Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.88
      1 /*	$NetBSD: if_bnx.c,v 1.88 2019/11/10 21:16:36 chs Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.88 2019/11/10 21:16:36 chs Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 	device_t dev = sc->bnx_dev;
    466 	int i = 0;
    467 
    468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    471 	    ? "Serdes " : "", sc->bnx_chipid);
    472 
    473 	/* Bus info. */
    474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
    476 		switch (sc->link_speed) {
    477 		case 1: aprint_normal("2.5GT/s\n"); break;
    478 		case 2:	aprint_normal("5GT/s\n"); break;
    479 		default: aprint_normal("Unknown link speed\n");
    480 		}
    481 	} else {
    482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
    483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    485 		    sc->bus_speed_mhz);
    486 	}
    487 
    488 	/* Firmware version and device features. */
    489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
    490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
    491 
    492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
    493 		if (i > 0) aprint_normal("|");
    494 		aprint_normal("2.5G"); i++;
    495 	}
    496 
    497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
    498 		if (i > 0) aprint_normal("|");
    499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
    500 	} else {
    501 		aprint_normal(")\n");
    502 	}
    503 
    504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    505 	    sc->bnx_rx_quick_cons_trip_int,
    506 	    sc->bnx_rx_quick_cons_trip,
    507 	    sc->bnx_rx_ticks_int,
    508 	    sc->bnx_rx_ticks,
    509 	    sc->bnx_tx_quick_cons_trip_int,
    510 	    sc->bnx_tx_quick_cons_trip,
    511 	    sc->bnx_tx_ticks_int,
    512 	    sc->bnx_tx_ticks);
    513 }
    514 
    515 
    516 /****************************************************************************/
    517 /* PCI Capabilities Probe Function.                                         */
    518 /*                                                                          */
    519 /* Walks the PCI capabiites list for the device to find what features are   */
    520 /* supported.                                                               */
    521 /*                                                                          */
    522 /* Returns:                                                                 */
    523 /*   None.                                                                  */
    524 /****************************************************************************/
    525 static void
    526 bnx_probe_pci_caps(struct bnx_softc *sc)
    527 {
    528 	struct pci_attach_args *pa = &(sc->bnx_pa);
    529 	pcireg_t reg;
    530 
    531 	/* Check if PCI-X capability is enabled. */
    532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    533 		NULL) != 0) {
    534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    535 	}
    536 
    537 	/* Check if PCIe capability is enabled. */
    538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    539 		NULL) != 0) {
    540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    541 		    reg + PCIE_LCSR);
    542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    543 		    "0x%08X\n",	link_status);
    544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    547 		sc->bnx_flags |= BNX_PCIE_FLAG;
    548 	}
    549 
    550 	/* Check if MSI capability is enabled. */
    551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    552 		NULL) != 0)
    553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    554 
    555 	/* Check if MSI-X capability is enabled. */
    556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    557 		NULL) != 0)
    558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    559 }
    560 
    561 
    562 /****************************************************************************/
    563 /* Device attach function.                                                  */
    564 /*                                                                          */
    565 /* Allocates device resources, performs secondary chip identification,      */
    566 /* resets and initializes the hardware, and initializes driver instance     */
    567 /* variables.                                                               */
    568 /*                                                                          */
    569 /* Returns:                                                                 */
    570 /*   0 on success, positive value on failure.                               */
    571 /****************************************************************************/
    572 void
    573 bnx_attach(device_t parent, device_t self, void *aux)
    574 {
    575 	const struct bnx_product *bp;
    576 	struct bnx_softc	*sc = device_private(self);
    577 	prop_dictionary_t	dict;
    578 	struct pci_attach_args	*pa = aux;
    579 	pci_chipset_tag_t	pc = pa->pa_pc;
    580 	pci_intr_handle_t	ih;
    581 	const char		*intrstr = NULL;
    582 	uint32_t		command;
    583 	struct ifnet		*ifp;
    584 	struct mii_data * const mii = &sc->bnx_mii;
    585 	uint32_t		val;
    586 	int			mii_flags = MIIF_FORCEANEG;
    587 	pcireg_t		memtype;
    588 	char intrbuf[PCI_INTRSTR_LEN];
    589 	int i, j;
    590 
    591 	if (bnx_tx_pool == NULL) {
    592 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
    593 		pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    594 		    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    595 	}
    596 
    597 	bp = bnx_lookup(pa);
    598 	if (bp == NULL)
    599 		panic("unknown device");
    600 
    601 	sc->bnx_dev = self;
    602 
    603 	aprint_naive("\n");
    604 	aprint_normal(": %s\n", bp->bp_name);
    605 
    606 	sc->bnx_pa = *pa;
    607 
    608 	/*
    609 	 * Map control/status registers.
    610 	*/
    611 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    612 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    613 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    614 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    615 
    616 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    617 		aprint_error_dev(sc->bnx_dev,
    618 		    "failed to enable memory mapping!\n");
    619 		return;
    620 	}
    621 
    622 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    623 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    624 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    625 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    626 		return;
    627 	}
    628 
    629 	if (pci_intr_map(pa, &ih)) {
    630 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    631 		goto bnx_attach_fail;
    632 	}
    633 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    634 
    635 	/*
    636 	 * Configure byte swap and enable indirect register access.
