if_bnx.c revision 1.88 1 /* $NetBSD: if_bnx.c,v 1.88 2019/11/10 21:16:36 chs Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.88 2019/11/10 21:16:36 chs Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 pci_intr_handle_t ih;
581 const char *intrstr = NULL;
582 uint32_t command;
583 struct ifnet *ifp;
584 struct mii_data * const mii = &sc->bnx_mii;
585 uint32_t val;
586 int mii_flags = MIIF_FORCEANEG;
587 pcireg_t memtype;
588 char intrbuf[PCI_INTRSTR_LEN];
589 int i, j;
590
591 if (bnx_tx_pool == NULL) {
592 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
593 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
594 0, 0, 0, "bnxpkts", NULL, IPL_NET);
595 }
596
597 bp = bnx_lookup(pa);
598 if (bp == NULL)
599 panic("unknown device");
600
601 sc->bnx_dev = self;
602
603 aprint_naive("\n");
604 aprint_normal(": %s\n", bp->bp_name);
605
606 sc->bnx_pa = *pa;
607
608 /*
609 * Map control/status registers.
610 */
611 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
612 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
613 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
614 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
615
616 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
617 aprint_error_dev(sc->bnx_dev,
618 "failed to enable memory mapping!\n");
619 return;
620 }
621
622 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
623 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
624 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
625 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
626 return;
627 }
628
629 if (pci_intr_map(pa, &ih)) {
630 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
631 goto bnx_attach_fail;
632 }
633 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
634
635 /*
636 * Configure byte swap and enable indirect register access.
637 * Rely on CPU to do target byte swapping on big endian systems.
638 * Access to registers outside of PCI configurtion space are not
639 * valid until this is done.
640 */
641 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
642 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
643 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
644
645 /* Save ASIC revsion info. */
646 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
647
648 /*
649 * Find the base address for shared memory access.
650 * Newer versions of bootcode use a signature and offset
651 * while older versions use a fixed address.
652 */
653 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
654 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
655 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
656 (sc->bnx_pa.pa_function << 2));
657 else
658 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
659
660 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
661
662 /* Set initial device and PHY flags */
663 sc->bnx_flags = 0;
664 sc->bnx_phy_flags = 0;
665
666 /* Fetch the bootcode revision. */
667 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
668 for (i = 0, j = 0; i < 3; i++) {
669 uint8_t num;
670 int k, skip0;
671
672 num = (uint8_t)(val >> (24 - (i * 8)));
673 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
674 if (num >= k || !skip0 || k == 1) {
675 sc->bnx_bc_ver[j++] = (num / k) + '0';
676 skip0 = 0;
677 }
678 }
679 if (i != 2)
680 sc->bnx_bc_ver[j++] = '.';
681 }
682
683 /* Check if any management firmware is enabled. */
684 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
685 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
686 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
687 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
688
689 /* Allow time for firmware to enter the running state. */
690 for (i = 0; i < 30; i++) {
691 val = REG_RD_IND(sc, sc->bnx_shmem_base +
692 BNX_BC_STATE_CONDITION);
693 if (val & BNX_CONDITION_MFW_RUN_MASK)
694 break;
695 DELAY(10000);
696 }
697
698 /* Check if management firmware is running. */
699 val = REG_RD_IND(sc, sc->bnx_shmem_base +
700 BNX_BC_STATE_CONDITION);
701 val &= BNX_CONDITION_MFW_RUN_MASK;
702 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
703 (val != BNX_CONDITION_MFW_RUN_NONE)) {
704 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
705 BNX_MFW_VER_PTR);
706
707 /* Read the management firmware version string. */
708 for (j = 0; j < 3; j++) {
709 val = bnx_reg_rd_ind(sc, addr + j * 4);
710 val = bswap32(val);
711 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
712 i += 4;
713 }
714 } else {
715 /* May cause firmware synchronization timeouts. */
716 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
717 "but not running!\n", __FILE__, __LINE__);
718 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
719
720 /* ToDo: Any action the driver should take? */
721 }
722 }
723
724 bnx_probe_pci_caps(sc);
725
726 /* Get PCI bus information (speed and type). */
727 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
728 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
729 uint32_t clkreg;
730
731 sc->bnx_flags |= BNX_PCIX_FLAG;
732
733 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
734
735 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
736 switch (clkreg) {
737 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
738 sc->bus_speed_mhz = 133;
739 break;
740
741 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
742 sc->bus_speed_mhz = 100;
743 break;
744
745 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
746 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
747 sc->bus_speed_mhz = 66;
748 break;
749
750 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
751 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
752 sc->bus_speed_mhz = 50;
753 break;
754
755 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
756 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
757 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
758 sc->bus_speed_mhz = 33;
759 break;
760 }
761 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
762 sc->bus_speed_mhz = 66;
763 else
764 sc->bus_speed_mhz = 33;
765
766 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
767 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
768
769 /* Reset the controller. */
770 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
771 goto bnx_attach_fail;
772
773 /* Initialize the controller. */
774 if (bnx_chipinit(sc)) {
775 aprint_error_dev(sc->bnx_dev,
776 "Controller initialization failed!\n");
777 goto bnx_attach_fail;
778 }
779
780 /* Perform NVRAM test. */
781 if (bnx_nvram_test(sc)) {
782 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
783 goto bnx_attach_fail;
784 }
785
786 /* Fetch the permanent Ethernet MAC address. */
787 bnx_get_mac_addr(sc);
788 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
789 ether_sprintf(sc->eaddr));
790
791 /*
792 * Trip points control how many BDs
793 * should be ready before generating an
794 * interrupt while ticks control how long
795 * a BD can sit in the chain before
796 * generating an interrupt. Set the default
797 * values for the RX and TX rings.
798 */
799
800 #ifdef BNX_DEBUG
801 /* Force more frequent interrupts. */
802 sc->bnx_tx_quick_cons_trip_int = 1;
803 sc->bnx_tx_quick_cons_trip = 1;
804 sc->bnx_tx_ticks_int = 0;
805 sc->bnx_tx_ticks = 0;
806
807 sc->bnx_rx_quick_cons_trip_int = 1;
808 sc->bnx_rx_quick_cons_trip = 1;
809 sc->bnx_rx_ticks_int = 0;
810 sc->bnx_rx_ticks = 0;
811 #else
812 sc->bnx_tx_quick_cons_trip_int = 20;
813 sc->bnx_tx_quick_cons_trip = 20;
814 sc->bnx_tx_ticks_int = 80;
815 sc->bnx_tx_ticks = 80;
816
817 sc->bnx_rx_quick_cons_trip_int = 6;
818 sc->bnx_rx_quick_cons_trip = 6;
819 sc->bnx_rx_ticks_int = 18;
820 sc->bnx_rx_ticks = 18;
821 #endif
822
823 /* Update statistics once every second. */
824 sc->bnx_stats_ticks = 1000000 & 0xffff00;
825
826 /* Find the media type for the adapter. */
827 bnx_get_media(sc);
828
829 /*
830 * Store config data needed by the PHY driver for
831 * backplane applications
832 */
833 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
834 BNX_SHARED_HW_CFG_CONFIG);
835 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
836 BNX_PORT_HW_CFG_CONFIG);
837
838 /* Allocate DMA memory resources. */
839 sc->bnx_dmatag = pa->pa_dmat;
840 if (bnx_dma_alloc(sc)) {
841 aprint_error_dev(sc->bnx_dev,
842 "DMA resource allocation failed!\n");
843 goto bnx_attach_fail;
844 }
845
846 /* Initialize the ifnet interface. */
847 ifp = &sc->bnx_ec.ec_if;
848 ifp->if_softc = sc;
849 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
850 ifp->if_ioctl = bnx_ioctl;
851 ifp->if_stop = bnx_stop;
852 ifp->if_start = bnx_start;
853 ifp->if_init = bnx_init;
854 ifp->if_watchdog = bnx_watchdog;
855 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
856 IFQ_SET_READY(&ifp->if_snd);
857 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
858
859 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
860 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
861 sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
862
863 ifp->if_capabilities |=
864 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
865 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
866 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
867
868 /* create workqueue to handle packet allocations */
869 if (workqueue_create(&sc->bnx_wq, device_xname(self),
870 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
871 aprint_error_dev(self, "failed to create workqueue\n");
872 goto bnx_attach_fail;
873 }
874
875 mii->mii_ifp = ifp;
876 mii->mii_readreg = bnx_miibus_read_reg;
877 mii->mii_writereg = bnx_miibus_write_reg;
878 mii->mii_statchg = bnx_miibus_statchg;
879
880 /* Handle any special PHY initialization for SerDes PHYs. */
881 bnx_init_media(sc);
882
883 sc->bnx_ec.ec_mii = mii;
884 ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
885
886 /* set phyflags and chipid before mii_attach() */
887 dict = device_properties(self);
888 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
889 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
890 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
891 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
892
893 /* Print some useful adapter info */
894 bnx_print_adapter_info(sc);
895
896 mii_flags |= MIIF_DOPAUSE;
897 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
898 mii_flags |= MIIF_HAVEFIBER;
899 mii_attach(self, mii, 0xffffffff,
900 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
901
902 if (LIST_EMPTY(&mii->mii_phys)) {
903 aprint_error_dev(self, "no PHY found!\n");
904 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
905 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
906 } else
907 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
908
909 /* Attach to the Ethernet interface list. */
910 if_attach(ifp);
911 if_deferred_start_init(ifp, NULL);
912 ether_ifattach(ifp, sc->eaddr);
913
914 callout_init(&sc->bnx_timeout, 0);
915
916 /* Hookup IRQ last. */
917 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
918 sc, device_xname(self));
919 if (sc->bnx_intrhand == NULL) {
920 aprint_error_dev(self, "couldn't establish interrupt");
921 if (intrstr != NULL)
922 aprint_error(" at %s", intrstr);
923 aprint_error("\n");
924 goto bnx_attach_fail;
925 }
926 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
927
928 if (pmf_device_register(self, NULL, NULL))
929 pmf_class_network_register(self, ifp);
930 else
931 aprint_error_dev(self, "couldn't establish power handler\n");
932
933 /* Print some important debugging info. */
934 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
935
936 /* Get the firmware running so ASF still works. */
937 bnx_mgmt_init(sc);
938
939 goto bnx_attach_exit;
940
941 bnx_attach_fail:
942 bnx_release_resources(sc);
943
944 bnx_attach_exit:
945 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
946 }
947
948 /****************************************************************************/
949 /* Device detach function. */
950 /* */
951 /* Stops the controller, resets the controller, and releases resources. */
952 /* */
953 /* Returns: */
954 /* 0 on success, positive value on failure. */
955 /****************************************************************************/
956 int
957 bnx_detach(device_t dev, int flags)
958 {
959 int s;
960 struct bnx_softc *sc;
961 struct ifnet *ifp;
962
963 sc = device_private(dev);
964 ifp = &sc->bnx_ec.ec_if;
965
966 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
967
968 /* Stop and reset the controller. */
969 s = splnet();
970 bnx_stop(ifp, 1);
971 splx(s);
972
973 pmf_device_deregister(dev);
974 callout_destroy(&sc->bnx_timeout);
975 ether_ifdetach(ifp);
976 workqueue_destroy(sc->bnx_wq);
977
978 /* Delete all remaining media. */
979 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
980
981 if_detach(ifp);
982 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
983
984 /* Release all remaining resources. */
985 bnx_release_resources(sc);
986
987 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
988
989 return 0;
990 }
991
992 /****************************************************************************/
993 /* Indirect register read. */
994 /* */
995 /* Reads NetXtreme II registers using an index/data register pair in PCI */
996 /* configuration space. Using this mechanism avoids issues with posted */
997 /* reads but is much slower than memory-mapped I/O. */
998 /* */
999 /* Returns: */
1000 /* The value of the register. */
1001 /****************************************************************************/
1002 uint32_t
1003 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1004 {
1005 struct pci_attach_args *pa = &(sc->bnx_pa);
1006
1007 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1008 offset);
1009 #ifdef BNX_DEBUG
1010 {
1011 uint32_t val;
1012 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1013 BNX_PCICFG_REG_WINDOW);
1014 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1015 "val = 0x%08X\n", __func__, offset, val);
1016 return val;
1017 }
1018 #else
1019 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1020 #endif
1021 }
1022
1023 /****************************************************************************/
1024 /* Indirect register write. */
1025 /* */
1026 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1027 /* configuration space. Using this mechanism avoids issues with posted */
1028 /* writes but is muchh slower than memory-mapped I/O. */
1029 /* */
1030 /* Returns: */
1031 /* Nothing. */
1032 /****************************************************************************/
1033 void
1034 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1035 {
1036 struct pci_attach_args *pa = &(sc->bnx_pa);
1037
1038 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1039 __func__, offset, val);
1040
1041 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1042 offset);
1043 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1044 }
1045
1046 /****************************************************************************/
1047 /* Context memory write. */
1048 /* */
1049 /* The NetXtreme II controller uses context memory to track connection */
1050 /* information for L2 and higher network protocols. */
1051 /* */
1052 /* Returns: */
1053 /* Nothing. */
1054 /****************************************************************************/
1055 void
1056 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1057 uint32_t ctx_val)
1058 {
1059 uint32_t idx, offset = ctx_offset + cid_addr;
1060 uint32_t val, retry_cnt = 5;
1061
1062 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1063 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1064 REG_WR(sc, BNX_CTX_CTX_CTRL,
1065 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1066
1067 for (idx = 0; idx < retry_cnt; idx++) {
1068 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1069 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1070 break;
1071 DELAY(5);
1072 }
1073
1074 #if 0
1075 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1076 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1077 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1078 __FILE__, __LINE__, cid_addr, ctx_offset);
1079 #endif
1080
1081 } else {
1082 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1083 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1084 }
1085 }
1086
1087 /****************************************************************************/
1088 /* PHY register read. */
1089 /* */
1090 /* Implements register reads on the MII bus. */
1091 /* */
1092 /* Returns: */
1093 /* The value of the register. */
1094 /****************************************************************************/
1095 int
1096 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1097 {
1098 struct bnx_softc *sc = device_private(dev);
1099 uint32_t data;
1100 int i, rv = 0;
1101
1102 /*
1103 * The BCM5709S PHY is an IEEE Clause 45 PHY
1104 * with special mappings to work with IEEE
1105 * Clause 22 register accesses.
1106 */
1107 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1108 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1109 reg += 0x10;
1110 }
1111
1112 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1113 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1114 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1115
1116 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1117 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1118
1119 DELAY(40);
1120 }
1121
1122 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1123 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1124 BNX_EMAC_MDIO_COMM_START_BUSY;
1125 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1126
1127 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1128 DELAY(10);
1129
1130 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1131 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1132 DELAY(5);
1133
1134 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1135 data &= BNX_EMAC_MDIO_COMM_DATA;
1136
1137 break;
1138 }
1139 }
1140
1141 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1142 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1143 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1144 rv = ETIMEDOUT;
1145 } else {
1146 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1147 *val = data & 0xffff;
1148
1149 DBPRINT(sc, BNX_EXCESSIVE,
1150 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1151 phy, (uint16_t) reg & 0xffff, *val);
1152 }
1153
1154 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1155 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1156 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1157
1158 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1159 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1160
1161 DELAY(40);
1162 }
1163
1164 return rv;
1165 }
1166
1167 /****************************************************************************/
1168 /* PHY register write. */
1169 /* */
1170 /* Implements register writes on the MII bus. */
1171 /* */
1172 /* Returns: */
1173 /* The value of the register. */
1174 /****************************************************************************/
1175 int
1176 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1177 {
1178 struct bnx_softc *sc = device_private(dev);
1179 uint32_t val1;
1180 int i, rv = 0;
1181
1182 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1183 "val = 0x%04hX\n", __func__,
1184 phy, (uint16_t) reg & 0xffff, val);
1185
1186 /*
1187 * The BCM5709S PHY is an IEEE Clause 45 PHY
1188 * with special mappings to work with IEEE
1189 * Clause 22 register accesses.
1190 */
1191 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1192 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1193 reg += 0x10;
1194 }
1195
1196 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1197 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1198 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1199
1200 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1201 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1202
1203 DELAY(40);
1204 }
1205
1206 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1207 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1208 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1209 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1210
1211 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1212 DELAY(10);
1213
1214 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1215 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1216 DELAY(5);
1217 break;
1218 }
1219 }
1220
1221 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1222 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1223 __LINE__);
1224 rv = ETIMEDOUT;
1225 }
1226
1227 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1228 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1229 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1230
1231 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1232 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1233
1234 DELAY(40);
1235 }
1236
1237 return rv;
1238 }
1239
1240 /****************************************************************************/
1241 /* MII bus status change. */
1242 /* */
1243 /* Called by the MII bus driver when the PHY establishes link to set the */
1244 /* MAC interface registers. */
1245 /* */
1246 /* Returns: */
1247 /* Nothing. */
1248 /****************************************************************************/
1249 void
1250 bnx_miibus_statchg(struct ifnet *ifp)
1251 {
1252 struct bnx_softc *sc = ifp->if_softc;
1253 struct mii_data *mii = &sc->bnx_mii;
1254 uint32_t rx_mode = sc->rx_mode;
1255 int val;
1256
1257 val = REG_RD(sc, BNX_EMAC_MODE);
1258 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1259 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1260 BNX_EMAC_MODE_25G);
1261
1262 /*
1263 * Get flow control negotiation result.
1264 */
1265 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1266 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1267 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1268 mii->mii_media_active &= ~IFM_ETH_FMASK;
1269 }
1270
1271 /* Set MII or GMII interface based on the speed
1272 * negotiated by the PHY.
1273 */
1274 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1275 case IFM_10_T:
1276 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1277 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1278 val |= BNX_EMAC_MODE_PORT_MII_10;
1279 break;
1280 }
1281 /* FALLTHROUGH */
1282 case IFM_100_TX:
1283 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1284 val |= BNX_EMAC_MODE_PORT_MII;
1285 break;
1286 case IFM_2500_SX:
1287 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1288 val |= BNX_EMAC_MODE_25G;
1289 /* FALLTHROUGH */
1290 case IFM_1000_T:
1291 case IFM_1000_SX:
1292 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1293 val |= BNX_EMAC_MODE_PORT_GMII;
1294 break;
1295 default:
1296 val |= BNX_EMAC_MODE_PORT_GMII;
1297 break;
1298 }
1299
1300 /* Set half or full duplex based on the duplicity
1301 * negotiated by the PHY.
