FwText;
   3004 
   3005 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   3006 		fw.data_len = bnx_TXP_b09FwDataLen;
   3007 		fw.data_index = 0;
   3008 		fw.data = bnx_TXP_b09FwData;
   3009 
   3010 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   3011 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   3012 		fw.sbss_index = 0;
   3013 		fw.sbss = bnx_TXP_b09FwSbss;
   3014 
   3015 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   3016 		fw.bss_len = bnx_TXP_b09FwBssLen;
   3017 		fw.bss_index = 0;
   3018 		fw.bss = bnx_TXP_b09FwBss;
   3019 
   3020 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   3021 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   3022 		fw.rodata_index = 0;
   3023 		fw.rodata = bnx_TXP_b09FwRodata;
   3024 
   3025 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3026 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3027 
   3028 		/* Initialize the TX Patch-up Processor. */
   3029 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3030 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3031 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3032 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3033 		cpu_reg.state_value_clear = 0xffffff;
   3034 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3035 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3036 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3037 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3038 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3039 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3040 		cpu_reg.mips_view_base = 0x8000000;
   3041 
   3042 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   3043 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   3044 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   3045 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   3046 
   3047 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   3048 		fw.text_len = bnx_TPAT_b09FwTextLen;
   3049 		fw.text_index = 0;
   3050 		fw.text = bnx_TPAT_b09FwText;
   3051 
   3052 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   3053 		fw.data_len = bnx_TPAT_b09FwDataLen;
   3054 		fw.data_index = 0;
   3055 		fw.data = bnx_TPAT_b09FwData;
   3056 
   3057 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   3058 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   3059 		fw.sbss_index = 0;
   3060 		fw.sbss = bnx_TPAT_b09FwSbss;
   3061 
   3062 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   3063 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   3064 		fw.bss_index = 0;
   3065 		fw.bss = bnx_TPAT_b09FwBss;
   3066 
   3067 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3068 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3069 		fw.rodata_index = 0;
   3070 		fw.rodata = bnx_TPAT_b09FwRodata;
   3071 
   3072 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3073 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3074 
   3075 		/* Initialize the Completion Processor. */
   3076 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3077 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3078 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3079 		cpu_reg.state = BNX_COM_CPU_STATE;
   3080 		cpu_reg.state_value_clear = 0xffffff;
   3081 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3082 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3083 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3084 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3085 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3086 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3087 		cpu_reg.mips_view_base = 0x8000000;
   3088 
   3089 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3090 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3091 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3092 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3093 
   3094 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3095 		fw.text_len = bnx_COM_b09FwTextLen;
   3096 		fw.text_index = 0;
   3097 		fw.text = bnx_COM_b09FwText;
   3098 
   3099 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3100 		fw.data_len = bnx_COM_b09FwDataLen;
   3101 		fw.data_index = 0;
   3102 		fw.data = bnx_COM_b09FwData;
   3103 
   3104 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3105 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3106 		fw.sbss_index = 0;
   3107 		fw.sbss = bnx_COM_b09FwSbss;
   3108 
   3109 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3110 		fw.bss_len = bnx_COM_b09FwBssLen;
   3111 		fw.bss_index = 0;
   3112 		fw.bss = bnx_COM_b09FwBss;
   3113 
   3114 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3115 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3116 		fw.rodata_index = 0;
   3117 		fw.rodata = bnx_COM_b09FwRodata;
   3118 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3119 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3120 		break;
   3121 	default:
   3122 		/* Initialize the RV2P processor. */
   3123 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3124 		    RV2P_PROC1);
   3125 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3126 		    RV2P_PROC2);
   3127 
   3128 		/* Initialize the RX Processor. */
   3129 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3130 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3131 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3132 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3133 		cpu_reg.state_value_clear = 0xffffff;
   3134 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3135 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3136 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3137 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3138 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3139 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3140 		cpu_reg.mips_view_base = 0x8000000;
   3141 
   3142 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3143 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3144 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3145 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3146 
   3147 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3148 		fw.text_len = bnx_RXP_b06FwTextLen;
   3149 		fw.text_index = 0;
   3150 		fw.text = bnx_RXP_b06FwText;
   3151 
   3152 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3153 		fw.data_len = bnx_RXP_b06FwDataLen;
   3154 		fw.data_index = 0;
   3155 		fw.data = bnx_RXP_b06FwData;
   3156 
   3157 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3158 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3159 		fw.sbss_index = 0;
   3160 		fw.sbss = bnx_RXP_b06FwSbss;
   3161 
   3162 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3163 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3164 		fw.bss_index = 0;
   3165 		fw.bss = bnx_RXP_b06FwBss;
   3166 
   3167 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3168 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3169 		fw.rodata_index = 0;
   3170 		fw.rodata = bnx_RXP_b06FwRodata;
   3171 
   3172 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3173 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3174 
   3175 		/* Initialize the TX Processor. */
   3176 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3177 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3178 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3179 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3180 		cpu_reg.state_value_clear = 0xffffff;
   3181 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3182 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3183 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3184 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3185 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3186 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3187 		cpu_reg.mips_view_base = 0x8000000;
   3188 
   3189 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3190 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3191 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3192 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3193 
   3194 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3195 		fw.text_len = bnx_TXP_b06FwTextLen;
   3196 		fw.text_index = 0;
   3197 		fw.text = bnx_TXP_b06FwText;
   3198 
   3199 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3200 		fw.data_len = bnx_TXP_b06FwDataLen;
   3201 		fw.data_index = 0;
   3202 		fw.data = bnx_TXP_b06FwData;
   3203 
   3204 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3205 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3206 		fw.sbss_index = 0;
   3207 		fw.sbss = bnx_TXP_b06FwSbss;
   3208 
   3209 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3210 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3211 		fw.bss_index = 0;
   3212 		fw.bss = bnx_TXP_b06FwBss;
   3213 
   3214 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3215 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3216 		fw.rodata_index = 0;
   3217 		fw.rodata = bnx_TXP_b06FwRodata;
   3218 
   3219 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3220 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3221 
   3222 		/* Initialize the TX Patch-up Processor. */
   3223 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3224 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3225 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3226 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3227 		cpu_reg.state_value_clear = 0xffffff;
   3228 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3229 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3230 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3231 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3232 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3233 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3234 		cpu_reg.mips_view_base = 0x8000000;
   3235 
   3236 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3237 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3238 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3239 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3240 
   3241 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3242 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3243 		fw.text_index = 0;
   3244 		fw.text = bnx_TPAT_b06FwText;
   3245 
   3246 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3247 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3248 		fw.data_index = 0;
   3249 		fw.data = bnx_TPAT_b06FwData;
   3250 
   3251 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3252 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3253 		fw.sbss_index = 0;
   3254 		fw.sbss = bnx_TPAT_b06FwSbss;
   3255 
   3256 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3257 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3258 		fw.bss_index = 0;
   3259 		fw.bss = bnx_TPAT_b06FwBss;
   3260 
   3261 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3262 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3263 		fw.rodata_index = 0;
   3264 		fw.rodata = bnx_TPAT_b06FwRodata;
   3265 
   3266 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3267 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3268 
   3269 		/* Initialize the Completion Processor. */
   3270 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3271 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3272 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3273 		cpu_reg.state = BNX_COM_CPU_STATE;
   3274 		cpu_reg.state_value_clear = 0xffffff;
   3275 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3276 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3277 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3278 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3279 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3280 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3281 		cpu_reg.mips_view_base = 0x8000000;
   3282 
   3283 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3284 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3285 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3286 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3287 
   3288 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3289 		fw.text_len = bnx_COM_b06FwTextLen;
   3290 		fw.text_index = 0;
   3291 		fw.text = bnx_COM_b06FwText;
   3292 
   3293 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3294 		fw.data_len = bnx_COM_b06FwDataLen;
   3295 		fw.data_index = 0;
   3296 		fw.data = bnx_COM_b06FwData;
   3297 
   3298 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3299 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3300 		fw.sbss_index = 0;
   3301 		fw.sbss = bnx_COM_b06FwSbss;
   3302 
   3303 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3304 		fw.bss_len = bnx_COM_b06FwBssLen;
   3305 		fw.bss_index = 0;
   3306 		fw.bss = bnx_COM_b06FwBss;
   3307 
   3308 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3309 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3310 		fw.rodata_index = 0;
   3311 		fw.rodata = bnx_COM_b06FwRodata;
   3312 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3313 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3314 		break;
   3315 	}
   3316 }
   3317 
   3318 /****************************************************************************/
   3319 /* Initialize context memory.                                               */
   3320 /*                                                                          */
   3321 /* Clears the memory associated with each Context ID (CID).                 */
   3322 /*                                                                          */
   3323 /* Returns:                                                                 */
   3324 /*   Nothing.                                                               */
   3325 /****************************************************************************/
   3326 void
   3327 bnx_init_context(struct bnx_softc *sc)
   3328 {
   3329 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3330 		/* DRC: Replace this constant value with a #define. */
   3331 		int i, retry_cnt = 10;
   3332 		uint32_t val;
   3333 
   3334 		/*
   3335 		 * BCM5709 context memory may be cached
   3336 		 * in host memory so prepare the host memory
   3337 		 * for access.
   3338 		 */
   3339 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3340 		    | (1 << 12);
   3341 		val |= (BCM_PAGE_BITS - 8) << 16;
   3342 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3343 
   3344 		/* Wait for mem init command to complete. */
   3345 		for (i = 0; i < retry_cnt; i++) {
   3346 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3347 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3348 				break;
   3349 			DELAY(2);
   3350 		}
   3351 
   3352 		/* ToDo: Consider returning an error here. */
   3353 
   3354 		for (i = 0; i < sc->ctx_pages; i++) {
   3355 			int j;
   3356 
   3357 			/* Set the physaddr of the context memory cache. */
   3358 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3359 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3360 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3361 			val = (uint32_t)
   3362 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3363 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3364 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3365 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3366 
   3367 			/* Verify that the context memory write was successful. */
   3368 			for (j = 0; j < retry_cnt; j++) {
   3369 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3370 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3371 					break;
   3372 				DELAY(5);
   3373 			}
   3374 
   3375 			/* ToDo: Consider returning an error here. */
   3376 		}
   3377 	} else {
   3378 		uint32_t vcid_addr, offset;
   3379 
   3380 		/*
   3381 		 * For the 5706/5708, context memory is local to the
   3382 		 * controller, so initialize the controller context memory.
   3383 		 */
   3384 
   3385 		vcid_addr = GET_CID_ADDR(96);
   3386 		while (vcid_addr) {
   3387 
   3388 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3389 
   3390 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3391 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3392 
   3393 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3394 			     offset += 4)
   3395 				CTX_WR(sc, 0x00, offset, 0);
   3396 
   3397 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3398 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3399 		}
   3400 	}
   3401 }
   3402 
   3403 /****************************************************************************/
   3404 /* Fetch the permanent MAC address of the controller.                       */
   3405 /*                                                                          */
   3406 /* Returns:                                                                 */
   3407 /*   Nothing.                                                               */
   3408 /****************************************************************************/
   3409 void
   3410 bnx_get_mac_addr(struct bnx_softc *sc)
   3411 {
   3412 	uint32_t		mac_lo = 0, mac_hi = 0;
   3413 
   3414 	/*
   3415 	 * The NetXtreme II bootcode populates various NIC
   3416 	 * power-on and runtime configuration items in a
   3417 	 * shared memory area.  The factory configured MAC
   3418 	 * address is available from both NVRAM and the
   3419 	 * shared memory area so we'll read the value from
   3420 	 * shared memory for speed.