    637 	 * Rely on CPU to do target byte swapping on big endian systems.
    638 	 * Access to registers outside of PCI configurtion space are not
    639 	 * valid until this is done.
    640 	 */
    641 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    642 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    643 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    644 
    645 	/* Save ASIC revsion info. */
    646 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    647 
    648 	/*
    649 	 * Find the base address for shared memory access.
    650 	 * Newer versions of bootcode use a signature and offset
    651 	 * while older versions use a fixed address.
    652 	 */
    653 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    654 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    655 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    656 		    (sc->bnx_pa.pa_function << 2));
    657 	else
    658 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    659 
    660 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    661 
    662 	/* Set initial device and PHY flags */
    663 	sc->bnx_flags = 0;
    664 	sc->bnx_phy_flags = 0;
    665 
    666 	/* Fetch the bootcode revision. */
    667 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
    668 	for (i = 0, j = 0; i < 3; i++) {
    669 		uint8_t num;
    670 		int k, skip0;
    671 
    672 		num = (uint8_t)(val >> (24 - (i * 8)));
    673 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
    674 			if (num >= k || !skip0 || k == 1) {
    675 				sc->bnx_bc_ver[j++] = (num / k) + '0';
    676 				skip0 = 0;
    677 			}
    678 		}
    679 		if (i != 2)
    680 			sc->bnx_bc_ver[j++] = '.';
    681 	}
    682 
    683 	/* Check if any management firmware is enabled. */
    684 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
    685 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
    686 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
    687 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
    688 
    689 		/* Allow time for firmware to enter the running state. */
    690 		for (i = 0; i < 30; i++) {
    691 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    692 			    BNX_BC_STATE_CONDITION);
    693 			if (val & BNX_CONDITION_MFW_RUN_MASK)
    694 				break;
    695 			DELAY(10000);
    696 		}
    697 
    698 		/* Check if management firmware is running. */
    699 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
    700 		    BNX_BC_STATE_CONDITION);
    701 		val &= BNX_CONDITION_MFW_RUN_MASK;
    702 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
    703 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
    704 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
    705 			    BNX_MFW_VER_PTR);
    706 
    707 			/* Read the management firmware version string. */
    708 			for (j = 0; j < 3; j++) {
    709 				val = bnx_reg_rd_ind(sc, addr + j * 4);
    710 				val = bswap32(val);
    711 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
    712 				i += 4;
    713 			}
    714 		} else {
    715 			/* May cause firmware synchronization timeouts. */
    716 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
    717 			    "but not running!\n", __FILE__, __LINE__);
    718 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
    719 
    720 			/* ToDo: Any action the driver should take? */
    721 		}
    722 	}
    723 
    724 	bnx_probe_pci_caps(sc);
    725 
    726 	/* Get PCI bus information (speed and type). */
    727 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    728 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    729 		uint32_t clkreg;
    730 
    731 		sc->bnx_flags |= BNX_PCIX_FLAG;
    732 
    733 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    734 
    735 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    736 		switch (clkreg) {
    737 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    738 			sc->bus_speed_mhz = 133;
    739 			break;
    740 
    741 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    742 			sc->bus_speed_mhz = 100;
    743 			break;
    744 
    745 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    746 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    747 			sc->bus_speed_mhz = 66;
    748 			break;
    749 
    750 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    751 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    752 			sc->bus_speed_mhz = 50;
    753 			break;
    754 
    755 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    756 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    757 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    758 			sc->bus_speed_mhz = 33;
    759 			break;
    760 		}
    761 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    762 			sc->bus_speed_mhz = 66;
    763 		else
    764 			sc->bus_speed_mhz = 33;
    765 
    766 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    767 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    768 
    769 	/* Reset the controller. */
    770 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    771 		goto bnx_attach_fail;
    772 
    773 	/* Initialize the controller. */
    774 	if (bnx_chipinit(sc)) {
    775 		aprint_error_dev(sc->bnx_dev,
    776 		    "Controller initialization failed!\n");
    777 		goto bnx_attach_fail;
    778 	}
    779 
    780 	/* Perform NVRAM test. */
    781 	if (bnx_nvram_test(sc)) {
    782 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    783 		goto bnx_attach_fail;
    784 	}
    785 
    786 	/* Fetch the permanent Ethernet MAC address. */
    787 	bnx_get_mac_addr(sc);
    788 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    789 	    ether_sprintf(sc->eaddr));
    790 
    791 	/*
    792 	 * Trip points control how many BDs
    793 	 * should be ready before generating an
    794 	 * interrupt while ticks control how long
    795 	 * a BD can sit in the chain before
    796 	 * generating an interrupt.  Set the default
    797 	 * values for the RX and TX rings.
