if_bnx.c revision 1.85 1 /* $NetBSD: if_bnx.c,v 1.85 2019/05/28 07:41:49 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.85 2019/05/28 07:41:49 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 pci_intr_handle_t ih;
581 const char *intrstr = NULL;
582 uint32_t command;
583 struct ifnet *ifp;
584 struct mii_data * const mii = &sc->bnx_mii;
585 uint32_t val;
586 int mii_flags = MIIF_FORCEANEG;
587 pcireg_t memtype;
588 char intrbuf[PCI_INTRSTR_LEN];
589 int i, j;
590
591 if (bnx_tx_pool == NULL) {
592 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
593 if (bnx_tx_pool != NULL) {
594 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
595 0, 0, 0, "bnxpkts", NULL, IPL_NET);
596 } else {
597 aprint_error(": can't alloc bnx_tx_pool\n");
598 return;
599 }
600 }
601
602 bp = bnx_lookup(pa);
603 if (bp == NULL)
604 panic("unknown device");
605
606 sc->bnx_dev = self;
607
608 aprint_naive("\n");
609 aprint_normal(": %s\n", bp->bp_name);
610
611 sc->bnx_pa = *pa;
612
613 /*
614 * Map control/status registers.
615 */
616 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
617 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
618 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
619 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
620
621 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
622 aprint_error_dev(sc->bnx_dev,
623 "failed to enable memory mapping!\n");
624 return;
625 }
626
627 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
628 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
629 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
630 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
631 return;
632 }
633
634 if (pci_intr_map(pa, &ih)) {
635 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
636 goto bnx_attach_fail;
637 }
638 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
639
640 /*
641 * Configure byte swap and enable indirect register access.
642 * Rely on CPU to do target byte swapping on big endian systems.
643 * Access to registers outside of PCI configurtion space are not
644 * valid until this is done.
645 */
646 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
647 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
648 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
649
650 /* Save ASIC revsion info. */
651 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
652
653 /*
654 * Find the base address for shared memory access.
655 * Newer versions of bootcode use a signature and offset
656 * while older versions use a fixed address.
657 */
658 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
659 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
660 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
661 (sc->bnx_pa.pa_function << 2));
662 else
663 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
664
665 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
666
667 /* Set initial device and PHY flags */
668 sc->bnx_flags = 0;
669 sc->bnx_phy_flags = 0;
670
671 /* Fetch the bootcode revision. */
672 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
673 for (i = 0, j = 0; i < 3; i++) {
674 uint8_t num;
675 int k, skip0;
676
677 num = (uint8_t)(val >> (24 - (i * 8)));
678 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
679 if (num >= k || !skip0 || k == 1) {
680 sc->bnx_bc_ver[j++] = (num / k) + '0';
681 skip0 = 0;
682 }
683 }
684 if (i != 2)
685 sc->bnx_bc_ver[j++] = '.';
686 }
687
688 /* Check if any management firmware is enabled. */
689 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
690 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
691 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
692 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
693
694 /* Allow time for firmware to enter the running state. */
695 for (i = 0; i < 30; i++) {
696 val = REG_RD_IND(sc, sc->bnx_shmem_base +
697 BNX_BC_STATE_CONDITION);
698 if (val & BNX_CONDITION_MFW_RUN_MASK)
699 break;
700 DELAY(10000);
701 }
702
703 /* Check if management firmware is running. */
704 val = REG_RD_IND(sc, sc->bnx_shmem_base +
705 BNX_BC_STATE_CONDITION);
706 val &= BNX_CONDITION_MFW_RUN_MASK;
707 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
708 (val != BNX_CONDITION_MFW_RUN_NONE)) {
709 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
710 BNX_MFW_VER_PTR);
711
712 /* Read the management firmware version string. */
713 for (j = 0; j < 3; j++) {
714 val = bnx_reg_rd_ind(sc, addr + j * 4);
715 val = bswap32(val);
716 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
717 i += 4;
718 }
719 } else {
720 /* May cause firmware synchronization timeouts. */
721 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
722 "but not running!\n", __FILE__, __LINE__);
723 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
724
725 /* ToDo: Any action the driver should take? */
726 }
727 }
728
729 bnx_probe_pci_caps(sc);
730
731 /* Get PCI bus information (speed and type). */
732 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
733 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
734 uint32_t clkreg;
735
736 sc->bnx_flags |= BNX_PCIX_FLAG;
737
738 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
739
740 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
741 switch (clkreg) {
742 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
743 sc->bus_speed_mhz = 133;
744 break;
745
746 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
747 sc->bus_speed_mhz = 100;
748 break;
749
750 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
751 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
752 sc->bus_speed_mhz = 66;
753 break;
754
755 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
756 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
757 sc->bus_speed_mhz = 50;
758 break;
759
760 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
761 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
762 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
763 sc->bus_speed_mhz = 33;
764 break;
765 }
766 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
767 sc->bus_speed_mhz = 66;
768 else
769 sc->bus_speed_mhz = 33;
770
771 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
772 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
773
774 /* Reset the controller. */
775 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
776 goto bnx_attach_fail;
777
778 /* Initialize the controller. */
779 if (bnx_chipinit(sc)) {
780 aprint_error_dev(sc->bnx_dev,
781 "Controller initialization failed!\n");
782 goto bnx_attach_fail;
783 }
784
785 /* Perform NVRAM test. */
786 if (bnx_nvram_test(sc)) {
787 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
788 goto bnx_attach_fail;
789 }
790
791 /* Fetch the permanent Ethernet MAC address. */
792 bnx_get_mac_addr(sc);
793 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
794 ether_sprintf(sc->eaddr));
795
796 /*
797 * Trip points control how many BDs
798 * should be ready before generating an
799 * interrupt while ticks control how long
800 * a BD can sit in the chain before
801 * generating an interrupt. Set the default
802 * values for the RX and TX rings.
803 */
804
805 #ifdef BNX_DEBUG
806 /* Force more frequent interrupts. */
807 sc->bnx_tx_quick_cons_trip_int = 1;
808 sc->bnx_tx_quick_cons_trip = 1;
809 sc->bnx_tx_ticks_int = 0;
810 sc->bnx_tx_ticks = 0;
811
812 sc->bnx_rx_quick_cons_trip_int = 1;
813 sc->bnx_rx_quick_cons_trip = 1;
814 sc->bnx_rx_ticks_int = 0;
815 sc->bnx_rx_ticks = 0;
816 #else
817 sc->bnx_tx_quick_cons_trip_int = 20;
818 sc->bnx_tx_quick_cons_trip = 20;
819 sc->bnx_tx_ticks_int = 80;
820 sc->bnx_tx_ticks = 80;
821
822 sc->bnx_rx_quick_cons_trip_int = 6;
823 sc->bnx_rx_quick_cons_trip = 6;
824 sc->bnx_rx_ticks_int = 18;
825 sc->bnx_rx_ticks = 18;
826 #endif
827
828 /* Update statistics once every second. */
829 sc->bnx_stats_ticks = 1000000 & 0xffff00;
830
831 /* Find the media type for the adapter. */
832 bnx_get_media(sc);
833
834 /*
835 * Store config data needed by the PHY driver for
836 * backplane applications
837 */
838 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
839 BNX_SHARED_HW_CFG_CONFIG);
840 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
841 BNX_PORT_HW_CFG_CONFIG);
842
843 /* Allocate DMA memory resources. */
844 sc->bnx_dmatag = pa->pa_dmat;
845 if (bnx_dma_alloc(sc)) {
846 aprint_error_dev(sc->bnx_dev,
847 "DMA resource allocation failed!\n");
848 goto bnx_attach_fail;
849 }
850
851 /* Initialize the ifnet interface. */
852 ifp = &sc->bnx_ec.ec_if;
853 ifp->if_softc = sc;
854 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
855 ifp->if_ioctl = bnx_ioctl;
856 ifp->if_stop = bnx_stop;
857 ifp->if_start = bnx_start;
858 ifp->if_init = bnx_init;
859 ifp->if_watchdog = bnx_watchdog;
860 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
861 IFQ_SET_READY(&ifp->if_snd);
862 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
863
864 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
865 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
866
867 ifp->if_capabilities |=
868 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
869 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
870 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
871
872 /* create workqueue to handle packet allocations */
873 if (workqueue_create(&sc->bnx_wq, device_xname(self),
874 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
875 aprint_error_dev(self, "failed to create workqueue\n");
876 goto bnx_attach_fail;
877 }
878
879 mii->mii_ifp = ifp;
880 mii->mii_readreg = bnx_miibus_read_reg;
881 mii->mii_writereg = bnx_miibus_write_reg;
882 mii->mii_statchg = bnx_miibus_statchg;
883
884 /* Handle any special PHY initialization for SerDes PHYs. */
885 bnx_init_media(sc);
886
887 sc->bnx_ec.ec_mii = mii;
888 ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
889
890 /* set phyflags and chipid before mii_attach() */
891 dict = device_properties(self);
892 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
893 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
894 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
895 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
896
897 /* Print some useful adapter info */
898 bnx_print_adapter_info(sc);
899
900 mii_flags |= MIIF_DOPAUSE;
901 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
902 mii_flags |= MIIF_HAVEFIBER;
903 mii_attach(self, mii, 0xffffffff,
904 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
905
906 if (LIST_EMPTY(&mii->mii_phys)) {
907 aprint_error_dev(self, "no PHY found!\n");
908 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
909 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
910 } else
911 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
912
913 /* Attach to the Ethernet interface list. */
914 if_attach(ifp);
915 if_deferred_start_init(ifp, NULL);
916 ether_ifattach(ifp, sc->eaddr);
917
918 callout_init(&sc->bnx_timeout, 0);
919
920 /* Hookup IRQ last. */
921 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
922 sc, device_xname(self));
923 if (sc->bnx_intrhand == NULL) {
924 aprint_error_dev(self, "couldn't establish interrupt");
925 if (intrstr != NULL)
926 aprint_error(" at %s", intrstr);
927 aprint_error("\n");
928 goto bnx_attach_fail;
929 }
930 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
931
932 if (pmf_device_register(self, NULL, NULL))
933 pmf_class_network_register(self, ifp);
934 else
935 aprint_error_dev(self, "couldn't establish power handler\n");
936
937 /* Print some important debugging info. */
938 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
939
940 /* Get the firmware running so ASF still works. */
941 bnx_mgmt_init(sc);
942
943 goto bnx_attach_exit;
944
945 bnx_attach_fail:
946 bnx_release_resources(sc);
947
948 bnx_attach_exit:
949 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
950 }
951
952 /****************************************************************************/
953 /* Device detach function. */
954 /* */
955 /* Stops the controller, resets the controller, and releases resources. */
956 /* */
957 /* Returns: */
958 /* 0 on success, positive value on failure. */
959 /****************************************************************************/
960 int
961 bnx_detach(device_t dev, int flags)
962 {
963 int s;
964 struct bnx_softc *sc;
965 struct ifnet *ifp;
966
967 sc = device_private(dev);
968 ifp = &sc->bnx_ec.ec_if;
969
970 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
971
972 /* Stop and reset the controller. */
973 s = splnet();
974 bnx_stop(ifp, 1);
975 splx(s);
976
977 pmf_device_deregister(dev);
978 callout_destroy(&sc->bnx_timeout);
979 ether_ifdetach(ifp);
980 workqueue_destroy(sc->bnx_wq);
981
982 /* Delete all remaining media. */
983 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
984
985 if_detach(ifp);
986 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
987
988 /* Release all remaining resources. */
989 bnx_release_resources(sc);
990
991 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
992
993 return 0;
994 }
995
996 /****************************************************************************/
997 /* Indirect register read. */
998 /* */
999 /* Reads NetXtreme II registers using an index/data register pair in PCI */
1000 /* configuration space. Using this mechanism avoids issues with posted */
1001 /* reads but is much slower than memory-mapped I/O. */
1002 /* */
1003 /* Returns: */
1004 /* The value of the register. */
1005 /****************************************************************************/
1006 uint32_t
1007 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1008 {
1009 struct pci_attach_args *pa = &(sc->bnx_pa);
1010
1011 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1012 offset);
1013 #ifdef BNX_DEBUG
1014 {
1015 uint32_t val;
1016 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1017 BNX_PCICFG_REG_WINDOW);
1018 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1019 "val = 0x%08X\n", __func__, offset, val);
1020 return val;
1021 }
1022 #else
1023 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1024 #endif
1025 }
1026
1027 /****************************************************************************/
1028 /* Indirect register write. */
1029 /* */
1030 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1031 /* configuration space. Using this mechanism avoids issues with posted */
1032 /* writes but is muchh slower than memory-mapped I/O. */
1033 /* */
1034 /* Returns: */
1035 /* Nothing. */
1036 /****************************************************************************/
1037 void
1038 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1039 {
1040 struct pci_attach_args *pa = &(sc->bnx_pa);
1041
1042 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1043 __func__, offset, val);
1044
1045 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1046 offset);
1047 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1048 }
1049
1050 /****************************************************************************/
1051 /* Context memory write. */
1052 /* */
1053 /* The NetXtreme II controller uses context memory to track connection */
1054 /* information for L2 and higher network protocols. */
1055 /* */
1056 /* Returns: */
1057 /* Nothing. */
1058 /****************************************************************************/
1059 void
1060 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1061 uint32_t ctx_val)
1062 {
1063 uint32_t idx, offset = ctx_offset + cid_addr;
1064 uint32_t val, retry_cnt = 5;
1065
1066 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1067 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1068 REG_WR(sc, BNX_CTX_CTX_CTRL,
1069 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1070
1071 for (idx = 0; idx < retry_cnt; idx++) {
1072 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1073 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1074 break;
1075 DELAY(5);
1076 }
1077
1078 #if 0
1079 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1080 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1081 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1082 __FILE__, __LINE__, cid_addr, ctx_offset);
1083 #endif
1084
1085 } else {
1086 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1087 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1088 }
1089 }
1090
1091 /****************************************************************************/
1092 /* PHY register read. */
1093 /* */
1094 /* Implements register reads on the MII bus. */
1095 /* */
1096 /* Returns: */
1097 /* The value of the register. */
1098 /****************************************************************************/
1099 int
1100 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1101 {
1102 struct bnx_softc *sc = device_private(dev);
1103 uint32_t data;
1104 int i, rv = 0;
1105
1106 /*
1107 * The BCM5709S PHY is an IEEE Clause 45 PHY
1108 * with special mappings to work with IEEE
1109 * Clause 22 register accesses.
1110 */
1111 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1112 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1113 reg += 0x10;
1114 }
1115
1116 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1117 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1118 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1119
1120 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1121 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1122
1123 DELAY(40);
1124 }
1125
1126 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1127 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1128 BNX_EMAC_MDIO_COMM_START_BUSY;
1129 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1130
1131 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1132 DELAY(10);
1133
1134 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1135 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1136 DELAY(5);
1137
1138 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1139 data &= BNX_EMAC_MDIO_COMM_DATA;
1140
1141 break;
1142 }
1143 }
1144
1145 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1146 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1147 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1148 rv = ETIMEDOUT;
1149 } else {
1150 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1151 *val = data & 0xffff;
1152
1153 DBPRINT(sc, BNX_EXCESSIVE,
1154 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1155 phy, (uint16_t) reg & 0xffff, *val);
1156 }
1157
1158 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1159 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1160 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1161
1162 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1163 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1164
1165 DELAY(40);
1166 }
1167
1168 return rv;
1169 }
1170
1171 /****************************************************************************/
1172 /* PHY register write. */
1173 /* */
1174 /* Implements register writes on the MII bus. */
1175 /* */
1176 /* Returns: */
1177 /* The value of the register. */
1178 /****************************************************************************/
1179 int
1180 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1181 {
1182 struct bnx_softc *sc = device_private(dev);
1183 uint32_t val1;
1184 int i, rv = 0;
1185
1186 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1187 "val = 0x%04hX\n", __func__,
1188 phy, (uint16_t) reg & 0xffff, val);
1189
1190 /*
1191 * The BCM5709S PHY is an IEEE Clause 45 PHY
1192 * with special mappings to work with IEEE
1193 * Clause 22 register accesses.
1194 */
1195 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1196 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1197 reg += 0x10;
1198 }
1199
1200 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1201 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1202 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1203
1204 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1205 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1206
1207 DELAY(40);
1208 }
1209
1210 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1211 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1212 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1213 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1214
1215 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1216 DELAY(10);
1217
1218 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1219 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1220 DELAY(5);
1221 break;
1222 }
1223 }
1224
1225 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1226 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1227 __LINE__);
1228 rv = ETIMEDOUT;
1229 }
1230
1231 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1232 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1233 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1234
1235 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1236 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1237
1238 DELAY(40);
1239 }
1240
1241 return rv;
1242 }
1243
1244 /****************************************************************************/
1245 /* MII bus status change. */
1246 /* */
1247 /* Called by the MII bus driver when the PHY establishes link to set the */
1248 /* MAC interface registers. */
1249 /* */
1250 /* Returns: */
1251 /* Nothing. */
1252 /****************************************************************************/
1253 void
1254 bnx_miibus_statchg(struct ifnet *ifp)
1255 {
1256 struct bnx_softc *sc = ifp->if_softc;
1257 struct mii_data *mii = &sc->bnx_mii;
1258 uint32_t rx_mode = sc->rx_mode;
1259 int val;
1260
1261 val = REG_RD(sc, BNX_EMAC_MODE);
1262 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1263 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1264 BNX_EMAC_MODE_25G);
1265
1266 /*
1267 * Get flow control negotiation result.
1268 */
1269 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1270 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1271 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1272 mii->mii_media_active &= ~IFM_ETH_FMASK;
1273 }
1274
1275 /* Set MII or GMII interface based on the speed
1276 * negotiated by the PHY.
1277 */
1278 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1279 case IFM_10_T:
1280 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1281 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1282 val |= BNX_EMAC_MODE_PORT_MII_10;
1283 break;
1284 }
1285 /* FALLTHROUGH */
1286 case IFM_100_TX:
1287 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1288 val |= BNX_EMAC_MODE_PORT_MII;
1289 break;
1290 case IFM_2500_SX:
1291 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1292 val |= BNX_EMAC_MODE_25G;
1293 /* FALLTHROUGH */
1294 case IFM_1000_T:
1295 case IFM_1000_SX:
1296 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1297 val |= BNX_EMAC_MODE_PORT_GMII;
1298 break;
1299 default:
1300 val |= BNX_EMAC_MODE_PORT_GMII;
1301 break;
1302 }
1303
1304 /* Set half or full duplex based on the duplicity
1305 * negotiated by the PHY.