   3421 	 */
   3422 
   3423 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3424 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3425 
   3426 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3427 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3428 		    __FILE__, __LINE__);
   3429 	} else {
   3430 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3431 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3432 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3433 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3434 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3435 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3436 	}
   3437 
   3438 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3439 	    "%s\n", ether_sprintf(sc->eaddr));
   3440 }
   3441 
   3442 /****************************************************************************/
   3443 /* Program the MAC address.                                                 */
   3444 /*                                                                          */
   3445 /* Returns:                                                                 */
   3446 /*   Nothing.                                                               */
   3447 /****************************************************************************/
   3448 void
   3449 bnx_set_mac_addr(struct bnx_softc *sc)
   3450 {
   3451 	uint32_t		val;
   3452 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3453 
   3454 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3455 	    "%s\n", ether_sprintf(sc->eaddr));
   3456 
   3457 	val = (mac_addr[0] << 8) | mac_addr[1];
   3458 
   3459 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3460 
   3461 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3462 		(mac_addr[4] << 8) | mac_addr[5];
   3463 
   3464 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3465 }
   3466 
   3467 /****************************************************************************/
   3468 /* Stop the controller.                                                     */
   3469 /*                                                                          */
   3470 /* Returns:                                                                 */
   3471 /*   Nothing.                                                               */
   3472 /****************************************************************************/
   3473 void
   3474 bnx_stop(struct ifnet *ifp, int disable)
   3475 {
   3476 	struct bnx_softc *sc = ifp->if_softc;
   3477 
   3478 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3479 
   3480 	if (disable) {
   3481 		sc->bnx_detaching = 1;
   3482 		callout_halt(&sc->bnx_timeout, NULL);
   3483 	} else
   3484 		callout_stop(&sc->bnx_timeout);
   3485 
   3486 	mii_down(&sc->bnx_mii);
   3487 
   3488 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3489 
   3490 	/* Disable the transmit/receive blocks. */
   3491 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3492 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3493 	DELAY(20);
   3494 
   3495 	bnx_disable_intr(sc);
   3496 
   3497 	/* Tell firmware that the driver is going away. */
   3498 	if (disable)
   3499 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3500 	else
   3501 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3502 
   3503 	/* Free RX buffers. */
   3504 	bnx_free_rx_chain(sc);
   3505 
   3506 	/* Free TX buffers. */
   3507 	bnx_free_tx_chain(sc);
   3508 
   3509 	ifp->if_timer = 0;
   3510 
   3511 	sc->bnx_link = 0;
   3512 
   3513 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3514 
   3515 	bnx_mgmt_init(sc);
   3516 }
   3517 
   3518 int
   3519 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3520 {
   3521 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3522 	uint32_t		val;
   3523 	int			i, rc = 0;
   3524 
   3525 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3526 
   3527 	/* Wait for pending PCI transactions to complete. */
   3528 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   3529 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
   3530 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3531 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3532 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3533 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3534 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3535 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3536 		DELAY(5);
   3537 	} else {
   3538 		/* Disable DMA */
   3539 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3540 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3541 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3542 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
   3543 
   3544 		for (i = 0; i < 100; i++) {
   3545 			delay(1 * 1000);
   3546 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
   3547 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
   3548 				break;
   3549 		}
   3550 	}
   3551 
   3552 	/* Assume bootcode is running. */
   3553 	sc->bnx_fw_timed_out = 0;
   3554 
   3555 	/* Give the firmware a chance to prepare for the reset. */
   3556 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3557 	if (rc)
   3558 		goto bnx_reset_exit;
   3559 
   3560 	/* Set a firmware reminder that this is a soft reset. */
   3561 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3562 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3563 
   3564 	/* Dummy read to force the chip to complete all current transactions. */
   3565 	val = REG_RD(sc, BNX_MISC_ID);
   3566 
   3567 	/* Chip reset. */
   3568 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3569 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3570 		REG_RD(sc, BNX_MISC_COMMAND);
   3571 		DELAY(5);
   3572 
   3573 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3574 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3575 
   3576 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3577 		    val);
   3578 	} else {
   3579 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3580 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3581 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3582 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3583 
   3584 		/* Allow up to 30us for reset to complete. */
   3585 		for (i = 0; i < 10; i++) {
   3586 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3587 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3588 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3589 				break;
   3590 			}
   3591 			DELAY(10);
   3592 		}
   3593 
   3594 		/* Check that reset completed successfully. */
   3595 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3596 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3597 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3598 			    __FILE__, __LINE__);
   3599 			rc = EBUSY;
   3600 			goto bnx_reset_exit;
   3601 		}
   3602 	}
   3603 
   3604 	/* Make sure byte swapping is properly configured. */
   3605 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3606 	if (val != 0x01020304) {
   3607 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3608 		    __FILE__, __LINE__);
   3609 		rc = ENODEV;
   3610 		goto bnx_reset_exit;
   3611 	}
   3612 
   3613 	/* Just completed a reset, assume that firmware is running again. */
   3614 	sc->bnx_fw_timed_out = 0;
   3615 
   3616 	/* Wait for the firmware to finish its initialization. */
   3617 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3618 	if (rc)
   3619 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3620 		    "initialization!\n", __FILE__, __LINE__);
   3621 
   3622 bnx_reset_exit:
   3623 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3624 
   3625 	return rc;
   3626 }
   3627 
   3628 int
   3629 bnx_chipinit(struct bnx_softc *sc)
   3630 {
   3631 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3632 	uint32_t		val;
   3633 	int			rc = 0;
   3634 
   3635 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3636 
   3637 	/* Make sure the interrupt is not active. */
   3638 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3639 
   3640 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3641 	/* channels and PCI clock compensation delay.                      */
   3642 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3643 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3644 #if BYTE_ORDER == BIG_ENDIAN
   3645 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3646 #endif
   3647 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3648 	    DMA_READ_CHANS << 12 |
   3649 	    DMA_WRITE_CHANS << 16;
   3650 
   3651 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3652 
   3653 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3654 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3655 
   3656 	/*
   3657 	 * This setting resolves a problem observed on certain Intel PCI
   3658 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3659 	 * See errata E9_5706A1_65.
   3660 	 */
   3661 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3662 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3663 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3664 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3665 
   3666 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3667 
   3668 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3669 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3670 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3671 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3672 		    val & ~0x20000);
   3673 	}
   3674 
   3675 	/* Enable the RX_V2P and Context state machines before access. */
   3676 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3677 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3678 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3679 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3680 
   3681 	/* Initialize context mapping and zero out the quick contexts. */
   3682 	bnx_init_context(sc);
   3683 
   3684 	/* Initialize the on-boards CPUs */
   3685 	bnx_init_cpus(sc);
   3686 
   3687 	/* Enable management frames (NC-SI) to flow to the MCP. */
   3688 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3689 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
   3690 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3691 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3692 	}
   3693 
   3694 	/* Prepare NVRAM for access. */
   3695 	if (bnx_init_nvram(sc)) {
   3696 		rc = ENODEV;
   3697 		goto bnx_chipinit_exit;
   3698 	}
   3699 
   3700 	/* Set the kernel bypass block size */
   3701 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3702 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3703 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3704 
   3705 	/* Enable bins used on the 5709. */
   3706 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3707 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3708 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3709 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3710 	}
   3711 
   3712 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3713 
   3714 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3715 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3716 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3717 
   3718 	val = (BCM_PAGE_BITS - 8) << 24;
   3719 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3720 
   3721 	/* Configure page size. */
   3722 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3723 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3724 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3725 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3726 
   3727 #if 0
   3728 	/* Set the perfect match control register to default. */
   3729 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3730 #endif
   3731 
   3732 bnx_chipinit_exit:
   3733 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3734 
   3735 	return rc;
   3736 }
   3737 
   3738 /****************************************************************************/
   3739 /* Initialize the controller in preparation to send/receive traffic.        */
   3740 /*                                                                          */
   3741 /* Returns:                                                                 */
   3742 /*   0 for success, positive value for failure.                             */
   3743 /****************************************************************************/
   3744 int
   3745 bnx_blockinit(struct bnx_softc *sc)
   3746 {
   3747 	uint32_t		reg, val;
   3748 	int 			rc = 0;
   3749 
   3750 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3751 
   3752 	/* Load the hardware default MAC address. */
   3753 	bnx_set_mac_addr(sc);
   3754 
   3755 	/* Set the Ethernet backoff seed value */
   3756 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3757 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3758 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3759 
   3760 	sc->last_status_idx = 0;
   3761 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3762 
   3763 	/* Set up link change interrupt generation. */
   3764 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3765 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3766 
   3767 	/* Program the physical address of the status block. */
   3768 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3769 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3770 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3771 
   3772 	/* Program the physical address of the statistics block. */
   3773 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3774 	    (uint32_t)(sc->stats_block_paddr));
   3775 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3776 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3777 
   3778 	/* Program various host coalescing parameters. */
   3779 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3780 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3781 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3782 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3783 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3784 	    sc->bnx_comp_prod_trip);
   3785 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3786 	    sc->bnx_tx_ticks);
   3787 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3788 	    sc->bnx_rx_ticks);
   3789 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3790 	    sc->bnx_com_ticks);
   3791 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3792 	    sc->bnx_cmd_ticks);
   3793 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3794 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3795 	REG_WR(sc, BNX_HC_CONFIG,
   3796 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3797 	    BNX_HC_CONFIG_COLLECT_STATS));
   3798 
   3799 	/* Clear the internal statistics counters. */
   3800 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3801 
   3802 	/* Verify that bootcode is running. */
   3803 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3804 
   3805 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3806 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3807 	    __FILE__, __LINE__); reg = 0);
   3808 
   3809 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3810 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3811 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3812 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3813 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3814 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3815 		rc = ENODEV;
   3816 		goto bnx_blockinit_exit;
   3817 	}
   3818 
   3819 	/* Enable DMA */
   3820 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3821 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3822 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3823 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3824 	}
   3825 
   3826 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3827 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3828 
   3829 	/* Disable management frames (NC-SI) from flowing to the MCP. */
   3830 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3831 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
   3832 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3833 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3834 	}
   3835 
   3836 	/* Enable all remaining blocks in the MAC. */
   3837 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3838 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3839 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3840 	} else
   3841 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3842 
   3843 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3844 	DELAY(20);
   3845 
   3846 bnx_blockinit_exit:
   3847 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3848 
   3849 	return rc;
   3850 }
   3851 
   3852 static int
   3853 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3854     uint16_t *chain_prod, uint32_t *prod_bseq)
   3855 {
   3856 	bus_dmamap_t		map;
   3857 	struct rx_bd		*rxbd;
   3858 	uint32_t		addr;
   3859 	int i;
   3860 #ifdef BNX_DEBUG
   3861 	uint16_t debug_chain_prod =	*chain_prod;
   3862 #endif
   3863 	uint16_t first_chain_prod;
   3864 
   3865 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3866 
   3867 	/* Map the mbuf cluster into device memory. */
   3868 	map = sc->rx_mbuf_map[*chain_prod];
   3869 	first_chain_prod = *chain_prod;
   3870 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3871 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3872 		    __FILE__, __LINE__);
   3873 
   3874 		m_freem(m_new);
   3875 
   3876 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3877 
   3878 		return ENOBUFS;
   3879 	}
   3880 	/* Make sure there is room in the receive chain. */
   3881 	if (map->dm_nsegs > sc->free_rx_bd) {
   3882 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3883 		m_freem(m_new);
   3884 		return EFBIG;
   3885 	}
   3886 #ifdef BNX_DEBUG
   3887 	/* Track the distribution of buffer segments. */
   3888 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3889 #endif
   3890 
   3891 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3892 	    BUS_DMASYNC_PREREAD);
   3893 
   3894 	/* Update some debug statistics counters */
   3895 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3896 	    sc->rx_low_watermark = sc->free_rx_bd);
   3897 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3898 
   3899 	/*
   3900 	 * Setup the rx_bd for the first segment
   3901 	 */
   3902 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3903 
   3904 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3905 	rxbd->rx_bd_haddr_lo = addr;
   3906 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3907 	rxbd->rx_bd_haddr_hi = addr;
   3908 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3909 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3910 	*prod_bseq += map->dm_segs[0].ds_len;
   3911 	bus_dmamap_sync(sc->bnx_dmatag,
   3912 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3913 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3914 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3915 
   3916 	for (i = 1; i < map->dm_nsegs; i++) {
   3917 		*prod = NEXT_RX_BD(*prod);
   3918 		*chain_prod = RX_CHAIN_IDX(*prod);
   3919 
   3920 		rxbd =
   3921 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3922 
   3923 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3924 		rxbd->rx_bd_haddr_lo = addr;
   3925 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3926 		rxbd->rx_bd_haddr_hi = addr;
   3927 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3928 		rxbd->rx_bd_flags = 0;
   3929 		*prod_bseq += map->dm_segs[i].ds_len;
   3930 		bus_dmamap_sync(sc->bnx_dmatag,
   3931 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3932 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3933 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3934 	}
   3935 
   3936 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3937 	bus_dmamap_sync(sc->bnx_dmatag,
   3938 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3939 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3940 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3941 
   3942 	/*
   3943 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3944 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3945 	 * and update our counter.
