Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.85
      1 /*	$NetBSD: if_bnx.c,v 1.85 2019/05/28 07:41:49 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.85 2019/05/28 07:41:49 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 	device_t dev = sc->bnx_dev;
    466 	int i = 0;
    467 
    468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    471 	    ? "Serdes " : "", sc->bnx_chipid);
    472 
    473 	/* Bus info. */
    474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
    476 		switch (sc->link_speed) {
    477 		case 1: aprint_normal("2.5GT/s\n"); break;
    478 		case 2:	aprint_normal("5GT/s\n"); break;
    479 		default: aprint_normal("Unknown link speed\n");
    480 		}
    481 	} else {
    482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
    483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    485 		    sc->bus_speed_mhz);
    486 	}
    487 
    488 	/* Firmware version and device features. */
    489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
    490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
    491 
    492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
    493 		if (i > 0) aprint_normal("|");
    494 		aprint_normal("2.5G"); i++;
    495 	}
    496 
    497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
    498 		if (i > 0) aprint_normal("|");
    499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
    500 	} else {
    501 		aprint_normal(")\n");
    502 	}
    503 
    504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    505 	    sc->bnx_rx_quick_cons_trip_int,
    506 	    sc->bnx_rx_quick_cons_trip,
    507 	    sc->bnx_rx_ticks_int,
    508 	    sc->bnx_rx_ticks,
    509 	    sc->bnx_tx_quick_cons_trip_int,
    510 	    sc->bnx_tx_quick_cons_trip,
    511 	    sc->bnx_tx_ticks_int,
    512 	    sc->bnx_tx_ticks);
    513 }
    514 
    515 
    516 /****************************************************************************/
    517 /* PCI Capabilities Probe Function.                                         */
    518 /*                                                                          */
    519 /* Walks the PCI capabiites list for the device to find what features are   */
    520 /* supported.                                                               */
    521 /*                                                                          */
    522 /* Returns:                                                                 */
    523 /*   None.                                                                  */
    524 /****************************************************************************/
    525 static void
    526 bnx_probe_pci_caps(struct bnx_softc *sc)
    527 {
    528 	struct pci_attach_args *pa = &(sc->bnx_pa);
    529 	pcireg_t reg;
    530 
    531 	/* Check if PCI-X capability is enabled. */
    532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    533 		NULL) != 0) {
    534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    535 	}
    536 
    537 	/* Check if PCIe capability is enabled. */
    538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    539 		NULL) != 0) {
    540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    541 		    reg + PCIE_LCSR);
    542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    543 		    "0x%08X\n",	link_status);
    544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    547 		sc->bnx_flags |= BNX_PCIE_FLAG;
    548 	}
    549 
    550 	/* Check if MSI capability is enabled. */
    551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    552 		NULL) != 0)
    553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    554 
    555 	/* Check if MSI-X capability is enabled. */
    556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    557 		NULL) != 0)
    558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    559 }
    560 
    561 
    562 /****************************************************************************/
    563 /* Device attach function.                                                  */
    564 /*                                                                          */
    565 /* Allocates device resources, performs secondary chip identification,      */
    566 /* resets and initializes the hardware, and initializes driver instance     */
    567 /* variables.                                                               */
    568 /*                                                                          */
    569 /* Returns:                                                                 */
    570 /*   0 on success, positive value on failure.                               */
    571 /****************************************************************************/
    572 void
    573 bnx_attach(device_t parent, device_t self, void *aux)
    574 {
    575 	const struct bnx_product *bp;
    576 	struct bnx_softc	*sc = device_private(self);
    577 	prop_dictionary_t	dict;
    578 	struct pci_attach_args	*pa = aux;
    579 	pci_chipset_tag_t	pc = pa->pa_pc;
    580 	pci_intr_handle_t	ih;
    581 	const char		*intrstr = NULL;
    582 	uint32_t		command;
    583 	struct ifnet		*ifp;
    584 	struct mii_data * const mii = &sc->bnx_mii;
    585 	uint32_t		val;
    586 	int			mii_flags = MIIF_FORCEANEG;
    587 	pcireg_t		memtype;
    588 	char intrbuf[PCI_INTRSTR_LEN];
    589 	int i, j;
    590 
    591 	if (bnx_tx_pool == NULL) {
    592 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    593 		if (bnx_tx_pool != NULL) {
    594 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    595 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    596 		} else {
    597 			aprint_error(": can't alloc bnx_tx_pool\n");
    598 			return;
    599 		}
    600 	}
    601 
    602 	bp = bnx_lookup(pa);
    603 	if (bp == NULL)
    604 		panic("unknown device");
    605 
    606 	sc->bnx_dev = self;
    607 
    608 	aprint_naive("\n");
    609 	aprint_normal(": %s\n", bp->bp_name);
    610 
    611 	sc->bnx_pa = *pa;
    612 
    613 	/*
    614 	 * Map control/status registers.
    615 	*/
    616 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    617 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    618 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    619 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    620 
    621 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    622 		aprint_error_dev(sc->bnx_dev,
    623 		    "failed to enable memory mapping!\n");
    624 		return;
    625 	}
    626 
    627 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    628 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    629 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    630 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    631 		return;
    632 	}
    633 
    634 	if (pci_intr_map(pa, &ih)) {
    635 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    636 		goto bnx_attach_fail;
    637 	}
    638 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    639 
    640 	/*
    641 	 * Configure byte swap and enable indirect register access.
    642 	 * Rely on CPU to do target byte swapping on big endian systems.
    643 	 * Access to registers outside of PCI configurtion space are not
    644 	 * valid until this is done.
    645 	 */
    646 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    647 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    648 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    649 
    650 	/* Save ASIC revsion info. */
    651 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    652 
    653 	/*
    654 	 * Find the base address for shared memory access.
    655 	 * Newer versions of bootcode use a signature and offset
    656 	 * while older versions use a fixed address.
    657 	 */
    658 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    659 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    660 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    661 		    (sc->bnx_pa.pa_function << 2));
    662 	else
    663 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    664 
    665 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    666 
    667 	/* Set initial device and PHY flags */
    668 	sc->bnx_flags = 0;
    669 	sc->bnx_phy_flags = 0;
    670 
    671 	/* Fetch the bootcode revision. */
    672 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
    673 	for (i = 0, j = 0; i < 3; i++) {
    674 		uint8_t num;
    675 		int k, skip0;
    676 
    677 		num = (uint8_t)(val >> (24 - (i * 8)));
    678 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
    679 			if (num >= k || !skip0 || k == 1) {
    680 				sc->bnx_bc_ver[j++] = (num / k) + '0';
    681 				skip0 = 0;
    682 			}
    683 		}
    684 		if (i != 2)
    685 			sc->bnx_bc_ver[j++] = '.';
    686 	}
    687 
    688 	/* Check if any management firmware is enabled. */
    689 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
    690 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
    691 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
    692 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
    693 
    694 		/* Allow time for firmware to enter the running state. */
    695 		for (i = 0; i < 30; i++) {
    696 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    697 			    BNX_BC_STATE_CONDITION);
    698 			if (val & BNX_CONDITION_MFW_RUN_MASK)
    699 				break;
    700 			DELAY(10000);
    701 		}
    702 
    703 		/* Check if management firmware is running. */
    704 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
    705 		    BNX_BC_STATE_CONDITION);
    706 		val &= BNX_CONDITION_MFW_RUN_MASK;
    707 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
    708 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
    709 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
    710 			    BNX_MFW_VER_PTR);
    711 
    712 			/* Read the management firmware version string. */
    713 			for (j = 0; j < 3; j++) {
    714 				val = bnx_reg_rd_ind(sc, addr + j * 4);
    715 				val = bswap32(val);
    716 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
    717 				i += 4;
    718 			}
    719 		} else {
    720 			/* May cause firmware synchronization timeouts. */
    721 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
    722 			    "but not running!\n", __FILE__, __LINE__);
    723 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
    724 
    725 			/* ToDo: Any action the driver should take? */
    726 		}
    727 	}
    728 
    729 	bnx_probe_pci_caps(sc);
    730 
    731 	/* Get PCI bus information (speed and type). */
    732 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    733 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    734 		uint32_t clkreg;
    735 
    736 		sc->bnx_flags |= BNX_PCIX_FLAG;
    737 
    738 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    739 
    740 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    741 		switch (clkreg) {
    742 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    743 			sc->bus_speed_mhz = 133;
    744 			break;
    745 
    746 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    747 			sc->bus_speed_mhz = 100;
    748 			break;
    749 
    750 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    751 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    752 			sc->bus_speed_mhz = 66;
    753 			break;
    754 
    755 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    756 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    757 			sc->bus_speed_mhz = 50;
    758 			break;
    759 
    760 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    761 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    762 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    763 			sc->bus_speed_mhz = 33;
    764 			break;
    765 		}
    766 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    767 			sc->bus_speed_mhz = 66;
    768 		else
    769 			sc->bus_speed_mhz = 33;
    770 
    771 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    772 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    773 
    774 	/* Reset the controller. */
    775 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    776 		goto bnx_attach_fail;
    777 
    778 	/* Initialize the controller. */
    779 	if (bnx_chipinit(sc)) {
    780 		aprint_error_dev(sc->bnx_dev,
    781 		    "Controller initialization failed!\n");
    782 		goto bnx_attach_fail;
    783 	}
    784 
    785 	/* Perform NVRAM test. */
    786 	if (bnx_nvram_test(sc)) {
    787 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    788 		goto bnx_attach_fail;
    789 	}
    790 
    791 	/* Fetch the permanent Ethernet MAC address. */
    792 	bnx_get_mac_addr(sc);
    793 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    794 	    ether_sprintf(sc->eaddr));
    795 
    796 	/*
    797 	 * Trip points control how many BDs
    798 	 * should be ready before generating an
    799 	 * interrupt while ticks control how long
    800 	 * a BD can sit in the chain before
    801 	 * generating an interrupt.  Set the default
    802 	 * values for the RX and TX rings.
    803 	 */
    804 
    805 #ifdef BNX_DEBUG
    806 	/* Force more frequent interrupts. */
    807 	sc->bnx_tx_quick_cons_trip_int = 1;
    808 	sc->bnx_tx_quick_cons_trip     = 1;
    809 	sc->bnx_tx_ticks_int	       = 0;
    810 	sc->bnx_tx_ticks	       = 0;
    811 
    812 	sc->bnx_rx_quick_cons_trip_int = 1;
    813 	sc->bnx_rx_quick_cons_trip     = 1;
    814 	sc->bnx_rx_ticks_int	       = 0;
    815 	sc->bnx_rx_ticks	       = 0;
    816 #else
    817 	sc->bnx_tx_quick_cons_trip_int = 20;
    818 	sc->bnx_tx_quick_cons_trip     = 20;
    819 	sc->bnx_tx_ticks_int	       = 80;
    820 	sc->bnx_tx_ticks	       = 80;
    821 
    822 	sc->bnx_rx_quick_cons_trip_int = 6;
    823 	sc->bnx_rx_quick_cons_trip     = 6;
    824 	sc->bnx_rx_ticks_int	       = 18;
    825 	sc->bnx_rx_ticks	       = 18;
    826 #endif
    827 
    828 	/* Update statistics once every second. */
    829 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    830 
    831 	/* Find the media type for the adapter. */
    832 	bnx_get_media(sc);
    833 
    834 	/*
    835 	 * Store config data needed by the PHY driver for
    836 	 * backplane applications
    837 	 */
    838 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    839 	    BNX_SHARED_HW_CFG_CONFIG);
    840 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    841 	    BNX_PORT_HW_CFG_CONFIG);
    842 
    843 	/* Allocate DMA memory resources. */
    844 	sc->bnx_dmatag = pa->pa_dmat;
    845 	if (bnx_dma_alloc(sc)) {
    846 		aprint_error_dev(sc->bnx_dev,
    847 		    "DMA resource allocation failed!\n");
    848 		goto bnx_attach_fail;
    849 	}
    850 
    851 	/* Initialize the ifnet interface. */
    852 	ifp = &sc->bnx_ec.ec_if;
    853 	ifp->if_softc = sc;
    854 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    855 	ifp->if_ioctl = bnx_ioctl;
    856 	ifp->if_stop = bnx_stop;
    857 	ifp->if_start = bnx_start;
    858 	ifp->if_init = bnx_init;
    859 	ifp->if_watchdog = bnx_watchdog;
    860 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    861 	IFQ_SET_READY(&ifp->if_snd);
    862 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    863 
    864 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    865 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    866 
    867 	ifp->if_capabilities |=
    868 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    869 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    870 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    871 
    872 	/* create workqueue to handle packet allocations */
    873 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    874 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    875 		aprint_error_dev(self, "failed to create workqueue\n");
    876 		goto bnx_attach_fail;
    877 	}
    878 
    879 	mii->mii_ifp = ifp;
    880 	mii->mii_readreg = bnx_miibus_read_reg;
    881 	mii->mii_writereg = bnx_miibus_write_reg;
    882 	mii->mii_statchg = bnx_miibus_statchg;
    883 
    884 	/* Handle any special PHY initialization for SerDes PHYs. */
    885 	bnx_init_media(sc);
    886 
    887 	sc->bnx_ec.ec_mii = mii;
    888 	ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
    889 
    890 	/* set phyflags and chipid before mii_attach() */
    891 	dict = device_properties(self);
    892 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    893 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    894 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    895 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    896 
    897 	/* Print some useful adapter info */
    898 	bnx_print_adapter_info(sc);
    899 
    900 	mii_flags |= MIIF_DOPAUSE;
    901 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    902 		mii_flags |= MIIF_HAVEFIBER;
    903 	mii_attach(self, mii, 0xffffffff,
    904 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    905 
    906 	if (LIST_EMPTY(&mii->mii_phys)) {
    907 		aprint_error_dev(self, "no PHY found!\n");
    908 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    909 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    910 	} else
    911 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    912 
    913 	/* Attach to the Ethernet interface list. */
    914 	if_attach(ifp);
    915 	if_deferred_start_init(ifp, NULL);
    916 	ether_ifattach(ifp, sc->eaddr);
    917 
    918 	callout_init(&sc->bnx_timeout, 0);
    919 
    920 	/* Hookup IRQ last. */
    921 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    922 	    sc, device_xname(self));
    923 	if (sc->bnx_intrhand == NULL) {
    924 		aprint_error_dev(self, "couldn't establish interrupt");
    925 		if (intrstr != NULL)
    926 			aprint_error(" at %s", intrstr);
    927 		aprint_error("\n");
    928 		goto bnx_attach_fail;
    929 	}
    930 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    931 
    932 	if (pmf_device_register(self, NULL, NULL))
    933 		pmf_class_network_register(self, ifp);
    934 	else
    935 		aprint_error_dev(self, "couldn't establish power handler\n");
    936 
    937 	/* Print some important debugging info. */
    938 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    939 
    940 	/* Get the firmware running so ASF still works. */
    941 	bnx_mgmt_init(sc);
    942 
    943 	goto bnx_attach_exit;
    944 
    945 bnx_attach_fail:
    946 	bnx_release_resources(sc);
    947 
    948 bnx_attach_exit:
    949 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    950 }
    951 
    952 /****************************************************************************/
    953 /* Device detach function.                                                  */
    954 /*                                                                          */
    955 /* Stops the controller, resets the controller, and releases resources.     */
    956 /*                                                                          */
    957 /* Returns:                                                                 */
    958 /*   0 on success, positive value on failure.                               */
    959 /****************************************************************************/
    960 int
    961 bnx_detach(device_t dev, int flags)
    962 {
    963 	int s;
    964 	struct bnx_softc *sc;
    965 	struct ifnet *ifp;
    966 
    967 	sc = device_private(dev);
    968 	ifp = &sc->bnx_ec.ec_if;
    969 
    970 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    971 
    972 	/* Stop and reset the controller. */
    973 	s = splnet();
    974 	bnx_stop(ifp, 1);
    975 	splx(s);
    976 
    977 	pmf_device_deregister(dev);
    978 	callout_destroy(&sc->bnx_timeout);
    979 	ether_ifdetach(ifp);
    980 	workqueue_destroy(sc->bnx_wq);
    981 
    982 	/* Delete all remaining media. */
    983 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    984 
    985 	if_detach(ifp);
    986 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    987 
    988 	/* Release all remaining resources. */
    989 	bnx_release_resources(sc);
    990 
    991 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    992 
    993 	return 0;
    994 }
    995 
    996 /****************************************************************************/
    997 /* Indirect register read.                                                  */
    998 /*                                                                          */
    999 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
   1000 /* configuration space.  Using this mechanism avoids issues with posted     */
   1001 /* reads but is much slower than memory-mapped I/O.                         */
   1002 /*                                                                          */
   1003 /* Returns:                                                                 */
   1004 /*   The value of the register.                                             */
   1005 /****************************************************************************/
   1006 uint32_t
   1007 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
   1008 {
   1009 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1010 
   1011 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1012 	    offset);
   1013 #ifdef BNX_DEBUG
   1014 	{
   1015 		uint32_t val;
   1016 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1017 		    BNX_PCICFG_REG_WINDOW);
   1018 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
   1019 		    "val = 0x%08X\n", __func__, offset, val);
   1020 		return val;
   1021 	}
   1022 #else
   1023 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
   1024 #endif
   1025 }
   1026 
   1027 /****************************************************************************/
   1028 /* Indirect register write.                                                 */
   1029 /*                                                                          */
   1030 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
   1031 /* configuration space.  Using this mechanism avoids issues with posted     */
   1032 /* writes but is muchh slower than memory-mapped I/O.                       */
   1033 /*                                                                          */
   1034 /* Returns:                                                                 */
   1035 /*   Nothing.                                                               */
   1036 /****************************************************************************/
   1037 void
   1038 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
   1039 {
   1040 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1041 
   1042 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
   1043 		__func__, offset, val);
   1044 
   1045 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1046 	    offset);
   1047 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
   1048 }
   1049 
   1050 /****************************************************************************/
   1051 /* Context memory write.                                                    */
   1052 /*                                                                          */
   1053 /* The NetXtreme II controller uses context memory to track connection      */
   1054 /* information for L2 and higher network protocols.                         */
   1055 /*                                                                          */
   1056 /* Returns:                                                                 */
   1057 /*   Nothing.                                                               */
   1058 /****************************************************************************/
   1059 void
   1060 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
   1061     uint32_t ctx_val)
   1062 {
   1063 	uint32_t idx, offset = ctx_offset + cid_addr;
   1064 	uint32_t val, retry_cnt = 5;
   1065 
   1066 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1067 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
   1068 		REG_WR(sc, BNX_CTX_CTX_CTRL,
   1069 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
   1070 
   1071 		for (idx = 0; idx < retry_cnt; idx++) {
   1072 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1073 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1074 				break;
   1075 			DELAY(5);
   1076 		}
   1077 
   1078 #if 0
   1079 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1080 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1081 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1082 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1083 #endif
   1084 
   1085 	} else {
   1086 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1087 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1088 	}
   1089 }
   1090 
   1091 /****************************************************************************/
   1092 /* PHY register read.                                                       */
   1093 /*                                                                          */
   1094 /* Implements register reads on the MII bus.                                */
   1095 /*                                                                          */
   1096 /* Returns:                                                                 */
   1097 /*   The value of the register.                                             */
   1098 /****************************************************************************/
   1099 int
   1100 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1101 {
   1102 	struct bnx_softc	*sc = device_private(dev);
   1103 	uint32_t		data;
   1104 	int			i, rv = 0;
   1105 
   1106 	/*
   1107 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1108 	 * with special mappings to work with IEEE
   1109 	 * Clause 22 register accesses.
   1110 	 */
   1111 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1112 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1113 			reg += 0x10;
   1114 	}
   1115 
   1116 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1117 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1118 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1119 
   1120 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1121 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1122 
   1123 		DELAY(40);
   1124 	}
   1125 
   1126 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1127 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1128 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1129 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1130 
   1131 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1132 		DELAY(10);
   1133 
   1134 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1135 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1136 			DELAY(5);
   1137 
   1138 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1139 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1140 
   1141 			break;
   1142 		}
   1143 	}
   1144 
   1145 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1146 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1147 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1148 		rv = ETIMEDOUT;
   1149 	} else {
   1150 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1151 		*val = data & 0xffff;
   1152 
   1153 		DBPRINT(sc, BNX_EXCESSIVE,
   1154 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1155 		    phy, (uint16_t) reg & 0xffff, *val);
   1156 	}
   1157 
   1158 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1159 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1160 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1161 
   1162 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1163 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1164 
   1165 		DELAY(40);
   1166 	}
   1167 
   1168 	return rv;
   1169 }
   1170 
   1171 /****************************************************************************/
   1172 /* PHY register write.                                                      */
   1173 /*                                                                          */
   1174 /* Implements register writes on the MII bus.                               */
   1175 /*                                                                          */
   1176 /* Returns:                                                                 */
   1177 /*   The value of the register.                                             */
   1178 /****************************************************************************/
   1179 int
   1180 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1181 {
   1182 	struct bnx_softc	*sc = device_private(dev);
   1183 	uint32_t		val1;
   1184 	int			i, rv = 0;
   1185 
   1186 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1187 	    "val = 0x%04hX\n", __func__,
   1188 	    phy, (uint16_t) reg & 0xffff, val);
   1189 
   1190 	/*
   1191 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1192 	 * with special mappings to work with IEEE
   1193 	 * Clause 22 register accesses.
   1194 	 */
   1195 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1196 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1197 			reg += 0x10;
   1198 	}
   1199 
   1200 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1201 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1202 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1203 
   1204 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1205 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1206 
   1207 		DELAY(40);
   1208 	}
   1209 
   1210 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1211 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1212 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1213 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1214 
   1215 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1216 		DELAY(10);
   1217 
   1218 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1219 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1220 			DELAY(5);
   1221 			break;
   1222 		}
   1223 	}
   1224 
   1225 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1226 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1227 		    __LINE__);
   1228 		rv = ETIMEDOUT;
   1229 	}
   1230 
   1231 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1232 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1233 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1234 
   1235 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1236 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1237 
   1238 		DELAY(40);
   1239 	}
   1240 
   1241 	return rv;
   1242 }
   1243 
   1244 /****************************************************************************/
   1245 /* MII bus status change.                                                   */
   1246 /*                                                                          */
   1247 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1248 /* MAC interface registers.                                                 */
   1249 /*                                                                          */
   1250 /* Returns:                                                                 */
   1251 /*   Nothing.                                                               */
   1252 /****************************************************************************/
   1253 void
   1254 bnx_miibus_statchg(struct ifnet *ifp)
   1255 {
   1256 	struct bnx_softc	*sc = ifp->if_softc;
   1257 	struct mii_data		*mii = &sc->bnx_mii;
   1258 	uint32_t		rx_mode = sc->rx_mode;
   1259 	int			val;
   1260 
   1261 	val = REG_RD(sc, BNX_EMAC_MODE);
   1262 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1263 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1264 	    BNX_EMAC_MODE_25G);
   1265 
   1266 	/*
   1267 	 * Get flow control negotiation result.