1306 */
1307 if ((mii->mii_media_active & IFM_HDX) != 0) {
1308 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1309 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1310 } else
1311 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1312
1313 REG_WR(sc, BNX_EMAC_MODE, val);
1314
1315 /*
1316 * 802.3x flow control
1317 */
1318 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1319 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1320 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1321 } else {
1322 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1323 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1324 }
1325
1326 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1327 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1328 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1329 } else {
1330 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1331 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1332 }
1333
1334 /* Only make changes if the recive mode has actually changed. */
1335 if (rx_mode != sc->rx_mode) {
1336 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1337 rx_mode);
1338
1339 sc->rx_mode = rx_mode;
1340 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1341
1342 bnx_init_rx_context(sc);
1343 }
1344 }
1345
1346 /****************************************************************************/
1347 /* Acquire NVRAM lock. */
1348 /* */
1349 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1350 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1351 /* for use by the driver. */
1352 /* */
1353 /* Returns: */
1354 /* 0 on success, positive value on failure. */
1355 /****************************************************************************/
1356 int
1357 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1358 {
1359 uint32_t val;
1360 int j;
1361
1362 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1363
1364 /* Request access to the flash interface. */
1365 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1366 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1367 val = REG_RD(sc, BNX_NVM_SW_ARB);
1368 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1369 break;
1370
1371 DELAY(5);
1372 }
1373
1374 if (j >= NVRAM_TIMEOUT_COUNT) {
1375 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1376 return EBUSY;
1377 }
1378
1379 return 0;
1380 }
1381
1382 /****************************************************************************/
1383 /* Release NVRAM lock. */
1384 /* */
1385 /* When the caller is finished accessing NVRAM the lock must be released. */
1386 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1387 /* for use by the driver. */
1388 /* */
1389 /* Returns: */
1390 /* 0 on success, positive value on failure. */
1391 /****************************************************************************/
1392 int
1393 bnx_release_nvram_lock(struct bnx_softc *sc)
1394 {
1395 int j;
1396 uint32_t val;
1397
1398 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1399
1400 /* Relinquish nvram interface. */
1401 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1402
1403 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1404 val = REG_RD(sc, BNX_NVM_SW_ARB);
1405 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1406 break;
1407
1408 DELAY(5);
1409 }
1410
1411 if (j >= NVRAM_TIMEOUT_COUNT) {
1412 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1413 return EBUSY;
1414 }
1415
1416 return 0;
1417 }
1418
1419 #ifdef BNX_NVRAM_WRITE_SUPPORT
1420 /****************************************************************************/
1421 /* Enable NVRAM write access. */
1422 /* */
1423 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1424 /* */
1425 /* Returns: */
1426 /* 0 on success, positive value on failure. */
1427 /****************************************************************************/
1428 int
1429 bnx_enable_nvram_write(struct bnx_softc *sc)
1430 {
1431 uint32_t val;
1432
1433 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1434
1435 val = REG_RD(sc, BNX_MISC_CFG);
1436 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1437
1438 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1439 int j;
1440
1441 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1442 REG_WR(sc, BNX_NVM_COMMAND,
1443 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1444
1445 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1446 DELAY(5);
1447
1448 val = REG_RD(sc, BNX_NVM_COMMAND);
1449 if (val & BNX_NVM_COMMAND_DONE)
1450 break;
1451 }
1452
1453 if (j >= NVRAM_TIMEOUT_COUNT) {
1454 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1455 return EBUSY;
1456 }
1457 }
1458
1459 return 0;
1460 }
1461
1462 /****************************************************************************/
1463 /* Disable NVRAM write access. */
1464 /* */
1465 /* When the caller is finished writing to NVRAM write access must be */
1466 /* disabled. */
1467 /* */
1468 /* Returns: */
1469 /* Nothing. */
1470 /****************************************************************************/
1471 void
1472 bnx_disable_nvram_write(struct bnx_softc *sc)
1473 {
1474 uint32_t val;
1475
1476 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1477
1478 val = REG_RD(sc, BNX_MISC_CFG);
1479 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1480 }
1481 #endif
1482
1483 /****************************************************************************/
1484 /* Enable NVRAM access. */
1485 /* */
1486 /* Before accessing NVRAM for read or write operations the caller must */
1487 /* enabled NVRAM access. */
1488 /* */
1489 /* Returns: */
1490 /* Nothing. */
1491 /****************************************************************************/
1492 void
1493 bnx_enable_nvram_access(struct bnx_softc *sc)
1494 {
1495 uint32_t val;
1496
1497 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1498
1499 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1500 /* Enable both bits, even on read. */
1501 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1502 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1503 }
1504
1505 /****************************************************************************/
1506 /* Disable NVRAM access. */
1507 /* */
1508 /* When the caller is finished accessing NVRAM access must be disabled. */
1509 /* */
1510 /* Returns: */
1511 /* Nothing. */
1512 /****************************************************************************/
1513 void
1514 bnx_disable_nvram_access(struct bnx_softc *sc)
1515 {
1516 uint32_t val;
1517
1518 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1519
1520 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1521
1522 /* Disable both bits, even after read. */
1523 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1524 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1525 }
1526
1527 #ifdef BNX_NVRAM_WRITE_SUPPORT
1528 /****************************************************************************/
1529 /* Erase NVRAM page before writing. */
1530 /* */
1531 /* Non-buffered flash parts require that a page be erased before it is */
1532 /* written. */
1533 /* */
1534 /* Returns: */
1535 /* 0 on success, positive value on failure. */
1536 /****************************************************************************/
1537 int
1538 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1539 {
1540 uint32_t cmd;
1541 int j;
1542
1543 /* Buffered flash doesn't require an erase. */
1544 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1545 return 0;
1546
1547 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1548
1549 /* Build an erase command. */
1550 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1551 BNX_NVM_COMMAND_DOIT;
1552
1553 /*
1554 * Clear the DONE bit separately, set the NVRAM address to erase,
1555 * and issue the erase command.
1556 */
1557 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1558 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1559 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1560
1561 /* Wait for completion. */
1562 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1563 uint32_t val;
1564
1565 DELAY(5);
1566
1567 val = REG_RD(sc, BNX_NVM_COMMAND);
1568 if (val & BNX_NVM_COMMAND_DONE)
1569 break;
1570 }
1571
1572 if (j >= NVRAM_TIMEOUT_COUNT) {
1573 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1574 return EBUSY;
1575 }
1576
1577 return 0;
1578 }
1579 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1580
1581 /****************************************************************************/
1582 /* Read a dword (32 bits) from NVRAM. */
1583 /* */
1584 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1585 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1586 /* */
1587 /* Returns: */
1588 /* 0 on success and the 32 bit value read, positive value on failure. */
1589 /****************************************************************************/
1590 int
1591 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1592 uint8_t *ret_val, uint32_t cmd_flags)
1593 {
1594 uint32_t cmd;
1595 int i, rc = 0;
1596
1597 /* Build the command word. */
1598 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1599
1600 /* Calculate the offset for buffered flash if translation is used. */
1601 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1602 offset = ((offset / sc->bnx_flash_info->page_size) <<
1603 sc->bnx_flash_info->page_bits) +
1604 (offset % sc->bnx_flash_info->page_size);
1605 }
1606
1607 /*
1608 * Clear the DONE bit separately, set the address to read,
1609 * and issue the read.
1610 */
1611 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1612 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1613 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1614
1615 /* Wait for completion. */
1616 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1617 uint32_t val;
1618
1619 DELAY(5);
1620
1621 val = REG_RD(sc, BNX_NVM_COMMAND);
1622 if (val & BNX_NVM_COMMAND_DONE) {
1623 val = REG_RD(sc, BNX_NVM_READ);
1624
1625 val = be32toh(val);
1626 memcpy(ret_val, &val, 4);
1627 break;
1628 }
1629 }
1630
1631 /* Check for errors. */
1632 if (i >= NVRAM_TIMEOUT_COUNT) {
1633 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1634 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1635 rc = EBUSY;
1636 }
1637
1638 return rc;
1639 }
1640
1641 #ifdef BNX_NVRAM_WRITE_SUPPORT
1642 /****************************************************************************/
1643 /* Write a dword (32 bits) to NVRAM. */
1644 /* */
1645 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1646 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1647 /* enabled NVRAM write access. */
1648 /* */
1649 /* Returns: */
1650 /* 0 on success, positive value on failure. */
1651 /****************************************************************************/
1652 int
1653 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1654 uint32_t cmd_flags)
1655 {
1656 uint32_t cmd, val32;
1657 int j;
1658
1659 /* Build the command word. */
1660 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1661
1662 /* Calculate the offset for buffered flash if translation is used. */
1663 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1664 offset = ((offset / sc->bnx_flash_info->page_size) <<
1665 sc->bnx_flash_info->page_bits) +
1666 (offset % sc->bnx_flash_info->page_size);
1667 }
1668
1669 /*
1670 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1671 * set the NVRAM address to write, and issue the write command
1672 */
1673 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1674 memcpy(&val32, val, 4);
1675 val32 = htobe32(val32);
1676 REG_WR(sc, BNX_NVM_WRITE, val32);
1677 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1678 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1679
1680 /* Wait for completion. */
1681 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1682 DELAY(5);
1683
1684 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1685 break;
1686 }
1687 if (j >= NVRAM_TIMEOUT_COUNT) {
1688 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1689 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1690 return EBUSY;
1691 }
1692
1693 return 0;
1694 }
1695 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1696
1697 /****************************************************************************/
1698 /* Initialize NVRAM access. */
1699 /* */
1700 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1701 /* access that device. */
1702 /* */
1703 /* Returns: */
1704 /* 0 on success, positive value on failure. */
1705 /****************************************************************************/
1706 int
1707 bnx_init_nvram(struct bnx_softc *sc)
1708 {
1709 uint32_t val;
1710 int j, entry_count, rc = 0;
1711 struct flash_spec *flash;
1712
1713 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1714
1715 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1716 sc->bnx_flash_info = &flash_5709;
1717 goto bnx_init_nvram_get_flash_size;
1718 }
1719
1720 /* Determine the selected interface. */
1721 val = REG_RD(sc, BNX_NVM_CFG1);
1722
1723 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1724
1725 /*
1726 * Flash reconfiguration is required to support additional
1727 * NVRAM devices not directly supported in hardware.
1728 * Check if the flash interface was reconfigured
1729 * by the bootcode.
1730 */
1731
1732 if (val & 0x40000000) {
1733 /* Flash interface reconfigured by bootcode. */
1734
1735 DBPRINT(sc, BNX_INFO_LOAD,
1736 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1737
1738 for (j = 0, flash = &flash_table[0]; j < entry_count;
1739 j++, flash++) {
1740 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1741 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1742 sc->bnx_flash_info = flash;
1743 break;
1744 }
1745 }
1746 } else {
1747 /* Flash interface not yet reconfigured. */
1748 uint32_t mask;
1749
1750 DBPRINT(sc, BNX_INFO_LOAD,
1751 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1752
1753 if (val & (1 << 23))
1754 mask = FLASH_BACKUP_STRAP_MASK;
1755 else
1756 mask = FLASH_STRAP_MASK;
1757
1758 /* Look for the matching NVRAM device configuration data. */
1759 for (j = 0, flash = &flash_table[0]; j < entry_count;
1760 j++, flash++) {
1761 /* Check if the dev matches any of the known devices. */
1762 if ((val & mask) == (flash->strapping & mask)) {
1763 /* Found a device match. */
1764 sc->bnx_flash_info = flash;
1765
1766 /* Request access to the flash interface. */
1767 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1768 return rc;
1769
1770 /* Reconfigure the flash interface. */
1771 bnx_enable_nvram_access(sc);
1772 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1773 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1774 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1775 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1776 bnx_disable_nvram_access(sc);
1777 bnx_release_nvram_lock(sc);
1778
1779 break;
1780 }
1781 }
1782 }
1783
1784 /* Check if a matching device was found. */
1785 if (j == entry_count) {
1786 sc->bnx_flash_info = NULL;
1787 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1788 __FILE__, __LINE__);
1789 rc = ENODEV;
1790 }
1791
1792 bnx_init_nvram_get_flash_size:
1793 /* Write the flash config data to the shared memory interface. */
1794 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1795 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1796 if (val)
1797 sc->bnx_flash_size = val;
1798 else
1799 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1800
1801 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1802 "0x%08X\n", sc->bnx_flash_info->total_size);
1803
1804 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1805
1806 return rc;
1807 }
1808
1809 /****************************************************************************/
1810 /* Read an arbitrary range of data from NVRAM. */
1811 /* */
1812 /* Prepares the NVRAM interface for access and reads the requested data */
1813 /* into the supplied buffer. */
1814 /* */
1815 /* Returns: */
1816 /* 0 on success and the data read, positive value on failure. */
1817 /****************************************************************************/
1818 int
1819 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1820 int buf_size)
1821 {
1822 int rc = 0;
1823 uint32_t cmd_flags, offset32, len32, extra;
1824
1825 if (buf_size == 0)
1826 return 0;
1827
1828 /* Request access to the flash interface. */
1829 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1830 return rc;
1831
1832 /* Enable access to flash interface */
1833 bnx_enable_nvram_access(sc);
1834
1835 len32 = buf_size;
1836 offset32 = offset;
1837 extra = 0;
1838
1839 cmd_flags = 0;
1840
1841 if (offset32 & 3) {
1842 uint8_t buf[4];
1843 uint32_t pre_len;
1844
1845 offset32 &= ~3;
1846 pre_len = 4 - (offset & 3);
1847
1848 if (pre_len >= len32) {
1849 pre_len = len32;
1850 cmd_flags =
1851 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1852 } else
1853 cmd_flags = BNX_NVM_COMMAND_FIRST;
1854
1855 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1856
1857 if (rc)
1858 return rc;
1859
1860 memcpy(ret_buf, buf + (offset & 3), pre_len);
1861
1862 offset32 += 4;
1863 ret_buf += pre_len;
1864 len32 -= pre_len;
1865 }
1866
1867 if (len32 & 3) {
1868 extra = 4 - (len32 & 3);
1869 len32 = (len32 + 4) & ~3;
1870 }
1871
1872 if (len32 == 4) {
1873 uint8_t buf[4];
1874
1875 if (cmd_flags)
1876 cmd_flags = BNX_NVM_COMMAND_LAST;
1877 else
1878 cmd_flags =
1879 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1880
1881 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1882
1883 memcpy(ret_buf, buf, 4 - extra);
1884 } else if (len32 > 0) {
1885 uint8_t buf[4];
1886
1887 /* Read the first word. */
1888 if (cmd_flags)
1889 cmd_flags = 0;
1890 else
1891 cmd_flags = BNX_NVM_COMMAND_FIRST;
1892
1893 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1894
1895 /* Advance to the next dword. */
1896 offset32 += 4;
1897 ret_buf += 4;
1898 len32 -= 4;
1899
1900 while (len32 > 4 && rc == 0) {
1901 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1902
1903 /* Advance to the next dword. */
1904 offset32 += 4;
1905 ret_buf += 4;
1906 len32 -= 4;
1907 }
1908
1909 if (rc)
1910 return rc;
1911
1912 cmd_flags = BNX_NVM_COMMAND_LAST;
1913 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1914
1915 memcpy(ret_buf, buf, 4 - extra);
1916 }
1917
1918 /* Disable access to flash interface and release the lock. */
1919 bnx_disable_nvram_access(sc);
1920 bnx_release_nvram_lock(sc);
1921
1922 return rc;
1923 }
1924
1925 #ifdef BNX_NVRAM_WRITE_SUPPORT
1926 /****************************************************************************/
1927 /* Write an arbitrary range of data from NVRAM. */
1928 /* */
1929 /* Prepares the NVRAM interface for write access and writes the requested */
1930 /* data from the supplied buffer. The caller is responsible for */
1931 /* calculating any appropriate CRCs. */
1932 /* */
1933 /* Returns: */
1934 /* 0 on success, positive value on failure. */
1935 /****************************************************************************/
1936 int
1937 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1938 int buf_size)
1939 {
1940 uint32_t written, offset32, len32;
1941 uint8_t *buf, start[4], end[4];
1942 int rc = 0;
1943 int align_start, align_end;
1944
1945 buf = data_buf;
1946 offset32 = offset;
1947 len32 = buf_size;
1948 align_start = align_end = 0;
1949
1950 if ((align_start = (offset32 & 3))) {
1951 offset32 &= ~3;
1952 len32 += align_start;
1953 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1954 return rc;
1955 }
1956
1957 if (len32 & 3) {
1958 if ((len32 > 4) || !align_start) {
1959 align_end = 4 - (len32 & 3);
1960 len32 += align_end;
1961 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1962 end, 4)))
1963 return rc;
1964 }
1965 }
1966
1967 if (align_start || align_end) {
1968 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1969 if (buf == NULL)
1970 return ENOMEM;
1971
1972 if (align_start)
1973 memcpy(buf, start, 4);
1974
1975 if (align_end)
1976 memcpy(buf + len32 - 4, end, 4);
1977
1978 memcpy(buf + align_start, data_buf, buf_size);
1979 }
1980
1981 written = 0;
1982 while ((written < len32) && (rc == 0)) {
1983 uint32_t page_start, page_end, data_start, data_end;
1984 uint32_t addr, cmd_flags;
1985 int i;
1986 uint8_t flash_buffer[264];
1987
1988 /* Find the page_start addr */
1989 page_start = offset32 + written;
1990 page_start -= (page_start % sc->bnx_flash_info->page_size);
1991 /* Find the page_end addr */
1992 page_end = page_start + sc->bnx_flash_info->page_size;
1993 /* Find the data_start addr */
1994 data_start = (written == 0) ? offset32 : page_start;
1995 /* Find the data_end addr */
1996 data_end = (page_end > offset32 + len32) ?
1997 (offset32 + len32) : page_end;
1998
1999 /* Request access to the flash interface. */
2000 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
2001 goto nvram_write_end;
2002
2003 /* Enable access to flash interface */
2004 bnx_enable_nvram_access(sc);
2005
2006 cmd_flags = BNX_NVM_COMMAND_FIRST;
2007 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2008 int j;
2009
2010 /* Read the whole page into the buffer
2011 * (non-buffer flash only) */
2012 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2013 if (j == (sc->bnx_flash_info->page_size - 4))
2014 cmd_flags |= BNX_NVM_COMMAND_LAST;
2015
2016 rc = bnx_nvram_read_dword(sc,
2017 page_start + j,
2018 &flash_buffer[j],
2019 cmd_flags);
2020
2021 if (rc)
2022 goto nvram_write_end;
2023
2024 cmd_flags = 0;
2025 }
2026 }
2027
2028 /* Enable writes to flash interface (unlock write-protect) */
2029 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2030 goto nvram_write_end;
2031
2032 /* Erase the page */
2033 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2034 goto nvram_write_end;
2035
2036 /* Re-enable the write again for the actual write */
2037 bnx_enable_nvram_write(sc);
2038
2039 /* Loop to write back the buffer data from page_start to
2040 * data_start */
2041 i = 0;
2042 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2043 for (addr = page_start; addr < data_start;
2044 addr += 4, i += 4) {
2045
2046 rc = bnx_nvram_write_dword(sc, addr,
2047 &flash_buffer[i], cmd_flags);
2048
2049 if (rc != 0)
2050 goto nvram_write_end;
2051
2052 cmd_flags = 0;
2053 }
2054 }
2055
2056 /* Loop to write the new data from data_start to data_end */
2057 for (addr = data_start; addr < data_end; addr += 4, i++) {
2058 if ((addr == page_end - 4) ||
2059 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2060 && (addr == data_end - 4))) {
2061
2062 cmd_flags |= BNX_NVM_COMMAND_LAST;
2063 }
2064
2065 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2066
2067 if (rc != 0)
2068 goto nvram_write_end;
2069
2070 cmd_flags = 0;
2071 buf += 4;
2072 }
2073
2074 /* Loop to write back the buffer data from data_end
2075 * to page_end */
2076 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2077 for (addr = data_end; addr < page_end;
2078 addr += 4, i += 4) {
2079
2080 if (addr == page_end-4)
2081 cmd_flags = BNX_NVM_COMMAND_LAST;
2082
2083 rc = bnx_nvram_write_dword(sc, addr,
2084 &flash_buffer[i], cmd_flags);
2085
2086 if (rc != 0)
2087 goto nvram_write_end;
2088
2089 cmd_flags = 0;
2090 }
2091 }
2092
2093 /* Disable writes to flash interface (lock write-protect) */
2094 bnx_disable_nvram_write(sc);
2095
2096 /* Disable access to flash interface */
2097 bnx_disable_nvram_access(sc);
2098 bnx_release_nvram_lock(sc);
2099
2100 /* Increment written */
2101 written += data_end - data_start;
2102 }
2103
2104 nvram_write_end:
2105 if (align_start || align_end)
2106 free(buf, M_DEVBUF);
2107
2108 return rc;
2109 }
2110 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2111
2112 /****************************************************************************/
2113 /* Verifies that NVRAM is accessible and contains valid data. */
2114 /* */
2115 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2116 /* correct. */
2117 /* */
2118 /* Returns: */
2119 /* 0 on success, positive value on failure. */
2120 /****************************************************************************/
2121 int
2122 bnx_nvram_test(struct bnx_softc *sc)
2123 {
2124 uint32_t buf[BNX_NVRAM_SIZE / 4];
2125 uint8_t *data = (uint8_t *) buf;
2126 int rc = 0;
2127 uint32_t magic, csum;
2128
2129 /*
2130 * Check that the device NVRAM is valid by reading
2131 * the magic value at offset 0.
2132 */
2133 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2134 goto bnx_nvram_test_done;
2135
2136 magic = be32toh(buf[0]);
2137 if (magic != BNX_NVRAM_MAGIC) {
2138 rc = ENODEV;
2139 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2140 "Expected: 0x%08X, Found: 0x%08X\n",
2141 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2142 goto bnx_nvram_test_done;
2143 }
2144
2145 /*
2146 * Verify that the device NVRAM includes valid
2147 * configuration data.
2148 */
2149 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2150 goto bnx_nvram_test_done;
2151
2152 csum = ether_crc32_le(data, 0x100);
2153 if (csum != BNX_CRC32_RESIDUAL) {
2154 rc = ENODEV;
2155 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2156 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2157 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2158 goto bnx_nvram_test_done;
2159 }
2160
2161 csum = ether_crc32_le(data + 0x100, 0x100);
2162 if (csum != BNX_CRC32_RESIDUAL) {
2163 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2164 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2165 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2166 rc = ENODEV;
2167 }
2168
2169 bnx_nvram_test_done:
2170 return rc;
2171 }
2172
2173 /****************************************************************************/
2174 /* Identifies the current media type of the controller and sets the PHY */
2175 /* address. */
2176 /* */
2177 /* Returns: */
2178 /* Nothing. */
2179 /****************************************************************************/
2180 void
2181 bnx_get_media(struct bnx_softc *sc)
2182 {
2183 sc->bnx_phy_addr = 1;
2184
2185 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2186 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2187 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2188 uint32_t strap;
2189
2190 /*
2191 * The BCM5709S is software configurable
2192 * for Copper or SerDes operation.