    798 	 */
    799 
    800 #ifdef BNX_DEBUG
    801 	/* Force more frequent interrupts. */
    802 	sc->bnx_tx_quick_cons_trip_int = 1;
    803 	sc->bnx_tx_quick_cons_trip     = 1;
    804 	sc->bnx_tx_ticks_int	       = 0;
    805 	sc->bnx_tx_ticks	       = 0;
    806 
    807 	sc->bnx_rx_quick_cons_trip_int = 1;
    808 	sc->bnx_rx_quick_cons_trip     = 1;
    809 	sc->bnx_rx_ticks_int	       = 0;
    810 	sc->bnx_rx_ticks	       = 0;
    811 #else
    812 	sc->bnx_tx_quick_cons_trip_int = 20;
    813 	sc->bnx_tx_quick_cons_trip     = 20;
    814 	sc->bnx_tx_ticks_int	       = 80;
    815 	sc->bnx_tx_ticks	       = 80;
    816 
    817 	sc->bnx_rx_quick_cons_trip_int = 6;
    818 	sc->bnx_rx_quick_cons_trip     = 6;
    819 	sc->bnx_rx_ticks_int	       = 18;
    820 	sc->bnx_rx_ticks	       = 18;
    821 #endif
    822 
    823 	/* Update statistics once every second. */
    824 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    825 
    826 	/* Find the media type for the adapter. */
    827 	bnx_get_media(sc);
    828 
    829 	/*
    830 	 * Store config data needed by the PHY driver for
    831 	 * backplane applications
    832 	 */
    833 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    834 	    BNX_SHARED_HW_CFG_CONFIG);
    835 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    836 	    BNX_PORT_HW_CFG_CONFIG);
    837 
    838 	/* Allocate DMA memory resources. */
    839 	sc->bnx_dmatag = pa->pa_dmat;
    840 	if (bnx_dma_alloc(sc)) {
    841 		aprint_error_dev(sc->bnx_dev,
    842 		    "DMA resource allocation failed!\n");
    843 		goto bnx_attach_fail;
    844 	}
    845 
    846 	/* Initialize the ifnet interface. */
    847 	ifp = &sc->bnx_ec.ec_if;
    848 	ifp->if_softc = sc;
    849 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    850 	ifp->if_ioctl = bnx_ioctl;
    851 	ifp->if_stop = bnx_stop;
    852 	ifp->if_start = bnx_start;
    853 	ifp->if_init = bnx_init;
    854 	ifp->if_watchdog = bnx_watchdog;
    855 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    856 	IFQ_SET_READY(&ifp->if_snd);
    857 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    858 
    859 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    860 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    861 	sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    862 
    863 	ifp->if_capabilities |=
    864 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    865 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    866 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    867 
    868 	/* create workqueue to handle packet allocations */
    869 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    870 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    871 		aprint_error_dev(self, "failed to create workqueue\n");
    872 		goto bnx_attach_fail;
    873 	}
    874 
    875 	mii->mii_ifp = ifp;
    876 	mii->mii_readreg = bnx_miibus_read_reg;
    877 	mii->mii_writereg = bnx_miibus_write_reg;
    878 	mii->mii_statchg = bnx_miibus_statchg;
    879 
    880 	/* Handle any special PHY initialization for SerDes PHYs. */
    881 	bnx_init_media(sc);
    882 
    883 	sc->bnx_ec.ec_mii = mii;
    884 	ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
    885 
    886 	/* set phyflags and chipid before mii_attach() */
    887 	dict = device_properties(self);
    888 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    889 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    890 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    891 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    892 
    893 	/* Print some useful adapter info */
    894 	bnx_print_adapter_info(sc);
    895 
    896 	mii_flags |= MIIF_DOPAUSE;
    897 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    898 		mii_flags |= MIIF_HAVEFIBER;
    899 	mii_attach(self, mii, 0xffffffff,
    900 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    901 
    902 	if (LIST_EMPTY(&mii->mii_phys)) {
    903 		aprint_error_dev(self, "no PHY found!\n");
    904 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    905 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    906 	} else
    907 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    908 
    909 	/* Attach to the Ethernet interface list. */
    910 	if_attach(ifp);
    911 	if_deferred_start_init(ifp, NULL);
    912 	ether_ifattach(ifp, sc->eaddr);
    913 
    914 	callout_init(&sc->bnx_timeout, 0);
    915 
    916 	/* Hookup IRQ last. */
    917 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    918 	    sc, device_xname(self));
    919 	if (sc->bnx_intrhand == NULL) {
    920 		aprint_error_dev(self, "couldn't establish interrupt");
    921 		if (intrstr != NULL)
    922 			aprint_error(" at %s", intrstr);
    923 		aprint_error("\n");
    924 		goto bnx_attach_fail;
    925 	}
    926 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    927 
    928 	if (pmf_device_register(self, NULL, NULL))
    929 		pmf_class_network_register(self, ifp);
    930 	else
    931 		aprint_error_dev(self, "couldn't establish power handler\n");
    932 
    933 	/* Print some important debugging info. */
    934 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    935 
    936 	/* Get the firmware running so ASF still works. */
    937 	bnx_mgmt_init(sc);
    938 
    939 	goto bnx_attach_exit;
    940 
    941 bnx_attach_fail:
    942 	bnx_release_resources(sc);
    943 
    944 bnx_attach_exit:
    945 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    946 }
    947 
    948 /****************************************************************************/
    949 /* Device detach function.                                                  */
    950 /*                                                                          */
    951 /* Stops the controller, resets the controller, and releases resources.     */
    952 /*                                                                          */
    953 /* Returns:                                                                 */
    954 /*   0 on success, positive value on failure.                               */
    955 /****************************************************************************/
    956 int
    957 bnx_detach(device_t dev, int flags)
    958 {
    959 	int s;
    960 	struct bnx_softc *sc;
    961 	struct ifnet *ifp;
    962 
    963 	sc = device_private(dev);
    964 	ifp = &sc->bnx_ec.ec_if;