   1268 	 */
   1269 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1270 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1271 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1272 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1273 	}
   1274 
   1275 	/* Set MII or GMII interface based on the speed
   1276 	 * negotiated by the PHY.
   1277 	 */
   1278 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1279 	case IFM_10_T:
   1280 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1281 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1282 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1283 			break;
   1284 		}
   1285 		/* FALLTHROUGH */
   1286 	case IFM_100_TX:
   1287 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1288 		val |= BNX_EMAC_MODE_PORT_MII;
   1289 		break;
   1290 	case IFM_2500_SX:
   1291 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1292 		val |= BNX_EMAC_MODE_25G;
   1293 		/* FALLTHROUGH */
   1294 	case IFM_1000_T:
   1295 	case IFM_1000_SX:
   1296 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1297 		val |= BNX_EMAC_MODE_PORT_GMII;
   1298 		break;
   1299 	default:
   1300 		val |= BNX_EMAC_MODE_PORT_GMII;
   1301 		break;
   1302 	}
   1303 
   1304 	/* Set half or full duplex based on the duplicity
   1305 	 * negotiated by the PHY.
   1306 	 */
   1307 	if ((mii->mii_media_active & IFM_HDX) != 0) {
   1308 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1309 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1310 	} else
   1311 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1312 
   1313 	REG_WR(sc, BNX_EMAC_MODE, val);
   1314 
   1315 	/*
   1316 	 * 802.3x flow control
   1317 	 */
   1318 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1319 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1320 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1321 	} else {
   1322 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1323 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1324 	}
   1325 
   1326 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1327 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1328 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1329 	} else {
   1330 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1331 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1332 	}
   1333 
   1334 	/* Only make changes if the recive mode has actually changed. */
   1335 	if (rx_mode != sc->rx_mode) {
   1336 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1337 		    rx_mode);
   1338 
   1339 		sc->rx_mode = rx_mode;
   1340 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1341 
   1342 		bnx_init_rx_context(sc);
   1343 	}
   1344 }
   1345 
   1346 /****************************************************************************/
   1347 /* Acquire NVRAM lock.                                                      */
   1348 /*                                                                          */
   1349 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1350 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1351 /* for use by the driver.                                                   */
   1352 /*                                                                          */
   1353 /* Returns:                                                                 */
   1354 /*   0 on success, positive value on failure.                               */
   1355 /****************************************************************************/
   1356 int
   1357 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1358 {
   1359 	uint32_t		val;
   1360 	int			j;
   1361 
   1362 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1363 
   1364 	/* Request access to the flash interface. */
   1365 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1366 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1367 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1368 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1369 			break;
   1370 
   1371 		DELAY(5);
   1372 	}
   1373 
   1374 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1375 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1376 		return EBUSY;
   1377 	}
   1378 
   1379 	return 0;
   1380 }
   1381 
   1382 /****************************************************************************/
   1383 /* Release NVRAM lock.                                                      */
   1384 /*                                                                          */
   1385 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1386 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1387 /* for use by the driver.                                                   */
   1388 /*                                                                          */
   1389 /* Returns:                                                                 */
   1390 /*   0 on success, positive value on failure.                               */
   1391 /****************************************************************************/
   1392 int
   1393 bnx_release_nvram_lock(struct bnx_softc *sc)
   1394 {
   1395 	int			j;
   1396 	uint32_t		val;
   1397 
   1398 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1399 
   1400 	/* Relinquish nvram interface. */
   1401 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1402 
   1403 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1404 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1405 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1406 			break;
   1407 
   1408 		DELAY(5);
   1409 	}
   1410 
   1411 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1412 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1413 		return EBUSY;
   1414 	}
   1415 
   1416 	return 0;
   1417 }
   1418 
   1419 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1420 /****************************************************************************/
   1421 /* Enable NVRAM write access.                                               */
   1422 /*                                                                          */
   1423 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1424 /*                                                                          */
   1425 /* Returns:                                                                 */
   1426 /*   0 on success, positive value on failure.                               */
   1427 /****************************************************************************/
   1428 int
   1429 bnx_enable_nvram_write(struct bnx_softc *sc)
   1430 {
   1431 	uint32_t		val;
   1432 
   1433 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1434 
   1435 	val = REG_RD(sc, BNX_MISC_CFG);
   1436 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1437 
   1438 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1439 		int j;
   1440 
   1441 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1442 		REG_WR(sc, BNX_NVM_COMMAND,
   1443 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1444 
   1445 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1446 			DELAY(5);
   1447 
   1448 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1449 			if (val & BNX_NVM_COMMAND_DONE)
   1450 				break;
   1451 		}
   1452 
   1453 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1454 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1455 			return EBUSY;
   1456 		}
   1457 	}
   1458 
   1459 	return 0;
   1460 }
   1461 
   1462 /****************************************************************************/
   1463 /* Disable NVRAM write access.                                              */
   1464 /*                                                                          */
   1465 /* When the caller is finished writing to NVRAM write access must be        */
   1466 /* disabled.                                                                */
   1467 /*                                                                          */
   1468 /* Returns:                                                                 */
   1469 /*   Nothing.                                                               */
   1470 /****************************************************************************/
   1471 void
   1472 bnx_disable_nvram_write(struct bnx_softc *sc)
   1473 {
   1474 	uint32_t		val;
   1475 
   1476 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1477 
   1478 	val = REG_RD(sc, BNX_MISC_CFG);
   1479 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1480 }
   1481 #endif
   1482 
   1483 /****************************************************************************/
   1484 /* Enable NVRAM access.                                                     */
   1485 /*                                                                          */
   1486 /* Before accessing NVRAM for read or write operations the caller must      */
   1487 /* enabled NVRAM access.                                                    */
   1488 /*                                                                          */
   1489 /* Returns:                                                                 */
   1490 /*   Nothing.                                                               */
   1491 /****************************************************************************/
   1492 void
   1493 bnx_enable_nvram_access(struct bnx_softc *sc)
   1494 {
   1495 	uint32_t		val;
   1496 
   1497 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1498 
   1499 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1500 	/* Enable both bits, even on read. */
   1501 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1502 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1503 }
   1504 
   1505 /****************************************************************************/
   1506 /* Disable NVRAM access.                                                    */
   1507 /*                                                                          */
   1508 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1509 /*                                                                          */
   1510 /* Returns:                                                                 */
   1511 /*   Nothing.                                                               */
   1512 /****************************************************************************/
   1513 void
   1514 bnx_disable_nvram_access(struct bnx_softc *sc)
   1515 {
   1516 	uint32_t		val;
   1517 
   1518 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1519 
   1520 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1521 
   1522 	/* Disable both bits, even after read. */
   1523 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1524 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1525 }
   1526 
   1527 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1528 /****************************************************************************/
   1529 /* Erase NVRAM page before writing.                                         */
   1530 /*                                                                          */
   1531 /* Non-buffered flash parts require that a page be erased before it is      */
   1532 /* written.                                                                 */
   1533 /*                                                                          */
   1534 /* Returns:                                                                 */
   1535 /*   0 on success, positive value on failure.                               */
   1536 /****************************************************************************/
   1537 int
   1538 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1539 {
   1540 	uint32_t		cmd;
   1541 	int			j;
   1542 
   1543 	/* Buffered flash doesn't require an erase. */
   1544 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1545 		return 0;
   1546 
   1547 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1548 
   1549 	/* Build an erase command. */
   1550 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1551 	    BNX_NVM_COMMAND_DOIT;
   1552 
   1553 	/*
   1554 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1555 	 * and issue the erase command.
   1556 	 */
   1557 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1558 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1559 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1560 
   1561 	/* Wait for completion. */
   1562 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1563 		uint32_t val;
   1564 
   1565 		DELAY(5);
   1566 
   1567 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1568 		if (val & BNX_NVM_COMMAND_DONE)
   1569 			break;
   1570 	}
   1571 
   1572 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1573 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1574 		return EBUSY;
   1575 	}
   1576 
   1577 	return 0;
   1578 }
   1579 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1580 
   1581 /****************************************************************************/
   1582 /* Read a dword (32 bits) from NVRAM.                                       */
   1583 /*                                                                          */
   1584 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1585 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1586 /*                                                                          */
   1587 /* Returns:                                                                 */
   1588 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1589 /****************************************************************************/
   1590 int
   1591 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1592     uint8_t *ret_val, uint32_t cmd_flags)
   1593 {
   1594 	uint32_t		cmd;
   1595 	int			i, rc = 0;
   1596 
   1597 	/* Build the command word. */
   1598 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1599 
   1600 	/* Calculate the offset for buffered flash if translation is used. */
   1601 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1602 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1603 		    sc->bnx_flash_info->page_bits) +
   1604 		    (offset % sc->bnx_flash_info->page_size);
   1605 	}
   1606 
   1607 	/*
   1608 	 * Clear the DONE bit separately, set the address to read,
   1609 	 * and issue the read.
   1610 	 */
   1611 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1612 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1613 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1614 
   1615 	/* Wait for completion. */
   1616 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1617 		uint32_t val;
   1618 
   1619 		DELAY(5);
   1620 
   1621 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1622 		if (val & BNX_NVM_COMMAND_DONE) {
   1623 			val = REG_RD(sc, BNX_NVM_READ);
   1624 
   1625 			val = be32toh(val);
   1626 			memcpy(ret_val, &val, 4);
   1627 			break;
   1628 		}
   1629 	}
   1630 
   1631 	/* Check for errors. */
   1632 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1633 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1634 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1635 		rc = EBUSY;
   1636 	}
   1637 
   1638 	return rc;
   1639 }
   1640 
   1641 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1642 /****************************************************************************/
   1643 /* Write a dword (32 bits) to NVRAM.                                        */
   1644 /*                                                                          */
   1645 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1646 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1647 /* enabled NVRAM write access.                                              */
   1648 /*                                                                          */
   1649 /* Returns:                                                                 */
   1650 /*   0 on success, positive value on failure.                               */
   1651 /****************************************************************************/
   1652 int
   1653 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1654     uint32_t cmd_flags)
   1655 {
   1656 	uint32_t		cmd, val32;
   1657 	int			j;
   1658 
   1659 	/* Build the command word. */
   1660 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1661 
   1662 	/* Calculate the offset for buffered flash if translation is used. */
   1663 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1664 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1665 		    sc->bnx_flash_info->page_bits) +
   1666 		    (offset % sc->bnx_flash_info->page_size);
   1667 	}
   1668 
   1669 	/*
   1670 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1671 	 * set the NVRAM address to write, and issue the write command
   1672 	 */
   1673 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1674 	memcpy(&val32, val, 4);
   1675 	val32 = htobe32(val32);
   1676 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1677 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1678 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1679 
   1680 	/* Wait for completion. */
   1681 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1682 		DELAY(5);
   1683 
   1684 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1685 			break;
   1686 	}
   1687 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1688 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1689 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1690 		return EBUSY;
   1691 	}
   1692 
   1693 	return 0;
   1694 }
   1695 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1696 
   1697 /****************************************************************************/
   1698 /* Initialize NVRAM access.                                                 */
   1699 /*                                                                          */
   1700 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1701 /* access that device.                                                      */
   1702 /*                                                                          */
   1703 /* Returns:                                                                 */
   1704 /*   0 on success, positive value on failure.                               */
   1705 /****************************************************************************/
   1706 int
   1707 bnx_init_nvram(struct bnx_softc *sc)
   1708 {
   1709 	uint32_t		val;
   1710 	int			j, entry_count, rc = 0;
   1711 	struct flash_spec	*flash;
   1712 
   1713 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1714 
   1715 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1716 		sc->bnx_flash_info = &flash_5709;
   1717 		goto bnx_init_nvram_get_flash_size;
   1718 	}
   1719 
   1720 	/* Determine the selected interface. */
   1721 	val = REG_RD(sc, BNX_NVM_CFG1);
   1722 
   1723 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1724 
   1725 	/*
   1726 	 * Flash reconfiguration is required to support additional
   1727 	 * NVRAM devices not directly supported in hardware.
   1728 	 * Check if the flash interface was reconfigured
   1729 	 * by the bootcode.
   1730 	 */
   1731 
   1732 	if (val & 0x40000000) {
   1733 		/* Flash interface reconfigured by bootcode. */
   1734 
   1735 		DBPRINT(sc, BNX_INFO_LOAD,
   1736 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1737 
   1738 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1739 		     j++, flash++) {
   1740 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1741 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1742 				sc->bnx_flash_info = flash;
   1743 				break;
   1744 			}
   1745 		}
   1746 	} else {
   1747 		/* Flash interface not yet reconfigured. */
   1748 		uint32_t mask;
   1749 
   1750 		DBPRINT(sc, BNX_INFO_LOAD,
   1751 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1752 
   1753 		if (val & (1 << 23))
   1754 			mask = FLASH_BACKUP_STRAP_MASK;
   1755 		else
   1756 			mask = FLASH_STRAP_MASK;
   1757 
   1758 		/* Look for the matching NVRAM device configuration data. */
   1759 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1760 		    j++, flash++) {
   1761 			/* Check if the dev matches any of the known devices. */
   1762 			if ((val & mask) == (flash->strapping & mask)) {
   1763 				/* Found a device match. */
   1764 				sc->bnx_flash_info = flash;
   1765 
   1766 				/* Request access to the flash interface. */
   1767 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1768 					return rc;
   1769 
   1770 				/* Reconfigure the flash interface. */
   1771 				bnx_enable_nvram_access(sc);
   1772 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1773 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1774 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1775 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1776 				bnx_disable_nvram_access(sc);
   1777 				bnx_release_nvram_lock(sc);
   1778 
   1779 				break;
   1780 			}
   1781 		}
   1782 	}
   1783 
   1784 	/* Check if a matching device was found. */
   1785 	if (j == entry_count) {
   1786 		sc->bnx_flash_info = NULL;
   1787 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1788 			__FILE__, __LINE__);
   1789 		rc = ENODEV;
   1790 	}
   1791 
   1792 bnx_init_nvram_get_flash_size:
   1793 	/* Write the flash config data to the shared memory interface. */
   1794 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1795 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1796 	if (val)
   1797 		sc->bnx_flash_size = val;
   1798 	else
   1799 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1800 
   1801 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1802 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1803 
   1804 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1805 
   1806 	return rc;
   1807 }
   1808 
   1809 /****************************************************************************/
   1810 /* Read an arbitrary range of data from NVRAM.                              */
   1811 /*                                                                          */
   1812 /* Prepares the NVRAM interface for access and reads the requested data     */
   1813 /* into the supplied buffer.                                                */
   1814 /*                                                                          */
   1815 /* Returns:                                                                 */
   1816 /*   0 on success and the data read, positive value on failure.             */
   1817 /****************************************************************************/
   1818 int
   1819 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1820     int buf_size)
   1821 {
   1822 	int			rc = 0;
   1823 	uint32_t		cmd_flags, offset32, len32, extra;
   1824 
   1825 	if (buf_size == 0)
   1826 		return 0;
   1827 
   1828 	/* Request access to the flash interface. */
   1829 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1830 		return rc;
   1831 
   1832 	/* Enable access to flash interface */
   1833 	bnx_enable_nvram_access(sc);
   1834 
   1835 	len32 = buf_size;
   1836 	offset32 = offset;
   1837 	extra = 0;
   1838 
   1839 	cmd_flags = 0;
   1840 
   1841 	if (offset32 & 3) {
   1842 		uint8_t buf[4];
   1843 		uint32_t pre_len;
   1844 
   1845 		offset32 &= ~3;
   1846 		pre_len = 4 - (offset & 3);
   1847 
   1848 		if (pre_len >= len32) {
   1849 			pre_len = len32;
   1850 			cmd_flags =
   1851 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1852 		} else
   1853 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1854 
   1855 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1856 
   1857 		if (rc)
   1858 			return rc;
   1859 
   1860 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1861 
   1862 		offset32 += 4;
   1863 		ret_buf += pre_len;
   1864 		len32 -= pre_len;
   1865 	}
   1866 
   1867 	if (len32 & 3) {
   1868 		extra = 4 - (len32 & 3);
   1869 		len32 = (len32 + 4) & ~3;
   1870 	}
   1871 
   1872 	if (len32 == 4) {
   1873 		uint8_t buf[4];
   1874 
   1875 		if (cmd_flags)
   1876 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1877 		else
   1878 			cmd_flags =
   1879 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1880 
   1881 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1882 
   1883 		memcpy(ret_buf, buf, 4 - extra);
   1884 	} else if (len32 > 0) {
   1885 		uint8_t buf[4];
   1886 
   1887 		/* Read the first word. */
   1888 		if (cmd_flags)
   1889 			cmd_flags = 0;
   1890 		else
   1891 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1892 
   1893 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1894 
   1895 		/* Advance to the next dword. */
   1896 		offset32 += 4;
   1897 		ret_buf += 4;
   1898 		len32 -= 4;
   1899 
   1900 		while (len32 > 4 && rc == 0) {
   1901 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1902 
   1903 			/* Advance to the next dword. */
   1904 			offset32 += 4;
   1905 			ret_buf += 4;
   1906 			len32 -= 4;
   1907 		}
   1908 
   1909 		if (rc)
   1910 			return rc;
   1911 
   1912 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1913 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1914 
   1915 		memcpy(ret_buf, buf, 4 - extra);
   1916 	}
   1917 
   1918 	/* Disable access to flash interface and release the lock. */
   1919 	bnx_disable_nvram_access(sc);
   1920 	bnx_release_nvram_lock(sc);
   1921 
   1922 	return rc;
   1923 }
   1924 
   1925 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1926 /****************************************************************************/
   1927 /* Write an arbitrary range of data from NVRAM.                             */
   1928 /*                                                                          */
   1929 /* Prepares the NVRAM interface for write access and writes the requested   */
   1930 /* data from the supplied buffer.  The caller is responsible for            */
   1931 /* calculating any appropriate CRCs.                                        */
   1932 /*                                                                          */
   1933 /* Returns:                                                                 */
   1934 /*   0 on success, positive value on failure.                               */
   1935 /****************************************************************************/
   1936 int
   1937 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1938     int buf_size)
   1939 {
   1940 	uint32_t		written, offset32, len32;
   1941 	uint8_t		*buf, start[4], end[4];
   1942 	int			rc = 0;
   1943 	int			align_start, align_end;
   1944 
   1945 	buf = data_buf;
   1946 	offset32 = offset;
   1947 	len32 = buf_size;
   1948 	align_start = align_end = 0;
   1949 
   1950 	if ((align_start = (offset32 & 3))) {
   1951 		offset32 &= ~3;
   1952 		len32 += align_start;
   1953 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1954 			return rc;
   1955 	}
   1956 
   1957 	if (len32 & 3) {
   1958 		if ((len32 > 4) || !align_start) {
   1959 			align_end = 4 - (len32 & 3);
   1960 			len32 += align_end;
   1961 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1962 			    end, 4)))
   1963 				return rc;
   1964 		}
   1965 	}
   1966 
   1967 	if (align_start || align_end) {
   1968 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1969 		if (buf == NULL)
   1970 			return ENOMEM;
   1971 
   1972 		if (align_start)
   1973 			memcpy(buf, start, 4);
   1974 
   1975 		if (align_end)
   1976 			memcpy(buf + len32 - 4, end, 4);
   1977 
   1978 		memcpy(buf + align_start, data_buf, buf_size);
   1979 	}
   1980 
   1981 	written = 0;
   1982 	while ((written < len32) && (rc == 0)) {
   1983 		uint32_t page_start, page_end, data_start, data_end;
   1984 		uint32_t addr, cmd_flags;
   1985 		int i;
   1986 		uint8_t flash_buffer[264];
   1987 
   1988 	    /* Find the page_start addr */
   1989 		page_start = offset32 + written;
   1990 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1991 		/* Find the page_end addr */
   1992 		page_end = page_start + sc->bnx_flash_info->page_size;
   1993 		/* Find the data_start addr */
   1994 		data_start = (written == 0) ? offset32 : page_start;
   1995 		/* Find the data_end addr */
   1996 		data_end = (page_end > offset32 + len32) ?