2193 */
2194 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2195 DBPRINT(sc, BNX_INFO_LOAD,
2196 "5709 bonded for copper.\n");
2197 goto bnx_get_media_exit;
2198 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2199 DBPRINT(sc, BNX_INFO_LOAD,
2200 "5709 bonded for dual media.\n");
2201 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2202 goto bnx_get_media_exit;
2203 }
2204
2205 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2206 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2207 else {
2208 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2209 >> 8;
2210 }
2211
2212 if (sc->bnx_pa.pa_function == 0) {
2213 switch (strap) {
2214 case 0x4:
2215 case 0x5:
2216 case 0x6:
2217 DBPRINT(sc, BNX_INFO_LOAD,
2218 "BCM5709 s/w configured for SerDes.\n");
2219 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2220 break;
2221 default:
2222 DBPRINT(sc, BNX_INFO_LOAD,
2223 "BCM5709 s/w configured for Copper.\n");
2224 }
2225 } else {
2226 switch (strap) {
2227 case 0x1:
2228 case 0x2:
2229 case 0x4:
2230 DBPRINT(sc, BNX_INFO_LOAD,
2231 "BCM5709 s/w configured for SerDes.\n");
2232 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2233 break;
2234 default:
2235 DBPRINT(sc, BNX_INFO_LOAD,
2236 "BCM5709 s/w configured for Copper.\n");
2237 }
2238 }
2239
2240 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2241 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2242
2243 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2244 uint32_t val;
2245
2246 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2247
2248 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2249 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2250
2251 /*
2252 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2253 * separate PHY for SerDes.
2254 */
2255 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2256 sc->bnx_phy_addr = 2;
2257 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2258 BNX_SHARED_HW_CFG_CONFIG);
2259 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2260 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2261 DBPRINT(sc, BNX_INFO_LOAD,
2262 "Found 2.5Gb capable adapter\n");
2263 }
2264 }
2265 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2266 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2267 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2268
2269 bnx_get_media_exit:
2270 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2271 "Using PHY address %d.\n", sc->bnx_phy_addr);
2272 }
2273
2274 /****************************************************************************/
2275 /* Performs PHY initialization required before MII drivers access the */
2276 /* device. */
2277 /* */
2278 /* Returns: */
2279 /* Nothing. */
2280 /****************************************************************************/
2281 void
2282 bnx_init_media(struct bnx_softc *sc)
2283 {
2284 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2285 /*
2286 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2287 * IEEE Clause 22 method. Otherwise we have no way to attach
2288 * the PHY to the mii(4) layer. PHY specific configuration
2289 * is done by the mii(4) layer.
2290 */
2291
2292 /* Select auto-negotiation MMD of the PHY. */
2293 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2294 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2295
2296 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2297 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2298
2299 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2300 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2301 }
2302 }
2303
2304 /****************************************************************************/
2305 /* Free any DMA memory owned by the driver. */
2306 /* */
2307 /* Scans through each data structre that requires DMA memory and frees */
2308 /* the memory if allocated. */
2309 /* */
2310 /* Returns: */
2311 /* Nothing. */
2312 /****************************************************************************/
2313 void
2314 bnx_dma_free(struct bnx_softc *sc)
2315 {
2316 int i;
2317
2318 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2319
2320 /* Destroy the status block. */
2321 if (sc->status_block != NULL && sc->status_map != NULL) {
2322 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2323 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2324 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2325 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2326 BNX_STATUS_BLK_SZ);
2327 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2328 sc->status_rseg);
2329 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2330 sc->status_block = NULL;
2331 sc->status_map = NULL;
2332 }
2333
2334 /* Destroy the statistics block. */
2335 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2336 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2337 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2338 BNX_STATS_BLK_SZ);
2339 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2340 sc->stats_rseg);
2341 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2342 sc->stats_block = NULL;
2343 sc->stats_map = NULL;
2344 }
2345
2346 /* Free, unmap and destroy all context memory pages. */
2347 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2348 for (i = 0; i < sc->ctx_pages; i++) {
2349 if (sc->ctx_block[i] != NULL) {
2350 bus_dmamap_unload(sc->bnx_dmatag,
2351 sc->ctx_map[i]);
2352 bus_dmamem_unmap(sc->bnx_dmatag,
2353 (void *)sc->ctx_block[i],
2354 BCM_PAGE_SIZE);
2355 bus_dmamem_free(sc->bnx_dmatag,
2356 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2357 bus_dmamap_destroy(sc->bnx_dmatag,
2358 sc->ctx_map[i]);
2359 sc->ctx_block[i] = NULL;
2360 }
2361 }
2362 }
2363
2364 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2365 for (i = 0; i < TX_PAGES; i++ ) {
2366 if (sc->tx_bd_chain[i] != NULL &&
2367 sc->tx_bd_chain_map[i] != NULL) {
2368 bus_dmamap_unload(sc->bnx_dmatag,
2369 sc->tx_bd_chain_map[i]);
2370 bus_dmamem_unmap(sc->bnx_dmatag,
2371 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2372 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2373 sc->tx_bd_chain_rseg[i]);
2374 bus_dmamap_destroy(sc->bnx_dmatag,
2375 sc->tx_bd_chain_map[i]);
2376 sc->tx_bd_chain[i] = NULL;
2377 sc->tx_bd_chain_map[i] = NULL;
2378 }
2379 }
2380
2381 /* Destroy the TX dmamaps. */
2382 /* This isn't necessary since we dont allocate them up front */
2383
2384 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2385 for (i = 0; i < RX_PAGES; i++ ) {
2386 if (sc->rx_bd_chain[i] != NULL &&
2387 sc->rx_bd_chain_map[i] != NULL) {
2388 bus_dmamap_unload(sc->bnx_dmatag,
2389 sc->rx_bd_chain_map[i]);
2390 bus_dmamem_unmap(sc->bnx_dmatag,
2391 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2392 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2393 sc->rx_bd_chain_rseg[i]);
2394
2395 bus_dmamap_destroy(sc->bnx_dmatag,
2396 sc->rx_bd_chain_map[i]);
2397 sc->rx_bd_chain[i] = NULL;
2398 sc->rx_bd_chain_map[i] = NULL;
2399 }
2400 }
2401
2402 /* Unload and destroy the RX mbuf maps. */
2403 for (i = 0; i < TOTAL_RX_BD; i++) {
2404 if (sc->rx_mbuf_map[i] != NULL) {
2405 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2406 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2407 }
2408 }
2409
2410 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2411 }
2412
2413 /****************************************************************************/
2414 /* Allocate any DMA memory needed by the driver. */
2415 /* */
2416 /* Allocates DMA memory needed for the various global structures needed by */
2417 /* hardware. */
2418 /* */
2419 /* Returns: */
2420 /* 0 for success, positive value for failure. */
2421 /****************************************************************************/
2422 int
2423 bnx_dma_alloc(struct bnx_softc *sc)
2424 {
2425 int i, rc = 0;
2426
2427 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2428
2429 /*
2430 * Allocate DMA memory for the status block, map the memory into DMA
2431 * space, and fetch the physical address of the block.
2432 */
2433 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2434 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2435 aprint_error_dev(sc->bnx_dev,
2436 "Could not create status block DMA map!\n");
2437 rc = ENOMEM;
2438 goto bnx_dma_alloc_exit;
2439 }
2440
2441 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2442 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2443 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2444 aprint_error_dev(sc->bnx_dev,
2445 "Could not allocate status block DMA memory!\n");
2446 rc = ENOMEM;
2447 goto bnx_dma_alloc_exit;
2448 }
2449
2450 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2451 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2452 aprint_error_dev(sc->bnx_dev,
2453 "Could not map status block DMA memory!\n");
2454 rc = ENOMEM;
2455 goto bnx_dma_alloc_exit;
2456 }
2457
2458 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2459 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2460 aprint_error_dev(sc->bnx_dev,
2461 "Could not load status block DMA memory!\n");
2462 rc = ENOMEM;
2463 goto bnx_dma_alloc_exit;
2464 }
2465
2466 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2467 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2468
2469 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2470 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2471
2472 /* DRC - Fix for 64 bit addresses. */
2473 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2474 (uint32_t) sc->status_block_paddr);
2475
2476 /* BCM5709 uses host memory as cache for context memory. */
2477 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2478 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2479 if (sc->ctx_pages == 0)
2480 sc->ctx_pages = 1;
2481 if (sc->ctx_pages > 4) /* XXX */
2482 sc->ctx_pages = 4;
2483
2484 DBRUNIF((sc->ctx_pages > 512),
2485 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2486 __FILE__, __LINE__, sc->ctx_pages));
2487
2488
2489 for (i = 0; i < sc->ctx_pages; i++) {
2490 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2491 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2492 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2493 &sc->ctx_map[i]) != 0) {
2494 rc = ENOMEM;
2495 goto bnx_dma_alloc_exit;
2496 }
2497
2498 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2499 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2500 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2501 rc = ENOMEM;
2502 goto bnx_dma_alloc_exit;
2503 }
2504
2505 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2506 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2507 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2508 rc = ENOMEM;
2509 goto bnx_dma_alloc_exit;
2510 }
2511
2512 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2513 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2514 BUS_DMA_NOWAIT) != 0) {
2515 rc = ENOMEM;
2516 goto bnx_dma_alloc_exit;
2517 }
2518
2519 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2520 }
2521 }
2522
2523 /*
2524 * Allocate DMA memory for the statistics block, map the memory into
2525 * DMA space, and fetch the physical address of the block.
2526 */
2527 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2528 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2529 aprint_error_dev(sc->bnx_dev,
2530 "Could not create stats block DMA map!\n");
2531 rc = ENOMEM;
2532 goto bnx_dma_alloc_exit;
2533 }
2534
2535 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2536 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2537 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2538 aprint_error_dev(sc->bnx_dev,
2539 "Could not allocate stats block DMA memory!\n");
2540 rc = ENOMEM;
2541 goto bnx_dma_alloc_exit;
2542 }
2543
2544 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2545 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2546 aprint_error_dev(sc->bnx_dev,
2547 "Could not map stats block DMA memory!\n");
2548 rc = ENOMEM;
2549 goto bnx_dma_alloc_exit;
2550 }
2551
2552 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2553 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2554 aprint_error_dev(sc->bnx_dev,
2555 "Could not load status block DMA memory!\n");
2556 rc = ENOMEM;
2557 goto bnx_dma_alloc_exit;
2558 }
2559
2560 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2561 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2562
2563 /* DRC - Fix for 64 bit address. */
2564 DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2565 (uint32_t) sc->stats_block_paddr);
2566
2567 /*
2568 * Allocate DMA memory for the TX buffer descriptor chain,
2569 * and fetch the physical address of the block.
2570 */
2571 for (i = 0; i < TX_PAGES; i++) {
2572 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2573 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2574 &sc->tx_bd_chain_map[i])) {
2575 aprint_error_dev(sc->bnx_dev,
2576 "Could not create Tx desc %d DMA map!\n", i);
2577 rc = ENOMEM;
2578 goto bnx_dma_alloc_exit;
2579 }
2580
2581 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2582 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2583 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2584 aprint_error_dev(sc->bnx_dev,
2585 "Could not allocate TX desc %d DMA memory!\n",
2586 i);
2587 rc = ENOMEM;
2588 goto bnx_dma_alloc_exit;
2589 }
2590
2591 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2592 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2593 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2594 aprint_error_dev(sc->bnx_dev,
2595 "Could not map TX desc %d DMA memory!\n", i);
2596 rc = ENOMEM;
2597 goto bnx_dma_alloc_exit;
2598 }
2599
2600 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2601 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2602 BUS_DMA_NOWAIT)) {
2603 aprint_error_dev(sc->bnx_dev,
2604 "Could not load TX desc %d DMA memory!\n", i);
2605 rc = ENOMEM;
2606 goto bnx_dma_alloc_exit;
2607 }
2608
2609 sc->tx_bd_chain_paddr[i] =
2610 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2611
2612 /* DRC - Fix for 64 bit systems. */
2613 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2614 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2615 }
2616
2617 /*
2618 * Create lists to hold TX mbufs.
2619 */
2620 TAILQ_INIT(&sc->tx_free_pkts);
2621 TAILQ_INIT(&sc->tx_used_pkts);
2622 sc->tx_pkt_count = 0;
2623 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2624
2625 /*
2626 * Allocate DMA memory for the Rx buffer descriptor chain,
2627 * and fetch the physical address of the block.
2628 */
2629 for (i = 0; i < RX_PAGES; i++) {
2630 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2631 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2632 &sc->rx_bd_chain_map[i])) {
2633 aprint_error_dev(sc->bnx_dev,
2634 "Could not create Rx desc %d DMA map!\n", i);
2635 rc = ENOMEM;
2636 goto bnx_dma_alloc_exit;
2637 }
2638
2639 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2640 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2641 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2642 aprint_error_dev(sc->bnx_dev,
2643 "Could not allocate Rx desc %d DMA memory!\n", i);
2644 rc = ENOMEM;
2645 goto bnx_dma_alloc_exit;
2646 }
2647
2648 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2649 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2650 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2651 aprint_error_dev(sc->bnx_dev,
2652 "Could not map Rx desc %d DMA memory!\n", i);
2653 rc = ENOMEM;
2654 goto bnx_dma_alloc_exit;
2655 }
2656
2657 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2658 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2659 BUS_DMA_NOWAIT)) {
2660 aprint_error_dev(sc->bnx_dev,
2661 "Could not load Rx desc %d DMA memory!\n", i);
2662 rc = ENOMEM;
2663 goto bnx_dma_alloc_exit;
2664 }
2665
2666 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2667 sc->rx_bd_chain_paddr[i] =
2668 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2669
2670 /* DRC - Fix for 64 bit systems. */
2671 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2672 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2673 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2674 0, BNX_RX_CHAIN_PAGE_SZ,
2675 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2676 }
2677
2678 /*
2679 * Create DMA maps for the Rx buffer mbufs.
2680 */
2681 for (i = 0; i < TOTAL_RX_BD; i++) {
2682 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2683 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2684 &sc->rx_mbuf_map[i])) {
2685 aprint_error_dev(sc->bnx_dev,
2686 "Could not create Rx mbuf %d DMA map!\n", i);
2687 rc = ENOMEM;
2688 goto bnx_dma_alloc_exit;
2689 }
2690 }
2691
2692 bnx_dma_alloc_exit:
2693 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2694
2695 return rc;
2696 }
2697
2698 /****************************************************************************/
2699 /* Release all resources used by the driver. */
2700 /* */
2701 /* Releases all resources acquired by the driver including interrupts, */
2702 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2703 /* */
2704 /* Returns: */
2705 /* Nothing. */
2706 /****************************************************************************/
2707 void
2708 bnx_release_resources(struct bnx_softc *sc)
2709 {
2710 struct pci_attach_args *pa = &(sc->bnx_pa);
2711
2712 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2713
2714 bnx_dma_free(sc);
2715
2716 if (sc->bnx_intrhand != NULL)
2717 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2718
2719 if (sc->bnx_size)
2720 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2721
2722 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2723 }
2724
2725 /****************************************************************************/
2726 /* Firmware synchronization. */
2727 /* */
2728 /* Before performing certain events such as a chip reset, synchronize with */
2729 /* the firmware first. */
2730 /* */
2731 /* Returns: */
2732 /* 0 for success, positive value for failure. */
2733 /****************************************************************************/
2734 int
2735 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2736 {
2737 int i, rc = 0;
2738 uint32_t val;
2739
2740 /* Don't waste any time if we've timed out before. */
2741 if (sc->bnx_fw_timed_out) {
2742 rc = EBUSY;
2743 goto bnx_fw_sync_exit;
2744 }
2745
2746 /* Increment the message sequence number. */
2747 sc->bnx_fw_wr_seq++;
2748 msg_data |= sc->bnx_fw_wr_seq;
2749
2750 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2751 msg_data);
2752
2753 /* Send the message to the bootcode driver mailbox. */
2754 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2755
2756 /* Wait for the bootcode to acknowledge the message. */
2757 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2758 /* Check for a response in the bootcode firmware mailbox. */
2759 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2760 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2761 break;
2762 DELAY(1000);
2763 }
2764
2765 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2766 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2767 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2768 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2769 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2770
2771 msg_data &= ~BNX_DRV_MSG_CODE;
2772 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2773
2774 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2775
2776 sc->bnx_fw_timed_out = 1;
2777 rc = EBUSY;
2778 }
2779
2780 bnx_fw_sync_exit:
2781 return rc;
2782 }
2783
2784 /****************************************************************************/
2785 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2786 /* */
2787 /* Returns: */
2788 /* Nothing. */
2789 /****************************************************************************/
2790 void
2791 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2792 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2793 {
2794 int i;
2795 uint32_t val;
2796
2797 /* Set the page size used by RV2P. */
2798 if (rv2p_proc == RV2P_PROC2) {
2799 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2800 USABLE_RX_BD_PER_PAGE);
2801 }
2802
2803 for (i = 0; i < rv2p_code_len; i += 8) {
2804 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2805 rv2p_code++;
2806 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2807 rv2p_code++;
2808
2809 if (rv2p_proc == RV2P_PROC1) {
2810 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2811 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2812 } else {
2813 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2814 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2815 }
2816 }
2817
2818 /* Reset the processor, un-stall is done later. */
2819 if (rv2p_proc == RV2P_PROC1)
2820 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2821 else
2822 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2823 }
2824
2825 /****************************************************************************/
2826 /* Load RISC processor firmware. */
2827 /* */
2828 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2829 /* associated with a particular processor. */
2830 /* */
2831 /* Returns: */
2832 /* Nothing. */
2833 /****************************************************************************/
2834 void
2835 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2836 struct fw_info *fw)
2837 {
2838 uint32_t offset;
2839 uint32_t val;
2840
2841 /* Halt the CPU. */
2842 val = REG_RD_IND(sc, cpu_reg->mode);
2843 val |= cpu_reg->mode_value_halt;
2844 REG_WR_IND(sc, cpu_reg->mode, val);
2845 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2846
2847 /* Load the Text area. */
2848 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2849 if (fw->text) {
2850 int j;
2851
2852 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2853 REG_WR_IND(sc, offset, fw->text[j]);
2854 }
2855
2856 /* Load the Data area. */
2857 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2858 if (fw->data) {
2859 int j;
2860
2861 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2862 REG_WR_IND(sc, offset, fw->data[j]);
2863 }
2864
2865 /* Load the SBSS area. */
2866 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2867 if (fw->sbss) {
2868 int j;
2869
2870 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2871 REG_WR_IND(sc, offset, fw->sbss[j]);
2872 }
2873
2874 /* Load the BSS area. */
2875 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2876 if (fw->bss) {
2877 int j;
2878
2879 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2880 REG_WR_IND(sc, offset, fw->bss[j]);
2881 }
2882
2883 /* Load the Read-Only area. */
2884 offset = cpu_reg->spad_base +
2885 (fw->rodata_addr - cpu_reg->mips_view_base);
2886 if (fw->rodata) {
2887 int j;
2888
2889 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2890 REG_WR_IND(sc, offset, fw->rodata[j]);
2891 }
2892
2893 /* Clear the pre-fetch instruction. */
2894 REG_WR_IND(sc, cpu_reg->inst, 0);
2895 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2896
2897 /* Start the CPU. */
2898 val = REG_RD_IND(sc, cpu_reg->mode);
2899 val &= ~cpu_reg->mode_value_halt;
2900 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2901 REG_WR_IND(sc, cpu_reg->mode, val);
2902 }
2903
2904 /****************************************************************************/
2905 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2906 /* */
2907 /* Loads the firmware for each CPU and starts the CPU. */
2908 /* */
2909 /* Returns: */
2910 /* Nothing. */
2911 /****************************************************************************/
2912 void
2913 bnx_init_cpus(struct bnx_softc *sc)
2914 {
2915 struct cpu_reg cpu_reg;
2916 struct fw_info fw;
2917
2918 switch (BNX_CHIP_NUM(sc)) {
2919 case BNX_CHIP_NUM_5709:
2920 /* Initialize the RV2P processor. */
2921 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2922 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2923 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2924 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2925 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2926 } else {
2927 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2928 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2929 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2930 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2931 }
2932
2933 /* Initialize the RX Processor. */
2934 cpu_reg.mode = BNX_RXP_CPU_MODE;
2935 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2936 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2937 cpu_reg.state = BNX_RXP_CPU_STATE;
2938 cpu_reg.state_value_clear = 0xffffff;
2939 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2940 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2941 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2942 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2943 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2944 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2945 cpu_reg.mips_view_base = 0x8000000;
2946
2947 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2948 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2949 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2950 fw.start_addr = bnx_RXP_b09FwStartAddr;