    965 
    966 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    967 
    968 	/* Stop and reset the controller. */
    969 	s = splnet();
    970 	bnx_stop(ifp, 1);
    971 	splx(s);
    972 
    973 	pmf_device_deregister(dev);
    974 	callout_destroy(&sc->bnx_timeout);
    975 	ether_ifdetach(ifp);
    976 	workqueue_destroy(sc->bnx_wq);
    977 
    978 	/* Delete all remaining media. */
    979 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    980 
    981 	if_detach(ifp);
    982 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    983 
    984 	/* Release all remaining resources. */
    985 	bnx_release_resources(sc);
    986 
    987 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    988 
    989 	return 0;
    990 }
    991 
    992 /****************************************************************************/
    993 /* Indirect register read.                                                  */
    994 /*                                                                          */
    995 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    996 /* configuration space.  Using this mechanism avoids issues with posted     */
    997 /* reads but is much slower than memory-mapped I/O.                         */
    998 /*                                                                          */
    999 /* Returns:                                                                 */
   1000 /*   The value of the register.                                             */
   1001 /****************************************************************************/
   1002 uint32_t
   1003 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
   1004 {
   1005 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1006 
   1007 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1008 	    offset);
   1009 #ifdef BNX_DEBUG
   1010 	{
   1011 		uint32_t val;
   1012 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1013 		    BNX_PCICFG_REG_WINDOW);
   1014 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
   1015 		    "val = 0x%08X\n", __func__, offset, val);
   1016 		return val;
   1017 	}
   1018 #else
   1019 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
   1020 #endif
   1021 }
   1022 
   1023 /****************************************************************************/
   1024 /* Indirect register write.                                                 */
   1025 /*                                                                          */
   1026 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
   1027 /* configuration space.  Using this mechanism avoids issues with posted     */
   1028 /* writes but is muchh slower than memory-mapped I/O.                       */
   1029 /*                                                                          */
   1030 /* Returns:                                                                 */
   1031 /*   Nothing.                                                               */
   1032 /****************************************************************************/
   1033 void
   1034 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
   1035 {
   1036 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1037 
   1038 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
   1039 		__func__, offset, val);
   1040 
   1041 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1042 	    offset);
   1043 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
   1044 }
   1045 
   1046 /****************************************************************************/
   1047 /* Context memory write.                                                    */
   1048 /*                                                                          */
   1049 /* The NetXtreme II controller uses context memory to track connection      */
   1050 /* information for L2 and higher network protocols.                         */
   1051 /*                                                                          */
   1052 /* Returns:                                                                 */
   1053 /*   Nothing.                                                               */
   1054 /****************************************************************************/
   1055 void
   1056 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
   1057     uint32_t ctx_val)
   1058 {
   1059 	uint32_t idx, offset = ctx_offset + cid_addr;
   1060 	uint32_t val, retry_cnt = 5;
   1061 
   1062 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1063 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
   1064 		REG_WR(sc, BNX_CTX_CTX_CTRL,
   1065 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
   1066 
   1067 		for (idx = 0; idx < retry_cnt; idx++) {
   1068 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1069 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1070 				break;
   1071 			DELAY(5);
   1072 		}
   1073 
   1074 #if 0
   1075 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1076 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1077 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1078 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1079 #endif
   1080 
   1081 	} else {
   1082 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1083 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1084 	}
   1085 }
   1086 
   1087 /****************************************************************************/
   1088 /* PHY register read.                                                       */
   1089 /*                                                                          */
   1090 /* Implements register reads on the MII bus.                                */
   1091 /*                                                                          */
   1092 /* Returns:                                                                 */
   1093 /*   The value of the register.                                             */
   1094 /****************************************************************************/
   1095 int
   1096 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1097 {
   1098 	struct bnx_softc	*sc = device_private(dev);
   1099 	uint32_t		data;
   1100 	int			i, rv = 0;
   1101 
   1102 	/*
   1103 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1104 	 * with special mappings to work with IEEE
   1105 	 * Clause 22 register accesses.