   3946 	 */
   3947 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3948 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3949 	sc->rx_mbuf_map[*chain_prod] = map;
   3950 	sc->free_rx_bd -= map->dm_nsegs;
   3951 
   3952 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3953 	    map->dm_nsegs));
   3954 	*prod = NEXT_RX_BD(*prod);
   3955 	*chain_prod = RX_CHAIN_IDX(*prod);
   3956 
   3957 	return 0;
   3958 }
   3959 
   3960 /****************************************************************************/
   3961 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3962 /*                                                                          */
   3963 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3964 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3965 /* necessary.                                                               */
   3966 /*                                                                          */
   3967 /* Returns:                                                                 */
   3968 /*   0 for success, positive value for failure.                             */
   3969 /****************************************************************************/
   3970 int
   3971 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3972     uint16_t *chain_prod, uint32_t *prod_bseq)
   3973 {
   3974 	struct mbuf 		*m_new = NULL;
   3975 	int			rc = 0;
   3976 	uint16_t min_free_bd;
   3977 
   3978 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3979 	    __func__);
   3980 
   3981 	/* Make sure the inputs are valid. */
   3982 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3983 	    aprint_error_dev(sc->bnx_dev,
   3984 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3985 		*chain_prod, (uint16_t)MAX_RX_BD));
   3986 
   3987 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3988 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3989 	    *prod_bseq);
   3990 
   3991 	/* try to get in as many mbufs as possible */
   3992 	if (sc->mbuf_alloc_size == MCLBYTES)
   3993 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3994 	else
   3995 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3996 	while (sc->free_rx_bd >= min_free_bd) {
   3997 		/* Simulate an mbuf allocation failure. */
   3998 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3999 		    aprint_error_dev(sc->bnx_dev,
   4000 		    "Simulating mbuf allocation failure.\n");
   4001 			sc->mbuf_sim_alloc_failed++;
   4002 			rc = ENOBUFS;
   4003 			goto bnx_get_buf_exit);
   4004 
   4005 		/* This is a new mbuf allocation. */
   4006 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   4007 		if (m_new == NULL) {
   4008 			DBPRINT(sc, BNX_WARN,
   4009 			    "%s(%d): RX mbuf header allocation failed!\n",
   4010 			    __FILE__, __LINE__);
   4011 
   4012 			sc->mbuf_alloc_failed++;
   4013 
   4014 			rc = ENOBUFS;
   4015 			goto bnx_get_buf_exit;
   4016 		}
   4017 
   4018 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   4019 
   4020 		/* Simulate an mbuf cluster allocation failure. */
   4021 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4022 			m_freem(m_new);
   4023 			sc->rx_mbuf_alloc--;
   4024 			sc->mbuf_alloc_failed++;
   4025 			sc->mbuf_sim_alloc_failed++;
   4026 			rc = ENOBUFS;
   4027 			goto bnx_get_buf_exit);
   4028 
   4029 		if (sc->mbuf_alloc_size == MCLBYTES)
   4030 			MCLGET(m_new, M_DONTWAIT);
   4031 		else
   4032 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   4033 			    M_DONTWAIT);
   4034 		if (!(m_new->m_flags & M_EXT)) {
   4035 			DBPRINT(sc, BNX_WARN,
   4036 			    "%s(%d): RX mbuf chain allocation failed!\n",
   4037 			    __FILE__, __LINE__);
   4038 
   4039 			m_freem(m_new);
   4040 
   4041 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4042 			sc->mbuf_alloc_failed++;
   4043 
   4044 			rc = ENOBUFS;
   4045 			goto bnx_get_buf_exit;
   4046 		}
   4047 
   4048 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   4049 		if (rc != 0)
   4050 			goto bnx_get_buf_exit;
   4051 	}
   4052 
   4053 bnx_get_buf_exit:
   4054 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   4055 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   4056 	    *chain_prod, *prod_bseq);
   4057 
   4058 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   4059 	    __func__);
   4060 
   4061 	return rc;
   4062 }
   4063 
   4064 void
   4065 bnx_alloc_pkts(struct work * unused, void * arg)
   4066 {
   4067 	struct bnx_softc *sc = arg;
   4068 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   4069 	struct bnx_pkt *pkt;
   4070 	int i, s;
   4071 
   4072 	for (i = 0; i < 4; i++) { /* magic! */
   4073 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   4074 		if (pkt == NULL)
   4075 			break;
   4076 
   4077 		if (bus_dmamap_create(sc->bnx_dmatag,
   4078 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4079 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4080 		    &pkt->pkt_dmamap) != 0)
   4081 			goto put;
   4082 
   4083 		if (!ISSET(ifp->if_flags, IFF_UP))
   4084 			goto stopping;
   4085 
   4086 		mutex_enter(&sc->tx_pkt_mtx);
   4087 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4088 		sc->tx_pkt_count++;
   4089 		mutex_exit(&sc->tx_pkt_mtx);
   4090 	}
   4091 
   4092 	mutex_enter(&sc->tx_pkt_mtx);
   4093 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4094 	mutex_exit(&sc->tx_pkt_mtx);
   4095 
   4096 	/* fire-up TX now that allocations have been done */
   4097 	s = splnet();
   4098 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4099 		bnx_start(ifp);
   4100 	splx(s);
   4101 
   4102 	return;
   4103 
   4104 stopping:
   4105 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4106 put:
   4107 	pool_put(bnx_tx_pool, pkt);
   4108 	return;
   4109 }
   4110 
   4111 /****************************************************************************/
   4112 /* Initialize the TX context memory.                                        */
   4113 /*                                                                          */
   4114 /* Returns:                                                                 */
   4115 /*   Nothing                                                                */
   4116 /****************************************************************************/
   4117 void
   4118 bnx_init_tx_context(struct bnx_softc *sc)
   4119 {
   4120 	uint32_t val;
   4121 
   4122 	/* Initialize the context ID for an L2 TX chain. */
   4123 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4124 		/* Set the CID type to support an L2 connection. */
   4125 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4126 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4127 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4128 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4129 
   4130 		/* Point the hardware to the first page in the chain. */
   4131 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4132 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4133 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4134 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4135 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4136 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4137 	} else {
   4138 		/* Set the CID type to support an L2 connection. */
   4139 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4140 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4141 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4142 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4143 
   4144 		/* Point the hardware to the first page in the chain. */
   4145 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4146 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4147 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4148 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4149 	}
   4150 }
   4151 
   4152 
   4153 /****************************************************************************/
   4154 /* Allocate memory and initialize the TX data structures.                   */
   4155 /*                                                                          */
   4156 /* Returns:                                                                 */
   4157 /*   0 for success, positive value for failure.                             */
   4158 /****************************************************************************/
   4159 int
   4160 bnx_init_tx_chain(struct bnx_softc *sc)
   4161 {
   4162 	struct tx_bd		*txbd;
   4163 	uint32_t		addr;
   4164 	int			i, rc = 0;
   4165 
   4166 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4167 
   4168 	/* Force an allocation of some dmamaps for tx up front */
   4169 	bnx_alloc_pkts(NULL, sc);
   4170 
   4171 	/* Set the initial TX producer/consumer indices. */
   4172 	sc->tx_prod = 0;
   4173 	sc->tx_cons = 0;
   4174 	sc->tx_prod_bseq = 0;
   4175 	sc->used_tx_bd = 0;
   4176 	sc->max_tx_bd = USABLE_TX_BD;
   4177 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4178 	DBRUNIF(1, sc->tx_full_count = 0);
   4179 
   4180 	/*
   4181 	 * The NetXtreme II supports a linked-list structure called
   4182 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4183 	 * consists of a series of 1 or more chain pages, each of which
   4184 	 * consists of a fixed number of BD entries.
   4185 	 * The last BD entry on each page is a pointer to the next page
   4186 	 * in the chain, and the last pointer in the BD chain
   4187 	 * points back to the beginning of the chain.
   4188 	 */
   4189 
   4190 	/* Set the TX next pointer chain entries. */
   4191 	for (i = 0; i < TX_PAGES; i++) {
   4192 		int j;
   4193 
   4194 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4195 
   4196 		/* Check if we've reached the last page. */
   4197 		if (i == (TX_PAGES - 1))
   4198 			j = 0;
   4199 		else
   4200 			j = i + 1;
   4201 
   4202 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4203 		txbd->tx_bd_haddr_lo = addr;
   4204 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4205 		txbd->tx_bd_haddr_hi = addr;
   4206 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4207 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4208 	}
   4209 
   4210 	/*
   4211 	 * Initialize the context ID for an L2 TX chain.
   4212 	 */
   4213 	bnx_init_tx_context(sc);
   4214 
   4215 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4216 
   4217 	return rc;
   4218 }
   4219 
   4220 /****************************************************************************/
   4221 /* Free memory and clear the TX data structures.                            */
   4222 /*                                                                          */
   4223 /* Returns:                                                                 */
   4224 /*   Nothing.                                                               */
   4225 /****************************************************************************/
   4226 void
   4227 bnx_free_tx_chain(struct bnx_softc *sc)
   4228 {
   4229 	struct bnx_pkt		*pkt;
   4230 	int			i;
   4231 
   4232 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4233 
   4234 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4235 	mutex_enter(&sc->tx_pkt_mtx);
   4236 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4237 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4238 		mutex_exit(&sc->tx_pkt_mtx);
   4239 
   4240 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4241 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4242 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4243 
   4244 		m_freem(pkt->pkt_mbuf);
   4245 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4246 
   4247 		mutex_enter(&sc->tx_pkt_mtx);
   4248 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4249 	}
   4250 
   4251 	/* Destroy all the dmamaps we allocated for TX */
   4252 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4253 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4254 		sc->tx_pkt_count--;
   4255 		mutex_exit(&sc->tx_pkt_mtx);
   4256 
   4257 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4258 		pool_put(bnx_tx_pool, pkt);
   4259 
   4260 		mutex_enter(&sc->tx_pkt_mtx);
   4261 	}
   4262 	mutex_exit(&sc->tx_pkt_mtx);
   4263 
   4264 
   4265 
   4266 	/* Clear each TX chain page. */
   4267 	for (i = 0; i < TX_PAGES; i++) {
   4268 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4269 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4270 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4271 	}
   4272 
   4273 	sc->used_tx_bd = 0;
   4274 
   4275 	/* Check if we lost any mbufs in the process. */
   4276 	DBRUNIF((sc->tx_mbuf_alloc),
   4277 	    aprint_error_dev(sc->bnx_dev,
   4278 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4279 		sc->tx_mbuf_alloc));
   4280 
   4281 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4282 }
   4283 
   4284 /****************************************************************************/
   4285 /* Initialize the RX context memory.                                        */
   4286 /*                                                                          */
   4287 /* Returns:                                                                 */
   4288 /*   Nothing                                                                */
   4289 /****************************************************************************/
   4290 void
   4291 bnx_init_rx_context(struct bnx_softc *sc)
   4292 {
   4293 	uint32_t val;
   4294 
   4295 	/* Initialize the context ID for an L2 RX chain. */
   4296 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4297 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4298 
   4299 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4300 		val |= 0x000000ff;
   4301 
   4302  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4303 
   4304 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4305 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4306 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4307 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4308 	}
   4309 
   4310 	/* Point the hardware to the first page in the chain. */
   4311 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4312 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4313 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4314 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4315 }
   4316 
   4317 /****************************************************************************/
   4318 /* Allocate memory and initialize the RX data structures.                   */
   4319 /*                                                                          */
   4320 /* Returns:                                                                 */
   4321 /*   0 for success, positive value for failure.                             */
   4322 /****************************************************************************/
   4323 int
   4324 bnx_init_rx_chain(struct bnx_softc *sc)
   4325 {
   4326 	struct rx_bd		*rxbd;
   4327 	int			i, rc = 0;
   4328 	uint16_t		prod, chain_prod;
   4329 	uint32_t		prod_bseq, addr;
   4330 
   4331 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4332 
   4333 	/* Initialize the RX producer and consumer indices. */
   4334 	sc->rx_prod = 0;
   4335 	sc->rx_cons = 0;
   4336 	sc->rx_prod_bseq = 0;
   4337 	sc->free_rx_bd = USABLE_RX_BD;
   4338 	sc->max_rx_bd = USABLE_RX_BD;
   4339 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4340 	DBRUNIF(1, sc->rx_empty_count = 0);
   4341 
   4342 	/* Initialize the RX next pointer chain entries. */
   4343 	for (i = 0; i < RX_PAGES; i++) {
   4344 		int j;
   4345 
   4346 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4347 
   4348 		/* Check if we've reached the last page. */
   4349 		if (i == (RX_PAGES - 1))
   4350 			j = 0;
   4351 		else
   4352 			j = i + 1;
   4353 
   4354 		/* Setup the chain page pointers. */
   4355 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4356 		rxbd->rx_bd_haddr_hi = addr;
   4357 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4358 		rxbd->rx_bd_haddr_lo = addr;
   4359 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4360 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4361 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4362 	}
   4363 
   4364 	/* Allocate mbuf clusters for the rx_bd chain. */
   4365 	prod = prod_bseq = 0;
   4366 	chain_prod = RX_CHAIN_IDX(prod);
   4367 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4368 		BNX_PRINTF(sc,
   4369 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4370 	}
   4371 
   4372 	/* Save the RX chain producer index. */
   4373 	sc->rx_prod = prod;
   4374 	sc->rx_prod_bseq = prod_bseq;
   4375 
   4376 	for (i = 0; i < RX_PAGES; i++)
   4377 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4378 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4379 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4380 
   4381 	/* Tell the chip about the waiting rx_bd's. */