2951
2952 fw.text_addr = bnx_RXP_b09FwTextAddr;
2953 fw.text_len = bnx_RXP_b09FwTextLen;
2954 fw.text_index = 0;
2955 fw.text = bnx_RXP_b09FwText;
2956
2957 fw.data_addr = bnx_RXP_b09FwDataAddr;
2958 fw.data_len = bnx_RXP_b09FwDataLen;
2959 fw.data_index = 0;
2960 fw.data = bnx_RXP_b09FwData;
2961
2962 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2963 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2964 fw.sbss_index = 0;
2965 fw.sbss = bnx_RXP_b09FwSbss;
2966
2967 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2968 fw.bss_len = bnx_RXP_b09FwBssLen;
2969 fw.bss_index = 0;
2970 fw.bss = bnx_RXP_b09FwBss;
2971
2972 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2973 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2974 fw.rodata_index = 0;
2975 fw.rodata = bnx_RXP_b09FwRodata;
2976
2977 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2978 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2979
2980 /* Initialize the TX Processor. */
2981 cpu_reg.mode = BNX_TXP_CPU_MODE;
2982 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2983 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2984 cpu_reg.state = BNX_TXP_CPU_STATE;
2985 cpu_reg.state_value_clear = 0xffffff;
2986 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2987 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2988 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2989 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2990 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2991 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2992 cpu_reg.mips_view_base = 0x8000000;
2993
2994 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2995 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2996 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2997 fw.start_addr = bnx_TXP_b09FwStartAddr;
2998
2999 fw.text_addr = bnx_TXP_b09FwTextAddr;
3000 fw.text_len = bnx_TXP_b09FwTextLen;
3001 fw.text_index = 0;
3002 fw.text = bnx_TXP_b09FwText;
3003
3004 fw.data_addr = bnx_TXP_b09FwDataAddr;
3005 fw.data_len = bnx_TXP_b09FwDataLen;
3006 fw.data_index = 0;
3007 fw.data = bnx_TXP_b09FwData;
3008
3009 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3010 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3011 fw.sbss_index = 0;
3012 fw.sbss = bnx_TXP_b09FwSbss;
3013
3014 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3015 fw.bss_len = bnx_TXP_b09FwBssLen;
3016 fw.bss_index = 0;
3017 fw.bss = bnx_TXP_b09FwBss;
3018
3019 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3020 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3021 fw.rodata_index = 0;
3022 fw.rodata = bnx_TXP_b09FwRodata;
3023
3024 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3025 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3026
3027 /* Initialize the TX Patch-up Processor. */
3028 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3029 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3030 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3031 cpu_reg.state = BNX_TPAT_CPU_STATE;
3032 cpu_reg.state_value_clear = 0xffffff;
3033 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3034 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3035 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3036 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3037 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3038 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3039 cpu_reg.mips_view_base = 0x8000000;
3040
3041 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3042 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3043 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3044 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3045
3046 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3047 fw.text_len = bnx_TPAT_b09FwTextLen;
3048 fw.text_index = 0;
3049 fw.text = bnx_TPAT_b09FwText;
3050
3051 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3052 fw.data_len = bnx_TPAT_b09FwDataLen;
3053 fw.data_index = 0;
3054 fw.data = bnx_TPAT_b09FwData;
3055
3056 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3057 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3058 fw.sbss_index = 0;
3059 fw.sbss = bnx_TPAT_b09FwSbss;
3060
3061 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3062 fw.bss_len = bnx_TPAT_b09FwBssLen;
3063 fw.bss_index = 0;
3064 fw.bss = bnx_TPAT_b09FwBss;
3065
3066 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3067 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3068 fw.rodata_index = 0;
3069 fw.rodata = bnx_TPAT_b09FwRodata;
3070
3071 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3072 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3073
3074 /* Initialize the Completion Processor. */
3075 cpu_reg.mode = BNX_COM_CPU_MODE;
3076 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3077 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3078 cpu_reg.state = BNX_COM_CPU_STATE;
3079 cpu_reg.state_value_clear = 0xffffff;
3080 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3081 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3082 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3083 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3084 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3085 cpu_reg.spad_base = BNX_COM_SCRATCH;
3086 cpu_reg.mips_view_base = 0x8000000;
3087
3088 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3089 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3090 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3091 fw.start_addr = bnx_COM_b09FwStartAddr;
3092
3093 fw.text_addr = bnx_COM_b09FwTextAddr;
3094 fw.text_len = bnx_COM_b09FwTextLen;
3095 fw.text_index = 0;
3096 fw.text = bnx_COM_b09FwText;
3097
3098 fw.data_addr = bnx_COM_b09FwDataAddr;
3099 fw.data_len = bnx_COM_b09FwDataLen;
3100 fw.data_index = 0;
3101 fw.data = bnx_COM_b09FwData;
3102
3103 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3104 fw.sbss_len = bnx_COM_b09FwSbssLen;
3105 fw.sbss_index = 0;
3106 fw.sbss = bnx_COM_b09FwSbss;
3107
3108 fw.bss_addr = bnx_COM_b09FwBssAddr;
3109 fw.bss_len = bnx_COM_b09FwBssLen;
3110 fw.bss_index = 0;
3111 fw.bss = bnx_COM_b09FwBss;
3112
3113 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3114 fw.rodata_len = bnx_COM_b09FwRodataLen;
3115 fw.rodata_index = 0;
3116 fw.rodata = bnx_COM_b09FwRodata;
3117 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3118 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3119 break;
3120 default:
3121 /* Initialize the RV2P processor. */
3122 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3123 RV2P_PROC1);
3124 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3125 RV2P_PROC2);
3126
3127 /* Initialize the RX Processor. */
3128 cpu_reg.mode = BNX_RXP_CPU_MODE;
3129 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3130 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3131 cpu_reg.state = BNX_RXP_CPU_STATE;
3132 cpu_reg.state_value_clear = 0xffffff;
3133 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3134 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3135 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3136 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3137 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3138 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3139 cpu_reg.mips_view_base = 0x8000000;
3140
3141 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3142 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3143 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3144 fw.start_addr = bnx_RXP_b06FwStartAddr;
3145
3146 fw.text_addr = bnx_RXP_b06FwTextAddr;
3147 fw.text_len = bnx_RXP_b06FwTextLen;
3148 fw.text_index = 0;
3149 fw.text = bnx_RXP_b06FwText;
3150
3151 fw.data_addr = bnx_RXP_b06FwDataAddr;
3152 fw.data_len = bnx_RXP_b06FwDataLen;
3153 fw.data_index = 0;
3154 fw.data = bnx_RXP_b06FwData;
3155
3156 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3157 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3158 fw.sbss_index = 0;
3159 fw.sbss = bnx_RXP_b06FwSbss;
3160
3161 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3162 fw.bss_len = bnx_RXP_b06FwBssLen;
3163 fw.bss_index = 0;
3164 fw.bss = bnx_RXP_b06FwBss;
3165
3166 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3167 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3168 fw.rodata_index = 0;
3169 fw.rodata = bnx_RXP_b06FwRodata;
3170
3171 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3172 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3173
3174 /* Initialize the TX Processor. */
3175 cpu_reg.mode = BNX_TXP_CPU_MODE;
3176 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3177 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3178 cpu_reg.state = BNX_TXP_CPU_STATE;
3179 cpu_reg.state_value_clear = 0xffffff;
3180 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3181 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3182 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3183 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3184 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3185 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3186 cpu_reg.mips_view_base = 0x8000000;
3187
3188 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3189 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3190 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3191 fw.start_addr = bnx_TXP_b06FwStartAddr;
3192
3193 fw.text_addr = bnx_TXP_b06FwTextAddr;
3194 fw.text_len = bnx_TXP_b06FwTextLen;
3195 fw.text_index = 0;
3196 fw.text = bnx_TXP_b06FwText;
3197
3198 fw.data_addr = bnx_TXP_b06FwDataAddr;
3199 fw.data_len = bnx_TXP_b06FwDataLen;
3200 fw.data_index = 0;
3201 fw.data = bnx_TXP_b06FwData;
3202
3203 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3204 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3205 fw.sbss_index = 0;
3206 fw.sbss = bnx_TXP_b06FwSbss;
3207
3208 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3209 fw.bss_len = bnx_TXP_b06FwBssLen;
3210 fw.bss_index = 0;
3211 fw.bss = bnx_TXP_b06FwBss;
3212
3213 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3214 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3215 fw.rodata_index = 0;
3216 fw.rodata = bnx_TXP_b06FwRodata;
3217
3218 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3219 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3220
3221 /* Initialize the TX Patch-up Processor. */
3222 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3223 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3224 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3225 cpu_reg.state = BNX_TPAT_CPU_STATE;
3226 cpu_reg.state_value_clear = 0xffffff;
3227 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3228 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3229 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3230 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3231 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3232 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3233 cpu_reg.mips_view_base = 0x8000000;
3234
3235 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3236 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3237 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3238 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3239
3240 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3241 fw.text_len = bnx_TPAT_b06FwTextLen;
3242 fw.text_index = 0;
3243 fw.text = bnx_TPAT_b06FwText;
3244
3245 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3246 fw.data_len = bnx_TPAT_b06FwDataLen;
3247 fw.data_index = 0;
3248 fw.data = bnx_TPAT_b06FwData;
3249
3250 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3251 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3252 fw.sbss_index = 0;
3253 fw.sbss = bnx_TPAT_b06FwSbss;
3254
3255 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3256 fw.bss_len = bnx_TPAT_b06FwBssLen;
3257 fw.bss_index = 0;
3258 fw.bss = bnx_TPAT_b06FwBss;
3259
3260 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3261 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3262 fw.rodata_index = 0;
3263 fw.rodata = bnx_TPAT_b06FwRodata;
3264
3265 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3266 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3267
3268 /* Initialize the Completion Processor. */
3269 cpu_reg.mode = BNX_COM_CPU_MODE;
3270 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3271 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3272 cpu_reg.state = BNX_COM_CPU_STATE;
3273 cpu_reg.state_value_clear = 0xffffff;
3274 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3275 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3276 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3277 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3278 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3279 cpu_reg.spad_base = BNX_COM_SCRATCH;
3280 cpu_reg.mips_view_base = 0x8000000;
3281
3282 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3283 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3284 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3285 fw.start_addr = bnx_COM_b06FwStartAddr;
3286
3287 fw.text_addr = bnx_COM_b06FwTextAddr;
3288 fw.text_len = bnx_COM_b06FwTextLen;
3289 fw.text_index = 0;
3290 fw.text = bnx_COM_b06FwText;
3291
3292 fw.data_addr = bnx_COM_b06FwDataAddr;
3293 fw.data_len = bnx_COM_b06FwDataLen;
3294 fw.data_index = 0;
3295 fw.data = bnx_COM_b06FwData;
3296
3297 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3298 fw.sbss_len = bnx_COM_b06FwSbssLen;
3299 fw.sbss_index = 0;
3300 fw.sbss = bnx_COM_b06FwSbss;
3301
3302 fw.bss_addr = bnx_COM_b06FwBssAddr;
3303 fw.bss_len = bnx_COM_b06FwBssLen;
3304 fw.bss_index = 0;
3305 fw.bss = bnx_COM_b06FwBss;
3306
3307 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3308 fw.rodata_len = bnx_COM_b06FwRodataLen;
3309 fw.rodata_index = 0;
3310 fw.rodata = bnx_COM_b06FwRodata;
3311 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3312 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3313 break;
3314 }
3315 }
3316
3317 /****************************************************************************/
3318 /* Initialize context memory. */
3319 /* */
3320 /* Clears the memory associated with each Context ID (CID). */
3321 /* */
3322 /* Returns: */
3323 /* Nothing. */
3324 /****************************************************************************/
3325 void
3326 bnx_init_context(struct bnx_softc *sc)
3327 {
3328 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3329 /* DRC: Replace this constant value with a #define. */
3330 int i, retry_cnt = 10;
3331 uint32_t val;
3332
3333 /*
3334 * BCM5709 context memory may be cached
3335 * in host memory so prepare the host memory
3336 * for access.
3337 */
3338 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3339 | (1 << 12);
3340 val |= (BCM_PAGE_BITS - 8) << 16;
3341 REG_WR(sc, BNX_CTX_COMMAND, val);
3342
3343 /* Wait for mem init command to complete. */
3344 for (i = 0; i < retry_cnt; i++) {
3345 val = REG_RD(sc, BNX_CTX_COMMAND);
3346 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3347 break;
3348 DELAY(2);
3349 }
3350
3351 /* ToDo: Consider returning an error here. */
3352
3353 for (i = 0; i < sc->ctx_pages; i++) {
3354 int j;
3355
3356 /* Set the physaddr of the context memory cache. */
3357 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3358 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3359 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3360 val = (uint32_t)
3361 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3362 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3363 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3364 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3365
3366 /* Verify that the context memory write was successful. */
3367 for (j = 0; j < retry_cnt; j++) {
3368 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3369 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3370 break;
3371 DELAY(5);
3372 }
3373
3374 /* ToDo: Consider returning an error here. */
3375 }
3376 } else {
3377 uint32_t vcid_addr, offset;
3378
3379 /*
3380 * For the 5706/5708, context memory is local to the
3381 * controller, so initialize the controller context memory.
3382 */
3383
3384 vcid_addr = GET_CID_ADDR(96);
3385 while (vcid_addr) {
3386
3387 vcid_addr -= BNX_PHY_CTX_SIZE;
3388
3389 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3390 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3391
3392 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3393 offset += 4)
3394 CTX_WR(sc, 0x00, offset, 0);
3395
3396 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3397 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3398 }
3399 }
3400 }
3401
3402 /****************************************************************************/
3403 /* Fetch the permanent MAC address of the controller. */
3404 /* */
3405 /* Returns: */
3406 /* Nothing. */
3407 /****************************************************************************/
3408 void
3409 bnx_get_mac_addr(struct bnx_softc *sc)
3410 {
3411 uint32_t mac_lo = 0, mac_hi = 0;
3412
3413 /*
3414 * The NetXtreme II bootcode populates various NIC
3415 * power-on and runtime configuration items in a
3416 * shared memory area. The factory configured MAC
3417 * address is available from both NVRAM and the
3418 * shared memory area so we'll read the value from
3419 * shared memory for speed.
3420 */
3421
3422 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3423 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3424
3425 if ((mac_lo == 0) && (mac_hi == 0)) {
3426 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3427 __FILE__, __LINE__);
3428 } else {
3429 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3430 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3431 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3432 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3433 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3434 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3435 }
3436
3437 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3438 "%s\n", ether_sprintf(sc->eaddr));
3439 }
3440
3441 /****************************************************************************/
3442 /* Program the MAC address. */
3443 /* */
3444 /* Returns: */
3445 /* Nothing. */
3446 /****************************************************************************/
3447 void
3448 bnx_set_mac_addr(struct bnx_softc *sc)
3449 {
3450 uint32_t val;
3451 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3452
3453 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3454 "%s\n", ether_sprintf(sc->eaddr));
3455
3456 val = (mac_addr[0] << 8) | mac_addr[1];
3457
3458 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3459
3460 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3461 (mac_addr[4] << 8) | mac_addr[5];
3462
3463 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3464 }
3465
3466 /****************************************************************************/
3467 /* Stop the controller. */
3468 /* */
3469 /* Returns: */
3470 /* Nothing. */
3471 /****************************************************************************/
3472 void
3473 bnx_stop(struct ifnet *ifp, int disable)
3474 {
3475 struct bnx_softc *sc = ifp->if_softc;
3476
3477 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3478
3479 if (disable) {
3480 sc->bnx_detaching = 1;
3481 callout_halt(&sc->bnx_timeout, NULL);
3482 } else
3483 callout_stop(&sc->bnx_timeout);
3484
3485 mii_down(&sc->bnx_mii);
3486
3487 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3488
3489 /* Disable the transmit/receive blocks. */
3490 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3491 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3492 DELAY(20);
3493
3494 bnx_disable_intr(sc);
3495
3496 /* Tell firmware that the driver is going away. */
3497 if (disable)
3498 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3499 else
3500 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3501
3502 /* Free RX buffers. */
3503 bnx_free_rx_chain(sc);
3504
3505 /* Free TX buffers. */
3506 bnx_free_tx_chain(sc);
3507
3508 ifp->if_timer = 0;
3509
3510 sc->bnx_link = 0;
3511
3512 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3513
3514 bnx_mgmt_init(sc);
3515 }
3516
3517 int
3518 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3519 {
3520 struct pci_attach_args *pa = &(sc->bnx_pa);
3521 uint32_t val;
3522 int i, rc = 0;
3523
3524 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3525
3526 /* Wait for pending PCI transactions to complete. */
3527 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3528 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3529 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3530 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3531 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3532 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3533 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3534 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3535 DELAY(5);
3536 } else {
3537 /* Disable DMA */
3538 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3539 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3540 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3541 REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3542
3543 for (i = 0; i < 100; i++) {
3544 delay(1 * 1000);
3545 val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3546 if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3547 break;
3548 }
3549 }
3550
3551 /* Assume bootcode is running. */
3552 sc->bnx_fw_timed_out = 0;
3553
3554 /* Give the firmware a chance to prepare for the reset. */
3555 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3556 if (rc)
3557 goto bnx_reset_exit;
3558
3559 /* Set a firmware reminder that this is a soft reset. */
3560 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3561 BNX_DRV_RESET_SIGNATURE_MAGIC);
3562
3563 /* Dummy read to force the chip to complete all current transactions. */
3564 val = REG_RD(sc, BNX_MISC_ID);
3565
3566 /* Chip reset. */
3567 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3568 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3569 REG_RD(sc, BNX_MISC_COMMAND);
3570 DELAY(5);
3571
3572 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3573 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3574
3575 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3576 val);
3577 } else {
3578 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3579 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3580 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3581 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3582
3583 /* Allow up to 30us for reset to complete. */
3584 for (i = 0; i < 10; i++) {
3585 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3586 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3587 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3588 break;
3589 }
3590 DELAY(10);
3591 }
3592
3593 /* Check that reset completed successfully. */
3594 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3595 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3596 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3597 __FILE__, __LINE__);
3598 rc = EBUSY;
3599 goto bnx_reset_exit;
3600 }
3601 }
3602
3603 /* Make sure byte swapping is properly configured. */
3604 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3605 if (val != 0x01020304) {
3606 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3607 __FILE__, __LINE__);
3608 rc = ENODEV;
3609 goto bnx_reset_exit;
3610 }
3611
3612 /* Just completed a reset, assume that firmware is running again. */
3613 sc->bnx_fw_timed_out = 0;
3614
3615 /* Wait for the firmware to finish its initialization. */
3616 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3617 if (rc)
3618 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3619 "initialization!\n", __FILE__, __LINE__);
3620
3621 bnx_reset_exit:
3622 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3623
3624 return rc;
3625 }
3626
3627 int
3628 bnx_chipinit(struct bnx_softc *sc)
3629 {
3630 struct pci_attach_args *pa = &(sc->bnx_pa);
3631 uint32_t val;
3632 int rc = 0;
3633
3634 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3635
3636 /* Make sure the interrupt is not active. */
3637 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3638
3639 /* Initialize DMA byte/word swapping, configure the number of DMA */
3640 /* channels and PCI clock compensation delay. */
3641 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3642 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3643 #if BYTE_ORDER == BIG_ENDIAN
3644 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3645 #endif
3646 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3647 DMA_READ_CHANS << 12 |
3648 DMA_WRITE_CHANS << 16;
3649
3650 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3651
3652 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3653 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3654
3655 /*
3656 * This setting resolves a problem observed on certain Intel PCI
3657 * chipsets that cannot handle multiple outstanding DMA operations.
3658 * See errata E9_5706A1_65.