   1106 	 */
   1107 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1108 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1109 			reg += 0x10;
   1110 	}
   1111 
   1112 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1113 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1114 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1115 
   1116 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1117 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1118 
   1119 		DELAY(40);
   1120 	}
   1121 
   1122 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1123 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1124 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1125 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1126 
   1127 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1128 		DELAY(10);
   1129 
   1130 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1131 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1132 			DELAY(5);
   1133 
   1134 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1135 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1136 
   1137 			break;
   1138 		}
   1139 	}
   1140 
   1141 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1142 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1143 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1144 		rv = ETIMEDOUT;
   1145 	} else {
   1146 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1147 		*val = data & 0xffff;
   1148 
   1149 		DBPRINT(sc, BNX_EXCESSIVE,
   1150 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1151 		    phy, (uint16_t) reg & 0xffff, *val);
   1152 	}
   1153 
   1154 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1155 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1156 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1157 
   1158 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1159 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1160 
   1161 		DELAY(40);
   1162 	}
   1163 
   1164 	return rv;
   1165 }
   1166 
   1167 /****************************************************************************/
   1168 /* PHY register write.                                                      */
   1169 /*                                                                          */
   1170 /* Implements register writes on the MII bus.                               */
   1171 /*                                                                          */
   1172 /* Returns:                                                                 */
   1173 /*   The value of the register.                                             */
   1174 /****************************************************************************/
   1175 int
   1176 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1177 {
   1178 	struct bnx_softc	*sc = device_private(dev);
   1179 	uint32_t		val1;
   1180 	int			i, rv = 0;
   1181 
   1182 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1183 	    "val = 0x%04hX\n", __func__,
   1184 	    phy, (uint16_t) reg & 0xffff, val);
   1185 
   1186 	/*
   1187 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1188 	 * with special mappings to work with IEEE
   1189 	 * Clause 22 register accesses.
   1190 	 */
   1191 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1192 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1193 			reg += 0x10;
   1194 	}
   1195 
   1196 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1197 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1198 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1199 
   1200 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1201 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1202 
   1203 		DELAY(40);
   1204 	}
   1205 
   1206 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1207 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1208 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1209 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1210 
   1211 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1212 		DELAY(10);
   1213 
   1214 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1215 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1216 			DELAY(5);
   1217 			break;
   1218 		}
   1219 	}
   1220 
   1221 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1222 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1223 		    __LINE__);
   1224 		rv = ETIMEDOUT;
   1225 	}
   1226 
   1227 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1228 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1229 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1230 
   1231 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1232 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1233 
   1234 		DELAY(40);
   1235 	}
   1236 
   1237 	return rv;
   1238 }
   1239 
   1240 /****************************************************************************/
   1241 /* MII bus status change.                                                   */
   1242 /*                                                                          */
   1243 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1244 /* MAC interface registers.                                                 */
   1245 /*                                                                          */
   1246 /* Returns:                                                                 */
   1247 /*   Nothing.                                                               */
   1248 /****************************************************************************/
   1249 void
   1250 bnx_miibus_statchg(struct ifnet *ifp)
   1251 {
   1252 	struct bnx_softc	*sc = ifp->if_softc;
   1253 	struct mii_data		*mii = &sc->bnx_mii;
   1254 	uint32_t		rx_mode = sc->rx_mode;
   1255 	int			val;
   1256 
   1257 	val = REG_RD(sc, BNX_EMAC_MODE);
   1258 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1259 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1260 	    BNX_EMAC_MODE_25G);
   1261 
   1262 	/*
   1263 	 * Get flow control negotiation result.
   1264 	 */
   1265 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1266 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1267 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1268 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1269 	}
   1270 
   1271 	/* Set MII or GMII interface based on the speed
   1272 	 * negotiated by the PHY.
   1273 	 */
   1274 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1275 	case IFM_10_T:
   1276 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1277 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1278 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1279 			break;
   1280 		}
   1281 		/* FALLTHROUGH */
   1282 	case IFM_100_TX:
   1283 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1284 		val |= BNX_EMAC_MODE_PORT_MII;
   1285 		break;
   1286 	case IFM_2500_SX:
   1287 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1288 		val |= BNX_EMAC_MODE_25G;
   1289 		/* FALLTHROUGH */
   1290 	case IFM_1000_T:
   1291 	case IFM_1000_SX:
   1292 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1293 		val |= BNX_EMAC_MODE_PORT_GMII;
   1294 		break;
   1295 	default:
   1296 		val |= BNX_EMAC_MODE_PORT_GMII;
   1297 		break;
   1298 	}
   1299 
   1300 	/* Set half or full duplex based on the duplicity
   1301 	 * negotiated by the PHY.
