if_bnx.c revision 1.87 1 /* $NetBSD: if_bnx.c,v 1.87 2019/07/26 05:53:30 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.87 2019/07/26 05:53:30 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 pci_intr_handle_t ih;
581 const char *intrstr = NULL;
582 uint32_t command;
583 struct ifnet *ifp;
584 struct mii_data * const mii = &sc->bnx_mii;
585 uint32_t val;
586 int mii_flags = MIIF_FORCEANEG;
587 pcireg_t memtype;
588 char intrbuf[PCI_INTRSTR_LEN];
589 int i, j;
590
591 if (bnx_tx_pool == NULL) {
592 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
593 if (bnx_tx_pool != NULL) {
594 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
595 0, 0, 0, "bnxpkts", NULL, IPL_NET);
596 } else {
597 aprint_error(": can't alloc bnx_tx_pool\n");
598 return;
599 }
600 }
601
602 bp = bnx_lookup(pa);
603 if (bp == NULL)
604 panic("unknown device");
605
606 sc->bnx_dev = self;
607
608 aprint_naive("\n");
609 aprint_normal(": %s\n", bp->bp_name);
610
611 sc->bnx_pa = *pa;
612
613 /*
614 * Map control/status registers.
615 */
616 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
617 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
618 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
619 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
620
621 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
622 aprint_error_dev(sc->bnx_dev,
623 "failed to enable memory mapping!\n");
624 return;
625 }
626
627 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
628 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
629 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
630 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
631 return;
632 }
633
634 if (pci_intr_map(pa, &ih)) {
635 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
636 goto bnx_attach_fail;
637 }
638 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
639
640 /*
641 * Configure byte swap and enable indirect register access.
642 * Rely on CPU to do target byte swapping on big endian systems.
643 * Access to registers outside of PCI configurtion space are not
644 * valid until this is done.
645 */
646 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
647 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
648 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
649
650 /* Save ASIC revsion info. */
651 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
652
653 /*
654 * Find the base address for shared memory access.
655 * Newer versions of bootcode use a signature and offset
656 * while older versions use a fixed address.
657 */
658 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
659 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
660 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
661 (sc->bnx_pa.pa_function << 2));
662 else
663 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
664
665 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
666
667 /* Set initial device and PHY flags */
668 sc->bnx_flags = 0;
669 sc->bnx_phy_flags = 0;
670
671 /* Fetch the bootcode revision. */
672 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
673 for (i = 0, j = 0; i < 3; i++) {
674 uint8_t num;
675 int k, skip0;
676
677 num = (uint8_t)(val >> (24 - (i * 8)));
678 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
679 if (num >= k || !skip0 || k == 1) {
680 sc->bnx_bc_ver[j++] = (num / k) + '0';
681 skip0 = 0;
682 }
683 }
684 if (i != 2)
685 sc->bnx_bc_ver[j++] = '.';
686 }
687
688 /* Check if any management firmware is enabled. */
689 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
690 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
691 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
692 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
693
694 /* Allow time for firmware to enter the running state. */
695 for (i = 0; i < 30; i++) {
696 val = REG_RD_IND(sc, sc->bnx_shmem_base +
697 BNX_BC_STATE_CONDITION);
698 if (val & BNX_CONDITION_MFW_RUN_MASK)
699 break;
700 DELAY(10000);
701 }
702
703 /* Check if management firmware is running. */
704 val = REG_RD_IND(sc, sc->bnx_shmem_base +
705 BNX_BC_STATE_CONDITION);
706 val &= BNX_CONDITION_MFW_RUN_MASK;
707 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
708 (val != BNX_CONDITION_MFW_RUN_NONE)) {
709 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
710 BNX_MFW_VER_PTR);
711
712 /* Read the management firmware version string. */
713 for (j = 0; j < 3; j++) {
714 val = bnx_reg_rd_ind(sc, addr + j * 4);
715 val = bswap32(val);
716 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
717 i += 4;
718 }
719 } else {
720 /* May cause firmware synchronization timeouts. */
721 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
722 "but not running!\n", __FILE__, __LINE__);
723 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
724
725 /* ToDo: Any action the driver should take? */
726 }
727 }
728
729 bnx_probe_pci_caps(sc);
730
731 /* Get PCI bus information (speed and type). */
732 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
733 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
734 uint32_t clkreg;
735
736 sc->bnx_flags |= BNX_PCIX_FLAG;
737
738 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
739
740 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
741 switch (clkreg) {
742 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
743 sc->bus_speed_mhz = 133;
744 break;
745
746 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
747 sc->bus_speed_mhz = 100;
748 break;
749
750 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
751 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
752 sc->bus_speed_mhz = 66;
753 break;
754
755 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
756 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
757 sc->bus_speed_mhz = 50;
758 break;
759
760 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
761 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
762 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
763 sc->bus_speed_mhz = 33;
764 break;
765 }
766 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
767 sc->bus_speed_mhz = 66;
768 else
769 sc->bus_speed_mhz = 33;
770
771 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
772 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
773
774 /* Reset the controller. */
775 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
776 goto bnx_attach_fail;
777
778 /* Initialize the controller. */
779 if (bnx_chipinit(sc)) {
780 aprint_error_dev(sc->bnx_dev,
781 "Controller initialization failed!\n");
782 goto bnx_attach_fail;
783 }
784
785 /* Perform NVRAM test. */
786 if (bnx_nvram_test(sc)) {
787 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
788 goto bnx_attach_fail;
789 }
790
791 /* Fetch the permanent Ethernet MAC address. */
792 bnx_get_mac_addr(sc);
793 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
794 ether_sprintf(sc->eaddr));
795
796 /*
797 * Trip points control how many BDs
798 * should be ready before generating an
799 * interrupt while ticks control how long
800 * a BD can sit in the chain before
801 * generating an interrupt. Set the default
802 * values for the RX and TX rings.
803 */
804
805 #ifdef BNX_DEBUG
806 /* Force more frequent interrupts. */
807 sc->bnx_tx_quick_cons_trip_int = 1;
808 sc->bnx_tx_quick_cons_trip = 1;
809 sc->bnx_tx_ticks_int = 0;
810 sc->bnx_tx_ticks = 0;
811
812 sc->bnx_rx_quick_cons_trip_int = 1;
813 sc->bnx_rx_quick_cons_trip = 1;
814 sc->bnx_rx_ticks_int = 0;
815 sc->bnx_rx_ticks = 0;
816 #else
817 sc->bnx_tx_quick_cons_trip_int = 20;
818 sc->bnx_tx_quick_cons_trip = 20;
819 sc->bnx_tx_ticks_int = 80;
820 sc->bnx_tx_ticks = 80;
821
822 sc->bnx_rx_quick_cons_trip_int = 6;
823 sc->bnx_rx_quick_cons_trip = 6;
824 sc->bnx_rx_ticks_int = 18;
825 sc->bnx_rx_ticks = 18;
826 #endif
827
828 /* Update statistics once every second. */
829 sc->bnx_stats_ticks = 1000000 & 0xffff00;
830
831 /* Find the media type for the adapter. */
832 bnx_get_media(sc);
833
834 /*
835 * Store config data needed by the PHY driver for
836 * backplane applications
837 */
838 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
839 BNX_SHARED_HW_CFG_CONFIG);
840 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
841 BNX_PORT_HW_CFG_CONFIG);
842
843 /* Allocate DMA memory resources. */
844 sc->bnx_dmatag = pa->pa_dmat;
845 if (bnx_dma_alloc(sc)) {
846 aprint_error_dev(sc->bnx_dev,
847 "DMA resource allocation failed!\n");
848 goto bnx_attach_fail;
849 }
850
851 /* Initialize the ifnet interface. */
852 ifp = &sc->bnx_ec.ec_if;
853 ifp->if_softc = sc;
854 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
855 ifp->if_ioctl = bnx_ioctl;
856 ifp->if_stop = bnx_stop;
857 ifp->if_start = bnx_start;
858 ifp->if_init = bnx_init;
859 ifp->if_watchdog = bnx_watchdog;
860 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
861 IFQ_SET_READY(&ifp->if_snd);
862 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
863
864 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
865 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
866 sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
867
868 ifp->if_capabilities |=
869 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
870 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
871 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
872
873 /* create workqueue to handle packet allocations */
874 if (workqueue_create(&sc->bnx_wq, device_xname(self),
875 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
876 aprint_error_dev(self, "failed to create workqueue\n");
877 goto bnx_attach_fail;
878 }
879
880 mii->mii_ifp = ifp;
881 mii->mii_readreg = bnx_miibus_read_reg;
882 mii->mii_writereg = bnx_miibus_write_reg;
883 mii->mii_statchg = bnx_miibus_statchg;
884
885 /* Handle any special PHY initialization for SerDes PHYs. */
886 bnx_init_media(sc);
887
888 sc->bnx_ec.ec_mii = mii;
889 ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
890
891 /* set phyflags and chipid before mii_attach() */
892 dict = device_properties(self);
893 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
894 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
895 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
896 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
897
898 /* Print some useful adapter info */
899 bnx_print_adapter_info(sc);
900
901 mii_flags |= MIIF_DOPAUSE;
902 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
903 mii_flags |= MIIF_HAVEFIBER;
904 mii_attach(self, mii, 0xffffffff,
905 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
906
907 if (LIST_EMPTY(&mii->mii_phys)) {
908 aprint_error_dev(self, "no PHY found!\n");
909 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
910 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
911 } else
912 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
913
914 /* Attach to the Ethernet interface list. */
915 if_attach(ifp);
916 if_deferred_start_init(ifp, NULL);
917 ether_ifattach(ifp, sc->eaddr);
918
919 callout_init(&sc->bnx_timeout, 0);
920
921 /* Hookup IRQ last. */
922 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
923 sc, device_xname(self));
924 if (sc->bnx_intrhand == NULL) {
925 aprint_error_dev(self, "couldn't establish interrupt");
926 if (intrstr != NULL)
927 aprint_error(" at %s", intrstr);
928 aprint_error("\n");
929 goto bnx_attach_fail;
930 }
931 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
932
933 if (pmf_device_register(self, NULL, NULL))
934 pmf_class_network_register(self, ifp);
935 else
936 aprint_error_dev(self, "couldn't establish power handler\n");
937
938 /* Print some important debugging info. */
939 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
940
941 /* Get the firmware running so ASF still works. */
942 bnx_mgmt_init(sc);
943
944 goto bnx_attach_exit;
945
946 bnx_attach_fail:
947 bnx_release_resources(sc);
948
949 bnx_attach_exit:
950 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
951 }
952
953 /****************************************************************************/
954 /* Device detach function. */
955 /* */
956 /* Stops the controller, resets the controller, and releases resources. */
957 /* */
958 /* Returns: */
959 /* 0 on success, positive value on failure. */
960 /****************************************************************************/
961 int
962 bnx_detach(device_t dev, int flags)
963 {
964 int s;
965 struct bnx_softc *sc;
966 struct ifnet *ifp;
967
968 sc = device_private(dev);
969 ifp = &sc->bnx_ec.ec_if;
970
971 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
972
973 /* Stop and reset the controller. */
974 s = splnet();
975 bnx_stop(ifp, 1);
976 splx(s);
977
978 pmf_device_deregister(dev);
979 callout_destroy(&sc->bnx_timeout);
980 ether_ifdetach(ifp);
981 workqueue_destroy(sc->bnx_wq);
982
983 /* Delete all remaining media. */
984 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
985
986 if_detach(ifp);
987 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
988
989 /* Release all remaining resources. */
990 bnx_release_resources(sc);
991
992 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
993
994 return 0;
995 }
996
997 /****************************************************************************/
998 /* Indirect register read. */
999 /* */
1000 /* Reads NetXtreme II registers using an index/data register pair in PCI */
1001 /* configuration space. Using this mechanism avoids issues with posted */
1002 /* reads but is much slower than memory-mapped I/O. */
1003 /* */
1004 /* Returns: */
1005 /* The value of the register. */
1006 /****************************************************************************/
1007 uint32_t
1008 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1009 {
1010 struct pci_attach_args *pa = &(sc->bnx_pa);
1011
1012 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1013 offset);
1014 #ifdef BNX_DEBUG
1015 {
1016 uint32_t val;
1017 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1018 BNX_PCICFG_REG_WINDOW);
1019 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1020 "val = 0x%08X\n", __func__, offset, val);
1021 return val;
1022 }
1023 #else
1024 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1025 #endif
1026 }
1027
1028 /****************************************************************************/
1029 /* Indirect register write. */
1030 /* */
1031 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1032 /* configuration space. Using this mechanism avoids issues with posted */
1033 /* writes but is muchh slower than memory-mapped I/O. */
1034 /* */
1035 /* Returns: */
1036 /* Nothing. */
1037 /****************************************************************************/
1038 void
1039 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1040 {
1041 struct pci_attach_args *pa = &(sc->bnx_pa);
1042
1043 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1044 __func__, offset, val);
1045
1046 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1047 offset);
1048 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1049 }
1050
1051 /****************************************************************************/
1052 /* Context memory write. */
1053 /* */
1054 /* The NetXtreme II controller uses context memory to track connection */
1055 /* information for L2 and higher network protocols. */
1056 /* */
1057 /* Returns: */
1058 /* Nothing. */
1059 /****************************************************************************/
1060 void
1061 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1062 uint32_t ctx_val)
1063 {
1064 uint32_t idx, offset = ctx_offset + cid_addr;
1065 uint32_t val, retry_cnt = 5;
1066
1067 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1068 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1069 REG_WR(sc, BNX_CTX_CTX_CTRL,
1070 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1071
1072 for (idx = 0; idx < retry_cnt; idx++) {
1073 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1074 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1075 break;
1076 DELAY(5);
1077 }
1078
1079 #if 0
1080 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1081 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1082 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1083 __FILE__, __LINE__, cid_addr, ctx_offset);
1084 #endif
1085
1086 } else {
1087 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1088 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1089 }
1090 }
1091
1092 /****************************************************************************/
1093 /* PHY register read. */
1094 /* */
1095 /* Implements register reads on the MII bus. */
1096 /* */
1097 /* Returns: */
1098 /* The value of the register. */
1099 /****************************************************************************/
1100 int
1101 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1102 {
1103 struct bnx_softc *sc = device_private(dev);
1104 uint32_t data;
1105 int i, rv = 0;
1106
1107 /*
1108 * The BCM5709S PHY is an IEEE Clause 45 PHY
1109 * with special mappings to work with IEEE
1110 * Clause 22 register accesses.
1111 */
1112 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1113 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1114 reg += 0x10;
1115 }
1116
1117 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1118 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1119 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1120
1121 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1122 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1123
1124 DELAY(40);
1125 }
1126
1127 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1128 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1129 BNX_EMAC_MDIO_COMM_START_BUSY;
1130 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1131
1132 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1133 DELAY(10);
1134
1135 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1136 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1137 DELAY(5);
1138
1139 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1140 data &= BNX_EMAC_MDIO_COMM_DATA;
1141
1142 break;
1143 }
1144 }
1145
1146 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1147 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1148 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1149 rv = ETIMEDOUT;
1150 } else {
1151 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1152 *val = data & 0xffff;
1153
1154 DBPRINT(sc, BNX_EXCESSIVE,
1155 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1156 phy, (uint16_t) reg & 0xffff, *val);
1157 }
1158
1159 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1160 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1161 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1162
1163 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1164 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1165
1166 DELAY(40);
1167 }
1168
1169 return rv;
1170 }
1171
1172 /****************************************************************************/
1173 /* PHY register write. */
1174 /* */
1175 /* Implements register writes on the MII bus. */
1176 /* */
1177 /* Returns: */
1178 /* The value of the register. */
1179 /****************************************************************************/
1180 int
1181 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1182 {
1183 struct bnx_softc *sc = device_private(dev);
1184 uint32_t val1;
1185 int i, rv = 0;
1186
1187 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1188 "val = 0x%04hX\n", __func__,
1189 phy, (uint16_t) reg & 0xffff, val);
1190
1191 /*
1192 * The BCM5709S PHY is an IEEE Clause 45 PHY
1193 * with special mappings to work with IEEE
1194 * Clause 22 register accesses.
1195 */
1196 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1197 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1198 reg += 0x10;
1199 }
1200
1201 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1202 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1203 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1204
1205 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1206 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1207
1208 DELAY(40);
1209 }
1210
1211 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1212 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1213 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1214 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1215
1216 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1217 DELAY(10);
1218
1219 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1220 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1221 DELAY(5);
1222 break;
1223 }
1224 }
1225
1226 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1227 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1228 __LINE__);
1229 rv = ETIMEDOUT;
1230 }
1231
1232 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1233 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1234 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1235
1236 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1237 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1238
1239 DELAY(40);
1240 }
1241
1242 return rv;
1243 }
1244
1245 /****************************************************************************/
1246 /* MII bus status change. */
1247 /* */
1248 /* Called by the MII bus driver when the PHY establishes link to set the */
1249 /* MAC interface registers. */
1250 /* */
1251 /* Returns: */
1252 /* Nothing. */
1253 /****************************************************************************/
1254 void
1255 bnx_miibus_statchg(struct ifnet *ifp)
1256 {
1257 struct bnx_softc *sc = ifp->if_softc;
1258 struct mii_data *mii = &sc->bnx_mii;
1259 uint32_t rx_mode = sc->rx_mode;
1260 int val;
1261
1262 val = REG_RD(sc, BNX_EMAC_MODE);
1263 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1264 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1265 BNX_EMAC_MODE_25G);
1266
1267 /*
1268 * Get flow control negotiation result.
1269 */
1270 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1271 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1272 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1273 mii->mii_media_active &= ~IFM_ETH_FMASK;
1274 }
1275
1276 /* Set MII or GMII interface based on the speed
1277 * negotiated by the PHY.
1278 */
1279 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1280 case IFM_10_T:
1281 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1282 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1283 val |= BNX_EMAC_MODE_PORT_MII_10;
1284 break;
1285 }
1286 /* FALLTHROUGH */
1287 case IFM_100_TX:
1288 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1289 val |= BNX_EMAC_MODE_PORT_MII;
1290 break;
1291 case IFM_2500_SX:
1292 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1293 val |= BNX_EMAC_MODE_25G;
1294 /* FALLTHROUGH */
1295 case IFM_1000_T:
1296 case IFM_1000_SX:
1297 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1298 val |= BNX_EMAC_MODE_PORT_GMII;
1299 break;
1300 default:
1301 val |= BNX_EMAC_MODE_PORT_GMII;
1302 break;
1303 }
1304
1305 /* Set half or full duplex based on the duplicity
1306 * negotiated by the PHY.