1302 */
1303 if ((mii->mii_media_active & IFM_HDX) != 0) {
1304 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1305 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1306 } else
1307 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1308
1309 REG_WR(sc, BNX_EMAC_MODE, val);
1310
1311 /*
1312 * 802.3x flow control
1313 */
1314 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1315 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1316 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1317 } else {
1318 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1319 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1320 }
1321
1322 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1323 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1324 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1325 } else {
1326 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1327 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1328 }
1329
1330 /* Only make changes if the recive mode has actually changed. */
1331 if (rx_mode != sc->rx_mode) {
1332 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1333 rx_mode);
1334
1335 sc->rx_mode = rx_mode;
1336 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1337
1338 bnx_init_rx_context(sc);
1339 }
1340 }
1341
1342 /****************************************************************************/
1343 /* Acquire NVRAM lock. */
1344 /* */
1345 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1346 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1347 /* for use by the driver. */
1348 /* */
1349 /* Returns: */
1350 /* 0 on success, positive value on failure. */
1351 /****************************************************************************/
1352 int
1353 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1354 {
1355 uint32_t val;
1356 int j;
1357
1358 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1359
1360 /* Request access to the flash interface. */
1361 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1362 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1363 val = REG_RD(sc, BNX_NVM_SW_ARB);
1364 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1365 break;
1366
1367 DELAY(5);
1368 }
1369
1370 if (j >= NVRAM_TIMEOUT_COUNT) {
1371 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1372 return EBUSY;
1373 }
1374
1375 return 0;
1376 }
1377
1378 /****************************************************************************/
1379 /* Release NVRAM lock. */
1380 /* */
1381 /* When the caller is finished accessing NVRAM the lock must be released. */
1382 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1383 /* for use by the driver. */
1384 /* */
1385 /* Returns: */
1386 /* 0 on success, positive value on failure. */
1387 /****************************************************************************/
1388 int
1389 bnx_release_nvram_lock(struct bnx_softc *sc)
1390 {
1391 int j;
1392 uint32_t val;
1393
1394 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1395
1396 /* Relinquish nvram interface. */
1397 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1398
1399 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1400 val = REG_RD(sc, BNX_NVM_SW_ARB);
1401 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1402 break;
1403
1404 DELAY(5);
1405 }
1406
1407 if (j >= NVRAM_TIMEOUT_COUNT) {
1408 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1409 return EBUSY;
1410 }
1411
1412 return 0;
1413 }
1414
1415 #ifdef BNX_NVRAM_WRITE_SUPPORT
1416 /****************************************************************************/
1417 /* Enable NVRAM write access. */
1418 /* */
1419 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1420 /* */
1421 /* Returns: */
1422 /* 0 on success, positive value on failure. */
1423 /****************************************************************************/
1424 int
1425 bnx_enable_nvram_write(struct bnx_softc *sc)
1426 {
1427 uint32_t val;
1428
1429 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1430
1431 val = REG_RD(sc, BNX_MISC_CFG);
1432 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1433
1434 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1435 int j;
1436
1437 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1438 REG_WR(sc, BNX_NVM_COMMAND,
1439 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1440
1441 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1442 DELAY(5);
1443
1444 val = REG_RD(sc, BNX_NVM_COMMAND);
1445 if (val & BNX_NVM_COMMAND_DONE)
1446 break;
1447 }
1448
1449 if (j >= NVRAM_TIMEOUT_COUNT) {
1450 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1451 return EBUSY;
1452 }
1453 }
1454
1455 return 0;
1456 }
1457
1458 /****************************************************************************/
1459 /* Disable NVRAM write access. */
1460 /* */
1461 /* When the caller is finished writing to NVRAM write access must be */
1462 /* disabled. */
1463 /* */
1464 /* Returns: */
1465 /* Nothing. */
1466 /****************************************************************************/
1467 void
1468 bnx_disable_nvram_write(struct bnx_softc *sc)
1469 {
1470 uint32_t val;
1471
1472 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1473
1474 val = REG_RD(sc, BNX_MISC_CFG);
1475 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1476 }
1477 #endif
1478
1479 /****************************************************************************/
1480 /* Enable NVRAM access. */
1481 /* */
1482 /* Before accessing NVRAM for read or write operations the caller must */
1483 /* enabled NVRAM access. */
1484 /* */
1485 /* Returns: */
1486 /* Nothing. */
1487 /****************************************************************************/
1488 void
1489 bnx_enable_nvram_access(struct bnx_softc *sc)
1490 {
1491 uint32_t val;
1492
1493 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1494
1495 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1496 /* Enable both bits, even on read. */
1497 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1498 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1499 }
1500
1501 /****************************************************************************/
1502 /* Disable NVRAM access. */
1503 /* */
1504 /* When the caller is finished accessing NVRAM access must be disabled. */
1505 /* */
1506 /* Returns: */
1507 /* Nothing. */
1508 /****************************************************************************/
1509 void
1510 bnx_disable_nvram_access(struct bnx_softc *sc)
1511 {
1512 uint32_t val;
1513
1514 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1515
1516 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1517
1518 /* Disable both bits, even after read. */
1519 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1520 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1521 }
1522
1523 #ifdef BNX_NVRAM_WRITE_SUPPORT
1524 /****************************************************************************/
1525 /* Erase NVRAM page before writing. */
1526 /* */
1527 /* Non-buffered flash parts require that a page be erased before it is */
1528 /* written. */
1529 /* */
1530 /* Returns: */
1531 /* 0 on success, positive value on failure. */
1532 /****************************************************************************/
1533 int
1534 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1535 {
1536 uint32_t cmd;
1537 int j;
1538
1539 /* Buffered flash doesn't require an erase. */
1540 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1541 return 0;
1542
1543 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1544
1545 /* Build an erase command. */
1546 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1547 BNX_NVM_COMMAND_DOIT;
1548
1549 /*
1550 * Clear the DONE bit separately, set the NVRAM address to erase,
1551 * and issue the erase command.
1552 */
1553 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1554 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1555 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1556
1557 /* Wait for completion. */
1558 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1559 uint32_t val;
1560
1561 DELAY(5);
1562
1563 val = REG_RD(sc, BNX_NVM_COMMAND);
1564 if (val & BNX_NVM_COMMAND_DONE)
1565 break;
1566 }
1567
1568 if (j >= NVRAM_TIMEOUT_COUNT) {
1569 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1570 return EBUSY;
1571 }
1572
1573 return 0;
1574 }
1575 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1576
1577 /****************************************************************************/
1578 /* Read a dword (32 bits) from NVRAM. */
1579 /* */
1580 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1581 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1582 /* */
1583 /* Returns: */
1584 /* 0 on success and the 32 bit value read, positive value on failure. */
1585 /****************************************************************************/
1586 int
1587 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1588 uint8_t *ret_val, uint32_t cmd_flags)
1589 {
1590 uint32_t cmd;
1591 int i, rc = 0;
1592
1593 /* Build the command word. */
1594 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1595
1596 /* Calculate the offset for buffered flash if translation is used. */
1597 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1598 offset = ((offset / sc->bnx_flash_info->page_size) <<
1599 sc->bnx_flash_info->page_bits) +
1600 (offset % sc->bnx_flash_info->page_size);
1601 }
1602
1603 /*
1604 * Clear the DONE bit separately, set the address to read,
1605 * and issue the read.
1606 */
1607 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1608 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1609 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1610
1611 /* Wait for completion. */
1612 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1613 uint32_t val;
1614
1615 DELAY(5);
1616
1617 val = REG_RD(sc, BNX_NVM_COMMAND);
1618 if (val & BNX_NVM_COMMAND_DONE) {
1619 val = REG_RD(sc, BNX_NVM_READ);
1620
1621 val = be32toh(val);
1622 memcpy(ret_val, &val, 4);
1623 break;
1624 }
1625 }
1626
1627 /* Check for errors. */
1628 if (i >= NVRAM_TIMEOUT_COUNT) {
1629 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1630 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1631 rc = EBUSY;
1632 }
1633
1634 return rc;
1635 }
1636
1637 #ifdef BNX_NVRAM_WRITE_SUPPORT
1638 /****************************************************************************/
1639 /* Write a dword (32 bits) to NVRAM. */
1640 /* */
1641 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1642 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1643 /* enabled NVRAM write access. */
1644 /* */
1645 /* Returns: */
1646 /* 0 on success, positive value on failure. */
1647 /****************************************************************************/
1648 int
1649 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1650 uint32_t cmd_flags)
1651 {
1652 uint32_t cmd, val32;
1653 int j;
1654
1655 /* Build the command word. */
1656 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1657
1658 /* Calculate the offset for buffered flash if translation is used. */
1659 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1660 offset = ((offset / sc->bnx_flash_info->page_size) <<
1661 sc->bnx_flash_info->page_bits) +
1662 (offset % sc->bnx_flash_info->page_size);
1663 }
1664
1665 /*
1666 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1667 * set the NVRAM address to write, and issue the write command
1668 */
1669 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1670 memcpy(&val32, val, 4);
1671 val32 = htobe32(val32);
1672 REG_WR(sc, BNX_NVM_WRITE, val32);
1673 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1674 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1675
1676 /* Wait for completion. */
1677 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1678 DELAY(5);
1679
1680 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1681 break;
1682 }
1683 if (j >= NVRAM_TIMEOUT_COUNT) {
1684 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1685 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1686 return EBUSY;
1687 }
1688
1689 return 0;
1690 }
1691 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1692
1693 /****************************************************************************/
1694 /* Initialize NVRAM access. */
1695 /* */
1696 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1697 /* access that device. */
1698 /* */
1699 /* Returns: */
1700 /* 0 on success, positive value on failure. */
1701 /****************************************************************************/
1702 int
1703 bnx_init_nvram(struct bnx_softc *sc)
1704 {
1705 uint32_t val;
1706 int j, entry_count, rc = 0;
1707 struct flash_spec *flash;
1708
1709 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1710
1711 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1712 sc->bnx_flash_info = &flash_5709;
1713 goto bnx_init_nvram_get_flash_size;
1714 }
1715
1716 /* Determine the selected interface. */
1717 val = REG_RD(sc, BNX_NVM_CFG1);
1718
1719 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1720
1721 /*
1722 * Flash reconfiguration is required to support additional
1723 * NVRAM devices not directly supported in hardware.
1724 * Check if the flash interface was reconfigured
1725 * by the bootcode.
1726 */
1727
1728 if (val & 0x40000000) {
1729 /* Flash interface reconfigured by bootcode. */
1730
1731 DBPRINT(sc, BNX_INFO_LOAD,
1732 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1733
1734 for (j = 0, flash = &flash_table[0]; j < entry_count;
1735 j++, flash++) {
1736 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1737 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1738 sc->bnx_flash_info = flash;
1739 break;
1740 }
1741 }
1742 } else {
1743 /* Flash interface not yet reconfigured. */
1744 uint32_t mask;
1745
1746 DBPRINT(sc, BNX_INFO_LOAD,
1747 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1748
1749 if (val & (1 << 23))
1750 mask = FLASH_BACKUP_STRAP_MASK;
1751 else
1752 mask = FLASH_STRAP_MASK;
1753
1754 /* Look for the matching NVRAM device configuration data. */
1755 for (j = 0, flash = &flash_table[0]; j < entry_count;
1756 j++, flash++) {
1757 /* Check if the dev matches any of the known devices. */
1758 if ((val & mask) == (flash->strapping & mask)) {
1759 /* Found a device match. */
1760 sc->bnx_flash_info = flash;
1761
1762 /* Request access to the flash interface. */
1763 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1764 return rc;
1765
1766 /* Reconfigure the flash interface. */
1767 bnx_enable_nvram_access(sc);
1768 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1769 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1770 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1771 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1772 bnx_disable_nvram_access(sc);
1773 bnx_release_nvram_lock(sc);
1774
1775 break;
1776 }
1777 }
1778 }
1779
1780 /* Check if a matching device was found. */
1781 if (j == entry_count) {
1782 sc->bnx_flash_info = NULL;
1783 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1784 __FILE__, __LINE__);
1785 rc = ENODEV;
1786 }
1787
1788 bnx_init_nvram_get_flash_size:
1789 /* Write the flash config data to the shared memory interface. */
1790 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1791 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1792 if (val)
1793 sc->bnx_flash_size = val;
1794 else
1795 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1796
1797 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1798 "0x%08X\n", sc->bnx_flash_info->total_size);
1799
1800 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1801
1802 return rc;
1803 }
1804
1805 /****************************************************************************/
1806 /* Read an arbitrary range of data from NVRAM. */
1807 /* */
1808 /* Prepares the NVRAM interface for access and reads the requested data */
1809 /* into the supplied buffer. */
1810 /* */
1811 /* Returns: */
1812 /* 0 on success and the data read, positive value on failure. */
1813 /****************************************************************************/
1814 int
1815 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1816 int buf_size)
1817 {
1818 int rc = 0;
1819 uint32_t cmd_flags, offset32, len32, extra;
1820
1821 if (buf_size == 0)
1822 return 0;
1823
1824 /* Request access to the flash interface. */
1825 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1826 return rc;
1827
1828 /* Enable access to flash interface */
1829 bnx_enable_nvram_access(sc);
1830
1831 len32 = buf_size;
1832 offset32 = offset;
1833 extra = 0;
1834
1835 cmd_flags = 0;
1836
1837 if (offset32 & 3) {
1838 uint8_t buf[4];
1839 uint32_t pre_len;
1840
1841 offset32 &= ~3;
1842 pre_len = 4 - (offset & 3);
1843
1844 if (pre_len >= len32) {
1845 pre_len = len32;
1846 cmd_flags =
1847 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1848 } else
1849 cmd_flags = BNX_NVM_COMMAND_FIRST;
1850
1851 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1852
1853 if (rc)
1854 return rc;
1855
1856 memcpy(ret_buf, buf + (offset & 3), pre_len);
1857
1858 offset32 += 4;
1859 ret_buf += pre_len;
1860 len32 -= pre_len;
1861 }
1862
1863 if (len32 & 3) {
1864 extra = 4 - (len32 & 3);
1865 len32 = (len32 + 4) & ~3;
1866 }
1867
1868 if (len32 == 4) {
1869 uint8_t buf[4];
1870
1871 if (cmd_flags)
1872 cmd_flags = BNX_NVM_COMMAND_LAST;
1873 else
1874 cmd_flags =
1875 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1876
1877 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1878
1879 memcpy(ret_buf, buf, 4 - extra);
1880 } else if (len32 > 0) {
1881 uint8_t buf[4];
1882
1883 /* Read the first word. */
1884 if (cmd_flags)
1885 cmd_flags = 0;
1886 else
1887 cmd_flags = BNX_NVM_COMMAND_FIRST;
1888
1889 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1890
1891 /* Advance to the next dword. */
1892 offset32 += 4;
1893 ret_buf += 4;
1894 len32 -= 4;
1895
1896 while (len32 > 4 && rc == 0) {
1897 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1898
1899 /* Advance to the next dword. */
1900 offset32 += 4;
1901 ret_buf += 4;
1902 len32 -= 4;
1903 }
1904
1905 if (rc)
1906 return rc;
1907
1908 cmd_flags = BNX_NVM_COMMAND_LAST;
1909 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1910
1911 memcpy(ret_buf, buf, 4 - extra);
1912 }
1913
1914 /* Disable access to flash interface and release the lock. */
1915 bnx_disable_nvram_access(sc);
1916 bnx_release_nvram_lock(sc);
1917
1918 return rc;
1919 }
1920
1921 #ifdef BNX_NVRAM_WRITE_SUPPORT
1922 /****************************************************************************/
1923 /* Write an arbitrary range of data from NVRAM. */
1924 /* */
1925 /* Prepares the NVRAM interface for write access and writes the requested */
1926 /* data from the supplied buffer. The caller is responsible for */
1927 /* calculating any appropriate CRCs. */
1928 /* */
1929 /* Returns: */
1930 /* 0 on success, positive value on failure. */
1931 /****************************************************************************/
1932 int
1933 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1934 int buf_size)
1935 {
1936 uint32_t written, offset32, len32;
1937 uint8_t *buf, start[4], end[4];
1938 int rc = 0;
1939 int align_start, align_end;
1940
1941 buf = data_buf;
1942 offset32 = offset;
1943 len32 = buf_size;
1944 align_start = align_end = 0;
1945
1946 if ((align_start = (offset32 & 3))) {
1947 offset32 &= ~3;
1948 len32 += align_start;
1949 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1950 return rc;
1951 }
1952
1953 if (len32 & 3) {
1954 if ((len32 > 4) || !align_start) {
1955 align_end = 4 - (len32 & 3);
1956 len32 += align_end;
1957 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1958 end, 4)))
1959 return rc;
1960 }
1961 }
1962
1963 if (align_start || align_end) {
1964 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1965 if (buf == NULL)
1966 return ENOMEM;
1967
1968 if (align_start)
1969 memcpy(buf, start, 4);
1970
1971 if (align_end)
1972 memcpy(buf + len32 - 4, end, 4);
1973
1974 memcpy(buf + align_start, data_buf, buf_size);
1975 }
1976
1977 written = 0;
1978 while ((written < len32) && (rc == 0)) {
1979 uint32_t page_start, page_end, data_start, data_end;
1980 uint32_t addr, cmd_flags;
1981 int i;
1982 uint8_t flash_buffer[264];
1983
1984 /* Find the page_start addr */
1985 page_start = offset32 + written;
1986 page_start -= (page_start % sc->bnx_flash_info->page_size);
1987 /* Find the page_end addr */
1988 page_end = page_start + sc->bnx_flash_info->page_size;
1989 /* Find the data_start addr */
1990 data_start = (written == 0) ? offset32 : page_start;
1991 /* Find the data_end addr */
1992 data_end = (page_end > offset32 + len32) ?
1993 (offset32 + len32) : page_end;
1994
1995 /* Request access to the flash interface. */
1996 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1997 goto nvram_write_end;
1998
1999 /* Enable access to flash interface */
2000 bnx_enable_nvram_access(sc);
2001
2002 cmd_flags = BNX_NVM_COMMAND_FIRST;
2003 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2004 int j;
2005
2006 /* Read the whole page into the buffer
2007 * (non-buffer flash only) */
2008 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2009 if (j == (sc->bnx_flash_info->page_size - 4))
2010 cmd_flags |= BNX_NVM_COMMAND_LAST;
2011
2012 rc = bnx_nvram_read_dword(sc,
2013 page_start + j,
2014 &flash_buffer[j],
2015 cmd_flags);
2016
2017 if (rc)
2018 goto nvram_write_end;
2019
2020 cmd_flags = 0;
2021 }
2022 }
2023
2024 /* Enable writes to flash interface (unlock write-protect) */
2025 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2026 goto nvram_write_end;
2027
2028 /* Erase the page */
2029 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2030 goto nvram_write_end;
2031
2032 /* Re-enable the write again for the actual write */
2033 bnx_enable_nvram_write(sc);
2034
2035 /* Loop to write back the buffer data from page_start to
2036 * data_start */
2037 i = 0;
2038 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2039 for (addr = page_start; addr < data_start;
2040 addr += 4, i += 4) {
2041
2042 rc = bnx_nvram_write_dword(sc, addr,
2043 &flash_buffer[i], cmd_flags);
2044
2045 if (rc != 0)
2046 goto nvram_write_end;
2047
2048 cmd_flags = 0;
2049 }
2050 }
2051
2052 /* Loop to write the new data from data_start to data_end */
2053 for (addr = data_start; addr < data_end; addr += 4, i++) {
2054 if ((addr == page_end - 4) ||
2055 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2056 && (addr == data_end - 4))) {
2057
2058 cmd_flags |= BNX_NVM_COMMAND_LAST;
2059 }
2060
2061 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2062
2063 if (rc != 0)
2064 goto nvram_write_end;
2065
2066 cmd_flags = 0;
2067 buf += 4;
2068 }
2069
2070 /* Loop to write back the buffer data from data_end
2071 * to page_end */
2072 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2073 for (addr = data_end; addr < page_end;
2074 addr += 4, i += 4) {
2075
2076 if (addr == page_end-4)
2077 cmd_flags = BNX_NVM_COMMAND_LAST;
2078
2079 rc = bnx_nvram_write_dword(sc, addr,
2080 &flash_buffer[i], cmd_flags);
2081
2082 if (rc != 0)
2083 goto nvram_write_end;
2084
2085 cmd_flags = 0;
2086 }
2087 }
2088
2089 /* Disable writes to flash interface (lock write-protect) */
2090 bnx_disable_nvram_write(sc);
2091
2092 /* Disable access to flash interface */
2093 bnx_disable_nvram_access(sc);
2094 bnx_release_nvram_lock(sc);
2095
2096 /* Increment written */
2097 written += data_end - data_start;
2098 }
2099
2100 nvram_write_end:
2101 if (align_start || align_end)
2102 free(buf, M_DEVBUF);
2103
2104 return rc;
2105 }
2106 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2107
2108 /****************************************************************************/
2109 /* Verifies that NVRAM is accessible and contains valid data. */
2110 /* */
2111 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2112 /* correct. */
2113 /* */
2114 /* Returns: */
2115 /* 0 on success, positive value on failure. */
2116 /****************************************************************************/
2117 int
2118 bnx_nvram_test(struct bnx_softc *sc)
2119 {
2120 uint32_t buf[BNX_NVRAM_SIZE / 4];
2121 uint8_t *data = (uint8_t *) buf;
2122 int rc = 0;
2123 uint32_t magic, csum;
2124
2125 /*
2126 * Check that the device NVRAM is valid by reading
2127 * the magic value at offset 0.
2128 */
2129 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2130 goto bnx_nvram_test_done;
2131
2132 magic = be32toh(buf[0]);
2133 if (magic != BNX_NVRAM_MAGIC) {
2134 rc = ENODEV;
2135 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2136 "Expected: 0x%08X, Found: 0x%08X\n",
2137 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2138 goto bnx_nvram_test_done;
2139 }
2140
2141 /*
2142 * Verify that the device NVRAM includes valid
2143 * configuration data.
2144 */
2145 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2146 goto bnx_nvram_test_done;
2147
2148 csum = ether_crc32_le(data, 0x100);
2149 if (csum != BNX_CRC32_RESIDUAL) {
2150 rc = ENODEV;
2151 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2152 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2153 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2154 goto bnx_nvram_test_done;
2155 }
2156
2157 csum = ether_crc32_le(data + 0x100, 0x100);
2158 if (csum != BNX_CRC32_RESIDUAL) {
2159 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2160 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2161 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2162 rc = ENODEV;
2163 }
2164
2165 bnx_nvram_test_done:
2166 return rc;
2167 }
2168
2169 /****************************************************************************/
2170 /* Identifies the current media type of the controller and sets the PHY */
2171 /* address. */
2172 /* */
2173 /* Returns: */
2174 /* Nothing. */
2175 /****************************************************************************/
2176 void
2177 bnx_get_media(struct bnx_softc *sc)
2178 {
2179 sc->bnx_phy_addr = 1;
2180
2181 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2182 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2183 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2184 uint32_t strap;
2185
2186 /*
2187 * The BCM5709S is software configurable
2188 * for Copper or SerDes operation.