3659 */
3660 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3661 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3662 !(sc->bnx_flags & BNX_PCIX_FLAG))
3663 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3664
3665 REG_WR(sc, BNX_DMA_CONFIG, val);
3666
3667 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3668 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3669 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3670 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3671 val & ~0x20000);
3672 }
3673
3674 /* Enable the RX_V2P and Context state machines before access. */
3675 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3676 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3677 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3678 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3679
3680 /* Initialize context mapping and zero out the quick contexts. */
3681 bnx_init_context(sc);
3682
3683 /* Initialize the on-boards CPUs */
3684 bnx_init_cpus(sc);
3685
3686 /* Enable management frames (NC-SI) to flow to the MCP. */
3687 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3688 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3689 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3690 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3691 }
3692
3693 /* Prepare NVRAM for access. */
3694 if (bnx_init_nvram(sc)) {
3695 rc = ENODEV;
3696 goto bnx_chipinit_exit;
3697 }
3698
3699 /* Set the kernel bypass block size */
3700 val = REG_RD(sc, BNX_MQ_CONFIG);
3701 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3702 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3703
3704 /* Enable bins used on the 5709. */
3705 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3706 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3707 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3708 val |= BNX_MQ_CONFIG_HALT_DIS;
3709 }
3710
3711 REG_WR(sc, BNX_MQ_CONFIG, val);
3712
3713 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3714 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3715 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3716
3717 val = (BCM_PAGE_BITS - 8) << 24;
3718 REG_WR(sc, BNX_RV2P_CONFIG, val);
3719
3720 /* Configure page size. */
3721 val = REG_RD(sc, BNX_TBDR_CONFIG);
3722 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3723 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3724 REG_WR(sc, BNX_TBDR_CONFIG, val);
3725
3726 #if 0
3727 /* Set the perfect match control register to default. */
3728 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3729 #endif
3730
3731 bnx_chipinit_exit:
3732 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3733
3734 return rc;
3735 }
3736
3737 /****************************************************************************/
3738 /* Initialize the controller in preparation to send/receive traffic. */
3739 /* */
3740 /* Returns: */
3741 /* 0 for success, positive value for failure. */
3742 /****************************************************************************/
3743 int
3744 bnx_blockinit(struct bnx_softc *sc)
3745 {
3746 uint32_t reg, val;
3747 int rc = 0;
3748
3749 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3750
3751 /* Load the hardware default MAC address. */
3752 bnx_set_mac_addr(sc);
3753
3754 /* Set the Ethernet backoff seed value */
3755 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3756 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3757 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3758
3759 sc->last_status_idx = 0;
3760 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3761
3762 /* Set up link change interrupt generation. */
3763 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3764 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3765
3766 /* Program the physical address of the status block. */
3767 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3768 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3769 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3770
3771 /* Program the physical address of the statistics block. */
3772 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3773 (uint32_t)(sc->stats_block_paddr));
3774 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3775 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3776
3777 /* Program various host coalescing parameters. */
3778 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3779 << 16) | sc->bnx_tx_quick_cons_trip);
3780 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3781 << 16) | sc->bnx_rx_quick_cons_trip);
3782 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3783 sc->bnx_comp_prod_trip);
3784 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3785 sc->bnx_tx_ticks);
3786 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3787 sc->bnx_rx_ticks);
3788 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3789 sc->bnx_com_ticks);
3790 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3791 sc->bnx_cmd_ticks);
3792 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3793 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3794 REG_WR(sc, BNX_HC_CONFIG,
3795 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3796 BNX_HC_CONFIG_COLLECT_STATS));
3797
3798 /* Clear the internal statistics counters. */
3799 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3800
3801 /* Verify that bootcode is running. */
3802 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3803
3804 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3805 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3806 __FILE__, __LINE__); reg = 0);
3807
3808 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3809 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3810 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3811 "Expected: 08%08X\n", __FILE__, __LINE__,
3812 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3813 BNX_DEV_INFO_SIGNATURE_MAGIC);
3814 rc = ENODEV;
3815 goto bnx_blockinit_exit;
3816 }
3817
3818 /* Enable DMA */
3819 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3820 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3821 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3822 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3823 }
3824
3825 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3826 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3827
3828 /* Disable management frames (NC-SI) from flowing to the MCP. */
3829 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3830 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3831 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3832 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3833 }
3834
3835 /* Enable all remaining blocks in the MAC. */
3836 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3837 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3838 BNX_MISC_ENABLE_DEFAULT_XI);
3839 } else
3840 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3841
3842 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3843 DELAY(20);
3844
3845 bnx_blockinit_exit:
3846 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3847
3848 return rc;
3849 }
3850
3851 static int
3852 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3853 uint16_t *chain_prod, uint32_t *prod_bseq)
3854 {
3855 bus_dmamap_t map;
3856 struct rx_bd *rxbd;
3857 uint32_t addr;
3858 int i;
3859 #ifdef BNX_DEBUG
3860 uint16_t debug_chain_prod = *chain_prod;
3861 #endif
3862 uint16_t first_chain_prod;
3863
3864 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3865
3866 /* Map the mbuf cluster into device memory. */
3867 map = sc->rx_mbuf_map[*chain_prod];
3868 first_chain_prod = *chain_prod;
3869 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3870 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3871 __FILE__, __LINE__);
3872
3873 m_freem(m_new);
3874
3875 DBRUNIF(1, sc->rx_mbuf_alloc--);
3876
3877 return ENOBUFS;
3878 }
3879 /* Make sure there is room in the receive chain. */
3880 if (map->dm_nsegs > sc->free_rx_bd) {
3881 bus_dmamap_unload(sc->bnx_dmatag, map);
3882 m_freem(m_new);
3883 return EFBIG;
3884 }
3885 #ifdef BNX_DEBUG
3886 /* Track the distribution of buffer segments. */
3887 sc->rx_mbuf_segs[map->dm_nsegs]++;
3888 #endif
3889
3890 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3891 BUS_DMASYNC_PREREAD);
3892
3893 /* Update some debug statistics counters */
3894 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3895 sc->rx_low_watermark = sc->free_rx_bd);
3896 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3897
3898 /*
3899 * Setup the rx_bd for the first segment
3900 */
3901 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3902
3903 addr = (uint32_t)map->dm_segs[0].ds_addr;
3904 rxbd->rx_bd_haddr_lo = addr;
3905 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3906 rxbd->rx_bd_haddr_hi = addr;
3907 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3908 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3909 *prod_bseq += map->dm_segs[0].ds_len;
3910 bus_dmamap_sync(sc->bnx_dmatag,
3911 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3912 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3913 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3914
3915 for (i = 1; i < map->dm_nsegs; i++) {
3916 *prod = NEXT_RX_BD(*prod);
3917 *chain_prod = RX_CHAIN_IDX(*prod);
3918
3919 rxbd =
3920 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3921
3922 addr = (uint32_t)map->dm_segs[i].ds_addr;
3923 rxbd->rx_bd_haddr_lo = addr;
3924 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3925 rxbd->rx_bd_haddr_hi = addr;
3926 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3927 rxbd->rx_bd_flags = 0;
3928 *prod_bseq += map->dm_segs[i].ds_len;
3929 bus_dmamap_sync(sc->bnx_dmatag,
3930 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3931 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3932 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3933 }
3934
3935 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3936 bus_dmamap_sync(sc->bnx_dmatag,
3937 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3938 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3939 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3940
3941 /*
3942 * Save the mbuf, adjust the map pointer (swap map for first and
3943 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3944 * and update our counter.
3945 */
3946 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3947 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3948 sc->rx_mbuf_map[*chain_prod] = map;
3949 sc->free_rx_bd -= map->dm_nsegs;
3950
3951 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3952 map->dm_nsegs));
3953 *prod = NEXT_RX_BD(*prod);
3954 *chain_prod = RX_CHAIN_IDX(*prod);
3955
3956 return 0;
3957 }
3958
3959 /****************************************************************************/
3960 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3961 /* */
3962 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3963 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3964 /* necessary. */
3965 /* */
3966 /* Returns: */
3967 /* 0 for success, positive value for failure. */
3968 /****************************************************************************/
3969 int
3970 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3971 uint16_t *chain_prod, uint32_t *prod_bseq)
3972 {
3973 struct mbuf *m_new = NULL;
3974 int rc = 0;
3975 uint16_t min_free_bd;
3976
3977 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3978 __func__);
3979
3980 /* Make sure the inputs are valid. */
3981 DBRUNIF((*chain_prod > MAX_RX_BD),
3982 aprint_error_dev(sc->bnx_dev,
3983 "RX producer out of range: 0x%04X > 0x%04X\n",
3984 *chain_prod, (uint16_t)MAX_RX_BD));
3985
3986 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3987 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3988 *prod_bseq);
3989
3990 /* try to get in as many mbufs as possible */
3991 if (sc->mbuf_alloc_size == MCLBYTES)
3992 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3993 else
3994 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3995 while (sc->free_rx_bd >= min_free_bd) {
3996 /* Simulate an mbuf allocation failure. */
3997 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3998 aprint_error_dev(sc->bnx_dev,
3999 "Simulating mbuf allocation failure.\n");
4000 sc->mbuf_sim_alloc_failed++;
4001 rc = ENOBUFS;
4002 goto bnx_get_buf_exit);
4003
4004 /* This is a new mbuf allocation. */
4005 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4006 if (m_new == NULL) {
4007 DBPRINT(sc, BNX_WARN,
4008 "%s(%d): RX mbuf header allocation failed!\n",
4009 __FILE__, __LINE__);
4010
4011 sc->mbuf_alloc_failed++;
4012
4013 rc = ENOBUFS;
4014 goto bnx_get_buf_exit;
4015 }
4016
4017 DBRUNIF(1, sc->rx_mbuf_alloc++);
4018
4019 /* Simulate an mbuf cluster allocation failure. */
4020 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4021 m_freem(m_new);
4022 sc->rx_mbuf_alloc--;
4023 sc->mbuf_alloc_failed++;
4024 sc->mbuf_sim_alloc_failed++;
4025 rc = ENOBUFS;
4026 goto bnx_get_buf_exit);
4027
4028 if (sc->mbuf_alloc_size == MCLBYTES)
4029 MCLGET(m_new, M_DONTWAIT);
4030 else
4031 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4032 M_DONTWAIT);
4033 if (!(m_new->m_flags & M_EXT)) {
4034 DBPRINT(sc, BNX_WARN,
4035 "%s(%d): RX mbuf chain allocation failed!\n",
4036 __FILE__, __LINE__);
4037
4038 m_freem(m_new);
4039
4040 DBRUNIF(1, sc->rx_mbuf_alloc--);
4041 sc->mbuf_alloc_failed++;
4042
4043 rc = ENOBUFS;
4044 goto bnx_get_buf_exit;
4045 }
4046
4047 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4048 if (rc != 0)
4049 goto bnx_get_buf_exit;
4050 }
4051
4052 bnx_get_buf_exit:
4053 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4054 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4055 *chain_prod, *prod_bseq);
4056
4057 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4058 __func__);
4059
4060 return rc;
4061 }
4062
4063 void
4064 bnx_alloc_pkts(struct work * unused, void * arg)
4065 {
4066 struct bnx_softc *sc = arg;
4067 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4068 struct bnx_pkt *pkt;
4069 int i, s;
4070
4071 for (i = 0; i < 4; i++) { /* magic! */
4072 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4073 if (pkt == NULL)
4074 break;
4075
4076 if (bus_dmamap_create(sc->bnx_dmatag,
4077 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4078 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4079 &pkt->pkt_dmamap) != 0)
4080 goto put;
4081
4082 if (!ISSET(ifp->if_flags, IFF_UP))
4083 goto stopping;
4084
4085 mutex_enter(&sc->tx_pkt_mtx);
4086 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4087 sc->tx_pkt_count++;
4088 mutex_exit(&sc->tx_pkt_mtx);
4089 }
4090
4091 mutex_enter(&sc->tx_pkt_mtx);
4092 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4093 mutex_exit(&sc->tx_pkt_mtx);
4094
4095 /* fire-up TX now that allocations have been done */
4096 s = splnet();
4097 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4098 bnx_start(ifp);
4099 splx(s);
4100
4101 return;
4102
4103 stopping:
4104 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4105 put:
4106 pool_put(bnx_tx_pool, pkt);
4107 return;
4108 }
4109
4110 /****************************************************************************/
4111 /* Initialize the TX context memory. */
4112 /* */
4113 /* Returns: */
4114 /* Nothing */
4115 /****************************************************************************/
4116 void
4117 bnx_init_tx_context(struct bnx_softc *sc)
4118 {
4119 uint32_t val;
4120
4121 /* Initialize the context ID for an L2 TX chain. */
4122 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4123 /* Set the CID type to support an L2 connection. */
4124 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4125 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4126 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4127 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4128
4129 /* Point the hardware to the first page in the chain. */
4130 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4131 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4132 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4133 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4134 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4135 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4136 } else {
4137 /* Set the CID type to support an L2 connection. */
4138 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4139 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4140 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4141 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4142
4143 /* Point the hardware to the first page in the chain. */
4144 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4145 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4146 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4147 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4148 }
4149 }
4150
4151
4152 /****************************************************************************/
4153 /* Allocate memory and initialize the TX data structures. */
4154 /* */
4155 /* Returns: */
4156 /* 0 for success, positive value for failure. */
4157 /****************************************************************************/
4158 int
4159 bnx_init_tx_chain(struct bnx_softc *sc)
4160 {
4161 struct tx_bd *txbd;
4162 uint32_t addr;
4163 int i, rc = 0;
4164
4165 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4166
4167 /* Force an allocation of some dmamaps for tx up front */
4168 bnx_alloc_pkts(NULL, sc);
4169
4170 /* Set the initial TX producer/consumer indices. */
4171 sc->tx_prod = 0;
4172 sc->tx_cons = 0;
4173 sc->tx_prod_bseq = 0;
4174 sc->used_tx_bd = 0;
4175 sc->max_tx_bd = USABLE_TX_BD;
4176 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4177 DBRUNIF(1, sc->tx_full_count = 0);
4178
4179 /*
4180 * The NetXtreme II supports a linked-list structure called
4181 * a Buffer Descriptor Chain (or BD chain). A BD chain
4182 * consists of a series of 1 or more chain pages, each of which
4183 * consists of a fixed number of BD entries.
4184 * The last BD entry on each page is a pointer to the next page
4185 * in the chain, and the last pointer in the BD chain
4186 * points back to the beginning of the chain.
4187 */
4188
4189 /* Set the TX next pointer chain entries. */
4190 for (i = 0; i < TX_PAGES; i++) {
4191 int j;
4192
4193 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4194
4195 /* Check if we've reached the last page. */
4196 if (i == (TX_PAGES - 1))
4197 j = 0;
4198 else
4199 j = i + 1;
4200
4201 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4202 txbd->tx_bd_haddr_lo = addr;
4203 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4204 txbd->tx_bd_haddr_hi = addr;
4205 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4206 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4207 }
4208
4209 /*
4210 * Initialize the context ID for an L2 TX chain.
4211 */
4212 bnx_init_tx_context(sc);
4213
4214 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4215
4216 return rc;
4217 }
4218
4219 /****************************************************************************/
4220 /* Free memory and clear the TX data structures. */
4221 /* */
4222 /* Returns: */
4223 /* Nothing. */
4224 /****************************************************************************/
4225 void
4226 bnx_free_tx_chain(struct bnx_softc *sc)
4227 {
4228 struct bnx_pkt *pkt;
4229 int i;
4230
4231 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4232
4233 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4234 mutex_enter(&sc->tx_pkt_mtx);
4235 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4236 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4237 mutex_exit(&sc->tx_pkt_mtx);
4238
4239 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4240 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4241 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4242
4243 m_freem(pkt->pkt_mbuf);
4244 DBRUNIF(1, sc->tx_mbuf_alloc--);
4245
4246 mutex_enter(&sc->tx_pkt_mtx);
4247 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4248 }
4249
4250 /* Destroy all the dmamaps we allocated for TX */
4251 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4252 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4253 sc->tx_pkt_count--;
4254 mutex_exit(&sc->tx_pkt_mtx);
4255
4256 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4257 pool_put(bnx_tx_pool, pkt);
4258
4259 mutex_enter(&sc->tx_pkt_mtx);
4260 }
4261 mutex_exit(&sc->tx_pkt_mtx);
4262
4263
4264
4265 /* Clear each TX chain page. */
4266 for (i = 0; i < TX_PAGES; i++) {
4267 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4268 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4269 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4270 }
4271
4272 sc->used_tx_bd = 0;
4273
4274 /* Check if we lost any mbufs in the process. */
4275 DBRUNIF((sc->tx_mbuf_alloc),
4276 aprint_error_dev(sc->bnx_dev,
4277 "Memory leak! Lost %d mbufs from tx chain!\n",
4278 sc->tx_mbuf_alloc));
4279
4280 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4281 }
4282
4283 /****************************************************************************/
4284 /* Initialize the RX context memory. */
4285 /* */
4286 /* Returns: */
4287 /* Nothing */
4288 /****************************************************************************/
4289 void
4290 bnx_init_rx_context(struct bnx_softc *sc)
4291 {
4292 uint32_t val;
4293
4294 /* Initialize the context ID for an L2 RX chain. */
4295 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4296 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4297
4298 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4299 val |= 0x000000ff;
4300
4301 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4302
4303 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4304 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4305 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4306 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4307 }
4308
4309 /* Point the hardware to the first page in the chain. */
4310 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4311 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4312 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4313 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4314 }
4315
4316 /****************************************************************************/
4317 /* Allocate memory and initialize the RX data structures. */
4318 /* */
4319 /* Returns: */
4320 /* 0 for success, positive value for failure. */
4321 /****************************************************************************/
4322 int
4323 bnx_init_rx_chain(struct bnx_softc *sc)
4324 {
4325 struct rx_bd *rxbd;
4326 int i, rc = 0;
4327 uint16_t prod, chain_prod;
4328 uint32_t prod_bseq, addr;
4329
4330 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4331
4332 /* Initialize the RX producer and consumer indices. */
4333 sc->rx_prod = 0;
4334 sc->rx_cons = 0;
4335 sc->rx_prod_bseq = 0;
4336 sc->free_rx_bd = USABLE_RX_BD;
4337 sc->max_rx_bd = USABLE_RX_BD;
4338 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4339 DBRUNIF(1, sc->rx_empty_count = 0);
4340
4341 /* Initialize the RX next pointer chain entries. */
4342 for (i = 0; i < RX_PAGES; i++) {
4343 int j;
4344
4345 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4346
4347 /* Check if we've reached the last page. */
4348 if (i == (RX_PAGES - 1))
4349 j = 0;
4350 else
4351 j = i + 1;
4352
4353 /* Setup the chain page pointers. */
4354 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4355 rxbd->rx_bd_haddr_hi = addr;
4356 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4357 rxbd->rx_bd_haddr_lo = addr;
4358 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4359 0, BNX_RX_CHAIN_PAGE_SZ,
4360 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4361 }
4362
4363 /* Allocate mbuf clusters for the rx_bd chain. */
4364 prod = prod_bseq = 0;
4365 chain_prod = RX_CHAIN_IDX(prod);
4366 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4367 BNX_PRINTF(sc,
4368 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4369 }
4370
4371 /* Save the RX chain producer index. */
4372 sc->rx_prod = prod;
4373 sc->rx_prod_bseq = prod_bseq;
4374
4375 for (i = 0; i < RX_PAGES; i++)
4376 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4377 sc->rx_bd_chain_map[i]->dm_mapsize,
4378 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4379
4380 /* Tell the chip about the waiting rx_bd's. */
4381 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4382 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4383
4384 bnx_init_rx_context(sc);
4385
4386 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4387
4388 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4389
4390 return rc;
4391 }
4392
4393 /****************************************************************************/
4394 /* Free memory and clear the RX data structures. */
4395 /* */
4396 /* Returns: */
4397 /* Nothing. */
4398 /****************************************************************************/
4399 void
4400 bnx_free_rx_chain(struct bnx_softc *sc)
4401 {
4402 int i;
4403
4404 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4405
4406 /* Free any mbufs still in the RX mbuf chain. */
4407 for (i = 0; i < TOTAL_RX_BD; i++) {
4408 if (sc->rx_mbuf_ptr[i] != NULL) {
4409 if (sc->rx_mbuf_map[i] != NULL) {
4410 bus_dmamap_sync(sc->bnx_dmatag,
4411 sc->rx_mbuf_map[i], 0,
4412 sc->rx_mbuf_map[i]->dm_mapsize,
4413 BUS_DMASYNC_POSTREAD);
4414 bus_dmamap_unload(sc->bnx_dmatag,
4415 sc->rx_mbuf_map[i]);
4416 }
4417 m_freem(sc->rx_mbuf_ptr[i]);
4418 sc->rx_mbuf_ptr[i] = NULL;
4419 DBRUNIF(1, sc->rx_mbuf_alloc--);
4420 }
4421 }
4422
4423 /* Clear each RX chain page. */
4424 for (i = 0; i < RX_PAGES; i++)
4425 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4426
4427 sc->free_rx_bd = sc->max_rx_bd;
4428
4429 /* Check if we lost any mbufs in the process. */
4430 DBRUNIF((sc->rx_mbuf_alloc),
4431 aprint_error_dev(sc->bnx_dev,
4432 "Memory leak! Lost %d mbufs from rx chain!\n",
4433 sc->rx_mbuf_alloc));
4434
4435 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4436 }
4437
4438 /****************************************************************************/
4439 /* Set media options. */
4440 /* */
4441 /* Returns: */
4442 /* 0 for success, positive value for failure. */
4443 /****************************************************************************/
4444 int
4445 bnx_ifmedia_upd(struct ifnet *ifp)
4446 {
4447 struct bnx_softc *sc;
4448 struct mii_data *mii;
4449 int rc = 0;
4450
4451 sc = ifp->if_softc;
4452
4453 mii = &sc->bnx_mii;
4454 sc->bnx_link = 0;
4455 if (mii->mii_instance) {
4456 struct mii_softc *miisc;
4457 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4458 mii_phy_reset(miisc);
4459 }
4460 mii_mediachg(mii);
4461
4462 return rc;
4463 }
4464
4465 /****************************************************************************/
4466 /* Reports current media status. */
4467 /* */
4468 /* Returns: */
4469 /* Nothing. */
4470 /****************************************************************************/
4471 void
4472 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4473 {
4474 struct bnx_softc *sc;
4475 struct mii_data *mii;
4476 int s;
4477
4478 sc = ifp->if_softc;
4479
4480 s = splnet();
4481
4482 mii = &sc->bnx_mii;
4483
4484 mii_pollstat(mii);
4485 ifmr->ifm_status = mii->mii_media_status;
4486 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4487 sc->bnx_flowflags;
4488
4489 splx(s);
4490 }
4491
4492 /****************************************************************************/
4493 /* Handles PHY generated interrupt events. */
4494 /* */
4495 /* Returns: */
4496 /* Nothing. */
4497 /****************************************************************************/
4498 void
4499 bnx_phy_intr(struct bnx_softc *sc)
4500 {
4501 uint32_t new_link_state, old_link_state;
4502
4503 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4504 BUS_DMASYNC_POSTREAD);
4505 new_link_state = sc->status_block->status_attn_bits &
4506 STATUS_ATTN_BITS_LINK_STATE;
4507 old_link_state = sc->status_block->status_attn_bits_ack &
4508 STATUS_ATTN_BITS_LINK_STATE;
4509
4510 /* Handle any changes if the link state has changed. */
4511 if (new_link_state != old_link_state) {
4512 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4513
4514 sc->bnx_link = 0;
4515 callout_stop(&sc->bnx_timeout);
4516 bnx_tick(sc);
4517
4518 /* Update the status_attn_bits_ack field in the status block. */
4519 if (new_link_state) {
4520 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4521 STATUS_ATTN_BITS_LINK_STATE);
4522 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4523 } else {
4524 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4525 STATUS_ATTN_BITS_LINK_STATE);
4526 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4527 }
4528 }
4529
4530 /* Acknowledge the link change interrupt. */
4531 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4532 }
4533
4534 /****************************************************************************/
4535 /* Handles received frame interrupt events. */
4536 /* */
4537 /* Returns: */
4538 /* Nothing. */
4539 /****************************************************************************/
4540 void
4541 bnx_rx_intr(struct bnx_softc *sc)
4542 {
4543 struct status_block *sblk = sc->status_block;
4544 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4545 uint16_t hw_cons, sw_cons, sw_chain_cons;
4546 uint16_t sw_prod, sw_chain_prod;
4547 uint32_t sw_prod_bseq;
4548 struct l2_fhdr *l2fhdr;
4549 int i;
4550
4551 DBRUNIF(1, sc->rx_interrupts++);
4552 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4553 BUS_DMASYNC_POSTREAD);
4554
4555 /* Prepare the RX chain pages to be accessed by the host CPU. */
4556 for (i = 0; i < RX_PAGES; i++)
4557 bus_dmamap_sync(sc->bnx_dmatag,
4558 sc->rx_bd_chain_map[i], 0,
4559 sc->rx_bd_chain_map[i]->dm_mapsize,
4560 BUS_DMASYNC_POSTWRITE);
4561
4562 /* Get the hardware's view of the RX consumer index. */
4563 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4564 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4565 hw_cons++;
4566
4567 /* Get working copies of the driver's view of the RX indices. */
4568 sw_cons = sc->rx_cons;
4569 sw_prod = sc->rx_prod;
4570 sw_prod_bseq = sc->rx_prod_bseq;
4571
4572 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4573 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4574 __func__, sw_prod, sw_cons, sw_prod_bseq);
4575
4576 /* Prevent speculative reads from getting ahead of the status block. */
4577 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4578 BUS_SPACE_BARRIER_READ);
4579
4580 /* Update some debug statistics counters */
4581 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4582 sc->rx_low_watermark = sc->free_rx_bd);
4583 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4584
4585 /*
4586 * Scan through the receive chain as long
4587 * as there is work to do.