1307 */
1308 if ((mii->mii_media_active & IFM_HDX) != 0) {
1309 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1310 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1311 } else
1312 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1313
1314 REG_WR(sc, BNX_EMAC_MODE, val);
1315
1316 /*
1317 * 802.3x flow control
1318 */
1319 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1320 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1321 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1322 } else {
1323 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1324 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1325 }
1326
1327 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1328 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1329 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1330 } else {
1331 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1332 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1333 }
1334
1335 /* Only make changes if the recive mode has actually changed. */
1336 if (rx_mode != sc->rx_mode) {
1337 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1338 rx_mode);
1339
1340 sc->rx_mode = rx_mode;
1341 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1342
1343 bnx_init_rx_context(sc);
1344 }
1345 }
1346
1347 /****************************************************************************/
1348 /* Acquire NVRAM lock. */
1349 /* */
1350 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1351 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1352 /* for use by the driver. */
1353 /* */
1354 /* Returns: */
1355 /* 0 on success, positive value on failure. */
1356 /****************************************************************************/
1357 int
1358 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1359 {
1360 uint32_t val;
1361 int j;
1362
1363 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1364
1365 /* Request access to the flash interface. */
1366 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1367 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1368 val = REG_RD(sc, BNX_NVM_SW_ARB);
1369 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1370 break;
1371
1372 DELAY(5);
1373 }
1374
1375 if (j >= NVRAM_TIMEOUT_COUNT) {
1376 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1377 return EBUSY;
1378 }
1379
1380 return 0;
1381 }
1382
1383 /****************************************************************************/
1384 /* Release NVRAM lock. */
1385 /* */
1386 /* When the caller is finished accessing NVRAM the lock must be released. */
1387 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1388 /* for use by the driver. */
1389 /* */
1390 /* Returns: */
1391 /* 0 on success, positive value on failure. */
1392 /****************************************************************************/
1393 int
1394 bnx_release_nvram_lock(struct bnx_softc *sc)
1395 {
1396 int j;
1397 uint32_t val;
1398
1399 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1400
1401 /* Relinquish nvram interface. */
1402 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1403
1404 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1405 val = REG_RD(sc, BNX_NVM_SW_ARB);
1406 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1407 break;
1408
1409 DELAY(5);
1410 }
1411
1412 if (j >= NVRAM_TIMEOUT_COUNT) {
1413 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1414 return EBUSY;
1415 }
1416
1417 return 0;
1418 }
1419
1420 #ifdef BNX_NVRAM_WRITE_SUPPORT
1421 /****************************************************************************/
1422 /* Enable NVRAM write access. */
1423 /* */
1424 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1425 /* */
1426 /* Returns: */
1427 /* 0 on success, positive value on failure. */
1428 /****************************************************************************/
1429 int
1430 bnx_enable_nvram_write(struct bnx_softc *sc)
1431 {
1432 uint32_t val;
1433
1434 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1435
1436 val = REG_RD(sc, BNX_MISC_CFG);
1437 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1438
1439 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1440 int j;
1441
1442 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1443 REG_WR(sc, BNX_NVM_COMMAND,
1444 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1445
1446 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1447 DELAY(5);
1448
1449 val = REG_RD(sc, BNX_NVM_COMMAND);
1450 if (val & BNX_NVM_COMMAND_DONE)
1451 break;
1452 }
1453
1454 if (j >= NVRAM_TIMEOUT_COUNT) {
1455 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1456 return EBUSY;
1457 }
1458 }
1459
1460 return 0;
1461 }
1462
1463 /****************************************************************************/
1464 /* Disable NVRAM write access. */
1465 /* */
1466 /* When the caller is finished writing to NVRAM write access must be */
1467 /* disabled. */
1468 /* */
1469 /* Returns: */
1470 /* Nothing. */
1471 /****************************************************************************/
1472 void
1473 bnx_disable_nvram_write(struct bnx_softc *sc)
1474 {
1475 uint32_t val;
1476
1477 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1478
1479 val = REG_RD(sc, BNX_MISC_CFG);
1480 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1481 }
1482 #endif
1483
1484 /****************************************************************************/
1485 /* Enable NVRAM access. */
1486 /* */
1487 /* Before accessing NVRAM for read or write operations the caller must */
1488 /* enabled NVRAM access. */
1489 /* */
1490 /* Returns: */
1491 /* Nothing. */
1492 /****************************************************************************/
1493 void
1494 bnx_enable_nvram_access(struct bnx_softc *sc)
1495 {
1496 uint32_t val;
1497
1498 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1499
1500 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1501 /* Enable both bits, even on read. */
1502 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1503 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1504 }
1505
1506 /****************************************************************************/
1507 /* Disable NVRAM access. */
1508 /* */
1509 /* When the caller is finished accessing NVRAM access must be disabled. */
1510 /* */
1511 /* Returns: */
1512 /* Nothing. */
1513 /****************************************************************************/
1514 void
1515 bnx_disable_nvram_access(struct bnx_softc *sc)
1516 {
1517 uint32_t val;
1518
1519 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1520
1521 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1522
1523 /* Disable both bits, even after read. */
1524 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1525 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1526 }
1527
1528 #ifdef BNX_NVRAM_WRITE_SUPPORT
1529 /****************************************************************************/
1530 /* Erase NVRAM page before writing. */
1531 /* */
1532 /* Non-buffered flash parts require that a page be erased before it is */
1533 /* written. */
1534 /* */
1535 /* Returns: */
1536 /* 0 on success, positive value on failure. */
1537 /****************************************************************************/
1538 int
1539 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1540 {
1541 uint32_t cmd;
1542 int j;
1543
1544 /* Buffered flash doesn't require an erase. */
1545 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1546 return 0;
1547
1548 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1549
1550 /* Build an erase command. */
1551 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1552 BNX_NVM_COMMAND_DOIT;
1553
1554 /*
1555 * Clear the DONE bit separately, set the NVRAM address to erase,
1556 * and issue the erase command.
1557 */
1558 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1559 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1560 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1561
1562 /* Wait for completion. */
1563 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1564 uint32_t val;
1565
1566 DELAY(5);
1567
1568 val = REG_RD(sc, BNX_NVM_COMMAND);
1569 if (val & BNX_NVM_COMMAND_DONE)
1570 break;
1571 }
1572
1573 if (j >= NVRAM_TIMEOUT_COUNT) {
1574 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1575 return EBUSY;
1576 }
1577
1578 return 0;
1579 }
1580 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1581
1582 /****************************************************************************/
1583 /* Read a dword (32 bits) from NVRAM. */
1584 /* */
1585 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1586 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1587 /* */
1588 /* Returns: */
1589 /* 0 on success and the 32 bit value read, positive value on failure. */
1590 /****************************************************************************/
1591 int
1592 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1593 uint8_t *ret_val, uint32_t cmd_flags)
1594 {
1595 uint32_t cmd;
1596 int i, rc = 0;
1597
1598 /* Build the command word. */
1599 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1600
1601 /* Calculate the offset for buffered flash if translation is used. */
1602 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1603 offset = ((offset / sc->bnx_flash_info->page_size) <<
1604 sc->bnx_flash_info->page_bits) +
1605 (offset % sc->bnx_flash_info->page_size);
1606 }
1607
1608 /*
1609 * Clear the DONE bit separately, set the address to read,
1610 * and issue the read.
1611 */
1612 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1613 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1614 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1615
1616 /* Wait for completion. */
1617 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1618 uint32_t val;
1619
1620 DELAY(5);
1621
1622 val = REG_RD(sc, BNX_NVM_COMMAND);
1623 if (val & BNX_NVM_COMMAND_DONE) {
1624 val = REG_RD(sc, BNX_NVM_READ);
1625
1626 val = be32toh(val);
1627 memcpy(ret_val, &val, 4);
1628 break;
1629 }
1630 }
1631
1632 /* Check for errors. */
1633 if (i >= NVRAM_TIMEOUT_COUNT) {
1634 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1635 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1636 rc = EBUSY;
1637 }
1638
1639 return rc;
1640 }
1641
1642 #ifdef BNX_NVRAM_WRITE_SUPPORT
1643 /****************************************************************************/
1644 /* Write a dword (32 bits) to NVRAM. */
1645 /* */
1646 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1647 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1648 /* enabled NVRAM write access. */
1649 /* */
1650 /* Returns: */
1651 /* 0 on success, positive value on failure. */
1652 /****************************************************************************/
1653 int
1654 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1655 uint32_t cmd_flags)
1656 {
1657 uint32_t cmd, val32;
1658 int j;
1659
1660 /* Build the command word. */
1661 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1662
1663 /* Calculate the offset for buffered flash if translation is used. */
1664 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1665 offset = ((offset / sc->bnx_flash_info->page_size) <<
1666 sc->bnx_flash_info->page_bits) +
1667 (offset % sc->bnx_flash_info->page_size);
1668 }
1669
1670 /*
1671 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1672 * set the NVRAM address to write, and issue the write command
1673 */
1674 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1675 memcpy(&val32, val, 4);
1676 val32 = htobe32(val32);
1677 REG_WR(sc, BNX_NVM_WRITE, val32);
1678 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1679 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1680
1681 /* Wait for completion. */
1682 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1683 DELAY(5);
1684
1685 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1686 break;
1687 }
1688 if (j >= NVRAM_TIMEOUT_COUNT) {
1689 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1690 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1691 return EBUSY;
1692 }
1693
1694 return 0;
1695 }
1696 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1697
1698 /****************************************************************************/
1699 /* Initialize NVRAM access. */
1700 /* */
1701 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1702 /* access that device. */
1703 /* */
1704 /* Returns: */
1705 /* 0 on success, positive value on failure. */
1706 /****************************************************************************/
1707 int
1708 bnx_init_nvram(struct bnx_softc *sc)
1709 {
1710 uint32_t val;
1711 int j, entry_count, rc = 0;
1712 struct flash_spec *flash;
1713
1714 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1715
1716 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1717 sc->bnx_flash_info = &flash_5709;
1718 goto bnx_init_nvram_get_flash_size;
1719 }
1720
1721 /* Determine the selected interface. */
1722 val = REG_RD(sc, BNX_NVM_CFG1);
1723
1724 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1725
1726 /*
1727 * Flash reconfiguration is required to support additional
1728 * NVRAM devices not directly supported in hardware.
1729 * Check if the flash interface was reconfigured
1730 * by the bootcode.
1731 */
1732
1733 if (val & 0x40000000) {
1734 /* Flash interface reconfigured by bootcode. */
1735
1736 DBPRINT(sc, BNX_INFO_LOAD,
1737 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1738
1739 for (j = 0, flash = &flash_table[0]; j < entry_count;
1740 j++, flash++) {
1741 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1742 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1743 sc->bnx_flash_info = flash;
1744 break;
1745 }
1746 }
1747 } else {
1748 /* Flash interface not yet reconfigured. */
1749 uint32_t mask;
1750
1751 DBPRINT(sc, BNX_INFO_LOAD,
1752 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1753
1754 if (val & (1 << 23))
1755 mask = FLASH_BACKUP_STRAP_MASK;
1756 else
1757 mask = FLASH_STRAP_MASK;
1758
1759 /* Look for the matching NVRAM device configuration data. */
1760 for (j = 0, flash = &flash_table[0]; j < entry_count;
1761 j++, flash++) {
1762 /* Check if the dev matches any of the known devices. */
1763 if ((val & mask) == (flash->strapping & mask)) {
1764 /* Found a device match. */
1765 sc->bnx_flash_info = flash;
1766
1767 /* Request access to the flash interface. */
1768 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1769 return rc;
1770
1771 /* Reconfigure the flash interface. */
1772 bnx_enable_nvram_access(sc);
1773 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1774 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1775 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1776 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1777 bnx_disable_nvram_access(sc);
1778 bnx_release_nvram_lock(sc);
1779
1780 break;
1781 }
1782 }
1783 }
1784
1785 /* Check if a matching device was found. */
1786 if (j == entry_count) {
1787 sc->bnx_flash_info = NULL;
1788 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1789 __FILE__, __LINE__);
1790 rc = ENODEV;
1791 }
1792
1793 bnx_init_nvram_get_flash_size:
1794 /* Write the flash config data to the shared memory interface. */
1795 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1796 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1797 if (val)
1798 sc->bnx_flash_size = val;
1799 else
1800 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1801
1802 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1803 "0x%08X\n", sc->bnx_flash_info->total_size);
1804
1805 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1806
1807 return rc;
1808 }
1809
1810 /****************************************************************************/
1811 /* Read an arbitrary range of data from NVRAM. */
1812 /* */
1813 /* Prepares the NVRAM interface for access and reads the requested data */
1814 /* into the supplied buffer. */
1815 /* */
1816 /* Returns: */
1817 /* 0 on success and the data read, positive value on failure. */
1818 /****************************************************************************/
1819 int
1820 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1821 int buf_size)
1822 {
1823 int rc = 0;
1824 uint32_t cmd_flags, offset32, len32, extra;
1825
1826 if (buf_size == 0)
1827 return 0;
1828
1829 /* Request access to the flash interface. */
1830 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1831 return rc;
1832
1833 /* Enable access to flash interface */
1834 bnx_enable_nvram_access(sc);
1835
1836 len32 = buf_size;
1837 offset32 = offset;
1838 extra = 0;
1839
1840 cmd_flags = 0;
1841
1842 if (offset32 & 3) {
1843 uint8_t buf[4];
1844 uint32_t pre_len;
1845
1846 offset32 &= ~3;
1847 pre_len = 4 - (offset & 3);
1848
1849 if (pre_len >= len32) {
1850 pre_len = len32;
1851 cmd_flags =
1852 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1853 } else
1854 cmd_flags = BNX_NVM_COMMAND_FIRST;
1855
1856 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1857
1858 if (rc)
1859 return rc;
1860
1861 memcpy(ret_buf, buf + (offset & 3), pre_len);
1862
1863 offset32 += 4;
1864 ret_buf += pre_len;
1865 len32 -= pre_len;
1866 }
1867
1868 if (len32 & 3) {
1869 extra = 4 - (len32 & 3);
1870 len32 = (len32 + 4) & ~3;
1871 }
1872
1873 if (len32 == 4) {
1874 uint8_t buf[4];
1875
1876 if (cmd_flags)
1877 cmd_flags = BNX_NVM_COMMAND_LAST;
1878 else
1879 cmd_flags =
1880 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1881
1882 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1883
1884 memcpy(ret_buf, buf, 4 - extra);
1885 } else if (len32 > 0) {
1886 uint8_t buf[4];
1887
1888 /* Read the first word. */
1889 if (cmd_flags)
1890 cmd_flags = 0;
1891 else
1892 cmd_flags = BNX_NVM_COMMAND_FIRST;
1893
1894 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1895
1896 /* Advance to the next dword. */
1897 offset32 += 4;
1898 ret_buf += 4;
1899 len32 -= 4;
1900
1901 while (len32 > 4 && rc == 0) {
1902 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1903
1904 /* Advance to the next dword. */
1905 offset32 += 4;
1906 ret_buf += 4;
1907 len32 -= 4;
1908 }
1909
1910 if (rc)
1911 return rc;
1912
1913 cmd_flags = BNX_NVM_COMMAND_LAST;
1914 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1915
1916 memcpy(ret_buf, buf, 4 - extra);
1917 }
1918
1919 /* Disable access to flash interface and release the lock. */
1920 bnx_disable_nvram_access(sc);
1921 bnx_release_nvram_lock(sc);
1922
1923 return rc;
1924 }
1925
1926 #ifdef BNX_NVRAM_WRITE_SUPPORT
1927 /****************************************************************************/
1928 /* Write an arbitrary range of data from NVRAM. */
1929 /* */
1930 /* Prepares the NVRAM interface for write access and writes the requested */
1931 /* data from the supplied buffer. The caller is responsible for */
1932 /* calculating any appropriate CRCs. */
1933 /* */
1934 /* Returns: */
1935 /* 0 on success, positive value on failure. */
1936 /****************************************************************************/
1937 int
1938 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1939 int buf_size)
1940 {
1941 uint32_t written, offset32, len32;
1942 uint8_t *buf, start[4], end[4];
1943 int rc = 0;
1944 int align_start, align_end;
1945
1946 buf = data_buf;
1947 offset32 = offset;
1948 len32 = buf_size;
1949 align_start = align_end = 0;
1950
1951 if ((align_start = (offset32 & 3))) {
1952 offset32 &= ~3;
1953 len32 += align_start;
1954 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1955 return rc;
1956 }
1957
1958 if (len32 & 3) {
1959 if ((len32 > 4) || !align_start) {
1960 align_end = 4 - (len32 & 3);
1961 len32 += align_end;
1962 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1963 end, 4)))
1964 return rc;
1965 }
1966 }
1967
1968 if (align_start || align_end) {
1969 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1970 if (buf == NULL)
1971 return ENOMEM;
1972
1973 if (align_start)
1974 memcpy(buf, start, 4);
1975
1976 if (align_end)
1977 memcpy(buf + len32 - 4, end, 4);
1978
1979 memcpy(buf + align_start, data_buf, buf_size);
1980 }
1981
1982 written = 0;
1983 while ((written < len32) && (rc == 0)) {
1984 uint32_t page_start, page_end, data_start, data_end;
1985 uint32_t addr, cmd_flags;
1986 int i;
1987 uint8_t flash_buffer[264];
1988
1989 /* Find the page_start addr */
1990 page_start = offset32 + written;
1991 page_start -= (page_start % sc->bnx_flash_info->page_size);
1992 /* Find the page_end addr */
1993 page_end = page_start + sc->bnx_flash_info->page_size;
1994 /* Find the data_start addr */
1995 data_start = (written == 0) ? offset32 : page_start;
1996 /* Find the data_end addr */
1997 data_end = (page_end > offset32 + len32) ?
1998 (offset32 + len32) : page_end;
1999
2000 /* Request access to the flash interface. */
2001 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
2002 goto nvram_write_end;
2003
2004 /* Enable access to flash interface */
2005 bnx_enable_nvram_access(sc);
2006
2007 cmd_flags = BNX_NVM_COMMAND_FIRST;
2008 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2009 int j;
2010
2011 /* Read the whole page into the buffer
2012 * (non-buffer flash only) */
2013 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2014 if (j == (sc->bnx_flash_info->page_size - 4))
2015 cmd_flags |= BNX_NVM_COMMAND_LAST;
2016
2017 rc = bnx_nvram_read_dword(sc,
2018 page_start + j,
2019 &flash_buffer[j],
2020 cmd_flags);
2021
2022 if (rc)
2023 goto nvram_write_end;
2024
2025 cmd_flags = 0;
2026 }
2027 }
2028
2029 /* Enable writes to flash interface (unlock write-protect) */
2030 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2031 goto nvram_write_end;
2032
2033 /* Erase the page */
2034 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2035 goto nvram_write_end;
2036
2037 /* Re-enable the write again for the actual write */
2038 bnx_enable_nvram_write(sc);
2039
2040 /* Loop to write back the buffer data from page_start to
2041 * data_start */
2042 i = 0;
2043 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2044 for (addr = page_start; addr < data_start;
2045 addr += 4, i += 4) {
2046
2047 rc = bnx_nvram_write_dword(sc, addr,
2048 &flash_buffer[i], cmd_flags);
2049
2050 if (rc != 0)
2051 goto nvram_write_end;
2052
2053 cmd_flags = 0;
2054 }
2055 }
2056
2057 /* Loop to write the new data from data_start to data_end */
2058 for (addr = data_start; addr < data_end; addr += 4, i++) {
2059 if ((addr == page_end - 4) ||
2060 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2061 && (addr == data_end - 4))) {
2062
2063 cmd_flags |= BNX_NVM_COMMAND_LAST;
2064 }
2065
2066 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2067
2068 if (rc != 0)
2069 goto nvram_write_end;
2070
2071 cmd_flags = 0;
2072 buf += 4;
2073 }
2074
2075 /* Loop to write back the buffer data from data_end
2076 * to page_end */
2077 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2078 for (addr = data_end; addr < page_end;
2079 addr += 4, i += 4) {
2080
2081 if (addr == page_end-4)
2082 cmd_flags = BNX_NVM_COMMAND_LAST;
2083
2084 rc = bnx_nvram_write_dword(sc, addr,
2085 &flash_buffer[i], cmd_flags);
2086
2087 if (rc != 0)
2088 goto nvram_write_end;
2089
2090 cmd_flags = 0;
2091 }
2092 }
2093
2094 /* Disable writes to flash interface (lock write-protect) */
2095 bnx_disable_nvram_write(sc);
2096
2097 /* Disable access to flash interface */
2098 bnx_disable_nvram_access(sc);
2099 bnx_release_nvram_lock(sc);
2100
2101 /* Increment written */
2102 written += data_end - data_start;
2103 }
2104
2105 nvram_write_end:
2106 if (align_start || align_end)
2107 free(buf, M_DEVBUF);
2108
2109 return rc;
2110 }
2111 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2112
2113 /****************************************************************************/
2114 /* Verifies that NVRAM is accessible and contains valid data. */
2115 /* */
2116 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2117 /* correct. */
2118 /* */
2119 /* Returns: */
2120 /* 0 on success, positive value on failure. */
2121 /****************************************************************************/
2122 int
2123 bnx_nvram_test(struct bnx_softc *sc)
2124 {
2125 uint32_t buf[BNX_NVRAM_SIZE / 4];
2126 uint8_t *data = (uint8_t *) buf;
2127 int rc = 0;
2128 uint32_t magic, csum;
2129
2130 /*
2131 * Check that the device NVRAM is valid by reading
2132 * the magic value at offset 0.
2133 */
2134 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2135 goto bnx_nvram_test_done;
2136
2137 magic = be32toh(buf[0]);
2138 if (magic != BNX_NVRAM_MAGIC) {
2139 rc = ENODEV;
2140 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2141 "Expected: 0x%08X, Found: 0x%08X\n",
2142 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2143 goto bnx_nvram_test_done;
2144 }
2145
2146 /*
2147 * Verify that the device NVRAM includes valid
2148 * configuration data.
2149 */
2150 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2151 goto bnx_nvram_test_done;
2152
2153 csum = ether_crc32_le(data, 0x100);
2154 if (csum != BNX_CRC32_RESIDUAL) {
2155 rc = ENODEV;
2156 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2157 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2158 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2159 goto bnx_nvram_test_done;
2160 }
2161
2162 csum = ether_crc32_le(data + 0x100, 0x100);
2163 if (csum != BNX_CRC32_RESIDUAL) {
2164 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2165 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2166 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2167 rc = ENODEV;
2168 }
2169
2170 bnx_nvram_test_done:
2171 return rc;
2172 }
2173
2174 /****************************************************************************/
2175 /* Identifies the current media type of the controller and sets the PHY */
2176 /* address. */
2177 /* */
2178 /* Returns: */
2179 /* Nothing. */
2180 /****************************************************************************/
2181 void
2182 bnx_get_media(struct bnx_softc *sc)
2183 {
2184 sc->bnx_phy_addr = 1;
2185
2186 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2187 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2188 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2189 uint32_t strap;
2190
2191 /*
2192 * The BCM5709S is software configurable
2193 * for Copper or SerDes operation.