2189 */
2190 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2191 DBPRINT(sc, BNX_INFO_LOAD,
2192 "5709 bonded for copper.\n");
2193 goto bnx_get_media_exit;
2194 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2195 DBPRINT(sc, BNX_INFO_LOAD,
2196 "5709 bonded for dual media.\n");
2197 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2198 goto bnx_get_media_exit;
2199 }
2200
2201 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2202 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2203 else {
2204 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2205 >> 8;
2206 }
2207
2208 if (sc->bnx_pa.pa_function == 0) {
2209 switch (strap) {
2210 case 0x4:
2211 case 0x5:
2212 case 0x6:
2213 DBPRINT(sc, BNX_INFO_LOAD,
2214 "BCM5709 s/w configured for SerDes.\n");
2215 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2216 break;
2217 default:
2218 DBPRINT(sc, BNX_INFO_LOAD,
2219 "BCM5709 s/w configured for Copper.\n");
2220 }
2221 } else {
2222 switch (strap) {
2223 case 0x1:
2224 case 0x2:
2225 case 0x4:
2226 DBPRINT(sc, BNX_INFO_LOAD,
2227 "BCM5709 s/w configured for SerDes.\n");
2228 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2229 break;
2230 default:
2231 DBPRINT(sc, BNX_INFO_LOAD,
2232 "BCM5709 s/w configured for Copper.\n");
2233 }
2234 }
2235
2236 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2237 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2238
2239 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2240 uint32_t val;
2241
2242 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2243
2244 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2245 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2246
2247 /*
2248 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2249 * separate PHY for SerDes.
2250 */
2251 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2252 sc->bnx_phy_addr = 2;
2253 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2254 BNX_SHARED_HW_CFG_CONFIG);
2255 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2256 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2257 DBPRINT(sc, BNX_INFO_LOAD,
2258 "Found 2.5Gb capable adapter\n");
2259 }
2260 }
2261 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2262 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2263 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2264
2265 bnx_get_media_exit:
2266 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2267 "Using PHY address %d.\n", sc->bnx_phy_addr);
2268 }
2269
2270 /****************************************************************************/
2271 /* Performs PHY initialization required before MII drivers access the */
2272 /* device. */
2273 /* */
2274 /* Returns: */
2275 /* Nothing. */
2276 /****************************************************************************/
2277 void
2278 bnx_init_media(struct bnx_softc *sc)
2279 {
2280 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2281 /*
2282 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2283 * IEEE Clause 22 method. Otherwise we have no way to attach
2284 * the PHY to the mii(4) layer. PHY specific configuration
2285 * is done by the mii(4) layer.
2286 */
2287
2288 /* Select auto-negotiation MMD of the PHY. */
2289 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2290 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2291
2292 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2293 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2294
2295 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2296 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2297 }
2298 }
2299
2300 /****************************************************************************/
2301 /* Free any DMA memory owned by the driver. */
2302 /* */
2303 /* Scans through each data structre that requires DMA memory and frees */
2304 /* the memory if allocated. */
2305 /* */
2306 /* Returns: */
2307 /* Nothing. */
2308 /****************************************************************************/
2309 void
2310 bnx_dma_free(struct bnx_softc *sc)
2311 {
2312 int i;
2313
2314 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2315
2316 /* Destroy the status block. */
2317 if (sc->status_block != NULL && sc->status_map != NULL) {
2318 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2319 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2320 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2321 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2322 BNX_STATUS_BLK_SZ);
2323 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2324 sc->status_rseg);
2325 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2326 sc->status_block = NULL;
2327 sc->status_map = NULL;
2328 }
2329
2330 /* Destroy the statistics block. */
2331 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2332 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2333 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2334 BNX_STATS_BLK_SZ);
2335 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2336 sc->stats_rseg);
2337 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2338 sc->stats_block = NULL;
2339 sc->stats_map = NULL;
2340 }
2341
2342 /* Free, unmap and destroy all context memory pages. */
2343 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2344 for (i = 0; i < sc->ctx_pages; i++) {
2345 if (sc->ctx_block[i] != NULL) {
2346 bus_dmamap_unload(sc->bnx_dmatag,
2347 sc->ctx_map[i]);
2348 bus_dmamem_unmap(sc->bnx_dmatag,
2349 (void *)sc->ctx_block[i],
2350 BCM_PAGE_SIZE);
2351 bus_dmamem_free(sc->bnx_dmatag,
2352 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2353 bus_dmamap_destroy(sc->bnx_dmatag,
2354 sc->ctx_map[i]);
2355 sc->ctx_block[i] = NULL;
2356 }
2357 }
2358 }
2359
2360 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2361 for (i = 0; i < TX_PAGES; i++ ) {
2362 if (sc->tx_bd_chain[i] != NULL &&
2363 sc->tx_bd_chain_map[i] != NULL) {
2364 bus_dmamap_unload(sc->bnx_dmatag,
2365 sc->tx_bd_chain_map[i]);
2366 bus_dmamem_unmap(sc->bnx_dmatag,
2367 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2368 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2369 sc->tx_bd_chain_rseg[i]);
2370 bus_dmamap_destroy(sc->bnx_dmatag,
2371 sc->tx_bd_chain_map[i]);
2372 sc->tx_bd_chain[i] = NULL;
2373 sc->tx_bd_chain_map[i] = NULL;
2374 }
2375 }
2376
2377 /* Destroy the TX dmamaps. */
2378 /* This isn't necessary since we dont allocate them up front */
2379
2380 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2381 for (i = 0; i < RX_PAGES; i++ ) {
2382 if (sc->rx_bd_chain[i] != NULL &&
2383 sc->rx_bd_chain_map[i] != NULL) {
2384 bus_dmamap_unload(sc->bnx_dmatag,
2385 sc->rx_bd_chain_map[i]);
2386 bus_dmamem_unmap(sc->bnx_dmatag,
2387 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2388 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2389 sc->rx_bd_chain_rseg[i]);
2390
2391 bus_dmamap_destroy(sc->bnx_dmatag,
2392 sc->rx_bd_chain_map[i]);
2393 sc->rx_bd_chain[i] = NULL;
2394 sc->rx_bd_chain_map[i] = NULL;
2395 }
2396 }
2397
2398 /* Unload and destroy the RX mbuf maps. */
2399 for (i = 0; i < TOTAL_RX_BD; i++) {
2400 if (sc->rx_mbuf_map[i] != NULL) {
2401 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2402 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2403 }
2404 }
2405
2406 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2407 }
2408
2409 /****************************************************************************/
2410 /* Allocate any DMA memory needed by the driver. */
2411 /* */
2412 /* Allocates DMA memory needed for the various global structures needed by */
2413 /* hardware. */
2414 /* */
2415 /* Returns: */
2416 /* 0 for success, positive value for failure. */
2417 /****************************************************************************/
2418 int
2419 bnx_dma_alloc(struct bnx_softc *sc)
2420 {
2421 int i, rc = 0;
2422
2423 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2424
2425 /*
2426 * Allocate DMA memory for the status block, map the memory into DMA
2427 * space, and fetch the physical address of the block.
2428 */
2429 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2430 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2431 aprint_error_dev(sc->bnx_dev,
2432 "Could not create status block DMA map!\n");
2433 rc = ENOMEM;
2434 goto bnx_dma_alloc_exit;
2435 }
2436
2437 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2438 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2439 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2440 aprint_error_dev(sc->bnx_dev,
2441 "Could not allocate status block DMA memory!\n");
2442 rc = ENOMEM;
2443 goto bnx_dma_alloc_exit;
2444 }
2445
2446 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2447 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2448 aprint_error_dev(sc->bnx_dev,
2449 "Could not map status block DMA memory!\n");
2450 rc = ENOMEM;
2451 goto bnx_dma_alloc_exit;
2452 }
2453
2454 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2455 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2456 aprint_error_dev(sc->bnx_dev,
2457 "Could not load status block DMA memory!\n");
2458 rc = ENOMEM;
2459 goto bnx_dma_alloc_exit;
2460 }
2461
2462 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2463 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2464
2465 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2466 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2467
2468 /* DRC - Fix for 64 bit addresses. */
2469 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2470 (uint32_t) sc->status_block_paddr);
2471
2472 /* BCM5709 uses host memory as cache for context memory. */
2473 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2474 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2475 if (sc->ctx_pages == 0)
2476 sc->ctx_pages = 1;
2477 if (sc->ctx_pages > 4) /* XXX */
2478 sc->ctx_pages = 4;
2479
2480 DBRUNIF((sc->ctx_pages > 512),
2481 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2482 __FILE__, __LINE__, sc->ctx_pages));
2483
2484
2485 for (i = 0; i < sc->ctx_pages; i++) {
2486 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2487 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2488 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2489 &sc->ctx_map[i]) != 0) {
2490 rc = ENOMEM;
2491 goto bnx_dma_alloc_exit;
2492 }
2493
2494 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2495 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2496 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2497 rc = ENOMEM;
2498 goto bnx_dma_alloc_exit;
2499 }
2500
2501 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2502 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2503 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2504 rc = ENOMEM;
2505 goto bnx_dma_alloc_exit;
2506 }
2507
2508 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2509 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2510 BUS_DMA_NOWAIT) != 0) {
2511 rc = ENOMEM;
2512 goto bnx_dma_alloc_exit;
2513 }
2514
2515 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2516 }
2517 }
2518
2519 /*
2520 * Allocate DMA memory for the statistics block, map the memory into
2521 * DMA space, and fetch the physical address of the block.
2522 */
2523 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2524 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2525 aprint_error_dev(sc->bnx_dev,
2526 "Could not create stats block DMA map!\n");
2527 rc = ENOMEM;
2528 goto bnx_dma_alloc_exit;
2529 }
2530
2531 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2532 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2533 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2534 aprint_error_dev(sc->bnx_dev,
2535 "Could not allocate stats block DMA memory!\n");
2536 rc = ENOMEM;
2537 goto bnx_dma_alloc_exit;
2538 }
2539
2540 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2541 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2542 aprint_error_dev(sc->bnx_dev,
2543 "Could not map stats block DMA memory!\n");
2544 rc = ENOMEM;
2545 goto bnx_dma_alloc_exit;
2546 }
2547
2548 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2549 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2550 aprint_error_dev(sc->bnx_dev,
2551 "Could not load status block DMA memory!\n");
2552 rc = ENOMEM;
2553 goto bnx_dma_alloc_exit;
2554 }
2555
2556 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2557 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2558
2559 /* DRC - Fix for 64 bit address. */
2560 DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2561 (uint32_t) sc->stats_block_paddr);
2562
2563 /*
2564 * Allocate DMA memory for the TX buffer descriptor chain,
2565 * and fetch the physical address of the block.
2566 */
2567 for (i = 0; i < TX_PAGES; i++) {
2568 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2569 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2570 &sc->tx_bd_chain_map[i])) {
2571 aprint_error_dev(sc->bnx_dev,
2572 "Could not create Tx desc %d DMA map!\n", i);
2573 rc = ENOMEM;
2574 goto bnx_dma_alloc_exit;
2575 }
2576
2577 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2578 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2579 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2580 aprint_error_dev(sc->bnx_dev,
2581 "Could not allocate TX desc %d DMA memory!\n",
2582 i);
2583 rc = ENOMEM;
2584 goto bnx_dma_alloc_exit;
2585 }
2586
2587 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2588 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2589 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2590 aprint_error_dev(sc->bnx_dev,
2591 "Could not map TX desc %d DMA memory!\n", i);
2592 rc = ENOMEM;
2593 goto bnx_dma_alloc_exit;
2594 }
2595
2596 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2597 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2598 BUS_DMA_NOWAIT)) {
2599 aprint_error_dev(sc->bnx_dev,
2600 "Could not load TX desc %d DMA memory!\n", i);
2601 rc = ENOMEM;
2602 goto bnx_dma_alloc_exit;
2603 }
2604
2605 sc->tx_bd_chain_paddr[i] =
2606 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2607
2608 /* DRC - Fix for 64 bit systems. */
2609 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2610 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2611 }
2612
2613 /*
2614 * Create lists to hold TX mbufs.
2615 */
2616 TAILQ_INIT(&sc->tx_free_pkts);
2617 TAILQ_INIT(&sc->tx_used_pkts);
2618 sc->tx_pkt_count = 0;
2619 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2620
2621 /*
2622 * Allocate DMA memory for the Rx buffer descriptor chain,
2623 * and fetch the physical address of the block.
2624 */
2625 for (i = 0; i < RX_PAGES; i++) {
2626 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2627 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2628 &sc->rx_bd_chain_map[i])) {
2629 aprint_error_dev(sc->bnx_dev,
2630 "Could not create Rx desc %d DMA map!\n", i);
2631 rc = ENOMEM;
2632 goto bnx_dma_alloc_exit;
2633 }
2634
2635 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2636 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2637 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2638 aprint_error_dev(sc->bnx_dev,
2639 "Could not allocate Rx desc %d DMA memory!\n", i);
2640 rc = ENOMEM;
2641 goto bnx_dma_alloc_exit;
2642 }
2643
2644 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2645 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2646 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2647 aprint_error_dev(sc->bnx_dev,
2648 "Could not map Rx desc %d DMA memory!\n", i);
2649 rc = ENOMEM;
2650 goto bnx_dma_alloc_exit;
2651 }
2652
2653 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2654 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2655 BUS_DMA_NOWAIT)) {
2656 aprint_error_dev(sc->bnx_dev,
2657 "Could not load Rx desc %d DMA memory!\n", i);
2658 rc = ENOMEM;
2659 goto bnx_dma_alloc_exit;
2660 }
2661
2662 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2663 sc->rx_bd_chain_paddr[i] =
2664 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2665
2666 /* DRC - Fix for 64 bit systems. */
2667 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2668 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2669 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2670 0, BNX_RX_CHAIN_PAGE_SZ,
2671 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2672 }
2673
2674 /*
2675 * Create DMA maps for the Rx buffer mbufs.
2676 */
2677 for (i = 0; i < TOTAL_RX_BD; i++) {
2678 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2679 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2680 &sc->rx_mbuf_map[i])) {
2681 aprint_error_dev(sc->bnx_dev,
2682 "Could not create Rx mbuf %d DMA map!\n", i);
2683 rc = ENOMEM;
2684 goto bnx_dma_alloc_exit;
2685 }
2686 }
2687
2688 bnx_dma_alloc_exit:
2689 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2690
2691 return rc;
2692 }
2693
2694 /****************************************************************************/
2695 /* Release all resources used by the driver. */
2696 /* */
2697 /* Releases all resources acquired by the driver including interrupts, */
2698 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2699 /* */
2700 /* Returns: */
2701 /* Nothing. */
2702 /****************************************************************************/
2703 void
2704 bnx_release_resources(struct bnx_softc *sc)
2705 {
2706 struct pci_attach_args *pa = &(sc->bnx_pa);
2707
2708 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2709
2710 bnx_dma_free(sc);
2711
2712 if (sc->bnx_intrhand != NULL)
2713 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2714
2715 if (sc->bnx_size)
2716 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2717
2718 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2719 }
2720
2721 /****************************************************************************/
2722 /* Firmware synchronization. */
2723 /* */
2724 /* Before performing certain events such as a chip reset, synchronize with */
2725 /* the firmware first. */
2726 /* */
2727 /* Returns: */
2728 /* 0 for success, positive value for failure. */
2729 /****************************************************************************/
2730 int
2731 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2732 {
2733 int i, rc = 0;
2734 uint32_t val;
2735
2736 /* Don't waste any time if we've timed out before. */
2737 if (sc->bnx_fw_timed_out) {
2738 rc = EBUSY;
2739 goto bnx_fw_sync_exit;
2740 }
2741
2742 /* Increment the message sequence number. */
2743 sc->bnx_fw_wr_seq++;
2744 msg_data |= sc->bnx_fw_wr_seq;
2745
2746 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2747 msg_data);
2748
2749 /* Send the message to the bootcode driver mailbox. */
2750 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2751
2752 /* Wait for the bootcode to acknowledge the message. */
2753 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2754 /* Check for a response in the bootcode firmware mailbox. */
2755 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2756 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2757 break;
2758 DELAY(1000);
2759 }
2760
2761 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2762 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2763 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2764 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2765 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2766
2767 msg_data &= ~BNX_DRV_MSG_CODE;
2768 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2769
2770 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2771
2772 sc->bnx_fw_timed_out = 1;
2773 rc = EBUSY;
2774 }
2775
2776 bnx_fw_sync_exit:
2777 return rc;
2778 }
2779
2780 /****************************************************************************/
2781 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2782 /* */
2783 /* Returns: */
2784 /* Nothing. */
2785 /****************************************************************************/
2786 void
2787 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2788 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2789 {
2790 int i;
2791 uint32_t val;
2792
2793 /* Set the page size used by RV2P. */
2794 if (rv2p_proc == RV2P_PROC2) {
2795 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2796 USABLE_RX_BD_PER_PAGE);
2797 }
2798
2799 for (i = 0; i < rv2p_code_len; i += 8) {
2800 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2801 rv2p_code++;
2802 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2803 rv2p_code++;
2804
2805 if (rv2p_proc == RV2P_PROC1) {
2806 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2807 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2808 } else {
2809 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2810 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2811 }
2812 }
2813
2814 /* Reset the processor, un-stall is done later. */
2815 if (rv2p_proc == RV2P_PROC1)
2816 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2817 else
2818 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2819 }
2820
2821 /****************************************************************************/
2822 /* Load RISC processor firmware. */
2823 /* */
2824 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2825 /* associated with a particular processor. */
2826 /* */
2827 /* Returns: */
2828 /* Nothing. */
2829 /****************************************************************************/
2830 void
2831 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2832 struct fw_info *fw)
2833 {
2834 uint32_t offset;
2835 uint32_t val;
2836
2837 /* Halt the CPU. */
2838 val = REG_RD_IND(sc, cpu_reg->mode);
2839 val |= cpu_reg->mode_value_halt;
2840 REG_WR_IND(sc, cpu_reg->mode, val);
2841 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2842
2843 /* Load the Text area. */
2844 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2845 if (fw->text) {
2846 int j;
2847
2848 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2849 REG_WR_IND(sc, offset, fw->text[j]);
2850 }
2851
2852 /* Load the Data area. */
2853 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2854 if (fw->data) {
2855 int j;
2856
2857 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2858 REG_WR_IND(sc, offset, fw->data[j]);
2859 }
2860
2861 /* Load the SBSS area. */
2862 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2863 if (fw->sbss) {
2864 int j;
2865
2866 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2867 REG_WR_IND(sc, offset, fw->sbss[j]);
2868 }
2869
2870 /* Load the BSS area. */
2871 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2872 if (fw->bss) {
2873 int j;
2874
2875 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2876 REG_WR_IND(sc, offset, fw->bss[j]);
2877 }
2878
2879 /* Load the Read-Only area. */
2880 offset = cpu_reg->spad_base +
2881 (fw->rodata_addr - cpu_reg->mips_view_base);
2882 if (fw->rodata) {
2883 int j;
2884
2885 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2886 REG_WR_IND(sc, offset, fw->rodata[j]);
2887 }
2888
2889 /* Clear the pre-fetch instruction. */
2890 REG_WR_IND(sc, cpu_reg->inst, 0);
2891 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2892
2893 /* Start the CPU. */
2894 val = REG_RD_IND(sc, cpu_reg->mode);
2895 val &= ~cpu_reg->mode_value_halt;
2896 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2897 REG_WR_IND(sc, cpu_reg->mode, val);
2898 }
2899
2900 /****************************************************************************/
2901 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2902 /* */
2903 /* Loads the firmware for each CPU and starts the CPU. */
2904 /* */
2905 /* Returns: */
2906 /* Nothing. */
2907 /****************************************************************************/
2908 void
2909 bnx_init_cpus(struct bnx_softc *sc)
2910 {
2911 struct cpu_reg cpu_reg;
2912 struct fw_info fw;
2913
2914 switch (BNX_CHIP_NUM(sc)) {
2915 case BNX_CHIP_NUM_5709:
2916 /* Initialize the RV2P processor. */
2917 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2918 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2919 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2920 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2921 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2922 } else {
2923 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2924 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2925 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2926 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2927 }
2928
2929 /* Initialize the RX Processor. */
2930 cpu_reg.mode = BNX_RXP_CPU_MODE;
2931 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2932 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2933 cpu_reg.state = BNX_RXP_CPU_STATE;
2934 cpu_reg.state_value_clear = 0xffffff;
2935 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2936 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2937 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2938 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2939 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2940 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2941 cpu_reg.mips_view_base = 0x8000000;
2942
2943 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2944 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2945 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2946 fw.start_addr = bnx_RXP_b09FwStartAddr;