   1997 		    (offset32 + len32) : page_end;
   1998 
   1999 		/* Request access to the flash interface. */
   2000 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   2001 			goto nvram_write_end;
   2002 
   2003 		/* Enable access to flash interface */
   2004 		bnx_enable_nvram_access(sc);
   2005 
   2006 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   2007 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2008 			int j;
   2009 
   2010 			/* Read the whole page into the buffer
   2011 			 * (non-buffer flash only) */
   2012 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   2013 				if (j == (sc->bnx_flash_info->page_size - 4))
   2014 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   2015 
   2016 				rc = bnx_nvram_read_dword(sc,
   2017 					page_start + j,
   2018 					&flash_buffer[j],
   2019 					cmd_flags);
   2020 
   2021 				if (rc)
   2022 					goto nvram_write_end;
   2023 
   2024 				cmd_flags = 0;
   2025 			}
   2026 		}
   2027 
   2028 		/* Enable writes to flash interface (unlock write-protect) */
   2029 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   2030 			goto nvram_write_end;
   2031 
   2032 		/* Erase the page */
   2033 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   2034 			goto nvram_write_end;
   2035 
   2036 		/* Re-enable the write again for the actual write */
   2037 		bnx_enable_nvram_write(sc);
   2038 
   2039 		/* Loop to write back the buffer data from page_start to
   2040 		 * data_start */
   2041 		i = 0;
   2042 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2043 			for (addr = page_start; addr < data_start;
   2044 				addr += 4, i += 4) {
   2045 
   2046 				rc = bnx_nvram_write_dword(sc, addr,
   2047 				    &flash_buffer[i], cmd_flags);
   2048 
   2049 				if (rc != 0)
   2050 					goto nvram_write_end;
   2051 
   2052 				cmd_flags = 0;
   2053 			}
   2054 		}
   2055 
   2056 		/* Loop to write the new data from data_start to data_end */
   2057 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   2058 			if ((addr == page_end - 4) ||
   2059 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   2060 			    && (addr == data_end - 4))) {
   2061 
   2062 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   2063 			}
   2064 
   2065 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2066 
   2067 			if (rc != 0)
   2068 				goto nvram_write_end;
   2069 
   2070 			cmd_flags = 0;
   2071 			buf += 4;
   2072 		}
   2073 
   2074 		/* Loop to write back the buffer data from data_end
   2075 		 * to page_end */
   2076 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2077 			for (addr = data_end; addr < page_end;
   2078 			    addr += 4, i += 4) {
   2079 
   2080 				if (addr == page_end-4)
   2081 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2082 
   2083 				rc = bnx_nvram_write_dword(sc, addr,
   2084 				    &flash_buffer[i], cmd_flags);
   2085 
   2086 				if (rc != 0)
   2087 					goto nvram_write_end;
   2088 
   2089 				cmd_flags = 0;
   2090 			}
   2091 		}
   2092 
   2093 		/* Disable writes to flash interface (lock write-protect) */
   2094 		bnx_disable_nvram_write(sc);
   2095 
   2096 		/* Disable access to flash interface */
   2097 		bnx_disable_nvram_access(sc);
   2098 		bnx_release_nvram_lock(sc);
   2099 
   2100 		/* Increment written */
   2101 		written += data_end - data_start;
   2102 	}
   2103 
   2104 nvram_write_end:
   2105 	if (align_start || align_end)
   2106 		free(buf, M_DEVBUF);
   2107 
   2108 	return rc;
   2109 }
   2110 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2111 
   2112 /****************************************************************************/
   2113 /* Verifies that NVRAM is accessible and contains valid data.               */
   2114 /*                                                                          */
   2115 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2116 /* correct.                                                                 */
   2117 /*                                                                          */
   2118 /* Returns:                                                                 */
   2119 /*   0 on success, positive value on failure.                               */
   2120 /****************************************************************************/
   2121 int
   2122 bnx_nvram_test(struct bnx_softc *sc)
   2123 {
   2124 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2125 	uint8_t		*data = (uint8_t *) buf;
   2126 	int			rc = 0;
   2127 	uint32_t		magic, csum;
   2128 
   2129 	/*
   2130 	 * Check that the device NVRAM is valid by reading
   2131 	 * the magic value at offset 0.
   2132 	 */
   2133 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2134 		goto bnx_nvram_test_done;
   2135 
   2136 	magic = be32toh(buf[0]);
   2137 	if (magic != BNX_NVRAM_MAGIC) {
   2138 		rc = ENODEV;
   2139 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2140 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2141 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2142 		goto bnx_nvram_test_done;
   2143 	}
   2144 
   2145 	/*
   2146 	 * Verify that the device NVRAM includes valid
   2147 	 * configuration data.
   2148 	 */
   2149 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2150 		goto bnx_nvram_test_done;
   2151 
   2152 	csum = ether_crc32_le(data, 0x100);
   2153 	if (csum != BNX_CRC32_RESIDUAL) {
   2154 		rc = ENODEV;
   2155 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2156 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2157 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2158 		goto bnx_nvram_test_done;
   2159 	}
   2160 
   2161 	csum = ether_crc32_le(data + 0x100, 0x100);
   2162 	if (csum != BNX_CRC32_RESIDUAL) {
   2163 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2164 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2165 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2166 		rc = ENODEV;
   2167 	}
   2168 
   2169 bnx_nvram_test_done:
   2170 	return rc;
   2171 }
   2172 
   2173 /****************************************************************************/
   2174 /* Identifies the current media type of the controller and sets the PHY     */
   2175 /* address.                                                                 */
   2176 /*                                                                          */
   2177 /* Returns:                                                                 */
   2178 /*   Nothing.                                                               */
   2179 /****************************************************************************/
   2180 void
   2181 bnx_get_media(struct bnx_softc *sc)
   2182 {
   2183 	sc->bnx_phy_addr = 1;
   2184 
   2185 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2186 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2187 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2188 		uint32_t strap;
   2189 
   2190 		/*
   2191 		 * The BCM5709S is software configurable
   2192 		 * for Copper or SerDes operation.
   2193 		 */
   2194 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2195 			DBPRINT(sc, BNX_INFO_LOAD,
   2196 			    "5709 bonded for copper.\n");
   2197 			goto bnx_get_media_exit;
   2198 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2199 			DBPRINT(sc, BNX_INFO_LOAD,
   2200 			    "5709 bonded for dual media.\n");
   2201 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2202 			goto bnx_get_media_exit;
   2203 		}
   2204 
   2205 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2206 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2207 		else {
   2208 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2209 			    >> 8;
   2210 		}
   2211 
   2212 		if (sc->bnx_pa.pa_function == 0) {
   2213 			switch (strap) {
   2214 			case 0x4:
   2215 			case 0x5:
   2216 			case 0x6:
   2217 				DBPRINT(sc, BNX_INFO_LOAD,
   2218 					"BCM5709 s/w configured for SerDes.\n");
   2219 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2220 				break;
   2221 			default:
   2222 				DBPRINT(sc, BNX_INFO_LOAD,
   2223 					"BCM5709 s/w configured for Copper.\n");
   2224 			}
   2225 		} else {
   2226 			switch (strap) {
   2227 			case 0x1:
   2228 			case 0x2:
   2229 			case 0x4:
   2230 				DBPRINT(sc, BNX_INFO_LOAD,
   2231 					"BCM5709 s/w configured for SerDes.\n");
   2232 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2233 				break;
   2234 			default:
   2235 				DBPRINT(sc, BNX_INFO_LOAD,
   2236 					"BCM5709 s/w configured for Copper.\n");
   2237 			}
   2238 		}
   2239 
   2240 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2241 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2242 
   2243 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2244 		uint32_t val;
   2245 
   2246 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2247 
   2248 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2249 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2250 
   2251 		/*
   2252 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2253 		 * separate PHY for SerDes.
   2254 		 */
   2255 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2256 			sc->bnx_phy_addr = 2;
   2257 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2258 				 BNX_SHARED_HW_CFG_CONFIG);
   2259 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2260 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2261 				DBPRINT(sc, BNX_INFO_LOAD,
   2262 				    "Found 2.5Gb capable adapter\n");
   2263 			}
   2264 		}
   2265 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2266 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2267 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2268 
   2269 bnx_get_media_exit:
   2270 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2271 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2272 }
   2273 
   2274 /****************************************************************************/
   2275 /* Performs PHY initialization required before MII drivers access the       */
   2276 /* device.                                                                  */
   2277 /*                                                                          */
   2278 /* Returns:                                                                 */
   2279 /*   Nothing.                                                               */
   2280 /****************************************************************************/
   2281 void
   2282 bnx_init_media(struct bnx_softc *sc)
   2283 {
   2284 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2285 		/*
   2286 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2287 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2288 		 * the PHY to the mii(4) layer. PHY specific configuration
   2289 		 * is done by the mii(4) layer.
   2290 		 */
   2291 
   2292 		/* Select auto-negotiation MMD of the PHY. */
   2293 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2294 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2295 
   2296 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2297 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2298 
   2299 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2300 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2301 	}
   2302 }
   2303 
   2304 /****************************************************************************/
   2305 /* Free any DMA memory owned by the driver.                                 */
   2306 /*                                                                          */
   2307 /* Scans through each data structre that requires DMA memory and frees      */
   2308 /* the memory if allocated.                                                 */
   2309 /*                                                                          */
   2310 /* Returns:                                                                 */
   2311 /*   Nothing.                                                               */
   2312 /****************************************************************************/
   2313 void
   2314 bnx_dma_free(struct bnx_softc *sc)
   2315 {
   2316 	int			i;
   2317 
   2318 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2319 
   2320 	/* Destroy the status block. */
   2321 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2322 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2323 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2324 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2325 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2326 		    BNX_STATUS_BLK_SZ);
   2327 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2328 		    sc->status_rseg);
   2329 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2330 		sc->status_block = NULL;
   2331 		sc->status_map = NULL;
   2332 	}
   2333 
   2334 	/* Destroy the statistics block. */
   2335 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2336 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2337 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2338 		    BNX_STATS_BLK_SZ);
   2339 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2340 		    sc->stats_rseg);
   2341 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2342 		sc->stats_block = NULL;
   2343 		sc->stats_map = NULL;
   2344 	}
   2345 
   2346 	/* Free, unmap and destroy all context memory pages. */
   2347 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2348 		for (i = 0; i < sc->ctx_pages; i++) {
   2349 			if (sc->ctx_block[i] != NULL) {
   2350 				bus_dmamap_unload(sc->bnx_dmatag,
   2351 				    sc->ctx_map[i]);
   2352 				bus_dmamem_unmap(sc->bnx_dmatag,
   2353 				    (void *)sc->ctx_block[i],
   2354 				    BCM_PAGE_SIZE);
   2355 				bus_dmamem_free(sc->bnx_dmatag,
   2356 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2357 				bus_dmamap_destroy(sc->bnx_dmatag,
   2358 				    sc->ctx_map[i]);
   2359 				sc->ctx_block[i] = NULL;
   2360 			}
   2361 		}
   2362 	}
   2363 
   2364 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2365 	for (i = 0; i < TX_PAGES; i++ ) {
   2366 		if (sc->tx_bd_chain[i] != NULL &&
   2367 		    sc->tx_bd_chain_map[i] != NULL) {
   2368 			bus_dmamap_unload(sc->bnx_dmatag,
   2369 			    sc->tx_bd_chain_map[i]);
   2370 			bus_dmamem_unmap(sc->bnx_dmatag,
   2371 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2372 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2373 			    sc->tx_bd_chain_rseg[i]);
   2374 			bus_dmamap_destroy(sc->bnx_dmatag,
   2375 			    sc->tx_bd_chain_map[i]);
   2376 			sc->tx_bd_chain[i] = NULL;
   2377 			sc->tx_bd_chain_map[i] = NULL;
   2378 		}
   2379 	}
   2380 
   2381 	/* Destroy the TX dmamaps. */
   2382 	/* This isn't necessary since we dont allocate them up front */
   2383 
   2384 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2385 	for (i = 0; i < RX_PAGES; i++ ) {
   2386 		if (sc->rx_bd_chain[i] != NULL &&
   2387 		    sc->rx_bd_chain_map[i] != NULL) {
   2388 			bus_dmamap_unload(sc->bnx_dmatag,
   2389 			    sc->rx_bd_chain_map[i]);
   2390 			bus_dmamem_unmap(sc->bnx_dmatag,
   2391 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2392 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2393 			    sc->rx_bd_chain_rseg[i]);
   2394 
   2395 			bus_dmamap_destroy(sc->bnx_dmatag,
   2396 			    sc->rx_bd_chain_map[i]);
   2397 			sc->rx_bd_chain[i] = NULL;
   2398 			sc->rx_bd_chain_map[i] = NULL;
   2399 		}
   2400 	}
   2401 
   2402 	/* Unload and destroy the RX mbuf maps. */
   2403 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2404 		if (sc->rx_mbuf_map[i] != NULL) {
   2405 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2406 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2407 		}
   2408 	}
   2409 
   2410 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2411 }
   2412 
   2413 /****************************************************************************/
   2414 /* Allocate any DMA memory needed by the driver.                            */
   2415 /*                                                                          */
   2416 /* Allocates DMA memory needed for the various global structures needed by  */
   2417 /* hardware.                                                                */
   2418 /*                                                                          */
   2419 /* Returns:                                                                 */
   2420 /*   0 for success, positive value for failure.                             */
   2421 /****************************************************************************/
   2422 int
   2423 bnx_dma_alloc(struct bnx_softc *sc)
   2424 {
   2425 	int			i, rc = 0;
   2426 
   2427 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2428 
   2429 	/*
   2430 	 * Allocate DMA memory for the status block, map the memory into DMA
   2431 	 * space, and fetch the physical address of the block.
   2432 	 */
   2433 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2434 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2435 		aprint_error_dev(sc->bnx_dev,
   2436 		    "Could not create status block DMA map!\n");
   2437 		rc = ENOMEM;
   2438 		goto bnx_dma_alloc_exit;
   2439 	}
   2440 
   2441 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2442 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2443 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2444 		aprint_error_dev(sc->bnx_dev,
   2445 		    "Could not allocate status block DMA memory!\n");
   2446 		rc = ENOMEM;
   2447 		goto bnx_dma_alloc_exit;
   2448 	}
   2449 
   2450 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2451 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2452 		aprint_error_dev(sc->bnx_dev,
   2453 		    "Could not map status block DMA memory!\n");
   2454 		rc = ENOMEM;
   2455 		goto bnx_dma_alloc_exit;
   2456 	}
   2457 
   2458 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2459 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2460 		aprint_error_dev(sc->bnx_dev,
   2461 		    "Could not load status block DMA memory!\n");
   2462 		rc = ENOMEM;
   2463 		goto bnx_dma_alloc_exit;
   2464 	}
   2465 
   2466 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2467 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2468 
   2469 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2470 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2471 
   2472 	/* DRC - Fix for 64 bit addresses. */
   2473 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2474 		(uint32_t) sc->status_block_paddr);
   2475 
   2476 	/* BCM5709 uses host memory as cache for context memory. */
   2477 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2478 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2479 		if (sc->ctx_pages == 0)
   2480 			sc->ctx_pages = 1;
   2481 		if (sc->ctx_pages > 4) /* XXX */
   2482 			sc->ctx_pages = 4;
   2483 
   2484 		DBRUNIF((sc->ctx_pages > 512),
   2485 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2486 				__FILE__, __LINE__, sc->ctx_pages));
   2487 
   2488 
   2489 		for (i = 0; i < sc->ctx_pages; i++) {
   2490 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2491 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2492 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2493 			    &sc->ctx_map[i]) != 0) {
   2494 				rc = ENOMEM;
   2495 				goto bnx_dma_alloc_exit;
   2496 			}
   2497 
   2498 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2499 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2500 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2501 				rc = ENOMEM;
   2502 				goto bnx_dma_alloc_exit;
   2503 			}
   2504 
   2505 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2506 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2507 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2508 				rc = ENOMEM;
   2509 				goto bnx_dma_alloc_exit;
   2510 			}
   2511 
   2512 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2513 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2514 			    BUS_DMA_NOWAIT) != 0) {
   2515 				rc = ENOMEM;
   2516 				goto bnx_dma_alloc_exit;
   2517 			}
   2518 
   2519 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2520 		}
   2521 	}
   2522 
   2523 	/*
   2524 	 * Allocate DMA memory for the statistics block, map the memory into
   2525 	 * DMA space, and fetch the physical address of the block.
   2526 	 */
   2527 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2528 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2529 		aprint_error_dev(sc->bnx_dev,
   2530 		    "Could not create stats block DMA map!\n");
   2531 		rc = ENOMEM;
   2532 		goto bnx_dma_alloc_exit;
   2533 	}
   2534 
   2535 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2536 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2537 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2538 		aprint_error_dev(sc->bnx_dev,
   2539 		    "Could not allocate stats block DMA memory!\n");
   2540 		rc = ENOMEM;
   2541 		goto bnx_dma_alloc_exit;
   2542 	}
   2543 
   2544 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2545 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2546 		aprint_error_dev(sc->bnx_dev,
   2547 		    "Could not map stats block DMA memory!\n");
   2548 		rc = ENOMEM;
   2549 		goto bnx_dma_alloc_exit;
   2550 	}
   2551 
   2552 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2553 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2554 		aprint_error_dev(sc->bnx_dev,
   2555 		    "Could not load status block DMA memory!\n");
   2556 		rc = ENOMEM;
   2557 		goto bnx_dma_alloc_exit;
   2558 	}
   2559 
   2560 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2561 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2562 
   2563 	/* DRC - Fix for 64 bit address. */
   2564 	DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2565 	    (uint32_t) sc->stats_block_paddr);
   2566 
   2567 	/*
   2568 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2569 	 * and fetch the physical address of the block.
   2570 	 */
   2571 	for (i = 0; i < TX_PAGES; i++) {
   2572 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2573 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2574 		    &sc->tx_bd_chain_map[i])) {
   2575 			aprint_error_dev(sc->bnx_dev,
   2576 			    "Could not create Tx desc %d DMA map!\n", i);
   2577 			rc = ENOMEM;
   2578 			goto bnx_dma_alloc_exit;
   2579 		}
   2580 
   2581 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2582 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2583 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2584 			aprint_error_dev(sc->bnx_dev,
   2585 			    "Could not allocate TX desc %d DMA memory!\n",
   2586 			    i);
   2587 			rc = ENOMEM;
   2588 			goto bnx_dma_alloc_exit;
   2589 		}
   2590 
   2591 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2592 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2593 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2594 			aprint_error_dev(sc->bnx_dev,
   2595 			    "Could not map TX desc %d DMA memory!\n", i);
   2596 			rc = ENOMEM;
   2597 			goto bnx_dma_alloc_exit;
   2598 		}
   2599 
   2600 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2601 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2602 		    BUS_DMA_NOWAIT)) {
   2603 			aprint_error_dev(sc->bnx_dev,
   2604 			    "Could not load TX desc %d DMA memory!\n", i);
   2605 			rc = ENOMEM;
   2606 			goto bnx_dma_alloc_exit;
   2607 		}
   2608 
   2609 		sc->tx_bd_chain_paddr[i] =
   2610 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2611 
   2612 		/* DRC - Fix for 64 bit systems. */
   2613 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2614 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2615 	}
   2616 
   2617 	/*
   2618 	 * Create lists to hold TX mbufs.
   2619 	 */
   2620 	TAILQ_INIT(&sc->tx_free_pkts);
   2621 	TAILQ_INIT(&sc->tx_used_pkts);
   2622 	sc->tx_pkt_count = 0;
   2623 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2624 
   2625 	/*
   2626 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2627 	 * and fetch the physical address of the block.
   2628 	 */
   2629 	for (i = 0; i < RX_PAGES; i++) {
   2630 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2631 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2632 		    &sc->rx_bd_chain_map[i])) {
   2633 			aprint_error_dev(sc->bnx_dev,
   2634 			    "Could not create Rx desc %d DMA map!\n", i);
   2635 			rc = ENOMEM;
   2636 			goto bnx_dma_alloc_exit;
   2637 		}
   2638 
   2639 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2640 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2641 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2642 			aprint_error_dev(sc->bnx_dev,
   2643 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2644 			rc = ENOMEM;
   2645 			goto bnx_dma_alloc_exit;
   2646 		}
   2647 
   2648 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2649 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2650 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2651 			aprint_error_dev(sc->bnx_dev,
   2652 			    "Could not map Rx desc %d DMA memory!\n", i);
   2653 			rc = ENOMEM;
   2654 			goto bnx_dma_alloc_exit;
   2655 		}
   2656 
   2657 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2658 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2659 		    BUS_DMA_NOWAIT)) {
   2660 			aprint_error_dev(sc->bnx_dev,
   2661 			    "Could not load Rx desc %d DMA memory!\n", i);
   2662 			rc = ENOMEM;
   2663 			goto bnx_dma_alloc_exit;
   2664 		}
   2665 
   2666 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2667 		sc->rx_bd_chain_paddr[i] =
   2668 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2669 
   2670 		/* DRC - Fix for 64 bit systems. */
   2671 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2672 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2673 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2674 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2675 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2676 	}
   2677 
   2678 	/*
   2679 	 * Create DMA maps for the Rx buffer mbufs.