2194 */
2195 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2196 DBPRINT(sc, BNX_INFO_LOAD,
2197 "5709 bonded for copper.\n");
2198 goto bnx_get_media_exit;
2199 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2200 DBPRINT(sc, BNX_INFO_LOAD,
2201 "5709 bonded for dual media.\n");
2202 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2203 goto bnx_get_media_exit;
2204 }
2205
2206 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2207 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2208 else {
2209 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2210 >> 8;
2211 }
2212
2213 if (sc->bnx_pa.pa_function == 0) {
2214 switch (strap) {
2215 case 0x4:
2216 case 0x5:
2217 case 0x6:
2218 DBPRINT(sc, BNX_INFO_LOAD,
2219 "BCM5709 s/w configured for SerDes.\n");
2220 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2221 break;
2222 default:
2223 DBPRINT(sc, BNX_INFO_LOAD,
2224 "BCM5709 s/w configured for Copper.\n");
2225 }
2226 } else {
2227 switch (strap) {
2228 case 0x1:
2229 case 0x2:
2230 case 0x4:
2231 DBPRINT(sc, BNX_INFO_LOAD,
2232 "BCM5709 s/w configured for SerDes.\n");
2233 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2234 break;
2235 default:
2236 DBPRINT(sc, BNX_INFO_LOAD,
2237 "BCM5709 s/w configured for Copper.\n");
2238 }
2239 }
2240
2241 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2242 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2243
2244 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2245 uint32_t val;
2246
2247 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2248
2249 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2250 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2251
2252 /*
2253 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2254 * separate PHY for SerDes.
2255 */
2256 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2257 sc->bnx_phy_addr = 2;
2258 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2259 BNX_SHARED_HW_CFG_CONFIG);
2260 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2261 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2262 DBPRINT(sc, BNX_INFO_LOAD,
2263 "Found 2.5Gb capable adapter\n");
2264 }
2265 }
2266 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2267 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2268 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2269
2270 bnx_get_media_exit:
2271 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2272 "Using PHY address %d.\n", sc->bnx_phy_addr);
2273 }
2274
2275 /****************************************************************************/
2276 /* Performs PHY initialization required before MII drivers access the */
2277 /* device. */
2278 /* */
2279 /* Returns: */
2280 /* Nothing. */
2281 /****************************************************************************/
2282 void
2283 bnx_init_media(struct bnx_softc *sc)
2284 {
2285 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2286 /*
2287 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2288 * IEEE Clause 22 method. Otherwise we have no way to attach
2289 * the PHY to the mii(4) layer. PHY specific configuration
2290 * is done by the mii(4) layer.
2291 */
2292
2293 /* Select auto-negotiation MMD of the PHY. */
2294 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2295 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2296
2297 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2298 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2299
2300 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2301 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2302 }
2303 }
2304
2305 /****************************************************************************/
2306 /* Free any DMA memory owned by the driver. */
2307 /* */
2308 /* Scans through each data structre that requires DMA memory and frees */
2309 /* the memory if allocated. */
2310 /* */
2311 /* Returns: */
2312 /* Nothing. */
2313 /****************************************************************************/
2314 void
2315 bnx_dma_free(struct bnx_softc *sc)
2316 {
2317 int i;
2318
2319 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2320
2321 /* Destroy the status block. */
2322 if (sc->status_block != NULL && sc->status_map != NULL) {
2323 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2324 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2325 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2326 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2327 BNX_STATUS_BLK_SZ);
2328 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2329 sc->status_rseg);
2330 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2331 sc->status_block = NULL;
2332 sc->status_map = NULL;
2333 }
2334
2335 /* Destroy the statistics block. */
2336 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2337 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2338 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2339 BNX_STATS_BLK_SZ);
2340 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2341 sc->stats_rseg);
2342 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2343 sc->stats_block = NULL;
2344 sc->stats_map = NULL;
2345 }
2346
2347 /* Free, unmap and destroy all context memory pages. */
2348 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2349 for (i = 0; i < sc->ctx_pages; i++) {
2350 if (sc->ctx_block[i] != NULL) {
2351 bus_dmamap_unload(sc->bnx_dmatag,
2352 sc->ctx_map[i]);
2353 bus_dmamem_unmap(sc->bnx_dmatag,
2354 (void *)sc->ctx_block[i],
2355 BCM_PAGE_SIZE);
2356 bus_dmamem_free(sc->bnx_dmatag,
2357 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2358 bus_dmamap_destroy(sc->bnx_dmatag,
2359 sc->ctx_map[i]);
2360 sc->ctx_block[i] = NULL;
2361 }
2362 }
2363 }
2364
2365 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2366 for (i = 0; i < TX_PAGES; i++ ) {
2367 if (sc->tx_bd_chain[i] != NULL &&
2368 sc->tx_bd_chain_map[i] != NULL) {
2369 bus_dmamap_unload(sc->bnx_dmatag,
2370 sc->tx_bd_chain_map[i]);
2371 bus_dmamem_unmap(sc->bnx_dmatag,
2372 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2373 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2374 sc->tx_bd_chain_rseg[i]);
2375 bus_dmamap_destroy(sc->bnx_dmatag,
2376 sc->tx_bd_chain_map[i]);
2377 sc->tx_bd_chain[i] = NULL;
2378 sc->tx_bd_chain_map[i] = NULL;
2379 }
2380 }
2381
2382 /* Destroy the TX dmamaps. */
2383 /* This isn't necessary since we dont allocate them up front */
2384
2385 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2386 for (i = 0; i < RX_PAGES; i++ ) {
2387 if (sc->rx_bd_chain[i] != NULL &&
2388 sc->rx_bd_chain_map[i] != NULL) {
2389 bus_dmamap_unload(sc->bnx_dmatag,
2390 sc->rx_bd_chain_map[i]);
2391 bus_dmamem_unmap(sc->bnx_dmatag,
2392 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2393 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2394 sc->rx_bd_chain_rseg[i]);
2395
2396 bus_dmamap_destroy(sc->bnx_dmatag,
2397 sc->rx_bd_chain_map[i]);
2398 sc->rx_bd_chain[i] = NULL;
2399 sc->rx_bd_chain_map[i] = NULL;
2400 }
2401 }
2402
2403 /* Unload and destroy the RX mbuf maps. */
2404 for (i = 0; i < TOTAL_RX_BD; i++) {
2405 if (sc->rx_mbuf_map[i] != NULL) {
2406 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2407 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2408 }
2409 }
2410
2411 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2412 }
2413
2414 /****************************************************************************/
2415 /* Allocate any DMA memory needed by the driver. */
2416 /* */
2417 /* Allocates DMA memory needed for the various global structures needed by */
2418 /* hardware. */
2419 /* */
2420 /* Returns: */
2421 /* 0 for success, positive value for failure. */
2422 /****************************************************************************/
2423 int
2424 bnx_dma_alloc(struct bnx_softc *sc)
2425 {
2426 int i, rc = 0;
2427
2428 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2429
2430 /*
2431 * Allocate DMA memory for the status block, map the memory into DMA
2432 * space, and fetch the physical address of the block.
2433 */
2434 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2435 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2436 aprint_error_dev(sc->bnx_dev,
2437 "Could not create status block DMA map!\n");
2438 rc = ENOMEM;
2439 goto bnx_dma_alloc_exit;
2440 }
2441
2442 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2443 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2444 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2445 aprint_error_dev(sc->bnx_dev,
2446 "Could not allocate status block DMA memory!\n");
2447 rc = ENOMEM;
2448 goto bnx_dma_alloc_exit;
2449 }
2450
2451 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2452 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2453 aprint_error_dev(sc->bnx_dev,
2454 "Could not map status block DMA memory!\n");
2455 rc = ENOMEM;
2456 goto bnx_dma_alloc_exit;
2457 }
2458
2459 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2460 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2461 aprint_error_dev(sc->bnx_dev,
2462 "Could not load status block DMA memory!\n");
2463 rc = ENOMEM;
2464 goto bnx_dma_alloc_exit;
2465 }
2466
2467 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2468 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2469
2470 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2471 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2472
2473 /* DRC - Fix for 64 bit addresses. */
2474 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2475 (uint32_t) sc->status_block_paddr);
2476
2477 /* BCM5709 uses host memory as cache for context memory. */
2478 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2479 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2480 if (sc->ctx_pages == 0)
2481 sc->ctx_pages = 1;
2482 if (sc->ctx_pages > 4) /* XXX */
2483 sc->ctx_pages = 4;
2484
2485 DBRUNIF((sc->ctx_pages > 512),
2486 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2487 __FILE__, __LINE__, sc->ctx_pages));
2488
2489
2490 for (i = 0; i < sc->ctx_pages; i++) {
2491 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2492 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2493 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2494 &sc->ctx_map[i]) != 0) {
2495 rc = ENOMEM;
2496 goto bnx_dma_alloc_exit;
2497 }
2498
2499 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2500 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2501 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2502 rc = ENOMEM;
2503 goto bnx_dma_alloc_exit;
2504 }
2505
2506 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2507 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2508 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2509 rc = ENOMEM;
2510 goto bnx_dma_alloc_exit;
2511 }
2512
2513 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2514 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2515 BUS_DMA_NOWAIT) != 0) {
2516 rc = ENOMEM;
2517 goto bnx_dma_alloc_exit;
2518 }
2519
2520 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2521 }
2522 }
2523
2524 /*
2525 * Allocate DMA memory for the statistics block, map the memory into
2526 * DMA space, and fetch the physical address of the block.
2527 */
2528 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2529 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2530 aprint_error_dev(sc->bnx_dev,
2531 "Could not create stats block DMA map!\n");
2532 rc = ENOMEM;
2533 goto bnx_dma_alloc_exit;
2534 }
2535
2536 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2537 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2538 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2539 aprint_error_dev(sc->bnx_dev,
2540 "Could not allocate stats block DMA memory!\n");
2541 rc = ENOMEM;
2542 goto bnx_dma_alloc_exit;
2543 }
2544
2545 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2546 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2547 aprint_error_dev(sc->bnx_dev,
2548 "Could not map stats block DMA memory!\n");
2549 rc = ENOMEM;
2550 goto bnx_dma_alloc_exit;
2551 }
2552
2553 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2554 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2555 aprint_error_dev(sc->bnx_dev,
2556 "Could not load status block DMA memory!\n");
2557 rc = ENOMEM;
2558 goto bnx_dma_alloc_exit;
2559 }
2560
2561 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2562 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2563
2564 /* DRC - Fix for 64 bit address. */
2565 DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2566 (uint32_t) sc->stats_block_paddr);
2567
2568 /*
2569 * Allocate DMA memory for the TX buffer descriptor chain,
2570 * and fetch the physical address of the block.
2571 */
2572 for (i = 0; i < TX_PAGES; i++) {
2573 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2574 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2575 &sc->tx_bd_chain_map[i])) {
2576 aprint_error_dev(sc->bnx_dev,
2577 "Could not create Tx desc %d DMA map!\n", i);
2578 rc = ENOMEM;
2579 goto bnx_dma_alloc_exit;
2580 }
2581
2582 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2583 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2584 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2585 aprint_error_dev(sc->bnx_dev,
2586 "Could not allocate TX desc %d DMA memory!\n",
2587 i);
2588 rc = ENOMEM;
2589 goto bnx_dma_alloc_exit;
2590 }
2591
2592 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2593 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2594 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2595 aprint_error_dev(sc->bnx_dev,
2596 "Could not map TX desc %d DMA memory!\n", i);
2597 rc = ENOMEM;
2598 goto bnx_dma_alloc_exit;
2599 }
2600
2601 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2602 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2603 BUS_DMA_NOWAIT)) {
2604 aprint_error_dev(sc->bnx_dev,
2605 "Could not load TX desc %d DMA memory!\n", i);
2606 rc = ENOMEM;
2607 goto bnx_dma_alloc_exit;
2608 }
2609
2610 sc->tx_bd_chain_paddr[i] =
2611 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2612
2613 /* DRC - Fix for 64 bit systems. */
2614 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2615 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2616 }
2617
2618 /*
2619 * Create lists to hold TX mbufs.
2620 */
2621 TAILQ_INIT(&sc->tx_free_pkts);
2622 TAILQ_INIT(&sc->tx_used_pkts);
2623 sc->tx_pkt_count = 0;
2624 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2625
2626 /*
2627 * Allocate DMA memory for the Rx buffer descriptor chain,
2628 * and fetch the physical address of the block.
2629 */
2630 for (i = 0; i < RX_PAGES; i++) {
2631 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2632 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2633 &sc->rx_bd_chain_map[i])) {
2634 aprint_error_dev(sc->bnx_dev,
2635 "Could not create Rx desc %d DMA map!\n", i);
2636 rc = ENOMEM;
2637 goto bnx_dma_alloc_exit;
2638 }
2639
2640 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2641 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2642 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2643 aprint_error_dev(sc->bnx_dev,
2644 "Could not allocate Rx desc %d DMA memory!\n", i);
2645 rc = ENOMEM;
2646 goto bnx_dma_alloc_exit;
2647 }
2648
2649 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2650 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2651 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2652 aprint_error_dev(sc->bnx_dev,
2653 "Could not map Rx desc %d DMA memory!\n", i);
2654 rc = ENOMEM;
2655 goto bnx_dma_alloc_exit;
2656 }
2657
2658 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2659 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2660 BUS_DMA_NOWAIT)) {
2661 aprint_error_dev(sc->bnx_dev,
2662 "Could not load Rx desc %d DMA memory!\n", i);
2663 rc = ENOMEM;
2664 goto bnx_dma_alloc_exit;
2665 }
2666
2667 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2668 sc->rx_bd_chain_paddr[i] =
2669 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2670
2671 /* DRC - Fix for 64 bit systems. */
2672 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2673 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2674 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2675 0, BNX_RX_CHAIN_PAGE_SZ,
2676 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2677 }
2678
2679 /*
2680 * Create DMA maps for the Rx buffer mbufs.
2681 */
2682 for (i = 0; i < TOTAL_RX_BD; i++) {
2683 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2684 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2685 &sc->rx_mbuf_map[i])) {
2686 aprint_error_dev(sc->bnx_dev,
2687 "Could not create Rx mbuf %d DMA map!\n", i);
2688 rc = ENOMEM;
2689 goto bnx_dma_alloc_exit;
2690 }
2691 }
2692
2693 bnx_dma_alloc_exit:
2694 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2695
2696 return rc;
2697 }
2698
2699 /****************************************************************************/
2700 /* Release all resources used by the driver. */
2701 /* */
2702 /* Releases all resources acquired by the driver including interrupts, */
2703 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2704 /* */
2705 /* Returns: */
2706 /* Nothing. */
2707 /****************************************************************************/
2708 void
2709 bnx_release_resources(struct bnx_softc *sc)
2710 {
2711 struct pci_attach_args *pa = &(sc->bnx_pa);
2712
2713 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2714
2715 bnx_dma_free(sc);
2716
2717 if (sc->bnx_intrhand != NULL)
2718 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2719
2720 if (sc->bnx_size)
2721 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2722
2723 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2724 }
2725
2726 /****************************************************************************/
2727 /* Firmware synchronization. */
2728 /* */
2729 /* Before performing certain events such as a chip reset, synchronize with */
2730 /* the firmware first. */
2731 /* */
2732 /* Returns: */
2733 /* 0 for success, positive value for failure. */
2734 /****************************************************************************/
2735 int
2736 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2737 {
2738 int i, rc = 0;
2739 uint32_t val;
2740
2741 /* Don't waste any time if we've timed out before. */
2742 if (sc->bnx_fw_timed_out) {
2743 rc = EBUSY;
2744 goto bnx_fw_sync_exit;
2745 }
2746
2747 /* Increment the message sequence number. */
2748 sc->bnx_fw_wr_seq++;
2749 msg_data |= sc->bnx_fw_wr_seq;
2750
2751 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2752 msg_data);
2753
2754 /* Send the message to the bootcode driver mailbox. */
2755 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2756
2757 /* Wait for the bootcode to acknowledge the message. */
2758 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2759 /* Check for a response in the bootcode firmware mailbox. */
2760 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2761 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2762 break;
2763 DELAY(1000);
2764 }
2765
2766 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2767 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2768 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2769 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2770 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2771
2772 msg_data &= ~BNX_DRV_MSG_CODE;
2773 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2774
2775 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2776
2777 sc->bnx_fw_timed_out = 1;
2778 rc = EBUSY;
2779 }
2780
2781 bnx_fw_sync_exit:
2782 return rc;
2783 }
2784
2785 /****************************************************************************/
2786 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2787 /* */
2788 /* Returns: */
2789 /* Nothing. */
2790 /****************************************************************************/
2791 void
2792 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2793 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2794 {
2795 int i;
2796 uint32_t val;
2797
2798 /* Set the page size used by RV2P. */
2799 if (rv2p_proc == RV2P_PROC2) {
2800 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2801 USABLE_RX_BD_PER_PAGE);
2802 }
2803
2804 for (i = 0; i < rv2p_code_len; i += 8) {
2805 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2806 rv2p_code++;
2807 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2808 rv2p_code++;
2809
2810 if (rv2p_proc == RV2P_PROC1) {
2811 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2812 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2813 } else {
2814 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2815 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2816 }
2817 }
2818
2819 /* Reset the processor, un-stall is done later. */
2820 if (rv2p_proc == RV2P_PROC1)
2821 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2822 else
2823 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2824 }
2825
2826 /****************************************************************************/
2827 /* Load RISC processor firmware. */
2828 /* */
2829 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2830 /* associated with a particular processor. */
2831 /* */
2832 /* Returns: */
2833 /* Nothing. */
2834 /****************************************************************************/
2835 void
2836 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2837 struct fw_info *fw)
2838 {
2839 uint32_t offset;
2840 uint32_t val;
2841
2842 /* Halt the CPU. */
2843 val = REG_RD_IND(sc, cpu_reg->mode);
2844 val |= cpu_reg->mode_value_halt;
2845 REG_WR_IND(sc, cpu_reg->mode, val);
2846 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2847
2848 /* Load the Text area. */
2849 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2850 if (fw->text) {
2851 int j;
2852
2853 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2854 REG_WR_IND(sc, offset, fw->text[j]);
2855 }
2856
2857 /* Load the Data area. */
2858 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2859 if (fw->data) {
2860 int j;
2861
2862 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2863 REG_WR_IND(sc, offset, fw->data[j]);
2864 }
2865
2866 /* Load the SBSS area. */
2867 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2868 if (fw->sbss) {
2869 int j;
2870
2871 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2872 REG_WR_IND(sc, offset, fw->sbss[j]);
2873 }
2874
2875 /* Load the BSS area. */
2876 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2877 if (fw->bss) {
2878 int j;
2879
2880 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2881 REG_WR_IND(sc, offset, fw->bss[j]);
2882 }
2883
2884 /* Load the Read-Only area. */
2885 offset = cpu_reg->spad_base +
2886 (fw->rodata_addr - cpu_reg->mips_view_base);
2887 if (fw->rodata) {
2888 int j;
2889
2890 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2891 REG_WR_IND(sc, offset, fw->rodata[j]);
2892 }
2893
2894 /* Clear the pre-fetch instruction. */
2895 REG_WR_IND(sc, cpu_reg->inst, 0);
2896 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2897
2898 /* Start the CPU. */
2899 val = REG_RD_IND(sc, cpu_reg->mode);
2900 val &= ~cpu_reg->mode_value_halt;
2901 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2902 REG_WR_IND(sc, cpu_reg->mode, val);
2903 }
2904
2905 /****************************************************************************/
2906 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2907 /* */
2908 /* Loads the firmware for each CPU and starts the CPU. */
2909 /* */
2910 /* Returns: */
2911 /* Nothing. */
2912 /****************************************************************************/
2913 void
2914 bnx_init_cpus(struct bnx_softc *sc)
2915 {
2916 struct cpu_reg cpu_reg;
2917 struct fw_info fw;
2918
2919 switch (BNX_CHIP_NUM(sc)) {
2920 case BNX_CHIP_NUM_5709:
2921 /* Initialize the RV2P processor. */
2922 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2923 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2924 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2925 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2926 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2927 } else {
2928 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2929 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2930 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2931 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2932 }
2933
2934 /* Initialize the RX Processor. */
2935 cpu_reg.mode = BNX_RXP_CPU_MODE;
2936 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2937 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2938 cpu_reg.state = BNX_RXP_CPU_STATE;
2939 cpu_reg.state_value_clear = 0xffffff;
2940 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2941 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2942 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2943 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2944 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2945 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2946 cpu_reg.mips_view_base = 0x8000000;
2947
2948 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2949 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2950 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2951 fw.start_addr = bnx_RXP_b09FwStartAddr;