2947
2948 fw.text_addr = bnx_RXP_b09FwTextAddr;
2949 fw.text_len = bnx_RXP_b09FwTextLen;
2950 fw.text_index = 0;
2951 fw.text = bnx_RXP_b09FwText;
2952
2953 fw.data_addr = bnx_RXP_b09FwDataAddr;
2954 fw.data_len = bnx_RXP_b09FwDataLen;
2955 fw.data_index = 0;
2956 fw.data = bnx_RXP_b09FwData;
2957
2958 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2959 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2960 fw.sbss_index = 0;
2961 fw.sbss = bnx_RXP_b09FwSbss;
2962
2963 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2964 fw.bss_len = bnx_RXP_b09FwBssLen;
2965 fw.bss_index = 0;
2966 fw.bss = bnx_RXP_b09FwBss;
2967
2968 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2969 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2970 fw.rodata_index = 0;
2971 fw.rodata = bnx_RXP_b09FwRodata;
2972
2973 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2974 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2975
2976 /* Initialize the TX Processor. */
2977 cpu_reg.mode = BNX_TXP_CPU_MODE;
2978 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2979 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2980 cpu_reg.state = BNX_TXP_CPU_STATE;
2981 cpu_reg.state_value_clear = 0xffffff;
2982 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2983 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2984 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2985 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2986 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2987 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2988 cpu_reg.mips_view_base = 0x8000000;
2989
2990 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2991 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2992 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2993 fw.start_addr = bnx_TXP_b09FwStartAddr;
2994
2995 fw.text_addr = bnx_TXP_b09FwTextAddr;
2996 fw.text_len = bnx_TXP_b09FwTextLen;
2997 fw.text_index = 0;
2998 fw.text = bnx_TXP_b09FwText;
2999
3000 fw.data_addr = bnx_TXP_b09FwDataAddr;
3001 fw.data_len = bnx_TXP_b09FwDataLen;
3002 fw.data_index = 0;
3003 fw.data = bnx_TXP_b09FwData;
3004
3005 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3006 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3007 fw.sbss_index = 0;
3008 fw.sbss = bnx_TXP_b09FwSbss;
3009
3010 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3011 fw.bss_len = bnx_TXP_b09FwBssLen;
3012 fw.bss_index = 0;
3013 fw.bss = bnx_TXP_b09FwBss;
3014
3015 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3016 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3017 fw.rodata_index = 0;
3018 fw.rodata = bnx_TXP_b09FwRodata;
3019
3020 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3021 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3022
3023 /* Initialize the TX Patch-up Processor. */
3024 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3025 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3026 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3027 cpu_reg.state = BNX_TPAT_CPU_STATE;
3028 cpu_reg.state_value_clear = 0xffffff;
3029 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3030 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3031 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3032 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3033 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3034 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3035 cpu_reg.mips_view_base = 0x8000000;
3036
3037 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3038 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3039 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3040 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3041
3042 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3043 fw.text_len = bnx_TPAT_b09FwTextLen;
3044 fw.text_index = 0;
3045 fw.text = bnx_TPAT_b09FwText;
3046
3047 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3048 fw.data_len = bnx_TPAT_b09FwDataLen;
3049 fw.data_index = 0;
3050 fw.data = bnx_TPAT_b09FwData;
3051
3052 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3053 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3054 fw.sbss_index = 0;
3055 fw.sbss = bnx_TPAT_b09FwSbss;
3056
3057 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3058 fw.bss_len = bnx_TPAT_b09FwBssLen;
3059 fw.bss_index = 0;
3060 fw.bss = bnx_TPAT_b09FwBss;
3061
3062 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3063 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3064 fw.rodata_index = 0;
3065 fw.rodata = bnx_TPAT_b09FwRodata;
3066
3067 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3068 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3069
3070 /* Initialize the Completion Processor. */
3071 cpu_reg.mode = BNX_COM_CPU_MODE;
3072 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3073 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3074 cpu_reg.state = BNX_COM_CPU_STATE;
3075 cpu_reg.state_value_clear = 0xffffff;
3076 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3077 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3078 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3079 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3080 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3081 cpu_reg.spad_base = BNX_COM_SCRATCH;
3082 cpu_reg.mips_view_base = 0x8000000;
3083
3084 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3085 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3086 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3087 fw.start_addr = bnx_COM_b09FwStartAddr;
3088
3089 fw.text_addr = bnx_COM_b09FwTextAddr;
3090 fw.text_len = bnx_COM_b09FwTextLen;
3091 fw.text_index = 0;
3092 fw.text = bnx_COM_b09FwText;
3093
3094 fw.data_addr = bnx_COM_b09FwDataAddr;
3095 fw.data_len = bnx_COM_b09FwDataLen;
3096 fw.data_index = 0;
3097 fw.data = bnx_COM_b09FwData;
3098
3099 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3100 fw.sbss_len = bnx_COM_b09FwSbssLen;
3101 fw.sbss_index = 0;
3102 fw.sbss = bnx_COM_b09FwSbss;
3103
3104 fw.bss_addr = bnx_COM_b09FwBssAddr;
3105 fw.bss_len = bnx_COM_b09FwBssLen;
3106 fw.bss_index = 0;
3107 fw.bss = bnx_COM_b09FwBss;
3108
3109 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3110 fw.rodata_len = bnx_COM_b09FwRodataLen;
3111 fw.rodata_index = 0;
3112 fw.rodata = bnx_COM_b09FwRodata;
3113 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3114 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3115 break;
3116 default:
3117 /* Initialize the RV2P processor. */
3118 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3119 RV2P_PROC1);
3120 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3121 RV2P_PROC2);
3122
3123 /* Initialize the RX Processor. */
3124 cpu_reg.mode = BNX_RXP_CPU_MODE;
3125 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3126 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3127 cpu_reg.state = BNX_RXP_CPU_STATE;
3128 cpu_reg.state_value_clear = 0xffffff;
3129 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3130 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3131 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3132 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3133 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3134 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3135 cpu_reg.mips_view_base = 0x8000000;
3136
3137 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3138 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3139 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3140 fw.start_addr = bnx_RXP_b06FwStartAddr;
3141
3142 fw.text_addr = bnx_RXP_b06FwTextAddr;
3143 fw.text_len = bnx_RXP_b06FwTextLen;
3144 fw.text_index = 0;
3145 fw.text = bnx_RXP_b06FwText;
3146
3147 fw.data_addr = bnx_RXP_b06FwDataAddr;
3148 fw.data_len = bnx_RXP_b06FwDataLen;
3149 fw.data_index = 0;
3150 fw.data = bnx_RXP_b06FwData;
3151
3152 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3153 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3154 fw.sbss_index = 0;
3155 fw.sbss = bnx_RXP_b06FwSbss;
3156
3157 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3158 fw.bss_len = bnx_RXP_b06FwBssLen;
3159 fw.bss_index = 0;
3160 fw.bss = bnx_RXP_b06FwBss;
3161
3162 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3163 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3164 fw.rodata_index = 0;
3165 fw.rodata = bnx_RXP_b06FwRodata;
3166
3167 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3168 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3169
3170 /* Initialize the TX Processor. */
3171 cpu_reg.mode = BNX_TXP_CPU_MODE;
3172 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3173 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3174 cpu_reg.state = BNX_TXP_CPU_STATE;
3175 cpu_reg.state_value_clear = 0xffffff;
3176 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3177 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3178 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3179 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3180 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3181 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3182 cpu_reg.mips_view_base = 0x8000000;
3183
3184 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3185 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3186 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3187 fw.start_addr = bnx_TXP_b06FwStartAddr;
3188
3189 fw.text_addr = bnx_TXP_b06FwTextAddr;
3190 fw.text_len = bnx_TXP_b06FwTextLen;
3191 fw.text_index = 0;
3192 fw.text = bnx_TXP_b06FwText;
3193
3194 fw.data_addr = bnx_TXP_b06FwDataAddr;
3195 fw.data_len = bnx_TXP_b06FwDataLen;
3196 fw.data_index = 0;
3197 fw.data = bnx_TXP_b06FwData;
3198
3199 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3200 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3201 fw.sbss_index = 0;
3202 fw.sbss = bnx_TXP_b06FwSbss;
3203
3204 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3205 fw.bss_len = bnx_TXP_b06FwBssLen;
3206 fw.bss_index = 0;
3207 fw.bss = bnx_TXP_b06FwBss;
3208
3209 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3210 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3211 fw.rodata_index = 0;
3212 fw.rodata = bnx_TXP_b06FwRodata;
3213
3214 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3215 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3216
3217 /* Initialize the TX Patch-up Processor. */
3218 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3219 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3220 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3221 cpu_reg.state = BNX_TPAT_CPU_STATE;
3222 cpu_reg.state_value_clear = 0xffffff;
3223 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3224 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3225 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3226 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3227 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3228 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3229 cpu_reg.mips_view_base = 0x8000000;
3230
3231 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3232 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3233 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3234 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3235
3236 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3237 fw.text_len = bnx_TPAT_b06FwTextLen;
3238 fw.text_index = 0;
3239 fw.text = bnx_TPAT_b06FwText;
3240
3241 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3242 fw.data_len = bnx_TPAT_b06FwDataLen;
3243 fw.data_index = 0;
3244 fw.data = bnx_TPAT_b06FwData;
3245
3246 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3247 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3248 fw.sbss_index = 0;
3249 fw.sbss = bnx_TPAT_b06FwSbss;
3250
3251 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3252 fw.bss_len = bnx_TPAT_b06FwBssLen;
3253 fw.bss_index = 0;
3254 fw.bss = bnx_TPAT_b06FwBss;
3255
3256 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3257 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3258 fw.rodata_index = 0;
3259 fw.rodata = bnx_TPAT_b06FwRodata;
3260
3261 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3262 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3263
3264 /* Initialize the Completion Processor. */
3265 cpu_reg.mode = BNX_COM_CPU_MODE;
3266 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3267 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3268 cpu_reg.state = BNX_COM_CPU_STATE;
3269 cpu_reg.state_value_clear = 0xffffff;
3270 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3271 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3272 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3273 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3274 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3275 cpu_reg.spad_base = BNX_COM_SCRATCH;
3276 cpu_reg.mips_view_base = 0x8000000;
3277
3278 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3279 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3280 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3281 fw.start_addr = bnx_COM_b06FwStartAddr;
3282
3283 fw.text_addr = bnx_COM_b06FwTextAddr;
3284 fw.text_len = bnx_COM_b06FwTextLen;
3285 fw.text_index = 0;
3286 fw.text = bnx_COM_b06FwText;
3287
3288 fw.data_addr = bnx_COM_b06FwDataAddr;
3289 fw.data_len = bnx_COM_b06FwDataLen;
3290 fw.data_index = 0;
3291 fw.data = bnx_COM_b06FwData;
3292
3293 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3294 fw.sbss_len = bnx_COM_b06FwSbssLen;
3295 fw.sbss_index = 0;
3296 fw.sbss = bnx_COM_b06FwSbss;
3297
3298 fw.bss_addr = bnx_COM_b06FwBssAddr;
3299 fw.bss_len = bnx_COM_b06FwBssLen;
3300 fw.bss_index = 0;
3301 fw.bss = bnx_COM_b06FwBss;
3302
3303 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3304 fw.rodata_len = bnx_COM_b06FwRodataLen;
3305 fw.rodata_index = 0;
3306 fw.rodata = bnx_COM_b06FwRodata;
3307 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3308 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3309 break;
3310 }
3311 }
3312
3313 /****************************************************************************/
3314 /* Initialize context memory. */
3315 /* */
3316 /* Clears the memory associated with each Context ID (CID). */
3317 /* */
3318 /* Returns: */
3319 /* Nothing. */
3320 /****************************************************************************/
3321 void
3322 bnx_init_context(struct bnx_softc *sc)
3323 {
3324 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3325 /* DRC: Replace this constant value with a #define. */
3326 int i, retry_cnt = 10;
3327 uint32_t val;
3328
3329 /*
3330 * BCM5709 context memory may be cached
3331 * in host memory so prepare the host memory
3332 * for access.
3333 */
3334 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3335 | (1 << 12);
3336 val |= (BCM_PAGE_BITS - 8) << 16;
3337 REG_WR(sc, BNX_CTX_COMMAND, val);
3338
3339 /* Wait for mem init command to complete. */
3340 for (i = 0; i < retry_cnt; i++) {
3341 val = REG_RD(sc, BNX_CTX_COMMAND);
3342 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3343 break;
3344 DELAY(2);
3345 }
3346
3347 /* ToDo: Consider returning an error here. */
3348
3349 for (i = 0; i < sc->ctx_pages; i++) {
3350 int j;
3351
3352 /* Set the physaddr of the context memory cache. */
3353 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3354 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3355 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3356 val = (uint32_t)
3357 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3358 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3359 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3360 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3361
3362 /* Verify that the context memory write was successful. */
3363 for (j = 0; j < retry_cnt; j++) {
3364 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3365 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3366 break;
3367 DELAY(5);
3368 }
3369
3370 /* ToDo: Consider returning an error here. */
3371 }
3372 } else {
3373 uint32_t vcid_addr, offset;
3374
3375 /*
3376 * For the 5706/5708, context memory is local to the
3377 * controller, so initialize the controller context memory.
3378 */
3379
3380 vcid_addr = GET_CID_ADDR(96);
3381 while (vcid_addr) {
3382
3383 vcid_addr -= BNX_PHY_CTX_SIZE;
3384
3385 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3386 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3387
3388 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3389 offset += 4)
3390 CTX_WR(sc, 0x00, offset, 0);
3391
3392 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3393 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3394 }
3395 }
3396 }
3397
3398 /****************************************************************************/
3399 /* Fetch the permanent MAC address of the controller. */
3400 /* */
3401 /* Returns: */
3402 /* Nothing. */
3403 /****************************************************************************/
3404 void
3405 bnx_get_mac_addr(struct bnx_softc *sc)
3406 {
3407 uint32_t mac_lo = 0, mac_hi = 0;
3408
3409 /*
3410 * The NetXtreme II bootcode populates various NIC
3411 * power-on and runtime configuration items in a
3412 * shared memory area. The factory configured MAC
3413 * address is available from both NVRAM and the
3414 * shared memory area so we'll read the value from
3415 * shared memory for speed.
3416 */
3417
3418 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3419 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3420
3421 if ((mac_lo == 0) && (mac_hi == 0)) {
3422 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3423 __FILE__, __LINE__);
3424 } else {
3425 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3426 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3427 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3428 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3429 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3430 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3431 }
3432
3433 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3434 "%s\n", ether_sprintf(sc->eaddr));
3435 }
3436
3437 /****************************************************************************/
3438 /* Program the MAC address. */
3439 /* */
3440 /* Returns: */
3441 /* Nothing. */
3442 /****************************************************************************/
3443 void
3444 bnx_set_mac_addr(struct bnx_softc *sc)
3445 {
3446 uint32_t val;
3447 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3448
3449 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3450 "%s\n", ether_sprintf(sc->eaddr));
3451
3452 val = (mac_addr[0] << 8) | mac_addr[1];
3453
3454 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3455
3456 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3457 (mac_addr[4] << 8) | mac_addr[5];
3458
3459 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3460 }
3461
3462 /****************************************************************************/
3463 /* Stop the controller. */
3464 /* */
3465 /* Returns: */
3466 /* Nothing. */
3467 /****************************************************************************/
3468 void
3469 bnx_stop(struct ifnet *ifp, int disable)
3470 {
3471 struct bnx_softc *sc = ifp->if_softc;
3472
3473 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3474
3475 if (disable) {
3476 sc->bnx_detaching = 1;
3477 callout_halt(&sc->bnx_timeout, NULL);
3478 } else
3479 callout_stop(&sc->bnx_timeout);
3480
3481 mii_down(&sc->bnx_mii);
3482
3483 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3484
3485 /* Disable the transmit/receive blocks. */
3486 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3487 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3488 DELAY(20);
3489
3490 bnx_disable_intr(sc);
3491
3492 /* Tell firmware that the driver is going away. */
3493 if (disable)
3494 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3495 else
3496 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3497
3498 /* Free RX buffers. */
3499 bnx_free_rx_chain(sc);
3500
3501 /* Free TX buffers. */
3502 bnx_free_tx_chain(sc);
3503
3504 ifp->if_timer = 0;
3505
3506 sc->bnx_link = 0;
3507
3508 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3509
3510 bnx_mgmt_init(sc);
3511 }
3512
3513 int
3514 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3515 {
3516 struct pci_attach_args *pa = &(sc->bnx_pa);
3517 uint32_t val;
3518 int i, rc = 0;
3519
3520 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3521
3522 /* Wait for pending PCI transactions to complete. */
3523 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3524 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3525 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3526 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3527 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3528 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3529 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3530 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3531 DELAY(5);
3532 } else {
3533 /* Disable DMA */
3534 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3535 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3536 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3537 REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3538
3539 for (i = 0; i < 100; i++) {
3540 delay(1 * 1000);
3541 val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3542 if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3543 break;
3544 }
3545 }
3546
3547 /* Assume bootcode is running. */
3548 sc->bnx_fw_timed_out = 0;
3549
3550 /* Give the firmware a chance to prepare for the reset. */
3551 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3552 if (rc)
3553 goto bnx_reset_exit;
3554
3555 /* Set a firmware reminder that this is a soft reset. */
3556 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3557 BNX_DRV_RESET_SIGNATURE_MAGIC);
3558
3559 /* Dummy read to force the chip to complete all current transactions. */
3560 val = REG_RD(sc, BNX_MISC_ID);
3561
3562 /* Chip reset. */
3563 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3564 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3565 REG_RD(sc, BNX_MISC_COMMAND);
3566 DELAY(5);
3567
3568 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3569 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3570
3571 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3572 val);
3573 } else {
3574 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3575 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3576 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3577 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3578
3579 /* Allow up to 30us for reset to complete. */
3580 for (i = 0; i < 10; i++) {
3581 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3582 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3583 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3584 break;
3585 }
3586 DELAY(10);
3587 }
3588
3589 /* Check that reset completed successfully. */
3590 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3591 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3592 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3593 __FILE__, __LINE__);
3594 rc = EBUSY;
3595 goto bnx_reset_exit;
3596 }
3597 }
3598
3599 /* Make sure byte swapping is properly configured. */
3600 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3601 if (val != 0x01020304) {
3602 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3603 __FILE__, __LINE__);
3604 rc = ENODEV;
3605 goto bnx_reset_exit;
3606 }
3607
3608 /* Just completed a reset, assume that firmware is running again. */
3609 sc->bnx_fw_timed_out = 0;
3610
3611 /* Wait for the firmware to finish its initialization. */
3612 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3613 if (rc)
3614 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3615 "initialization!\n", __FILE__, __LINE__);
3616
3617 bnx_reset_exit:
3618 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3619
3620 return rc;
3621 }
3622
3623 int
3624 bnx_chipinit(struct bnx_softc *sc)
3625 {
3626 struct pci_attach_args *pa = &(sc->bnx_pa);
3627 uint32_t val;
3628 int rc = 0;
3629
3630 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3631
3632 /* Make sure the interrupt is not active. */
3633 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3634
3635 /* Initialize DMA byte/word swapping, configure the number of DMA */
3636 /* channels and PCI clock compensation delay. */
3637 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3638 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3639 #if BYTE_ORDER == BIG_ENDIAN
3640 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3641 #endif
3642 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3643 DMA_READ_CHANS << 12 |
3644 DMA_WRITE_CHANS << 16;
3645
3646 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3647
3648 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3649 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3650
3651 /*
3652 * This setting resolves a problem observed on certain Intel PCI
3653 * chipsets that cannot handle multiple outstanding DMA operations.
3654 * See errata E9_5706A1_65.