   2680 	 */
   2681 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2682 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2683 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2684 		    &sc->rx_mbuf_map[i])) {
   2685 			aprint_error_dev(sc->bnx_dev,
   2686 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2687 			rc = ENOMEM;
   2688 			goto bnx_dma_alloc_exit;
   2689 		}
   2690 	}
   2691 
   2692  bnx_dma_alloc_exit:
   2693 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2694 
   2695 	return rc;
   2696 }
   2697 
   2698 /****************************************************************************/
   2699 /* Release all resources used by the driver.                                */
   2700 /*                                                                          */
   2701 /* Releases all resources acquired by the driver including interrupts,      */
   2702 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2703 /*                                                                          */
   2704 /* Returns:                                                                 */
   2705 /*   Nothing.                                                               */
   2706 /****************************************************************************/
   2707 void
   2708 bnx_release_resources(struct bnx_softc *sc)
   2709 {
   2710 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2711 
   2712 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2713 
   2714 	bnx_dma_free(sc);
   2715 
   2716 	if (sc->bnx_intrhand != NULL)
   2717 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2718 
   2719 	if (sc->bnx_size)
   2720 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2721 
   2722 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2723 }
   2724 
   2725 /****************************************************************************/
   2726 /* Firmware synchronization.                                                */
   2727 /*                                                                          */
   2728 /* Before performing certain events such as a chip reset, synchronize with  */
   2729 /* the firmware first.                                                      */
   2730 /*                                                                          */
   2731 /* Returns:                                                                 */
   2732 /*   0 for success, positive value for failure.                             */
   2733 /****************************************************************************/
   2734 int
   2735 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2736 {
   2737 	int			i, rc = 0;
   2738 	uint32_t		val;
   2739 
   2740 	/* Don't waste any time if we've timed out before. */
   2741 	if (sc->bnx_fw_timed_out) {
   2742 		rc = EBUSY;
   2743 		goto bnx_fw_sync_exit;
   2744 	}
   2745 
   2746 	/* Increment the message sequence number. */
   2747 	sc->bnx_fw_wr_seq++;
   2748 	msg_data |= sc->bnx_fw_wr_seq;
   2749 
   2750 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2751 	    msg_data);
   2752 
   2753 	/* Send the message to the bootcode driver mailbox. */
   2754 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2755 
   2756 	/* Wait for the bootcode to acknowledge the message. */
   2757 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2758 		/* Check for a response in the bootcode firmware mailbox. */
   2759 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2760 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2761 			break;
   2762 		DELAY(1000);
   2763 	}
   2764 
   2765 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2766 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2767 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2768 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2769 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2770 
   2771 		msg_data &= ~BNX_DRV_MSG_CODE;
   2772 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2773 
   2774 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2775 
   2776 		sc->bnx_fw_timed_out = 1;
   2777 		rc = EBUSY;
   2778 	}
   2779 
   2780 bnx_fw_sync_exit:
   2781 	return rc;
   2782 }
   2783 
   2784 /****************************************************************************/
   2785 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2786 /*                                                                          */
   2787 /* Returns:                                                                 */
   2788 /*   Nothing.                                                               */
   2789 /****************************************************************************/
   2790 void
   2791 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2792     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2793 {
   2794 	int			i;
   2795 	uint32_t		val;
   2796 
   2797 	/* Set the page size used by RV2P. */
   2798 	if (rv2p_proc == RV2P_PROC2) {
   2799 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2800 		    USABLE_RX_BD_PER_PAGE);
   2801 	}
   2802 
   2803 	for (i = 0; i < rv2p_code_len; i += 8) {
   2804 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2805 		rv2p_code++;
   2806 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2807 		rv2p_code++;
   2808 
   2809 		if (rv2p_proc == RV2P_PROC1) {
   2810 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2811 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2812 		} else {
   2813 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2814 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2815 		}
   2816 	}
   2817 
   2818 	/* Reset the processor, un-stall is done later. */
   2819 	if (rv2p_proc == RV2P_PROC1)
   2820 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2821 	else
   2822 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2823 }
   2824 
   2825 /****************************************************************************/
   2826 /* Load RISC processor firmware.                                            */
   2827 /*                                                                          */
   2828 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2829 /* associated with a particular processor.                                  */
   2830 /*                                                                          */
   2831 /* Returns:                                                                 */
   2832 /*   Nothing.                                                               */
   2833 /****************************************************************************/
   2834 void
   2835 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2836     struct fw_info *fw)
   2837 {
   2838 	uint32_t		offset;
   2839 	uint32_t		val;
   2840 
   2841 	/* Halt the CPU. */
   2842 	val = REG_RD_IND(sc, cpu_reg->mode);
   2843 	val |= cpu_reg->mode_value_halt;
   2844 	REG_WR_IND(sc, cpu_reg->mode, val);
   2845 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2846 
   2847 	/* Load the Text area. */
   2848 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2849 	if (fw->text) {
   2850 		int j;
   2851 
   2852 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2853 			REG_WR_IND(sc, offset, fw->text[j]);
   2854 	}
   2855 
   2856 	/* Load the Data area. */
   2857 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2858 	if (fw->data) {
   2859 		int j;
   2860 
   2861 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2862 			REG_WR_IND(sc, offset, fw->data[j]);
   2863 	}
   2864 
   2865 	/* Load the SBSS area. */
   2866 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2867 	if (fw->sbss) {
   2868 		int j;
   2869 
   2870 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2871 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2872 	}
   2873 
   2874 	/* Load the BSS area. */
   2875 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2876 	if (fw->bss) {
   2877 		int j;
   2878 
   2879 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2880 			REG_WR_IND(sc, offset, fw->bss[j]);
   2881 	}
   2882 
   2883 	/* Load the Read-Only area. */
   2884 	offset = cpu_reg->spad_base +
   2885 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2886 	if (fw->rodata) {
   2887 		int j;
   2888 
   2889 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2890 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2891 	}
   2892 
   2893 	/* Clear the pre-fetch instruction. */
   2894 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2895 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2896 
   2897 	/* Start the CPU. */
   2898 	val = REG_RD_IND(sc, cpu_reg->mode);
   2899 	val &= ~cpu_reg->mode_value_halt;
   2900 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2901 	REG_WR_IND(sc, cpu_reg->mode, val);
   2902 }
   2903 
   2904 /****************************************************************************/
   2905 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2906 /*                                                                          */
   2907 /* Loads the firmware for each CPU and starts the CPU.                      */
   2908 /*                                                                          */
   2909 /* Returns:                                                                 */
   2910 /*   Nothing.                                                               */
   2911 /****************************************************************************/
   2912 void
   2913 bnx_init_cpus(struct bnx_softc *sc)
   2914 {
   2915 	struct cpu_reg cpu_reg;
   2916 	struct fw_info fw;
   2917 
   2918 	switch (BNX_CHIP_NUM(sc)) {
   2919 	case BNX_CHIP_NUM_5709:
   2920 		/* Initialize the RV2P processor. */
   2921 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2922 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2923 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2924 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2925 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2926 		} else {
   2927 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2928 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2929 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2930 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2931 		}
   2932 
   2933 		/* Initialize the RX Processor. */
   2934 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2935 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2936 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2937 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2938 		cpu_reg.state_value_clear = 0xffffff;
   2939 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2940 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2941 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2942 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2943 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2944 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2945 		cpu_reg.mips_view_base = 0x8000000;
   2946 
   2947 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2948 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2949 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2950 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2951 
   2952 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2953 		fw.text_len = bnx_RXP_b09FwTextLen;
   2954 		fw.text_index = 0;
   2955 		fw.text = bnx_RXP_b09FwText;
   2956 
   2957 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2958 		fw.data_len = bnx_RXP_b09FwDataLen;
   2959 		fw.data_index = 0;
   2960 		fw.data = bnx_RXP_b09FwData;
   2961 
   2962 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2963 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2964 		fw.sbss_index = 0;
   2965 		fw.sbss = bnx_RXP_b09FwSbss;
   2966 
   2967 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2968 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2969 		fw.bss_index = 0;
   2970 		fw.bss = bnx_RXP_b09FwBss;
   2971 
   2972 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2973 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2974 		fw.rodata_index = 0;
   2975 		fw.rodata = bnx_RXP_b09FwRodata;
   2976 
   2977 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2978 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2979 
   2980 		/* Initialize the TX Processor. */
   2981 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2982 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2983 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2984 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2985 		cpu_reg.state_value_clear = 0xffffff;
   2986 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2987 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2988 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2989 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2990 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2991 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2992 		cpu_reg.mips_view_base = 0x8000000;
   2993 
   2994 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2995 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2996 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2997 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2998 
   2999 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   3000 		fw.text_len = bnx_TXP_b09FwTextLen;
   3001 		fw.text_index = 0;
   3002 		fw.text = bnx_TXP_b09FwText;
   3003 
   3004 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   3005 		fw.data_len = bnx_TXP_b09FwDataLen;
   3006 		fw.data_index = 0;
   3007 		fw.data = bnx_TXP_b09FwData;
   3008 
   3009 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   3010 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   3011 		fw.sbss_index = 0;
   3012 		fw.sbss = bnx_TXP_b09FwSbss;
   3013 
   3014 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   3015 		fw.bss_len = bnx_TXP_b09FwBssLen;
   3016 		fw.bss_index = 0;
   3017 		fw.bss = bnx_TXP_b09FwBss;
   3018 
   3019 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   3020 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   3021 		fw.rodata_index = 0;
   3022 		fw.rodata = bnx_TXP_b09FwRodata;
   3023 
   3024 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3025 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3026 
   3027 		/* Initialize the TX Patch-up Processor. */
   3028 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3029 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3030 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3031 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3032 		cpu_reg.state_value_clear = 0xffffff;
   3033 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3034 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3035 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3036 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3037 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3038 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3039 		cpu_reg.mips_view_base = 0x8000000;
   3040 
   3041 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   3042 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   3043 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   3044 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   3045 
   3046 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   3047 		fw.text_len = bnx_TPAT_b09FwTextLen;
   3048 		fw.text_index = 0;
   3049 		fw.text = bnx_TPAT_b09FwText;
   3050 
   3051 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   3052 		fw.data_len = bnx_TPAT_b09FwDataLen;
   3053 		fw.data_index = 0;
   3054 		fw.data = bnx_TPAT_b09FwData;
   3055 
   3056 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   3057 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   3058 		fw.sbss_index = 0;
   3059 		fw.sbss = bnx_TPAT_b09FwSbss;
   3060 
   3061 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   3062 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   3063 		fw.bss_index = 0;
   3064 		fw.bss = bnx_TPAT_b09FwBss;
   3065 
   3066 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3067 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3068 		fw.rodata_index = 0;
   3069 		fw.rodata = bnx_TPAT_b09FwRodata;
   3070 
   3071 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3072 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3073 
   3074 		/* Initialize the Completion Processor. */
   3075 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3076 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3077 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3078 		cpu_reg.state = BNX_COM_CPU_STATE;
   3079 		cpu_reg.state_value_clear = 0xffffff;
   3080 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3081 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3082 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3083 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3084 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3085 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3086 		cpu_reg.mips_view_base = 0x8000000;
   3087 
   3088 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3089 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3090 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3091 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3092 
   3093 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3094 		fw.text_len = bnx_COM_b09FwTextLen;
   3095 		fw.text_index = 0;
   3096 		fw.text = bnx_COM_b09FwText;
   3097 
   3098 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3099 		fw.data_len = bnx_COM_b09FwDataLen;
   3100 		fw.data_index = 0;
   3101 		fw.data = bnx_COM_b09FwData;
   3102 
   3103 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3104 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3105 		fw.sbss_index = 0;
   3106 		fw.sbss = bnx_COM_b09FwSbss;
   3107 
   3108 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3109 		fw.bss_len = bnx_COM_b09FwBssLen;
   3110 		fw.bss_index = 0;
   3111 		fw.bss = bnx_COM_b09FwBss;
   3112 
   3113 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3114 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3115 		fw.rodata_index = 0;
   3116 		fw.rodata = bnx_COM_b09FwRodata;
   3117 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3118 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3119 		break;
   3120 	default:
   3121 		/* Initialize the RV2P processor. */
   3122 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3123 		    RV2P_PROC1);
   3124 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3125 		    RV2P_PROC2);
   3126 
   3127 		/* Initialize the RX Processor. */
   3128 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3129 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3130 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3131 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3132 		cpu_reg.state_value_clear = 0xffffff;
   3133 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3134 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3135 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3136 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3137 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3138 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3139 		cpu_reg.mips_view_base = 0x8000000;
   3140 
   3141 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3142 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3143 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3144 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3145 
   3146 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3147 		fw.text_len = bnx_RXP_b06FwTextLen;
   3148 		fw.text_index = 0;
   3149 		fw.text = bnx_RXP_b06FwText;
   3150 
   3151 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3152 		fw.data_len = bnx_RXP_b06FwDataLen;
   3153 		fw.data_index = 0;
   3154 		fw.data = bnx_RXP_b06FwData;
   3155 
   3156 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3157 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3158 		fw.sbss_index = 0;
   3159 		fw.sbss = bnx_RXP_b06FwSbss;
   3160 
   3161 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3162 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3163 		fw.bss_index = 0;
   3164 		fw.bss = bnx_RXP_b06FwBss;
   3165 
   3166 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3167 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3168 		fw.rodata_index = 0;
   3169 		fw.rodata = bnx_RXP_b06FwRodata;
   3170 
   3171 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3172 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3173 
   3174 		/* Initialize the TX Processor. */
   3175 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3176 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3177 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3178 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3179 		cpu_reg.state_value_clear = 0xffffff;
   3180 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3181 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3182 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3183 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3184 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3185 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3186 		cpu_reg.mips_view_base = 0x8000000;
   3187 
   3188 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3189 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3190 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3191 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3192 
   3193 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3194 		fw.text_len = bnx_TXP_b06FwTextLen;
   3195 		fw.text_index = 0;
   3196 		fw.text = bnx_TXP_b06FwText;
   3197 
   3198 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3199 		fw.data_len = bnx_TXP_b06FwDataLen;
   3200 		fw.data_index = 0;
   3201 		fw.data = bnx_TXP_b06FwData;
   3202 
   3203 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3204 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3205 		fw.sbss_index = 0;
   3206 		fw.sbss = bnx_TXP_b06FwSbss;
   3207 
   3208 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3209 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3210 		fw.bss_index = 0;
   3211 		fw.bss = bnx_TXP_b06FwBss;
   3212 
   3213 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3214 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3215 		fw.rodata_index = 0;
   3216 		fw.rodata = bnx_TXP_b06FwRodata;
   3217 
   3218 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3219 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3220 
   3221 		/* Initialize the TX Patch-up Processor. */
   3222 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3223 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3224 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3225 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3226 		cpu_reg.state_value_clear = 0xffffff;
   3227 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3228 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3229 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3230 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3231 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3232 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3233 		cpu_reg.mips_view_base = 0x8000000;
   3234 
   3235 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3236 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3237 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3238 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3239 
   3240 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3241 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3242 		fw.text_index = 0;
   3243 		fw.text = bnx_TPAT_b06FwText;
   3244 
   3245 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3246 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3247 		fw.data_index = 0;
   3248 		fw.data = bnx_TPAT_b06FwData;
   3249 
   3250 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3251 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3252 		fw.sbss_index = 0;
   3253 		fw.sbss = bnx_TPAT_b06FwSbss;
   3254 
   3255 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3256 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3257 		fw.bss_index = 0;
   3258 		fw.bss = bnx_TPAT_b06FwBss;
   3259 
   3260 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3261 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3262 		fw.rodata_index = 0;
   3263 		fw.rodata = bnx_TPAT_b06FwRodata;
   3264 
   3265 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3266 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3267 
   3268 		/* Initialize the Completion Processor. */
   3269 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3270 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3271 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3272 		cpu_reg.state = BNX_COM_CPU_STATE;
   3273 		cpu_reg.state_value_clear = 0xffffff;
   3274 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3275 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3276 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3277 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3278 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3279 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3280 		cpu_reg.mips_view_base = 0x8000000;
   3281 
   3282 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3283 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3284 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3285 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3286 
   3287 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3288 		fw.text_len = bnx_COM_b06FwTextLen;
   3289 		fw.text_index = 0;
   3290 		fw.text = bnx_COM_b06FwText;
   3291 
   3292 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3293 		fw.data_len = bnx_COM_b06FwDataLen;
   3294 		fw.data_index = 0;
   3295 		fw.data = bnx_COM_b06FwData;
   3296 
   3297 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3298 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3299 		fw.sbss_index = 0;
   3300 		fw.sbss = bnx_COM_b06FwSbss;
   3301 
   3302 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3303 		fw.bss_len = bnx_COM_b06FwBssLen;
   3304 		fw.bss_index = 0;
   3305 		fw.bss = bnx_COM_b06FwBss;
   3306 
   3307 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3308 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3309 		fw.rodata_index = 0;
   3310 		fw.rodata = bnx_COM_b06FwRodata;
   3311 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3312 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3313 		break;
   3314 	}
   3315 }
   3316 
   3317 /****************************************************************************/
   3318 /* Initialize context memory.                                               */
   3319 /*                                                                          */
   3320 /* Clears the memory associated with each Context ID (CID).                 */
   3321 /*                                                                          */
   3322 /* Returns:                                                                 */
   3323 /*   Nothing.                                                               */
   3324 /****************************************************************************/
   3325 void
   3326 bnx_init_context(struct bnx_softc *sc)
   3327 {
   3328 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3329 		/* DRC: Replace this constant value with a #define. */
   3330 		int i, retry_cnt = 10;
   3331 		uint32_t val;
   3332 
   3333 		/*
   3334 		 * BCM5709 context memory may be cached
   3335 		 * in host memory so prepare the host memory
   3336 		 * for access.
   3337 		 */
   3338 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3339 		    | (1 << 12);
   3340 		val |= (BCM_PAGE_BITS - 8) << 16;
   3341 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3342 
   3343 		/* Wait for mem init command to complete. */
   3344 		for (i = 0; i < retry_cnt; i++) {
   3345 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3346 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3347 				break;
   3348 			DELAY(2);
   3349 		}
   3350 
   3351 		/* ToDo: Consider returning an error here. */
   3352 
   3353 		for (i = 0; i < sc->ctx_pages; i++) {
   3354 			int j;
   3355 
   3356 			/* Set the physaddr of the context memory cache. */
   3357 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3358 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3359 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3360 			val = (uint32_t)
   3361 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3362 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3363 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3364 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3365 
   3366 			/* Verify that the context memory write was successful. */
   3367 			for (j = 0; j < retry_cnt; j++) {
   3368 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3369 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3370 					break;
   3371 				DELAY(5);
   3372 			}
   3373 
   3374 			/* ToDo: Consider returning an error here. */
   3375 		}
   3376 	} else {
   3377 		uint32_t vcid_addr, offset;
   3378 
   3379 		/*
   3380 		 * For the 5706/5708, context memory is local to the
   3381 		 * controller, so initialize the controller context memory.
   3382 		 */
   3383 
   3384 		vcid_addr = GET_CID_ADDR(96);
   3385 		while (vcid_addr) {
   3386 
   3387 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3388 
   3389 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3390 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3391 
   3392 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3393 			     offset += 4)
   3394 				CTX_WR(sc, 0x00, offset, 0);
   3395 
   3396 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3397 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3398 		}
   3399 	}
   3400 }
   3401 
   3402 /****************************************************************************/
   3403 /* Fetch the permanent MAC address of the controller.                       */
   3404 /*                                                                          */
   3405 /* Returns:                                                                 */
   3406 /*   Nothing.                                                               */
   3407 /****************************************************************************/
   3408 void
   3409 bnx_get_mac_addr(struct bnx_softc *sc)
   3410 {
   3411 	uint32_t		mac_lo = 0, mac_hi = 0;
   3412 
   3413 	/*
   3414 	 * The NetXtreme II bootcode populates various NIC
   3415 	 * power-on and runtime configuration items in a
   3416 	 * shared memory area.  The factory configured MAC
   3417 	 * address is available from both NVRAM and the
   3418 	 * shared memory area so we'll read the value from
   3419 	 * shared memory for speed.
   3420 	 */
   3421 
   3422 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3423 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3424 
   3425 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3426 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3427 		    __FILE__, __LINE__);
   3428 	} else {
   3429 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3430 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3431 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3432 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3433 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3434 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3435 	}
   3436 
   3437 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3438 	    "%s\n", ether_sprintf(sc->eaddr));
   3439 }
   3440 
   3441 /****************************************************************************/
   3442 /* Program the MAC address.                                                 */
   3443 /*                                                                          */
   3444 /* Returns:                                                                 */
   3445 /*   Nothing.                                                               */
   3446 /****************************************************************************/
   3447 void
   3448 bnx_set_mac_addr(struct bnx_softc *sc)
   3449 {
   3450 	uint32_t		val;
   3451 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3452 
   3453 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3454 	    "%s\n", ether_sprintf(sc->eaddr));
   3455 
   3456 	val = (mac_addr[0] << 8) | mac_addr[1];
   3457 
   3458 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3459 
   3460 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3461 		(mac_addr[4] << 8) | mac_addr[5];
   3462 
   3463 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3464 }
   3465 
   3466 /****************************************************************************/
   3467 /* Stop the controller.                                                     */
   3468 /*                                                                          */
   3469 /* Returns:                                                                 */
   3470 /*   Nothing.                                                               */
   3471 /****************************************************************************/
   3472 void
   3473 bnx_stop(struct ifnet *ifp, int disable)
   3474 {
   3475 	struct bnx_softc *sc = ifp->if_softc;
   3476 
   3477 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3478 
   3479 	if (disable) {
   3480 		sc->bnx_detaching = 1;
   3481 		callout_halt(&sc->bnx_timeout, NULL);
   3482 	} else
   3483 		callout_stop(&sc->bnx_timeout);
   3484 
   3485 	mii_down(&sc->bnx_mii);
   3486 
   3487 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3488 
   3489 	/* Disable the transmit/receive blocks. */
   3490 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3491 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3492 	DELAY(20);
   3493 
   3494 	bnx_disable_intr(sc);
   3495 
   3496 	/* Tell firmware that the driver is going away. */
   3497 	if (disable)
   3498 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3499 	else
   3500 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3501 
   3502 	/* Free RX buffers. */
   3503 	bnx_free_rx_chain(sc);
   3504 
   3505 	/* Free TX buffers. */
   3506 	bnx_free_tx_chain(sc);
   3507 
   3508 	ifp->if_timer = 0;
   3509 
   3510 	sc->bnx_link = 0;
   3511 
   3512 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3513 
   3514 	bnx_mgmt_init(sc);
   3515 }
   3516 
   3517 int
   3518 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3519 {
   3520 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3521 	uint32_t		val;
   3522 	int			i, rc = 0;
   3523 
   3524 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3525 
   3526 	/* Wait for pending PCI transactions to complete. */
   3527 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   3528 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
   3529 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3530 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3531 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3532 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3533 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3534 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3535 		DELAY(5);
   3536 	} else {
   3537 		/* Disable DMA */
   3538 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3539 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3540 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3541 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
   3542 
   3543 		for (i = 0; i < 100; i++) {
   3544 			delay(1 * 1000);
   3545 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
   3546 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
   3547 				break;
   3548 		}
   3549 	}
   3550 
   3551 	/* Assume bootcode is running. */
   3552 	sc->bnx_fw_timed_out = 0;
   3553 
   3554 	/* Give the firmware a chance to prepare for the reset. */
   3555 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3556 	if (rc)
   3557 		goto bnx_reset_exit;
   3558 
   3559 	/* Set a firmware reminder that this is a soft reset. */
   3560 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3561 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3562 
   3563 	/* Dummy read to force the chip to complete all current transactions. */
   3564 	val = REG_RD(sc, BNX_MISC_ID);
   3565 
   3566 	/* Chip reset. */
   3567 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3568 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3569 		REG_RD(sc, BNX_MISC_COMMAND);
   3570 		DELAY(5);
   3571 
   3572 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3573 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3574 
   3575 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3576 		    val);
   3577 	} else {
   3578 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3579 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3580 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3581 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3582 
   3583 		/* Allow up to 30us for reset to complete. */
   3584 		for (i = 0; i < 10; i++) {
   3585 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3586 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3587 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3588 				break;
   3589 			}
   3590 			DELAY(10);
   3591 		}
   3592 
   3593 		/* Check that reset completed successfully. */
   3594 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3595 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3596 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3597 			    __FILE__, __LINE__);
   3598 			rc = EBUSY;
   3599 			goto bnx_reset_exit;
   3600 		}
   3601 	}
   3602 
   3603 	/* Make sure byte swapping is properly configured. */
   3604 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3605 	if (val != 0x01020304) {
   3606 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3607 		    __FILE__, __LINE__);
   3608 		rc = ENODEV;
   3609 		goto bnx_reset_exit;
   3610 	}
   3611 
   3612 	/* Just completed a reset, assume that firmware is running again. */
   3613 	sc->bnx_fw_timed_out = 0;
   3614 
   3615 	/* Wait for the firmware to finish its initialization. */
   3616 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3617 	if (rc)
   3618 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3619 		    "initialization!\n", __FILE__, __LINE__);
   3620 
   3621 bnx_reset_exit:
   3622 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3623 
   3624 	return rc;
   3625 }
   3626 
   3627 int
   3628 bnx_chipinit(struct bnx_softc *sc)
   3629 {
   3630 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3631 	uint32_t		val;
   3632 	int			rc = 0;
   3633 
   3634 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3635 
   3636 	/* Make sure the interrupt is not active. */
   3637 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3638 
   3639 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3640 	/* channels and PCI clock compensation delay.                      */
   3641 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3642 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3643 #if BYTE_ORDER == BIG_ENDIAN
   3644 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3645 #endif
   3646 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3647 	    DMA_READ_CHANS << 12 |
   3648 	    DMA_WRITE_CHANS << 16;
   3649 
   3650 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3651 
   3652 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3653 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3654 
   3655 	/*
   3656 	 * This setting resolves a problem observed on certain Intel PCI
   3657 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3658 	 * See errata E9_5706A1_65.