2952
2953 fw.text_addr = bnx_RXP_b09FwTextAddr;
2954 fw.text_len = bnx_RXP_b09FwTextLen;
2955 fw.text_index = 0;
2956 fw.text = bnx_RXP_b09FwText;
2957
2958 fw.data_addr = bnx_RXP_b09FwDataAddr;
2959 fw.data_len = bnx_RXP_b09FwDataLen;
2960 fw.data_index = 0;
2961 fw.data = bnx_RXP_b09FwData;
2962
2963 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2964 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2965 fw.sbss_index = 0;
2966 fw.sbss = bnx_RXP_b09FwSbss;
2967
2968 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2969 fw.bss_len = bnx_RXP_b09FwBssLen;
2970 fw.bss_index = 0;
2971 fw.bss = bnx_RXP_b09FwBss;
2972
2973 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2974 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2975 fw.rodata_index = 0;
2976 fw.rodata = bnx_RXP_b09FwRodata;
2977
2978 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2979 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2980
2981 /* Initialize the TX Processor. */
2982 cpu_reg.mode = BNX_TXP_CPU_MODE;
2983 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2984 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2985 cpu_reg.state = BNX_TXP_CPU_STATE;
2986 cpu_reg.state_value_clear = 0xffffff;
2987 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2988 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2989 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2990 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2991 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2992 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2993 cpu_reg.mips_view_base = 0x8000000;
2994
2995 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2996 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2997 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2998 fw.start_addr = bnx_TXP_b09FwStartAddr;
2999
3000 fw.text_addr = bnx_TXP_b09FwTextAddr;
3001 fw.text_len = bnx_TXP_b09FwTextLen;
3002 fw.text_index = 0;
3003 fw.text = bnx_TXP_b09FwText;
3004
3005 fw.data_addr = bnx_TXP_b09FwDataAddr;
3006 fw.data_len = bnx_TXP_b09FwDataLen;
3007 fw.data_index = 0;
3008 fw.data = bnx_TXP_b09FwData;
3009
3010 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3011 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3012 fw.sbss_index = 0;
3013 fw.sbss = bnx_TXP_b09FwSbss;
3014
3015 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3016 fw.bss_len = bnx_TXP_b09FwBssLen;
3017 fw.bss_index = 0;
3018 fw.bss = bnx_TXP_b09FwBss;
3019
3020 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3021 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3022 fw.rodata_index = 0;
3023 fw.rodata = bnx_TXP_b09FwRodata;
3024
3025 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3026 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3027
3028 /* Initialize the TX Patch-up Processor. */
3029 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3030 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3031 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3032 cpu_reg.state = BNX_TPAT_CPU_STATE;
3033 cpu_reg.state_value_clear = 0xffffff;
3034 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3035 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3036 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3037 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3038 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3039 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3040 cpu_reg.mips_view_base = 0x8000000;
3041
3042 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3043 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3044 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3045 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3046
3047 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3048 fw.text_len = bnx_TPAT_b09FwTextLen;
3049 fw.text_index = 0;
3050 fw.text = bnx_TPAT_b09FwText;
3051
3052 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3053 fw.data_len = bnx_TPAT_b09FwDataLen;
3054 fw.data_index = 0;
3055 fw.data = bnx_TPAT_b09FwData;
3056
3057 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3058 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3059 fw.sbss_index = 0;
3060 fw.sbss = bnx_TPAT_b09FwSbss;
3061
3062 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3063 fw.bss_len = bnx_TPAT_b09FwBssLen;
3064 fw.bss_index = 0;
3065 fw.bss = bnx_TPAT_b09FwBss;
3066
3067 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3068 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3069 fw.rodata_index = 0;
3070 fw.rodata = bnx_TPAT_b09FwRodata;
3071
3072 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3073 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3074
3075 /* Initialize the Completion Processor. */
3076 cpu_reg.mode = BNX_COM_CPU_MODE;
3077 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3078 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3079 cpu_reg.state = BNX_COM_CPU_STATE;
3080 cpu_reg.state_value_clear = 0xffffff;
3081 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3082 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3083 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3084 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3085 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3086 cpu_reg.spad_base = BNX_COM_SCRATCH;
3087 cpu_reg.mips_view_base = 0x8000000;
3088
3089 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3090 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3091 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3092 fw.start_addr = bnx_COM_b09FwStartAddr;
3093
3094 fw.text_addr = bnx_COM_b09FwTextAddr;
3095 fw.text_len = bnx_COM_b09FwTextLen;
3096 fw.text_index = 0;
3097 fw.text = bnx_COM_b09FwText;
3098
3099 fw.data_addr = bnx_COM_b09FwDataAddr;
3100 fw.data_len = bnx_COM_b09FwDataLen;
3101 fw.data_index = 0;
3102 fw.data = bnx_COM_b09FwData;
3103
3104 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3105 fw.sbss_len = bnx_COM_b09FwSbssLen;
3106 fw.sbss_index = 0;
3107 fw.sbss = bnx_COM_b09FwSbss;
3108
3109 fw.bss_addr = bnx_COM_b09FwBssAddr;
3110 fw.bss_len = bnx_COM_b09FwBssLen;
3111 fw.bss_index = 0;
3112 fw.bss = bnx_COM_b09FwBss;
3113
3114 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3115 fw.rodata_len = bnx_COM_b09FwRodataLen;
3116 fw.rodata_index = 0;
3117 fw.rodata = bnx_COM_b09FwRodata;
3118 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3119 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3120 break;
3121 default:
3122 /* Initialize the RV2P processor. */
3123 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3124 RV2P_PROC1);
3125 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3126 RV2P_PROC2);
3127
3128 /* Initialize the RX Processor. */
3129 cpu_reg.mode = BNX_RXP_CPU_MODE;
3130 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3131 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3132 cpu_reg.state = BNX_RXP_CPU_STATE;
3133 cpu_reg.state_value_clear = 0xffffff;
3134 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3135 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3136 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3137 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3138 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3139 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3140 cpu_reg.mips_view_base = 0x8000000;
3141
3142 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3143 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3144 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3145 fw.start_addr = bnx_RXP_b06FwStartAddr;
3146
3147 fw.text_addr = bnx_RXP_b06FwTextAddr;
3148 fw.text_len = bnx_RXP_b06FwTextLen;
3149 fw.text_index = 0;
3150 fw.text = bnx_RXP_b06FwText;
3151
3152 fw.data_addr = bnx_RXP_b06FwDataAddr;
3153 fw.data_len = bnx_RXP_b06FwDataLen;
3154 fw.data_index = 0;
3155 fw.data = bnx_RXP_b06FwData;
3156
3157 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3158 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3159 fw.sbss_index = 0;
3160 fw.sbss = bnx_RXP_b06FwSbss;
3161
3162 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3163 fw.bss_len = bnx_RXP_b06FwBssLen;
3164 fw.bss_index = 0;
3165 fw.bss = bnx_RXP_b06FwBss;
3166
3167 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3168 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3169 fw.rodata_index = 0;
3170 fw.rodata = bnx_RXP_b06FwRodata;
3171
3172 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3173 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3174
3175 /* Initialize the TX Processor. */
3176 cpu_reg.mode = BNX_TXP_CPU_MODE;
3177 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3178 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3179 cpu_reg.state = BNX_TXP_CPU_STATE;
3180 cpu_reg.state_value_clear = 0xffffff;
3181 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3182 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3183 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3184 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3185 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3186 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3187 cpu_reg.mips_view_base = 0x8000000;
3188
3189 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3190 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3191 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3192 fw.start_addr = bnx_TXP_b06FwStartAddr;
3193
3194 fw.text_addr = bnx_TXP_b06FwTextAddr;
3195 fw.text_len = bnx_TXP_b06FwTextLen;
3196 fw.text_index = 0;
3197 fw.text = bnx_TXP_b06FwText;
3198
3199 fw.data_addr = bnx_TXP_b06FwDataAddr;
3200 fw.data_len = bnx_TXP_b06FwDataLen;
3201 fw.data_index = 0;
3202 fw.data = bnx_TXP_b06FwData;
3203
3204 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3205 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3206 fw.sbss_index = 0;
3207 fw.sbss = bnx_TXP_b06FwSbss;
3208
3209 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3210 fw.bss_len = bnx_TXP_b06FwBssLen;
3211 fw.bss_index = 0;
3212 fw.bss = bnx_TXP_b06FwBss;
3213
3214 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3215 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3216 fw.rodata_index = 0;
3217 fw.rodata = bnx_TXP_b06FwRodata;
3218
3219 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3220 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3221
3222 /* Initialize the TX Patch-up Processor. */
3223 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3224 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3225 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3226 cpu_reg.state = BNX_TPAT_CPU_STATE;
3227 cpu_reg.state_value_clear = 0xffffff;
3228 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3229 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3230 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3231 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3232 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3233 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3234 cpu_reg.mips_view_base = 0x8000000;
3235
3236 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3237 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3238 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3239 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3240
3241 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3242 fw.text_len = bnx_TPAT_b06FwTextLen;
3243 fw.text_index = 0;
3244 fw.text = bnx_TPAT_b06FwText;
3245
3246 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3247 fw.data_len = bnx_TPAT_b06FwDataLen;
3248 fw.data_index = 0;
3249 fw.data = bnx_TPAT_b06FwData;
3250
3251 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3252 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3253 fw.sbss_index = 0;
3254 fw.sbss = bnx_TPAT_b06FwSbss;
3255
3256 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3257 fw.bss_len = bnx_TPAT_b06FwBssLen;
3258 fw.bss_index = 0;
3259 fw.bss = bnx_TPAT_b06FwBss;
3260
3261 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3262 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3263 fw.rodata_index = 0;
3264 fw.rodata = bnx_TPAT_b06FwRodata;
3265
3266 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3267 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3268
3269 /* Initialize the Completion Processor. */
3270 cpu_reg.mode = BNX_COM_CPU_MODE;
3271 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3272 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3273 cpu_reg.state = BNX_COM_CPU_STATE;
3274 cpu_reg.state_value_clear = 0xffffff;
3275 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3276 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3277 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3278 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3279 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3280 cpu_reg.spad_base = BNX_COM_SCRATCH;
3281 cpu_reg.mips_view_base = 0x8000000;
3282
3283 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3284 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3285 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3286 fw.start_addr = bnx_COM_b06FwStartAddr;
3287
3288 fw.text_addr = bnx_COM_b06FwTextAddr;
3289 fw.text_len = bnx_COM_b06FwTextLen;
3290 fw.text_index = 0;
3291 fw.text = bnx_COM_b06FwText;
3292
3293 fw.data_addr = bnx_COM_b06FwDataAddr;
3294 fw.data_len = bnx_COM_b06FwDataLen;
3295 fw.data_index = 0;
3296 fw.data = bnx_COM_b06FwData;
3297
3298 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3299 fw.sbss_len = bnx_COM_b06FwSbssLen;
3300 fw.sbss_index = 0;
3301 fw.sbss = bnx_COM_b06FwSbss;
3302
3303 fw.bss_addr = bnx_COM_b06FwBssAddr;
3304 fw.bss_len = bnx_COM_b06FwBssLen;
3305 fw.bss_index = 0;
3306 fw.bss = bnx_COM_b06FwBss;
3307
3308 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3309 fw.rodata_len = bnx_COM_b06FwRodataLen;
3310 fw.rodata_index = 0;
3311 fw.rodata = bnx_COM_b06FwRodata;
3312 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3313 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3314 break;
3315 }
3316 }
3317
3318 /****************************************************************************/
3319 /* Initialize context memory. */
3320 /* */
3321 /* Clears the memory associated with each Context ID (CID). */
3322 /* */
3323 /* Returns: */
3324 /* Nothing. */
3325 /****************************************************************************/
3326 void
3327 bnx_init_context(struct bnx_softc *sc)
3328 {
3329 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3330 /* DRC: Replace this constant value with a #define. */
3331 int i, retry_cnt = 10;
3332 uint32_t val;
3333
3334 /*
3335 * BCM5709 context memory may be cached
3336 * in host memory so prepare the host memory
3337 * for access.
3338 */
3339 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3340 | (1 << 12);
3341 val |= (BCM_PAGE_BITS - 8) << 16;
3342 REG_WR(sc, BNX_CTX_COMMAND, val);
3343
3344 /* Wait for mem init command to complete. */
3345 for (i = 0; i < retry_cnt; i++) {
3346 val = REG_RD(sc, BNX_CTX_COMMAND);
3347 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3348 break;
3349 DELAY(2);
3350 }
3351
3352 /* ToDo: Consider returning an error here. */
3353
3354 for (i = 0; i < sc->ctx_pages; i++) {
3355 int j;
3356
3357 /* Set the physaddr of the context memory cache. */
3358 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3359 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3360 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3361 val = (uint32_t)
3362 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3363 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3364 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3365 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3366
3367 /* Verify that the context memory write was successful. */
3368 for (j = 0; j < retry_cnt; j++) {
3369 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3370 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3371 break;
3372 DELAY(5);
3373 }
3374
3375 /* ToDo: Consider returning an error here. */
3376 }
3377 } else {
3378 uint32_t vcid_addr, offset;
3379
3380 /*
3381 * For the 5706/5708, context memory is local to the
3382 * controller, so initialize the controller context memory.
3383 */
3384
3385 vcid_addr = GET_CID_ADDR(96);
3386 while (vcid_addr) {
3387
3388 vcid_addr -= BNX_PHY_CTX_SIZE;
3389
3390 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3391 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3392
3393 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3394 offset += 4)
3395 CTX_WR(sc, 0x00, offset, 0);
3396
3397 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3398 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3399 }
3400 }
3401 }
3402
3403 /****************************************************************************/
3404 /* Fetch the permanent MAC address of the controller. */
3405 /* */
3406 /* Returns: */
3407 /* Nothing. */
3408 /****************************************************************************/
3409 void
3410 bnx_get_mac_addr(struct bnx_softc *sc)
3411 {
3412 uint32_t mac_lo = 0, mac_hi = 0;
3413
3414 /*
3415 * The NetXtreme II bootcode populates various NIC
3416 * power-on and runtime configuration items in a
3417 * shared memory area. The factory configured MAC
3418 * address is available from both NVRAM and the
3419 * shared memory area so we'll read the value from
3420 * shared memory for speed.
3421 */
3422
3423 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3424 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3425
3426 if ((mac_lo == 0) && (mac_hi == 0)) {
3427 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3428 __FILE__, __LINE__);
3429 } else {
3430 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3431 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3432 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3433 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3434 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3435 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3436 }
3437
3438 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3439 "%s\n", ether_sprintf(sc->eaddr));
3440 }
3441
3442 /****************************************************************************/
3443 /* Program the MAC address. */
3444 /* */
3445 /* Returns: */
3446 /* Nothing. */
3447 /****************************************************************************/
3448 void
3449 bnx_set_mac_addr(struct bnx_softc *sc)
3450 {
3451 uint32_t val;
3452 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3453
3454 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3455 "%s\n", ether_sprintf(sc->eaddr));
3456
3457 val = (mac_addr[0] << 8) | mac_addr[1];
3458
3459 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3460
3461 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3462 (mac_addr[4] << 8) | mac_addr[5];
3463
3464 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3465 }
3466
3467 /****************************************************************************/
3468 /* Stop the controller. */
3469 /* */
3470 /* Returns: */
3471 /* Nothing. */
3472 /****************************************************************************/
3473 void
3474 bnx_stop(struct ifnet *ifp, int disable)
3475 {
3476 struct bnx_softc *sc = ifp->if_softc;
3477
3478 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3479
3480 if (disable) {
3481 sc->bnx_detaching = 1;
3482 callout_halt(&sc->bnx_timeout, NULL);
3483 } else
3484 callout_stop(&sc->bnx_timeout);
3485
3486 mii_down(&sc->bnx_mii);
3487
3488 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3489
3490 /* Disable the transmit/receive blocks. */
3491 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3492 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3493 DELAY(20);
3494
3495 bnx_disable_intr(sc);
3496
3497 /* Tell firmware that the driver is going away. */
3498 if (disable)
3499 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3500 else
3501 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3502
3503 /* Free RX buffers. */
3504 bnx_free_rx_chain(sc);
3505
3506 /* Free TX buffers. */
3507 bnx_free_tx_chain(sc);
3508
3509 ifp->if_timer = 0;
3510
3511 sc->bnx_link = 0;
3512
3513 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3514
3515 bnx_mgmt_init(sc);
3516 }
3517
3518 int
3519 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3520 {
3521 struct pci_attach_args *pa = &(sc->bnx_pa);
3522 uint32_t val;
3523 int i, rc = 0;
3524
3525 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3526
3527 /* Wait for pending PCI transactions to complete. */
3528 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3529 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3530 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3531 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3532 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3533 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3534 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3535 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3536 DELAY(5);
3537 } else {
3538 /* Disable DMA */
3539 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3540 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3541 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3542 REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3543
3544 for (i = 0; i < 100; i++) {
3545 delay(1 * 1000);
3546 val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3547 if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3548 break;
3549 }
3550 }
3551
3552 /* Assume bootcode is running. */
3553 sc->bnx_fw_timed_out = 0;
3554
3555 /* Give the firmware a chance to prepare for the reset. */
3556 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3557 if (rc)
3558 goto bnx_reset_exit;
3559
3560 /* Set a firmware reminder that this is a soft reset. */
3561 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3562 BNX_DRV_RESET_SIGNATURE_MAGIC);
3563
3564 /* Dummy read to force the chip to complete all current transactions. */
3565 val = REG_RD(sc, BNX_MISC_ID);
3566
3567 /* Chip reset. */
3568 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3569 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3570 REG_RD(sc, BNX_MISC_COMMAND);
3571 DELAY(5);
3572
3573 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3574 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3575
3576 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3577 val);
3578 } else {
3579 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3580 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3581 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3582 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3583
3584 /* Allow up to 30us for reset to complete. */
3585 for (i = 0; i < 10; i++) {
3586 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3587 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3588 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3589 break;
3590 }
3591 DELAY(10);
3592 }
3593
3594 /* Check that reset completed successfully. */
3595 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3596 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3597 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3598 __FILE__, __LINE__);
3599 rc = EBUSY;
3600 goto bnx_reset_exit;
3601 }
3602 }
3603
3604 /* Make sure byte swapping is properly configured. */
3605 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3606 if (val != 0x01020304) {
3607 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3608 __FILE__, __LINE__);
3609 rc = ENODEV;
3610 goto bnx_reset_exit;
3611 }
3612
3613 /* Just completed a reset, assume that firmware is running again. */
3614 sc->bnx_fw_timed_out = 0;
3615
3616 /* Wait for the firmware to finish its initialization. */
3617 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3618 if (rc)
3619 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3620 "initialization!\n", __FILE__, __LINE__);
3621
3622 bnx_reset_exit:
3623 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3624
3625 return rc;
3626 }
3627
3628 int
3629 bnx_chipinit(struct bnx_softc *sc)
3630 {
3631 struct pci_attach_args *pa = &(sc->bnx_pa);
3632 uint32_t val;
3633 int rc = 0;
3634
3635 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3636
3637 /* Make sure the interrupt is not active. */
3638 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3639
3640 /* Initialize DMA byte/word swapping, configure the number of DMA */
3641 /* channels and PCI clock compensation delay. */
3642 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3643 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3644 #if BYTE_ORDER == BIG_ENDIAN
3645 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3646 #endif
3647 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3648 DMA_READ_CHANS << 12 |
3649 DMA_WRITE_CHANS << 16;
3650
3651 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3652
3653 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3654 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3655
3656 /*
3657 * This setting resolves a problem observed on certain Intel PCI
3658 * chipsets that cannot handle multiple outstanding DMA operations.
3659 * See errata E9_5706A1_65.