4588 */
4589 while (sw_cons != hw_cons) {
4590 struct mbuf *m;
4591 struct rx_bd *rxbd __diagused;
4592 unsigned int len;
4593 uint32_t status;
4594
4595 /* Convert the producer/consumer indices to an actual
4596 * rx_bd index.
4597 */
4598 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4599 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4600
4601 /* Get the used rx_bd. */
4602 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4603 sc->free_rx_bd++;
4604
4605 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4606 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4607
4608 /* The mbuf is stored with the last rx_bd entry of a packet. */
4609 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4610 #ifdef DIAGNOSTIC
4611 /* Validate that this is the last rx_bd. */
4612 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4613 printf("%s: Unexpected mbuf found in "
4614 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4615 sw_chain_cons);
4616 }
4617 #endif
4618
4619 /* DRC - ToDo: If the received packet is small, say
4620 * less than 128 bytes, allocate a new mbuf
4621 * here, copy the data to that mbuf, and
4622 * recycle the mapped jumbo frame.
4623 */
4624
4625 /* Unmap the mbuf from DMA space. */
4626 #ifdef DIAGNOSTIC
4627 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4628 printf("invalid map sw_cons 0x%x "
4629 "sw_prod 0x%x "
4630 "sw_chain_cons 0x%x "
4631 "sw_chain_prod 0x%x "
4632 "hw_cons 0x%x "
4633 "TOTAL_RX_BD_PER_PAGE 0x%x "
4634 "TOTAL_RX_BD 0x%x\n",
4635 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4636 hw_cons,
4637 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4638 }
4639 #endif
4640 bus_dmamap_sync(sc->bnx_dmatag,
4641 sc->rx_mbuf_map[sw_chain_cons], 0,
4642 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4643 BUS_DMASYNC_POSTREAD);
4644 bus_dmamap_unload(sc->bnx_dmatag,
4645 sc->rx_mbuf_map[sw_chain_cons]);
4646
4647 /* Remove the mbuf from the driver's chain. */
4648 m = sc->rx_mbuf_ptr[sw_chain_cons];
4649 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4650
4651 /*
4652 * Frames received on the NetXteme II are prepended
4653 * with the l2_fhdr structure which provides status
4654 * information about the received frame (including
4655 * VLAN tags and checksum info) and are also
4656 * automatically adjusted to align the IP header
4657 * (i.e. two null bytes are inserted before the
4658 * Ethernet header).
4659 */
4660 l2fhdr = mtod(m, struct l2_fhdr *);
4661
4662 len = l2fhdr->l2_fhdr_pkt_len;
4663 status = l2fhdr->l2_fhdr_status;
4664
4665 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4666 aprint_error("Simulating l2_fhdr status error.\n");
4667 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4668
4669 /* Watch for unusual sized frames. */
4670 DBRUNIF(((len < BNX_MIN_MTU) ||
4671 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4672 aprint_error_dev(sc->bnx_dev,
4673 "Unusual frame size found. "
4674 "Min(%d), Actual(%d), Max(%d)\n",
4675 (int)BNX_MIN_MTU, len,
4676 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4677
4678 bnx_dump_mbuf(sc, m);
4679 bnx_breakpoint(sc));
4680
4681 len -= ETHER_CRC_LEN;
4682
4683 /* Check the received frame for errors. */
4684 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4685 L2_FHDR_ERRORS_PHY_DECODE |
4686 L2_FHDR_ERRORS_ALIGNMENT |
4687 L2_FHDR_ERRORS_TOO_SHORT |
4688 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4689 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4690 len >
4691 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4692 ifp->if_ierrors++;
4693 DBRUNIF(1, sc->l2fhdr_status_errors++);
4694
4695 /* Reuse the mbuf for a new frame. */
4696 if (bnx_add_buf(sc, m, &sw_prod,
4697 &sw_chain_prod, &sw_prod_bseq)) {
4698 DBRUNIF(1, bnx_breakpoint(sc));
4699 panic("%s: Can't reuse RX mbuf!\n",
4700 device_xname(sc->bnx_dev));
4701 }
4702 continue;
4703 }
4704
4705 /*
4706 * Get a new mbuf for the rx_bd. If no new
4707 * mbufs are available then reuse the current mbuf,
4708 * log an ierror on the interface, and generate
4709 * an error in the system log.
4710 */
4711 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4712 &sw_prod_bseq)) {
4713 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4714 "Failed to allocate "
4715 "new mbuf, incoming frame dropped!\n"));
4716
4717 ifp->if_ierrors++;
4718
4719 /* Try and reuse the exisitng mbuf. */
4720 if (bnx_add_buf(sc, m, &sw_prod,
4721 &sw_chain_prod, &sw_prod_bseq)) {
4722 DBRUNIF(1, bnx_breakpoint(sc));
4723 panic("%s: Double mbuf allocation "
4724 "failure!",
4725 device_xname(sc->bnx_dev));
4726 }
4727 continue;
4728 }
4729
4730 /* Skip over the l2_fhdr when passing the data up
4731 * the stack.
4732 */
4733 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4734
4735 /* Adjust the pckt length to match the received data. */
4736 m->m_pkthdr.len = m->m_len = len;
4737
4738 /* Send the packet to the appropriate interface. */
4739 m_set_rcvif(m, ifp);
4740
4741 DBRUN(BNX_VERBOSE_RECV,
4742 struct ether_header *eh;
4743 eh = mtod(m, struct ether_header *);
4744 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4745 __func__, ether_sprintf(eh->ether_dhost),
4746 ether_sprintf(eh->ether_shost),
4747 htons(eh->ether_type)));
4748
4749 /* Validate the checksum. */
4750
4751 /* Check for an IP datagram. */
4752 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4753 /* Check if the IP checksum is valid. */
4754 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4755 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4756 #ifdef BNX_DEBUG
4757 else
4758 DBPRINT(sc, BNX_WARN_SEND,
4759 "%s(): Invalid IP checksum "
4760 "= 0x%04X!\n",
4761 __func__,
4762 l2fhdr->l2_fhdr_ip_xsum
4763 );
4764 #endif
4765 }
4766
4767 /* Check for a valid TCP/UDP frame. */
4768 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4769 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4770 /* Check for a good TCP/UDP checksum. */
4771 if ((status &
4772 (L2_FHDR_ERRORS_TCP_XSUM |
4773 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4774 m->m_pkthdr.csum_flags |=
4775 M_CSUM_TCPv4 |
4776 M_CSUM_UDPv4;
4777 } else {
4778 DBPRINT(sc, BNX_WARN_SEND,
4779 "%s(): Invalid TCP/UDP "
4780 "checksum = 0x%04X!\n",
4781 __func__,
4782 l2fhdr->l2_fhdr_tcp_udp_xsum);
4783 }
4784 }
4785
4786 /*
4787 * If we received a packet with a vlan tag,
4788 * attach that information to the packet.
4789 */
4790 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4791 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4792 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4793 }
4794
4795 /* Pass the mbuf off to the upper layers. */
4796
4797 DBPRINT(sc, BNX_VERBOSE_RECV,
4798 "%s(): Passing received frame up.\n", __func__);
4799 if_percpuq_enqueue(ifp->if_percpuq, m);
4800 DBRUNIF(1, sc->rx_mbuf_alloc--);
4801
4802 }
4803
4804 sw_cons = NEXT_RX_BD(sw_cons);
4805
4806 /* Refresh hw_cons to see if there's new work */
4807 if (sw_cons == hw_cons) {
4808 hw_cons = sc->hw_rx_cons =
4809 sblk->status_rx_quick_consumer_index0;
4810 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4811 USABLE_RX_BD_PER_PAGE)
4812 hw_cons++;
4813 }
4814
4815 /* Prevent speculative reads from getting ahead of
4816 * the status block.
4817 */
4818 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4819 BUS_SPACE_BARRIER_READ);
4820 }
4821
4822 for (i = 0; i < RX_PAGES; i++)
4823 bus_dmamap_sync(sc->bnx_dmatag,
4824 sc->rx_bd_chain_map[i], 0,
4825 sc->rx_bd_chain_map[i]->dm_mapsize,
4826 BUS_DMASYNC_PREWRITE);
4827
4828 sc->rx_cons = sw_cons;
4829 sc->rx_prod = sw_prod;
4830 sc->rx_prod_bseq = sw_prod_bseq;
4831
4832 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4833 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4834
4835 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4836 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4837 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4838 }
4839
4840 /****************************************************************************/
4841 /* Handles transmit completion interrupt events. */
4842 /* */
4843 /* Returns: */
4844 /* Nothing. */
4845 /****************************************************************************/
4846 void
4847 bnx_tx_intr(struct bnx_softc *sc)
4848 {
4849 struct status_block *sblk = sc->status_block;
4850 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4851 struct bnx_pkt *pkt;
4852 bus_dmamap_t map;
4853 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4854
4855 DBRUNIF(1, sc->tx_interrupts++);
4856 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4857 BUS_DMASYNC_POSTREAD);
4858
4859 /* Get the hardware's view of the TX consumer index. */
4860 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4861
4862 /* Skip to the next entry if this is a chain page pointer. */
4863 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4864 hw_tx_cons++;
4865
4866 sw_tx_cons = sc->tx_cons;
4867
4868 /* Prevent speculative reads from getting ahead of the status block. */
4869 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4870 BUS_SPACE_BARRIER_READ);
4871
4872 /* Cycle through any completed TX chain page entries. */
4873 while (sw_tx_cons != hw_tx_cons) {
4874 #ifdef BNX_DEBUG
4875 struct tx_bd *txbd = NULL;
4876 #endif
4877 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4878
4879 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4880 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4881 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4882
4883 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4884 aprint_error_dev(sc->bnx_dev,
4885 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4886 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4887
4888 DBRUNIF(1, txbd = &sc->tx_bd_chain
4889 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4890
4891 DBRUNIF((txbd == NULL),
4892 aprint_error_dev(sc->bnx_dev,
4893 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4894 bnx_breakpoint(sc));
4895
4896 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4897 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4898
4899
4900 mutex_enter(&sc->tx_pkt_mtx);
4901 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4902 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4903 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4904 mutex_exit(&sc->tx_pkt_mtx);
4905 /*
4906 * Free the associated mbuf. Remember
4907 * that only the last tx_bd of a packet
4908 * has an mbuf pointer and DMA map.
4909 */
4910 map = pkt->pkt_dmamap;
4911 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4912 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4913 bus_dmamap_unload(sc->bnx_dmatag, map);
4914
4915 m_freem(pkt->pkt_mbuf);
4916 DBRUNIF(1, sc->tx_mbuf_alloc--);
4917
4918 ifp->if_opackets++;
4919
4920 mutex_enter(&sc->tx_pkt_mtx);
4921 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4922 }
4923 mutex_exit(&sc->tx_pkt_mtx);
4924
4925 sc->used_tx_bd--;
4926 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4927 __FILE__, __LINE__, sc->used_tx_bd);
4928
4929 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4930
4931 /* Refresh hw_cons to see if there's new work. */
4932 hw_tx_cons = sc->hw_tx_cons =
4933 sblk->status_tx_quick_consumer_index0;
4934 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4935 USABLE_TX_BD_PER_PAGE)
4936 hw_tx_cons++;
4937
4938 /* Prevent speculative reads from getting ahead of
4939 * the status block.
4940 */
4941 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4942 BUS_SPACE_BARRIER_READ);
4943 }
4944
4945 /* Clear the TX timeout timer. */
4946 ifp->if_timer = 0;
4947
4948 /* Clear the tx hardware queue full flag. */
4949 if (sc->used_tx_bd < sc->max_tx_bd) {
4950 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4951 aprint_debug_dev(sc->bnx_dev,
4952 "Open TX chain! %d/%d (used/total)\n",
4953 sc->used_tx_bd, sc->max_tx_bd));
4954 ifp->if_flags &= ~IFF_OACTIVE;
4955 }
4956
4957 sc->tx_cons = sw_tx_cons;
4958 }
4959
4960 /****************************************************************************/
4961 /* Disables interrupt generation. */
4962 /* */
4963 /* Returns: */
4964 /* Nothing. */
4965 /****************************************************************************/
4966 void
4967 bnx_disable_intr(struct bnx_softc *sc)
4968 {
4969 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4970 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4971 }
4972
4973 /****************************************************************************/
4974 /* Enables interrupt generation. */
4975 /* */
4976 /* Returns: */
4977 /* Nothing. */
4978 /****************************************************************************/
4979 void
4980 bnx_enable_intr(struct bnx_softc *sc)
4981 {
4982 uint32_t val;
4983
4984 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4985 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4986
4987 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4988 sc->last_status_idx);
4989
4990 val = REG_RD(sc, BNX_HC_COMMAND);
4991 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4992 }
4993
4994 /****************************************************************************/
4995 /* Handles controller initialization. */
4996 /* */
4997 /****************************************************************************/
4998 int
4999 bnx_init(struct ifnet *ifp)
5000 {
5001 struct bnx_softc *sc = ifp->if_softc;
5002 uint32_t ether_mtu;
5003 int s, error = 0;
5004
5005 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
5006
5007 s = splnet();
5008
5009 bnx_stop(ifp, 0);
5010
5011 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
5012 aprint_error_dev(sc->bnx_dev,
5013 "Controller reset failed!\n");
5014 goto bnx_init_exit;
5015 }
5016
5017 if ((error = bnx_chipinit(sc)) != 0) {
5018 aprint_error_dev(sc->bnx_dev,
5019 "Controller initialization failed!\n");
5020 goto bnx_init_exit;
5021 }
5022
5023 if ((error = bnx_blockinit(sc)) != 0) {
5024 aprint_error_dev(sc->bnx_dev,
5025 "Block initialization failed!\n");
5026 goto bnx_init_exit;
5027 }
5028
5029 /* Calculate and program the Ethernet MRU size. */
5030 if (ifp->if_mtu <= ETHERMTU) {
5031 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5032 sc->mbuf_alloc_size = MCLBYTES;
5033 } else {
5034 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5035 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5036 }
5037
5038
5039 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5040
5041 /*
5042 * Program the MRU and enable Jumbo frame
5043 * support.
5044 */
5045 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5046 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5047
5048 /* Calculate the RX Ethernet frame size for rx_bd's. */
5049 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5050
5051 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5052 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5053 sc->mbuf_alloc_size, sc->max_frame_size);
5054
5055 /* Program appropriate promiscuous/multicast filtering. */
5056 bnx_iff(sc);
5057
5058 /* Init RX buffer descriptor chain. */
5059 bnx_init_rx_chain(sc);
5060
5061 /* Init TX buffer descriptor chain. */
5062 bnx_init_tx_chain(sc);
5063
5064 /* Enable host interrupts. */
5065 bnx_enable_intr(sc);
5066
5067 bnx_ifmedia_upd(ifp);
5068
5069 SET(ifp->if_flags, IFF_RUNNING);
5070 CLR(ifp->if_flags, IFF_OACTIVE);
5071
5072 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5073
5074 bnx_init_exit:
5075 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5076
5077 splx(s);
5078
5079 return error;
5080 }
5081
5082 void
5083 bnx_mgmt_init(struct bnx_softc *sc)
5084 {
5085 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5086 uint32_t val;
5087
5088 /* Check if the driver is still running and bail out if it is. */
5089 if (ifp->if_flags & IFF_RUNNING)
5090 goto bnx_mgmt_init_exit;
5091
5092 /* Initialize the on-boards CPUs */
5093 bnx_init_cpus(sc);
5094
5095 val = (BCM_PAGE_BITS - 8) << 24;
5096 REG_WR(sc, BNX_RV2P_CONFIG, val);
5097
5098 /* Enable all critical blocks in the MAC. */
5099 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5100 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5101 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5102 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5103 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5104 DELAY(20);
5105
5106 bnx_ifmedia_upd(ifp);
5107
5108 bnx_mgmt_init_exit:
5109 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5110 }
5111
5112 /****************************************************************************/
5113 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5114 /* memory visible to the controller. */
5115 /* */
5116 /* Returns: */
5117 /* 0 for success, positive value for failure. */
5118 /****************************************************************************/
5119 int
5120 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5121 {
5122 struct bnx_pkt *pkt;
5123 bus_dmamap_t map;
5124 struct tx_bd *txbd = NULL;
5125 uint16_t vlan_tag = 0, flags = 0;
5126 uint16_t chain_prod, prod;
5127 #ifdef BNX_DEBUG
5128 uint16_t debug_prod;
5129 #endif
5130 uint32_t addr, prod_bseq;
5131 int i, error;
5132 static struct work bnx_wk; /* Dummy work. Statically allocated. */
5133 bool remap = true;
5134
5135 mutex_enter(&sc->tx_pkt_mtx);
5136 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5137 if (pkt == NULL) {
5138 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5139 mutex_exit(&sc->tx_pkt_mtx);
5140 return ENETDOWN;
5141 }
5142
5143 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5144 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5145 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
5146 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5147 }
5148
5149 mutex_exit(&sc->tx_pkt_mtx);
5150 return ENOMEM;
5151 }
5152 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5153 mutex_exit(&sc->tx_pkt_mtx);
5154
5155 /* Transfer any checksum offload flags to the bd. */
5156 if (m->m_pkthdr.csum_flags) {
5157 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5158 flags |= TX_BD_FLAGS_IP_CKSUM;
5159 if (m->m_pkthdr.csum_flags &
5160 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5161 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5162 }
5163
5164 /* Transfer any VLAN tags to the bd. */
5165 if (vlan_has_tag(m)) {
5166 flags |= TX_BD_FLAGS_VLAN_TAG;
5167 vlan_tag = vlan_get_tag(m);
5168 }
5169
5170 /* Map the mbuf into DMAable memory. */
5171 prod = sc->tx_prod;
5172 chain_prod = TX_CHAIN_IDX(prod);
5173 map = pkt->pkt_dmamap;
5174
5175 /* Map the mbuf into our DMA address space. */
5176 retry:
5177 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5178 if (__predict_false(error)) {
5179 if (error == EFBIG) {
5180 if (remap == true) {
5181 struct mbuf *newm;
5182
5183 remap = false;
5184 newm = m_defrag(m, M_NOWAIT);
5185 if (newm != NULL) {
5186 m = newm;
5187 goto retry;
5188 }
5189 }
5190 }
5191 sc->tx_dma_map_failures++;
5192 goto maperr;
5193 }
5194 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5195 BUS_DMASYNC_PREWRITE);
5196 /* Make sure there's room in the chain */
5197 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5198 goto nospace;
5199
5200 /* prod points to an empty tx_bd at this point. */
5201 prod_bseq = sc->tx_prod_bseq;
5202 #ifdef BNX_DEBUG
5203 debug_prod = chain_prod;
5204 #endif
5205 DBPRINT(sc, BNX_INFO_SEND,
5206 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5207 "prod_bseq = 0x%08X\n",
5208 __func__, prod, chain_prod, prod_bseq);
5209
5210 /*
5211 * Cycle through each mbuf segment that makes up
5212 * the outgoing frame, gathering the mapping info
5213 * for that segment and creating a tx_bd for the
5214 * mbuf.