   3659 	 */
   3660 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3661 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3662 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3663 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3664 
   3665 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3666 
   3667 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3668 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3669 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3670 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3671 		    val & ~0x20000);
   3672 	}
   3673 
   3674 	/* Enable the RX_V2P and Context state machines before access. */
   3675 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3676 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3677 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3678 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3679 
   3680 	/* Initialize context mapping and zero out the quick contexts. */
   3681 	bnx_init_context(sc);
   3682 
   3683 	/* Initialize the on-boards CPUs */
   3684 	bnx_init_cpus(sc);
   3685 
   3686 	/* Enable management frames (NC-SI) to flow to the MCP. */
   3687 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3688 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
   3689 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3690 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3691 	}
   3692 
   3693 	/* Prepare NVRAM for access. */
   3694 	if (bnx_init_nvram(sc)) {
   3695 		rc = ENODEV;
   3696 		goto bnx_chipinit_exit;
   3697 	}
   3698 
   3699 	/* Set the kernel bypass block size */
   3700 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3701 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3702 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3703 
   3704 	/* Enable bins used on the 5709. */
   3705 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3706 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3707 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3708 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3709 	}
   3710 
   3711 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3712 
   3713 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3714 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3715 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3716 
   3717 	val = (BCM_PAGE_BITS - 8) << 24;
   3718 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3719 
   3720 	/* Configure page size. */
   3721 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3722 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3723 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3724 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3725 
   3726 #if 0
   3727 	/* Set the perfect match control register to default. */
   3728 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3729 #endif
   3730 
   3731 bnx_chipinit_exit:
   3732 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3733 
   3734 	return rc;
   3735 }
   3736 
   3737 /****************************************************************************/
   3738 /* Initialize the controller in preparation to send/receive traffic.        */
   3739 /*                                                                          */
   3740 /* Returns:                                                                 */
   3741 /*   0 for success, positive value for failure.                             */
   3742 /****************************************************************************/
   3743 int
   3744 bnx_blockinit(struct bnx_softc *sc)
   3745 {
   3746 	uint32_t		reg, val;
   3747 	int			rc = 0;
   3748 
   3749 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3750 
   3751 	/* Load the hardware default MAC address. */
   3752 	bnx_set_mac_addr(sc);
   3753 
   3754 	/* Set the Ethernet backoff seed value */
   3755 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3756 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3757 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3758 
   3759 	sc->last_status_idx = 0;
   3760 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3761 
   3762 	/* Set up link change interrupt generation. */
   3763 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3764 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3765 
   3766 	/* Program the physical address of the status block. */
   3767 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3768 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3769 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3770 
   3771 	/* Program the physical address of the statistics block. */
   3772 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3773 	    (uint32_t)(sc->stats_block_paddr));
   3774 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3775 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3776 
   3777 	/* Program various host coalescing parameters. */
   3778 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3779 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3780 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3781 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3782 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3783 	    sc->bnx_comp_prod_trip);
   3784 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3785 	    sc->bnx_tx_ticks);
   3786 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3787 	    sc->bnx_rx_ticks);
   3788 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3789 	    sc->bnx_com_ticks);
   3790 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3791 	    sc->bnx_cmd_ticks);
   3792 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3793 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3794 	REG_WR(sc, BNX_HC_CONFIG,
   3795 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3796 	    BNX_HC_CONFIG_COLLECT_STATS));
   3797 
   3798 	/* Clear the internal statistics counters. */
   3799 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3800 
   3801 	/* Verify that bootcode is running. */
   3802 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3803 
   3804 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3805 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3806 	    __FILE__, __LINE__); reg = 0);
   3807 
   3808 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3809 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3810 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3811 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3812 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3813 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3814 		rc = ENODEV;
   3815 		goto bnx_blockinit_exit;
   3816 	}
   3817 
   3818 	/* Enable DMA */
   3819 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3820 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3821 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3822 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3823 	}
   3824 
   3825 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3826 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3827 
   3828 	/* Disable management frames (NC-SI) from flowing to the MCP. */
   3829 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3830 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
   3831 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3832 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3833 	}
   3834 
   3835 	/* Enable all remaining blocks in the MAC. */
   3836 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3837 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3838 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3839 	} else
   3840 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3841 
   3842 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3843 	DELAY(20);
   3844 
   3845 bnx_blockinit_exit:
   3846 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3847 
   3848 	return rc;
   3849 }
   3850 
   3851 static int
   3852 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3853     uint16_t *chain_prod, uint32_t *prod_bseq)
   3854 {
   3855 	bus_dmamap_t		map;
   3856 	struct rx_bd		*rxbd;
   3857 	uint32_t		addr;
   3858 	int i;
   3859 #ifdef BNX_DEBUG
   3860 	uint16_t debug_chain_prod =	*chain_prod;
   3861 #endif
   3862 	uint16_t first_chain_prod;
   3863 
   3864 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3865 
   3866 	/* Map the mbuf cluster into device memory. */
   3867 	map = sc->rx_mbuf_map[*chain_prod];
   3868 	first_chain_prod = *chain_prod;
   3869 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3870 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3871 		    __FILE__, __LINE__);
   3872 
   3873 		m_freem(m_new);
   3874 
   3875 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3876 
   3877 		return ENOBUFS;
   3878 	}
   3879 	/* Make sure there is room in the receive chain. */
   3880 	if (map->dm_nsegs > sc->free_rx_bd) {
   3881 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3882 		m_freem(m_new);
   3883 		return EFBIG;
   3884 	}
   3885 #ifdef BNX_DEBUG
   3886 	/* Track the distribution of buffer segments. */
   3887 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3888 #endif
   3889 
   3890 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3891 	    BUS_DMASYNC_PREREAD);
   3892 
   3893 	/* Update some debug statistics counters */
   3894 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3895 	    sc->rx_low_watermark = sc->free_rx_bd);
   3896 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3897 
   3898 	/*
   3899 	 * Setup the rx_bd for the first segment
   3900 	 */
   3901 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3902 
   3903 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3904 	rxbd->rx_bd_haddr_lo = addr;
   3905 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3906 	rxbd->rx_bd_haddr_hi = addr;
   3907 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3908 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3909 	*prod_bseq += map->dm_segs[0].ds_len;
   3910 	bus_dmamap_sync(sc->bnx_dmatag,
   3911 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3912 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3913 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3914 
   3915 	for (i = 1; i < map->dm_nsegs; i++) {
   3916 		*prod = NEXT_RX_BD(*prod);
   3917 		*chain_prod = RX_CHAIN_IDX(*prod);
   3918 
   3919 		rxbd =
   3920 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3921 
   3922 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3923 		rxbd->rx_bd_haddr_lo = addr;
   3924 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3925 		rxbd->rx_bd_haddr_hi = addr;
   3926 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3927 		rxbd->rx_bd_flags = 0;
   3928 		*prod_bseq += map->dm_segs[i].ds_len;
   3929 		bus_dmamap_sync(sc->bnx_dmatag,
   3930 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3931 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3932 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3933 	}
   3934 
   3935 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3936 	bus_dmamap_sync(sc->bnx_dmatag,
   3937 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3938 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3939 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3940 
   3941 	/*
   3942 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3943 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3944 	 * and update our counter.
   3945 	 */
   3946 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3947 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3948 	sc->rx_mbuf_map[*chain_prod] = map;
   3949 	sc->free_rx_bd -= map->dm_nsegs;
   3950 
   3951 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3952 	    map->dm_nsegs));
   3953 	*prod = NEXT_RX_BD(*prod);
   3954 	*chain_prod = RX_CHAIN_IDX(*prod);
   3955 
   3956 	return 0;
   3957 }
   3958 
   3959 /****************************************************************************/
   3960 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3961 /*                                                                          */
   3962 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3963 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3964 /* necessary.                                                               */
   3965 /*                                                                          */
   3966 /* Returns:                                                                 */
   3967 /*   0 for success, positive value for failure.                             */
   3968 /****************************************************************************/
   3969 int
   3970 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3971     uint16_t *chain_prod, uint32_t *prod_bseq)
   3972 {
   3973 	struct mbuf		*m_new = NULL;
   3974 	int			rc = 0;
   3975 	uint16_t min_free_bd;
   3976 
   3977 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3978 	    __func__);
   3979 
   3980 	/* Make sure the inputs are valid. */
   3981 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3982 	    aprint_error_dev(sc->bnx_dev,
   3983 		"RX producer out of range: 0x%04X > 0x%04X\n",
   3984 		*chain_prod, (uint16_t)MAX_RX_BD));
   3985 
   3986 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3987 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3988 	    *prod_bseq);
   3989 
   3990 	/* try to get in as many mbufs as possible */
   3991 	if (sc->mbuf_alloc_size == MCLBYTES)
   3992 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3993 	else
   3994 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3995 	while (sc->free_rx_bd >= min_free_bd) {
   3996 		/* Simulate an mbuf allocation failure. */
   3997 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3998 		    aprint_error_dev(sc->bnx_dev,
   3999 		    "Simulating mbuf allocation failure.\n");
   4000 			sc->mbuf_sim_alloc_failed++;
   4001 			rc = ENOBUFS;
   4002 			goto bnx_get_buf_exit);
   4003 
   4004 		/* This is a new mbuf allocation. */
   4005 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   4006 		if (m_new == NULL) {
   4007 			DBPRINT(sc, BNX_WARN,
   4008 			    "%s(%d): RX mbuf header allocation failed!\n",
   4009 			    __FILE__, __LINE__);
   4010 
   4011 			sc->mbuf_alloc_failed++;
   4012 
   4013 			rc = ENOBUFS;
   4014 			goto bnx_get_buf_exit;
   4015 		}
   4016 
   4017 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   4018 
   4019 		/* Simulate an mbuf cluster allocation failure. */
   4020 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4021 			m_freem(m_new);
   4022 			sc->rx_mbuf_alloc--;
   4023 			sc->mbuf_alloc_failed++;
   4024 			sc->mbuf_sim_alloc_failed++;
   4025 			rc = ENOBUFS;
   4026 			goto bnx_get_buf_exit);
   4027 
   4028 		if (sc->mbuf_alloc_size == MCLBYTES)
   4029 			MCLGET(m_new, M_DONTWAIT);
   4030 		else
   4031 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   4032 			    M_DONTWAIT);
   4033 		if (!(m_new->m_flags & M_EXT)) {
   4034 			DBPRINT(sc, BNX_WARN,
   4035 			    "%s(%d): RX mbuf chain allocation failed!\n",
   4036 			    __FILE__, __LINE__);
   4037 
   4038 			m_freem(m_new);
   4039 
   4040 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4041 			sc->mbuf_alloc_failed++;
   4042 
   4043 			rc = ENOBUFS;
   4044 			goto bnx_get_buf_exit;
   4045 		}
   4046 
   4047 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   4048 		if (rc != 0)
   4049 			goto bnx_get_buf_exit;
   4050 	}
   4051 
   4052 bnx_get_buf_exit:
   4053 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   4054 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   4055 	    *chain_prod, *prod_bseq);
   4056 
   4057 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   4058 	    __func__);
   4059 
   4060 	return rc;
   4061 }
   4062 
   4063 void
   4064 bnx_alloc_pkts(struct work * unused, void * arg)
   4065 {
   4066 	struct bnx_softc *sc = arg;
   4067 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   4068 	struct bnx_pkt *pkt;
   4069 	int i, s;
   4070 
   4071 	for (i = 0; i < 4; i++) { /* magic! */
   4072 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   4073 		if (pkt == NULL)
   4074 			break;
   4075 
   4076 		if (bus_dmamap_create(sc->bnx_dmatag,
   4077 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4078 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4079 		    &pkt->pkt_dmamap) != 0)
   4080 			goto put;
   4081 
   4082 		if (!ISSET(ifp->if_flags, IFF_UP))
   4083 			goto stopping;
   4084 
   4085 		mutex_enter(&sc->tx_pkt_mtx);
   4086 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4087 		sc->tx_pkt_count++;
   4088 		mutex_exit(&sc->tx_pkt_mtx);
   4089 	}
   4090 
   4091 	mutex_enter(&sc->tx_pkt_mtx);
   4092 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4093 	mutex_exit(&sc->tx_pkt_mtx);
   4094 
   4095 	/* fire-up TX now that allocations have been done */
   4096 	s = splnet();
   4097 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4098 		bnx_start(ifp);
   4099 	splx(s);
   4100 
   4101 	return;
   4102 
   4103 stopping:
   4104 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4105 put:
   4106 	pool_put(bnx_tx_pool, pkt);
   4107 	return;
   4108 }
   4109 
   4110 /****************************************************************************/
   4111 /* Initialize the TX context memory.                                        */
   4112 /*                                                                          */
   4113 /* Returns:                                                                 */
   4114 /*   Nothing                                                                */
   4115 /****************************************************************************/
   4116 void
   4117 bnx_init_tx_context(struct bnx_softc *sc)
   4118 {
   4119 	uint32_t val;
   4120 
   4121 	/* Initialize the context ID for an L2 TX chain. */
   4122 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4123 		/* Set the CID type to support an L2 connection. */
   4124 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4125 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4126 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4127 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4128 
   4129 		/* Point the hardware to the first page in the chain. */
   4130 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4131 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4132 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4133 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4134 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4135 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4136 	} else {
   4137 		/* Set the CID type to support an L2 connection. */
   4138 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4139 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4140 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4141 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4142 
   4143 		/* Point the hardware to the first page in the chain. */
   4144 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4145 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4146 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4147 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4148 	}
   4149 }
   4150 
   4151 
   4152 /****************************************************************************/
   4153 /* Allocate memory and initialize the TX data structures.                   */
   4154 /*                                                                          */
   4155 /* Returns:                                                                 */
   4156 /*   0 for success, positive value for failure.                             */
   4157 /****************************************************************************/
   4158 int
   4159 bnx_init_tx_chain(struct bnx_softc *sc)
   4160 {
   4161 	struct tx_bd		*txbd;
   4162 	uint32_t		addr;
   4163 	int			i, rc = 0;
   4164 
   4165 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4166 
   4167 	/* Force an allocation of some dmamaps for tx up front */
   4168 	bnx_alloc_pkts(NULL, sc);
   4169 
   4170 	/* Set the initial TX producer/consumer indices. */
   4171 	sc->tx_prod = 0;
   4172 	sc->tx_cons = 0;
   4173 	sc->tx_prod_bseq = 0;
   4174 	sc->used_tx_bd = 0;
   4175 	sc->max_tx_bd = USABLE_TX_BD;
   4176 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4177 	DBRUNIF(1, sc->tx_full_count = 0);
   4178 
   4179 	/*
   4180 	 * The NetXtreme II supports a linked-list structure called
   4181 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4182 	 * consists of a series of 1 or more chain pages, each of which
   4183 	 * consists of a fixed number of BD entries.
   4184 	 * The last BD entry on each page is a pointer to the next page
   4185 	 * in the chain, and the last pointer in the BD chain
   4186 	 * points back to the beginning of the chain.
   4187 	 */
   4188 
   4189 	/* Set the TX next pointer chain entries. */
   4190 	for (i = 0; i < TX_PAGES; i++) {
   4191 		int j;
   4192 
   4193 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4194 
   4195 		/* Check if we've reached the last page. */
   4196 		if (i == (TX_PAGES - 1))
   4197 			j = 0;
   4198 		else
   4199 			j = i + 1;
   4200 
   4201 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4202 		txbd->tx_bd_haddr_lo = addr;
   4203 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4204 		txbd->tx_bd_haddr_hi = addr;
   4205 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4206 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4207 	}
   4208 
   4209 	/*
   4210 	 * Initialize the context ID for an L2 TX chain.
   4211 	 */
   4212 	bnx_init_tx_context(sc);
   4213 
   4214 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4215 
   4216 	return rc;
   4217 }
   4218 
   4219 /****************************************************************************/
   4220 /* Free memory and clear the TX data structures.                            */
   4221 /*                                                                          */
   4222 /* Returns:                                                                 */
   4223 /*   Nothing.                                                               */
   4224 /****************************************************************************/
   4225 void
   4226 bnx_free_tx_chain(struct bnx_softc *sc)
   4227 {
   4228 	struct bnx_pkt		*pkt;
   4229 	int			i;
   4230 
   4231 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4232 
   4233 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4234 	mutex_enter(&sc->tx_pkt_mtx);
   4235 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4236 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4237 		mutex_exit(&sc->tx_pkt_mtx);
   4238 
   4239 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4240 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4241 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4242 
   4243 		m_freem(pkt->pkt_mbuf);
   4244 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4245 
   4246 		mutex_enter(&sc->tx_pkt_mtx);
   4247 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4248 	}
   4249 
   4250 	/* Destroy all the dmamaps we allocated for TX */
   4251 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4252 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4253 		sc->tx_pkt_count--;
   4254 		mutex_exit(&sc->tx_pkt_mtx);
   4255 
   4256 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4257 		pool_put(bnx_tx_pool, pkt);
   4258 
   4259 		mutex_enter(&sc->tx_pkt_mtx);
   4260 	}
   4261 	mutex_exit(&sc->tx_pkt_mtx);
   4262 
   4263 
   4264 
   4265 	/* Clear each TX chain page. */
   4266 	for (i = 0; i < TX_PAGES; i++) {
   4267 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4268 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4269 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4270 	}
   4271 
   4272 	sc->used_tx_bd = 0;
   4273 
   4274 	/* Check if we lost any mbufs in the process. */
   4275 	DBRUNIF((sc->tx_mbuf_alloc),
   4276 	    aprint_error_dev(sc->bnx_dev,
   4277 		"Memory leak! Lost %d mbufs from tx chain!\n",
   4278 		sc->tx_mbuf_alloc));
   4279 
   4280 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4281 }
   4282 
   4283 /****************************************************************************/
   4284 /* Initialize the RX context memory.                                        */
   4285 /*                                                                          */
   4286 /* Returns:                                                                 */
   4287 /*   Nothing                                                                */
   4288 /****************************************************************************/
   4289 void
   4290 bnx_init_rx_context(struct bnx_softc *sc)
   4291 {
   4292 	uint32_t val;
   4293 
   4294 	/* Initialize the context ID for an L2 RX chain. */
   4295 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4296 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4297 
   4298 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4299 		val |= 0x000000ff;
   4300 
   4301 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4302 
   4303 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4304 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4305 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4306 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4307 	}
   4308 
   4309 	/* Point the hardware to the first page in the chain. */
   4310 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4311 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4312 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4313 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4314 }
   4315 
   4316 /****************************************************************************/
   4317 /* Allocate memory and initialize the RX data structures.                   */
   4318 /*                                                                          */
   4319 /* Returns:                                                                 */
   4320 /*   0 for success, positive value for failure.                             */
   4321 /****************************************************************************/
   4322 int
   4323 bnx_init_rx_chain(struct bnx_softc *sc)
   4324 {
   4325 	struct rx_bd		*rxbd;
   4326 	int			i, rc = 0;
   4327 	uint16_t		prod, chain_prod;
   4328 	uint32_t		prod_bseq, addr;
   4329 
   4330 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4331 
   4332 	/* Initialize the RX producer and consumer indices. */
   4333 	sc->rx_prod = 0;
   4334 	sc->rx_cons = 0;
   4335 	sc->rx_prod_bseq = 0;
   4336 	sc->free_rx_bd = USABLE_RX_BD;
   4337 	sc->max_rx_bd = USABLE_RX_BD;
   4338 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4339 	DBRUNIF(1, sc->rx_empty_count = 0);
   4340 
   4341 	/* Initialize the RX next pointer chain entries. */
   4342 	for (i = 0; i < RX_PAGES; i++) {
   4343 		int j;
   4344 
   4345 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4346 
   4347 		/* Check if we've reached the last page. */
   4348 		if (i == (RX_PAGES - 1))
   4349 			j = 0;
   4350 		else
   4351 			j = i + 1;
   4352 
   4353 		/* Setup the chain page pointers. */
   4354 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4355 		rxbd->rx_bd_haddr_hi = addr;
   4356 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4357 		rxbd->rx_bd_haddr_lo = addr;
   4358 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4359 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4360 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4361 	}
   4362 
   4363 	/* Allocate mbuf clusters for the rx_bd chain. */
   4364 	prod = prod_bseq = 0;
   4365 	chain_prod = RX_CHAIN_IDX(prod);
   4366 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4367 		BNX_PRINTF(sc,
   4368 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4369 	}
   4370 
   4371 	/* Save the RX chain producer index. */
   4372 	sc->rx_prod = prod;
   4373 	sc->rx_prod_bseq = prod_bseq;
   4374 
   4375 	for (i = 0; i < RX_PAGES; i++)
   4376 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4377 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4378 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4379 
   4380 	/* Tell the chip about the waiting rx_bd's. */
   4381 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4382 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4383 
   4384 	bnx_init_rx_context(sc);
   4385 
   4386 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4387 
   4388 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4389 
   4390 	return rc;
   4391 }
   4392 
   4393 /****************************************************************************/
   4394 /* Free memory and clear the RX data structures.                            */
   4395 /*                                                                          */
   4396 /* Returns:                                                                 */
   4397 /*   Nothing.                                                               */
   4398 /****************************************************************************/
   4399 void
   4400 bnx_free_rx_chain(struct bnx_softc *sc)
   4401 {
   4402 	int			i;
   4403 
   4404 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4405 
   4406 	/* Free any mbufs still in the RX mbuf chain. */
   4407 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4408 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4409 			if (sc->rx_mbuf_map[i] != NULL) {
   4410 				bus_dmamap_sync(sc->bnx_dmatag,
   4411 				    sc->rx_mbuf_map[i],	0,
   4412 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4413 				    BUS_DMASYNC_POSTREAD);
   4414 				bus_dmamap_unload(sc->bnx_dmatag,
   4415 				    sc->rx_mbuf_map[i]);
   4416 			}
   4417 			m_freem(sc->rx_mbuf_ptr[i]);
   4418 			sc->rx_mbuf_ptr[i] = NULL;
   4419 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4420 		}
   4421 	}
   4422 
   4423 	/* Clear each RX chain page. */
   4424 	for (i = 0; i < RX_PAGES; i++)
   4425 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4426 
   4427 	sc->free_rx_bd = sc->max_rx_bd;
   4428 
   4429 	/* Check if we lost any mbufs in the process. */
   4430 	DBRUNIF((sc->rx_mbuf_alloc),
   4431 	    aprint_error_dev(sc->bnx_dev,
   4432 		"Memory leak! Lost %d mbufs from rx chain!\n",
   4433 		sc->rx_mbuf_alloc));
   4434 
   4435 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4436 }
   4437 
   4438 /****************************************************************************/
   4439 /* Set media options.                                                       */
   4440 /*                                                                          */
   4441 /* Returns:                                                                 */
   4442 /*   0 for success, positive value for failure.                             */
   4443 /****************************************************************************/
   4444 int
   4445 bnx_ifmedia_upd(struct ifnet *ifp)
   4446 {
   4447 	struct bnx_softc	*sc;
   4448 	struct mii_data		*mii;
   4449 	int			rc = 0;
   4450 
   4451 	sc = ifp->if_softc;
   4452 
   4453 	mii = &sc->bnx_mii;
   4454 	sc->bnx_link = 0;
   4455 	if (mii->mii_instance) {
   4456 		struct mii_softc *miisc;
   4457 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4458 			mii_phy_reset(miisc);
   4459 	}
   4460 	mii_mediachg(mii);
   4461 
   4462 	return rc;
   4463 }
   4464 
   4465 /****************************************************************************/
   4466 /* Reports current media status.                                            */
   4467 /*                                                                          */
   4468 /* Returns:                                                                 */
   4469 /*   Nothing.                                                               */
   4470 /****************************************************************************/
   4471 void
   4472 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4473 {
   4474 	struct bnx_softc	*sc;
   4475 	struct mii_data		*mii;
   4476 	int			s;
   4477 
   4478 	sc = ifp->if_softc;
   4479 
   4480 	s = splnet();
   4481 
   4482 	mii = &sc->bnx_mii;
   4483 
   4484 	mii_pollstat(mii);
   4485 	ifmr->ifm_status = mii->mii_media_status;
   4486 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4487 	    sc->bnx_flowflags;
   4488 
   4489 	splx(s);
   4490 }
   4491 
   4492 /****************************************************************************/
   4493 /* Handles PHY generated interrupt events.                                  */
   4494 /*                                                                          */
   4495 /* Returns:                                                                 */
   4496 /*   Nothing.                                                               */
   4497 /****************************************************************************/
   4498 void
   4499 bnx_phy_intr(struct bnx_softc *sc)
   4500 {
   4501 	uint32_t		new_link_state, old_link_state;
   4502 
   4503 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4504 	    BUS_DMASYNC_POSTREAD);
   4505 	new_link_state = sc->status_block->status_attn_bits &
   4506 	    STATUS_ATTN_BITS_LINK_STATE;
   4507 	old_link_state = sc->status_block->status_attn_bits_ack &
   4508 	    STATUS_ATTN_BITS_LINK_STATE;
   4509 
   4510 	/* Handle any changes if the link state has changed. */
   4511 	if (new_link_state != old_link_state) {
   4512 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4513 
   4514 		sc->bnx_link = 0;
   4515 		callout_stop(&sc->bnx_timeout);
   4516 		bnx_tick(sc);
   4517 
   4518 		/* Update the status_attn_bits_ack field in the status block. */
   4519 		if (new_link_state) {
   4520 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4521 			    STATUS_ATTN_BITS_LINK_STATE);
   4522 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4523 		} else {
   4524 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4525 			    STATUS_ATTN_BITS_LINK_STATE);
   4526 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4527 		}
   4528 	}
   4529 
   4530 	/* Acknowledge the link change interrupt. */
   4531 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4532 }
   4533 
   4534 /****************************************************************************/
   4535 /* Handles received frame interrupt events.                                 */
   4536 /*                                                                          */
   4537 /* Returns:                                                                 */
   4538 /*   Nothing.                                                               */
   4539 /****************************************************************************/
   4540 void
   4541 bnx_rx_intr(struct bnx_softc *sc)
   4542 {
   4543 	struct status_block	*sblk = sc->status_block;
   4544 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4545 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4546 	uint16_t		sw_prod, sw_chain_prod;
   4547 	uint32_t		sw_prod_bseq;
   4548 	struct l2_fhdr		*l2fhdr;
   4549 	int			i;
   4550 
   4551 	DBRUNIF(1, sc->rx_interrupts++);
   4552 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4553 	    BUS_DMASYNC_POSTREAD);
   4554 
   4555 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4556 	for (i = 0; i < RX_PAGES; i++)
   4557 		bus_dmamap_sync(sc->bnx_dmatag,
   4558 		    sc->rx_bd_chain_map[i], 0,
   4559 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4560 		    BUS_DMASYNC_POSTWRITE);
   4561 
   4562 	/* Get the hardware's view of the RX consumer index. */
   4563 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4564 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4565 		hw_cons++;
   4566 
   4567 	/* Get working copies of the driver's view of the RX indices. */
   4568 	sw_cons = sc->rx_cons;
   4569 	sw_prod = sc->rx_prod;
   4570 	sw_prod_bseq = sc->rx_prod_bseq;
   4571 
   4572 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4573 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4574 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4575 
   4576 	/* Prevent speculative reads from getting ahead of the status block. */
   4577 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4578 	    BUS_SPACE_BARRIER_READ);
   4579 
   4580 	/* Update some debug statistics counters */
   4581 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4582 	    sc->rx_low_watermark = sc->free_rx_bd);
   4583 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4584 
   4585 	/*
   4586 	 * Scan through the receive chain as long
   4587 	 * as there is work to do.