3660 */
3661 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3662 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3663 !(sc->bnx_flags & BNX_PCIX_FLAG))
3664 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3665
3666 REG_WR(sc, BNX_DMA_CONFIG, val);
3667
3668 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3669 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3670 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3671 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3672 val & ~0x20000);
3673 }
3674
3675 /* Enable the RX_V2P and Context state machines before access. */
3676 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3677 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3678 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3679 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3680
3681 /* Initialize context mapping and zero out the quick contexts. */
3682 bnx_init_context(sc);
3683
3684 /* Initialize the on-boards CPUs */
3685 bnx_init_cpus(sc);
3686
3687 /* Enable management frames (NC-SI) to flow to the MCP. */
3688 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3689 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3690 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3691 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3692 }
3693
3694 /* Prepare NVRAM for access. */
3695 if (bnx_init_nvram(sc)) {
3696 rc = ENODEV;
3697 goto bnx_chipinit_exit;
3698 }
3699
3700 /* Set the kernel bypass block size */
3701 val = REG_RD(sc, BNX_MQ_CONFIG);
3702 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3703 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3704
3705 /* Enable bins used on the 5709. */
3706 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3707 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3708 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3709 val |= BNX_MQ_CONFIG_HALT_DIS;
3710 }
3711
3712 REG_WR(sc, BNX_MQ_CONFIG, val);
3713
3714 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3715 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3716 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3717
3718 val = (BCM_PAGE_BITS - 8) << 24;
3719 REG_WR(sc, BNX_RV2P_CONFIG, val);
3720
3721 /* Configure page size. */
3722 val = REG_RD(sc, BNX_TBDR_CONFIG);
3723 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3724 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3725 REG_WR(sc, BNX_TBDR_CONFIG, val);
3726
3727 #if 0
3728 /* Set the perfect match control register to default. */
3729 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3730 #endif
3731
3732 bnx_chipinit_exit:
3733 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3734
3735 return rc;
3736 }
3737
3738 /****************************************************************************/
3739 /* Initialize the controller in preparation to send/receive traffic. */
3740 /* */
3741 /* Returns: */
3742 /* 0 for success, positive value for failure. */
3743 /****************************************************************************/
3744 int
3745 bnx_blockinit(struct bnx_softc *sc)
3746 {
3747 uint32_t reg, val;
3748 int rc = 0;
3749
3750 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3751
3752 /* Load the hardware default MAC address. */
3753 bnx_set_mac_addr(sc);
3754
3755 /* Set the Ethernet backoff seed value */
3756 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3757 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3758 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3759
3760 sc->last_status_idx = 0;
3761 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3762
3763 /* Set up link change interrupt generation. */
3764 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3765 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3766
3767 /* Program the physical address of the status block. */
3768 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3769 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3770 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3771
3772 /* Program the physical address of the statistics block. */
3773 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3774 (uint32_t)(sc->stats_block_paddr));
3775 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3776 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3777
3778 /* Program various host coalescing parameters. */
3779 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3780 << 16) | sc->bnx_tx_quick_cons_trip);
3781 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3782 << 16) | sc->bnx_rx_quick_cons_trip);
3783 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3784 sc->bnx_comp_prod_trip);
3785 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3786 sc->bnx_tx_ticks);
3787 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3788 sc->bnx_rx_ticks);
3789 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3790 sc->bnx_com_ticks);
3791 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3792 sc->bnx_cmd_ticks);
3793 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3794 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3795 REG_WR(sc, BNX_HC_CONFIG,
3796 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3797 BNX_HC_CONFIG_COLLECT_STATS));
3798
3799 /* Clear the internal statistics counters. */
3800 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3801
3802 /* Verify that bootcode is running. */
3803 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3804
3805 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3806 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3807 __FILE__, __LINE__); reg = 0);
3808
3809 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3810 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3811 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3812 "Expected: 08%08X\n", __FILE__, __LINE__,
3813 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3814 BNX_DEV_INFO_SIGNATURE_MAGIC);
3815 rc = ENODEV;
3816 goto bnx_blockinit_exit;
3817 }
3818
3819 /* Enable DMA */
3820 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3821 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3822 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3823 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3824 }
3825
3826 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3827 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3828
3829 /* Disable management frames (NC-SI) from flowing to the MCP. */
3830 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3831 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3832 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3833 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3834 }
3835
3836 /* Enable all remaining blocks in the MAC. */
3837 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3838 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3839 BNX_MISC_ENABLE_DEFAULT_XI);
3840 } else
3841 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3842
3843 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3844 DELAY(20);
3845
3846 bnx_blockinit_exit:
3847 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3848
3849 return rc;
3850 }
3851
3852 static int
3853 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3854 uint16_t *chain_prod, uint32_t *prod_bseq)
3855 {
3856 bus_dmamap_t map;
3857 struct rx_bd *rxbd;
3858 uint32_t addr;
3859 int i;
3860 #ifdef BNX_DEBUG
3861 uint16_t debug_chain_prod = *chain_prod;
3862 #endif
3863 uint16_t first_chain_prod;
3864
3865 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3866
3867 /* Map the mbuf cluster into device memory. */
3868 map = sc->rx_mbuf_map[*chain_prod];
3869 first_chain_prod = *chain_prod;
3870 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3871 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3872 __FILE__, __LINE__);
3873
3874 m_freem(m_new);
3875
3876 DBRUNIF(1, sc->rx_mbuf_alloc--);
3877
3878 return ENOBUFS;
3879 }
3880 /* Make sure there is room in the receive chain. */
3881 if (map->dm_nsegs > sc->free_rx_bd) {
3882 bus_dmamap_unload(sc->bnx_dmatag, map);
3883 m_freem(m_new);
3884 return EFBIG;
3885 }
3886 #ifdef BNX_DEBUG
3887 /* Track the distribution of buffer segments. */
3888 sc->rx_mbuf_segs[map->dm_nsegs]++;
3889 #endif
3890
3891 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3892 BUS_DMASYNC_PREREAD);
3893
3894 /* Update some debug statistics counters */
3895 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3896 sc->rx_low_watermark = sc->free_rx_bd);
3897 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3898
3899 /*
3900 * Setup the rx_bd for the first segment
3901 */
3902 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3903
3904 addr = (uint32_t)map->dm_segs[0].ds_addr;
3905 rxbd->rx_bd_haddr_lo = addr;
3906 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3907 rxbd->rx_bd_haddr_hi = addr;
3908 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3909 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3910 *prod_bseq += map->dm_segs[0].ds_len;
3911 bus_dmamap_sync(sc->bnx_dmatag,
3912 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3913 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3914 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3915
3916 for (i = 1; i < map->dm_nsegs; i++) {
3917 *prod = NEXT_RX_BD(*prod);
3918 *chain_prod = RX_CHAIN_IDX(*prod);
3919
3920 rxbd =
3921 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3922
3923 addr = (uint32_t)map->dm_segs[i].ds_addr;
3924 rxbd->rx_bd_haddr_lo = addr;
3925 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3926 rxbd->rx_bd_haddr_hi = addr;
3927 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3928 rxbd->rx_bd_flags = 0;
3929 *prod_bseq += map->dm_segs[i].ds_len;
3930 bus_dmamap_sync(sc->bnx_dmatag,
3931 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3932 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3933 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3934 }
3935
3936 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3937 bus_dmamap_sync(sc->bnx_dmatag,
3938 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3939 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3940 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3941
3942 /*
3943 * Save the mbuf, adjust the map pointer (swap map for first and
3944 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3945 * and update our counter.
3946 */
3947 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3948 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3949 sc->rx_mbuf_map[*chain_prod] = map;
3950 sc->free_rx_bd -= map->dm_nsegs;
3951
3952 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3953 map->dm_nsegs));
3954 *prod = NEXT_RX_BD(*prod);
3955 *chain_prod = RX_CHAIN_IDX(*prod);
3956
3957 return 0;
3958 }
3959
3960 /****************************************************************************/
3961 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3962 /* */
3963 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3964 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3965 /* necessary. */
3966 /* */
3967 /* Returns: */
3968 /* 0 for success, positive value for failure. */
3969 /****************************************************************************/
3970 int
3971 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3972 uint16_t *chain_prod, uint32_t *prod_bseq)
3973 {
3974 struct mbuf *m_new = NULL;
3975 int rc = 0;
3976 uint16_t min_free_bd;
3977
3978 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3979 __func__);
3980
3981 /* Make sure the inputs are valid. */
3982 DBRUNIF((*chain_prod > MAX_RX_BD),
3983 aprint_error_dev(sc->bnx_dev,
3984 "RX producer out of range: 0x%04X > 0x%04X\n",
3985 *chain_prod, (uint16_t)MAX_RX_BD));
3986
3987 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3988 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3989 *prod_bseq);
3990
3991 /* try to get in as many mbufs as possible */
3992 if (sc->mbuf_alloc_size == MCLBYTES)
3993 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3994 else
3995 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3996 while (sc->free_rx_bd >= min_free_bd) {
3997 /* Simulate an mbuf allocation failure. */
3998 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3999 aprint_error_dev(sc->bnx_dev,
4000 "Simulating mbuf allocation failure.\n");
4001 sc->mbuf_sim_alloc_failed++;
4002 rc = ENOBUFS;
4003 goto bnx_get_buf_exit);
4004
4005 /* This is a new mbuf allocation. */
4006 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4007 if (m_new == NULL) {
4008 DBPRINT(sc, BNX_WARN,
4009 "%s(%d): RX mbuf header allocation failed!\n",
4010 __FILE__, __LINE__);
4011
4012 sc->mbuf_alloc_failed++;
4013
4014 rc = ENOBUFS;
4015 goto bnx_get_buf_exit;
4016 }
4017
4018 DBRUNIF(1, sc->rx_mbuf_alloc++);
4019
4020 /* Simulate an mbuf cluster allocation failure. */
4021 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4022 m_freem(m_new);
4023 sc->rx_mbuf_alloc--;
4024 sc->mbuf_alloc_failed++;
4025 sc->mbuf_sim_alloc_failed++;
4026 rc = ENOBUFS;
4027 goto bnx_get_buf_exit);
4028
4029 if (sc->mbuf_alloc_size == MCLBYTES)
4030 MCLGET(m_new, M_DONTWAIT);
4031 else
4032 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4033 M_DONTWAIT);
4034 if (!(m_new->m_flags & M_EXT)) {
4035 DBPRINT(sc, BNX_WARN,
4036 "%s(%d): RX mbuf chain allocation failed!\n",
4037 __FILE__, __LINE__);
4038
4039 m_freem(m_new);
4040
4041 DBRUNIF(1, sc->rx_mbuf_alloc--);
4042 sc->mbuf_alloc_failed++;
4043
4044 rc = ENOBUFS;
4045 goto bnx_get_buf_exit;
4046 }
4047
4048 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4049 if (rc != 0)
4050 goto bnx_get_buf_exit;
4051 }
4052
4053 bnx_get_buf_exit:
4054 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4055 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4056 *chain_prod, *prod_bseq);
4057
4058 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4059 __func__);
4060
4061 return rc;
4062 }
4063
4064 void
4065 bnx_alloc_pkts(struct work * unused, void * arg)
4066 {
4067 struct bnx_softc *sc = arg;
4068 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4069 struct bnx_pkt *pkt;
4070 int i, s;
4071
4072 for (i = 0; i < 4; i++) { /* magic! */
4073 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4074 if (pkt == NULL)
4075 break;
4076
4077 if (bus_dmamap_create(sc->bnx_dmatag,
4078 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4079 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4080 &pkt->pkt_dmamap) != 0)
4081 goto put;
4082
4083 if (!ISSET(ifp->if_flags, IFF_UP))
4084 goto stopping;
4085
4086 mutex_enter(&sc->tx_pkt_mtx);
4087 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4088 sc->tx_pkt_count++;
4089 mutex_exit(&sc->tx_pkt_mtx);
4090 }
4091
4092 mutex_enter(&sc->tx_pkt_mtx);
4093 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4094 mutex_exit(&sc->tx_pkt_mtx);
4095
4096 /* fire-up TX now that allocations have been done */
4097 s = splnet();
4098 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4099 bnx_start(ifp);
4100 splx(s);
4101
4102 return;
4103
4104 stopping:
4105 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4106 put:
4107 pool_put(bnx_tx_pool, pkt);
4108 return;
4109 }
4110
4111 /****************************************************************************/
4112 /* Initialize the TX context memory. */
4113 /* */
4114 /* Returns: */
4115 /* Nothing */
4116 /****************************************************************************/
4117 void
4118 bnx_init_tx_context(struct bnx_softc *sc)
4119 {
4120 uint32_t val;
4121
4122 /* Initialize the context ID for an L2 TX chain. */
4123 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4124 /* Set the CID type to support an L2 connection. */
4125 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4126 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4127 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4128 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4129
4130 /* Point the hardware to the first page in the chain. */
4131 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4132 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4133 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4134 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4135 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4136 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4137 } else {
4138 /* Set the CID type to support an L2 connection. */
4139 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4140 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4141 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4142 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4143
4144 /* Point the hardware to the first page in the chain. */
4145 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4146 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4147 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4148 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4149 }
4150 }
4151
4152
4153 /****************************************************************************/
4154 /* Allocate memory and initialize the TX data structures. */
4155 /* */
4156 /* Returns: */
4157 /* 0 for success, positive value for failure. */
4158 /****************************************************************************/
4159 int
4160 bnx_init_tx_chain(struct bnx_softc *sc)
4161 {
4162 struct tx_bd *txbd;
4163 uint32_t addr;
4164 int i, rc = 0;
4165
4166 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4167
4168 /* Force an allocation of some dmamaps for tx up front */
4169 bnx_alloc_pkts(NULL, sc);
4170
4171 /* Set the initial TX producer/consumer indices. */
4172 sc->tx_prod = 0;
4173 sc->tx_cons = 0;
4174 sc->tx_prod_bseq = 0;
4175 sc->used_tx_bd = 0;
4176 sc->max_tx_bd = USABLE_TX_BD;
4177 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4178 DBRUNIF(1, sc->tx_full_count = 0);
4179
4180 /*
4181 * The NetXtreme II supports a linked-list structure called
4182 * a Buffer Descriptor Chain (or BD chain). A BD chain
4183 * consists of a series of 1 or more chain pages, each of which
4184 * consists of a fixed number of BD entries.
4185 * The last BD entry on each page is a pointer to the next page
4186 * in the chain, and the last pointer in the BD chain
4187 * points back to the beginning of the chain.
4188 */
4189
4190 /* Set the TX next pointer chain entries. */
4191 for (i = 0; i < TX_PAGES; i++) {
4192 int j;
4193
4194 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4195
4196 /* Check if we've reached the last page. */
4197 if (i == (TX_PAGES - 1))
4198 j = 0;
4199 else
4200 j = i + 1;
4201
4202 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4203 txbd->tx_bd_haddr_lo = addr;
4204 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4205 txbd->tx_bd_haddr_hi = addr;
4206 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4207 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4208 }
4209
4210 /*
4211 * Initialize the context ID for an L2 TX chain.
4212 */
4213 bnx_init_tx_context(sc);
4214
4215 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4216
4217 return rc;
4218 }
4219
4220 /****************************************************************************/
4221 /* Free memory and clear the TX data structures. */
4222 /* */
4223 /* Returns: */
4224 /* Nothing. */
4225 /****************************************************************************/
4226 void
4227 bnx_free_tx_chain(struct bnx_softc *sc)
4228 {
4229 struct bnx_pkt *pkt;
4230 int i;
4231
4232 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4233
4234 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4235 mutex_enter(&sc->tx_pkt_mtx);
4236 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4237 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4238 mutex_exit(&sc->tx_pkt_mtx);
4239
4240 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4241 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4242 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4243
4244 m_freem(pkt->pkt_mbuf);
4245 DBRUNIF(1, sc->tx_mbuf_alloc--);
4246
4247 mutex_enter(&sc->tx_pkt_mtx);
4248 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4249 }
4250
4251 /* Destroy all the dmamaps we allocated for TX */
4252 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4253 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4254 sc->tx_pkt_count--;
4255 mutex_exit(&sc->tx_pkt_mtx);
4256
4257 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4258 pool_put(bnx_tx_pool, pkt);
4259
4260 mutex_enter(&sc->tx_pkt_mtx);
4261 }
4262 mutex_exit(&sc->tx_pkt_mtx);
4263
4264
4265
4266 /* Clear each TX chain page. */
4267 for (i = 0; i < TX_PAGES; i++) {
4268 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4269 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4270 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4271 }
4272
4273 sc->used_tx_bd = 0;
4274
4275 /* Check if we lost any mbufs in the process. */
4276 DBRUNIF((sc->tx_mbuf_alloc),
4277 aprint_error_dev(sc->bnx_dev,
4278 "Memory leak! Lost %d mbufs from tx chain!\n",
4279 sc->tx_mbuf_alloc));
4280
4281 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4282 }
4283
4284 /****************************************************************************/
4285 /* Initialize the RX context memory. */
4286 /* */
4287 /* Returns: */
4288 /* Nothing */
4289 /****************************************************************************/
4290 void
4291 bnx_init_rx_context(struct bnx_softc *sc)
4292 {
4293 uint32_t val;
4294
4295 /* Initialize the context ID for an L2 RX chain. */
4296 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4297 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4298
4299 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4300 val |= 0x000000ff;
4301
4302 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4303
4304 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4305 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4306 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4307 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4308 }
4309
4310 /* Point the hardware to the first page in the chain. */
4311 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4312 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4313 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4314 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4315 }
4316
4317 /****************************************************************************/
4318 /* Allocate memory and initialize the RX data structures. */
4319 /* */
4320 /* Returns: */
4321 /* 0 for success, positive value for failure. */
4322 /****************************************************************************/
4323 int
4324 bnx_init_rx_chain(struct bnx_softc *sc)
4325 {
4326 struct rx_bd *rxbd;
4327 int i, rc = 0;
4328 uint16_t prod, chain_prod;
4329 uint32_t prod_bseq, addr;
4330
4331 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4332
4333 /* Initialize the RX producer and consumer indices. */
4334 sc->rx_prod = 0;
4335 sc->rx_cons = 0;
4336 sc->rx_prod_bseq = 0;
4337 sc->free_rx_bd = USABLE_RX_BD;
4338 sc->max_rx_bd = USABLE_RX_BD;
4339 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4340 DBRUNIF(1, sc->rx_empty_count = 0);
4341
4342 /* Initialize the RX next pointer chain entries. */
4343 for (i = 0; i < RX_PAGES; i++) {
4344 int j;
4345
4346 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4347
4348 /* Check if we've reached the last page. */
4349 if (i == (RX_PAGES - 1))
4350 j = 0;
4351 else
4352 j = i + 1;
4353
4354 /* Setup the chain page pointers. */
4355 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4356 rxbd->rx_bd_haddr_hi = addr;
4357 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4358 rxbd->rx_bd_haddr_lo = addr;
4359 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4360 0, BNX_RX_CHAIN_PAGE_SZ,
4361 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4362 }
4363
4364 /* Allocate mbuf clusters for the rx_bd chain. */
4365 prod = prod_bseq = 0;
4366 chain_prod = RX_CHAIN_IDX(prod);
4367 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4368 BNX_PRINTF(sc,
4369 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4370 }
4371
4372 /* Save the RX chain producer index. */
4373 sc->rx_prod = prod;
4374 sc->rx_prod_bseq = prod_bseq;
4375
4376 for (i = 0; i < RX_PAGES; i++)
4377 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4378 sc->rx_bd_chain_map[i]->dm_mapsize,
4379 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4380
4381 /* Tell the chip about the waiting rx_bd's. */
4382 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4383 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4384
4385 bnx_init_rx_context(sc);
4386
4387 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4388
4389 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4390
4391 return rc;
4392 }
4393
4394 /****************************************************************************/
4395 /* Free memory and clear the RX data structures. */
4396 /* */
4397 /* Returns: */
4398 /* Nothing. */
4399 /****************************************************************************/
4400 void
4401 bnx_free_rx_chain(struct bnx_softc *sc)
4402 {
4403 int i;
4404
4405 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4406
4407 /* Free any mbufs still in the RX mbuf chain. */
4408 for (i = 0; i < TOTAL_RX_BD; i++) {
4409 if (sc->rx_mbuf_ptr[i] != NULL) {
4410 if (sc->rx_mbuf_map[i] != NULL) {
4411 bus_dmamap_sync(sc->bnx_dmatag,
4412 sc->rx_mbuf_map[i], 0,
4413 sc->rx_mbuf_map[i]->dm_mapsize,
4414 BUS_DMASYNC_POSTREAD);
4415 bus_dmamap_unload(sc->bnx_dmatag,
4416 sc->rx_mbuf_map[i]);
4417 }
4418 m_freem(sc->rx_mbuf_ptr[i]);
4419 sc->rx_mbuf_ptr[i] = NULL;
4420 DBRUNIF(1, sc->rx_mbuf_alloc--);
4421 }
4422 }
4423
4424 /* Clear each RX chain page. */
4425 for (i = 0; i < RX_PAGES; i++)
4426 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4427
4428 sc->free_rx_bd = sc->max_rx_bd;
4429
4430 /* Check if we lost any mbufs in the process. */
4431 DBRUNIF((sc->rx_mbuf_alloc),
4432 aprint_error_dev(sc->bnx_dev,
4433 "Memory leak! Lost %d mbufs from rx chain!\n",
4434 sc->rx_mbuf_alloc));
4435
4436 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4437 }
4438
4439 /****************************************************************************/
4440 /* Set media options. */
4441 /* */
4442 /* Returns: */
4443 /* 0 for success, positive value for failure. */
4444 /****************************************************************************/
4445 int
4446 bnx_ifmedia_upd(struct ifnet *ifp)
4447 {
4448 struct bnx_softc *sc;
4449 struct mii_data *mii;
4450 int rc = 0;
4451
4452 sc = ifp->if_softc;
4453
4454 mii = &sc->bnx_mii;
4455 sc->bnx_link = 0;
4456 if (mii->mii_instance) {
4457 struct mii_softc *miisc;
4458 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4459 mii_phy_reset(miisc);
4460 }
4461 mii_mediachg(mii);
4462
4463 return rc;
4464 }
4465
4466 /****************************************************************************/
4467 /* Reports current media status. */
4468 /* */
4469 /* Returns: */
4470 /* Nothing. */
4471 /****************************************************************************/
4472 void
4473 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4474 {
4475 struct bnx_softc *sc;
4476 struct mii_data *mii;
4477 int s;
4478
4479 sc = ifp->if_softc;
4480
4481 s = splnet();
4482
4483 mii = &sc->bnx_mii;
4484
4485 mii_pollstat(mii);
4486 ifmr->ifm_status = mii->mii_media_status;
4487 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4488 sc->bnx_flowflags;
4489
4490 splx(s);
4491 }
4492
4493 /****************************************************************************/
4494 /* Handles PHY generated interrupt events. */
4495 /* */
4496 /* Returns: */
4497 /* Nothing. */
4498 /****************************************************************************/
4499 void
4500 bnx_phy_intr(struct bnx_softc *sc)
4501 {
4502 uint32_t new_link_state, old_link_state;
4503
4504 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4505 BUS_DMASYNC_POSTREAD);
4506 new_link_state = sc->status_block->status_attn_bits &
4507 STATUS_ATTN_BITS_LINK_STATE;
4508 old_link_state = sc->status_block->status_attn_bits_ack &
4509 STATUS_ATTN_BITS_LINK_STATE;
4510
4511 /* Handle any changes if the link state has changed. */
4512 if (new_link_state != old_link_state) {
4513 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4514
4515 sc->bnx_link = 0;
4516 callout_stop(&sc->bnx_timeout);
4517 bnx_tick(sc);
4518
4519 /* Update the status_attn_bits_ack field in the status block. */
4520 if (new_link_state) {
4521 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4522 STATUS_ATTN_BITS_LINK_STATE);
4523 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4524 } else {
4525 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4526 STATUS_ATTN_BITS_LINK_STATE);
4527 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4528 }
4529 }
4530
4531 /* Acknowledge the link change interrupt. */
4532 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4533 }
4534
4535 /****************************************************************************/
4536 /* Handles received frame interrupt events. */
4537 /* */
4538 /* Returns: */
4539 /* Nothing. */
4540 /****************************************************************************/
4541 void
4542 bnx_rx_intr(struct bnx_softc *sc)
4543 {
4544 struct status_block *sblk = sc->status_block;
4545 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4546 uint16_t hw_cons, sw_cons, sw_chain_cons;
4547 uint16_t sw_prod, sw_chain_prod;
4548 uint32_t sw_prod_bseq;
4549 struct l2_fhdr *l2fhdr;
4550 int i;
4551
4552 DBRUNIF(1, sc->rx_interrupts++);
4553 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4554 BUS_DMASYNC_POSTREAD);
4555
4556 /* Prepare the RX chain pages to be accessed by the host CPU. */
4557 for (i = 0; i < RX_PAGES; i++)
4558 bus_dmamap_sync(sc->bnx_dmatag,
4559 sc->rx_bd_chain_map[i], 0,
4560 sc->rx_bd_chain_map[i]->dm_mapsize,
4561 BUS_DMASYNC_POSTWRITE);
4562
4563 /* Get the hardware's view of the RX consumer index. */
4564 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4565 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4566 hw_cons++;
4567
4568 /* Get working copies of the driver's view of the RX indices. */
4569 sw_cons = sc->rx_cons;
4570 sw_prod = sc->rx_prod;
4571 sw_prod_bseq = sc->rx_prod_bseq;
4572
4573 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4574 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4575 __func__, sw_prod, sw_cons, sw_prod_bseq);
4576
4577 /* Prevent speculative reads from getting ahead of the status block. */
4578 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4579 BUS_SPACE_BARRIER_READ);
4580
4581 /* Update some debug statistics counters */
4582 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4583 sc->rx_low_watermark = sc->free_rx_bd);
4584 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4585
4586 /*
4587 * Scan through the receive chain as long
4588 * as there is work to do.