3655 */
3656 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3657 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3658 !(sc->bnx_flags & BNX_PCIX_FLAG))
3659 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3660
3661 REG_WR(sc, BNX_DMA_CONFIG, val);
3662
3663 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3664 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3665 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3666 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3667 val & ~0x20000);
3668 }
3669
3670 /* Enable the RX_V2P and Context state machines before access. */
3671 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3672 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3673 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3674 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3675
3676 /* Initialize context mapping and zero out the quick contexts. */
3677 bnx_init_context(sc);
3678
3679 /* Initialize the on-boards CPUs */
3680 bnx_init_cpus(sc);
3681
3682 /* Enable management frames (NC-SI) to flow to the MCP. */
3683 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3684 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3685 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3686 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3687 }
3688
3689 /* Prepare NVRAM for access. */
3690 if (bnx_init_nvram(sc)) {
3691 rc = ENODEV;
3692 goto bnx_chipinit_exit;
3693 }
3694
3695 /* Set the kernel bypass block size */
3696 val = REG_RD(sc, BNX_MQ_CONFIG);
3697 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3698 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3699
3700 /* Enable bins used on the 5709. */
3701 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3702 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3703 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3704 val |= BNX_MQ_CONFIG_HALT_DIS;
3705 }
3706
3707 REG_WR(sc, BNX_MQ_CONFIG, val);
3708
3709 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3710 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3711 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3712
3713 val = (BCM_PAGE_BITS - 8) << 24;
3714 REG_WR(sc, BNX_RV2P_CONFIG, val);
3715
3716 /* Configure page size. */
3717 val = REG_RD(sc, BNX_TBDR_CONFIG);
3718 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3719 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3720 REG_WR(sc, BNX_TBDR_CONFIG, val);
3721
3722 #if 0
3723 /* Set the perfect match control register to default. */
3724 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3725 #endif
3726
3727 bnx_chipinit_exit:
3728 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3729
3730 return rc;
3731 }
3732
3733 /****************************************************************************/
3734 /* Initialize the controller in preparation to send/receive traffic. */
3735 /* */
3736 /* Returns: */
3737 /* 0 for success, positive value for failure. */
3738 /****************************************************************************/
3739 int
3740 bnx_blockinit(struct bnx_softc *sc)
3741 {
3742 uint32_t reg, val;
3743 int rc = 0;
3744
3745 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3746
3747 /* Load the hardware default MAC address. */
3748 bnx_set_mac_addr(sc);
3749
3750 /* Set the Ethernet backoff seed value */
3751 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3752 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3753 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3754
3755 sc->last_status_idx = 0;
3756 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3757
3758 /* Set up link change interrupt generation. */
3759 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3760 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3761
3762 /* Program the physical address of the status block. */
3763 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3764 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3765 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3766
3767 /* Program the physical address of the statistics block. */
3768 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3769 (uint32_t)(sc->stats_block_paddr));
3770 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3771 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3772
3773 /* Program various host coalescing parameters. */
3774 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3775 << 16) | sc->bnx_tx_quick_cons_trip);
3776 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3777 << 16) | sc->bnx_rx_quick_cons_trip);
3778 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3779 sc->bnx_comp_prod_trip);
3780 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3781 sc->bnx_tx_ticks);
3782 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3783 sc->bnx_rx_ticks);
3784 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3785 sc->bnx_com_ticks);
3786 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3787 sc->bnx_cmd_ticks);
3788 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3789 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3790 REG_WR(sc, BNX_HC_CONFIG,
3791 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3792 BNX_HC_CONFIG_COLLECT_STATS));
3793
3794 /* Clear the internal statistics counters. */
3795 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3796
3797 /* Verify that bootcode is running. */
3798 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3799
3800 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3801 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3802 __FILE__, __LINE__); reg = 0);
3803
3804 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3805 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3806 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3807 "Expected: 08%08X\n", __FILE__, __LINE__,
3808 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3809 BNX_DEV_INFO_SIGNATURE_MAGIC);
3810 rc = ENODEV;
3811 goto bnx_blockinit_exit;
3812 }
3813
3814 /* Enable DMA */
3815 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3816 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3817 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3818 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3819 }
3820
3821 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3822 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3823
3824 /* Disable management frames (NC-SI) from flowing to the MCP. */
3825 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3826 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3827 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3828 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3829 }
3830
3831 /* Enable all remaining blocks in the MAC. */
3832 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3833 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3834 BNX_MISC_ENABLE_DEFAULT_XI);
3835 } else
3836 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3837
3838 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3839 DELAY(20);
3840
3841 bnx_blockinit_exit:
3842 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3843
3844 return rc;
3845 }
3846
3847 static int
3848 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3849 uint16_t *chain_prod, uint32_t *prod_bseq)
3850 {
3851 bus_dmamap_t map;
3852 struct rx_bd *rxbd;
3853 uint32_t addr;
3854 int i;
3855 #ifdef BNX_DEBUG
3856 uint16_t debug_chain_prod = *chain_prod;
3857 #endif
3858 uint16_t first_chain_prod;
3859
3860 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3861
3862 /* Map the mbuf cluster into device memory. */
3863 map = sc->rx_mbuf_map[*chain_prod];
3864 first_chain_prod = *chain_prod;
3865 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3866 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3867 __FILE__, __LINE__);
3868
3869 m_freem(m_new);
3870
3871 DBRUNIF(1, sc->rx_mbuf_alloc--);
3872
3873 return ENOBUFS;
3874 }
3875 /* Make sure there is room in the receive chain. */
3876 if (map->dm_nsegs > sc->free_rx_bd) {
3877 bus_dmamap_unload(sc->bnx_dmatag, map);
3878 m_freem(m_new);
3879 return EFBIG;
3880 }
3881 #ifdef BNX_DEBUG
3882 /* Track the distribution of buffer segments. */
3883 sc->rx_mbuf_segs[map->dm_nsegs]++;
3884 #endif
3885
3886 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3887 BUS_DMASYNC_PREREAD);
3888
3889 /* Update some debug statistics counters */
3890 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3891 sc->rx_low_watermark = sc->free_rx_bd);
3892 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3893
3894 /*
3895 * Setup the rx_bd for the first segment
3896 */
3897 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3898
3899 addr = (uint32_t)map->dm_segs[0].ds_addr;
3900 rxbd->rx_bd_haddr_lo = addr;
3901 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3902 rxbd->rx_bd_haddr_hi = addr;
3903 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3904 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3905 *prod_bseq += map->dm_segs[0].ds_len;
3906 bus_dmamap_sync(sc->bnx_dmatag,
3907 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3908 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3909 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3910
3911 for (i = 1; i < map->dm_nsegs; i++) {
3912 *prod = NEXT_RX_BD(*prod);
3913 *chain_prod = RX_CHAIN_IDX(*prod);
3914
3915 rxbd =
3916 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3917
3918 addr = (uint32_t)map->dm_segs[i].ds_addr;
3919 rxbd->rx_bd_haddr_lo = addr;
3920 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3921 rxbd->rx_bd_haddr_hi = addr;
3922 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3923 rxbd->rx_bd_flags = 0;
3924 *prod_bseq += map->dm_segs[i].ds_len;
3925 bus_dmamap_sync(sc->bnx_dmatag,
3926 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3927 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3928 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3929 }
3930
3931 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3932 bus_dmamap_sync(sc->bnx_dmatag,
3933 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3934 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3935 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3936
3937 /*
3938 * Save the mbuf, adjust the map pointer (swap map for first and
3939 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3940 * and update our counter.
3941 */
3942 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3943 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3944 sc->rx_mbuf_map[*chain_prod] = map;
3945 sc->free_rx_bd -= map->dm_nsegs;
3946
3947 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3948 map->dm_nsegs));
3949 *prod = NEXT_RX_BD(*prod);
3950 *chain_prod = RX_CHAIN_IDX(*prod);
3951
3952 return 0;
3953 }
3954
3955 /****************************************************************************/
3956 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3957 /* */
3958 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3959 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3960 /* necessary. */
3961 /* */
3962 /* Returns: */
3963 /* 0 for success, positive value for failure. */
3964 /****************************************************************************/
3965 int
3966 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3967 uint16_t *chain_prod, uint32_t *prod_bseq)
3968 {
3969 struct mbuf *m_new = NULL;
3970 int rc = 0;
3971 uint16_t min_free_bd;
3972
3973 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3974 __func__);
3975
3976 /* Make sure the inputs are valid. */
3977 DBRUNIF((*chain_prod > MAX_RX_BD),
3978 aprint_error_dev(sc->bnx_dev,
3979 "RX producer out of range: 0x%04X > 0x%04X\n",
3980 *chain_prod, (uint16_t)MAX_RX_BD));
3981
3982 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3983 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3984 *prod_bseq);
3985
3986 /* try to get in as many mbufs as possible */
3987 if (sc->mbuf_alloc_size == MCLBYTES)
3988 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3989 else
3990 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3991 while (sc->free_rx_bd >= min_free_bd) {
3992 /* Simulate an mbuf allocation failure. */
3993 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3994 aprint_error_dev(sc->bnx_dev,
3995 "Simulating mbuf allocation failure.\n");
3996 sc->mbuf_sim_alloc_failed++;
3997 rc = ENOBUFS;
3998 goto bnx_get_buf_exit);
3999
4000 /* This is a new mbuf allocation. */
4001 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4002 if (m_new == NULL) {
4003 DBPRINT(sc, BNX_WARN,
4004 "%s(%d): RX mbuf header allocation failed!\n",
4005 __FILE__, __LINE__);
4006
4007 sc->mbuf_alloc_failed++;
4008
4009 rc = ENOBUFS;
4010 goto bnx_get_buf_exit;
4011 }
4012
4013 DBRUNIF(1, sc->rx_mbuf_alloc++);
4014
4015 /* Simulate an mbuf cluster allocation failure. */
4016 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4017 m_freem(m_new);
4018 sc->rx_mbuf_alloc--;
4019 sc->mbuf_alloc_failed++;
4020 sc->mbuf_sim_alloc_failed++;
4021 rc = ENOBUFS;
4022 goto bnx_get_buf_exit);
4023
4024 if (sc->mbuf_alloc_size == MCLBYTES)
4025 MCLGET(m_new, M_DONTWAIT);
4026 else
4027 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4028 M_DONTWAIT);
4029 if (!(m_new->m_flags & M_EXT)) {
4030 DBPRINT(sc, BNX_WARN,
4031 "%s(%d): RX mbuf chain allocation failed!\n",
4032 __FILE__, __LINE__);
4033
4034 m_freem(m_new);
4035
4036 DBRUNIF(1, sc->rx_mbuf_alloc--);
4037 sc->mbuf_alloc_failed++;
4038
4039 rc = ENOBUFS;
4040 goto bnx_get_buf_exit;
4041 }
4042
4043 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4044 if (rc != 0)
4045 goto bnx_get_buf_exit;
4046 }
4047
4048 bnx_get_buf_exit:
4049 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4050 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4051 *chain_prod, *prod_bseq);
4052
4053 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4054 __func__);
4055
4056 return rc;
4057 }
4058
4059 void
4060 bnx_alloc_pkts(struct work * unused, void * arg)
4061 {
4062 struct bnx_softc *sc = arg;
4063 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4064 struct bnx_pkt *pkt;
4065 int i, s;
4066
4067 for (i = 0; i < 4; i++) { /* magic! */
4068 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4069 if (pkt == NULL)
4070 break;
4071
4072 if (bus_dmamap_create(sc->bnx_dmatag,
4073 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4074 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4075 &pkt->pkt_dmamap) != 0)
4076 goto put;
4077
4078 if (!ISSET(ifp->if_flags, IFF_UP))
4079 goto stopping;
4080
4081 mutex_enter(&sc->tx_pkt_mtx);
4082 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4083 sc->tx_pkt_count++;
4084 mutex_exit(&sc->tx_pkt_mtx);
4085 }
4086
4087 mutex_enter(&sc->tx_pkt_mtx);
4088 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4089 mutex_exit(&sc->tx_pkt_mtx);
4090
4091 /* fire-up TX now that allocations have been done */
4092 s = splnet();
4093 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4094 bnx_start(ifp);
4095 splx(s);
4096
4097 return;
4098
4099 stopping:
4100 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4101 put:
4102 pool_put(bnx_tx_pool, pkt);
4103 return;
4104 }
4105
4106 /****************************************************************************/
4107 /* Initialize the TX context memory. */
4108 /* */
4109 /* Returns: */
4110 /* Nothing */
4111 /****************************************************************************/
4112 void
4113 bnx_init_tx_context(struct bnx_softc *sc)
4114 {
4115 uint32_t val;
4116
4117 /* Initialize the context ID for an L2 TX chain. */
4118 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4119 /* Set the CID type to support an L2 connection. */
4120 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4121 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4122 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4123 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4124
4125 /* Point the hardware to the first page in the chain. */
4126 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4127 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4128 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4129 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4130 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4131 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4132 } else {
4133 /* Set the CID type to support an L2 connection. */
4134 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4135 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4136 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4137 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4138
4139 /* Point the hardware to the first page in the chain. */
4140 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4141 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4142 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4143 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4144 }
4145 }
4146
4147
4148 /****************************************************************************/
4149 /* Allocate memory and initialize the TX data structures. */
4150 /* */
4151 /* Returns: */
4152 /* 0 for success, positive value for failure. */
4153 /****************************************************************************/
4154 int
4155 bnx_init_tx_chain(struct bnx_softc *sc)
4156 {
4157 struct tx_bd *txbd;
4158 uint32_t addr;
4159 int i, rc = 0;
4160
4161 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4162
4163 /* Force an allocation of some dmamaps for tx up front */
4164 bnx_alloc_pkts(NULL, sc);
4165
4166 /* Set the initial TX producer/consumer indices. */
4167 sc->tx_prod = 0;
4168 sc->tx_cons = 0;
4169 sc->tx_prod_bseq = 0;
4170 sc->used_tx_bd = 0;
4171 sc->max_tx_bd = USABLE_TX_BD;
4172 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4173 DBRUNIF(1, sc->tx_full_count = 0);
4174
4175 /*
4176 * The NetXtreme II supports a linked-list structure called
4177 * a Buffer Descriptor Chain (or BD chain). A BD chain
4178 * consists of a series of 1 or more chain pages, each of which
4179 * consists of a fixed number of BD entries.
4180 * The last BD entry on each page is a pointer to the next page
4181 * in the chain, and the last pointer in the BD chain
4182 * points back to the beginning of the chain.
4183 */
4184
4185 /* Set the TX next pointer chain entries. */
4186 for (i = 0; i < TX_PAGES; i++) {
4187 int j;
4188
4189 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4190
4191 /* Check if we've reached the last page. */
4192 if (i == (TX_PAGES - 1))
4193 j = 0;
4194 else
4195 j = i + 1;
4196
4197 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4198 txbd->tx_bd_haddr_lo = addr;
4199 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4200 txbd->tx_bd_haddr_hi = addr;
4201 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4202 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4203 }
4204
4205 /*
4206 * Initialize the context ID for an L2 TX chain.
4207 */
4208 bnx_init_tx_context(sc);
4209
4210 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4211
4212 return rc;
4213 }
4214
4215 /****************************************************************************/
4216 /* Free memory and clear the TX data structures. */
4217 /* */
4218 /* Returns: */
4219 /* Nothing. */
4220 /****************************************************************************/
4221 void
4222 bnx_free_tx_chain(struct bnx_softc *sc)
4223 {
4224 struct bnx_pkt *pkt;
4225 int i;
4226
4227 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4228
4229 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4230 mutex_enter(&sc->tx_pkt_mtx);
4231 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4232 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4233 mutex_exit(&sc->tx_pkt_mtx);
4234
4235 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4236 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4237 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4238
4239 m_freem(pkt->pkt_mbuf);
4240 DBRUNIF(1, sc->tx_mbuf_alloc--);
4241
4242 mutex_enter(&sc->tx_pkt_mtx);
4243 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4244 }
4245
4246 /* Destroy all the dmamaps we allocated for TX */
4247 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4248 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4249 sc->tx_pkt_count--;
4250 mutex_exit(&sc->tx_pkt_mtx);
4251
4252 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4253 pool_put(bnx_tx_pool, pkt);
4254
4255 mutex_enter(&sc->tx_pkt_mtx);
4256 }
4257 mutex_exit(&sc->tx_pkt_mtx);
4258
4259
4260
4261 /* Clear each TX chain page. */
4262 for (i = 0; i < TX_PAGES; i++) {
4263 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4264 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4265 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4266 }
4267
4268 sc->used_tx_bd = 0;
4269
4270 /* Check if we lost any mbufs in the process. */
4271 DBRUNIF((sc->tx_mbuf_alloc),
4272 aprint_error_dev(sc->bnx_dev,
4273 "Memory leak! Lost %d mbufs from tx chain!\n",
4274 sc->tx_mbuf_alloc));
4275
4276 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4277 }
4278
4279 /****************************************************************************/
4280 /* Initialize the RX context memory. */
4281 /* */
4282 /* Returns: */
4283 /* Nothing */
4284 /****************************************************************************/
4285 void
4286 bnx_init_rx_context(struct bnx_softc *sc)
4287 {
4288 uint32_t val;
4289
4290 /* Initialize the context ID for an L2 RX chain. */
4291 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4292 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4293
4294 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4295 val |= 0x000000ff;
4296
4297 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4298
4299 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4300 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4301 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4302 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4303 }
4304
4305 /* Point the hardware to the first page in the chain. */
4306 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4307 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4308 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4309 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4310 }
4311
4312 /****************************************************************************/
4313 /* Allocate memory and initialize the RX data structures. */
4314 /* */
4315 /* Returns: */
4316 /* 0 for success, positive value for failure. */
4317 /****************************************************************************/
4318 int
4319 bnx_init_rx_chain(struct bnx_softc *sc)
4320 {
4321 struct rx_bd *rxbd;
4322 int i, rc = 0;
4323 uint16_t prod, chain_prod;
4324 uint32_t prod_bseq, addr;
4325
4326 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4327
4328 /* Initialize the RX producer and consumer indices. */
4329 sc->rx_prod = 0;
4330 sc->rx_cons = 0;
4331 sc->rx_prod_bseq = 0;
4332 sc->free_rx_bd = USABLE_RX_BD;
4333 sc->max_rx_bd = USABLE_RX_BD;
4334 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4335 DBRUNIF(1, sc->rx_empty_count = 0);
4336
4337 /* Initialize the RX next pointer chain entries. */
4338 for (i = 0; i < RX_PAGES; i++) {
4339 int j;
4340
4341 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4342
4343 /* Check if we've reached the last page. */
4344 if (i == (RX_PAGES - 1))
4345 j = 0;
4346 else
4347 j = i + 1;
4348
4349 /* Setup the chain page pointers. */
4350 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4351 rxbd->rx_bd_haddr_hi = addr;
4352 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4353 rxbd->rx_bd_haddr_lo = addr;
4354 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4355 0, BNX_RX_CHAIN_PAGE_SZ,
4356 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4357 }
4358
4359 /* Allocate mbuf clusters for the rx_bd chain. */
4360 prod = prod_bseq = 0;
4361 chain_prod = RX_CHAIN_IDX(prod);
4362 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4363 BNX_PRINTF(sc,
4364 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4365 }
4366
4367 /* Save the RX chain producer index. */
4368 sc->rx_prod = prod;
4369 sc->rx_prod_bseq = prod_bseq;
4370
4371 for (i = 0; i < RX_PAGES; i++)
4372 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4373 sc->rx_bd_chain_map[i]->dm_mapsize,
4374 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4375
4376 /* Tell the chip about the waiting rx_bd's. */
4377 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4378 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4379
4380 bnx_init_rx_context(sc);
4381
4382 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4383
4384 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4385
4386 return rc;
4387 }
4388
4389 /****************************************************************************/
4390 /* Free memory and clear the RX data structures. */
4391 /* */
4392 /* Returns: */
4393 /* Nothing. */
4394 /****************************************************************************/
4395 void
4396 bnx_free_rx_chain(struct bnx_softc *sc)
4397 {
4398 int i;
4399
4400 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4401
4402 /* Free any mbufs still in the RX mbuf chain. */
4403 for (i = 0; i < TOTAL_RX_BD; i++) {
4404 if (sc->rx_mbuf_ptr[i] != NULL) {
4405 if (sc->rx_mbuf_map[i] != NULL) {
4406 bus_dmamap_sync(sc->bnx_dmatag,
4407 sc->rx_mbuf_map[i], 0,
4408 sc->rx_mbuf_map[i]->dm_mapsize,
4409 BUS_DMASYNC_POSTREAD);
4410 bus_dmamap_unload(sc->bnx_dmatag,
4411 sc->rx_mbuf_map[i]);
4412 }
4413 m_freem(sc->rx_mbuf_ptr[i]);
4414 sc->rx_mbuf_ptr[i] = NULL;
4415 DBRUNIF(1, sc->rx_mbuf_alloc--);
4416 }
4417 }
4418
4419 /* Clear each RX chain page. */
4420 for (i = 0; i < RX_PAGES; i++)
4421 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4422
4423 sc->free_rx_bd = sc->max_rx_bd;
4424
4425 /* Check if we lost any mbufs in the process. */
4426 DBRUNIF((sc->rx_mbuf_alloc),
4427 aprint_error_dev(sc->bnx_dev,
4428 "Memory leak! Lost %d mbufs from rx chain!\n",
4429 sc->rx_mbuf_alloc));
4430
4431 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4432 }
4433
4434 /****************************************************************************/
4435 /* Set media options. */
4436 /* */
4437 /* Returns: */
4438 /* 0 for success, positive value for failure. */
4439 /****************************************************************************/
4440 int
4441 bnx_ifmedia_upd(struct ifnet *ifp)
4442 {
4443 struct bnx_softc *sc;
4444 struct mii_data *mii;
4445 int rc = 0;
4446
4447 sc = ifp->if_softc;
4448
4449 mii = &sc->bnx_mii;
4450 sc->bnx_link = 0;
4451 if (mii->mii_instance) {
4452 struct mii_softc *miisc;
4453 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4454 mii_phy_reset(miisc);
4455 }
4456 mii_mediachg(mii);
4457
4458 return rc;
4459 }
4460
4461 /****************************************************************************/
4462 /* Reports current media status. */
4463 /* */
4464 /* Returns: */
4465 /* Nothing. */
4466 /****************************************************************************/
4467 void
4468 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4469 {
4470 struct bnx_softc *sc;
4471 struct mii_data *mii;
4472 int s;
4473
4474 sc = ifp->if_softc;
4475
4476 s = splnet();
4477
4478 mii = &sc->bnx_mii;
4479
4480 mii_pollstat(mii);
4481 ifmr->ifm_status = mii->mii_media_status;
4482 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4483 sc->bnx_flowflags;
4484
4485 splx(s);
4486 }
4487
4488 /****************************************************************************/
4489 /* Handles PHY generated interrupt events. */
4490 /* */
4491 /* Returns: */
4492 /* Nothing. */
4493 /****************************************************************************/
4494 void
4495 bnx_phy_intr(struct bnx_softc *sc)
4496 {
4497 uint32_t new_link_state, old_link_state;
4498
4499 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4500 BUS_DMASYNC_POSTREAD);
4501 new_link_state = sc->status_block->status_attn_bits &
4502 STATUS_ATTN_BITS_LINK_STATE;
4503 old_link_state = sc->status_block->status_attn_bits_ack &
4504 STATUS_ATTN_BITS_LINK_STATE;
4505
4506 /* Handle any changes if the link state has changed. */
4507 if (new_link_state != old_link_state) {
4508 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4509
4510 sc->bnx_link = 0;
4511 callout_stop(&sc->bnx_timeout);
4512 bnx_tick(sc);
4513
4514 /* Update the status_attn_bits_ack field in the status block. */
4515 if (new_link_state) {
4516 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4517 STATUS_ATTN_BITS_LINK_STATE);
4518 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4519 } else {
4520 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4521 STATUS_ATTN_BITS_LINK_STATE);
4522 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4523 }
4524 }
4525
4526 /* Acknowledge the link change interrupt. */
4527 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4528 }
4529
4530 /****************************************************************************/
4531 /* Handles received frame interrupt events. */
4532 /* */
4533 /* Returns: */
4534 /* Nothing. */
4535 /****************************************************************************/
4536 void
4537 bnx_rx_intr(struct bnx_softc *sc)
4538 {
4539 struct status_block *sblk = sc->status_block;
4540 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4541 uint16_t hw_cons, sw_cons, sw_chain_cons;
4542 uint16_t sw_prod, sw_chain_prod;
4543 uint32_t sw_prod_bseq;
4544 struct l2_fhdr *l2fhdr;
4545 int i;
4546
4547 DBRUNIF(1, sc->rx_interrupts++);
4548 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4549 BUS_DMASYNC_POSTREAD);
4550
4551 /* Prepare the RX chain pages to be accessed by the host CPU. */
4552 for (i = 0; i < RX_PAGES; i++)
4553 bus_dmamap_sync(sc->bnx_dmatag,
4554 sc->rx_bd_chain_map[i], 0,
4555 sc->rx_bd_chain_map[i]->dm_mapsize,
4556 BUS_DMASYNC_POSTWRITE);
4557
4558 /* Get the hardware's view of the RX consumer index. */
4559 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4560 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4561 hw_cons++;
4562
4563 /* Get working copies of the driver's view of the RX indices. */
4564 sw_cons = sc->rx_cons;
4565 sw_prod = sc->rx_prod;
4566 sw_prod_bseq = sc->rx_prod_bseq;
4567
4568 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4569 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4570 __func__, sw_prod, sw_cons, sw_prod_bseq);
4571
4572 /* Prevent speculative reads from getting ahead of the status block. */
4573 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4574 BUS_SPACE_BARRIER_READ);
4575
4576 /* Update some debug statistics counters */
4577 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4578 sc->rx_low_watermark = sc->free_rx_bd);
4579 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4580
4581 /*
4582 * Scan through the receive chain as long
4583 * as there is work to do.