5215 */
5216 for (i = 0; i < map->dm_nsegs ; i++) {
5217 chain_prod = TX_CHAIN_IDX(prod);
5218 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5219
5220 addr = (uint32_t)map->dm_segs[i].ds_addr;
5221 txbd->tx_bd_haddr_lo = addr;
5222 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5223 txbd->tx_bd_haddr_hi = addr;
5224 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5225 txbd->tx_bd_vlan_tag = vlan_tag;
5226 txbd->tx_bd_flags = flags;
5227 prod_bseq += map->dm_segs[i].ds_len;
5228 if (i == 0)
5229 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5230 prod = NEXT_TX_BD(prod);
5231 }
5232
5233 /* Set the END flag on the last TX buffer descriptor. */
5234 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5235
5236 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5237
5238 DBPRINT(sc, BNX_INFO_SEND,
5239 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5240 "prod_bseq = 0x%08X\n",
5241 __func__, prod, chain_prod, prod_bseq);
5242
5243 pkt->pkt_mbuf = m;
5244 pkt->pkt_end_desc = chain_prod;
5245
5246 mutex_enter(&sc->tx_pkt_mtx);
5247 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5248 mutex_exit(&sc->tx_pkt_mtx);
5249
5250 sc->used_tx_bd += map->dm_nsegs;
5251 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5252 __FILE__, __LINE__, sc->used_tx_bd);
5253
5254 /* Update some debug statistics counters */
5255 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5256 sc->tx_hi_watermark = sc->used_tx_bd);
5257 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5258 DBRUNIF(1, sc->tx_mbuf_alloc++);
5259
5260 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5261 map->dm_nsegs));
5262
5263 /* prod points to the next free tx_bd at this point. */
5264 sc->tx_prod = prod;
5265 sc->tx_prod_bseq = prod_bseq;
5266
5267 return 0;
5268
5269
5270 nospace:
5271 bus_dmamap_unload(sc->bnx_dmatag, map);
5272 maperr:
5273 mutex_enter(&sc->tx_pkt_mtx);
5274 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5275 mutex_exit(&sc->tx_pkt_mtx);
5276
5277 return ENOMEM;
5278 }
5279
5280 /****************************************************************************/
5281 /* Main transmit routine. */
5282 /* */
5283 /* Returns: */
5284 /* Nothing. */
5285 /****************************************************************************/
5286 void
5287 bnx_start(struct ifnet *ifp)
5288 {
5289 struct bnx_softc *sc = ifp->if_softc;
5290 struct mbuf *m_head = NULL;
5291 int count = 0;
5292 #ifdef BNX_DEBUG
5293 uint16_t tx_chain_prod;
5294 #endif
5295
5296 /* If there's no link or the transmit queue is empty then just exit. */
5297 if (!sc->bnx_link
5298 ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5299 DBPRINT(sc, BNX_INFO_SEND,
5300 "%s(): output active or device not running.\n", __func__);
5301 goto bnx_start_exit;
5302 }
5303
5304 /* prod points to the next free tx_bd. */
5305 #ifdef BNX_DEBUG
5306 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5307 #endif
5308
5309 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5310 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5311 "used_tx %d max_tx %d\n",
5312 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5313 sc->used_tx_bd, sc->max_tx_bd);
5314
5315 /*
5316 * Keep adding entries while there is space in the ring.
5317 */
5318 while (sc->used_tx_bd < sc->max_tx_bd) {
5319 /* Check for any frames to send. */
5320 IFQ_POLL(&ifp->if_snd, m_head);
5321 if (m_head == NULL)
5322 break;
5323
5324 /*
5325 * Pack the data into the transmit ring. If we
5326 * don't have room, set the OACTIVE flag to wait
5327 * for the NIC to drain the chain.
5328 */
5329 if (bnx_tx_encap(sc, m_head)) {
5330 ifp->if_flags |= IFF_OACTIVE;
5331 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5332 "business! Total tx_bd used = %d\n",
5333 sc->used_tx_bd);
5334 break;
5335 }
5336
5337 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5338 count++;
5339
5340 /* Send a copy of the frame to any BPF listeners. */
5341 bpf_mtap(ifp, m_head, BPF_D_OUT);
5342 }
5343
5344 if (count == 0) {
5345 /* no packets were dequeued */
5346 DBPRINT(sc, BNX_VERBOSE_SEND,
5347 "%s(): No packets were dequeued\n", __func__);
5348 goto bnx_start_exit;
5349 }
5350
5351 /* Update the driver's counters. */
5352 #ifdef BNX_DEBUG
5353 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5354 #endif
5355
5356 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5357 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5358 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5359
5360 /* Start the transmit. */
5361 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5362 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5363
5364 /* Set the tx timeout. */
5365 ifp->if_timer = BNX_TX_TIMEOUT;
5366
5367 bnx_start_exit:
5368 return;
5369 }
5370
5371 /****************************************************************************/
5372 /* Handles any IOCTL calls from the operating system. */
5373 /* */
5374 /* Returns: */
5375 /* 0 for success, positive value for failure. */
5376 /****************************************************************************/
5377 int
5378 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5379 {
5380 struct bnx_softc *sc = ifp->if_softc;
5381 struct ifreq *ifr = (struct ifreq *) data;
5382 struct mii_data *mii = &sc->bnx_mii;
5383 int s, error = 0;
5384
5385 s = splnet();
5386
5387 switch (command) {
5388 case SIOCSIFFLAGS:
5389 if ((error = ifioctl_common(ifp, command, data)) != 0)
5390 break;
5391 /* XXX set an ifflags callback and let ether_ioctl
5392 * handle all of this.
5393 */
5394 if (ISSET(ifp->if_flags, IFF_UP)) {
5395 if (ifp->if_flags & IFF_RUNNING)
5396 error = ENETRESET;
5397 else
5398 bnx_init(ifp);
5399 } else if (ifp->if_flags & IFF_RUNNING)
5400 bnx_stop(ifp, 1);
5401 break;
5402
5403 case SIOCSIFMEDIA:
5404 /* Flow control requires full-duplex mode. */
5405 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5406 (ifr->ifr_media & IFM_FDX) == 0)
5407 ifr->ifr_media &= ~IFM_ETH_FMASK;
5408
5409 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5410 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5411 /* We can do both TXPAUSE and RXPAUSE. */
5412 ifr->ifr_media |=
5413 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5414 }
5415 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5416 }
5417 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5418 sc->bnx_phy_flags);
5419
5420 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5421 break;
5422
5423 default:
5424 error = ether_ioctl(ifp, command, data);
5425 }
5426
5427 if (error == ENETRESET) {
5428 if (ifp->if_flags & IFF_RUNNING)
5429 bnx_iff(sc);
5430 error = 0;
5431 }
5432
5433 splx(s);
5434 return error;
5435 }
5436
5437 /****************************************************************************/
5438 /* Transmit timeout handler. */
5439 /* */
5440 /* Returns: */
5441 /* Nothing. */
5442 /****************************************************************************/
5443 void
5444 bnx_watchdog(struct ifnet *ifp)
5445 {
5446 struct bnx_softc *sc = ifp->if_softc;
5447
5448 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5449 bnx_dump_status_block(sc));
5450 /*
5451 * If we are in this routine because of pause frames, then
5452 * don't reset the hardware.
5453 */
5454 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5455 return;
5456
5457 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5458
5459 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5460
5461 bnx_init(ifp);
5462
5463 ifp->if_oerrors++;
5464 }
5465
5466 /*
5467 * Interrupt handler.
5468 */
5469 /****************************************************************************/
5470 /* Main interrupt entry point. Verifies that the controller generated the */
5471 /* interrupt and then calls a separate routine for handle the various */
5472 /* interrupt causes (PHY, TX, RX). */
5473 /* */
5474 /* Returns: */
5475 /* 0 for success, positive value for failure. */
5476 /****************************************************************************/
5477 int
5478 bnx_intr(void *xsc)
5479 {
5480 struct bnx_softc *sc = xsc;
5481 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5482 uint32_t status_attn_bits;
5483 uint16_t status_idx;
5484 const struct status_block *sblk;
5485 int rv = 0;
5486
5487 if (!device_is_active(sc->bnx_dev) ||
5488 (ifp->if_flags & IFF_RUNNING) == 0)
5489 return 0;
5490
5491 DBRUNIF(1, sc->interrupts_generated++);
5492
5493 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5494 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5495
5496 sblk = sc->status_block;
5497 /*
5498 * If the hardware status block index
5499 * matches the last value read by the
5500 * driver and we haven't asserted our
5501 * interrupt then there's nothing to do.
5502 */
5503 status_idx = sblk->status_idx;
5504 if ((status_idx != sc->last_status_idx) ||
5505 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5506 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5507 rv = 1;
5508
5509 /* Ack the interrupt */
5510 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5511 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5512
5513 status_attn_bits = sblk->status_attn_bits;
5514
5515 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5516 aprint_debug("Simulating unexpected status attention bit set.");
5517 status_attn_bits = status_attn_bits |
5518 STATUS_ATTN_BITS_PARITY_ERROR);
5519
5520 /* Was it a link change interrupt? */
5521 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5522 (sblk->status_attn_bits_ack &
5523 STATUS_ATTN_BITS_LINK_STATE))
5524 bnx_phy_intr(sc);
5525
5526 /* If any other attention is asserted then the chip is toast. */
5527 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5528 (sblk->status_attn_bits_ack &
5529 ~STATUS_ATTN_BITS_LINK_STATE))) {
5530 DBRUN(sc->unexpected_attentions++);
5531
5532 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5533 sblk->status_attn_bits);
5534
5535 DBRUNIF((bnx_debug_unexpected_attention == 0),
5536 bnx_breakpoint(sc));
5537
5538 bnx_init(ifp);
5539 goto out;
5540 }
5541
5542 /* Check for any completed RX frames. */
5543 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5544 bnx_rx_intr(sc);
5545
5546 /* Check for any completed TX frames. */
5547 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5548 bnx_tx_intr(sc);
5549
5550 /*
5551 * Save the status block index value for use during the
5552 * next interrupt.
5553 */
5554 sc->last_status_idx = status_idx;
5555
5556 /* Start moving packets again */
5557 if (ifp->if_flags & IFF_RUNNING)
5558 if_schedule_deferred_start(ifp);
5559 }
5560
5561 out:
5562 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5563 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5564
5565 return rv;
5566 }
5567
5568 /****************************************************************************/
5569 /* Programs the various packet receive modes (broadcast and multicast). */
5570 /* */
5571 /* Returns: */
5572 /* Nothing. */
5573 /****************************************************************************/
5574 void
5575 bnx_iff(struct bnx_softc *sc)
5576 {
5577 struct ethercom *ec = &sc->bnx_ec;
5578 struct ifnet *ifp = &ec->ec_if;
5579 struct ether_multi *enm;
5580 struct ether_multistep step;
5581 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5582 uint32_t rx_mode, sort_mode;
5583 int h, i;
5584
5585 /* Initialize receive mode default settings. */
5586 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5587 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5588 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5589 ifp->if_flags &= ~IFF_ALLMULTI;
5590
5591 /*
5592 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5593 * be enbled.
5594 */
5595 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5596 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5597
5598 /*
5599 * Check for promiscuous, all multicast, or selected
5600 * multicast address filtering.
5601 */
5602 if (ifp->if_flags & IFF_PROMISC) {
5603 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5604
5605 ifp->if_flags |= IFF_ALLMULTI;
5606 /* Enable promiscuous mode. */
5607 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5608 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5609 } else if (ifp->if_flags & IFF_ALLMULTI) {
5610 allmulti:
5611 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5612
5613 ifp->if_flags |= IFF_ALLMULTI;
5614 /* Enable all multicast addresses. */
5615 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5616 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5617 0xffffffff);
5618 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5619 } else {
5620 /* Accept one or more multicast(s). */
5621 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5622
5623 ETHER_LOCK(ec);
5624 ETHER_FIRST_MULTI(step, ec, enm);
5625 while (enm != NULL) {
5626 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5627 ETHER_ADDR_LEN)) {
5628 ETHER_UNLOCK(ec);
5629 goto allmulti;
5630 }
5631 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5632 0xFF;
5633 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5634 ETHER_NEXT_MULTI(step, enm);
5635 }
5636 ETHER_UNLOCK(ec);
5637
5638 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5639 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5640 hashes[i]);
5641
5642 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5643 }
5644
5645 /* Only make changes if the recive mode has actually changed. */
5646 if (rx_mode != sc->rx_mode) {
5647 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5648 rx_mode);
5649
5650 sc->rx_mode = rx_mode;
5651 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5652 }
5653
5654 /* Disable and clear the exisitng sort before enabling a new sort. */
5655 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5656 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5657 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5658 }
5659
5660 /****************************************************************************/
5661 /* Called periodically to updates statistics from the controllers */
5662 /* statistics block. */
5663 /* */
5664 /* Returns: */
5665 /* Nothing. */
5666 /****************************************************************************/
5667 void
5668 bnx_stats_update(struct bnx_softc *sc)
5669 {
5670 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5671 struct statistics_block *stats;
5672
5673 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5674 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5675 BUS_DMASYNC_POSTREAD);
5676
5677 stats = (struct statistics_block *)sc->stats_block;
5678
5679 /*
5680 * Update the interface statistics from the
5681 * hardware statistics.
5682 */
5683 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5684
5685 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5686 (u_long)stats->stat_EtherStatsOverrsizePkts +
5687 (u_long)stats->stat_IfInMBUFDiscards +
5688 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5689 (u_long)stats->stat_Dot3StatsFCSErrors;
5690
5691 ifp->if_oerrors = (u_long)
5692 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5693 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5694 (u_long)stats->stat_Dot3StatsLateCollisions;
5695
5696 /*
5697 * Certain controllers don't report
5698 * carrier sense errors correctly.
5699 * See errata E11_5708CA0_1165.
5700 */
5701 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5702 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5703 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5704
5705 /*
5706 * Update the sysctl statistics from the
5707 * hardware statistics.
5708 */
5709 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5710 (uint64_t) stats->stat_IfHCInOctets_lo;
5711
5712 sc->stat_IfHCInBadOctets =
5713 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5714 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5715
5716 sc->stat_IfHCOutOctets =
5717 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5718 (uint64_t) stats->stat_IfHCOutOctets_lo;
5719
5720 sc->stat_IfHCOutBadOctets =
5721 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5722 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5723
5724 sc->stat_IfHCInUcastPkts =
5725 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5726 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5727
5728 sc->stat_IfHCInMulticastPkts =
5729 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5730 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5731
5732 sc->stat_IfHCInBroadcastPkts =
5733 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5734 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5735
5736 sc->stat_IfHCOutUcastPkts =
5737 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5738 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5739
5740 sc->stat_IfHCOutMulticastPkts =
5741 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5742 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5743
5744 sc->stat_IfHCOutBroadcastPkts =
5745 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5746 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5747
5748 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5749 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5750
5751 sc->stat_Dot3StatsCarrierSenseErrors =
5752 stats->stat_Dot3StatsCarrierSenseErrors;
5753
5754 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5755
5756 sc->stat_Dot3StatsAlignmentErrors =
5757 stats->stat_Dot3StatsAlignmentErrors;
5758
5759 sc->stat_Dot3StatsSingleCollisionFrames =
5760 stats->stat_Dot3StatsSingleCollisionFrames;
5761
5762 sc->stat_Dot3StatsMultipleCollisionFrames =
5763 stats->stat_Dot3StatsMultipleCollisionFrames;
5764
5765 sc->stat_Dot3StatsDeferredTransmissions =
5766 stats->stat_Dot3StatsDeferredTransmissions;
5767
5768 sc->stat_Dot3StatsExcessiveCollisions =
5769 stats->stat_Dot3StatsExcessiveCollisions;
5770
5771 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5772
5773 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5774
5775 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5776
5777 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5778
5779 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5780
5781 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5782
5783 sc->stat_EtherStatsPktsRx64Octets =
5784 stats->stat_EtherStatsPktsRx64Octets;
5785
5786 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5787 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5788
5789 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5790 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5791
5792 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5793 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5794
5795 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5796 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5797
5798 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5799 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5800
5801 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5802 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5803
5804 sc->stat_EtherStatsPktsTx64Octets =
5805 stats->stat_EtherStatsPktsTx64Octets;
5806
5807 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5808 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5809
5810 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5811 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5812
5813 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5814 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5815
5816 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5817 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5818
5819 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5820 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5821
5822 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5823 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5824
5825 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5826
5827 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5828
5829 sc->stat_OutXonSent = stats->stat_OutXonSent;
5830
5831 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5832
5833 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5834
5835 sc->stat_MacControlFramesReceived =
5836 stats->stat_MacControlFramesReceived;
5837
5838 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5839
5840 sc->stat_IfInFramesL2FilterDiscards =
5841 stats->stat_IfInFramesL2FilterDiscards;
5842
5843 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5844
5845 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5846
5847 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5848
5849 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5850
5851 sc->stat_CatchupInRuleCheckerDiscards =
5852 stats->stat_CatchupInRuleCheckerDiscards;
5853
5854 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5855
5856 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5857
5858 sc->stat_CatchupInRuleCheckerP4Hit =
5859 stats->stat_CatchupInRuleCheckerP4Hit;
5860
5861 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5862 }
5863
5864 void
5865 bnx_tick(void *xsc)
5866 {
5867 struct bnx_softc *sc = xsc;
5868 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5869 struct mii_data *mii;
5870 uint32_t msg;
5871 uint16_t prod, chain_prod;
5872 uint32_t prod_bseq;
5873 int s = splnet();
5874
5875 /* Tell the firmware that the driver is still running. */
5876 #ifdef BNX_DEBUG
5877 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5878 #else
5879 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5880 #endif
5881 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5882
5883 /* Update the statistics from the hardware statistics block. */
5884 bnx_stats_update(sc);
5885
5886 /* Schedule the next tick. */
5887 if (!sc->bnx_detaching)
5888 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5889
5890 if (sc->bnx_link)
5891 goto bnx_tick_exit;
5892
5893 mii = &sc->bnx_mii;
5894 mii_tick(mii);
5895
5896 /* Check if the link has come up. */
5897 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5898 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5899 sc->bnx_link++;
5900 /* Now that link is up, handle any outstanding TX traffic. */
5901 if_schedule_deferred_start(ifp);
5902 }
5903
5904 bnx_tick_exit:
5905 /* try to get more RX buffers, just in case */
5906 prod = sc->rx_prod;
5907 prod_bseq = sc->rx_prod_bseq;
5908 chain_prod = RX_CHAIN_IDX(prod);
5909 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5910 sc->rx_prod = prod;
5911 sc->rx_prod_bseq = prod_bseq;
5912
5913 splx(s);
5914 return;
5915 }
5916
5917 /****************************************************************************/
5918 /* BNX Debug Routines */
5919 /****************************************************************************/
5920 #ifdef BNX_DEBUG
5921
5922 /****************************************************************************/
5923 /* Prints out information about an mbuf. */
5924 /* */
5925 /* Returns: */
5926 /* Nothing. */
5927 /****************************************************************************/
5928 void
5929 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5930 {
5931 struct mbuf *mp = m;
5932
5933 if (m == NULL) {
5934 /* Index out of range. */
5935 aprint_error("mbuf ptr is null!\n");
5936 return;
5937 }
5938
5939 while (mp) {
5940 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5941 mp, mp->m_len);
5942
5943 if (mp->m_flags & M_EXT)
5944 aprint_debug("M_EXT ");
5945 if (mp->m_flags & M_PKTHDR)
5946 aprint_debug("M_PKTHDR ");
5947 aprint_debug("\n");
5948
5949 if (mp->m_flags & M_EXT)
5950 aprint_debug("- m_ext: vaddr = %p, "
5951 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5952
5953 mp = mp->m_next;
5954 }
5955 }
5956
5957 /****************************************************************************/
5958 /* Prints out the mbufs in the TX mbuf chain. */
5959 /* */
5960 /* Returns: */
5961 /* Nothing. */
5962 /****************************************************************************/
5963 void
5964 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5965 {
5966 #if 0
5967 struct mbuf *m;
5968 int i;
5969
5970 aprint_debug_dev(sc->bnx_dev,
5971 "----------------------------"
5972 " tx mbuf data "
5973 "----------------------------\n");
5974
5975 for (i = 0; i < count; i++) {
5976 m = sc->tx_mbuf_ptr[chain_prod];
5977 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5978 bnx_dump_mbuf(sc, m);
5979 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5980 }
5981
5982 aprint_debug_dev(sc->bnx_dev,
5983 "--------------------------------------------"
5984 "----------------------------\n");
5985 #endif
5986 }
5987
5988 /*
5989 * This routine prints the RX mbuf chain.