   4588 	 */
   4589 	while (sw_cons != hw_cons) {
   4590 		struct mbuf *m;
   4591 		struct rx_bd *rxbd __diagused;
   4592 		unsigned int len;
   4593 		uint32_t status;
   4594 
   4595 		/* Convert the producer/consumer indices to an actual
   4596 		 * rx_bd index.
   4597 		 */
   4598 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4599 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4600 
   4601 		/* Get the used rx_bd. */
   4602 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4603 		sc->free_rx_bd++;
   4604 
   4605 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4606 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4607 
   4608 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4609 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4610 #ifdef DIAGNOSTIC
   4611 			/* Validate that this is the last rx_bd. */
   4612 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4613 			    printf("%s: Unexpected mbuf found in "
   4614 				"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4615 				sw_chain_cons);
   4616 			}
   4617 #endif
   4618 
   4619 			/* DRC - ToDo: If the received packet is small, say
   4620 			 *             less than 128 bytes, allocate a new mbuf
   4621 			 *             here, copy the data to that mbuf, and
   4622 			 *             recycle the mapped jumbo frame.
   4623 			 */
   4624 
   4625 			/* Unmap the mbuf from DMA space. */
   4626 #ifdef DIAGNOSTIC
   4627 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4628 				printf("invalid map sw_cons 0x%x "
   4629 				"sw_prod 0x%x "
   4630 				"sw_chain_cons 0x%x "
   4631 				"sw_chain_prod 0x%x "
   4632 				"hw_cons 0x%x "
   4633 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4634 				"TOTAL_RX_BD 0x%x\n",
   4635 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4636 				hw_cons,
   4637 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4638 			}
   4639 #endif
   4640 			bus_dmamap_sync(sc->bnx_dmatag,
   4641 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4642 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4643 			    BUS_DMASYNC_POSTREAD);
   4644 			bus_dmamap_unload(sc->bnx_dmatag,
   4645 			    sc->rx_mbuf_map[sw_chain_cons]);
   4646 
   4647 			/* Remove the mbuf from the driver's chain. */
   4648 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4649 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4650 
   4651 			/*
   4652 			 * Frames received on the NetXteme II are prepended
   4653 			 * with the l2_fhdr structure which provides status
   4654 			 * information about the received frame (including
   4655 			 * VLAN tags and checksum info) and are also
   4656 			 * automatically adjusted to align the IP header
   4657 			 * (i.e. two null bytes are inserted before the
   4658 			 * Ethernet header).
   4659 			 */
   4660 			l2fhdr = mtod(m, struct l2_fhdr *);
   4661 
   4662 			len    = l2fhdr->l2_fhdr_pkt_len;
   4663 			status = l2fhdr->l2_fhdr_status;
   4664 
   4665 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4666 			    aprint_error("Simulating l2_fhdr status error.\n");
   4667 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4668 
   4669 			/* Watch for unusual sized frames. */
   4670 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4671 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4672 			    aprint_error_dev(sc->bnx_dev,
   4673 				"Unusual frame size found. "
   4674 				"Min(%d), Actual(%d), Max(%d)\n",
   4675 				(int)BNX_MIN_MTU, len,
   4676 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4677 
   4678 			bnx_dump_mbuf(sc, m);
   4679 			bnx_breakpoint(sc));
   4680 
   4681 			len -= ETHER_CRC_LEN;
   4682 
   4683 			/* Check the received frame for errors. */
   4684 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4685 			    L2_FHDR_ERRORS_PHY_DECODE |
   4686 			    L2_FHDR_ERRORS_ALIGNMENT |
   4687 			    L2_FHDR_ERRORS_TOO_SHORT |
   4688 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4689 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4690 			    len >
   4691 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4692 				ifp->if_ierrors++;
   4693 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4694 
   4695 				/* Reuse the mbuf for a new frame. */
   4696 				if (bnx_add_buf(sc, m, &sw_prod,
   4697 				    &sw_chain_prod, &sw_prod_bseq)) {
   4698 					DBRUNIF(1, bnx_breakpoint(sc));
   4699 					panic("%s: Can't reuse RX mbuf!\n",
   4700 					    device_xname(sc->bnx_dev));
   4701 				}
   4702 				continue;
   4703 			}
   4704 
   4705 			/*
   4706 			 * Get a new mbuf for the rx_bd.   If no new
   4707 			 * mbufs are available then reuse the current mbuf,
   4708 			 * log an ierror on the interface, and generate
   4709 			 * an error in the system log.
   4710 			 */
   4711 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4712 			    &sw_prod_bseq)) {
   4713 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4714 				    "Failed to allocate "
   4715 				    "new mbuf, incoming frame dropped!\n"));
   4716 
   4717 				ifp->if_ierrors++;
   4718 
   4719 				/* Try and reuse the exisitng mbuf. */
   4720 				if (bnx_add_buf(sc, m, &sw_prod,
   4721 				    &sw_chain_prod, &sw_prod_bseq)) {
   4722 					DBRUNIF(1, bnx_breakpoint(sc));
   4723 					panic("%s: Double mbuf allocation "
   4724 					    "failure!",
   4725 					    device_xname(sc->bnx_dev));
   4726 				}
   4727 				continue;
   4728 			}
   4729 
   4730 			/* Skip over the l2_fhdr when passing the data up
   4731 			 * the stack.
   4732 			 */
   4733 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4734 
   4735 			/* Adjust the pckt length to match the received data. */
   4736 			m->m_pkthdr.len = m->m_len = len;
   4737 
   4738 			/* Send the packet to the appropriate interface. */
   4739 			m_set_rcvif(m, ifp);
   4740 
   4741 			DBRUN(BNX_VERBOSE_RECV,
   4742 			    struct ether_header *eh;
   4743 			    eh = mtod(m, struct ether_header *);
   4744 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4745 			    __func__, ether_sprintf(eh->ether_dhost),
   4746 			    ether_sprintf(eh->ether_shost),
   4747 			    htons(eh->ether_type)));
   4748 
   4749 			/* Validate the checksum. */
   4750 
   4751 			/* Check for an IP datagram. */
   4752 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4753 				/* Check if the IP checksum is valid. */
   4754 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4755 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4756 #ifdef BNX_DEBUG
   4757 				else
   4758 					DBPRINT(sc, BNX_WARN_SEND,
   4759 					    "%s(): Invalid IP checksum "
   4760 						"= 0x%04X!\n",
   4761 						__func__,
   4762 						l2fhdr->l2_fhdr_ip_xsum
   4763 						);
   4764 #endif
   4765 			}
   4766 
   4767 			/* Check for a valid TCP/UDP frame. */
   4768 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4769 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4770 				/* Check for a good TCP/UDP checksum. */
   4771 				if ((status &
   4772 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4773 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4774 					m->m_pkthdr.csum_flags |=
   4775 					    M_CSUM_TCPv4 |
   4776 					    M_CSUM_UDPv4;
   4777 				} else {
   4778 					DBPRINT(sc, BNX_WARN_SEND,
   4779 					    "%s(): Invalid TCP/UDP "
   4780 					    "checksum = 0x%04X!\n",
   4781 					    __func__,
   4782 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4783 				}
   4784 			}
   4785 
   4786 			/*
   4787 			 * If we received a packet with a vlan tag,
   4788 			 * attach that information to the packet.
   4789 			 */
   4790 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4791 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4792 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4793 			}
   4794 
   4795 			/* Pass the mbuf off to the upper layers. */
   4796 
   4797 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4798 			    "%s(): Passing received frame up.\n", __func__);
   4799 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4800 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4801 
   4802 		}
   4803 
   4804 		sw_cons = NEXT_RX_BD(sw_cons);
   4805 
   4806 		/* Refresh hw_cons to see if there's new work */
   4807 		if (sw_cons == hw_cons) {
   4808 			hw_cons = sc->hw_rx_cons =
   4809 			    sblk->status_rx_quick_consumer_index0;
   4810 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4811 			    USABLE_RX_BD_PER_PAGE)
   4812 				hw_cons++;
   4813 		}
   4814 
   4815 		/* Prevent speculative reads from getting ahead of
   4816 		 * the status block.
   4817 		 */
   4818 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4819 		    BUS_SPACE_BARRIER_READ);
   4820 	}
   4821 
   4822 	for (i = 0; i < RX_PAGES; i++)
   4823 		bus_dmamap_sync(sc->bnx_dmatag,
   4824 		    sc->rx_bd_chain_map[i], 0,
   4825 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4826 		    BUS_DMASYNC_PREWRITE);
   4827 
   4828 	sc->rx_cons = sw_cons;
   4829 	sc->rx_prod = sw_prod;
   4830 	sc->rx_prod_bseq = sw_prod_bseq;
   4831 
   4832 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4833 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4834 
   4835 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4836 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4837 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4838 }
   4839 
   4840 /****************************************************************************/
   4841 /* Handles transmit completion interrupt events.                            */
   4842 /*                                                                          */
   4843 /* Returns:                                                                 */
   4844 /*   Nothing.                                                               */
   4845 /****************************************************************************/
   4846 void
   4847 bnx_tx_intr(struct bnx_softc *sc)
   4848 {
   4849 	struct status_block	*sblk = sc->status_block;
   4850 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4851 	struct bnx_pkt		*pkt;
   4852 	bus_dmamap_t		map;
   4853 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4854 
   4855 	DBRUNIF(1, sc->tx_interrupts++);
   4856 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4857 	    BUS_DMASYNC_POSTREAD);
   4858 
   4859 	/* Get the hardware's view of the TX consumer index. */
   4860 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4861 
   4862 	/* Skip to the next entry if this is a chain page pointer. */
   4863 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4864 		hw_tx_cons++;
   4865 
   4866 	sw_tx_cons = sc->tx_cons;
   4867 
   4868 	/* Prevent speculative reads from getting ahead of the status block. */
   4869 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4870 	    BUS_SPACE_BARRIER_READ);
   4871 
   4872 	/* Cycle through any completed TX chain page entries. */
   4873 	while (sw_tx_cons != hw_tx_cons) {
   4874 #ifdef BNX_DEBUG
   4875 		struct tx_bd *txbd = NULL;
   4876 #endif
   4877 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4878 
   4879 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4880 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4881 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4882 
   4883 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4884 		    aprint_error_dev(sc->bnx_dev,
   4885 			"TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4886 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4887 
   4888 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4889 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4890 
   4891 		DBRUNIF((txbd == NULL),
   4892 		    aprint_error_dev(sc->bnx_dev,
   4893 			"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4894 		    bnx_breakpoint(sc));
   4895 
   4896 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4897 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4898 
   4899 
   4900 		mutex_enter(&sc->tx_pkt_mtx);
   4901 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4902 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4903 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4904 			mutex_exit(&sc->tx_pkt_mtx);
   4905 			/*
   4906 			 * Free the associated mbuf. Remember
   4907 			 * that only the last tx_bd of a packet
   4908 			 * has an mbuf pointer and DMA map.
   4909 			 */
   4910 			map = pkt->pkt_dmamap;
   4911 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4912 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4913 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4914 
   4915 			m_freem(pkt->pkt_mbuf);
   4916 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4917 
   4918 			ifp->if_opackets++;
   4919 
   4920 			mutex_enter(&sc->tx_pkt_mtx);
   4921 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4922 		}
   4923 		mutex_exit(&sc->tx_pkt_mtx);
   4924 
   4925 		sc->used_tx_bd--;
   4926 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4927 			__FILE__, __LINE__, sc->used_tx_bd);
   4928 
   4929 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4930 
   4931 		/* Refresh hw_cons to see if there's new work. */
   4932 		hw_tx_cons = sc->hw_tx_cons =
   4933 		    sblk->status_tx_quick_consumer_index0;
   4934 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4935 		    USABLE_TX_BD_PER_PAGE)
   4936 			hw_tx_cons++;
   4937 
   4938 		/* Prevent speculative reads from getting ahead of
   4939 		 * the status block.
   4940 		 */
   4941 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4942 		    BUS_SPACE_BARRIER_READ);
   4943 	}
   4944 
   4945 	/* Clear the TX timeout timer. */
   4946 	ifp->if_timer = 0;
   4947 
   4948 	/* Clear the tx hardware queue full flag. */
   4949 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4950 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4951 		    aprint_debug_dev(sc->bnx_dev,
   4952 			"Open TX chain! %d/%d (used/total)\n",
   4953 			sc->used_tx_bd, sc->max_tx_bd));
   4954 		ifp->if_flags &= ~IFF_OACTIVE;
   4955 	}
   4956 
   4957 	sc->tx_cons = sw_tx_cons;
   4958 }
   4959 
   4960 /****************************************************************************/
   4961 /* Disables interrupt generation.                                           */
   4962 /*                                                                          */
   4963 /* Returns:                                                                 */
   4964 /*   Nothing.                                                               */
   4965 /****************************************************************************/
   4966 void
   4967 bnx_disable_intr(struct bnx_softc *sc)
   4968 {
   4969 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4970 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4971 }
   4972 
   4973 /****************************************************************************/
   4974 /* Enables interrupt generation.                                            */
   4975 /*                                                                          */
   4976 /* Returns:                                                                 */
   4977 /*   Nothing.                                                               */
   4978 /****************************************************************************/
   4979 void
   4980 bnx_enable_intr(struct bnx_softc *sc)
   4981 {
   4982 	uint32_t		val;
   4983 
   4984 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4985 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4986 
   4987 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4988 	    sc->last_status_idx);
   4989 
   4990 	val = REG_RD(sc, BNX_HC_COMMAND);
   4991 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4992 }
   4993 
   4994 /****************************************************************************/
   4995 /* Handles controller initialization.                                       */
   4996 /*                                                                          */
   4997 /****************************************************************************/
   4998 int
   4999 bnx_init(struct ifnet *ifp)
   5000 {
   5001 	struct bnx_softc	*sc = ifp->if_softc;
   5002 	uint32_t		ether_mtu;
   5003 	int			s, error = 0;
   5004 
   5005 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   5006 
   5007 	s = splnet();
   5008 
   5009 	bnx_stop(ifp, 0);
   5010 
   5011 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   5012 		aprint_error_dev(sc->bnx_dev,
   5013 		    "Controller reset failed!\n");
   5014 		goto bnx_init_exit;
   5015 	}
   5016 
   5017 	if ((error = bnx_chipinit(sc)) != 0) {
   5018 		aprint_error_dev(sc->bnx_dev,
   5019 		    "Controller initialization failed!\n");
   5020 		goto bnx_init_exit;
   5021 	}
   5022 
   5023 	if ((error = bnx_blockinit(sc)) != 0) {
   5024 		aprint_error_dev(sc->bnx_dev,
   5025 		    "Block initialization failed!\n");
   5026 		goto bnx_init_exit;
   5027 	}
   5028 
   5029 	/* Calculate and program the Ethernet MRU size. */
   5030 	if (ifp->if_mtu <= ETHERMTU) {
   5031 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   5032 		sc->mbuf_alloc_size = MCLBYTES;
   5033 	} else {
   5034 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   5035 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   5036 	}
   5037 
   5038 
   5039 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   5040 
   5041 	/*
   5042 	 * Program the MRU and enable Jumbo frame
   5043 	 * support.