4584 */
4585 while (sw_cons != hw_cons) {
4586 struct mbuf *m;
4587 struct rx_bd *rxbd __diagused;
4588 unsigned int len;
4589 uint32_t status;
4590
4591 /* Convert the producer/consumer indices to an actual
4592 * rx_bd index.
4593 */
4594 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4595 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4596
4597 /* Get the used rx_bd. */
4598 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4599 sc->free_rx_bd++;
4600
4601 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4602 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4603
4604 /* The mbuf is stored with the last rx_bd entry of a packet. */
4605 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4606 #ifdef DIAGNOSTIC
4607 /* Validate that this is the last rx_bd. */
4608 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4609 printf("%s: Unexpected mbuf found in "
4610 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4611 sw_chain_cons);
4612 }
4613 #endif
4614
4615 /* DRC - ToDo: If the received packet is small, say
4616 * less than 128 bytes, allocate a new mbuf
4617 * here, copy the data to that mbuf, and
4618 * recycle the mapped jumbo frame.
4619 */
4620
4621 /* Unmap the mbuf from DMA space. */
4622 #ifdef DIAGNOSTIC
4623 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4624 printf("invalid map sw_cons 0x%x "
4625 "sw_prod 0x%x "
4626 "sw_chain_cons 0x%x "
4627 "sw_chain_prod 0x%x "
4628 "hw_cons 0x%x "
4629 "TOTAL_RX_BD_PER_PAGE 0x%x "
4630 "TOTAL_RX_BD 0x%x\n",
4631 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4632 hw_cons,
4633 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4634 }
4635 #endif
4636 bus_dmamap_sync(sc->bnx_dmatag,
4637 sc->rx_mbuf_map[sw_chain_cons], 0,
4638 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4639 BUS_DMASYNC_POSTREAD);
4640 bus_dmamap_unload(sc->bnx_dmatag,
4641 sc->rx_mbuf_map[sw_chain_cons]);
4642
4643 /* Remove the mbuf from the driver's chain. */
4644 m = sc->rx_mbuf_ptr[sw_chain_cons];
4645 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4646
4647 /*
4648 * Frames received on the NetXteme II are prepended
4649 * with the l2_fhdr structure which provides status
4650 * information about the received frame (including
4651 * VLAN tags and checksum info) and are also
4652 * automatically adjusted to align the IP header
4653 * (i.e. two null bytes are inserted before the
4654 * Ethernet header).
4655 */
4656 l2fhdr = mtod(m, struct l2_fhdr *);
4657
4658 len = l2fhdr->l2_fhdr_pkt_len;
4659 status = l2fhdr->l2_fhdr_status;
4660
4661 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4662 aprint_error("Simulating l2_fhdr status error.\n");
4663 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4664
4665 /* Watch for unusual sized frames. */
4666 DBRUNIF(((len < BNX_MIN_MTU) ||
4667 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4668 aprint_error_dev(sc->bnx_dev,
4669 "Unusual frame size found. "
4670 "Min(%d), Actual(%d), Max(%d)\n",
4671 (int)BNX_MIN_MTU, len,
4672 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4673
4674 bnx_dump_mbuf(sc, m);
4675 bnx_breakpoint(sc));
4676
4677 len -= ETHER_CRC_LEN;
4678
4679 /* Check the received frame for errors. */
4680 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4681 L2_FHDR_ERRORS_PHY_DECODE |
4682 L2_FHDR_ERRORS_ALIGNMENT |
4683 L2_FHDR_ERRORS_TOO_SHORT |
4684 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4685 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4686 len >
4687 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4688 ifp->if_ierrors++;
4689 DBRUNIF(1, sc->l2fhdr_status_errors++);
4690
4691 /* Reuse the mbuf for a new frame. */
4692 if (bnx_add_buf(sc, m, &sw_prod,
4693 &sw_chain_prod, &sw_prod_bseq)) {
4694 DBRUNIF(1, bnx_breakpoint(sc));
4695 panic("%s: Can't reuse RX mbuf!\n",
4696 device_xname(sc->bnx_dev));
4697 }
4698 continue;
4699 }
4700
4701 /*
4702 * Get a new mbuf for the rx_bd. If no new
4703 * mbufs are available then reuse the current mbuf,
4704 * log an ierror on the interface, and generate
4705 * an error in the system log.
4706 */
4707 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4708 &sw_prod_bseq)) {
4709 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4710 "Failed to allocate "
4711 "new mbuf, incoming frame dropped!\n"));
4712
4713 ifp->if_ierrors++;
4714
4715 /* Try and reuse the exisitng mbuf. */
4716 if (bnx_add_buf(sc, m, &sw_prod,
4717 &sw_chain_prod, &sw_prod_bseq)) {
4718 DBRUNIF(1, bnx_breakpoint(sc));
4719 panic("%s: Double mbuf allocation "
4720 "failure!",
4721 device_xname(sc->bnx_dev));
4722 }
4723 continue;
4724 }
4725
4726 /* Skip over the l2_fhdr when passing the data up
4727 * the stack.
4728 */
4729 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4730
4731 /* Adjust the pckt length to match the received data. */
4732 m->m_pkthdr.len = m->m_len = len;
4733
4734 /* Send the packet to the appropriate interface. */
4735 m_set_rcvif(m, ifp);
4736
4737 DBRUN(BNX_VERBOSE_RECV,
4738 struct ether_header *eh;
4739 eh = mtod(m, struct ether_header *);
4740 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4741 __func__, ether_sprintf(eh->ether_dhost),
4742 ether_sprintf(eh->ether_shost),
4743 htons(eh->ether_type)));
4744
4745 /* Validate the checksum. */
4746
4747 /* Check for an IP datagram. */
4748 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4749 /* Check if the IP checksum is valid. */
4750 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4751 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4752 #ifdef BNX_DEBUG
4753 else
4754 DBPRINT(sc, BNX_WARN_SEND,
4755 "%s(): Invalid IP checksum "
4756 "= 0x%04X!\n",
4757 __func__,
4758 l2fhdr->l2_fhdr_ip_xsum
4759 );
4760 #endif
4761 }
4762
4763 /* Check for a valid TCP/UDP frame. */
4764 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4765 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4766 /* Check for a good TCP/UDP checksum. */
4767 if ((status &
4768 (L2_FHDR_ERRORS_TCP_XSUM |
4769 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4770 m->m_pkthdr.csum_flags |=
4771 M_CSUM_TCPv4 |
4772 M_CSUM_UDPv4;
4773 } else {
4774 DBPRINT(sc, BNX_WARN_SEND,
4775 "%s(): Invalid TCP/UDP "
4776 "checksum = 0x%04X!\n",
4777 __func__,
4778 l2fhdr->l2_fhdr_tcp_udp_xsum);
4779 }
4780 }
4781
4782 /*
4783 * If we received a packet with a vlan tag,
4784 * attach that information to the packet.
4785 */
4786 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4787 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4788 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4789 }
4790
4791 /* Pass the mbuf off to the upper layers. */
4792
4793 DBPRINT(sc, BNX_VERBOSE_RECV,
4794 "%s(): Passing received frame up.\n", __func__);
4795 if_percpuq_enqueue(ifp->if_percpuq, m);
4796 DBRUNIF(1, sc->rx_mbuf_alloc--);
4797
4798 }
4799
4800 sw_cons = NEXT_RX_BD(sw_cons);
4801
4802 /* Refresh hw_cons to see if there's new work */
4803 if (sw_cons == hw_cons) {
4804 hw_cons = sc->hw_rx_cons =
4805 sblk->status_rx_quick_consumer_index0;
4806 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4807 USABLE_RX_BD_PER_PAGE)
4808 hw_cons++;
4809 }
4810
4811 /* Prevent speculative reads from getting ahead of
4812 * the status block.
4813 */
4814 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4815 BUS_SPACE_BARRIER_READ);
4816 }
4817
4818 for (i = 0; i < RX_PAGES; i++)
4819 bus_dmamap_sync(sc->bnx_dmatag,
4820 sc->rx_bd_chain_map[i], 0,
4821 sc->rx_bd_chain_map[i]->dm_mapsize,
4822 BUS_DMASYNC_PREWRITE);
4823
4824 sc->rx_cons = sw_cons;
4825 sc->rx_prod = sw_prod;
4826 sc->rx_prod_bseq = sw_prod_bseq;
4827
4828 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4829 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4830
4831 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4832 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4833 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4834 }
4835
4836 /****************************************************************************/
4837 /* Handles transmit completion interrupt events. */
4838 /* */
4839 /* Returns: */
4840 /* Nothing. */
4841 /****************************************************************************/
4842 void
4843 bnx_tx_intr(struct bnx_softc *sc)
4844 {
4845 struct status_block *sblk = sc->status_block;
4846 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4847 struct bnx_pkt *pkt;
4848 bus_dmamap_t map;
4849 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4850
4851 DBRUNIF(1, sc->tx_interrupts++);
4852 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4853 BUS_DMASYNC_POSTREAD);
4854
4855 /* Get the hardware's view of the TX consumer index. */
4856 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4857
4858 /* Skip to the next entry if this is a chain page pointer. */
4859 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4860 hw_tx_cons++;
4861
4862 sw_tx_cons = sc->tx_cons;
4863
4864 /* Prevent speculative reads from getting ahead of the status block. */
4865 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4866 BUS_SPACE_BARRIER_READ);
4867
4868 /* Cycle through any completed TX chain page entries. */
4869 while (sw_tx_cons != hw_tx_cons) {
4870 #ifdef BNX_DEBUG
4871 struct tx_bd *txbd = NULL;
4872 #endif
4873 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4874
4875 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4876 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4877 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4878
4879 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4880 aprint_error_dev(sc->bnx_dev,
4881 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4882 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4883
4884 DBRUNIF(1, txbd = &sc->tx_bd_chain
4885 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4886
4887 DBRUNIF((txbd == NULL),
4888 aprint_error_dev(sc->bnx_dev,
4889 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4890 bnx_breakpoint(sc));
4891
4892 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4893 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4894
4895
4896 mutex_enter(&sc->tx_pkt_mtx);
4897 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4898 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4899 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4900 mutex_exit(&sc->tx_pkt_mtx);
4901 /*
4902 * Free the associated mbuf. Remember
4903 * that only the last tx_bd of a packet
4904 * has an mbuf pointer and DMA map.
4905 */
4906 map = pkt->pkt_dmamap;
4907 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4908 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4909 bus_dmamap_unload(sc->bnx_dmatag, map);
4910
4911 m_freem(pkt->pkt_mbuf);
4912 DBRUNIF(1, sc->tx_mbuf_alloc--);
4913
4914 ifp->if_opackets++;
4915
4916 mutex_enter(&sc->tx_pkt_mtx);
4917 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4918 }
4919 mutex_exit(&sc->tx_pkt_mtx);
4920
4921 sc->used_tx_bd--;
4922 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4923 __FILE__, __LINE__, sc->used_tx_bd);
4924
4925 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4926
4927 /* Refresh hw_cons to see if there's new work. */
4928 hw_tx_cons = sc->hw_tx_cons =
4929 sblk->status_tx_quick_consumer_index0;
4930 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4931 USABLE_TX_BD_PER_PAGE)
4932 hw_tx_cons++;
4933
4934 /* Prevent speculative reads from getting ahead of
4935 * the status block.
4936 */
4937 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4938 BUS_SPACE_BARRIER_READ);
4939 }
4940
4941 /* Clear the TX timeout timer. */
4942 ifp->if_timer = 0;
4943
4944 /* Clear the tx hardware queue full flag. */
4945 if (sc->used_tx_bd < sc->max_tx_bd) {
4946 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4947 aprint_debug_dev(sc->bnx_dev,
4948 "Open TX chain! %d/%d (used/total)\n",
4949 sc->used_tx_bd, sc->max_tx_bd));
4950 ifp->if_flags &= ~IFF_OACTIVE;
4951 }
4952
4953 sc->tx_cons = sw_tx_cons;
4954 }
4955
4956 /****************************************************************************/
4957 /* Disables interrupt generation. */
4958 /* */
4959 /* Returns: */
4960 /* Nothing. */
4961 /****************************************************************************/
4962 void
4963 bnx_disable_intr(struct bnx_softc *sc)
4964 {
4965 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4966 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4967 }
4968
4969 /****************************************************************************/
4970 /* Enables interrupt generation. */
4971 /* */
4972 /* Returns: */
4973 /* Nothing. */
4974 /****************************************************************************/
4975 void
4976 bnx_enable_intr(struct bnx_softc *sc)
4977 {
4978 uint32_t val;
4979
4980 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4981 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4982
4983 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4984 sc->last_status_idx);
4985
4986 val = REG_RD(sc, BNX_HC_COMMAND);
4987 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4988 }
4989
4990 /****************************************************************************/
4991 /* Handles controller initialization. */
4992 /* */
4993 /****************************************************************************/
4994 int
4995 bnx_init(struct ifnet *ifp)
4996 {
4997 struct bnx_softc *sc = ifp->if_softc;
4998 uint32_t ether_mtu;
4999 int s, error = 0;
5000
5001 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
5002
5003 s = splnet();
5004
5005 bnx_stop(ifp, 0);
5006
5007 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
5008 aprint_error_dev(sc->bnx_dev,
5009 "Controller reset failed!\n");
5010 goto bnx_init_exit;
5011 }
5012
5013 if ((error = bnx_chipinit(sc)) != 0) {
5014 aprint_error_dev(sc->bnx_dev,
5015 "Controller initialization failed!\n");
5016 goto bnx_init_exit;
5017 }
5018
5019 if ((error = bnx_blockinit(sc)) != 0) {
5020 aprint_error_dev(sc->bnx_dev,
5021 "Block initialization failed!\n");
5022 goto bnx_init_exit;
5023 }
5024
5025 /* Calculate and program the Ethernet MRU size. */
5026 if (ifp->if_mtu <= ETHERMTU) {
5027 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5028 sc->mbuf_alloc_size = MCLBYTES;
5029 } else {
5030 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5031 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5032 }
5033
5034
5035 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5036
5037 /*
5038 * Program the MRU and enable Jumbo frame
5039 * support.
5040 */
5041 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5042 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5043
5044 /* Calculate the RX Ethernet frame size for rx_bd's. */
5045 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5046
5047 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5048 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5049 sc->mbuf_alloc_size, sc->max_frame_size);
5050
5051 /* Program appropriate promiscuous/multicast filtering. */
5052 bnx_iff(sc);
5053
5054 /* Init RX buffer descriptor chain. */
5055 bnx_init_rx_chain(sc);
5056
5057 /* Init TX buffer descriptor chain. */
5058 bnx_init_tx_chain(sc);
5059
5060 /* Enable host interrupts. */
5061 bnx_enable_intr(sc);
5062
5063 bnx_ifmedia_upd(ifp);
5064
5065 SET(ifp->if_flags, IFF_RUNNING);
5066 CLR(ifp->if_flags, IFF_OACTIVE);
5067
5068 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5069
5070 bnx_init_exit:
5071 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5072
5073 splx(s);
5074
5075 return error;
5076 }
5077
5078 void
5079 bnx_mgmt_init(struct bnx_softc *sc)
5080 {
5081 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5082 uint32_t val;
5083
5084 /* Check if the driver is still running and bail out if it is. */
5085 if (ifp->if_flags & IFF_RUNNING)
5086 goto bnx_mgmt_init_exit;
5087
5088 /* Initialize the on-boards CPUs */
5089 bnx_init_cpus(sc);
5090
5091 val = (BCM_PAGE_BITS - 8) << 24;
5092 REG_WR(sc, BNX_RV2P_CONFIG, val);
5093
5094 /* Enable all critical blocks in the MAC. */
5095 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5096 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5097 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5098 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5099 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5100 DELAY(20);
5101
5102 bnx_ifmedia_upd(ifp);
5103
5104 bnx_mgmt_init_exit:
5105 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5106 }
5107
5108 /****************************************************************************/
5109 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5110 /* memory visible to the controller. */
5111 /* */
5112 /* Returns: */
5113 /* 0 for success, positive value for failure. */
5114 /****************************************************************************/
5115 int
5116 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5117 {
5118 struct bnx_pkt *pkt;
5119 bus_dmamap_t map;
5120 struct tx_bd *txbd = NULL;
5121 uint16_t vlan_tag = 0, flags = 0;
5122 uint16_t chain_prod, prod;
5123 #ifdef BNX_DEBUG
5124 uint16_t debug_prod;
5125 #endif
5126 uint32_t addr, prod_bseq;
5127 int i, error;
5128 static struct work bnx_wk; /* Dummy work. Statically allocated. */
5129 bool remap = true;
5130
5131 mutex_enter(&sc->tx_pkt_mtx);
5132 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5133 if (pkt == NULL) {
5134 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5135 mutex_exit(&sc->tx_pkt_mtx);
5136 return ENETDOWN;
5137 }
5138
5139 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5140 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5141 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
5142 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5143 }
5144
5145 mutex_exit(&sc->tx_pkt_mtx);
5146 return ENOMEM;
5147 }
5148 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5149 mutex_exit(&sc->tx_pkt_mtx);
5150
5151 /* Transfer any checksum offload flags to the bd. */
5152 if (m->m_pkthdr.csum_flags) {
5153 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5154 flags |= TX_BD_FLAGS_IP_CKSUM;
5155 if (m->m_pkthdr.csum_flags &
5156 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5157 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5158 }
5159
5160 /* Transfer any VLAN tags to the bd. */
5161 if (vlan_has_tag(m)) {
5162 flags |= TX_BD_FLAGS_VLAN_TAG;
5163 vlan_tag = vlan_get_tag(m);
5164 }
5165
5166 /* Map the mbuf into DMAable memory. */
5167 prod = sc->tx_prod;
5168 chain_prod = TX_CHAIN_IDX(prod);
5169 map = pkt->pkt_dmamap;
5170
5171 /* Map the mbuf into our DMA address space. */
5172 retry:
5173 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5174 if (__predict_false(error)) {
5175 if (error == EFBIG) {
5176 if (remap == true) {
5177 struct mbuf *newm;
5178
5179 remap = false;
5180 newm = m_defrag(m, M_NOWAIT);
5181 if (newm != NULL) {
5182 m = newm;
5183 goto retry;
5184 }
5185 }
5186 }
5187 sc->tx_dma_map_failures++;
5188 goto maperr;
5189 }
5190 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5191 BUS_DMASYNC_PREWRITE);
5192 /* Make sure there's room in the chain */
5193 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5194 goto nospace;
5195
5196 /* prod points to an empty tx_bd at this point. */
5197 prod_bseq = sc->tx_prod_bseq;
5198 #ifdef BNX_DEBUG
5199 debug_prod = chain_prod;
5200 #endif
5201 DBPRINT(sc, BNX_INFO_SEND,
5202 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5203 "prod_bseq = 0x%08X\n",
5204 __func__, prod, chain_prod, prod_bseq);
5205
5206 /*
5207 * Cycle through each mbuf segment that makes up
5208 * the outgoing frame, gathering the mapping info
5209 * for that segment and creating a tx_bd for the
5210 * mbuf.