   1302 	 */
   1303 	if ((mii->mii_media_active & IFM_HDX) != 0) {
   1304 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1305 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1306 	} else
   1307 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1308 
   1309 	REG_WR(sc, BNX_EMAC_MODE, val);
   1310 
   1311 	/*
   1312 	 * 802.3x flow control
   1313 	 */
   1314 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1315 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1316 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1317 	} else {
   1318 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1319 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1320 	}
   1321 
   1322 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1323 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1324 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1325 	} else {
   1326 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1327 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1328 	}
   1329 
   1330 	/* Only make changes if the recive mode has actually changed. */
   1331 	if (rx_mode != sc->rx_mode) {
   1332 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1333 		    rx_mode);
   1334 
   1335 		sc->rx_mode = rx_mode;
   1336 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1337 
   1338 		bnx_init_rx_context(sc);
   1339 	}
   1340 }
   1341 
   1342 /****************************************************************************/
   1343 /* Acquire NVRAM lock.                                                      */
   1344 /*                                                                          */
   1345 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1346 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1347 /* for use by the driver.                                                   */
   1348 /*                                                                          */
   1349 /* Returns:                                                                 */
   1350 /*   0 on success, positive value on failure.                               */
   1351 /****************************************************************************/
   1352 int
   1353 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1354 {
   1355 	uint32_t		val;
   1356 	int			j;
   1357 
   1358 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1359 
   1360 	/* Request access to the flash interface. */
   1361 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1362 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1363 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1364 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1365 			break;
   1366 
   1367 		DELAY(5);
   1368 	}
   1369 
   1370 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1371 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1372 		return EBUSY;
   1373 	}
   1374 
   1375 	return 0;
   1376 }
   1377 
   1378 /****************************************************************************/
   1379 /* Release NVRAM lock.                                                      */
   1380 /*                                                                          */
   1381 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1382 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1383 /* for use by the driver.                                                   */
   1384 /*                                                                          */
   1385 /* Returns:                                                                 */
   1386 /*   0 on success, positive value on failure.                               */
   1387 /****************************************************************************/
   1388 int
   1389 bnx_release_nvram_lock(struct bnx_softc *sc)
   1390 {
   1391 	int			j;
   1392 	uint32_t		val;
   1393 
   1394 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1395 
   1396 	/* Relinquish nvram interface. */
   1397 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1398 
   1399 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1400 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1401 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1402 			break;
   1403 
   1404 		DELAY(5);
   1405 	}
   1406 
   1407 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1408 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1409 		return EBUSY;
   1410 	}
   1411 
   1412 	return 0;
   1413 }
   1414 
   1415 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1416 /****************************************************************************/
   1417 /* Enable NVRAM write access.                                               */
   1418 /*                                                                          */
   1419 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1420 /*                                                                          */
   1421 /* Returns:                                                                 */
   1422 /*   0 on success, positive value on failure.                               */
   1423 /****************************************************************************/
   1424 int
   1425 bnx_enable_nvram_write(struct bnx_softc *sc)
   1426 {
   1427 	uint32_t		val;
   1428 
   1429 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1430 
   1431 	val = REG_RD(sc, BNX_MISC_CFG);
   1432 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1433 
   1434 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1435 		int j;
   1436 
   1437 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1438 		REG_WR(sc, BNX_NVM_COMMAND,
   1439 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1440 
   1441 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1442 			DELAY(5);
   1443 
   1444 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1445 			if (val & BNX_NVM_COMMAND_DONE)
   1446 				break;
   1447 		}
   1448 
   1449 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1450 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1451 			return EBUSY;
   1452 		}
   1453 	}
   1454 
   1455 	return 0;
   1456 }
   1457 
   1458 /****************************************************************************/
   1459 /* Disable NVRAM write access.                                              */
   1460 /*                                                                          */
   1461 /* When the caller is finished writing to NVRAM write access must be        */
   1462 /* disabled.                                                                */
   1463 /*                                                                          */
   1464 /* Returns:                                                                 */
   1465 /*   Nothing.                                                               */
   1466 /****************************************************************************/
   1467 void
   1468 bnx_disable_nvram_write(struct bnx_softc *sc)
   1469 {
   1470 	uint32_t		val;
   1471 
   1472 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1473 
   1474 	val = REG_RD(sc, BNX_MISC_CFG);
   1475 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1476 }
   1477 #endif
   1478 
   1479 /****************************************************************************/
   1480 /* Enable NVRAM access.                                                     */
   1481 /*                                                                          */
   1482 /* Before accessing NVRAM for read or write operations the caller must      */
   1483 /* enabled NVRAM access.                                                    */
   1484 /*                                                                          */
   1485 /* Returns:                                                                 */
   1486 /*   Nothing.                                                               */
   1487 /****************************************************************************/
   1488 void
   1489 bnx_enable_nvram_access(struct bnx_softc *sc)
   1490 {
   1491 	uint32_t		val;
   1492 
   1493 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1494 
   1495 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1496 	/* Enable both bits, even on read. */
   1497 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1498 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1499 }
   1500 
   1501 /****************************************************************************/
   1502 /* Disable NVRAM access.                                                    */
   1503 /*                                                                          */
   1504 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1505 /*                                                                          */
   1506 /* Returns:                                                                 */
   1507 /*   Nothing.                                                               */
   1508 /****************************************************************************/
   1509 void
   1510 bnx_disable_nvram_access(struct bnx_softc *sc)
   1511 {
   1512 	uint32_t		val;
   1513 
   1514 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1515 
   1516 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1517 
   1518 	/* Disable both bits, even after read. */
   1519 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1520 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1521 }
   1522 
   1523 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1524 /****************************************************************************/
   1525 /* Erase NVRAM page before writing.                                         */
   1526 /*                                                                          */
   1527 /* Non-buffered flash parts require that a page be erased before it is      */
   1528 /* written.                                                                 */
   1529 /*                                                                          */
   1530 /* Returns:                                                                 */
   1531 /*   0 on success, positive value on failure.                               */
   1532 /****************************************************************************/
   1533 int
   1534 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1535 {
   1536 	uint32_t		cmd;
   1537 	int			j;
   1538 
   1539 	/* Buffered flash doesn't require an erase. */
   1540 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1541 		return 0;
   1542 
   1543 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1544 
   1545 	/* Build an erase command. */
   1546 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1547 	    BNX_NVM_COMMAND_DOIT;
   1548 
   1549 	/*
   1550 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1551 	 * and issue the erase command.