   4382 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4383 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4384 
   4385 	bnx_init_rx_context(sc);
   4386 
   4387 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4388 
   4389 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4390 
   4391 	return rc;
   4392 }
   4393 
   4394 /****************************************************************************/
   4395 /* Free memory and clear the RX data structures.                            */
   4396 /*                                                                          */
   4397 /* Returns:                                                                 */
   4398 /*   Nothing.                                                               */
   4399 /****************************************************************************/
   4400 void
   4401 bnx_free_rx_chain(struct bnx_softc *sc)
   4402 {
   4403 	int			i;
   4404 
   4405 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4406 
   4407 	/* Free any mbufs still in the RX mbuf chain. */
   4408 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4409 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4410 			if (sc->rx_mbuf_map[i] != NULL) {
   4411 				bus_dmamap_sync(sc->bnx_dmatag,
   4412 				    sc->rx_mbuf_map[i],	0,
   4413 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4414 				    BUS_DMASYNC_POSTREAD);
   4415 				bus_dmamap_unload(sc->bnx_dmatag,
   4416 				    sc->rx_mbuf_map[i]);
   4417 			}
   4418 			m_freem(sc->rx_mbuf_ptr[i]);
   4419 			sc->rx_mbuf_ptr[i] = NULL;
   4420 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4421 		}
   4422 	}
   4423 
   4424 	/* Clear each RX chain page. */
   4425 	for (i = 0; i < RX_PAGES; i++)
   4426 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4427 
   4428 	sc->free_rx_bd = sc->max_rx_bd;
   4429 
   4430 	/* Check if we lost any mbufs in the process. */
   4431 	DBRUNIF((sc->rx_mbuf_alloc),
   4432 	    aprint_error_dev(sc->bnx_dev,
   4433 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4434 		sc->rx_mbuf_alloc));
   4435 
   4436 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4437 }
   4438 
   4439 /****************************************************************************/
   4440 /* Set media options.                                                       */
   4441 /*                                                                          */
   4442 /* Returns:                                                                 */
   4443 /*   0 for success, positive value for failure.                             */
   4444 /****************************************************************************/
   4445 int
   4446 bnx_ifmedia_upd(struct ifnet *ifp)
   4447 {
   4448 	struct bnx_softc	*sc;
   4449 	struct mii_data		*mii;
   4450 	int			rc = 0;
   4451 
   4452 	sc = ifp->if_softc;
   4453 
   4454 	mii = &sc->bnx_mii;
   4455 	sc->bnx_link = 0;
   4456 	if (mii->mii_instance) {
   4457 		struct mii_softc *miisc;
   4458 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4459 			mii_phy_reset(miisc);
   4460 	}
   4461 	mii_mediachg(mii);
   4462 
   4463 	return rc;
   4464 }
   4465 
   4466 /****************************************************************************/
   4467 /* Reports current media status.                                            */
   4468 /*                                                                          */
   4469 /* Returns:                                                                 */
   4470 /*   Nothing.                                                               */
   4471 /****************************************************************************/
   4472 void
   4473 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4474 {
   4475 	struct bnx_softc	*sc;
   4476 	struct mii_data		*mii;
   4477 	int			s;
   4478 
   4479 	sc = ifp->if_softc;
   4480 
   4481 	s = splnet();
   4482 
   4483 	mii = &sc->bnx_mii;
   4484 
   4485 	mii_pollstat(mii);
   4486 	ifmr->ifm_status = mii->mii_media_status;
   4487 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4488 	    sc->bnx_flowflags;
   4489 
   4490 	splx(s);
   4491 }
   4492 
   4493 /****************************************************************************/
   4494 /* Handles PHY generated interrupt events.                                  */
   4495 /*                                                                          */
   4496 /* Returns:                                                                 */
   4497 /*   Nothing.                                                               */
   4498 /****************************************************************************/
   4499 void
   4500 bnx_phy_intr(struct bnx_softc *sc)
   4501 {
   4502 	uint32_t		new_link_state, old_link_state;
   4503 
   4504 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4505 	    BUS_DMASYNC_POSTREAD);
   4506 	new_link_state = sc->status_block->status_attn_bits &
   4507 	    STATUS_ATTN_BITS_LINK_STATE;
   4508 	old_link_state = sc->status_block->status_attn_bits_ack &
   4509 	    STATUS_ATTN_BITS_LINK_STATE;
   4510 
   4511 	/* Handle any changes if the link state has changed. */
   4512 	if (new_link_state != old_link_state) {
   4513 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4514 
   4515 		sc->bnx_link = 0;
   4516 		callout_stop(&sc->bnx_timeout);
   4517 		bnx_tick(sc);
   4518 
   4519 		/* Update the status_attn_bits_ack field in the status block. */
   4520 		if (new_link_state) {
   4521 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4522 			    STATUS_ATTN_BITS_LINK_STATE);
   4523 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4524 		} else {
   4525 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4526 			    STATUS_ATTN_BITS_LINK_STATE);
   4527 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4528 		}
   4529 	}
   4530 
   4531 	/* Acknowledge the link change interrupt. */
   4532 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4533 }
   4534 
   4535 /****************************************************************************/
   4536 /* Handles received frame interrupt events.                                 */
   4537 /*                                                                          */
   4538 /* Returns:                                                                 */
   4539 /*   Nothing.                                                               */
   4540 /****************************************************************************/
   4541 void
   4542 bnx_rx_intr(struct bnx_softc *sc)
   4543 {
   4544 	struct status_block	*sblk = sc->status_block;
   4545 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4546 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4547 	uint16_t		sw_prod, sw_chain_prod;
   4548 	uint32_t		sw_prod_bseq;
   4549 	struct l2_fhdr		*l2fhdr;
   4550 	int			i;
   4551 
   4552 	DBRUNIF(1, sc->rx_interrupts++);
   4553 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4554 	    BUS_DMASYNC_POSTREAD);
   4555 
   4556 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4557 	for (i = 0; i < RX_PAGES; i++)
   4558 		bus_dmamap_sync(sc->bnx_dmatag,
   4559 		    sc->rx_bd_chain_map[i], 0,
   4560 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4561 		    BUS_DMASYNC_POSTWRITE);
   4562 
   4563 	/* Get the hardware's view of the RX consumer index. */
   4564 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4565 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4566 		hw_cons++;
   4567 
   4568 	/* Get working copies of the driver's view of the RX indices. */
   4569 	sw_cons = sc->rx_cons;
   4570 	sw_prod = sc->rx_prod;
   4571 	sw_prod_bseq = sc->rx_prod_bseq;
   4572 
   4573 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4574 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4575 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4576 
   4577 	/* Prevent speculative reads from getting ahead of the status block. */
   4578 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4579 	    BUS_SPACE_BARRIER_READ);
   4580 
   4581 	/* Update some debug statistics counters */
   4582 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4583 	    sc->rx_low_watermark = sc->free_rx_bd);
   4584 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4585 
   4586 	/*
   4587 	 * Scan through the receive chain as long
   4588 	 * as there is work to do.
   4589 	 */
   4590 	while (sw_cons != hw_cons) {
   4591 		struct mbuf *m;
   4592 		struct rx_bd *rxbd __diagused;
   4593 		unsigned int len;
   4594 		uint32_t status;
   4595 
   4596 		/* Convert the producer/consumer indices to an actual
   4597 		 * rx_bd index.
   4598 		 */
   4599 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4600 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4601 
   4602 		/* Get the used rx_bd. */
   4603 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4604 		sc->free_rx_bd++;
   4605 
   4606 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4607 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4608 
   4609 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4610 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4611 #ifdef DIAGNOSTIC
   4612 			/* Validate that this is the last rx_bd. */
   4613 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4614 			    printf("%s: Unexpected mbuf found in "
   4615 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4616 			        sw_chain_cons);
   4617 			}
   4618 #endif
   4619 
   4620 			/* DRC - ToDo: If the received packet is small, say
   4621 			 *             less than 128 bytes, allocate a new mbuf
   4622 			 *             here, copy the data to that mbuf, and
   4623 			 *             recycle the mapped jumbo frame.
   4624 			 */
   4625 
   4626 			/* Unmap the mbuf from DMA space. */
   4627 #ifdef DIAGNOSTIC
   4628 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4629 				printf("invalid map sw_cons 0x%x "
   4630 				"sw_prod 0x%x "
   4631 				"sw_chain_cons 0x%x "
   4632 				"sw_chain_prod 0x%x "
   4633 				"hw_cons 0x%x "
   4634 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4635 				"TOTAL_RX_BD 0x%x\n",
   4636 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4637 				hw_cons,
   4638 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4639 			}
   4640 #endif
   4641 			bus_dmamap_sync(sc->bnx_dmatag,
   4642 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4643 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4644 			    BUS_DMASYNC_POSTREAD);
   4645 			bus_dmamap_unload(sc->bnx_dmatag,
   4646 			    sc->rx_mbuf_map[sw_chain_cons]);
   4647 
   4648 			/* Remove the mbuf from the driver's chain. */
   4649 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4650 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4651 
   4652 			/*
   4653 			 * Frames received on the NetXteme II are prepended
   4654 			 * with the l2_fhdr structure which provides status
   4655 			 * information about the received frame (including
   4656 			 * VLAN tags and checksum info) and are also
   4657 			 * automatically adjusted to align the IP header
   4658 			 * (i.e. two null bytes are inserted before the
   4659 			 * Ethernet header).
   4660 			 */
   4661 			l2fhdr = mtod(m, struct l2_fhdr *);
   4662 
   4663 			len    = l2fhdr->l2_fhdr_pkt_len;
   4664 			status = l2fhdr->l2_fhdr_status;
   4665 
   4666 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4667 			    aprint_error("Simulating l2_fhdr status error.\n");
   4668 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4669 
   4670 			/* Watch for unusual sized frames. */
   4671 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4672 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4673 			    aprint_error_dev(sc->bnx_dev,
   4674 			        "Unusual frame size found. "
   4675 				"Min(%d), Actual(%d), Max(%d)\n",
   4676 				(int)BNX_MIN_MTU, len,
   4677 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4678 
   4679 			bnx_dump_mbuf(sc, m);
   4680 			bnx_breakpoint(sc));
   4681 
   4682 			len -= ETHER_CRC_LEN;
   4683 
   4684 			/* Check the received frame for errors. */
   4685 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4686 			    L2_FHDR_ERRORS_PHY_DECODE |
   4687 			    L2_FHDR_ERRORS_ALIGNMENT |
   4688 			    L2_FHDR_ERRORS_TOO_SHORT |
   4689 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4690 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4691 			    len >
   4692 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4693 				ifp->if_ierrors++;
   4694 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4695 
   4696 				/* Reuse the mbuf for a new frame. */
   4697 				if (bnx_add_buf(sc, m, &sw_prod,
   4698 				    &sw_chain_prod, &sw_prod_bseq)) {
   4699 					DBRUNIF(1, bnx_breakpoint(sc));
   4700 					panic("%s: Can't reuse RX mbuf!\n",
   4701 					    device_xname(sc->bnx_dev));
   4702 				}
   4703 				continue;
   4704 			}
   4705 
   4706 			/*
   4707 			 * Get a new mbuf for the rx_bd.   If no new
   4708 			 * mbufs are available then reuse the current mbuf,
   4709 			 * log an ierror on the interface, and generate
   4710 			 * an error in the system log.
   4711 			 */
   4712 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4713 			    &sw_prod_bseq)) {
   4714 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4715 				    "Failed to allocate "
   4716 				    "new mbuf, incoming frame dropped!\n"));
   4717 
   4718 				ifp->if_ierrors++;
   4719 
   4720 				/* Try and reuse the exisitng mbuf. */
   4721 				if (bnx_add_buf(sc, m, &sw_prod,
   4722 				    &sw_chain_prod, &sw_prod_bseq)) {
   4723 					DBRUNIF(1, bnx_breakpoint(sc));
   4724 					panic("%s: Double mbuf allocation "
   4725 					    "failure!",
   4726 					    device_xname(sc->bnx_dev));
   4727 				}
   4728 				continue;
   4729 			}
   4730 
   4731 			/* Skip over the l2_fhdr when passing the data up
   4732 			 * the stack.
   4733 			 */
   4734 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4735 
   4736 			/* Adjust the pckt length to match the received data. */
   4737 			m->m_pkthdr.len = m->m_len = len;
   4738 
   4739 			/* Send the packet to the appropriate interface. */
   4740 			m_set_rcvif(m, ifp);
   4741 
   4742 			DBRUN(BNX_VERBOSE_RECV,
   4743 			    struct ether_header *eh;
   4744 			    eh = mtod(m, struct ether_header *);
   4745 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4746 			    __func__, ether_sprintf(eh->ether_dhost),
   4747 			    ether_sprintf(eh->ether_shost),
   4748 			    htons(eh->ether_type)));
   4749 
   4750 			/* Validate the checksum. */
   4751 
   4752 			/* Check for an IP datagram. */
   4753 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4754 				/* Check if the IP checksum is valid. */
   4755 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4756 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4757 #ifdef BNX_DEBUG
   4758 				else
   4759 					DBPRINT(sc, BNX_WARN_SEND,
   4760 					    "%s(): Invalid IP checksum "
   4761 					        "= 0x%04X!\n",
   4762 						__func__,
   4763 						l2fhdr->l2_fhdr_ip_xsum
   4764 						);
   4765 #endif
   4766 			}
   4767 
   4768 			/* Check for a valid TCP/UDP frame. */
   4769 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4770 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4771 				/* Check for a good TCP/UDP checksum. */
   4772 				if ((status &
   4773 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4774 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4775 					m->m_pkthdr.csum_flags |=
   4776 					    M_CSUM_TCPv4 |
   4777 					    M_CSUM_UDPv4;
   4778 				} else {
   4779 					DBPRINT(sc, BNX_WARN_SEND,
   4780 					    "%s(): Invalid TCP/UDP "
   4781 					    "checksum = 0x%04X!\n",
   4782 					    __func__,
   4783 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4784 				}
   4785 			}
   4786 
   4787 			/*
   4788 			 * If we received a packet with a vlan tag,
   4789 			 * attach that information to the packet.
   4790 			 */
   4791 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4792 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4793 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4794 			}
   4795 
   4796 			/* Pass the mbuf off to the upper layers. */
   4797 
   4798 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4799 			    "%s(): Passing received frame up.\n", __func__);
   4800 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4801 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4802 
   4803 		}
   4804 
   4805 		sw_cons = NEXT_RX_BD(sw_cons);
   4806 
   4807 		/* Refresh hw_cons to see if there's new work */
   4808 		if (sw_cons == hw_cons) {
   4809 			hw_cons = sc->hw_rx_cons =
   4810 			    sblk->status_rx_quick_consumer_index0;
   4811 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4812 			    USABLE_RX_BD_PER_PAGE)
   4813 				hw_cons++;
   4814 		}
   4815 
   4816 		/* Prevent speculative reads from getting ahead of
   4817 		 * the status block.