5211 */
5212 for (i = 0; i < map->dm_nsegs ; i++) {
5213 chain_prod = TX_CHAIN_IDX(prod);
5214 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5215
5216 addr = (uint32_t)map->dm_segs[i].ds_addr;
5217 txbd->tx_bd_haddr_lo = addr;
5218 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5219 txbd->tx_bd_haddr_hi = addr;
5220 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5221 txbd->tx_bd_vlan_tag = vlan_tag;
5222 txbd->tx_bd_flags = flags;
5223 prod_bseq += map->dm_segs[i].ds_len;
5224 if (i == 0)
5225 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5226 prod = NEXT_TX_BD(prod);
5227 }
5228
5229 /* Set the END flag on the last TX buffer descriptor. */
5230 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5231
5232 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5233
5234 DBPRINT(sc, BNX_INFO_SEND,
5235 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5236 "prod_bseq = 0x%08X\n",
5237 __func__, prod, chain_prod, prod_bseq);
5238
5239 pkt->pkt_mbuf = m;
5240 pkt->pkt_end_desc = chain_prod;
5241
5242 mutex_enter(&sc->tx_pkt_mtx);
5243 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5244 mutex_exit(&sc->tx_pkt_mtx);
5245
5246 sc->used_tx_bd += map->dm_nsegs;
5247 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5248 __FILE__, __LINE__, sc->used_tx_bd);
5249
5250 /* Update some debug statistics counters */
5251 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5252 sc->tx_hi_watermark = sc->used_tx_bd);
5253 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5254 DBRUNIF(1, sc->tx_mbuf_alloc++);
5255
5256 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5257 map->dm_nsegs));
5258
5259 /* prod points to the next free tx_bd at this point. */
5260 sc->tx_prod = prod;
5261 sc->tx_prod_bseq = prod_bseq;
5262
5263 return 0;
5264
5265
5266 nospace:
5267 bus_dmamap_unload(sc->bnx_dmatag, map);
5268 maperr:
5269 mutex_enter(&sc->tx_pkt_mtx);
5270 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5271 mutex_exit(&sc->tx_pkt_mtx);
5272
5273 return ENOMEM;
5274 }
5275
5276 /****************************************************************************/
5277 /* Main transmit routine. */
5278 /* */
5279 /* Returns: */
5280 /* Nothing. */
5281 /****************************************************************************/
5282 void
5283 bnx_start(struct ifnet *ifp)
5284 {
5285 struct bnx_softc *sc = ifp->if_softc;
5286 struct mbuf *m_head = NULL;
5287 int count = 0;
5288 #ifdef BNX_DEBUG
5289 uint16_t tx_chain_prod;
5290 #endif
5291
5292 /* If there's no link or the transmit queue is empty then just exit. */
5293 if (!sc->bnx_link
5294 ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5295 DBPRINT(sc, BNX_INFO_SEND,
5296 "%s(): output active or device not running.\n", __func__);
5297 goto bnx_start_exit;
5298 }
5299
5300 /* prod points to the next free tx_bd. */
5301 #ifdef BNX_DEBUG
5302 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5303 #endif
5304
5305 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5306 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5307 "used_tx %d max_tx %d\n",
5308 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5309 sc->used_tx_bd, sc->max_tx_bd);
5310
5311 /*
5312 * Keep adding entries while there is space in the ring.
5313 */
5314 while (sc->used_tx_bd < sc->max_tx_bd) {
5315 /* Check for any frames to send. */
5316 IFQ_POLL(&ifp->if_snd, m_head);
5317 if (m_head == NULL)
5318 break;
5319
5320 /*
5321 * Pack the data into the transmit ring. If we
5322 * don't have room, set the OACTIVE flag to wait
5323 * for the NIC to drain the chain.
5324 */
5325 if (bnx_tx_encap(sc, m_head)) {
5326 ifp->if_flags |= IFF_OACTIVE;
5327 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5328 "business! Total tx_bd used = %d\n",
5329 sc->used_tx_bd);
5330 break;
5331 }
5332
5333 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5334 count++;
5335
5336 /* Send a copy of the frame to any BPF listeners. */
5337 bpf_mtap(ifp, m_head, BPF_D_OUT);
5338 }
5339
5340 if (count == 0) {
5341 /* no packets were dequeued */
5342 DBPRINT(sc, BNX_VERBOSE_SEND,
5343 "%s(): No packets were dequeued\n", __func__);
5344 goto bnx_start_exit;
5345 }
5346
5347 /* Update the driver's counters. */
5348 #ifdef BNX_DEBUG
5349 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5350 #endif
5351
5352 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5353 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5354 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5355
5356 /* Start the transmit. */
5357 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5358 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5359
5360 /* Set the tx timeout. */
5361 ifp->if_timer = BNX_TX_TIMEOUT;
5362
5363 bnx_start_exit:
5364 return;
5365 }
5366
5367 /****************************************************************************/
5368 /* Handles any IOCTL calls from the operating system. */
5369 /* */
5370 /* Returns: */
5371 /* 0 for success, positive value for failure. */
5372 /****************************************************************************/
5373 int
5374 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5375 {
5376 struct bnx_softc *sc = ifp->if_softc;
5377 struct ifreq *ifr = (struct ifreq *) data;
5378 struct mii_data *mii = &sc->bnx_mii;
5379 int s, error = 0;
5380
5381 s = splnet();
5382
5383 switch (command) {
5384 case SIOCSIFFLAGS:
5385 if ((error = ifioctl_common(ifp, command, data)) != 0)
5386 break;
5387 /* XXX set an ifflags callback and let ether_ioctl
5388 * handle all of this.
5389 */
5390 if (ISSET(ifp->if_flags, IFF_UP)) {
5391 if (ifp->if_flags & IFF_RUNNING)
5392 error = ENETRESET;
5393 else
5394 bnx_init(ifp);
5395 } else if (ifp->if_flags & IFF_RUNNING)
5396 bnx_stop(ifp, 1);
5397 break;
5398
5399 case SIOCSIFMEDIA:
5400 /* Flow control requires full-duplex mode. */
5401 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5402 (ifr->ifr_media & IFM_FDX) == 0)
5403 ifr->ifr_media &= ~IFM_ETH_FMASK;
5404
5405 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5406 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5407 /* We can do both TXPAUSE and RXPAUSE. */
5408 ifr->ifr_media |=
5409 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5410 }
5411 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5412 }
5413 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5414 sc->bnx_phy_flags);
5415
5416 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5417 break;
5418
5419 default:
5420 error = ether_ioctl(ifp, command, data);
5421 }
5422
5423 if (error == ENETRESET) {
5424 if (ifp->if_flags & IFF_RUNNING)
5425 bnx_iff(sc);
5426 error = 0;
5427 }
5428
5429 splx(s);
5430 return error;
5431 }
5432
5433 /****************************************************************************/
5434 /* Transmit timeout handler. */
5435 /* */
5436 /* Returns: */
5437 /* Nothing. */
5438 /****************************************************************************/
5439 void
5440 bnx_watchdog(struct ifnet *ifp)
5441 {
5442 struct bnx_softc *sc = ifp->if_softc;
5443
5444 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5445 bnx_dump_status_block(sc));
5446 /*
5447 * If we are in this routine because of pause frames, then
5448 * don't reset the hardware.
5449 */
5450 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5451 return;
5452
5453 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5454
5455 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5456
5457 bnx_init(ifp);
5458
5459 ifp->if_oerrors++;
5460 }
5461
5462 /*
5463 * Interrupt handler.
5464 */
5465 /****************************************************************************/
5466 /* Main interrupt entry point. Verifies that the controller generated the */
5467 /* interrupt and then calls a separate routine for handle the various */
5468 /* interrupt causes (PHY, TX, RX). */
5469 /* */
5470 /* Returns: */
5471 /* 0 for success, positive value for failure. */
5472 /****************************************************************************/
5473 int
5474 bnx_intr(void *xsc)
5475 {
5476 struct bnx_softc *sc = xsc;
5477 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5478 uint32_t status_attn_bits;
5479 uint16_t status_idx;
5480 const struct status_block *sblk;
5481 int rv = 0;
5482
5483 if (!device_is_active(sc->bnx_dev) ||
5484 (ifp->if_flags & IFF_RUNNING) == 0)
5485 return 0;
5486
5487 DBRUNIF(1, sc->interrupts_generated++);
5488
5489 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5490 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5491
5492 sblk = sc->status_block;
5493 /*
5494 * If the hardware status block index
5495 * matches the last value read by the
5496 * driver and we haven't asserted our
5497 * interrupt then there's nothing to do.
5498 */
5499 status_idx = sblk->status_idx;
5500 if ((status_idx != sc->last_status_idx) ||
5501 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5502 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5503 rv = 1;
5504
5505 /* Ack the interrupt */
5506 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5507 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5508
5509 status_attn_bits = sblk->status_attn_bits;
5510
5511 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5512 aprint_debug("Simulating unexpected status attention bit set.");
5513 status_attn_bits = status_attn_bits |
5514 STATUS_ATTN_BITS_PARITY_ERROR);
5515
5516 /* Was it a link change interrupt? */
5517 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5518 (sblk->status_attn_bits_ack &
5519 STATUS_ATTN_BITS_LINK_STATE))
5520 bnx_phy_intr(sc);
5521
5522 /* If any other attention is asserted then the chip is toast. */
5523 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5524 (sblk->status_attn_bits_ack &
5525 ~STATUS_ATTN_BITS_LINK_STATE))) {
5526 DBRUN(sc->unexpected_attentions++);
5527
5528 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5529 sblk->status_attn_bits);
5530
5531 DBRUNIF((bnx_debug_unexpected_attention == 0),
5532 bnx_breakpoint(sc));
5533
5534 bnx_init(ifp);
5535 goto out;
5536 }
5537
5538 /* Check for any completed RX frames. */
5539 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5540 bnx_rx_intr(sc);
5541
5542 /* Check for any completed TX frames. */
5543 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5544 bnx_tx_intr(sc);
5545
5546 /*
5547 * Save the status block index value for use during the
5548 * next interrupt.
5549 */
5550 sc->last_status_idx = status_idx;
5551
5552 /* Start moving packets again */
5553 if (ifp->if_flags & IFF_RUNNING)
5554 if_schedule_deferred_start(ifp);
5555 }
5556
5557 out:
5558 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5559 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5560
5561 return rv;
5562 }
5563
5564 /****************************************************************************/
5565 /* Programs the various packet receive modes (broadcast and multicast). */
5566 /* */
5567 /* Returns: */
5568 /* Nothing. */
5569 /****************************************************************************/
5570 void
5571 bnx_iff(struct bnx_softc *sc)
5572 {
5573 struct ethercom *ec = &sc->bnx_ec;
5574 struct ifnet *ifp = &ec->ec_if;
5575 struct ether_multi *enm;
5576 struct ether_multistep step;
5577 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5578 uint32_t rx_mode, sort_mode;
5579 int h, i;
5580
5581 /* Initialize receive mode default settings. */
5582 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5583 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5584 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5585 ifp->if_flags &= ~IFF_ALLMULTI;
5586
5587 /*
5588 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5589 * be enbled.
5590 */
5591 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5592 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5593
5594 /*
5595 * Check for promiscuous, all multicast, or selected
5596 * multicast address filtering.
5597 */
5598 if (ifp->if_flags & IFF_PROMISC) {
5599 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5600
5601 ifp->if_flags |= IFF_ALLMULTI;
5602 /* Enable promiscuous mode. */
5603 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5604 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5605 } else if (ifp->if_flags & IFF_ALLMULTI) {
5606 allmulti:
5607 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5608
5609 ifp->if_flags |= IFF_ALLMULTI;
5610 /* Enable all multicast addresses. */
5611 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5612 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5613 0xffffffff);
5614 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5615 } else {
5616 /* Accept one or more multicast(s). */
5617 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5618
5619 ETHER_LOCK(ec);
5620 ETHER_FIRST_MULTI(step, ec, enm);
5621 while (enm != NULL) {
5622 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5623 ETHER_ADDR_LEN)) {
5624 ETHER_UNLOCK(ec);
5625 goto allmulti;
5626 }
5627 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5628 0xFF;
5629 hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
5630 ETHER_NEXT_MULTI(step, enm);
5631 }
5632 ETHER_UNLOCK(ec);
5633
5634 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5635 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5636 hashes[i]);
5637
5638 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5639 }
5640
5641 /* Only make changes if the recive mode has actually changed. */
5642 if (rx_mode != sc->rx_mode) {
5643 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5644 rx_mode);
5645
5646 sc->rx_mode = rx_mode;
5647 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5648 }
5649
5650 /* Disable and clear the exisitng sort before enabling a new sort. */
5651 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5652 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5653 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5654 }
5655
5656 /****************************************************************************/
5657 /* Called periodically to updates statistics from the controllers */
5658 /* statistics block. */
5659 /* */
5660 /* Returns: */
5661 /* Nothing. */
5662 /****************************************************************************/
5663 void
5664 bnx_stats_update(struct bnx_softc *sc)
5665 {
5666 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5667 struct statistics_block *stats;
5668
5669 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5670 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5671 BUS_DMASYNC_POSTREAD);
5672
5673 stats = (struct statistics_block *)sc->stats_block;
5674
5675 /*
5676 * Update the interface statistics from the
5677 * hardware statistics.
5678 */
5679 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5680
5681 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5682 (u_long)stats->stat_EtherStatsOverrsizePkts +
5683 (u_long)stats->stat_IfInMBUFDiscards +
5684 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5685 (u_long)stats->stat_Dot3StatsFCSErrors;
5686
5687 ifp->if_oerrors = (u_long)
5688 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5689 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5690 (u_long)stats->stat_Dot3StatsLateCollisions;
5691
5692 /*
5693 * Certain controllers don't report
5694 * carrier sense errors correctly.
5695 * See errata E11_5708CA0_1165.
5696 */
5697 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5698 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5699 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5700
5701 /*
5702 * Update the sysctl statistics from the
5703 * hardware statistics.
5704 */
5705 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5706 (uint64_t) stats->stat_IfHCInOctets_lo;
5707
5708 sc->stat_IfHCInBadOctets =
5709 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5710 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5711
5712 sc->stat_IfHCOutOctets =
5713 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5714 (uint64_t) stats->stat_IfHCOutOctets_lo;
5715
5716 sc->stat_IfHCOutBadOctets =
5717 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5718 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5719
5720 sc->stat_IfHCInUcastPkts =
5721 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5722 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5723
5724 sc->stat_IfHCInMulticastPkts =
5725 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5726 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5727
5728 sc->stat_IfHCInBroadcastPkts =
5729 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5730 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5731
5732 sc->stat_IfHCOutUcastPkts =
5733 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5734 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5735
5736 sc->stat_IfHCOutMulticastPkts =
5737 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5738 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5739
5740 sc->stat_IfHCOutBroadcastPkts =
5741 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5742 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5743
5744 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5745 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5746
5747 sc->stat_Dot3StatsCarrierSenseErrors =
5748 stats->stat_Dot3StatsCarrierSenseErrors;
5749
5750 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5751
5752 sc->stat_Dot3StatsAlignmentErrors =
5753 stats->stat_Dot3StatsAlignmentErrors;
5754
5755 sc->stat_Dot3StatsSingleCollisionFrames =
5756 stats->stat_Dot3StatsSingleCollisionFrames;
5757
5758 sc->stat_Dot3StatsMultipleCollisionFrames =
5759 stats->stat_Dot3StatsMultipleCollisionFrames;
5760
5761 sc->stat_Dot3StatsDeferredTransmissions =
5762 stats->stat_Dot3StatsDeferredTransmissions;
5763
5764 sc->stat_Dot3StatsExcessiveCollisions =
5765 stats->stat_Dot3StatsExcessiveCollisions;
5766
5767 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5768
5769 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5770
5771 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5772
5773 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5774
5775 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5776
5777 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5778
5779 sc->stat_EtherStatsPktsRx64Octets =
5780 stats->stat_EtherStatsPktsRx64Octets;
5781
5782 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5783 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5784
5785 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5786 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5787
5788 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5789 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5790
5791 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5792 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5793
5794 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5795 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5796
5797 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5798 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5799
5800 sc->stat_EtherStatsPktsTx64Octets =
5801 stats->stat_EtherStatsPktsTx64Octets;
5802
5803 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5804 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5805
5806 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5807 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5808
5809 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5810 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5811
5812 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5813 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5814
5815 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5816 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5817
5818 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5819 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5820
5821 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5822
5823 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5824
5825 sc->stat_OutXonSent = stats->stat_OutXonSent;
5826
5827 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5828
5829 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5830
5831 sc->stat_MacControlFramesReceived =
5832 stats->stat_MacControlFramesReceived;
5833
5834 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5835
5836 sc->stat_IfInFramesL2FilterDiscards =
5837 stats->stat_IfInFramesL2FilterDiscards;
5838
5839 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5840
5841 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5842
5843 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5844
5845 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5846
5847 sc->stat_CatchupInRuleCheckerDiscards =
5848 stats->stat_CatchupInRuleCheckerDiscards;
5849
5850 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5851
5852 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5853
5854 sc->stat_CatchupInRuleCheckerP4Hit =
5855 stats->stat_CatchupInRuleCheckerP4Hit;
5856
5857 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5858 }
5859
5860 void
5861 bnx_tick(void *xsc)
5862 {
5863 struct bnx_softc *sc = xsc;
5864 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5865 struct mii_data *mii;
5866 uint32_t msg;
5867 uint16_t prod, chain_prod;
5868 uint32_t prod_bseq;
5869 int s = splnet();
5870
5871 /* Tell the firmware that the driver is still running. */
5872 #ifdef BNX_DEBUG
5873 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5874 #else
5875 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5876 #endif
5877 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5878
5879 /* Update the statistics from the hardware statistics block. */
5880 bnx_stats_update(sc);
5881
5882 /* Schedule the next tick. */
5883 if (!sc->bnx_detaching)
5884 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5885
5886 if (sc->bnx_link)
5887 goto bnx_tick_exit;
5888
5889 mii = &sc->bnx_mii;
5890 mii_tick(mii);
5891
5892 /* Check if the link has come up. */
5893 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5894 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5895 sc->bnx_link++;
5896 /* Now that link is up, handle any outstanding TX traffic. */
5897 if_schedule_deferred_start(ifp);
5898 }
5899
5900 bnx_tick_exit:
5901 /* try to get more RX buffers, just in case */
5902 prod = sc->rx_prod;
5903 prod_bseq = sc->rx_prod_bseq;
5904 chain_prod = RX_CHAIN_IDX(prod);
5905 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5906 sc->rx_prod = prod;
5907 sc->rx_prod_bseq = prod_bseq;
5908
5909 splx(s);
5910 return;
5911 }
5912
5913 /****************************************************************************/
5914 /* BNX Debug Routines */
5915 /****************************************************************************/
5916 #ifdef BNX_DEBUG
5917
5918 /****************************************************************************/
5919 /* Prints out information about an mbuf. */
5920 /* */
5921 /* Returns: */
5922 /* Nothing. */
5923 /****************************************************************************/
5924 void
5925 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5926 {
5927 struct mbuf *mp = m;
5928
5929 if (m == NULL) {
5930 /* Index out of range. */
5931 aprint_error("mbuf ptr is null!\n");
5932 return;
5933 }
5934
5935 while (mp) {
5936 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5937 mp, mp->m_len);
5938
5939 if (mp->m_flags & M_EXT)
5940 aprint_debug("M_EXT ");
5941 if (mp->m_flags & M_PKTHDR)
5942 aprint_debug("M_PKTHDR ");
5943 aprint_debug("\n");
5944
5945 if (mp->m_flags & M_EXT)
5946 aprint_debug("- m_ext: vaddr = %p, "
5947 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5948
5949 mp = mp->m_next;
5950 }
5951 }
5952
5953 /****************************************************************************/
5954 /* Prints out the mbufs in the TX mbuf chain. */
5955 /* */
5956 /* Returns: */
5957 /* Nothing. */
5958 /****************************************************************************/
5959 void
5960 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5961 {
5962 #if 0
5963 struct mbuf *m;
5964 int i;
5965
5966 aprint_debug_dev(sc->bnx_dev,
5967 "----------------------------"
5968 " tx mbuf data "
5969 "----------------------------\n");
5970
5971 for (i = 0; i < count; i++) {
5972 m = sc->tx_mbuf_ptr[chain_prod];
5973 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5974 bnx_dump_mbuf(sc, m);
5975 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5976 }
5977
5978 aprint_debug_dev(sc->bnx_dev,
5979 "--------------------------------------------"
5980 "----------------------------\n");
5981 #endif
5982 }
5983
5984 /*
5985 * This routine prints the RX mbuf chain.