4589 */
4590 while (sw_cons != hw_cons) {
4591 struct mbuf *m;
4592 struct rx_bd *rxbd __diagused;
4593 unsigned int len;
4594 uint32_t status;
4595
4596 /* Convert the producer/consumer indices to an actual
4597 * rx_bd index.
4598 */
4599 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4600 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4601
4602 /* Get the used rx_bd. */
4603 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4604 sc->free_rx_bd++;
4605
4606 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4607 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4608
4609 /* The mbuf is stored with the last rx_bd entry of a packet. */
4610 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4611 #ifdef DIAGNOSTIC
4612 /* Validate that this is the last rx_bd. */
4613 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4614 printf("%s: Unexpected mbuf found in "
4615 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4616 sw_chain_cons);
4617 }
4618 #endif
4619
4620 /* DRC - ToDo: If the received packet is small, say
4621 * less than 128 bytes, allocate a new mbuf
4622 * here, copy the data to that mbuf, and
4623 * recycle the mapped jumbo frame.
4624 */
4625
4626 /* Unmap the mbuf from DMA space. */
4627 #ifdef DIAGNOSTIC
4628 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4629 printf("invalid map sw_cons 0x%x "
4630 "sw_prod 0x%x "
4631 "sw_chain_cons 0x%x "
4632 "sw_chain_prod 0x%x "
4633 "hw_cons 0x%x "
4634 "TOTAL_RX_BD_PER_PAGE 0x%x "
4635 "TOTAL_RX_BD 0x%x\n",
4636 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4637 hw_cons,
4638 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4639 }
4640 #endif
4641 bus_dmamap_sync(sc->bnx_dmatag,
4642 sc->rx_mbuf_map[sw_chain_cons], 0,
4643 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4644 BUS_DMASYNC_POSTREAD);
4645 bus_dmamap_unload(sc->bnx_dmatag,
4646 sc->rx_mbuf_map[sw_chain_cons]);
4647
4648 /* Remove the mbuf from the driver's chain. */
4649 m = sc->rx_mbuf_ptr[sw_chain_cons];
4650 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4651
4652 /*
4653 * Frames received on the NetXteme II are prepended
4654 * with the l2_fhdr structure which provides status
4655 * information about the received frame (including
4656 * VLAN tags and checksum info) and are also
4657 * automatically adjusted to align the IP header
4658 * (i.e. two null bytes are inserted before the
4659 * Ethernet header).
4660 */
4661 l2fhdr = mtod(m, struct l2_fhdr *);
4662
4663 len = l2fhdr->l2_fhdr_pkt_len;
4664 status = l2fhdr->l2_fhdr_status;
4665
4666 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4667 aprint_error("Simulating l2_fhdr status error.\n");
4668 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4669
4670 /* Watch for unusual sized frames. */
4671 DBRUNIF(((len < BNX_MIN_MTU) ||
4672 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4673 aprint_error_dev(sc->bnx_dev,
4674 "Unusual frame size found. "
4675 "Min(%d), Actual(%d), Max(%d)\n",
4676 (int)BNX_MIN_MTU, len,
4677 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4678
4679 bnx_dump_mbuf(sc, m);
4680 bnx_breakpoint(sc));
4681
4682 len -= ETHER_CRC_LEN;
4683
4684 /* Check the received frame for errors. */
4685 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4686 L2_FHDR_ERRORS_PHY_DECODE |
4687 L2_FHDR_ERRORS_ALIGNMENT |
4688 L2_FHDR_ERRORS_TOO_SHORT |
4689 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4690 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4691 len >
4692 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4693 ifp->if_ierrors++;
4694 DBRUNIF(1, sc->l2fhdr_status_errors++);
4695
4696 /* Reuse the mbuf for a new frame. */
4697 if (bnx_add_buf(sc, m, &sw_prod,
4698 &sw_chain_prod, &sw_prod_bseq)) {
4699 DBRUNIF(1, bnx_breakpoint(sc));
4700 panic("%s: Can't reuse RX mbuf!\n",
4701 device_xname(sc->bnx_dev));
4702 }
4703 continue;
4704 }
4705
4706 /*
4707 * Get a new mbuf for the rx_bd. If no new
4708 * mbufs are available then reuse the current mbuf,
4709 * log an ierror on the interface, and generate
4710 * an error in the system log.
4711 */
4712 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4713 &sw_prod_bseq)) {
4714 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4715 "Failed to allocate "
4716 "new mbuf, incoming frame dropped!\n"));
4717
4718 ifp->if_ierrors++;
4719
4720 /* Try and reuse the exisitng mbuf. */
4721 if (bnx_add_buf(sc, m, &sw_prod,
4722 &sw_chain_prod, &sw_prod_bseq)) {
4723 DBRUNIF(1, bnx_breakpoint(sc));
4724 panic("%s: Double mbuf allocation "
4725 "failure!",
4726 device_xname(sc->bnx_dev));
4727 }
4728 continue;
4729 }
4730
4731 /* Skip over the l2_fhdr when passing the data up
4732 * the stack.
4733 */
4734 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4735
4736 /* Adjust the pckt length to match the received data. */
4737 m->m_pkthdr.len = m->m_len = len;
4738
4739 /* Send the packet to the appropriate interface. */
4740 m_set_rcvif(m, ifp);
4741
4742 DBRUN(BNX_VERBOSE_RECV,
4743 struct ether_header *eh;
4744 eh = mtod(m, struct ether_header *);
4745 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4746 __func__, ether_sprintf(eh->ether_dhost),
4747 ether_sprintf(eh->ether_shost),
4748 htons(eh->ether_type)));
4749
4750 /* Validate the checksum. */
4751
4752 /* Check for an IP datagram. */
4753 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4754 /* Check if the IP checksum is valid. */
4755 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4756 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4757 #ifdef BNX_DEBUG
4758 else
4759 DBPRINT(sc, BNX_WARN_SEND,
4760 "%s(): Invalid IP checksum "
4761 "= 0x%04X!\n",
4762 __func__,
4763 l2fhdr->l2_fhdr_ip_xsum
4764 );
4765 #endif
4766 }
4767
4768 /* Check for a valid TCP/UDP frame. */
4769 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4770 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4771 /* Check for a good TCP/UDP checksum. */
4772 if ((status &
4773 (L2_FHDR_ERRORS_TCP_XSUM |
4774 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4775 m->m_pkthdr.csum_flags |=
4776 M_CSUM_TCPv4 |
4777 M_CSUM_UDPv4;
4778 } else {
4779 DBPRINT(sc, BNX_WARN_SEND,
4780 "%s(): Invalid TCP/UDP "
4781 "checksum = 0x%04X!\n",
4782 __func__,
4783 l2fhdr->l2_fhdr_tcp_udp_xsum);
4784 }
4785 }
4786
4787 /*
4788 * If we received a packet with a vlan tag,
4789 * attach that information to the packet.
4790 */
4791 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4792 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4793 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4794 }
4795
4796 /* Pass the mbuf off to the upper layers. */
4797
4798 DBPRINT(sc, BNX_VERBOSE_RECV,
4799 "%s(): Passing received frame up.\n", __func__);
4800 if_percpuq_enqueue(ifp->if_percpuq, m);
4801 DBRUNIF(1, sc->rx_mbuf_alloc--);
4802
4803 }
4804
4805 sw_cons = NEXT_RX_BD(sw_cons);
4806
4807 /* Refresh hw_cons to see if there's new work */
4808 if (sw_cons == hw_cons) {
4809 hw_cons = sc->hw_rx_cons =
4810 sblk->status_rx_quick_consumer_index0;
4811 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4812 USABLE_RX_BD_PER_PAGE)
4813 hw_cons++;
4814 }
4815
4816 /* Prevent speculative reads from getting ahead of
4817 * the status block.
4818 */
4819 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4820 BUS_SPACE_BARRIER_READ);
4821 }
4822
4823 for (i = 0; i < RX_PAGES; i++)
4824 bus_dmamap_sync(sc->bnx_dmatag,
4825 sc->rx_bd_chain_map[i], 0,
4826 sc->rx_bd_chain_map[i]->dm_mapsize,
4827 BUS_DMASYNC_PREWRITE);
4828
4829 sc->rx_cons = sw_cons;
4830 sc->rx_prod = sw_prod;
4831 sc->rx_prod_bseq = sw_prod_bseq;
4832
4833 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4834 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4835
4836 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4837 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4838 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4839 }
4840
4841 /****************************************************************************/
4842 /* Handles transmit completion interrupt events. */
4843 /* */
4844 /* Returns: */
4845 /* Nothing. */
4846 /****************************************************************************/
4847 void
4848 bnx_tx_intr(struct bnx_softc *sc)
4849 {
4850 struct status_block *sblk = sc->status_block;
4851 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4852 struct bnx_pkt *pkt;
4853 bus_dmamap_t map;
4854 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4855
4856 DBRUNIF(1, sc->tx_interrupts++);
4857 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4858 BUS_DMASYNC_POSTREAD);
4859
4860 /* Get the hardware's view of the TX consumer index. */
4861 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4862
4863 /* Skip to the next entry if this is a chain page pointer. */
4864 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4865 hw_tx_cons++;
4866
4867 sw_tx_cons = sc->tx_cons;
4868
4869 /* Prevent speculative reads from getting ahead of the status block. */
4870 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4871 BUS_SPACE_BARRIER_READ);
4872
4873 /* Cycle through any completed TX chain page entries. */
4874 while (sw_tx_cons != hw_tx_cons) {
4875 #ifdef BNX_DEBUG
4876 struct tx_bd *txbd = NULL;
4877 #endif
4878 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4879
4880 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4881 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4882 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4883
4884 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4885 aprint_error_dev(sc->bnx_dev,
4886 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4887 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4888
4889 DBRUNIF(1, txbd = &sc->tx_bd_chain
4890 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4891
4892 DBRUNIF((txbd == NULL),
4893 aprint_error_dev(sc->bnx_dev,
4894 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4895 bnx_breakpoint(sc));
4896
4897 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4898 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4899
4900
4901 mutex_enter(&sc->tx_pkt_mtx);
4902 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4903 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4904 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4905 mutex_exit(&sc->tx_pkt_mtx);
4906 /*
4907 * Free the associated mbuf. Remember
4908 * that only the last tx_bd of a packet
4909 * has an mbuf pointer and DMA map.
4910 */
4911 map = pkt->pkt_dmamap;
4912 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4913 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4914 bus_dmamap_unload(sc->bnx_dmatag, map);
4915
4916 m_freem(pkt->pkt_mbuf);
4917 DBRUNIF(1, sc->tx_mbuf_alloc--);
4918
4919 ifp->if_opackets++;
4920
4921 mutex_enter(&sc->tx_pkt_mtx);
4922 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4923 }
4924 mutex_exit(&sc->tx_pkt_mtx);
4925
4926 sc->used_tx_bd--;
4927 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4928 __FILE__, __LINE__, sc->used_tx_bd);
4929
4930 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4931
4932 /* Refresh hw_cons to see if there's new work. */
4933 hw_tx_cons = sc->hw_tx_cons =
4934 sblk->status_tx_quick_consumer_index0;
4935 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4936 USABLE_TX_BD_PER_PAGE)
4937 hw_tx_cons++;
4938
4939 /* Prevent speculative reads from getting ahead of
4940 * the status block.
4941 */
4942 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4943 BUS_SPACE_BARRIER_READ);
4944 }
4945
4946 /* Clear the TX timeout timer. */
4947 ifp->if_timer = 0;
4948
4949 /* Clear the tx hardware queue full flag. */
4950 if (sc->used_tx_bd < sc->max_tx_bd) {
4951 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4952 aprint_debug_dev(sc->bnx_dev,
4953 "Open TX chain! %d/%d (used/total)\n",
4954 sc->used_tx_bd, sc->max_tx_bd));
4955 ifp->if_flags &= ~IFF_OACTIVE;
4956 }
4957
4958 sc->tx_cons = sw_tx_cons;
4959 }
4960
4961 /****************************************************************************/
4962 /* Disables interrupt generation. */
4963 /* */
4964 /* Returns: */
4965 /* Nothing. */
4966 /****************************************************************************/
4967 void
4968 bnx_disable_intr(struct bnx_softc *sc)
4969 {
4970 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4971 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4972 }
4973
4974 /****************************************************************************/
4975 /* Enables interrupt generation. */
4976 /* */
4977 /* Returns: */
4978 /* Nothing. */
4979 /****************************************************************************/
4980 void
4981 bnx_enable_intr(struct bnx_softc *sc)
4982 {
4983 uint32_t val;
4984
4985 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4986 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4987
4988 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4989 sc->last_status_idx);
4990
4991 val = REG_RD(sc, BNX_HC_COMMAND);
4992 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4993 }
4994
4995 /****************************************************************************/
4996 /* Handles controller initialization. */
4997 /* */
4998 /****************************************************************************/
4999 int
5000 bnx_init(struct ifnet *ifp)
5001 {
5002 struct bnx_softc *sc = ifp->if_softc;
5003 uint32_t ether_mtu;
5004 int s, error = 0;
5005
5006 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
5007
5008 s = splnet();
5009
5010 bnx_stop(ifp, 0);
5011
5012 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
5013 aprint_error_dev(sc->bnx_dev,
5014 "Controller reset failed!\n");
5015 goto bnx_init_exit;
5016 }
5017
5018 if ((error = bnx_chipinit(sc)) != 0) {
5019 aprint_error_dev(sc->bnx_dev,
5020 "Controller initialization failed!\n");
5021 goto bnx_init_exit;
5022 }
5023
5024 if ((error = bnx_blockinit(sc)) != 0) {
5025 aprint_error_dev(sc->bnx_dev,
5026 "Block initialization failed!\n");
5027 goto bnx_init_exit;
5028 }
5029
5030 /* Calculate and program the Ethernet MRU size. */
5031 if (ifp->if_mtu <= ETHERMTU) {
5032 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5033 sc->mbuf_alloc_size = MCLBYTES;
5034 } else {
5035 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5036 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5037 }
5038
5039
5040 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5041
5042 /*
5043 * Program the MRU and enable Jumbo frame
5044 * support.
5045 */
5046 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5047 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5048
5049 /* Calculate the RX Ethernet frame size for rx_bd's. */
5050 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5051
5052 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5053 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5054 sc->mbuf_alloc_size, sc->max_frame_size);
5055
5056 /* Program appropriate promiscuous/multicast filtering. */
5057 bnx_iff(sc);
5058
5059 /* Init RX buffer descriptor chain. */
5060 bnx_init_rx_chain(sc);
5061
5062 /* Init TX buffer descriptor chain. */
5063 bnx_init_tx_chain(sc);
5064
5065 /* Enable host interrupts. */
5066 bnx_enable_intr(sc);
5067
5068 bnx_ifmedia_upd(ifp);
5069
5070 SET(ifp->if_flags, IFF_RUNNING);
5071 CLR(ifp->if_flags, IFF_OACTIVE);
5072
5073 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5074
5075 bnx_init_exit:
5076 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5077
5078 splx(s);
5079
5080 return error;
5081 }
5082
5083 void
5084 bnx_mgmt_init(struct bnx_softc *sc)
5085 {
5086 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5087 uint32_t val;
5088
5089 /* Check if the driver is still running and bail out if it is. */
5090 if (ifp->if_flags & IFF_RUNNING)
5091 goto bnx_mgmt_init_exit;
5092
5093 /* Initialize the on-boards CPUs */
5094 bnx_init_cpus(sc);
5095
5096 val = (BCM_PAGE_BITS - 8) << 24;
5097 REG_WR(sc, BNX_RV2P_CONFIG, val);
5098
5099 /* Enable all critical blocks in the MAC. */
5100 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5101 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5102 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5103 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5104 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5105 DELAY(20);
5106
5107 bnx_ifmedia_upd(ifp);
5108
5109 bnx_mgmt_init_exit:
5110 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5111 }
5112
5113 /****************************************************************************/
5114 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5115 /* memory visible to the controller. */
5116 /* */
5117 /* Returns: */
5118 /* 0 for success, positive value for failure. */
5119 /****************************************************************************/
5120 int
5121 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5122 {
5123 struct bnx_pkt *pkt;
5124 bus_dmamap_t map;
5125 struct tx_bd *txbd = NULL;
5126 uint16_t vlan_tag = 0, flags = 0;
5127 uint16_t chain_prod, prod;
5128 #ifdef BNX_DEBUG
5129 uint16_t debug_prod;
5130 #endif
5131 uint32_t addr, prod_bseq;
5132 int i, error;
5133 static struct work bnx_wk; /* Dummy work. Statically allocated. */
5134 bool remap = true;
5135
5136 mutex_enter(&sc->tx_pkt_mtx);
5137 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5138 if (pkt == NULL) {
5139 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5140 mutex_exit(&sc->tx_pkt_mtx);
5141 return ENETDOWN;
5142 }
5143
5144 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5145 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5146 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
5147 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5148 }
5149
5150 mutex_exit(&sc->tx_pkt_mtx);
5151 return ENOMEM;
5152 }
5153 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5154 mutex_exit(&sc->tx_pkt_mtx);
5155
5156 /* Transfer any checksum offload flags to the bd. */
5157 if (m->m_pkthdr.csum_flags) {
5158 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5159 flags |= TX_BD_FLAGS_IP_CKSUM;
5160 if (m->m_pkthdr.csum_flags &
5161 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5162 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5163 }
5164
5165 /* Transfer any VLAN tags to the bd. */
5166 if (vlan_has_tag(m)) {
5167 flags |= TX_BD_FLAGS_VLAN_TAG;
5168 vlan_tag = vlan_get_tag(m);
5169 }
5170
5171 /* Map the mbuf into DMAable memory. */
5172 prod = sc->tx_prod;
5173 chain_prod = TX_CHAIN_IDX(prod);
5174 map = pkt->pkt_dmamap;
5175
5176 /* Map the mbuf into our DMA address space. */
5177 retry:
5178 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5179 if (__predict_false(error)) {
5180 if (error == EFBIG) {
5181 if (remap == true) {
5182 struct mbuf *newm;
5183
5184 remap = false;
5185 newm = m_defrag(m, M_NOWAIT);
5186 if (newm != NULL) {
5187 m = newm;
5188 goto retry;
5189 }
5190 }
5191 }
5192 sc->tx_dma_map_failures++;
5193 goto maperr;
5194 }
5195 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5196 BUS_DMASYNC_PREWRITE);
5197 /* Make sure there's room in the chain */
5198 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5199 goto nospace;
5200
5201 /* prod points to an empty tx_bd at this point. */
5202 prod_bseq = sc->tx_prod_bseq;
5203 #ifdef BNX_DEBUG
5204 debug_prod = chain_prod;
5205 #endif
5206 DBPRINT(sc, BNX_INFO_SEND,
5207 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5208 "prod_bseq = 0x%08X\n",
5209 __func__, prod, chain_prod, prod_bseq);
5210
5211 /*
5212 * Cycle through each mbuf segment that makes up
5213 * the outgoing frame, gathering the mapping info
5214 * for that segment and creating a tx_bd for the
5215 * mbuf.