   4818 		 */
   4819 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4820 		    BUS_SPACE_BARRIER_READ);
   4821 	}
   4822 
   4823 	for (i = 0; i < RX_PAGES; i++)
   4824 		bus_dmamap_sync(sc->bnx_dmatag,
   4825 		    sc->rx_bd_chain_map[i], 0,
   4826 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4827 		    BUS_DMASYNC_PREWRITE);
   4828 
   4829 	sc->rx_cons = sw_cons;
   4830 	sc->rx_prod = sw_prod;
   4831 	sc->rx_prod_bseq = sw_prod_bseq;
   4832 
   4833 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4834 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4835 
   4836 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4837 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4838 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4839 }
   4840 
   4841 /****************************************************************************/
   4842 /* Handles transmit completion interrupt events.                            */
   4843 /*                                                                          */
   4844 /* Returns:                                                                 */
   4845 /*   Nothing.                                                               */
   4846 /****************************************************************************/
   4847 void
   4848 bnx_tx_intr(struct bnx_softc *sc)
   4849 {
   4850 	struct status_block	*sblk = sc->status_block;
   4851 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4852 	struct bnx_pkt		*pkt;
   4853 	bus_dmamap_t		map;
   4854 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4855 
   4856 	DBRUNIF(1, sc->tx_interrupts++);
   4857 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4858 	    BUS_DMASYNC_POSTREAD);
   4859 
   4860 	/* Get the hardware's view of the TX consumer index. */
   4861 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4862 
   4863 	/* Skip to the next entry if this is a chain page pointer. */
   4864 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4865 		hw_tx_cons++;
   4866 
   4867 	sw_tx_cons = sc->tx_cons;
   4868 
   4869 	/* Prevent speculative reads from getting ahead of the status block. */
   4870 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4871 	    BUS_SPACE_BARRIER_READ);
   4872 
   4873 	/* Cycle through any completed TX chain page entries. */
   4874 	while (sw_tx_cons != hw_tx_cons) {
   4875 #ifdef BNX_DEBUG
   4876 		struct tx_bd *txbd = NULL;
   4877 #endif
   4878 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4879 
   4880 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4881 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4882 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4883 
   4884 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4885 		    aprint_error_dev(sc->bnx_dev,
   4886 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4887 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4888 
   4889 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4890 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4891 
   4892 		DBRUNIF((txbd == NULL),
   4893 		    aprint_error_dev(sc->bnx_dev,
   4894 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4895 		    bnx_breakpoint(sc));
   4896 
   4897 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4898 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4899 
   4900 
   4901 		mutex_enter(&sc->tx_pkt_mtx);
   4902 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4903 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4904 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4905 			mutex_exit(&sc->tx_pkt_mtx);
   4906 			/*
   4907 			 * Free the associated mbuf. Remember
   4908 			 * that only the last tx_bd of a packet
   4909 			 * has an mbuf pointer and DMA map.
   4910 			 */
   4911 			map = pkt->pkt_dmamap;
   4912 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4913 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4914 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4915 
   4916 			m_freem(pkt->pkt_mbuf);
   4917 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4918 
   4919 			ifp->if_opackets++;
   4920 
   4921 			mutex_enter(&sc->tx_pkt_mtx);
   4922 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4923 		}
   4924 		mutex_exit(&sc->tx_pkt_mtx);
   4925 
   4926 		sc->used_tx_bd--;
   4927 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4928 			__FILE__, __LINE__, sc->used_tx_bd);
   4929 
   4930 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4931 
   4932 		/* Refresh hw_cons to see if there's new work. */
   4933 		hw_tx_cons = sc->hw_tx_cons =
   4934 		    sblk->status_tx_quick_consumer_index0;
   4935 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4936 		    USABLE_TX_BD_PER_PAGE)
   4937 			hw_tx_cons++;
   4938 
   4939 		/* Prevent speculative reads from getting ahead of
   4940 		 * the status block.
   4941 		 */
   4942 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4943 		    BUS_SPACE_BARRIER_READ);
   4944 	}
   4945 
   4946 	/* Clear the TX timeout timer. */
   4947 	ifp->if_timer = 0;
   4948 
   4949 	/* Clear the tx hardware queue full flag. */
   4950 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4951 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4952 		    aprint_debug_dev(sc->bnx_dev,
   4953 		        "Open TX chain! %d/%d (used/total)\n",
   4954 			sc->used_tx_bd, sc->max_tx_bd));
   4955 		ifp->if_flags &= ~IFF_OACTIVE;
   4956 	}
   4957 
   4958 	sc->tx_cons = sw_tx_cons;
   4959 }
   4960 
   4961 /****************************************************************************/
   4962 /* Disables interrupt generation.                                           */
   4963 /*                                                                          */
   4964 /* Returns:                                                                 */
   4965 /*   Nothing.                                                               */
   4966 /****************************************************************************/
   4967 void
   4968 bnx_disable_intr(struct bnx_softc *sc)
   4969 {
   4970 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4971 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4972 }
   4973 
   4974 /****************************************************************************/
   4975 /* Enables interrupt generation.                                            */
   4976 /*                                                                          */
   4977 /* Returns:                                                                 */
   4978 /*   Nothing.                                                               */
   4979 /****************************************************************************/
   4980 void
   4981 bnx_enable_intr(struct bnx_softc *sc)
   4982 {
   4983 	uint32_t		val;
   4984 
   4985 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4986 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4987 
   4988 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4989 	    sc->last_status_idx);
   4990 
   4991 	val = REG_RD(sc, BNX_HC_COMMAND);
   4992 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4993 }
   4994 
   4995 /****************************************************************************/
   4996 /* Handles controller initialization.                                       */
   4997 /*                                                                          */
   4998 /****************************************************************************/
   4999 int
   5000 bnx_init(struct ifnet *ifp)
   5001 {
   5002 	struct bnx_softc	*sc = ifp->if_softc;
   5003 	uint32_t		ether_mtu;
   5004 	int			s, error = 0;
   5005 
   5006 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   5007 
   5008 	s = splnet();
   5009 
   5010 	bnx_stop(ifp, 0);
   5011 
   5012 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   5013 		aprint_error_dev(sc->bnx_dev,
   5014 		    "Controller reset failed!\n");
   5015 		goto bnx_init_exit;
   5016 	}
   5017 
   5018 	if ((error = bnx_chipinit(sc)) != 0) {
   5019 		aprint_error_dev(sc->bnx_dev,
   5020 		    "Controller initialization failed!\n");
   5021 		goto bnx_init_exit;
   5022 	}
   5023 
   5024 	if ((error = bnx_blockinit(sc)) != 0) {
   5025 		aprint_error_dev(sc->bnx_dev,
   5026 		    "Block initialization failed!\n");
   5027 		goto bnx_init_exit;
   5028 	}
   5029 
   5030 	/* Calculate and program the Ethernet MRU size. */
   5031 	if (ifp->if_mtu <= ETHERMTU) {
   5032 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   5033 		sc->mbuf_alloc_size = MCLBYTES;
   5034 	} else {
   5035 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   5036 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   5037 	}
   5038 
   5039 
   5040 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   5041 
   5042 	/*
   5043 	 * Program the MRU and enable Jumbo frame
   5044 	 * support.
   5045 	 */
   5046 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   5047 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   5048 
   5049 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   5050 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   5051 
   5052 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   5053 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   5054 	    sc->mbuf_alloc_size, sc->max_frame_size);
   5055 
   5056 	/* Program appropriate promiscuous/multicast filtering. */
   5057 	bnx_iff(sc);
   5058 
   5059 	/* Init RX buffer descriptor chain. */
   5060 	bnx_init_rx_chain(sc);
   5061 
   5062 	/* Init TX buffer descriptor chain. */
   5063 	bnx_init_tx_chain(sc);
   5064 
   5065 	/* Enable host interrupts. */
   5066 	bnx_enable_intr(sc);
   5067 
   5068 	bnx_ifmedia_upd(ifp);
   5069 
   5070 	SET(ifp->if_flags, IFF_RUNNING);
   5071 	CLR(ifp->if_flags, IFF_OACTIVE);
   5072 
   5073 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5074 
   5075 bnx_init_exit:
   5076 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5077 
   5078 	splx(s);
   5079 
   5080 	return error;
   5081 }
   5082 
   5083 void
   5084 bnx_mgmt_init(struct bnx_softc *sc)
   5085 {
   5086 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5087 	uint32_t	val;
   5088 
   5089 	/* Check if the driver is still running and bail out if it is. */
   5090 	if (ifp->if_flags & IFF_RUNNING)
   5091 		goto bnx_mgmt_init_exit;
   5092 
   5093 	/* Initialize the on-boards CPUs */
   5094 	bnx_init_cpus(sc);
   5095 
   5096 	val = (BCM_PAGE_BITS - 8) << 24;
   5097 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5098 
   5099 	/* Enable all critical blocks in the MAC. */
   5100 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5101 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5102 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5103 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5104 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5105 	DELAY(20);
   5106 
   5107 	bnx_ifmedia_upd(ifp);
   5108 
   5109 bnx_mgmt_init_exit:
   5110  	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5111 }
   5112 
   5113 /****************************************************************************/
   5114 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5115 /* memory visible to the controller.                                        */
   5116 /*                                                                          */
   5117 /* Returns:                                                                 */
   5118 /*   0 for success, positive value for failure.                             */
   5119 /****************************************************************************/
   5120 int
   5121 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5122 {
   5123 	struct bnx_pkt		*pkt;
   5124 	bus_dmamap_t		map;
   5125 	struct tx_bd		*txbd = NULL;
   5126 	uint16_t		vlan_tag = 0, flags = 0;
   5127 	uint16_t		chain_prod, prod;
   5128 #ifdef BNX_DEBUG
   5129 	uint16_t		debug_prod;
   5130 #endif
   5131 	uint32_t		addr, prod_bseq;
   5132 	int			i, error;
   5133 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   5134 	bool			remap = true;
   5135 
   5136 	mutex_enter(&sc->tx_pkt_mtx);
   5137 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5138 	if (pkt == NULL) {
   5139 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5140 			mutex_exit(&sc->tx_pkt_mtx);
   5141 			return ENETDOWN;
   5142 		}
   5143 
   5144 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5145 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5146 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   5147 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5148 		}
   5149 
   5150 		mutex_exit(&sc->tx_pkt_mtx);
   5151 		return ENOMEM;
   5152 	}
   5153 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5154 	mutex_exit(&sc->tx_pkt_mtx);
   5155 
   5156 	/* Transfer any checksum offload flags to the bd. */
   5157 	if (m->m_pkthdr.csum_flags) {
   5158 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5159 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5160 		if (m->m_pkthdr.csum_flags &
   5161 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5162 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5163 	}
   5164 
   5165 	/* Transfer any VLAN tags to the bd. */
   5166 	if (vlan_has_tag(m)) {
   5167 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5168 		vlan_tag = vlan_get_tag(m);
   5169 	}
   5170 
   5171 	/* Map the mbuf into DMAable memory. */
   5172 	prod = sc->tx_prod;
   5173 	chain_prod = TX_CHAIN_IDX(prod);
   5174 	map = pkt->pkt_dmamap;
   5175 
   5176 	/* Map the mbuf into our DMA address space. */
   5177 retry:
   5178 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5179 	if (__predict_false(error)) {
   5180 		if (error == EFBIG) {
   5181 			if (remap == true) {
   5182 				struct mbuf *newm;
   5183 
   5184 				remap = false;
   5185 				newm = m_defrag(m, M_NOWAIT);
   5186 				if (newm != NULL) {
   5187 					m = newm;
   5188 					goto retry;
   5189 				}
   5190 			}
   5191 		}
   5192 		sc->tx_dma_map_failures++;
   5193 		goto maperr;
   5194 	}
   5195 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5196 	    BUS_DMASYNC_PREWRITE);
   5197 	/* Make sure there's room in the chain */
   5198 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5199 		goto nospace;
   5200 
   5201 	/* prod points to an empty tx_bd at this point. */
   5202 	prod_bseq = sc->tx_prod_bseq;
   5203 #ifdef BNX_DEBUG
   5204 	debug_prod = chain_prod;
   5205 #endif
   5206 	DBPRINT(sc, BNX_INFO_SEND,
   5207 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5208 		"prod_bseq = 0x%08X\n",
   5209 		__func__, prod, chain_prod, prod_bseq);
   5210 
   5211 	/*
   5212 	 * Cycle through each mbuf segment that makes up
   5213 	 * the outgoing frame, gathering the mapping info
   5214 	 * for that segment and creating a tx_bd for the
   5215 	 * mbuf.