5986 */
5987 void
5988 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5989 {
5990 struct mbuf *m;
5991 int i;
5992
5993 aprint_debug_dev(sc->bnx_dev,
5994 "----------------------------"
5995 " rx mbuf data "
5996 "----------------------------\n");
5997
5998 for (i = 0; i < count; i++) {
5999 m = sc->rx_mbuf_ptr[chain_prod];
6000 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
6001 bnx_dump_mbuf(sc, m);
6002 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6003 }
6004
6005
6006 aprint_debug_dev(sc->bnx_dev,
6007 "--------------------------------------------"
6008 "----------------------------\n");
6009 }
6010
6011 void
6012 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6013 {
6014 if (idx > MAX_TX_BD)
6015 /* Index out of range. */
6016 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6017 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6018 /* TX Chain page pointer. */
6019 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6020 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6021 txbd->tx_bd_haddr_lo);
6022 else
6023 /* Normal tx_bd entry. */
6024 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6025 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6026 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6027 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6028 txbd->tx_bd_flags);
6029 }
6030
6031 void
6032 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6033 {
6034 if (idx > MAX_RX_BD)
6035 /* Index out of range. */
6036 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6037 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6038 /* TX Chain page pointer. */
6039 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6040 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6041 rxbd->rx_bd_haddr_lo);
6042 else
6043 /* Normal tx_bd entry. */
6044 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6045 "0x%08X, flags = 0x%08X\n", idx,
6046 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6047 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6048 }
6049
6050 void
6051 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6052 {
6053 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6054 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6055 "tcp_udp_xsum = 0x%04X\n", idx,
6056 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6057 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6058 l2fhdr->l2_fhdr_tcp_udp_xsum);
6059 }
6060
6061 /*
6062 * This routine prints the TX chain.
6063 */
6064 void
6065 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6066 {
6067 struct tx_bd *txbd;
6068 int i;
6069
6070 /* First some info about the tx_bd chain structure. */
6071 aprint_debug_dev(sc->bnx_dev,
6072 "----------------------------"
6073 " tx_bd chain "
6074 "----------------------------\n");
6075
6076 BNX_PRINTF(sc,
6077 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6078 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6079
6080 BNX_PRINTF(sc,
6081 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6082 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6083
6084 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6085
6086 aprint_error_dev(sc->bnx_dev, ""
6087 "-----------------------------"
6088 " tx_bd data "
6089 "-----------------------------\n");
6090
6091 /* Now print out the tx_bd's themselves. */
6092 for (i = 0; i < count; i++) {
6093 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6094 bnx_dump_txbd(sc, tx_prod, txbd);
6095 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6096 }
6097
6098 aprint_debug_dev(sc->bnx_dev,
6099 "-----------------------------"
6100 "--------------"
6101 "-----------------------------\n");
6102 }
6103
6104 /*
6105 * This routine prints the RX chain.
6106 */
6107 void
6108 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6109 {
6110 struct rx_bd *rxbd;
6111 int i;
6112
6113 /* First some info about the tx_bd chain structure. */
6114 aprint_debug_dev(sc->bnx_dev,
6115 "----------------------------"
6116 " rx_bd chain "
6117 "----------------------------\n");
6118
6119 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6120
6121 BNX_PRINTF(sc,
6122 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6123 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6124
6125 BNX_PRINTF(sc,
6126 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6127 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6128
6129 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6130
6131 aprint_error_dev(sc->bnx_dev,
6132 "----------------------------"
6133 " rx_bd data "
6134 "----------------------------\n");
6135
6136 /* Now print out the rx_bd's themselves. */
6137 for (i = 0; i < count; i++) {
6138 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6139 bnx_dump_rxbd(sc, rx_prod, rxbd);
6140 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6141 }
6142
6143 aprint_debug_dev(sc->bnx_dev,
6144 "----------------------------"
6145 "--------------"
6146 "----------------------------\n");
6147 }
6148
6149 /*
6150 * This routine prints the status block.
6151 */
6152 void
6153 bnx_dump_status_block(struct bnx_softc *sc)
6154 {
6155 struct status_block *sblk;
6156 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6157 BUS_DMASYNC_POSTREAD);
6158
6159 sblk = sc->status_block;
6160
6161 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6162 "Status Block -----------------------------\n");
6163
6164 BNX_PRINTF(sc,
6165 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6166 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6167 sblk->status_idx);
6168
6169 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6170 sblk->status_rx_quick_consumer_index0,
6171 sblk->status_tx_quick_consumer_index0);
6172
6173 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6174
6175 /* Theses indices are not used for normal L2 drivers. */
6176 if (sblk->status_rx_quick_consumer_index1 ||
6177 sblk->status_tx_quick_consumer_index1)
6178 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6179 sblk->status_rx_quick_consumer_index1,
6180 sblk->status_tx_quick_consumer_index1);
6181
6182 if (sblk->status_rx_quick_consumer_index2 ||
6183 sblk->status_tx_quick_consumer_index2)
6184 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6185 sblk->status_rx_quick_consumer_index2,
6186 sblk->status_tx_quick_consumer_index2);
6187
6188 if (sblk->status_rx_quick_consumer_index3 ||
6189 sblk->status_tx_quick_consumer_index3)
6190 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6191 sblk->status_rx_quick_consumer_index3,
6192 sblk->status_tx_quick_consumer_index3);
6193
6194 if (sblk->status_rx_quick_consumer_index4 ||
6195 sblk->status_rx_quick_consumer_index5)
6196 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6197 sblk->status_rx_quick_consumer_index4,
6198 sblk->status_rx_quick_consumer_index5);
6199
6200 if (sblk->status_rx_quick_consumer_index6 ||
6201 sblk->status_rx_quick_consumer_index7)
6202 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6203 sblk->status_rx_quick_consumer_index6,
6204 sblk->status_rx_quick_consumer_index7);
6205
6206 if (sblk->status_rx_quick_consumer_index8 ||
6207 sblk->status_rx_quick_consumer_index9)
6208 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6209 sblk->status_rx_quick_consumer_index8,
6210 sblk->status_rx_quick_consumer_index9);
6211
6212 if (sblk->status_rx_quick_consumer_index10 ||
6213 sblk->status_rx_quick_consumer_index11)
6214 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6215 sblk->status_rx_quick_consumer_index10,
6216 sblk->status_rx_quick_consumer_index11);
6217
6218 if (sblk->status_rx_quick_consumer_index12 ||
6219 sblk->status_rx_quick_consumer_index13)
6220 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6221 sblk->status_rx_quick_consumer_index12,
6222 sblk->status_rx_quick_consumer_index13);
6223
6224 if (sblk->status_rx_quick_consumer_index14 ||
6225 sblk->status_rx_quick_consumer_index15)
6226 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6227 sblk->status_rx_quick_consumer_index14,
6228 sblk->status_rx_quick_consumer_index15);
6229
6230 if (sblk->status_completion_producer_index ||
6231 sblk->status_cmd_consumer_index)
6232 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6233 sblk->status_completion_producer_index,
6234 sblk->status_cmd_consumer_index);
6235
6236 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6237 "-----------------------------\n");
6238 }
6239
6240 /*
6241 * This routine prints the statistics block.
6242 */
6243 void
6244 bnx_dump_stats_block(struct bnx_softc *sc)
6245 {
6246 struct statistics_block *sblk;
6247 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6248 BUS_DMASYNC_POSTREAD);
6249
6250 sblk = sc->stats_block;
6251
6252 aprint_debug_dev(sc->bnx_dev, ""
6253 "-----------------------------"
6254 " Stats Block "
6255 "-----------------------------\n");
6256
6257 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6258 "IfHcInBadOctets = 0x%08X:%08X\n",
6259 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6260 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6261
6262 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6263 "IfHcOutBadOctets = 0x%08X:%08X\n",
6264 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6265 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6266
6267 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6268 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6269 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6270 sblk->stat_IfHCInMulticastPkts_hi,
6271 sblk->stat_IfHCInMulticastPkts_lo);
6272
6273 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6274 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6275 sblk->stat_IfHCInBroadcastPkts_hi,
6276 sblk->stat_IfHCInBroadcastPkts_lo,
6277 sblk->stat_IfHCOutUcastPkts_hi,
6278 sblk->stat_IfHCOutUcastPkts_lo);
6279
6280 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6281 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6282 sblk->stat_IfHCOutMulticastPkts_hi,
6283 sblk->stat_IfHCOutMulticastPkts_lo,
6284 sblk->stat_IfHCOutBroadcastPkts_hi,
6285 sblk->stat_IfHCOutBroadcastPkts_lo);
6286
6287 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6288 BNX_PRINTF(sc, "0x%08X : "
6289 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6290 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6291
6292 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6293 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6294 sblk->stat_Dot3StatsCarrierSenseErrors);
6295
6296 if (sblk->stat_Dot3StatsFCSErrors)
6297 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6298 sblk->stat_Dot3StatsFCSErrors);
6299
6300 if (sblk->stat_Dot3StatsAlignmentErrors)
6301 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6302 sblk->stat_Dot3StatsAlignmentErrors);
6303
6304 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6305 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6306 sblk->stat_Dot3StatsSingleCollisionFrames);
6307
6308 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6309 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6310 sblk->stat_Dot3StatsMultipleCollisionFrames);
6311
6312 if (sblk->stat_Dot3StatsDeferredTransmissions)
6313 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6314 sblk->stat_Dot3StatsDeferredTransmissions);
6315
6316 if (sblk->stat_Dot3StatsExcessiveCollisions)
6317 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6318 sblk->stat_Dot3StatsExcessiveCollisions);
6319
6320 if (sblk->stat_Dot3StatsLateCollisions)
6321 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6322 sblk->stat_Dot3StatsLateCollisions);
6323
6324 if (sblk->stat_EtherStatsCollisions)
6325 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6326 sblk->stat_EtherStatsCollisions);
6327
6328 if (sblk->stat_EtherStatsFragments)
6329 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6330 sblk->stat_EtherStatsFragments);
6331
6332 if (sblk->stat_EtherStatsJabbers)
6333 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6334 sblk->stat_EtherStatsJabbers);
6335
6336 if (sblk->stat_EtherStatsUndersizePkts)
6337 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6338 sblk->stat_EtherStatsUndersizePkts);
6339
6340 if (sblk->stat_EtherStatsOverrsizePkts)
6341 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6342 sblk->stat_EtherStatsOverrsizePkts);
6343
6344 if (sblk->stat_EtherStatsPktsRx64Octets)
6345 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6346 sblk->stat_EtherStatsPktsRx64Octets);
6347
6348 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6349 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6350 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6351
6352 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6353 BNX_PRINTF(sc, "0x%08X : "
6354 "EtherStatsPktsRx128Octetsto255Octets\n",
6355 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6356
6357 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6358 BNX_PRINTF(sc, "0x%08X : "
6359 "EtherStatsPktsRx256Octetsto511Octets\n",
6360 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6361
6362 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6363 BNX_PRINTF(sc, "0x%08X : "
6364 "EtherStatsPktsRx512Octetsto1023Octets\n",
6365 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6366
6367 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6368 BNX_PRINTF(sc, "0x%08X : "
6369 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6370 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6371
6372 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6373 BNX_PRINTF(sc, "0x%08X : "
6374 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6375 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6376
6377 if (sblk->stat_EtherStatsPktsTx64Octets)
6378 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6379 sblk->stat_EtherStatsPktsTx64Octets);
6380
6381 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6382 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6383 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6384
6385 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6386 BNX_PRINTF(sc, "0x%08X : "
6387 "EtherStatsPktsTx128Octetsto255Octets\n",
6388 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6389
6390 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6391 BNX_PRINTF(sc, "0x%08X : "
6392 "EtherStatsPktsTx256Octetsto511Octets\n",
6393 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6394
6395 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6396 BNX_PRINTF(sc, "0x%08X : "
6397 "EtherStatsPktsTx512Octetsto1023Octets\n",
6398 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6399
6400 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6401 BNX_PRINTF(sc, "0x%08X : "
6402 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6403 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6404
6405 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6406 BNX_PRINTF(sc, "0x%08X : "
6407 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6408 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6409
6410 if (sblk->stat_XonPauseFramesReceived)
6411 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6412 sblk->stat_XonPauseFramesReceived);
6413
6414 if (sblk->stat_XoffPauseFramesReceived)
6415 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6416 sblk->stat_XoffPauseFramesReceived);
6417
6418 if (sblk->stat_OutXonSent)
6419 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6420 sblk->stat_OutXonSent);
6421
6422 if (sblk->stat_OutXoffSent)
6423 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6424 sblk->stat_OutXoffSent);
6425
6426 if (sblk->stat_FlowControlDone)
6427 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6428 sblk->stat_FlowControlDone);
6429
6430 if (sblk->stat_MacControlFramesReceived)
6431 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6432 sblk->stat_MacControlFramesReceived);
6433
6434 if (sblk->stat_XoffStateEntered)
6435 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6436 sblk->stat_XoffStateEntered);
6437
6438 if (sblk->stat_IfInFramesL2FilterDiscards)
6439 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6440 sblk->stat_IfInFramesL2FilterDiscards);
6441
6442 if (sblk->stat_IfInRuleCheckerDiscards)
6443 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6444 sblk->stat_IfInRuleCheckerDiscards);
6445
6446 if (sblk->stat_IfInFTQDiscards)
6447 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6448 sblk->stat_IfInFTQDiscards);
6449
6450 if (sblk->stat_IfInMBUFDiscards)
6451 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6452 sblk->stat_IfInMBUFDiscards);
6453
6454 if (sblk->stat_IfInRuleCheckerP4Hit)
6455 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6456 sblk->stat_IfInRuleCheckerP4Hit);
6457
6458 if (sblk->stat_CatchupInRuleCheckerDiscards)
6459 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6460 sblk->stat_CatchupInRuleCheckerDiscards);
6461
6462 if (sblk->stat_CatchupInFTQDiscards)
6463 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6464 sblk->stat_CatchupInFTQDiscards);
6465
6466 if (sblk->stat_CatchupInMBUFDiscards)
6467 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6468 sblk->stat_CatchupInMBUFDiscards);
6469
6470 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6471 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6472 sblk->stat_CatchupInRuleCheckerP4Hit);
6473
6474 aprint_debug_dev(sc->bnx_dev,
6475 "-----------------------------"
6476 "--------------"
6477 "-----------------------------\n");
6478 }
6479
6480 void
6481 bnx_dump_driver_state(struct bnx_softc *sc)
6482 {
6483 aprint_debug_dev(sc->bnx_dev,
6484 "-----------------------------"
6485 " Driver State "
6486 "-----------------------------\n");
6487
6488 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6489 "address\n", sc);
6490
6491 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6492 sc->status_block);
6493
6494 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6495 "address\n", sc->stats_block);
6496
6497 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6498 "address\n", sc->tx_bd_chain);
6499
6500 #if 0
6501 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6502 sc->rx_bd_chain);
6503
6504 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6505 sc->tx_mbuf_ptr);
6506 #endif
6507
6508 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6509 sc->rx_mbuf_ptr);
6510
6511 BNX_PRINTF(sc,
6512 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6513 sc->interrupts_generated);
6514
6515 BNX_PRINTF(sc,
6516 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6517 sc->rx_interrupts);
6518
6519 BNX_PRINTF(sc,
6520 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6521 sc->tx_interrupts);
6522
6523 BNX_PRINTF(sc,
6524 " 0x%08X - (sc->last_status_idx) status block index\n",
6525 sc->last_status_idx);
6526
6527 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6528 sc->tx_prod);
6529
6530 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6531 sc->tx_cons);
6532
6533 BNX_PRINTF(sc,
6534 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6535 sc->tx_prod_bseq);
6536 BNX_PRINTF(sc,
6537 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6538 sc->tx_mbuf_alloc);
6539
6540 BNX_PRINTF(sc,
6541 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6542 sc->used_tx_bd);
6543
6544 BNX_PRINTF(sc,
6545 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6546 sc->tx_hi_watermark, sc->max_tx_bd);
6547
6548
6549 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6550 sc->rx_prod);
6551
6552 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6553 sc->rx_cons);
6554
6555 BNX_PRINTF(sc,
6556 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6557 sc->rx_prod_bseq);
6558
6559 BNX_PRINTF(sc,
6560 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6561 sc->rx_mbuf_alloc);
6562
6563 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6564 sc->free_rx_bd);
6565
6566 BNX_PRINTF(sc,
6567 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6568 sc->rx_low_watermark, sc->max_rx_bd);
6569
6570 BNX_PRINTF(sc,
6571 " 0x%08X - (sc->mbuf_alloc_failed) "
6572 "mbuf alloc failures\n",
6573 sc->mbuf_alloc_failed);
6574
6575 BNX_PRINTF(sc,
6576 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6577 "simulated mbuf alloc failures\n",
6578 sc->mbuf_sim_alloc_failed);
6579
6580 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6581 "-----------------------------\n");
6582 }
6583
6584 void
6585 bnx_dump_hw_state(struct bnx_softc *sc)
6586 {
6587 uint32_t val1;
6588 int i;
6589
6590 aprint_debug_dev(sc->bnx_dev,
6591 "----------------------------"
6592 " Hardware State "
6593 "----------------------------\n");
6594
6595 val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6596 BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6597
6598 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6599 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6600 val1, BNX_MISC_ENABLE_STATUS_BITS);
6601
6602 val1 = REG_RD(sc, BNX_DMA_STATUS);
6603 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6604
6605 val1 = REG_RD(sc, BNX_CTX_STATUS);
6606 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6607
6608 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6609 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6610 BNX_EMAC_STATUS);
6611
6612 val1 = REG_RD(sc, BNX_RPM_STATUS);
6613 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6614
6615 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6616 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6617 BNX_TBDR_STATUS);
6618
6619 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6620 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6621 BNX_TDMA_STATUS);
6622
6623 val1 = REG_RD(sc, BNX_HC_STATUS);
6624 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6625
6626 aprint_debug_dev(sc->bnx_dev,
6627 "----------------------------"
6628 "----------------"
6629 "----------------------------\n");
6630
6631 aprint_debug_dev(sc->bnx_dev,
6632 "----------------------------"
6633 " Register Dump "
6634 "----------------------------\n");
6635
6636 for (i = 0x400; i < 0x8000; i += 0x10)
6637 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6638 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6639 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6640
6641 aprint_debug_dev(sc->bnx_dev,
6642 "----------------------------"
6643 "----------------"
6644 "----------------------------\n");
6645 }
6646
6647 void
6648 bnx_breakpoint(struct bnx_softc *sc)
6649 {
6650 /* Unreachable code to shut the compiler up about unused functions. */
6651 if (0) {
6652 bnx_dump_txbd(sc, 0, NULL);
6653 bnx_dump_rxbd(sc, 0, NULL);
6654 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6655 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6656 bnx_dump_l2fhdr(sc, 0, NULL);
6657 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6658 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6659 bnx_dump_status_block(sc);
6660 bnx_dump_stats_block(sc);
6661 bnx_dump_driver_state(sc);
6662 bnx_dump_hw_state(sc);
6663 }
6664
6665 bnx_dump_driver_state(sc);
6666 /* Print the important status block fields. */
6667 bnx_dump_status_block(sc);
6668
6669 #if 0
6670 /* Call the debugger. */
6671 breakpoint();
6672 #endif
6673
6674 return;
6675 }
6676 #endif
6677