   1552 	 */
   1553 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1554 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1555 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1556 
   1557 	/* Wait for completion. */
   1558 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1559 		uint32_t val;
   1560 
   1561 		DELAY(5);
   1562 
   1563 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1564 		if (val & BNX_NVM_COMMAND_DONE)
   1565 			break;
   1566 	}
   1567 
   1568 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1569 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1570 		return EBUSY;
   1571 	}
   1572 
   1573 	return 0;
   1574 }
   1575 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1576 
   1577 /****************************************************************************/
   1578 /* Read a dword (32 bits) from NVRAM.                                       */
   1579 /*                                                                          */
   1580 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1581 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1582 /*                                                                          */
   1583 /* Returns:                                                                 */
   1584 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1585 /****************************************************************************/
   1586 int
   1587 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1588     uint8_t *ret_val, uint32_t cmd_flags)
   1589 {
   1590 	uint32_t		cmd;
   1591 	int			i, rc = 0;
   1592 
   1593 	/* Build the command word. */
   1594 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1595 
   1596 	/* Calculate the offset for buffered flash if translation is used. */
   1597 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1598 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1599 		    sc->bnx_flash_info->page_bits) +
   1600 		    (offset % sc->bnx_flash_info->page_size);
   1601 	}
   1602 
   1603 	/*
   1604 	 * Clear the DONE bit separately, set the address to read,
   1605 	 * and issue the read.
   1606 	 */
   1607 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1608 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1609 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1610 
   1611 	/* Wait for completion. */
   1612 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1613 		uint32_t val;
   1614 
   1615 		DELAY(5);
   1616 
   1617 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1618 		if (val & BNX_NVM_COMMAND_DONE) {
   1619 			val = REG_RD(sc, BNX_NVM_READ);
   1620 
   1621 			val = be32toh(val);
   1622 			memcpy(ret_val, &val, 4);
   1623 			break;
   1624 		}
   1625 	}
   1626 
   1627 	/* Check for errors. */
   1628 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1629 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1630 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1631 		rc = EBUSY;
   1632 	}
   1633 
   1634 	return rc;
   1635 }
   1636 
   1637 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1638 /****************************************************************************/
   1639 /* Write a dword (32 bits) to NVRAM.                                        */
   1640 /*                                                                          */
   1641 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1642 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1643 /* enabled NVRAM write access.                                              */
   1644 /*                                                                          */
   1645 /* Returns:                                                                 */
   1646 /*   0 on success, positive value on failure.                               */
   1647 /****************************************************************************/
   1648 int
   1649 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1650     uint32_t cmd_flags)
   1651 {
   1652 	uint32_t		cmd, val32;
   1653 	int			j;
   1654 
   1655 	/* Build the command word. */
   1656 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1657 
   1658 	/* Calculate the offset for buffered flash if translation is used. */
   1659 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1660 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1661 		    sc->bnx_flash_info->page_bits) +
   1662 		    (offset % sc->bnx_flash_info->page_size);
   1663 	}
   1664 
   1665 	/*
   1666 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1667 	 * set the NVRAM address to write, and issue the write command
   1668 	 */
   1669 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1670 	memcpy(&val32, val, 4);
   1671 	val32 = htobe32(val32);
   1672 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1673 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1674 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1675 
   1676 	/* Wait for completion. */
   1677 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1678 		DELAY(5);
   1679 
   1680 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1681 			break;
   1682 	}
   1683 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1684 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1685 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1686 		return EBUSY;
   1687 	}
   1688 
   1689 	return 0;
   1690 }
   1691 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1692 
   1693 /****************************************************************************/
   1694 /* Initialize NVRAM access.                                                 */
   1695 /*                                                                          */
   1696 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1697 /* access that device.                                                      */
   1698 /*                                                                          */
   1699 /* Returns:                                                                 */
   1700 /*   0 on success, positive value on failure.                               */
   1701 /****************************************************************************/
   1702 int
   1703 bnx_init_nvram(struct bnx_softc *sc)
   1704 {
   1705 	uint32_t		val;
   1706 	int			j, entry_count, rc = 0;
   1707 	struct flash_spec	*flash;
   1708 
   1709 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1710 
   1711 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1712 		sc->bnx_flash_info = &flash_5709;
   1713 		goto bnx_init_nvram_get_flash_size;
   1714 	}
   1715 
   1716 	/* Determine the selected interface. */
   1717 	val = REG_RD(sc, BNX_NVM_CFG1);
   1718 
   1719 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1720 
   1721 	/*
   1722 	 * Flash reconfiguration is required to support additional
   1723 	 * NVRAM devices not directly supported in hardware.
   1724 	 * Check if the flash interface was reconfigured
   1725 	 * by the bootcode.