   5216 	 */
   5217 	for (i = 0; i < map->dm_nsegs ; i++) {
   5218 		chain_prod = TX_CHAIN_IDX(prod);
   5219 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5220 
   5221 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5222 		txbd->tx_bd_haddr_lo = addr;
   5223 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5224 		txbd->tx_bd_haddr_hi = addr;
   5225 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5226 		txbd->tx_bd_vlan_tag = vlan_tag;
   5227 		txbd->tx_bd_flags = flags;
   5228 		prod_bseq += map->dm_segs[i].ds_len;
   5229 		if (i == 0)
   5230 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5231 		prod = NEXT_TX_BD(prod);
   5232 	}
   5233 
   5234 	/* Set the END flag on the last TX buffer descriptor. */
   5235 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5236 
   5237 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5238 
   5239 	DBPRINT(sc, BNX_INFO_SEND,
   5240 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5241 		"prod_bseq = 0x%08X\n",
   5242 		__func__, prod, chain_prod, prod_bseq);
   5243 
   5244 	pkt->pkt_mbuf = m;
   5245 	pkt->pkt_end_desc = chain_prod;
   5246 
   5247 	mutex_enter(&sc->tx_pkt_mtx);
   5248 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5249 	mutex_exit(&sc->tx_pkt_mtx);
   5250 
   5251 	sc->used_tx_bd += map->dm_nsegs;
   5252 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5253 		__FILE__, __LINE__, sc->used_tx_bd);
   5254 
   5255 	/* Update some debug statistics counters */
   5256 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5257 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5258 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5259 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5260 
   5261 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5262 	    map->dm_nsegs));
   5263 
   5264 	/* prod points to the next free tx_bd at this point. */
   5265 	sc->tx_prod = prod;
   5266 	sc->tx_prod_bseq = prod_bseq;
   5267 
   5268 	return 0;
   5269 
   5270 
   5271 nospace:
   5272 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5273 maperr:
   5274 	mutex_enter(&sc->tx_pkt_mtx);
   5275 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5276 	mutex_exit(&sc->tx_pkt_mtx);
   5277 
   5278 	return ENOMEM;
   5279 }
   5280 
   5281 /****************************************************************************/
   5282 /* Main transmit routine.                                                   */
   5283 /*                                                                          */
   5284 /* Returns:                                                                 */
   5285 /*   Nothing.                                                               */
   5286 /****************************************************************************/
   5287 void
   5288 bnx_start(struct ifnet *ifp)
   5289 {
   5290 	struct bnx_softc	*sc = ifp->if_softc;
   5291 	struct mbuf		*m_head = NULL;
   5292 	int			count = 0;
   5293 #ifdef BNX_DEBUG
   5294 	uint16_t		tx_chain_prod;
   5295 #endif
   5296 
   5297 	/* If there's no link or the transmit queue is empty then just exit. */
   5298 	if (!sc->bnx_link
   5299 	    ||(ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5300 		DBPRINT(sc, BNX_INFO_SEND,
   5301 		    "%s(): output active or device not running.\n", __func__);
   5302 		goto bnx_start_exit;
   5303 	}
   5304 
   5305 	/* prod points to the next free tx_bd. */
   5306 #ifdef BNX_DEBUG
   5307 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5308 #endif
   5309 
   5310 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5311 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5312 	    "used_tx %d max_tx %d\n",
   5313 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5314 	    sc->used_tx_bd, sc->max_tx_bd);
   5315 
   5316 	/*
   5317 	 * Keep adding entries while there is space in the ring.
   5318 	 */
   5319 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5320 		/* Check for any frames to send. */
   5321 		IFQ_POLL(&ifp->if_snd, m_head);
   5322 		if (m_head == NULL)
   5323 			break;
   5324 
   5325 		/*
   5326 		 * Pack the data into the transmit ring. If we
   5327 		 * don't have room, set the OACTIVE flag to wait
   5328 		 * for the NIC to drain the chain.
   5329 		 */
   5330 		if (bnx_tx_encap(sc, m_head)) {
   5331 			ifp->if_flags |= IFF_OACTIVE;
   5332 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5333 			    "business! Total tx_bd used = %d\n",
   5334 			    sc->used_tx_bd);
   5335 			break;
   5336 		}
   5337 
   5338 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5339 		count++;
   5340 
   5341 		/* Send a copy of the frame to any BPF listeners. */
   5342 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5343 	}
   5344 
   5345 	if (count == 0) {
   5346 		/* no packets were dequeued */
   5347 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5348 		    "%s(): No packets were dequeued\n", __func__);
   5349 		goto bnx_start_exit;
   5350 	}
   5351 
   5352 	/* Update the driver's counters. */
   5353 #ifdef BNX_DEBUG
   5354 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5355 #endif
   5356 
   5357 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5358 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5359 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5360 
   5361 	/* Start the transmit. */
   5362 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5363 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5364 
   5365 	/* Set the tx timeout. */
   5366 	ifp->if_timer = BNX_TX_TIMEOUT;
   5367 
   5368 bnx_start_exit:
   5369 	return;
   5370 }
   5371 
   5372 /****************************************************************************/
   5373 /* Handles any IOCTL calls from the operating system.                       */
   5374 /*                                                                          */
   5375 /* Returns:                                                                 */
   5376 /*   0 for success, positive value for failure.                             */
   5377 /****************************************************************************/
   5378 int
   5379 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5380 {
   5381 	struct bnx_softc	*sc = ifp->if_softc;
   5382 	struct ifreq		*ifr = (struct ifreq *) data;
   5383 	struct mii_data		*mii = &sc->bnx_mii;
   5384 	int			s, error = 0;
   5385 
   5386 	s = splnet();
   5387 
   5388 	switch (command) {
   5389 	case SIOCSIFFLAGS:
   5390 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5391 			break;
   5392 		/* XXX set an ifflags callback and let ether_ioctl
   5393 		 * handle all of this.
   5394 		 */
   5395 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5396 			if (ifp->if_flags & IFF_RUNNING)
   5397 				error = ENETRESET;
   5398 			else
   5399 				bnx_init(ifp);
   5400 		} else if (ifp->if_flags & IFF_RUNNING)
   5401 			bnx_stop(ifp, 1);
   5402 		break;
   5403 
   5404 	case SIOCSIFMEDIA:
   5405 		/* Flow control requires full-duplex mode. */
   5406 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5407 		    (ifr->ifr_media & IFM_FDX) == 0)
   5408 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5409 
   5410 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5411 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5412 				/* We can do both TXPAUSE and RXPAUSE. */
   5413 				ifr->ifr_media |=
   5414 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5415 			}
   5416 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5417 		}
   5418 		/* FALLTHROUGH */
   5419 	case SIOCGIFMEDIA:
   5420 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5421 		    sc->bnx_phy_flags);
   5422 
   5423 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5424 		break;
   5425 
   5426 	default:
   5427 		error = ether_ioctl(ifp, command, data);
   5428 	}
   5429 
   5430 	if (error == ENETRESET) {
   5431 		if (ifp->if_flags & IFF_RUNNING)
   5432 			bnx_iff(sc);
   5433 		error = 0;
   5434 	}
   5435 
   5436 	splx(s);
   5437 	return error;
   5438 }
   5439 
   5440 /****************************************************************************/
   5441 /* Transmit timeout handler.                                                */
   5442 /*                                                                          */
   5443 /* Returns:                                                                 */
   5444 /*   Nothing.                                                               */
   5445 /****************************************************************************/
   5446 void
   5447 bnx_watchdog(struct ifnet *ifp)
   5448 {
   5449 	struct bnx_softc	*sc = ifp->if_softc;
   5450 
   5451 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5452 	    bnx_dump_status_block(sc));
   5453 	/*
   5454 	 * If we are in this routine because of pause frames, then
   5455 	 * don't reset the hardware.
   5456 	 */
   5457 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5458 		return;
   5459 
   5460 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5461 
   5462 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5463 
   5464 	bnx_init(ifp);
   5465 
   5466 	ifp->if_oerrors++;
   5467 }
   5468 
   5469 /*
   5470  * Interrupt handler.
   5471  */
   5472 /****************************************************************************/
   5473 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5474 /* interrupt and then calls a separate routine for handle the various       */
   5475 /* interrupt causes (PHY, TX, RX).                                          */
   5476 /*                                                                          */
   5477 /* Returns:                                                                 */
   5478 /*   0 for success, positive value for failure.                             */
   5479 /****************************************************************************/
   5480 int
   5481 bnx_intr(void *xsc)
   5482 {
   5483 	struct bnx_softc	*sc = xsc;
   5484 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5485 	uint32_t		status_attn_bits;
   5486 	uint16_t		status_idx;
   5487 	const struct status_block *sblk;
   5488 	int			rv = 0;
   5489 
   5490 	if (!device_is_active(sc->bnx_dev) ||
   5491 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5492 		return 0;
   5493 
   5494 	DBRUNIF(1, sc->interrupts_generated++);
   5495 
   5496 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5497 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5498 
   5499 	sblk = sc->status_block;
   5500 	/*
   5501 	 * If the hardware status block index
   5502 	 * matches the last value read by the
   5503 	 * driver and we haven't asserted our
   5504 	 * interrupt then there's nothing to do.
   5505 	 */
   5506 	status_idx = sblk->status_idx;
   5507 	if ((status_idx != sc->last_status_idx) ||
   5508 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5509 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5510 		rv = 1;
   5511 
   5512 		/* Ack the interrupt */
   5513 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5514 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5515 
   5516 		status_attn_bits = sblk->status_attn_bits;
   5517 
   5518 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5519 		    aprint_debug("Simulating unexpected status attention bit set.");
   5520 		    status_attn_bits = status_attn_bits |
   5521 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5522 
   5523 		/* Was it a link change interrupt? */
   5524 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5525 		    (sblk->status_attn_bits_ack &
   5526 		    STATUS_ATTN_BITS_LINK_STATE))
   5527 			bnx_phy_intr(sc);
   5528 
   5529 		/* If any other attention is asserted then the chip is toast. */
   5530 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5531 		    (sblk->status_attn_bits_ack &
   5532 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5533 			DBRUN(sc->unexpected_attentions++);
   5534 
   5535 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5536 			    sblk->status_attn_bits);
   5537 
   5538 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5539 				    bnx_breakpoint(sc));
   5540 
   5541 			bnx_init(ifp);
   5542 			goto out;
   5543 		}
   5544 
   5545 		/* Check for any completed RX frames. */
   5546 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5547 			bnx_rx_intr(sc);
   5548 
   5549 		/* Check for any completed TX frames. */
   5550 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5551 			bnx_tx_intr(sc);
   5552 
   5553 		/*
   5554 		 * Save the status block index value for use during the
   5555 		 * next interrupt.
   5556 		 */
   5557 		sc->last_status_idx = status_idx;
   5558 
   5559 		/* Start moving packets again */
   5560 		if (ifp->if_flags & IFF_RUNNING)
   5561 			if_schedule_deferred_start(ifp);
   5562 	}
   5563 
   5564 out:
   5565 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5566 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5567 
   5568 	return rv;
   5569 }
   5570 
   5571 /****************************************************************************/
   5572 /* Programs the various packet receive modes (broadcast and multicast).     */
   5573 /*                                                                          */
   5574 /* Returns:                                                                 */
   5575 /*   Nothing.                                                               */
   5576 /****************************************************************************/
   5577 void
   5578 bnx_iff(struct bnx_softc *sc)
   5579 {
   5580 	struct ethercom		*ec = &sc->bnx_ec;
   5581 	struct ifnet		*ifp = &ec->ec_if;
   5582 	struct ether_multi	*enm;
   5583 	struct ether_multistep	step;
   5584 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5585 	uint32_t		rx_mode, sort_mode;
   5586 	int			h, i;
   5587 
   5588 	/* Initialize receive mode default settings. */
   5589 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5590 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5591 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5592 	ifp->if_flags &= ~IFF_ALLMULTI;
   5593 
   5594 	/*
   5595 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5596 	 * be enbled.
   5597 	 */
   5598 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5599 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5600 
   5601 	/*
   5602 	 * Check for promiscuous, all multicast, or selected
   5603 	 * multicast address filtering.
   5604 	 */
   5605 	if (ifp->if_flags & IFF_PROMISC) {
   5606 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5607 
   5608 		ifp->if_flags |= IFF_ALLMULTI;
   5609 		/* Enable promiscuous mode. */
   5610 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5611 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5612 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5613 allmulti:
   5614 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5615 
   5616 		ifp->if_flags |= IFF_ALLMULTI;
   5617 		/* Enable all multicast addresses. */
   5618 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5619 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5620 			    0xffffffff);
   5621 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5622 	} else {
   5623 		/* Accept one or more multicast(s). */
   5624 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5625 
   5626 		ETHER_FIRST_MULTI(step, ec, enm);
   5627 		while (enm != NULL) {
   5628 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5629 			    ETHER_ADDR_LEN)) {
   5630 				goto allmulti;
   5631 			}
   5632 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5633 			    0xFF;
   5634 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5635 			ETHER_NEXT_MULTI(step, enm);
   5636 		}
   5637 
   5638 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5639 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5640 			    hashes[i]);
   5641 
   5642 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5643 	}
   5644 
   5645 	/* Only make changes if the recive mode has actually changed. */
   5646 	if (rx_mode != sc->rx_mode) {
   5647 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5648 		    rx_mode);
   5649 
   5650 		sc->rx_mode = rx_mode;
   5651 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5652 	}
   5653 
   5654 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5655 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5656 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5657 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5658 }
   5659 
   5660 /****************************************************************************/
   5661 /* Called periodically to updates statistics from the controllers           */
   5662 /* statistics block.                                                        */
   5663 /*                                                                          */
   5664 /* Returns:                                                                 */
   5665 /*   Nothing.                                                               */
   5666 /****************************************************************************/
   5667 void
   5668 bnx_stats_update(struct bnx_softc *sc)
   5669 {
   5670 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5671 	struct statistics_block	*stats;
   5672 
   5673 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5674 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5675 	    BUS_DMASYNC_POSTREAD);
   5676 
   5677 	stats = (struct statistics_block *)sc->stats_block;
   5678 
   5679 	/*
   5680 	 * Update the interface statistics from the
   5681 	 * hardware statistics.
   5682 	 */
   5683 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5684 
   5685 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5686 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5687 	    (u_long)stats->stat_IfInMBUFDiscards +
   5688 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5689 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5690 
   5691 	ifp->if_oerrors = (u_long)
   5692 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5693 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5694 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5695 
   5696 	/*
   5697 	 * Certain controllers don't report
   5698 	 * carrier sense errors correctly.
   5699 	 * See errata E11_5708CA0_1165.
   5700 	 */
   5701 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5702 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5703 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5704 
   5705 	/*
   5706 	 * Update the sysctl statistics from the
   5707 	 * hardware statistics.