5216 */
5217 for (i = 0; i < map->dm_nsegs ; i++) {
5218 chain_prod = TX_CHAIN_IDX(prod);
5219 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5220
5221 addr = (uint32_t)map->dm_segs[i].ds_addr;
5222 txbd->tx_bd_haddr_lo = addr;
5223 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5224 txbd->tx_bd_haddr_hi = addr;
5225 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5226 txbd->tx_bd_vlan_tag = vlan_tag;
5227 txbd->tx_bd_flags = flags;
5228 prod_bseq += map->dm_segs[i].ds_len;
5229 if (i == 0)
5230 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5231 prod = NEXT_TX_BD(prod);
5232 }
5233
5234 /* Set the END flag on the last TX buffer descriptor. */
5235 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5236
5237 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5238
5239 DBPRINT(sc, BNX_INFO_SEND,
5240 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5241 "prod_bseq = 0x%08X\n",
5242 __func__, prod, chain_prod, prod_bseq);
5243
5244 pkt->pkt_mbuf = m;
5245 pkt->pkt_end_desc = chain_prod;
5246
5247 mutex_enter(&sc->tx_pkt_mtx);
5248 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5249 mutex_exit(&sc->tx_pkt_mtx);
5250
5251 sc->used_tx_bd += map->dm_nsegs;
5252 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5253 __FILE__, __LINE__, sc->used_tx_bd);
5254
5255 /* Update some debug statistics counters */
5256 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5257 sc->tx_hi_watermark = sc->used_tx_bd);
5258 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5259 DBRUNIF(1, sc->tx_mbuf_alloc++);
5260
5261 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5262 map->dm_nsegs));
5263
5264 /* prod points to the next free tx_bd at this point. */
5265 sc->tx_prod = prod;
5266 sc->tx_prod_bseq = prod_bseq;
5267
5268 return 0;
5269
5270
5271 nospace:
5272 bus_dmamap_unload(sc->bnx_dmatag, map);
5273 maperr:
5274 mutex_enter(&sc->tx_pkt_mtx);
5275 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5276 mutex_exit(&sc->tx_pkt_mtx);
5277
5278 return ENOMEM;
5279 }
5280
5281 /****************************************************************************/
5282 /* Main transmit routine. */
5283 /* */
5284 /* Returns: */
5285 /* Nothing. */
5286 /****************************************************************************/
5287 void
5288 bnx_start(struct ifnet *ifp)
5289 {
5290 struct bnx_softc *sc = ifp->if_softc;
5291 struct mbuf *m_head = NULL;
5292 int count = 0;
5293 #ifdef BNX_DEBUG
5294 uint16_t tx_chain_prod;
5295 #endif
5296
5297 /* If there's no link or the transmit queue is empty then just exit. */
5298 if (!sc->bnx_link
5299 ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5300 DBPRINT(sc, BNX_INFO_SEND,
5301 "%s(): output active or device not running.\n", __func__);
5302 goto bnx_start_exit;
5303 }
5304
5305 /* prod points to the next free tx_bd. */
5306 #ifdef BNX_DEBUG
5307 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5308 #endif
5309
5310 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5311 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5312 "used_tx %d max_tx %d\n",
5313 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5314 sc->used_tx_bd, sc->max_tx_bd);
5315
5316 /*
5317 * Keep adding entries while there is space in the ring.
5318 */
5319 while (sc->used_tx_bd < sc->max_tx_bd) {
5320 /* Check for any frames to send. */
5321 IFQ_POLL(&ifp->if_snd, m_head);
5322 if (m_head == NULL)
5323 break;
5324
5325 /*
5326 * Pack the data into the transmit ring. If we
5327 * don't have room, set the OACTIVE flag to wait
5328 * for the NIC to drain the chain.
5329 */
5330 if (bnx_tx_encap(sc, m_head)) {
5331 ifp->if_flags |= IFF_OACTIVE;
5332 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5333 "business! Total tx_bd used = %d\n",
5334 sc->used_tx_bd);
5335 break;
5336 }
5337
5338 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5339 count++;
5340
5341 /* Send a copy of the frame to any BPF listeners. */
5342 bpf_mtap(ifp, m_head, BPF_D_OUT);
5343 }
5344
5345 if (count == 0) {
5346 /* no packets were dequeued */
5347 DBPRINT(sc, BNX_VERBOSE_SEND,
5348 "%s(): No packets were dequeued\n", __func__);
5349 goto bnx_start_exit;
5350 }
5351
5352 /* Update the driver's counters. */
5353 #ifdef BNX_DEBUG
5354 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5355 #endif
5356
5357 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5358 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5359 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5360
5361 /* Start the transmit. */
5362 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5363 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5364
5365 /* Set the tx timeout. */
5366 ifp->if_timer = BNX_TX_TIMEOUT;
5367
5368 bnx_start_exit:
5369 return;
5370 }
5371
5372 /****************************************************************************/
5373 /* Handles any IOCTL calls from the operating system. */
5374 /* */
5375 /* Returns: */
5376 /* 0 for success, positive value for failure. */
5377 /****************************************************************************/
5378 int
5379 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5380 {
5381 struct bnx_softc *sc = ifp->if_softc;
5382 struct ifreq *ifr = (struct ifreq *) data;
5383 struct mii_data *mii = &sc->bnx_mii;
5384 int s, error = 0;
5385
5386 s = splnet();
5387
5388 switch (command) {
5389 case SIOCSIFFLAGS:
5390 if ((error = ifioctl_common(ifp, command, data)) != 0)
5391 break;
5392 /* XXX set an ifflags callback and let ether_ioctl
5393 * handle all of this.
5394 */
5395 if (ISSET(ifp->if_flags, IFF_UP)) {
5396 if (ifp->if_flags & IFF_RUNNING)
5397 error = ENETRESET;
5398 else
5399 bnx_init(ifp);
5400 } else if (ifp->if_flags & IFF_RUNNING)
5401 bnx_stop(ifp, 1);
5402 break;
5403
5404 case SIOCSIFMEDIA:
5405 /* Flow control requires full-duplex mode. */
5406 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5407 (ifr->ifr_media & IFM_FDX) == 0)
5408 ifr->ifr_media &= ~IFM_ETH_FMASK;
5409
5410 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5411 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5412 /* We can do both TXPAUSE and RXPAUSE. */
5413 ifr->ifr_media |=
5414 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5415 }
5416 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5417 }
5418 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5419 sc->bnx_phy_flags);
5420
5421 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5422 break;
5423
5424 default:
5425 error = ether_ioctl(ifp, command, data);
5426 }
5427
5428 if (error == ENETRESET) {
5429 if (ifp->if_flags & IFF_RUNNING)
5430 bnx_iff(sc);
5431 error = 0;
5432 }
5433
5434 splx(s);
5435 return error;
5436 }
5437
5438 /****************************************************************************/
5439 /* Transmit timeout handler. */
5440 /* */
5441 /* Returns: */
5442 /* Nothing. */
5443 /****************************************************************************/
5444 void
5445 bnx_watchdog(struct ifnet *ifp)
5446 {
5447 struct bnx_softc *sc = ifp->if_softc;
5448
5449 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5450 bnx_dump_status_block(sc));
5451 /*
5452 * If we are in this routine because of pause frames, then
5453 * don't reset the hardware.
5454 */
5455 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5456 return;
5457
5458 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5459
5460 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5461
5462 bnx_init(ifp);
5463
5464 ifp->if_oerrors++;
5465 }
5466
5467 /*
5468 * Interrupt handler.
5469 */
5470 /****************************************************************************/
5471 /* Main interrupt entry point. Verifies that the controller generated the */
5472 /* interrupt and then calls a separate routine for handle the various */
5473 /* interrupt causes (PHY, TX, RX). */
5474 /* */
5475 /* Returns: */
5476 /* 0 for success, positive value for failure. */
5477 /****************************************************************************/
5478 int
5479 bnx_intr(void *xsc)
5480 {
5481 struct bnx_softc *sc = xsc;
5482 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5483 uint32_t status_attn_bits;
5484 uint16_t status_idx;
5485 const struct status_block *sblk;
5486 int rv = 0;
5487
5488 if (!device_is_active(sc->bnx_dev) ||
5489 (ifp->if_flags & IFF_RUNNING) == 0)
5490 return 0;
5491
5492 DBRUNIF(1, sc->interrupts_generated++);
5493
5494 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5495 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5496
5497 sblk = sc->status_block;
5498 /*
5499 * If the hardware status block index
5500 * matches the last value read by the
5501 * driver and we haven't asserted our
5502 * interrupt then there's nothing to do.
5503 */
5504 status_idx = sblk->status_idx;
5505 if ((status_idx != sc->last_status_idx) ||
5506 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5507 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5508 rv = 1;
5509
5510 /* Ack the interrupt */
5511 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5512 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5513
5514 status_attn_bits = sblk->status_attn_bits;
5515
5516 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5517 aprint_debug("Simulating unexpected status attention bit set.");
5518 status_attn_bits = status_attn_bits |
5519 STATUS_ATTN_BITS_PARITY_ERROR);
5520
5521 /* Was it a link change interrupt? */
5522 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5523 (sblk->status_attn_bits_ack &
5524 STATUS_ATTN_BITS_LINK_STATE))
5525 bnx_phy_intr(sc);
5526
5527 /* If any other attention is asserted then the chip is toast. */
5528 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5529 (sblk->status_attn_bits_ack &
5530 ~STATUS_ATTN_BITS_LINK_STATE))) {
5531 DBRUN(sc->unexpected_attentions++);
5532
5533 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5534 sblk->status_attn_bits);
5535
5536 DBRUNIF((bnx_debug_unexpected_attention == 0),
5537 bnx_breakpoint(sc));
5538
5539 bnx_init(ifp);
5540 goto out;
5541 }
5542
5543 /* Check for any completed RX frames. */
5544 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5545 bnx_rx_intr(sc);
5546
5547 /* Check for any completed TX frames. */
5548 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5549 bnx_tx_intr(sc);
5550
5551 /*
5552 * Save the status block index value for use during the
5553 * next interrupt.
5554 */
5555 sc->last_status_idx = status_idx;
5556
5557 /* Start moving packets again */
5558 if (ifp->if_flags & IFF_RUNNING)
5559 if_schedule_deferred_start(ifp);
5560 }
5561
5562 out:
5563 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5564 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5565
5566 return rv;
5567 }
5568
5569 /****************************************************************************/
5570 /* Programs the various packet receive modes (broadcast and multicast). */
5571 /* */
5572 /* Returns: */
5573 /* Nothing. */
5574 /****************************************************************************/
5575 void
5576 bnx_iff(struct bnx_softc *sc)
5577 {
5578 struct ethercom *ec = &sc->bnx_ec;
5579 struct ifnet *ifp = &ec->ec_if;
5580 struct ether_multi *enm;
5581 struct ether_multistep step;
5582 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5583 uint32_t rx_mode, sort_mode;
5584 int h, i;
5585
5586 /* Initialize receive mode default settings. */
5587 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5588 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5589 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5590 ifp->if_flags &= ~IFF_ALLMULTI;
5591
5592 /*
5593 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5594 * be enbled.
5595 */
5596 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5597 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5598
5599 /*
5600 * Check for promiscuous, all multicast, or selected
5601 * multicast address filtering.
5602 */
5603 if (ifp->if_flags & IFF_PROMISC) {
5604 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5605
5606 ifp->if_flags |= IFF_ALLMULTI;
5607 /* Enable promiscuous mode. */
5608 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5609 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5610 } else if (ifp->if_flags & IFF_ALLMULTI) {
5611 allmulti:
5612 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5613
5614 ifp->if_flags |= IFF_ALLMULTI;
5615 /* Enable all multicast addresses. */
5616 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5617 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5618 0xffffffff);
5619 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5620 } else {
5621 /* Accept one or more multicast(s). */
5622 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5623
5624 ETHER_LOCK(ec);
5625 ETHER_FIRST_MULTI(step, ec, enm);
5626 while (enm != NULL) {
5627 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5628 ETHER_ADDR_LEN)) {
5629 ETHER_UNLOCK(ec);
5630 goto allmulti;
5631 }
5632 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5633 0xFF;
5634 hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
5635 ETHER_NEXT_MULTI(step, enm);
5636 }
5637 ETHER_UNLOCK(ec);
5638
5639 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5640 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5641 hashes[i]);
5642
5643 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5644 }
5645
5646 /* Only make changes if the recive mode has actually changed. */
5647 if (rx_mode != sc->rx_mode) {
5648 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5649 rx_mode);
5650
5651 sc->rx_mode = rx_mode;
5652 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5653 }
5654
5655 /* Disable and clear the exisitng sort before enabling a new sort. */
5656 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5657 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5658 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5659 }
5660
5661 /****************************************************************************/
5662 /* Called periodically to updates statistics from the controllers */
5663 /* statistics block. */
5664 /* */
5665 /* Returns: */
5666 /* Nothing. */
5667 /****************************************************************************/
5668 void
5669 bnx_stats_update(struct bnx_softc *sc)
5670 {
5671 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5672 struct statistics_block *stats;
5673
5674 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5675 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5676 BUS_DMASYNC_POSTREAD);
5677
5678 stats = (struct statistics_block *)sc->stats_block;
5679
5680 /*
5681 * Update the interface statistics from the
5682 * hardware statistics.
5683 */
5684 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5685
5686 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5687 (u_long)stats->stat_EtherStatsOverrsizePkts +
5688 (u_long)stats->stat_IfInMBUFDiscards +
5689 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5690 (u_long)stats->stat_Dot3StatsFCSErrors;
5691
5692 ifp->if_oerrors = (u_long)
5693 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5694 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5695 (u_long)stats->stat_Dot3StatsLateCollisions;
5696
5697 /*
5698 * Certain controllers don't report
5699 * carrier sense errors correctly.
5700 * See errata E11_5708CA0_1165.
5701 */
5702 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5703 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5704 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5705
5706 /*
5707 * Update the sysctl statistics from the
5708 * hardware statistics.
5709 */
5710 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5711 (uint64_t) stats->stat_IfHCInOctets_lo;
5712
5713 sc->stat_IfHCInBadOctets =
5714 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5715 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5716
5717 sc->stat_IfHCOutOctets =
5718 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5719 (uint64_t) stats->stat_IfHCOutOctets_lo;
5720
5721 sc->stat_IfHCOutBadOctets =
5722 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5723 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5724
5725 sc->stat_IfHCInUcastPkts =
5726 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5727 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5728
5729 sc->stat_IfHCInMulticastPkts =
5730 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5731 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5732
5733 sc->stat_IfHCInBroadcastPkts =
5734 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5735 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5736
5737 sc->stat_IfHCOutUcastPkts =
5738 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5739 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5740
5741 sc->stat_IfHCOutMulticastPkts =
5742 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5743 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5744
5745 sc->stat_IfHCOutBroadcastPkts =
5746 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5747 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5748
5749 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5750 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5751
5752 sc->stat_Dot3StatsCarrierSenseErrors =
5753 stats->stat_Dot3StatsCarrierSenseErrors;
5754
5755 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5756
5757 sc->stat_Dot3StatsAlignmentErrors =
5758 stats->stat_Dot3StatsAlignmentErrors;
5759
5760 sc->stat_Dot3StatsSingleCollisionFrames =
5761 stats->stat_Dot3StatsSingleCollisionFrames;
5762
5763 sc->stat_Dot3StatsMultipleCollisionFrames =
5764 stats->stat_Dot3StatsMultipleCollisionFrames;
5765
5766 sc->stat_Dot3StatsDeferredTransmissions =
5767 stats->stat_Dot3StatsDeferredTransmissions;
5768
5769 sc->stat_Dot3StatsExcessiveCollisions =
5770 stats->stat_Dot3StatsExcessiveCollisions;
5771
5772 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5773
5774 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5775
5776 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5777
5778 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5779
5780 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5781
5782 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5783
5784 sc->stat_EtherStatsPktsRx64Octets =
5785 stats->stat_EtherStatsPktsRx64Octets;
5786
5787 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5788 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5789
5790 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5791 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5792
5793 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5794 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5795
5796 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5797 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5798
5799 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5800 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5801
5802 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5803 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5804
5805 sc->stat_EtherStatsPktsTx64Octets =
5806 stats->stat_EtherStatsPktsTx64Octets;
5807
5808 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5809 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5810
5811 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5812 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5813
5814 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5815 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5816
5817 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5818 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5819
5820 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5821 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5822
5823 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5824 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5825
5826 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5827
5828 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5829
5830 sc->stat_OutXonSent = stats->stat_OutXonSent;
5831
5832 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5833
5834 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5835
5836 sc->stat_MacControlFramesReceived =
5837 stats->stat_MacControlFramesReceived;
5838
5839 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5840
5841 sc->stat_IfInFramesL2FilterDiscards =
5842 stats->stat_IfInFramesL2FilterDiscards;
5843
5844 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5845
5846 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5847
5848 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5849
5850 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5851
5852 sc->stat_CatchupInRuleCheckerDiscards =
5853 stats->stat_CatchupInRuleCheckerDiscards;
5854
5855 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5856
5857 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5858
5859 sc->stat_CatchupInRuleCheckerP4Hit =
5860 stats->stat_CatchupInRuleCheckerP4Hit;
5861
5862 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5863 }
5864
5865 void
5866 bnx_tick(void *xsc)
5867 {
5868 struct bnx_softc *sc = xsc;
5869 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5870 struct mii_data *mii;
5871 uint32_t msg;
5872 uint16_t prod, chain_prod;
5873 uint32_t prod_bseq;
5874 int s = splnet();
5875
5876 /* Tell the firmware that the driver is still running. */
5877 #ifdef BNX_DEBUG
5878 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5879 #else
5880 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5881 #endif
5882 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5883
5884 /* Update the statistics from the hardware statistics block. */
5885 bnx_stats_update(sc);
5886
5887 /* Schedule the next tick. */
5888 if (!sc->bnx_detaching)
5889 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5890
5891 if (sc->bnx_link)
5892 goto bnx_tick_exit;
5893
5894 mii = &sc->bnx_mii;
5895 mii_tick(mii);
5896
5897 /* Check if the link has come up. */
5898 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5899 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5900 sc->bnx_link++;
5901 /* Now that link is up, handle any outstanding TX traffic. */
5902 if_schedule_deferred_start(ifp);
5903 }
5904
5905 bnx_tick_exit:
5906 /* try to get more RX buffers, just in case */
5907 prod = sc->rx_prod;
5908 prod_bseq = sc->rx_prod_bseq;
5909 chain_prod = RX_CHAIN_IDX(prod);
5910 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5911 sc->rx_prod = prod;
5912 sc->rx_prod_bseq = prod_bseq;
5913
5914 splx(s);
5915 return;
5916 }
5917
5918 /****************************************************************************/
5919 /* BNX Debug Routines */
5920 /****************************************************************************/
5921 #ifdef BNX_DEBUG
5922
5923 /****************************************************************************/
5924 /* Prints out information about an mbuf. */
5925 /* */
5926 /* Returns: */
5927 /* Nothing. */
5928 /****************************************************************************/
5929 void
5930 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5931 {
5932 struct mbuf *mp = m;
5933
5934 if (m == NULL) {
5935 /* Index out of range. */
5936 aprint_error("mbuf ptr is null!\n");
5937 return;
5938 }
5939
5940 while (mp) {
5941 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5942 mp, mp->m_len);
5943
5944 if (mp->m_flags & M_EXT)
5945 aprint_debug("M_EXT ");
5946 if (mp->m_flags & M_PKTHDR)
5947 aprint_debug("M_PKTHDR ");
5948 aprint_debug("\n");
5949
5950 if (mp->m_flags & M_EXT)
5951 aprint_debug("- m_ext: vaddr = %p, "
5952 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5953
5954 mp = mp->m_next;
5955 }
5956 }
5957
5958 /****************************************************************************/
5959 /* Prints out the mbufs in the TX mbuf chain. */
5960 /* */
5961 /* Returns: */
5962 /* Nothing. */
5963 /****************************************************************************/
5964 void
5965 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5966 {
5967 #if 0
5968 struct mbuf *m;
5969 int i;
5970
5971 aprint_debug_dev(sc->bnx_dev,
5972 "----------------------------"
5973 " tx mbuf data "
5974 "----------------------------\n");
5975
5976 for (i = 0; i < count; i++) {
5977 m = sc->tx_mbuf_ptr[chain_prod];
5978 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5979 bnx_dump_mbuf(sc, m);
5980 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5981 }
5982
5983 aprint_debug_dev(sc->bnx_dev,
5984 "--------------------------------------------"
5985 "----------------------------\n");
5986 #endif
5987 }
5988
5989 /*
5990 * This routine prints the RX mbuf chain.