5990 */
5991 void
5992 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5993 {
5994 struct mbuf *m;
5995 int i;
5996
5997 aprint_debug_dev(sc->bnx_dev,
5998 "----------------------------"
5999 " rx mbuf data "
6000 "----------------------------\n");
6001
6002 for (i = 0; i < count; i++) {
6003 m = sc->rx_mbuf_ptr[chain_prod];
6004 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
6005 bnx_dump_mbuf(sc, m);
6006 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6007 }
6008
6009
6010 aprint_debug_dev(sc->bnx_dev,
6011 "--------------------------------------------"
6012 "----------------------------\n");
6013 }
6014
6015 void
6016 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6017 {
6018 if (idx > MAX_TX_BD)
6019 /* Index out of range. */
6020 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6021 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6022 /* TX Chain page pointer. */
6023 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6024 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6025 txbd->tx_bd_haddr_lo);
6026 else
6027 /* Normal tx_bd entry. */
6028 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6029 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6030 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6031 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6032 txbd->tx_bd_flags);
6033 }
6034
6035 void
6036 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6037 {
6038 if (idx > MAX_RX_BD)
6039 /* Index out of range. */
6040 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6041 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6042 /* TX Chain page pointer. */
6043 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6044 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6045 rxbd->rx_bd_haddr_lo);
6046 else
6047 /* Normal tx_bd entry. */
6048 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6049 "0x%08X, flags = 0x%08X\n", idx,
6050 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6051 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6052 }
6053
6054 void
6055 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6056 {
6057 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6058 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6059 "tcp_udp_xsum = 0x%04X\n", idx,
6060 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6061 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6062 l2fhdr->l2_fhdr_tcp_udp_xsum);
6063 }
6064
6065 /*
6066 * This routine prints the TX chain.
6067 */
6068 void
6069 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6070 {
6071 struct tx_bd *txbd;
6072 int i;
6073
6074 /* First some info about the tx_bd chain structure. */
6075 aprint_debug_dev(sc->bnx_dev,
6076 "----------------------------"
6077 " tx_bd chain "
6078 "----------------------------\n");
6079
6080 BNX_PRINTF(sc,
6081 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6082 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6083
6084 BNX_PRINTF(sc,
6085 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6086 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6087
6088 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6089
6090 aprint_error_dev(sc->bnx_dev, ""
6091 "-----------------------------"
6092 " tx_bd data "
6093 "-----------------------------\n");
6094
6095 /* Now print out the tx_bd's themselves. */
6096 for (i = 0; i < count; i++) {
6097 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6098 bnx_dump_txbd(sc, tx_prod, txbd);
6099 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6100 }
6101
6102 aprint_debug_dev(sc->bnx_dev,
6103 "-----------------------------"
6104 "--------------"
6105 "-----------------------------\n");
6106 }
6107
6108 /*
6109 * This routine prints the RX chain.
6110 */
6111 void
6112 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6113 {
6114 struct rx_bd *rxbd;
6115 int i;
6116
6117 /* First some info about the tx_bd chain structure. */
6118 aprint_debug_dev(sc->bnx_dev,
6119 "----------------------------"
6120 " rx_bd chain "
6121 "----------------------------\n");
6122
6123 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6124
6125 BNX_PRINTF(sc,
6126 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6127 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6128
6129 BNX_PRINTF(sc,
6130 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6131 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6132
6133 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6134
6135 aprint_error_dev(sc->bnx_dev,
6136 "----------------------------"
6137 " rx_bd data "
6138 "----------------------------\n");
6139
6140 /* Now print out the rx_bd's themselves. */
6141 for (i = 0; i < count; i++) {
6142 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6143 bnx_dump_rxbd(sc, rx_prod, rxbd);
6144 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6145 }
6146
6147 aprint_debug_dev(sc->bnx_dev,
6148 "----------------------------"
6149 "--------------"
6150 "----------------------------\n");
6151 }
6152
6153 /*
6154 * This routine prints the status block.
6155 */
6156 void
6157 bnx_dump_status_block(struct bnx_softc *sc)
6158 {
6159 struct status_block *sblk;
6160 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6161 BUS_DMASYNC_POSTREAD);
6162
6163 sblk = sc->status_block;
6164
6165 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6166 "Status Block -----------------------------\n");
6167
6168 BNX_PRINTF(sc,
6169 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6170 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6171 sblk->status_idx);
6172
6173 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6174 sblk->status_rx_quick_consumer_index0,
6175 sblk->status_tx_quick_consumer_index0);
6176
6177 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6178
6179 /* Theses indices are not used for normal L2 drivers. */
6180 if (sblk->status_rx_quick_consumer_index1 ||
6181 sblk->status_tx_quick_consumer_index1)
6182 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6183 sblk->status_rx_quick_consumer_index1,
6184 sblk->status_tx_quick_consumer_index1);
6185
6186 if (sblk->status_rx_quick_consumer_index2 ||
6187 sblk->status_tx_quick_consumer_index2)
6188 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6189 sblk->status_rx_quick_consumer_index2,
6190 sblk->status_tx_quick_consumer_index2);
6191
6192 if (sblk->status_rx_quick_consumer_index3 ||
6193 sblk->status_tx_quick_consumer_index3)
6194 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6195 sblk->status_rx_quick_consumer_index3,
6196 sblk->status_tx_quick_consumer_index3);
6197
6198 if (sblk->status_rx_quick_consumer_index4 ||
6199 sblk->status_rx_quick_consumer_index5)
6200 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6201 sblk->status_rx_quick_consumer_index4,
6202 sblk->status_rx_quick_consumer_index5);
6203
6204 if (sblk->status_rx_quick_consumer_index6 ||
6205 sblk->status_rx_quick_consumer_index7)
6206 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6207 sblk->status_rx_quick_consumer_index6,
6208 sblk->status_rx_quick_consumer_index7);
6209
6210 if (sblk->status_rx_quick_consumer_index8 ||
6211 sblk->status_rx_quick_consumer_index9)
6212 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6213 sblk->status_rx_quick_consumer_index8,
6214 sblk->status_rx_quick_consumer_index9);
6215
6216 if (sblk->status_rx_quick_consumer_index10 ||
6217 sblk->status_rx_quick_consumer_index11)
6218 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6219 sblk->status_rx_quick_consumer_index10,
6220 sblk->status_rx_quick_consumer_index11);
6221
6222 if (sblk->status_rx_quick_consumer_index12 ||
6223 sblk->status_rx_quick_consumer_index13)
6224 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6225 sblk->status_rx_quick_consumer_index12,
6226 sblk->status_rx_quick_consumer_index13);
6227
6228 if (sblk->status_rx_quick_consumer_index14 ||
6229 sblk->status_rx_quick_consumer_index15)
6230 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6231 sblk->status_rx_quick_consumer_index14,
6232 sblk->status_rx_quick_consumer_index15);
6233
6234 if (sblk->status_completion_producer_index ||
6235 sblk->status_cmd_consumer_index)
6236 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6237 sblk->status_completion_producer_index,
6238 sblk->status_cmd_consumer_index);
6239
6240 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6241 "-----------------------------\n");
6242 }
6243
6244 /*
6245 * This routine prints the statistics block.
6246 */
6247 void
6248 bnx_dump_stats_block(struct bnx_softc *sc)
6249 {
6250 struct statistics_block *sblk;
6251 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6252 BUS_DMASYNC_POSTREAD);
6253
6254 sblk = sc->stats_block;
6255
6256 aprint_debug_dev(sc->bnx_dev, ""
6257 "-----------------------------"
6258 " Stats Block "
6259 "-----------------------------\n");
6260
6261 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6262 "IfHcInBadOctets = 0x%08X:%08X\n",
6263 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6264 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6265
6266 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6267 "IfHcOutBadOctets = 0x%08X:%08X\n",
6268 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6269 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6270
6271 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6272 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6273 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6274 sblk->stat_IfHCInMulticastPkts_hi,
6275 sblk->stat_IfHCInMulticastPkts_lo);
6276
6277 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6278 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6279 sblk->stat_IfHCInBroadcastPkts_hi,
6280 sblk->stat_IfHCInBroadcastPkts_lo,
6281 sblk->stat_IfHCOutUcastPkts_hi,
6282 sblk->stat_IfHCOutUcastPkts_lo);
6283
6284 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6285 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6286 sblk->stat_IfHCOutMulticastPkts_hi,
6287 sblk->stat_IfHCOutMulticastPkts_lo,
6288 sblk->stat_IfHCOutBroadcastPkts_hi,
6289 sblk->stat_IfHCOutBroadcastPkts_lo);
6290
6291 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6292 BNX_PRINTF(sc, "0x%08X : "
6293 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6294 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6295
6296 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6297 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6298 sblk->stat_Dot3StatsCarrierSenseErrors);
6299
6300 if (sblk->stat_Dot3StatsFCSErrors)
6301 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6302 sblk->stat_Dot3StatsFCSErrors);
6303
6304 if (sblk->stat_Dot3StatsAlignmentErrors)
6305 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6306 sblk->stat_Dot3StatsAlignmentErrors);
6307
6308 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6309 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6310 sblk->stat_Dot3StatsSingleCollisionFrames);
6311
6312 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6313 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6314 sblk->stat_Dot3StatsMultipleCollisionFrames);
6315
6316 if (sblk->stat_Dot3StatsDeferredTransmissions)
6317 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6318 sblk->stat_Dot3StatsDeferredTransmissions);
6319
6320 if (sblk->stat_Dot3StatsExcessiveCollisions)
6321 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6322 sblk->stat_Dot3StatsExcessiveCollisions);
6323
6324 if (sblk->stat_Dot3StatsLateCollisions)
6325 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6326 sblk->stat_Dot3StatsLateCollisions);
6327
6328 if (sblk->stat_EtherStatsCollisions)
6329 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6330 sblk->stat_EtherStatsCollisions);
6331
6332 if (sblk->stat_EtherStatsFragments)
6333 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6334 sblk->stat_EtherStatsFragments);
6335
6336 if (sblk->stat_EtherStatsJabbers)
6337 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6338 sblk->stat_EtherStatsJabbers);
6339
6340 if (sblk->stat_EtherStatsUndersizePkts)
6341 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6342 sblk->stat_EtherStatsUndersizePkts);
6343
6344 if (sblk->stat_EtherStatsOverrsizePkts)
6345 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6346 sblk->stat_EtherStatsOverrsizePkts);
6347
6348 if (sblk->stat_EtherStatsPktsRx64Octets)
6349 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6350 sblk->stat_EtherStatsPktsRx64Octets);
6351
6352 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6353 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6354 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6355
6356 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6357 BNX_PRINTF(sc, "0x%08X : "
6358 "EtherStatsPktsRx128Octetsto255Octets\n",
6359 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6360
6361 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6362 BNX_PRINTF(sc, "0x%08X : "
6363 "EtherStatsPktsRx256Octetsto511Octets\n",
6364 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6365
6366 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6367 BNX_PRINTF(sc, "0x%08X : "
6368 "EtherStatsPktsRx512Octetsto1023Octets\n",
6369 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6370
6371 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6372 BNX_PRINTF(sc, "0x%08X : "
6373 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6374 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6375
6376 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6377 BNX_PRINTF(sc, "0x%08X : "
6378 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6379 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6380
6381 if (sblk->stat_EtherStatsPktsTx64Octets)
6382 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6383 sblk->stat_EtherStatsPktsTx64Octets);
6384
6385 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6386 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6387 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6388
6389 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6390 BNX_PRINTF(sc, "0x%08X : "
6391 "EtherStatsPktsTx128Octetsto255Octets\n",
6392 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6393
6394 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6395 BNX_PRINTF(sc, "0x%08X : "
6396 "EtherStatsPktsTx256Octetsto511Octets\n",
6397 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6398
6399 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6400 BNX_PRINTF(sc, "0x%08X : "
6401 "EtherStatsPktsTx512Octetsto1023Octets\n",
6402 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6403
6404 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6405 BNX_PRINTF(sc, "0x%08X : "
6406 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6407 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6408
6409 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6410 BNX_PRINTF(sc, "0x%08X : "
6411 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6412 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6413
6414 if (sblk->stat_XonPauseFramesReceived)
6415 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6416 sblk->stat_XonPauseFramesReceived);
6417
6418 if (sblk->stat_XoffPauseFramesReceived)
6419 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6420 sblk->stat_XoffPauseFramesReceived);
6421
6422 if (sblk->stat_OutXonSent)
6423 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6424 sblk->stat_OutXonSent);
6425
6426 if (sblk->stat_OutXoffSent)
6427 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6428 sblk->stat_OutXoffSent);
6429
6430 if (sblk->stat_FlowControlDone)
6431 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6432 sblk->stat_FlowControlDone);
6433
6434 if (sblk->stat_MacControlFramesReceived)
6435 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6436 sblk->stat_MacControlFramesReceived);
6437
6438 if (sblk->stat_XoffStateEntered)
6439 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6440 sblk->stat_XoffStateEntered);
6441
6442 if (sblk->stat_IfInFramesL2FilterDiscards)
6443 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6444 sblk->stat_IfInFramesL2FilterDiscards);
6445
6446 if (sblk->stat_IfInRuleCheckerDiscards)
6447 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6448 sblk->stat_IfInRuleCheckerDiscards);
6449
6450 if (sblk->stat_IfInFTQDiscards)
6451 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6452 sblk->stat_IfInFTQDiscards);
6453
6454 if (sblk->stat_IfInMBUFDiscards)
6455 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6456 sblk->stat_IfInMBUFDiscards);
6457
6458 if (sblk->stat_IfInRuleCheckerP4Hit)
6459 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6460 sblk->stat_IfInRuleCheckerP4Hit);
6461
6462 if (sblk->stat_CatchupInRuleCheckerDiscards)
6463 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6464 sblk->stat_CatchupInRuleCheckerDiscards);
6465
6466 if (sblk->stat_CatchupInFTQDiscards)
6467 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6468 sblk->stat_CatchupInFTQDiscards);
6469
6470 if (sblk->stat_CatchupInMBUFDiscards)
6471 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6472 sblk->stat_CatchupInMBUFDiscards);
6473
6474 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6475 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6476 sblk->stat_CatchupInRuleCheckerP4Hit);
6477
6478 aprint_debug_dev(sc->bnx_dev,
6479 "-----------------------------"
6480 "--------------"
6481 "-----------------------------\n");
6482 }
6483
6484 void
6485 bnx_dump_driver_state(struct bnx_softc *sc)
6486 {
6487 aprint_debug_dev(sc->bnx_dev,
6488 "-----------------------------"
6489 " Driver State "
6490 "-----------------------------\n");
6491
6492 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6493 "address\n", sc);
6494
6495 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6496 sc->status_block);
6497
6498 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6499 "address\n", sc->stats_block);
6500
6501 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6502 "address\n", sc->tx_bd_chain);
6503
6504 #if 0
6505 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6506 sc->rx_bd_chain);
6507
6508 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6509 sc->tx_mbuf_ptr);
6510 #endif
6511
6512 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6513 sc->rx_mbuf_ptr);
6514
6515 BNX_PRINTF(sc,
6516 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6517 sc->interrupts_generated);
6518
6519 BNX_PRINTF(sc,
6520 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6521 sc->rx_interrupts);
6522
6523 BNX_PRINTF(sc,
6524 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6525 sc->tx_interrupts);
6526
6527 BNX_PRINTF(sc,
6528 " 0x%08X - (sc->last_status_idx) status block index\n",
6529 sc->last_status_idx);
6530
6531 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6532 sc->tx_prod);
6533
6534 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6535 sc->tx_cons);
6536
6537 BNX_PRINTF(sc,
6538 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6539 sc->tx_prod_bseq);
6540 BNX_PRINTF(sc,
6541 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6542 sc->tx_mbuf_alloc);
6543
6544 BNX_PRINTF(sc,
6545 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6546 sc->used_tx_bd);
6547
6548 BNX_PRINTF(sc,
6549 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6550 sc->tx_hi_watermark, sc->max_tx_bd);
6551
6552
6553 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6554 sc->rx_prod);
6555
6556 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6557 sc->rx_cons);
6558
6559 BNX_PRINTF(sc,
6560 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6561 sc->rx_prod_bseq);
6562
6563 BNX_PRINTF(sc,
6564 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6565 sc->rx_mbuf_alloc);
6566
6567 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6568 sc->free_rx_bd);
6569
6570 BNX_PRINTF(sc,
6571 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6572 sc->rx_low_watermark, sc->max_rx_bd);
6573
6574 BNX_PRINTF(sc,
6575 " 0x%08X - (sc->mbuf_alloc_failed) "
6576 "mbuf alloc failures\n",
6577 sc->mbuf_alloc_failed);
6578
6579 BNX_PRINTF(sc,
6580 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6581 "simulated mbuf alloc failures\n",
6582 sc->mbuf_sim_alloc_failed);
6583
6584 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6585 "-----------------------------\n");
6586 }
6587
6588 void
6589 bnx_dump_hw_state(struct bnx_softc *sc)
6590 {
6591 uint32_t val1;
6592 int i;
6593
6594 aprint_debug_dev(sc->bnx_dev,
6595 "----------------------------"
6596 " Hardware State "
6597 "----------------------------\n");
6598
6599 val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6600 BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6601
6602 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6603 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6604 val1, BNX_MISC_ENABLE_STATUS_BITS);
6605
6606 val1 = REG_RD(sc, BNX_DMA_STATUS);
6607 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6608
6609 val1 = REG_RD(sc, BNX_CTX_STATUS);
6610 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6611
6612 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6613 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6614 BNX_EMAC_STATUS);
6615
6616 val1 = REG_RD(sc, BNX_RPM_STATUS);
6617 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6618
6619 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6620 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6621 BNX_TBDR_STATUS);
6622
6623 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6624 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6625 BNX_TDMA_STATUS);
6626
6627 val1 = REG_RD(sc, BNX_HC_STATUS);
6628 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6629
6630 aprint_debug_dev(sc->bnx_dev,
6631 "----------------------------"
6632 "----------------"
6633 "----------------------------\n");
6634
6635 aprint_debug_dev(sc->bnx_dev,
6636 "----------------------------"
6637 " Register Dump "
6638 "----------------------------\n");
6639
6640 for (i = 0x400; i < 0x8000; i += 0x10)
6641 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6642 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6643 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6644
6645 aprint_debug_dev(sc->bnx_dev,
6646 "----------------------------"
6647 "----------------"
6648 "----------------------------\n");
6649 }
6650
6651 void
6652 bnx_breakpoint(struct bnx_softc *sc)
6653 {
6654 /* Unreachable code to shut the compiler up about unused functions. */
6655 if (0) {
6656 bnx_dump_txbd(sc, 0, NULL);
6657 bnx_dump_rxbd(sc, 0, NULL);
6658 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6659 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6660 bnx_dump_l2fhdr(sc, 0, NULL);
6661 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6662 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6663 bnx_dump_status_block(sc);
6664 bnx_dump_stats_block(sc);
6665 bnx_dump_driver_state(sc);
6666 bnx_dump_hw_state(sc);
6667 }
6668
6669 bnx_dump_driver_state(sc);
6670 /* Print the important status block fields. */
6671 bnx_dump_status_block(sc);
6672
6673 #if 0
6674 /* Call the debugger. */
6675 breakpoint();
6676 #endif
6677
6678 return;
6679 }
6680 #endif
6681