   5708 	 */
   5709 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5710 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5711 
   5712 	sc->stat_IfHCInBadOctets =
   5713 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5714 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5715 
   5716 	sc->stat_IfHCOutOctets =
   5717 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5718 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5719 
   5720 	sc->stat_IfHCOutBadOctets =
   5721 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5722 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5723 
   5724 	sc->stat_IfHCInUcastPkts =
   5725 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5726 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5727 
   5728 	sc->stat_IfHCInMulticastPkts =
   5729 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5730 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5731 
   5732 	sc->stat_IfHCInBroadcastPkts =
   5733 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5734 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5735 
   5736 	sc->stat_IfHCOutUcastPkts =
   5737 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5738 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5739 
   5740 	sc->stat_IfHCOutMulticastPkts =
   5741 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5742 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5743 
   5744 	sc->stat_IfHCOutBroadcastPkts =
   5745 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5746 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5747 
   5748 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5749 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5750 
   5751 	sc->stat_Dot3StatsCarrierSenseErrors =
   5752 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5753 
   5754 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5755 
   5756 	sc->stat_Dot3StatsAlignmentErrors =
   5757 	    stats->stat_Dot3StatsAlignmentErrors;
   5758 
   5759 	sc->stat_Dot3StatsSingleCollisionFrames =
   5760 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5761 
   5762 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5763 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5764 
   5765 	sc->stat_Dot3StatsDeferredTransmissions =
   5766 	    stats->stat_Dot3StatsDeferredTransmissions;
   5767 
   5768 	sc->stat_Dot3StatsExcessiveCollisions =
   5769 	    stats->stat_Dot3StatsExcessiveCollisions;
   5770 
   5771 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5772 
   5773 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5774 
   5775 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5776 
   5777 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5778 
   5779 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5780 
   5781 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5782 
   5783 	sc->stat_EtherStatsPktsRx64Octets =
   5784 	    stats->stat_EtherStatsPktsRx64Octets;
   5785 
   5786 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5787 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5788 
   5789 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5790 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5791 
   5792 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5793 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5794 
   5795 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5796 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5797 
   5798 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5799 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5800 
   5801 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5802 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5803 
   5804 	sc->stat_EtherStatsPktsTx64Octets =
   5805 	    stats->stat_EtherStatsPktsTx64Octets;
   5806 
   5807 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5808 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5809 
   5810 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5811 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5812 
   5813 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5814 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5815 
   5816 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5817 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5818 
   5819 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5820 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5821 
   5822 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5823 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5824 
   5825 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5826 
   5827 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5828 
   5829 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5830 
   5831 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5832 
   5833 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5834 
   5835 	sc->stat_MacControlFramesReceived =
   5836 	    stats->stat_MacControlFramesReceived;
   5837 
   5838 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5839 
   5840 	sc->stat_IfInFramesL2FilterDiscards =
   5841 	    stats->stat_IfInFramesL2FilterDiscards;
   5842 
   5843 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5844 
   5845 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5846 
   5847 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5848 
   5849 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5850 
   5851 	sc->stat_CatchupInRuleCheckerDiscards =
   5852 	    stats->stat_CatchupInRuleCheckerDiscards;
   5853 
   5854 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5855 
   5856 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5857 
   5858 	sc->stat_CatchupInRuleCheckerP4Hit =
   5859 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5860 
   5861 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5862 }
   5863 
   5864 void
   5865 bnx_tick(void *xsc)
   5866 {
   5867 	struct bnx_softc	*sc = xsc;
   5868 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5869 	struct mii_data		*mii;
   5870 	uint32_t		msg;
   5871 	uint16_t		prod, chain_prod;
   5872 	uint32_t		prod_bseq;
   5873 	int s = splnet();
   5874 
   5875 	/* Tell the firmware that the driver is still running. */
   5876 #ifdef BNX_DEBUG
   5877 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5878 #else
   5879 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5880 #endif
   5881 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5882 
   5883 	/* Update the statistics from the hardware statistics block. */
   5884 	bnx_stats_update(sc);
   5885 
   5886 	/* Schedule the next tick. */
   5887 	if (!sc->bnx_detaching)
   5888 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5889 
   5890 	if (sc->bnx_link)
   5891 		goto bnx_tick_exit;
   5892 
   5893 	mii = &sc->bnx_mii;
   5894 	mii_tick(mii);
   5895 
   5896 	/* Check if the link has come up. */
   5897 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5898 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5899 		sc->bnx_link++;
   5900 		/* Now that link is up, handle any outstanding TX traffic. */
   5901 		if_schedule_deferred_start(ifp);
   5902 	}
   5903 
   5904 bnx_tick_exit:
   5905 	/* try to get more RX buffers, just in case */
   5906 	prod = sc->rx_prod;
   5907 	prod_bseq = sc->rx_prod_bseq;
   5908 	chain_prod = RX_CHAIN_IDX(prod);
   5909 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5910 	sc->rx_prod = prod;
   5911 	sc->rx_prod_bseq = prod_bseq;
   5912 
   5913 	splx(s);
   5914 	return;
   5915 }
   5916 
   5917 /****************************************************************************/
   5918 /* BNX Debug Routines                                                       */
   5919 /****************************************************************************/
   5920 #ifdef BNX_DEBUG
   5921 
   5922 /****************************************************************************/
   5923 /* Prints out information about an mbuf.                                    */
   5924 /*                                                                          */
   5925 /* Returns:                                                                 */
   5926 /*   Nothing.                                                               */
   5927 /****************************************************************************/
   5928 void
   5929 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5930 {
   5931 	struct mbuf		*mp = m;
   5932 
   5933 	if (m == NULL) {
   5934 		/* Index out of range. */
   5935 		aprint_error("mbuf ptr is null!\n");
   5936 		return;
   5937 	}
   5938 
   5939 	while (mp) {
   5940 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5941 		    mp, mp->m_len);
   5942 
   5943 		if (mp->m_flags & M_EXT)
   5944 			aprint_debug("M_EXT ");
   5945 		if (mp->m_flags & M_PKTHDR)
   5946 			aprint_debug("M_PKTHDR ");
   5947 		aprint_debug("\n");
   5948 
   5949 		if (mp->m_flags & M_EXT)
   5950 			aprint_debug("- m_ext: vaddr = %p, "
   5951 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5952 
   5953 		mp = mp->m_next;
   5954 	}
   5955 }
   5956 
   5957 /****************************************************************************/
   5958 /* Prints out the mbufs in the TX mbuf chain.                               */
   5959 /*                                                                          */
   5960 /* Returns:                                                                 */
   5961 /*   Nothing.                                                               */
   5962 /****************************************************************************/
   5963 void
   5964 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5965 {
   5966 #if 0
   5967 	struct mbuf		*m;
   5968 	int			i;
   5969 
   5970 	aprint_debug_dev(sc->bnx_dev,
   5971 	    "----------------------------"
   5972 	    "  tx mbuf data  "
   5973 	    "----------------------------\n");
   5974 
   5975 	for (i = 0; i < count; i++) {
   5976 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5977 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5978 		bnx_dump_mbuf(sc, m);
   5979 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5980 	}
   5981 
   5982 	aprint_debug_dev(sc->bnx_dev,
   5983 	    "--------------------------------------------"
   5984 	    "----------------------------\n");
   5985 #endif
   5986 }
   5987 
   5988 /*
   5989  * This routine prints the RX mbuf chain.
   5990  */
   5991 void
   5992 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5993 {
   5994 	struct mbuf		*m;
   5995 	int			i;
   5996 
   5997 	aprint_debug_dev(sc->bnx_dev,
   5998 	    "----------------------------"
   5999 	    "  rx mbuf data  "
   6000 	    "----------------------------\n");
   6001 
   6002 	for (i = 0; i < count; i++) {
   6003 	 	m = sc->rx_mbuf_ptr[chain_prod];
   6004 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   6005 		bnx_dump_mbuf(sc, m);
   6006 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   6007 	}
   6008 
   6009 
   6010 	aprint_debug_dev(sc->bnx_dev,
   6011 	    "--------------------------------------------"
   6012 	    "----------------------------\n");
   6013 }
   6014 
   6015 void
   6016 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   6017 {
   6018 	if (idx > MAX_TX_BD)
   6019 		/* Index out of range. */
   6020 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   6021 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   6022 		/* TX Chain page pointer. */
   6023 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   6024 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   6025 		    txbd->tx_bd_haddr_lo);
   6026 	else
   6027 		/* Normal tx_bd entry. */
   6028 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6029 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   6030 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   6031 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   6032 		    txbd->tx_bd_flags);
   6033 }
   6034 
   6035 void
   6036 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   6037 {
   6038 	if (idx > MAX_RX_BD)
   6039 		/* Index out of range. */
   6040 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   6041 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   6042 		/* TX Chain page pointer. */
   6043 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   6044 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   6045 		    rxbd->rx_bd_haddr_lo);
   6046 	else
   6047 		/* Normal tx_bd entry. */
   6048 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6049 		    "0x%08X, flags = 0x%08X\n", idx,
   6050 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   6051 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   6052 }
   6053 
   6054 void
   6055 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   6056 {
   6057 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   6058 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   6059 	    "tcp_udp_xsum = 0x%04X\n", idx,
   6060 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   6061 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   6062 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   6063 }
   6064 
   6065 /*
   6066  * This routine prints the TX chain.
   6067  */
   6068 void
   6069 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   6070 {
   6071 	struct tx_bd		*txbd;
   6072 	int			i;
   6073 
   6074 	/* First some info about the tx_bd chain structure. */
   6075 	aprint_debug_dev(sc->bnx_dev,
   6076 	    "----------------------------"
   6077 	    "  tx_bd  chain  "
   6078 	    "----------------------------\n");
   6079 
   6080 	BNX_PRINTF(sc,
   6081 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   6082 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6083 
   6084 	BNX_PRINTF(sc,
   6085 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6086 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6087 
   6088 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6089 
   6090 	aprint_error_dev(sc->bnx_dev, ""
   6091 	    "-----------------------------"
   6092 	    "   tx_bd data   "
   6093 	    "-----------------------------\n");
   6094 
   6095 	/* Now print out the tx_bd's themselves. */
   6096 	for (i = 0; i < count; i++) {
   6097 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6098 		bnx_dump_txbd(sc, tx_prod, txbd);
   6099 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6100 	}
   6101 
   6102 	aprint_debug_dev(sc->bnx_dev,
   6103 	    "-----------------------------"
   6104 	    "--------------"
   6105 	    "-----------------------------\n");
   6106 }
   6107 
   6108 /*
   6109  * This routine prints the RX chain.
   6110  */
   6111 void
   6112 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6113 {
   6114 	struct rx_bd		*rxbd;
   6115 	int			i;
   6116 
   6117 	/* First some info about the tx_bd chain structure. */
   6118 	aprint_debug_dev(sc->bnx_dev,
   6119 	    "----------------------------"
   6120 	    "  rx_bd  chain  "
   6121 	    "----------------------------\n");
   6122 
   6123 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6124 
   6125 	BNX_PRINTF(sc,
   6126 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6127 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6128 
   6129 	BNX_PRINTF(sc,
   6130 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6131 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6132 
   6133 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6134 
   6135 	aprint_error_dev(sc->bnx_dev,
   6136 	    "----------------------------"
   6137 	    "   rx_bd data   "
   6138 	    "----------------------------\n");
   6139 
   6140 	/* Now print out the rx_bd's themselves. */
   6141 	for (i = 0; i < count; i++) {
   6142 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6143 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6144 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6145 	}
   6146 
   6147 	aprint_debug_dev(sc->bnx_dev,
   6148 	    "----------------------------"
   6149 	    "--------------"
   6150 	    "----------------------------\n");
   6151 }
   6152 
   6153 /*
   6154  * This routine prints the status block.