   5044 	 */
   5045 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   5046 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   5047 
   5048 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   5049 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   5050 
   5051 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   5052 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   5053 	    sc->mbuf_alloc_size, sc->max_frame_size);
   5054 
   5055 	/* Program appropriate promiscuous/multicast filtering. */
   5056 	bnx_iff(sc);
   5057 
   5058 	/* Init RX buffer descriptor chain. */
   5059 	bnx_init_rx_chain(sc);
   5060 
   5061 	/* Init TX buffer descriptor chain. */
   5062 	bnx_init_tx_chain(sc);
   5063 
   5064 	/* Enable host interrupts. */
   5065 	bnx_enable_intr(sc);
   5066 
   5067 	bnx_ifmedia_upd(ifp);
   5068 
   5069 	SET(ifp->if_flags, IFF_RUNNING);
   5070 	CLR(ifp->if_flags, IFF_OACTIVE);
   5071 
   5072 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5073 
   5074 bnx_init_exit:
   5075 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5076 
   5077 	splx(s);
   5078 
   5079 	return error;
   5080 }
   5081 
   5082 void
   5083 bnx_mgmt_init(struct bnx_softc *sc)
   5084 {
   5085 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5086 	uint32_t	val;
   5087 
   5088 	/* Check if the driver is still running and bail out if it is. */
   5089 	if (ifp->if_flags & IFF_RUNNING)
   5090 		goto bnx_mgmt_init_exit;
   5091 
   5092 	/* Initialize the on-boards CPUs */
   5093 	bnx_init_cpus(sc);
   5094 
   5095 	val = (BCM_PAGE_BITS - 8) << 24;
   5096 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5097 
   5098 	/* Enable all critical blocks in the MAC. */
   5099 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5100 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5101 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5102 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5103 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5104 	DELAY(20);
   5105 
   5106 	bnx_ifmedia_upd(ifp);
   5107 
   5108 bnx_mgmt_init_exit:
   5109 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5110 }
   5111 
   5112 /****************************************************************************/
   5113 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5114 /* memory visible to the controller.                                        */
   5115 /*                                                                          */
   5116 /* Returns:                                                                 */
   5117 /*   0 for success, positive value for failure.                             */
   5118 /****************************************************************************/
   5119 int
   5120 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5121 {
   5122 	struct bnx_pkt		*pkt;
   5123 	bus_dmamap_t		map;
   5124 	struct tx_bd		*txbd = NULL;
   5125 	uint16_t		vlan_tag = 0, flags = 0;
   5126 	uint16_t		chain_prod, prod;
   5127 #ifdef BNX_DEBUG
   5128 	uint16_t		debug_prod;
   5129 #endif
   5130 	uint32_t		addr, prod_bseq;
   5131 	int			i, error;
   5132 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   5133 	bool			remap = true;
   5134 
   5135 	mutex_enter(&sc->tx_pkt_mtx);
   5136 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5137 	if (pkt == NULL) {
   5138 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5139 			mutex_exit(&sc->tx_pkt_mtx);
   5140 			return ENETDOWN;
   5141 		}
   5142 
   5143 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5144 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5145 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   5146 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5147 		}
   5148 
   5149 		mutex_exit(&sc->tx_pkt_mtx);
   5150 		return ENOMEM;
   5151 	}
   5152 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5153 	mutex_exit(&sc->tx_pkt_mtx);
   5154 
   5155 	/* Transfer any checksum offload flags to the bd. */
   5156 	if (m->m_pkthdr.csum_flags) {
   5157 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5158 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5159 		if (m->m_pkthdr.csum_flags &
   5160 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5161 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5162 	}
   5163 
   5164 	/* Transfer any VLAN tags to the bd. */
   5165 	if (vlan_has_tag(m)) {
   5166 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5167 		vlan_tag = vlan_get_tag(m);
   5168 	}
   5169 
   5170 	/* Map the mbuf into DMAable memory. */
   5171 	prod = sc->tx_prod;
   5172 	chain_prod = TX_CHAIN_IDX(prod);
   5173 	map = pkt->pkt_dmamap;
   5174 
   5175 	/* Map the mbuf into our DMA address space. */
   5176 retry:
   5177 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5178 	if (__predict_false(error)) {
   5179 		if (error == EFBIG) {
   5180 			if (remap == true) {
   5181 				struct mbuf *newm;
   5182 
   5183 				remap = false;
   5184 				newm = m_defrag(m, M_NOWAIT);
   5185 				if (newm != NULL) {
   5186 					m = newm;
   5187 					goto retry;
   5188 				}
   5189 			}
   5190 		}
   5191 		sc->tx_dma_map_failures++;
   5192 		goto maperr;
   5193 	}
   5194 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5195 	    BUS_DMASYNC_PREWRITE);
   5196 	/* Make sure there's room in the chain */
   5197 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5198 		goto nospace;
   5199 
   5200 	/* prod points to an empty tx_bd at this point. */
   5201 	prod_bseq = sc->tx_prod_bseq;
   5202 #ifdef BNX_DEBUG
   5203 	debug_prod = chain_prod;
   5204 #endif
   5205 	DBPRINT(sc, BNX_INFO_SEND,
   5206 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5207 		"prod_bseq = 0x%08X\n",
   5208 		__func__, prod, chain_prod, prod_bseq);
   5209 
   5210 	/*
   5211 	 * Cycle through each mbuf segment that makes up
   5212 	 * the outgoing frame, gathering the mapping info
   5213 	 * for that segment and creating a tx_bd for the
   5214 	 * mbuf.
   5215 	 */
   5216 	for (i = 0; i < map->dm_nsegs ; i++) {
   5217 		chain_prod = TX_CHAIN_IDX(prod);
   5218 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5219 
   5220 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5221 		txbd->tx_bd_haddr_lo = addr;
   5222 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5223 		txbd->tx_bd_haddr_hi = addr;
   5224 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5225 		txbd->tx_bd_vlan_tag = vlan_tag;
   5226 		txbd->tx_bd_flags = flags;
   5227 		prod_bseq += map->dm_segs[i].ds_len;
   5228 		if (i == 0)
   5229 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5230 		prod = NEXT_TX_BD(prod);
   5231 	}
   5232 
   5233 	/* Set the END flag on the last TX buffer descriptor. */
   5234 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5235 
   5236 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5237 
   5238 	DBPRINT(sc, BNX_INFO_SEND,
   5239 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5240 		"prod_bseq = 0x%08X\n",
   5241 		__func__, prod, chain_prod, prod_bseq);
   5242 
   5243 	pkt->pkt_mbuf = m;
   5244 	pkt->pkt_end_desc = chain_prod;
   5245 
   5246 	mutex_enter(&sc->tx_pkt_mtx);
   5247 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5248 	mutex_exit(&sc->tx_pkt_mtx);
   5249 
   5250 	sc->used_tx_bd += map->dm_nsegs;
   5251 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5252 		__FILE__, __LINE__, sc->used_tx_bd);
   5253 
   5254 	/* Update some debug statistics counters */
   5255 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5256 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5257 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5258 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5259 
   5260 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5261 	    map->dm_nsegs));
   5262 
   5263 	/* prod points to the next free tx_bd at this point. */
   5264 	sc->tx_prod = prod;
   5265 	sc->tx_prod_bseq = prod_bseq;
   5266 
   5267 	return 0;
   5268 
   5269 
   5270 nospace:
   5271 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5272 maperr:
   5273 	mutex_enter(&sc->tx_pkt_mtx);
   5274 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5275 	mutex_exit(&sc->tx_pkt_mtx);
   5276 
   5277 	return ENOMEM;
   5278 }
   5279 
   5280 /****************************************************************************/
   5281 /* Main transmit routine.                                                   */
   5282 /*                                                                          */
   5283 /* Returns:                                                                 */
   5284 /*   Nothing.                                                               */
   5285 /****************************************************************************/
   5286 void
   5287 bnx_start(struct ifnet *ifp)
   5288 {
   5289 	struct bnx_softc	*sc = ifp->if_softc;
   5290 	struct mbuf		*m_head = NULL;
   5291 	int			count = 0;
   5292 #ifdef BNX_DEBUG
   5293 	uint16_t		tx_chain_prod;
   5294 #endif
   5295 
   5296 	/* If there's no link or the transmit queue is empty then just exit. */
   5297 	if (!sc->bnx_link
   5298 	    ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
   5299 		DBPRINT(sc, BNX_INFO_SEND,
   5300 		    "%s(): output active or device not running.\n", __func__);
   5301 		goto bnx_start_exit;
   5302 	}
   5303 
   5304 	/* prod points to the next free tx_bd. */
   5305 #ifdef BNX_DEBUG
   5306 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5307 #endif
   5308 
   5309 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5310 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5311 	    "used_tx %d max_tx %d\n",
   5312 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5313 	    sc->used_tx_bd, sc->max_tx_bd);
   5314 
   5315 	/*
   5316 	 * Keep adding entries while there is space in the ring.
   5317 	 */
   5318 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5319 		/* Check for any frames to send. */
   5320 		IFQ_POLL(&ifp->if_snd, m_head);
   5321 		if (m_head == NULL)
   5322 			break;
   5323 
   5324 		/*
   5325 		 * Pack the data into the transmit ring. If we
   5326 		 * don't have room, set the OACTIVE flag to wait
   5327 		 * for the NIC to drain the chain.
   5328 		 */
   5329 		if (bnx_tx_encap(sc, m_head)) {
   5330 			ifp->if_flags |= IFF_OACTIVE;
   5331 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5332 			    "business! Total tx_bd used = %d\n",
   5333 			    sc->used_tx_bd);
   5334 			break;
   5335 		}
   5336 
   5337 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5338 		count++;
   5339 
   5340 		/* Send a copy of the frame to any BPF listeners. */
   5341 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5342 	}
   5343 
   5344 	if (count == 0) {
   5345 		/* no packets were dequeued */
   5346 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5347 		    "%s(): No packets were dequeued\n", __func__);
   5348 		goto bnx_start_exit;
   5349 	}
   5350 
   5351 	/* Update the driver's counters. */
   5352 #ifdef BNX_DEBUG
   5353 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5354 #endif
   5355 
   5356 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5357 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5358 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5359 
   5360 	/* Start the transmit. */
   5361 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5362 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5363 
   5364 	/* Set the tx timeout. */
   5365 	ifp->if_timer = BNX_TX_TIMEOUT;
   5366 
   5367 bnx_start_exit:
   5368 	return;
   5369 }
   5370 
   5371 /****************************************************************************/
   5372 /* Handles any IOCTL calls from the operating system.                       */
   5373 /*                                                                          */
   5374 /* Returns:                                                                 */
   5375 /*   0 for success, positive value for failure.                             */
   5376 /****************************************************************************/
   5377 int
   5378 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5379 {
   5380 	struct bnx_softc	*sc = ifp->if_softc;
   5381 	struct ifreq		*ifr = (struct ifreq *) data;
   5382 	struct mii_data		*mii = &sc->bnx_mii;
   5383 	int			s, error = 0;
   5384 
   5385 	s = splnet();
   5386 
   5387 	switch (command) {
   5388 	case SIOCSIFFLAGS:
   5389 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5390 			break;
   5391 		/* XXX set an ifflags callback and let ether_ioctl
   5392 		 * handle all of this.
   5393 		 */
   5394 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5395 			if (ifp->if_flags & IFF_RUNNING)
   5396 				error = ENETRESET;
   5397 			else
   5398 				bnx_init(ifp);
   5399 		} else if (ifp->if_flags & IFF_RUNNING)
   5400 			bnx_stop(ifp, 1);
   5401 		break;
   5402 
   5403 	case SIOCSIFMEDIA:
   5404 		/* Flow control requires full-duplex mode. */
   5405 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5406 		    (ifr->ifr_media & IFM_FDX) == 0)
   5407 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5408 
   5409 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5410 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5411 				/* We can do both TXPAUSE and RXPAUSE. */
   5412 				ifr->ifr_media |=
   5413 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5414 			}
   5415 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5416 		}
   5417 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5418 		    sc->bnx_phy_flags);
   5419 
   5420 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5421 		break;
   5422 
   5423 	default:
   5424 		error = ether_ioctl(ifp, command, data);
   5425 	}
   5426 
   5427 	if (error == ENETRESET) {
   5428 		if (ifp->if_flags & IFF_RUNNING)
   5429 			bnx_iff(sc);
   5430 		error = 0;
   5431 	}
   5432 
   5433 	splx(s);
   5434 	return error;
   5435 }
   5436 
   5437 /****************************************************************************/
   5438 /* Transmit timeout handler.                                                */
   5439 /*                                                                          */
   5440 /* Returns:                                                                 */
   5441 /*   Nothing.                                                               */
   5442 /****************************************************************************/
   5443 void
   5444 bnx_watchdog(struct ifnet *ifp)
   5445 {
   5446 	struct bnx_softc	*sc = ifp->if_softc;
   5447 
   5448 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5449 	    bnx_dump_status_block(sc));
   5450 	/*
   5451 	 * If we are in this routine because of pause frames, then
   5452 	 * don't reset the hardware.
   5453 	 */
   5454 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5455 		return;
   5456 
   5457 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5458 
   5459 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5460 
   5461 	bnx_init(ifp);
   5462 
   5463 	ifp->if_oerrors++;
   5464 }
   5465 
   5466 /*
   5467  * Interrupt handler.
   5468  */
   5469 /****************************************************************************/
   5470 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5471 /* interrupt and then calls a separate routine for handle the various       */
   5472 /* interrupt causes (PHY, TX, RX).                                          */
   5473 /*                                                                          */
   5474 /* Returns:                                                                 */
   5475 /*   0 for success, positive value for failure.                             */
   5476 /****************************************************************************/
   5477 int
   5478 bnx_intr(void *xsc)
   5479 {
   5480 	struct bnx_softc	*sc = xsc;
   5481 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5482 	uint32_t		status_attn_bits;
   5483 	uint16_t		status_idx;
   5484 	const struct status_block *sblk;
   5485 	int			rv = 0;
   5486 
   5487 	if (!device_is_active(sc->bnx_dev) ||
   5488 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5489 		return 0;
   5490 
   5491 	DBRUNIF(1, sc->interrupts_generated++);
   5492 
   5493 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5494 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5495 
   5496 	sblk = sc->status_block;
   5497 	/*
   5498 	 * If the hardware status block index
   5499 	 * matches the last value read by the
   5500 	 * driver and we haven't asserted our
   5501 	 * interrupt then there's nothing to do.
   5502 	 */
   5503 	status_idx = sblk->status_idx;
   5504 	if ((status_idx != sc->last_status_idx) ||
   5505 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5506 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5507 		rv = 1;
   5508 
   5509 		/* Ack the interrupt */
   5510 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5511 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5512 
   5513 		status_attn_bits = sblk->status_attn_bits;
   5514 
   5515 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5516 		    aprint_debug("Simulating unexpected status attention bit set.");
   5517 		    status_attn_bits = status_attn_bits |
   5518 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5519 
   5520 		/* Was it a link change interrupt? */
   5521 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5522 		    (sblk->status_attn_bits_ack &
   5523 		    STATUS_ATTN_BITS_LINK_STATE))
   5524 			bnx_phy_intr(sc);
   5525 
   5526 		/* If any other attention is asserted then the chip is toast. */
   5527 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5528 		    (sblk->status_attn_bits_ack &
   5529 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5530 			DBRUN(sc->unexpected_attentions++);
   5531 
   5532 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5533 			    sblk->status_attn_bits);
   5534 
   5535 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5536 				    bnx_breakpoint(sc));
   5537 
   5538 			bnx_init(ifp);
   5539 			goto out;
   5540 		}
   5541 
   5542 		/* Check for any completed RX frames. */
   5543 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5544 			bnx_rx_intr(sc);
   5545 
   5546 		/* Check for any completed TX frames. */
   5547 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5548 			bnx_tx_intr(sc);
   5549 
   5550 		/*
   5551 		 * Save the status block index value for use during the
   5552 		 * next interrupt.
   5553 		 */
   5554 		sc->last_status_idx = status_idx;
   5555 
   5556 		/* Start moving packets again */
   5557 		if (ifp->if_flags & IFF_RUNNING)
   5558 			if_schedule_deferred_start(ifp);
   5559 	}
   5560 
   5561 out:
   5562 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5563 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5564 
   5565 	return rv;
   5566 }
   5567 
   5568 /****************************************************************************/
   5569 /* Programs the various packet receive modes (broadcast and multicast).     */
   5570 /*                                                                          */
   5571 /* Returns:                                                                 */
   5572 /*   Nothing.                                                               */
   5573 /****************************************************************************/
   5574 void
   5575 bnx_iff(struct bnx_softc *sc)
   5576 {
   5577 	struct ethercom		*ec = &sc->bnx_ec;
   5578 	struct ifnet		*ifp = &ec->ec_if;
   5579 	struct ether_multi	*enm;
   5580 	struct ether_multistep	step;
   5581 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5582 	uint32_t		rx_mode, sort_mode;
   5583 	int			h, i;
   5584 
   5585 	/* Initialize receive mode default settings. */
   5586 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5587 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5588 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5589 	ifp->if_flags &= ~IFF_ALLMULTI;
   5590 
   5591 	/*
   5592 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5593 	 * be enbled.
   5594 	 */
   5595 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5596 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5597 
   5598 	/*
   5599 	 * Check for promiscuous, all multicast, or selected
   5600 	 * multicast address filtering.
   5601 	 */
   5602 	if (ifp->if_flags & IFF_PROMISC) {
   5603 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5604 
   5605 		ifp->if_flags |= IFF_ALLMULTI;
   5606 		/* Enable promiscuous mode. */
   5607 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5608 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5609 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5610 allmulti:
   5611 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5612 
   5613 		ifp->if_flags |= IFF_ALLMULTI;
   5614 		/* Enable all multicast addresses. */
   5615 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5616 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5617 			    0xffffffff);
   5618 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5619 	} else {
   5620 		/* Accept one or more multicast(s). */
   5621 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5622 
   5623 		ETHER_LOCK(ec);
   5624 		ETHER_FIRST_MULTI(step, ec, enm);
   5625 		while (enm != NULL) {
   5626 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5627 			    ETHER_ADDR_LEN)) {
   5628 				ETHER_UNLOCK(ec);
   5629 				goto allmulti;
   5630 			}
   5631 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5632 			    0xFF;
   5633 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5634 			ETHER_NEXT_MULTI(step, enm);
   5635 		}
   5636 		ETHER_UNLOCK(ec);
   5637 
   5638 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5639 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5640 			    hashes[i]);
   5641 
   5642 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5643 	}
   5644 
   5645 	/* Only make changes if the recive mode has actually changed. */
   5646 	if (rx_mode != sc->rx_mode) {
   5647 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5648 		    rx_mode);
   5649 
   5650 		sc->rx_mode = rx_mode;
   5651 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5652 	}
   5653 
   5654 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5655 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5656 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5657 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5658 }
   5659 
   5660 /****************************************************************************/
   5661 /* Called periodically to updates statistics from the controllers           */
   5662 /* statistics block.                                                        */
   5663 /*                                                                          */
   5664 /* Returns:                                                                 */
   5665 /*   Nothing.                                                               */
   5666 /****************************************************************************/
   5667 void
   5668 bnx_stats_update(struct bnx_softc *sc)
   5669 {
   5670 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5671 	struct statistics_block	*stats;
   5672 
   5673 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5674 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5675 	    BUS_DMASYNC_POSTREAD);
   5676 
   5677 	stats = (struct statistics_block *)sc->stats_block;
   5678 
   5679 	/*
   5680 	 * Update the interface statistics from the
   5681 	 * hardware statistics.
   5682 	 */
   5683 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5684 
   5685 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5686 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5687 	    (u_long)stats->stat_IfInMBUFDiscards +
   5688 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5689 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5690 
   5691 	ifp->if_oerrors = (u_long)
   5692 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5693 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5694 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5695 
   5696 	/*
   5697 	 * Certain controllers don't report
   5698 	 * carrier sense errors correctly.
   5699 	 * See errata E11_5708CA0_1165.
   5700 	 */
   5701 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5702 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5703 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5704 
   5705 	/*
   5706 	 * Update the sysctl statistics from the
   5707 	 * hardware statistics.
   5708 	 */
   5709 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5710 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5711 
   5712 	sc->stat_IfHCInBadOctets =
   5713 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5714 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5715 
   5716 	sc->stat_IfHCOutOctets =
   5717 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5718 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5719 
   5720 	sc->stat_IfHCOutBadOctets =
   5721 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5722 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5723 
   5724 	sc->stat_IfHCInUcastPkts =
   5725 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5726 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5727 
   5728 	sc->stat_IfHCInMulticastPkts =
   5729 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5730 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5731 
   5732 	sc->stat_IfHCInBroadcastPkts =
   5733 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5734 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5735 
   5736 	sc->stat_IfHCOutUcastPkts =
   5737 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5738 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5739 
   5740 	sc->stat_IfHCOutMulticastPkts =
   5741 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5742 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5743 
   5744 	sc->stat_IfHCOutBroadcastPkts =
   5745 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5746 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5747 
   5748 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5749 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5750 
   5751 	sc->stat_Dot3StatsCarrierSenseErrors =
   5752 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5753 
   5754 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5755 
   5756 	sc->stat_Dot3StatsAlignmentErrors =
   5757 	    stats->stat_Dot3StatsAlignmentErrors;
   5758 
   5759 	sc->stat_Dot3StatsSingleCollisionFrames =
   5760 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5761 
   5762 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5763 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5764 
   5765 	sc->stat_Dot3StatsDeferredTransmissions =
   5766 	    stats->stat_Dot3StatsDeferredTransmissions;
   5767 
   5768 	sc->stat_Dot3StatsExcessiveCollisions =
   5769 	    stats->stat_Dot3StatsExcessiveCollisions;
   5770 
   5771 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5772 
   5773 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5774 
   5775 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5776 
   5777 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5778 
   5779 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5780 
   5781 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5782 
   5783 	sc->stat_EtherStatsPktsRx64Octets =
   5784 	    stats->stat_EtherStatsPktsRx64Octets;
   5785 
   5786 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5787 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5788 
   5789 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5790 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5791 
   5792 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5793 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5794 
   5795 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5796 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5797 
   5798 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5799 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5800 
   5801 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5802 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5803 
   5804 	sc->stat_EtherStatsPktsTx64Octets =
   5805 	    stats->stat_EtherStatsPktsTx64Octets;
   5806 
   5807 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5808 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5809 
   5810 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5811 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5812 
   5813 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5814 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5815 
   5816 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5817 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5818 
   5819 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5820 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5821 
   5822 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5823 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5824 
   5825 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5826 
   5827 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5828 
   5829 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5830 
   5831 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5832 
   5833 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5834 
   5835 	sc->stat_MacControlFramesReceived =
   5836 	    stats->stat_MacControlFramesReceived;
   5837 
   5838 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5839 
   5840 	sc->stat_IfInFramesL2FilterDiscards =
   5841 	    stats->stat_IfInFramesL2FilterDiscards;
   5842 
   5843 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5844 
   5845 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5846 
   5847 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5848 
   5849 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5850 
   5851 	sc->stat_CatchupInRuleCheckerDiscards =
   5852 	    stats->stat_CatchupInRuleCheckerDiscards;
   5853 
   5854 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5855 
   5856 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5857 
   5858 	sc->stat_CatchupInRuleCheckerP4Hit =
   5859 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5860 
   5861 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5862 }
   5863 
   5864 void
   5865 bnx_tick(void *xsc)
   5866 {
   5867 	struct bnx_softc	*sc = xsc;
   5868 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5869 	struct mii_data		*mii;
   5870 	uint32_t		msg;
   5871 	uint16_t		prod, chain_prod;
   5872 	uint32_t		prod_bseq;
   5873 	int s = splnet();
   5874 
   5875 	/* Tell the firmware that the driver is still running. */
   5876 #ifdef BNX_DEBUG
   5877 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5878 #else
   5879 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5880 #endif
   5881 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5882 
   5883 	/* Update the statistics from the hardware statistics block. */
   5884 	bnx_stats_update(sc);
   5885 
   5886 	/* Schedule the next tick. */
   5887 	if (!sc->bnx_detaching)
   5888 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5889 
   5890 	if (sc->bnx_link)
   5891 		goto bnx_tick_exit;
   5892 
   5893 	mii = &sc->bnx_mii;
   5894 	mii_tick(mii);
   5895 
   5896 	/* Check if the link has come up. */
   5897 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5898 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5899 		sc->bnx_link++;
   5900 		/* Now that link is up, handle any outstanding TX traffic. */
   5901 		if_schedule_deferred_start(ifp);
   5902 	}
   5903 
   5904 bnx_tick_exit:
   5905 	/* try to get more RX buffers, just in case */
   5906 	prod = sc->rx_prod;
   5907 	prod_bseq = sc->rx_prod_bseq;
   5908 	chain_prod = RX_CHAIN_IDX(prod);
   5909 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5910 	sc->rx_prod = prod;
   5911 	sc->rx_prod_bseq = prod_bseq;
   5912 
   5913 	splx(s);
   5914 	return;
   5915 }
   5916 
   5917 /****************************************************************************/
   5918 /* BNX Debug Routines                                                       */
   5919 /****************************************************************************/
   5920 #ifdef BNX_DEBUG
   5921 
   5922 /****************************************************************************/
   5923 /* Prints out information about an mbuf.                                    */
   5924 /*                                                                          */
   5925 /* Returns:                                                                 */
   5926 /*   Nothing.                                                               */
   5927 /****************************************************************************/
   5928 void
   5929 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5930 {
   5931 	struct mbuf		*mp = m;
   5932 
   5933 	if (m == NULL) {
   5934 		/* Index out of range. */
   5935 		aprint_error("mbuf ptr is null!\n");
   5936 		return;
   5937 	}
   5938 
   5939 	while (mp) {
   5940 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5941 		    mp, mp->m_len);
   5942 
   5943 		if (mp->m_flags & M_EXT)
   5944 			aprint_debug("M_EXT ");
   5945 		if (mp->m_flags & M_PKTHDR)
   5946 			aprint_debug("M_PKTHDR ");
   5947 		aprint_debug("\n");
   5948 
   5949 		if (mp->m_flags & M_EXT)
   5950 			aprint_debug("- m_ext: vaddr = %p, "
   5951 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5952 
   5953 		mp = mp->m_next;
   5954 	}
   5955 }
   5956 
   5957 /****************************************************************************/
   5958 /* Prints out the mbufs in the TX mbuf chain.                               */
   5959 /*                                                                          */
   5960 /* Returns:                                                                 */
   5961 /*   Nothing.                                                               */
   5962 /****************************************************************************/
   5963 void
   5964 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5965 {
   5966 #if 0
   5967 	struct mbuf		*m;
   5968 	int			i;
   5969 
   5970 	aprint_debug_dev(sc->bnx_dev,
   5971 	    "----------------------------"
   5972 	    "  tx mbuf data  "
   5973 	    "----------------------------\n");
   5974 
   5975 	for (i = 0; i < count; i++) {
   5976 		m = sc->tx_mbuf_ptr[chain_prod];
   5977 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5978 		bnx_dump_mbuf(sc, m);
   5979 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5980 	}
   5981 
   5982 	aprint_debug_dev(sc->bnx_dev,
   5983 	    "--------------------------------------------"
   5984 	    "----------------------------\n");
   5985 #endif
   5986 }
   5987 
   5988 /*
   5989  * This routine prints the RX mbuf chain.