5991 */
5992 void
5993 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5994 {
5995 struct mbuf *m;
5996 int i;
5997
5998 aprint_debug_dev(sc->bnx_dev,
5999 "----------------------------"
6000 " rx mbuf data "
6001 "----------------------------\n");
6002
6003 for (i = 0; i < count; i++) {
6004 m = sc->rx_mbuf_ptr[chain_prod];
6005 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
6006 bnx_dump_mbuf(sc, m);
6007 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6008 }
6009
6010
6011 aprint_debug_dev(sc->bnx_dev,
6012 "--------------------------------------------"
6013 "----------------------------\n");
6014 }
6015
6016 void
6017 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6018 {
6019 if (idx > MAX_TX_BD)
6020 /* Index out of range. */
6021 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6022 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6023 /* TX Chain page pointer. */
6024 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6025 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6026 txbd->tx_bd_haddr_lo);
6027 else
6028 /* Normal tx_bd entry. */
6029 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6030 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6031 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6032 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6033 txbd->tx_bd_flags);
6034 }
6035
6036 void
6037 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6038 {
6039 if (idx > MAX_RX_BD)
6040 /* Index out of range. */
6041 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6042 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6043 /* TX Chain page pointer. */
6044 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6045 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6046 rxbd->rx_bd_haddr_lo);
6047 else
6048 /* Normal tx_bd entry. */
6049 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6050 "0x%08X, flags = 0x%08X\n", idx,
6051 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6052 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6053 }
6054
6055 void
6056 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6057 {
6058 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6059 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6060 "tcp_udp_xsum = 0x%04X\n", idx,
6061 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6062 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6063 l2fhdr->l2_fhdr_tcp_udp_xsum);
6064 }
6065
6066 /*
6067 * This routine prints the TX chain.
6068 */
6069 void
6070 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6071 {
6072 struct tx_bd *txbd;
6073 int i;
6074
6075 /* First some info about the tx_bd chain structure. */
6076 aprint_debug_dev(sc->bnx_dev,
6077 "----------------------------"
6078 " tx_bd chain "
6079 "----------------------------\n");
6080
6081 BNX_PRINTF(sc,
6082 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6083 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6084
6085 BNX_PRINTF(sc,
6086 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6087 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6088
6089 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6090
6091 aprint_error_dev(sc->bnx_dev, ""
6092 "-----------------------------"
6093 " tx_bd data "
6094 "-----------------------------\n");
6095
6096 /* Now print out the tx_bd's themselves. */
6097 for (i = 0; i < count; i++) {
6098 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6099 bnx_dump_txbd(sc, tx_prod, txbd);
6100 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6101 }
6102
6103 aprint_debug_dev(sc->bnx_dev,
6104 "-----------------------------"
6105 "--------------"
6106 "-----------------------------\n");
6107 }
6108
6109 /*
6110 * This routine prints the RX chain.
6111 */
6112 void
6113 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6114 {
6115 struct rx_bd *rxbd;
6116 int i;
6117
6118 /* First some info about the tx_bd chain structure. */
6119 aprint_debug_dev(sc->bnx_dev,
6120 "----------------------------"
6121 " rx_bd chain "
6122 "----------------------------\n");
6123
6124 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6125
6126 BNX_PRINTF(sc,
6127 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6128 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6129
6130 BNX_PRINTF(sc,
6131 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6132 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6133
6134 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6135
6136 aprint_error_dev(sc->bnx_dev,
6137 "----------------------------"
6138 " rx_bd data "
6139 "----------------------------\n");
6140
6141 /* Now print out the rx_bd's themselves. */
6142 for (i = 0; i < count; i++) {
6143 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6144 bnx_dump_rxbd(sc, rx_prod, rxbd);
6145 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6146 }
6147
6148 aprint_debug_dev(sc->bnx_dev,
6149 "----------------------------"
6150 "--------------"
6151 "----------------------------\n");
6152 }
6153
6154 /*
6155 * This routine prints the status block.
6156 */
6157 void
6158 bnx_dump_status_block(struct bnx_softc *sc)
6159 {
6160 struct status_block *sblk;
6161 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6162 BUS_DMASYNC_POSTREAD);
6163
6164 sblk = sc->status_block;
6165
6166 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6167 "Status Block -----------------------------\n");
6168
6169 BNX_PRINTF(sc,
6170 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6171 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6172 sblk->status_idx);
6173
6174 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6175 sblk->status_rx_quick_consumer_index0,
6176 sblk->status_tx_quick_consumer_index0);
6177
6178 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6179
6180 /* Theses indices are not used for normal L2 drivers. */
6181 if (sblk->status_rx_quick_consumer_index1 ||
6182 sblk->status_tx_quick_consumer_index1)
6183 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6184 sblk->status_rx_quick_consumer_index1,
6185 sblk->status_tx_quick_consumer_index1);
6186
6187 if (sblk->status_rx_quick_consumer_index2 ||
6188 sblk->status_tx_quick_consumer_index2)
6189 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6190 sblk->status_rx_quick_consumer_index2,
6191 sblk->status_tx_quick_consumer_index2);
6192
6193 if (sblk->status_rx_quick_consumer_index3 ||
6194 sblk->status_tx_quick_consumer_index3)
6195 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6196 sblk->status_rx_quick_consumer_index3,
6197 sblk->status_tx_quick_consumer_index3);
6198
6199 if (sblk->status_rx_quick_consumer_index4 ||
6200 sblk->status_rx_quick_consumer_index5)
6201 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6202 sblk->status_rx_quick_consumer_index4,
6203 sblk->status_rx_quick_consumer_index5);
6204
6205 if (sblk->status_rx_quick_consumer_index6 ||
6206 sblk->status_rx_quick_consumer_index7)
6207 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6208 sblk->status_rx_quick_consumer_index6,
6209 sblk->status_rx_quick_consumer_index7);
6210
6211 if (sblk->status_rx_quick_consumer_index8 ||
6212 sblk->status_rx_quick_consumer_index9)
6213 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6214 sblk->status_rx_quick_consumer_index8,
6215 sblk->status_rx_quick_consumer_index9);
6216
6217 if (sblk->status_rx_quick_consumer_index10 ||
6218 sblk->status_rx_quick_consumer_index11)
6219 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6220 sblk->status_rx_quick_consumer_index10,
6221 sblk->status_rx_quick_consumer_index11);
6222
6223 if (sblk->status_rx_quick_consumer_index12 ||
6224 sblk->status_rx_quick_consumer_index13)
6225 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6226 sblk->status_rx_quick_consumer_index12,
6227 sblk->status_rx_quick_consumer_index13);
6228
6229 if (sblk->status_rx_quick_consumer_index14 ||
6230 sblk->status_rx_quick_consumer_index15)
6231 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6232 sblk->status_rx_quick_consumer_index14,
6233 sblk->status_rx_quick_consumer_index15);
6234
6235 if (sblk->status_completion_producer_index ||
6236 sblk->status_cmd_consumer_index)
6237 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6238 sblk->status_completion_producer_index,
6239 sblk->status_cmd_consumer_index);
6240
6241 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6242 "-----------------------------\n");
6243 }
6244
6245 /*
6246 * This routine prints the statistics block.
6247 */
6248 void
6249 bnx_dump_stats_block(struct bnx_softc *sc)
6250 {
6251 struct statistics_block *sblk;
6252 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6253 BUS_DMASYNC_POSTREAD);
6254
6255 sblk = sc->stats_block;
6256
6257 aprint_debug_dev(sc->bnx_dev, ""
6258 "-----------------------------"
6259 " Stats Block "
6260 "-----------------------------\n");
6261
6262 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6263 "IfHcInBadOctets = 0x%08X:%08X\n",
6264 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6265 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6266
6267 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6268 "IfHcOutBadOctets = 0x%08X:%08X\n",
6269 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6270 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6271
6272 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6273 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6274 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6275 sblk->stat_IfHCInMulticastPkts_hi,
6276 sblk->stat_IfHCInMulticastPkts_lo);
6277
6278 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6279 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6280 sblk->stat_IfHCInBroadcastPkts_hi,
6281 sblk->stat_IfHCInBroadcastPkts_lo,
6282 sblk->stat_IfHCOutUcastPkts_hi,
6283 sblk->stat_IfHCOutUcastPkts_lo);
6284
6285 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6286 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6287 sblk->stat_IfHCOutMulticastPkts_hi,
6288 sblk->stat_IfHCOutMulticastPkts_lo,
6289 sblk->stat_IfHCOutBroadcastPkts_hi,
6290 sblk->stat_IfHCOutBroadcastPkts_lo);
6291
6292 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6293 BNX_PRINTF(sc, "0x%08X : "
6294 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6295 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6296
6297 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6298 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6299 sblk->stat_Dot3StatsCarrierSenseErrors);
6300
6301 if (sblk->stat_Dot3StatsFCSErrors)
6302 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6303 sblk->stat_Dot3StatsFCSErrors);
6304
6305 if (sblk->stat_Dot3StatsAlignmentErrors)
6306 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6307 sblk->stat_Dot3StatsAlignmentErrors);
6308
6309 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6310 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6311 sblk->stat_Dot3StatsSingleCollisionFrames);
6312
6313 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6314 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6315 sblk->stat_Dot3StatsMultipleCollisionFrames);
6316
6317 if (sblk->stat_Dot3StatsDeferredTransmissions)
6318 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6319 sblk->stat_Dot3StatsDeferredTransmissions);
6320
6321 if (sblk->stat_Dot3StatsExcessiveCollisions)
6322 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6323 sblk->stat_Dot3StatsExcessiveCollisions);
6324
6325 if (sblk->stat_Dot3StatsLateCollisions)
6326 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6327 sblk->stat_Dot3StatsLateCollisions);
6328
6329 if (sblk->stat_EtherStatsCollisions)
6330 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6331 sblk->stat_EtherStatsCollisions);
6332
6333 if (sblk->stat_EtherStatsFragments)
6334 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6335 sblk->stat_EtherStatsFragments);
6336
6337 if (sblk->stat_EtherStatsJabbers)
6338 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6339 sblk->stat_EtherStatsJabbers);
6340
6341 if (sblk->stat_EtherStatsUndersizePkts)
6342 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6343 sblk->stat_EtherStatsUndersizePkts);
6344
6345 if (sblk->stat_EtherStatsOverrsizePkts)
6346 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6347 sblk->stat_EtherStatsOverrsizePkts);
6348
6349 if (sblk->stat_EtherStatsPktsRx64Octets)
6350 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6351 sblk->stat_EtherStatsPktsRx64Octets);
6352
6353 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6354 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6355 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6356
6357 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6358 BNX_PRINTF(sc, "0x%08X : "
6359 "EtherStatsPktsRx128Octetsto255Octets\n",
6360 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6361
6362 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6363 BNX_PRINTF(sc, "0x%08X : "
6364 "EtherStatsPktsRx256Octetsto511Octets\n",
6365 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6366
6367 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6368 BNX_PRINTF(sc, "0x%08X : "
6369 "EtherStatsPktsRx512Octetsto1023Octets\n",
6370 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6371
6372 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6373 BNX_PRINTF(sc, "0x%08X : "
6374 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6375 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6376
6377 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6378 BNX_PRINTF(sc, "0x%08X : "
6379 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6380 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6381
6382 if (sblk->stat_EtherStatsPktsTx64Octets)
6383 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6384 sblk->stat_EtherStatsPktsTx64Octets);
6385
6386 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6387 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6388 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6389
6390 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6391 BNX_PRINTF(sc, "0x%08X : "
6392 "EtherStatsPktsTx128Octetsto255Octets\n",
6393 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6394
6395 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6396 BNX_PRINTF(sc, "0x%08X : "
6397 "EtherStatsPktsTx256Octetsto511Octets\n",
6398 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6399
6400 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6401 BNX_PRINTF(sc, "0x%08X : "
6402 "EtherStatsPktsTx512Octetsto1023Octets\n",
6403 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6404
6405 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6406 BNX_PRINTF(sc, "0x%08X : "
6407 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6408 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6409
6410 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6411 BNX_PRINTF(sc, "0x%08X : "
6412 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6413 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6414
6415 if (sblk->stat_XonPauseFramesReceived)
6416 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6417 sblk->stat_XonPauseFramesReceived);
6418
6419 if (sblk->stat_XoffPauseFramesReceived)
6420 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6421 sblk->stat_XoffPauseFramesReceived);
6422
6423 if (sblk->stat_OutXonSent)
6424 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6425 sblk->stat_OutXonSent);
6426
6427 if (sblk->stat_OutXoffSent)
6428 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6429 sblk->stat_OutXoffSent);
6430
6431 if (sblk->stat_FlowControlDone)
6432 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6433 sblk->stat_FlowControlDone);
6434
6435 if (sblk->stat_MacControlFramesReceived)
6436 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6437 sblk->stat_MacControlFramesReceived);
6438
6439 if (sblk->stat_XoffStateEntered)
6440 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6441 sblk->stat_XoffStateEntered);
6442
6443 if (sblk->stat_IfInFramesL2FilterDiscards)
6444 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6445 sblk->stat_IfInFramesL2FilterDiscards);
6446
6447 if (sblk->stat_IfInRuleCheckerDiscards)
6448 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6449 sblk->stat_IfInRuleCheckerDiscards);
6450
6451 if (sblk->stat_IfInFTQDiscards)
6452 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6453 sblk->stat_IfInFTQDiscards);
6454
6455 if (sblk->stat_IfInMBUFDiscards)
6456 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6457 sblk->stat_IfInMBUFDiscards);
6458
6459 if (sblk->stat_IfInRuleCheckerP4Hit)
6460 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6461 sblk->stat_IfInRuleCheckerP4Hit);
6462
6463 if (sblk->stat_CatchupInRuleCheckerDiscards)
6464 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6465 sblk->stat_CatchupInRuleCheckerDiscards);
6466
6467 if (sblk->stat_CatchupInFTQDiscards)
6468 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6469 sblk->stat_CatchupInFTQDiscards);
6470
6471 if (sblk->stat_CatchupInMBUFDiscards)
6472 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6473 sblk->stat_CatchupInMBUFDiscards);
6474
6475 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6476 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6477 sblk->stat_CatchupInRuleCheckerP4Hit);
6478
6479 aprint_debug_dev(sc->bnx_dev,
6480 "-----------------------------"
6481 "--------------"
6482 "-----------------------------\n");
6483 }
6484
6485 void
6486 bnx_dump_driver_state(struct bnx_softc *sc)
6487 {
6488 aprint_debug_dev(sc->bnx_dev,
6489 "-----------------------------"
6490 " Driver State "
6491 "-----------------------------\n");
6492
6493 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6494 "address\n", sc);
6495
6496 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6497 sc->status_block);
6498
6499 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6500 "address\n", sc->stats_block);
6501
6502 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6503 "address\n", sc->tx_bd_chain);
6504
6505 #if 0
6506 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6507 sc->rx_bd_chain);
6508
6509 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6510 sc->tx_mbuf_ptr);
6511 #endif
6512
6513 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6514 sc->rx_mbuf_ptr);
6515
6516 BNX_PRINTF(sc,
6517 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6518 sc->interrupts_generated);
6519
6520 BNX_PRINTF(sc,
6521 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6522 sc->rx_interrupts);
6523
6524 BNX_PRINTF(sc,
6525 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6526 sc->tx_interrupts);
6527
6528 BNX_PRINTF(sc,
6529 " 0x%08X - (sc->last_status_idx) status block index\n",
6530 sc->last_status_idx);
6531
6532 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6533 sc->tx_prod);
6534
6535 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6536 sc->tx_cons);
6537
6538 BNX_PRINTF(sc,
6539 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6540 sc->tx_prod_bseq);
6541 BNX_PRINTF(sc,
6542 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6543 sc->tx_mbuf_alloc);
6544
6545 BNX_PRINTF(sc,
6546 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6547 sc->used_tx_bd);
6548
6549 BNX_PRINTF(sc,
6550 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6551 sc->tx_hi_watermark, sc->max_tx_bd);
6552
6553
6554 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6555 sc->rx_prod);
6556
6557 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6558 sc->rx_cons);
6559
6560 BNX_PRINTF(sc,
6561 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6562 sc->rx_prod_bseq);
6563
6564 BNX_PRINTF(sc,
6565 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6566 sc->rx_mbuf_alloc);
6567
6568 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6569 sc->free_rx_bd);
6570
6571 BNX_PRINTF(sc,
6572 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6573 sc->rx_low_watermark, sc->max_rx_bd);
6574
6575 BNX_PRINTF(sc,
6576 " 0x%08X - (sc->mbuf_alloc_failed) "
6577 "mbuf alloc failures\n",
6578 sc->mbuf_alloc_failed);
6579
6580 BNX_PRINTF(sc,
6581 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6582 "simulated mbuf alloc failures\n",
6583 sc->mbuf_sim_alloc_failed);
6584
6585 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6586 "-----------------------------\n");
6587 }
6588
6589 void
6590 bnx_dump_hw_state(struct bnx_softc *sc)
6591 {
6592 uint32_t val1;
6593 int i;
6594
6595 aprint_debug_dev(sc->bnx_dev,
6596 "----------------------------"
6597 " Hardware State "
6598 "----------------------------\n");
6599
6600 val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6601 BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6602
6603 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6604 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6605 val1, BNX_MISC_ENABLE_STATUS_BITS);
6606
6607 val1 = REG_RD(sc, BNX_DMA_STATUS);
6608 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6609
6610 val1 = REG_RD(sc, BNX_CTX_STATUS);
6611 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6612
6613 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6614 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6615 BNX_EMAC_STATUS);
6616
6617 val1 = REG_RD(sc, BNX_RPM_STATUS);
6618 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6619
6620 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6621 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6622 BNX_TBDR_STATUS);
6623
6624 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6625 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6626 BNX_TDMA_STATUS);
6627
6628 val1 = REG_RD(sc, BNX_HC_STATUS);
6629 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6630
6631 aprint_debug_dev(sc->bnx_dev,
6632 "----------------------------"
6633 "----------------"
6634 "----------------------------\n");
6635
6636 aprint_debug_dev(sc->bnx_dev,
6637 "----------------------------"
6638 " Register Dump "
6639 "----------------------------\n");
6640
6641 for (i = 0x400; i < 0x8000; i += 0x10)
6642 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6643 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6644 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6645
6646 aprint_debug_dev(sc->bnx_dev,
6647 "----------------------------"
6648 "----------------"
6649 "----------------------------\n");
6650 }
6651
6652 void
6653 bnx_breakpoint(struct bnx_softc *sc)
6654 {
6655 /* Unreachable code to shut the compiler up about unused functions. */
6656 if (0) {
6657 bnx_dump_txbd(sc, 0, NULL);
6658 bnx_dump_rxbd(sc, 0, NULL);
6659 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6660 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6661 bnx_dump_l2fhdr(sc, 0, NULL);
6662 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6663 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6664 bnx_dump_status_block(sc);
6665 bnx_dump_stats_block(sc);
6666 bnx_dump_driver_state(sc);
6667 bnx_dump_hw_state(sc);
6668 }
6669
6670 bnx_dump_driver_state(sc);
6671 /* Print the important status block fields. */
6672 bnx_dump_status_block(sc);
6673
6674 #if 0
6675 /* Call the debugger. */
6676 breakpoint();
6677 #endif
6678
6679 return;
6680 }
6681 #endif
6682