   6155  */
   6156 void
   6157 bnx_dump_status_block(struct bnx_softc *sc)
   6158 {
   6159 	struct status_block	*sblk;
   6160 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6161 	    BUS_DMASYNC_POSTREAD);
   6162 
   6163 	sblk = sc->status_block;
   6164 
   6165    	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6166 	    "Status Block -----------------------------\n");
   6167 
   6168 	BNX_PRINTF(sc,
   6169 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6170 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6171 	    sblk->status_idx);
   6172 
   6173 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6174 	    sblk->status_rx_quick_consumer_index0,
   6175 	    sblk->status_tx_quick_consumer_index0);
   6176 
   6177 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6178 
   6179 	/* Theses indices are not used for normal L2 drivers. */
   6180 	if (sblk->status_rx_quick_consumer_index1 ||
   6181 		sblk->status_tx_quick_consumer_index1)
   6182 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6183 		    sblk->status_rx_quick_consumer_index1,
   6184 		    sblk->status_tx_quick_consumer_index1);
   6185 
   6186 	if (sblk->status_rx_quick_consumer_index2 ||
   6187 		sblk->status_tx_quick_consumer_index2)
   6188 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6189 		    sblk->status_rx_quick_consumer_index2,
   6190 		    sblk->status_tx_quick_consumer_index2);
   6191 
   6192 	if (sblk->status_rx_quick_consumer_index3 ||
   6193 		sblk->status_tx_quick_consumer_index3)
   6194 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6195 		    sblk->status_rx_quick_consumer_index3,
   6196 		    sblk->status_tx_quick_consumer_index3);
   6197 
   6198 	if (sblk->status_rx_quick_consumer_index4 ||
   6199 		sblk->status_rx_quick_consumer_index5)
   6200 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6201 		    sblk->status_rx_quick_consumer_index4,
   6202 		    sblk->status_rx_quick_consumer_index5);
   6203 
   6204 	if (sblk->status_rx_quick_consumer_index6 ||
   6205 		sblk->status_rx_quick_consumer_index7)
   6206 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6207 		    sblk->status_rx_quick_consumer_index6,
   6208 		    sblk->status_rx_quick_consumer_index7);
   6209 
   6210 	if (sblk->status_rx_quick_consumer_index8 ||
   6211 		sblk->status_rx_quick_consumer_index9)
   6212 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6213 		    sblk->status_rx_quick_consumer_index8,
   6214 		    sblk->status_rx_quick_consumer_index9);
   6215 
   6216 	if (sblk->status_rx_quick_consumer_index10 ||
   6217 		sblk->status_rx_quick_consumer_index11)
   6218 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6219 		    sblk->status_rx_quick_consumer_index10,
   6220 		    sblk->status_rx_quick_consumer_index11);
   6221 
   6222 	if (sblk->status_rx_quick_consumer_index12 ||
   6223 		sblk->status_rx_quick_consumer_index13)
   6224 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6225 		    sblk->status_rx_quick_consumer_index12,
   6226 		    sblk->status_rx_quick_consumer_index13);
   6227 
   6228 	if (sblk->status_rx_quick_consumer_index14 ||
   6229 		sblk->status_rx_quick_consumer_index15)
   6230 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6231 		    sblk->status_rx_quick_consumer_index14,
   6232 		    sblk->status_rx_quick_consumer_index15);
   6233 
   6234 	if (sblk->status_completion_producer_index ||
   6235 		sblk->status_cmd_consumer_index)
   6236 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6237 		    sblk->status_completion_producer_index,
   6238 		    sblk->status_cmd_consumer_index);
   6239 
   6240 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6241 	    "-----------------------------\n");
   6242 }
   6243 
   6244 /*
   6245  * This routine prints the statistics block.
   6246  */
   6247 void
   6248 bnx_dump_stats_block(struct bnx_softc *sc)
   6249 {
   6250 	struct statistics_block	*sblk;
   6251 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6252 	    BUS_DMASYNC_POSTREAD);
   6253 
   6254 	sblk = sc->stats_block;
   6255 
   6256 	aprint_debug_dev(sc->bnx_dev, ""
   6257 	    "-----------------------------"
   6258 	    " Stats  Block "
   6259 	    "-----------------------------\n");
   6260 
   6261 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6262 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6263 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6264 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6265 
   6266 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6267 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6268 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6269 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6270 
   6271 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6272 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6273 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6274 	    sblk->stat_IfHCInMulticastPkts_hi,
   6275 	    sblk->stat_IfHCInMulticastPkts_lo);
   6276 
   6277 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6278 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6279 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6280 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6281 	    sblk->stat_IfHCOutUcastPkts_hi,
   6282 	    sblk->stat_IfHCOutUcastPkts_lo);
   6283 
   6284 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6285 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6286 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6287 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6288 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6289 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6290 
   6291 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6292 		BNX_PRINTF(sc, "0x%08X : "
   6293 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6294 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6295 
   6296 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6297 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6298 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6299 
   6300 	if (sblk->stat_Dot3StatsFCSErrors)
   6301 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6302 		    sblk->stat_Dot3StatsFCSErrors);
   6303 
   6304 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6305 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6306 		    sblk->stat_Dot3StatsAlignmentErrors);
   6307 
   6308 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6309 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6310 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6311 
   6312 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6313 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6314 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6315 
   6316 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6317 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6318 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6319 
   6320 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6321 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6322 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6323 
   6324 	if (sblk->stat_Dot3StatsLateCollisions)
   6325 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6326 		    sblk->stat_Dot3StatsLateCollisions);
   6327 
   6328 	if (sblk->stat_EtherStatsCollisions)
   6329 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6330 		    sblk->stat_EtherStatsCollisions);
   6331 
   6332 	if (sblk->stat_EtherStatsFragments)
   6333 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6334 		    sblk->stat_EtherStatsFragments);
   6335 
   6336 	if (sblk->stat_EtherStatsJabbers)
   6337 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6338 		    sblk->stat_EtherStatsJabbers);
   6339 
   6340 	if (sblk->stat_EtherStatsUndersizePkts)
   6341 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6342 		    sblk->stat_EtherStatsUndersizePkts);
   6343 
   6344 	if (sblk->stat_EtherStatsOverrsizePkts)
   6345 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6346 		    sblk->stat_EtherStatsOverrsizePkts);
   6347 
   6348 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6349 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6350 		    sblk->stat_EtherStatsPktsRx64Octets);
   6351 
   6352 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6353 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6354 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6355 
   6356 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6357 		BNX_PRINTF(sc, "0x%08X : "
   6358 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6359 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6360 
   6361 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6362 		BNX_PRINTF(sc, "0x%08X : "
   6363 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6364 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6365 
   6366 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6367 		BNX_PRINTF(sc, "0x%08X : "
   6368 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6369 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6370 
   6371 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6372 		BNX_PRINTF(sc, "0x%08X : "
   6373 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6374 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6375 
   6376 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6377 		BNX_PRINTF(sc, "0x%08X : "
   6378 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6379 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6380 
   6381 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6382 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6383 		    sblk->stat_EtherStatsPktsTx64Octets);
   6384 
   6385 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6386 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6387 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6388 
   6389 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6390 		BNX_PRINTF(sc, "0x%08X : "
   6391 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6392 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6393 
   6394 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6395 		BNX_PRINTF(sc, "0x%08X : "
   6396 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6397 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6398 
   6399 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6400 		BNX_PRINTF(sc, "0x%08X : "
   6401 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6402 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6403 
   6404 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6405 		BNX_PRINTF(sc, "0x%08X : "
   6406 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6407 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6408 
   6409 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6410 		BNX_PRINTF(sc, "0x%08X : "
   6411 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6412 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6413 
   6414 	if (sblk->stat_XonPauseFramesReceived)
   6415 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6416 		    sblk->stat_XonPauseFramesReceived);
   6417 
   6418 	if (sblk->stat_XoffPauseFramesReceived)
   6419 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6420 		    sblk->stat_XoffPauseFramesReceived);
   6421 
   6422 	if (sblk->stat_OutXonSent)
   6423 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6424 		    sblk->stat_OutXonSent);
   6425 
   6426 	if (sblk->stat_OutXoffSent)
   6427 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6428 		    sblk->stat_OutXoffSent);
   6429 
   6430 	if (sblk->stat_FlowControlDone)
   6431 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6432 		    sblk->stat_FlowControlDone);
   6433 
   6434 	if (sblk->stat_MacControlFramesReceived)
   6435 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6436 		    sblk->stat_MacControlFramesReceived);
   6437 
   6438 	if (sblk->stat_XoffStateEntered)
   6439 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6440 		    sblk->stat_XoffStateEntered);
   6441 
   6442 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6443 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6444 		    sblk->stat_IfInFramesL2FilterDiscards);
   6445 
   6446 	if (sblk->stat_IfInRuleCheckerDiscards)
   6447 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6448 		    sblk->stat_IfInRuleCheckerDiscards);
   6449 
   6450 	if (sblk->stat_IfInFTQDiscards)
   6451 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6452 		    sblk->stat_IfInFTQDiscards);
   6453 
   6454 	if (sblk->stat_IfInMBUFDiscards)
   6455 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6456 		    sblk->stat_IfInMBUFDiscards);
   6457 
   6458 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6459 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6460 		    sblk->stat_IfInRuleCheckerP4Hit);
   6461 
   6462 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6463 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6464 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6465 
   6466 	if (sblk->stat_CatchupInFTQDiscards)
   6467 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6468 		    sblk->stat_CatchupInFTQDiscards);
   6469 
   6470 	if (sblk->stat_CatchupInMBUFDiscards)
   6471 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6472 		    sblk->stat_CatchupInMBUFDiscards);
   6473 
   6474 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6475 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6476 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6477 
   6478 	aprint_debug_dev(sc->bnx_dev,
   6479 	    "-----------------------------"
   6480 	    "--------------"
   6481 	    "-----------------------------\n");
   6482 }
   6483 
   6484 void
   6485 bnx_dump_driver_state(struct bnx_softc *sc)
   6486 {
   6487 	aprint_debug_dev(sc->bnx_dev,
   6488 	    "-----------------------------"
   6489 	    " Driver State "
   6490 	    "-----------------------------\n");
   6491 
   6492 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6493 	    "address\n", sc);
   6494 
   6495 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6496 	    sc->status_block);
   6497 
   6498 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6499 	    "address\n", sc->stats_block);
   6500 
   6501 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6502 	    "address\n", sc->tx_bd_chain);
   6503 
   6504 #if 0
   6505 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6506 	    sc->rx_bd_chain);
   6507 
   6508 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6509 	    sc->tx_mbuf_ptr);
   6510 #endif
   6511 
   6512 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6513 	    sc->rx_mbuf_ptr);
   6514 
   6515 	BNX_PRINTF(sc,
   6516 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6517 	    sc->interrupts_generated);
   6518 
   6519 	BNX_PRINTF(sc,
   6520 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6521 	    sc->rx_interrupts);
   6522 
   6523 	BNX_PRINTF(sc,
   6524 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6525 	    sc->tx_interrupts);
   6526 
   6527 	BNX_PRINTF(sc,
   6528 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6529 	    sc->last_status_idx);
   6530 
   6531 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6532 	    sc->tx_prod);
   6533 
   6534 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6535 	    sc->tx_cons);
   6536 
   6537 	BNX_PRINTF(sc,
   6538 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6539 	    sc->tx_prod_bseq);
   6540 	BNX_PRINTF(sc,
   6541 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6542 	    sc->tx_mbuf_alloc);
   6543 
   6544 	BNX_PRINTF(sc,
   6545 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6546 	    sc->used_tx_bd);
   6547 
   6548 	BNX_PRINTF(sc,
   6549 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6550 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6551 
   6552 
   6553 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6554 	    sc->rx_prod);
   6555 
   6556 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6557 	    sc->rx_cons);
   6558 
   6559 	BNX_PRINTF(sc,
   6560 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6561 	    sc->rx_prod_bseq);
   6562 
   6563 	BNX_PRINTF(sc,
   6564 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6565 	    sc->rx_mbuf_alloc);
   6566 
   6567 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6568 	    sc->free_rx_bd);
   6569 
   6570 	BNX_PRINTF(sc,
   6571 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6572 	    sc->rx_low_watermark, sc->max_rx_bd);
   6573 
   6574 	BNX_PRINTF(sc,
   6575 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6576 	    "mbuf alloc failures\n",
   6577 	    sc->mbuf_alloc_failed);
   6578 
   6579 	BNX_PRINTF(sc,
   6580 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6581 	    "simulated mbuf alloc failures\n",
   6582 	    sc->mbuf_sim_alloc_failed);
   6583 
   6584 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6585 	    "-----------------------------\n");
   6586 }
   6587 
   6588 void
   6589 bnx_dump_hw_state(struct bnx_softc *sc)
   6590 {
   6591 	uint32_t		val1;
   6592 	int			i;
   6593 
   6594 	aprint_debug_dev(sc->bnx_dev,
   6595 	    "----------------------------"
   6596 	    " Hardware State "
   6597 	    "----------------------------\n");
   6598 
   6599 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
   6600 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
   6601 
   6602 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6603 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6604 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6605 
   6606 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6607 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6608 
   6609 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6610 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6611 
   6612 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6613 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6614 	    BNX_EMAC_STATUS);
   6615 
   6616 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6617 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6618 
   6619 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6620 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6621 	    BNX_TBDR_STATUS);
   6622 
   6623 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6624 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6625 	    BNX_TDMA_STATUS);
   6626 
   6627 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6628 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6629 
   6630 	aprint_debug_dev(sc->bnx_dev,
   6631 	    "----------------------------"
   6632 	    "----------------"
   6633 	    "----------------------------\n");
   6634 
   6635 	aprint_debug_dev(sc->bnx_dev,
   6636 	    "----------------------------"
   6637 	    " Register  Dump "
   6638 	    "----------------------------\n");
   6639 
   6640 	for (i = 0x400; i < 0x8000; i += 0x10)
   6641 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6642 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6643 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6644 
   6645 	aprint_debug_dev(sc->bnx_dev,
   6646 	    "----------------------------"
   6647 	    "----------------"
   6648 	    "----------------------------\n");
   6649 }
   6650 
   6651 void
   6652 bnx_breakpoint(struct bnx_softc *sc)
   6653 {
   6654 	/* Unreachable code to shut the compiler up about unused functions. */
   6655 	if (0) {
   6656    		bnx_dump_txbd(sc, 0, NULL);
   6657 		bnx_dump_rxbd(sc, 0, NULL);
   6658 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6659 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6660 		bnx_dump_l2fhdr(sc, 0, NULL);
   6661 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6662 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6663 		bnx_dump_status_block(sc);
   6664 		bnx_dump_stats_block(sc);
   6665 		bnx_dump_driver_state(sc);
   6666 		bnx_dump_hw_state(sc);
   6667 	}
   6668 
   6669 	bnx_dump_driver_state(sc);
   6670 	/* Print the important status block fields. */
   6671 	bnx_dump_status_block(sc);
   6672 
   6673 #if 0
   6674 	/* Call the debugger. */
   6675 	breakpoint();
   6676 #endif
   6677 
   6678 	return;
   6679 }
   6680 #endif
   6681