   5990  */
   5991 void
   5992 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5993 {
   5994 	struct mbuf		*m;
   5995 	int			i;
   5996 
   5997 	aprint_debug_dev(sc->bnx_dev,
   5998 	    "----------------------------"
   5999 	    "  rx mbuf data  "
   6000 	    "----------------------------\n");
   6001 
   6002 	for (i = 0; i < count; i++) {
   6003 		m = sc->rx_mbuf_ptr[chain_prod];
   6004 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   6005 		bnx_dump_mbuf(sc, m);
   6006 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   6007 	}
   6008 
   6009 
   6010 	aprint_debug_dev(sc->bnx_dev,
   6011 	    "--------------------------------------------"
   6012 	    "----------------------------\n");
   6013 }
   6014 
   6015 void
   6016 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   6017 {
   6018 	if (idx > MAX_TX_BD)
   6019 		/* Index out of range. */
   6020 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   6021 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   6022 		/* TX Chain page pointer. */
   6023 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   6024 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   6025 		    txbd->tx_bd_haddr_lo);
   6026 	else
   6027 		/* Normal tx_bd entry. */
   6028 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6029 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   6030 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   6031 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   6032 		    txbd->tx_bd_flags);
   6033 }
   6034 
   6035 void
   6036 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   6037 {
   6038 	if (idx > MAX_RX_BD)
   6039 		/* Index out of range. */
   6040 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   6041 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   6042 		/* TX Chain page pointer. */
   6043 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   6044 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   6045 		    rxbd->rx_bd_haddr_lo);
   6046 	else
   6047 		/* Normal tx_bd entry. */
   6048 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6049 		    "0x%08X, flags = 0x%08X\n", idx,
   6050 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   6051 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   6052 }
   6053 
   6054 void
   6055 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   6056 {
   6057 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   6058 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   6059 	    "tcp_udp_xsum = 0x%04X\n", idx,
   6060 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   6061 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   6062 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   6063 }
   6064 
   6065 /*
   6066  * This routine prints the TX chain.
   6067  */
   6068 void
   6069 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   6070 {
   6071 	struct tx_bd		*txbd;
   6072 	int			i;
   6073 
   6074 	/* First some info about the tx_bd chain structure. */
   6075 	aprint_debug_dev(sc->bnx_dev,
   6076 	    "----------------------------"
   6077 	    "  tx_bd  chain  "
   6078 	    "----------------------------\n");
   6079 
   6080 	BNX_PRINTF(sc,
   6081 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   6082 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6083 
   6084 	BNX_PRINTF(sc,
   6085 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6086 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6087 
   6088 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6089 
   6090 	aprint_error_dev(sc->bnx_dev, ""
   6091 	    "-----------------------------"
   6092 	    "   tx_bd data   "
   6093 	    "-----------------------------\n");
   6094 
   6095 	/* Now print out the tx_bd's themselves. */
   6096 	for (i = 0; i < count; i++) {
   6097 		txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6098 		bnx_dump_txbd(sc, tx_prod, txbd);
   6099 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6100 	}
   6101 
   6102 	aprint_debug_dev(sc->bnx_dev,
   6103 	    "-----------------------------"
   6104 	    "--------------"
   6105 	    "-----------------------------\n");
   6106 }
   6107 
   6108 /*
   6109  * This routine prints the RX chain.
   6110  */
   6111 void
   6112 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6113 {
   6114 	struct rx_bd		*rxbd;
   6115 	int			i;
   6116 
   6117 	/* First some info about the tx_bd chain structure. */
   6118 	aprint_debug_dev(sc->bnx_dev,
   6119 	    "----------------------------"
   6120 	    "  rx_bd  chain  "
   6121 	    "----------------------------\n");
   6122 
   6123 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6124 
   6125 	BNX_PRINTF(sc,
   6126 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6127 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6128 
   6129 	BNX_PRINTF(sc,
   6130 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6131 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6132 
   6133 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6134 
   6135 	aprint_error_dev(sc->bnx_dev,
   6136 	    "----------------------------"
   6137 	    "   rx_bd data   "
   6138 	    "----------------------------\n");
   6139 
   6140 	/* Now print out the rx_bd's themselves. */
   6141 	for (i = 0; i < count; i++) {
   6142 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6143 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6144 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6145 	}
   6146 
   6147 	aprint_debug_dev(sc->bnx_dev,
   6148 	    "----------------------------"
   6149 	    "--------------"
   6150 	    "----------------------------\n");
   6151 }
   6152 
   6153 /*
   6154  * This routine prints the status block.
   6155  */
   6156 void
   6157 bnx_dump_status_block(struct bnx_softc *sc)
   6158 {
   6159 	struct status_block	*sblk;
   6160 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6161 	    BUS_DMASYNC_POSTREAD);
   6162 
   6163 	sblk = sc->status_block;
   6164 
   6165 	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6166 	    "Status Block -----------------------------\n");
   6167 
   6168 	BNX_PRINTF(sc,
   6169 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6170 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6171 	    sblk->status_idx);
   6172 
   6173 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6174 	    sblk->status_rx_quick_consumer_index0,
   6175 	    sblk->status_tx_quick_consumer_index0);
   6176 
   6177 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6178 
   6179 	/* Theses indices are not used for normal L2 drivers. */
   6180 	if (sblk->status_rx_quick_consumer_index1 ||
   6181 		sblk->status_tx_quick_consumer_index1)
   6182 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6183 		    sblk->status_rx_quick_consumer_index1,
   6184 		    sblk->status_tx_quick_consumer_index1);
   6185 
   6186 	if (sblk->status_rx_quick_consumer_index2 ||
   6187 		sblk->status_tx_quick_consumer_index2)
   6188 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6189 		    sblk->status_rx_quick_consumer_index2,
   6190 		    sblk->status_tx_quick_consumer_index2);
   6191 
   6192 	if (sblk->status_rx_quick_consumer_index3 ||
   6193 		sblk->status_tx_quick_consumer_index3)
   6194 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6195 		    sblk->status_rx_quick_consumer_index3,
   6196 		    sblk->status_tx_quick_consumer_index3);
   6197 
   6198 	if (sblk->status_rx_quick_consumer_index4 ||
   6199 		sblk->status_rx_quick_consumer_index5)
   6200 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6201 		    sblk->status_rx_quick_consumer_index4,
   6202 		    sblk->status_rx_quick_consumer_index5);
   6203 
   6204 	if (sblk->status_rx_quick_consumer_index6 ||
   6205 		sblk->status_rx_quick_consumer_index7)
   6206 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6207 		    sblk->status_rx_quick_consumer_index6,
   6208 		    sblk->status_rx_quick_consumer_index7);
   6209 
   6210 	if (sblk->status_rx_quick_consumer_index8 ||
   6211 		sblk->status_rx_quick_consumer_index9)
   6212 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6213 		    sblk->status_rx_quick_consumer_index8,
   6214 		    sblk->status_rx_quick_consumer_index9);
   6215 
   6216 	if (sblk->status_rx_quick_consumer_index10 ||
   6217 		sblk->status_rx_quick_consumer_index11)
   6218 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6219 		    sblk->status_rx_quick_consumer_index10,
   6220 		    sblk->status_rx_quick_consumer_index11);
   6221 
   6222 	if (sblk->status_rx_quick_consumer_index12 ||
   6223 		sblk->status_rx_quick_consumer_index13)
   6224 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6225 		    sblk->status_rx_quick_consumer_index12,
   6226 		    sblk->status_rx_quick_consumer_index13);
   6227 
   6228 	if (sblk->status_rx_quick_consumer_index14 ||
   6229 		sblk->status_rx_quick_consumer_index15)
   6230 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6231 		    sblk->status_rx_quick_consumer_index14,
   6232 		    sblk->status_rx_quick_consumer_index15);
   6233 
   6234 	if (sblk->status_completion_producer_index ||
   6235 		sblk->status_cmd_consumer_index)
   6236 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6237 		    sblk->status_completion_producer_index,
   6238 		    sblk->status_cmd_consumer_index);
   6239 
   6240 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6241 	    "-----------------------------\n");
   6242 }
   6243 
   6244 /*
   6245  * This routine prints the statistics block.
   6246  */
   6247 void
   6248 bnx_dump_stats_block(struct bnx_softc *sc)
   6249 {
   6250 	struct statistics_block	*sblk;
   6251 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6252 	    BUS_DMASYNC_POSTREAD);
   6253 
   6254 	sblk = sc->stats_block;
   6255 
   6256 	aprint_debug_dev(sc->bnx_dev, ""
   6257 	    "-----------------------------"
   6258 	    " Stats  Block "
   6259 	    "-----------------------------\n");
   6260 
   6261 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6262 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6263 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6264 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6265 
   6266 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6267 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6268 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6269 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6270 
   6271 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6272 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6273 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6274 	    sblk->stat_IfHCInMulticastPkts_hi,
   6275 	    sblk->stat_IfHCInMulticastPkts_lo);
   6276 
   6277 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6278 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6279 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6280 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6281 	    sblk->stat_IfHCOutUcastPkts_hi,
   6282 	    sblk->stat_IfHCOutUcastPkts_lo);
   6283 
   6284 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6285 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6286 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6287 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6288 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6289 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6290 
   6291 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6292 		BNX_PRINTF(sc, "0x%08X : "
   6293 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6294 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6295 
   6296 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6297 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6298 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6299 
   6300 	if (sblk->stat_Dot3StatsFCSErrors)
   6301 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6302 		    sblk->stat_Dot3StatsFCSErrors);
   6303 
   6304 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6305 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6306 		    sblk->stat_Dot3StatsAlignmentErrors);
   6307 
   6308 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6309 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6310 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6311 
   6312 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6313 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6314 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6315 
   6316 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6317 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6318 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6319 
   6320 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6321 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6322 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6323 
   6324 	if (sblk->stat_Dot3StatsLateCollisions)
   6325 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6326 		    sblk->stat_Dot3StatsLateCollisions);
   6327 
   6328 	if (sblk->stat_EtherStatsCollisions)
   6329 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6330 		    sblk->stat_EtherStatsCollisions);
   6331 
   6332 	if (sblk->stat_EtherStatsFragments)
   6333 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6334 		    sblk->stat_EtherStatsFragments);
   6335 
   6336 	if (sblk->stat_EtherStatsJabbers)
   6337 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6338 		    sblk->stat_EtherStatsJabbers);
   6339 
   6340 	if (sblk->stat_EtherStatsUndersizePkts)
   6341 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6342 		    sblk->stat_EtherStatsUndersizePkts);
   6343 
   6344 	if (sblk->stat_EtherStatsOverrsizePkts)
   6345 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6346 		    sblk->stat_EtherStatsOverrsizePkts);
   6347 
   6348 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6349 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6350 		    sblk->stat_EtherStatsPktsRx64Octets);
   6351 
   6352 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6353 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6354 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6355 
   6356 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6357 		BNX_PRINTF(sc, "0x%08X : "
   6358 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6359 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6360 
   6361 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6362 		BNX_PRINTF(sc, "0x%08X : "
   6363 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6364 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6365 
   6366 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6367 		BNX_PRINTF(sc, "0x%08X : "
   6368 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6369 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6370 
   6371 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6372 		BNX_PRINTF(sc, "0x%08X : "
   6373 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6374 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6375 
   6376 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6377 		BNX_PRINTF(sc, "0x%08X : "
   6378 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6379 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6380 
   6381 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6382 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6383 		    sblk->stat_EtherStatsPktsTx64Octets);
   6384 
   6385 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6386 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6387 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6388 
   6389 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6390 		BNX_PRINTF(sc, "0x%08X : "
   6391 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6392 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6393 
   6394 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6395 		BNX_PRINTF(sc, "0x%08X : "
   6396 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6397 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6398 
   6399 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6400 		BNX_PRINTF(sc, "0x%08X : "
   6401 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6402 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6403 
   6404 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6405 		BNX_PRINTF(sc, "0x%08X : "
   6406 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6407 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6408 
   6409 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6410 		BNX_PRINTF(sc, "0x%08X : "
   6411 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6412 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6413 
   6414 	if (sblk->stat_XonPauseFramesReceived)
   6415 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6416 		    sblk->stat_XonPauseFramesReceived);
   6417 
   6418 	if (sblk->stat_XoffPauseFramesReceived)
   6419 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6420 		    sblk->stat_XoffPauseFramesReceived);
   6421 
   6422 	if (sblk->stat_OutXonSent)
   6423 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6424 		    sblk->stat_OutXonSent);
   6425 
   6426 	if (sblk->stat_OutXoffSent)
   6427 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6428 		    sblk->stat_OutXoffSent);
   6429 
   6430 	if (sblk->stat_FlowControlDone)
   6431 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6432 		    sblk->stat_FlowControlDone);
   6433 
   6434 	if (sblk->stat_MacControlFramesReceived)
   6435 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6436 		    sblk->stat_MacControlFramesReceived);
   6437 
   6438 	if (sblk->stat_XoffStateEntered)
   6439 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6440 		    sblk->stat_XoffStateEntered);
   6441 
   6442 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6443 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6444 		    sblk->stat_IfInFramesL2FilterDiscards);
   6445 
   6446 	if (sblk->stat_IfInRuleCheckerDiscards)
   6447 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6448 		    sblk->stat_IfInRuleCheckerDiscards);
   6449 
   6450 	if (sblk->stat_IfInFTQDiscards)
   6451 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6452 		    sblk->stat_IfInFTQDiscards);
   6453 
   6454 	if (sblk->stat_IfInMBUFDiscards)
   6455 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6456 		    sblk->stat_IfInMBUFDiscards);
   6457 
   6458 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6459 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6460 		    sblk->stat_IfInRuleCheckerP4Hit);
   6461 
   6462 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6463 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6464 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6465 
   6466 	if (sblk->stat_CatchupInFTQDiscards)
   6467 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6468 		    sblk->stat_CatchupInFTQDiscards);
   6469 
   6470 	if (sblk->stat_CatchupInMBUFDiscards)
   6471 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6472 		    sblk->stat_CatchupInMBUFDiscards);
   6473 
   6474 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6475 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6476 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6477 
   6478 	aprint_debug_dev(sc->bnx_dev,
   6479 	    "-----------------------------"
   6480 	    "--------------"
   6481 	    "-----------------------------\n");
   6482 }
   6483 
   6484 void
   6485 bnx_dump_driver_state(struct bnx_softc *sc)
   6486 {
   6487 	aprint_debug_dev(sc->bnx_dev,
   6488 	    "-----------------------------"
   6489 	    " Driver State "
   6490 	    "-----------------------------\n");
   6491 
   6492 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6493 	    "address\n", sc);
   6494 
   6495 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6496 	    sc->status_block);
   6497 
   6498 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6499 	    "address\n", sc->stats_block);
   6500 
   6501 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6502 	    "address\n", sc->tx_bd_chain);
   6503 
   6504 #if 0
   6505 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6506 	    sc->rx_bd_chain);
   6507 
   6508 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6509 	    sc->tx_mbuf_ptr);
   6510 #endif
   6511 
   6512 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6513 	    sc->rx_mbuf_ptr);
   6514 
   6515 	BNX_PRINTF(sc,
   6516 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6517 	    sc->interrupts_generated);
   6518 
   6519 	BNX_PRINTF(sc,
   6520 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6521 	    sc->rx_interrupts);
   6522 
   6523 	BNX_PRINTF(sc,
   6524 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6525 	    sc->tx_interrupts);
   6526 
   6527 	BNX_PRINTF(sc,
   6528 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6529 	    sc->last_status_idx);
   6530 
   6531 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6532 	    sc->tx_prod);
   6533 
   6534 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6535 	    sc->tx_cons);
   6536 
   6537 	BNX_PRINTF(sc,
   6538 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6539 	    sc->tx_prod_bseq);
   6540 	BNX_PRINTF(sc,
   6541 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6542 	    sc->tx_mbuf_alloc);
   6543 
   6544 	BNX_PRINTF(sc,
   6545 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6546 	    sc->used_tx_bd);
   6547 
   6548 	BNX_PRINTF(sc,
   6549 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6550 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6551 
   6552 
   6553 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6554 	    sc->rx_prod);
   6555 
   6556 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6557 	    sc->rx_cons);
   6558 
   6559 	BNX_PRINTF(sc,
   6560 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6561 	    sc->rx_prod_bseq);
   6562 
   6563 	BNX_PRINTF(sc,
   6564 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6565 	    sc->rx_mbuf_alloc);
   6566 
   6567 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6568 	    sc->free_rx_bd);
   6569 
   6570 	BNX_PRINTF(sc,
   6571 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6572 	    sc->rx_low_watermark, sc->max_rx_bd);
   6573 
   6574 	BNX_PRINTF(sc,
   6575 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6576 	    "mbuf alloc failures\n",
   6577 	    sc->mbuf_alloc_failed);
   6578 
   6579 	BNX_PRINTF(sc,
   6580 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6581 	    "simulated mbuf alloc failures\n",
   6582 	    sc->mbuf_sim_alloc_failed);
   6583 
   6584 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6585 	    "-----------------------------\n");
   6586 }
   6587 
   6588 void
   6589 bnx_dump_hw_state(struct bnx_softc *sc)
   6590 {
   6591 	uint32_t		val1;
   6592 	int			i;
   6593 
   6594 	aprint_debug_dev(sc->bnx_dev,
   6595 	    "----------------------------"
   6596 	    " Hardware State "
   6597 	    "----------------------------\n");
   6598 
   6599 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
   6600 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
   6601 
   6602 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6603 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6604 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6605 
   6606 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6607 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6608 
   6609 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6610 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6611 
   6612 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6613 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6614 	    BNX_EMAC_STATUS);
   6615 
   6616 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6617 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6618 
   6619 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6620 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6621 	    BNX_TBDR_STATUS);
   6622 
   6623 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6624 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6625 	    BNX_TDMA_STATUS);
   6626 
   6627 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6628 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6629 
   6630 	aprint_debug_dev(sc->bnx_dev,
   6631 	    "----------------------------"
   6632 	    "----------------"
   6633 	    "----------------------------\n");
   6634 
   6635 	aprint_debug_dev(sc->bnx_dev,
   6636 	    "----------------------------"
   6637 	    " Register  Dump "
   6638 	    "----------------------------\n");
   6639 
   6640 	for (i = 0x400; i < 0x8000; i += 0x10)
   6641 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6642 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6643 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6644 
   6645 	aprint_debug_dev(sc->bnx_dev,
   6646 	    "----------------------------"
   6647 	    "----------------"
   6648 	    "----------------------------\n");
   6649 }
   6650 
   6651 void
   6652 bnx_breakpoint(struct bnx_softc *sc)
   6653 {
   6654 	/* Unreachable code to shut the compiler up about unused functions. */
   6655 	if (0) {
   6656 		bnx_dump_txbd(sc, 0, NULL);
   6657 		bnx_dump_rxbd(sc, 0, NULL);
   6658 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6659 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6660 		bnx_dump_l2fhdr(sc, 0, NULL);
   6661 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6662 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6663 		bnx_dump_status_block(sc);
   6664 		bnx_dump_stats_block(sc);
   6665 		bnx_dump_driver_state(sc);
   6666 		bnx_dump_hw_state(sc);
   6667 	}
   6668 
   6669 	bnx_dump_driver_state(sc);
   6670 	/* Print the important status block fields. */
   6671 	bnx_dump_status_block(sc);
   6672 
   6673 #if 0
   6674 	/* Call the debugger. */
   6675 	breakpoint();
   6676 #endif
   6677 
   6678 	return;
   6679 }
   6680 #endif
   6681