   1726 	 */
   1727 
   1728 	if (val & 0x40000000) {
   1729 		/* Flash interface reconfigured by bootcode. */
   1730 
   1731 		DBPRINT(sc, BNX_INFO_LOAD,
   1732 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1733 
   1734 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1735 		     j++, flash++) {
   1736 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1737 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1738 				sc->bnx_flash_info = flash;
   1739 				break;
   1740 			}
   1741 		}
   1742 	} else {
   1743 		/* Flash interface not yet reconfigured. */
   1744 		uint32_t mask;
   1745 
   1746 		DBPRINT(sc, BNX_INFO_LOAD,
   1747 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1748 
   1749 		if (val & (1 << 23))
   1750 			mask = FLASH_BACKUP_STRAP_MASK;
   1751 		else
   1752 			mask = FLASH_STRAP_MASK;
   1753 
   1754 		/* Look for the matching NVRAM device configuration data. */
   1755 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1756 		    j++, flash++) {
   1757 			/* Check if the dev matches any of the known devices. */
   1758 			if ((val & mask) == (flash->strapping & mask)) {
   1759 				/* Found a device match. */
   1760 				sc->bnx_flash_info = flash;
   1761 
   1762 				/* Request access to the flash interface. */
   1763 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1764 					return rc;
   1765 
   1766 				/* Reconfigure the flash interface. */
   1767 				bnx_enable_nvram_access(sc);
   1768 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1769 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1770 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1771 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1772 				bnx_disable_nvram_access(sc);
   1773 				bnx_release_nvram_lock(sc);
   1774 
   1775 				break;
   1776 			}
   1777 		}
   1778 	}
   1779 
   1780 	/* Check if a matching device was found. */
   1781 	if (j == entry_count) {
   1782 		sc->bnx_flash_info = NULL;
   1783 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1784 			__FILE__, __LINE__);
   1785 		rc = ENODEV;
   1786 	}
   1787 
   1788 bnx_init_nvram_get_flash_size:
   1789 	/* Write the flash config data to the shared memory interface. */
   1790 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1791 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1792 	if (val)
   1793 		sc->bnx_flash_size = val;
   1794 	else
   1795 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1796 
   1797 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1798 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1799 
   1800 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1801 
   1802 	return rc;
   1803 }
   1804 
   1805 /****************************************************************************/
   1806 /* Read an arbitrary range of data from NVRAM.                              */
   1807 /*                                                                          */
   1808 /* Prepares the NVRAM interface for access and reads the requested data     */
   1809 /* into the supplied buffer.                                                */
   1810 /*                                                                          */
   1811 /* Returns:                                                                 */
   1812 /*   0 on success and the data read, positive value on failure.             */
   1813 /****************************************************************************/
   1814 int
   1815 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1816     int buf_size)
   1817 {
   1818 	int			rc = 0;
   1819 	uint32_t		cmd_flags, offset32, len32, extra;
   1820 
   1821 	if (buf_size == 0)
   1822 		return 0;
   1823 
   1824 	/* Request access to the flash interface. */
   1825 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1826 		return rc;
   1827 
   1828 	/* Enable access to flash interface */
   1829 	bnx_enable_nvram_access(sc);
   1830 
   1831 	len32 = buf_size;
   1832 	offset32 = offset;
   1833 	extra = 0;
   1834 
   1835 	cmd_flags = 0;
   1836 
   1837 	if (offset32 & 3) {
   1838 		uint8_t buf[4];
   1839 		uint32_t pre_len;
   1840 
   1841 		offset32 &= ~3;
   1842 		pre_len = 4 - (offset & 3);
   1843 
   1844 		if (pre_len >= len32) {
   1845 			pre_len = len32;
   1846 			cmd_flags =
   1847 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1848 		} else
   1849 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1850 
   1851 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1852 
   1853 		if (rc)
   1854 			return rc;
   1855 
   1856 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1857 
   1858 		offset32 += 4;
   1859 		ret_buf += pre_len;
   1860 		len32 -= pre_len;
   1861 	}
   1862 
   1863 	if (len32 & 3) {
   1864 		extra = 4 - (len32 & 3);
   1865 		len32 = (len32 + 4) & ~3;
   1866 	}
   1867 
   1868 	if (len32 == 4) {
   1869 		uint8_t buf[4];
   1870 
   1871 		if (cmd_flags)
   1872 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1873 		else
   1874 			cmd_flags =
   1875 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1876 
   1877 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1878 
   1879 		memcpy(ret_buf, buf, 4 - extra);
   1880 	} else if (len32 > 0) {
   1881 		uint8_t buf[4];
   1882 
   1883 		/* Read the first word. */
   1884 		if (cmd_flags)
   1885 			cmd_flags = 0;
   1886 		else
   1887 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1888 
   1889 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1890 
   1891 		/* Advance to the next dword. */
   1892 		offset32 += 4;
   1893 		ret_buf += 4;
   1894 		len32 -= 4;
   1895 
   1896 		while (len32 > 4 && rc == 0) {
   1897 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1898 
   1899 			/* Advance to the next dword. */
   1900 			offset32 += 4;
   1901 			ret_buf += 4;
   1902 			len32 -= 4;
   1903 		}
   1904 
   1905 		if (rc)
   1906 			return rc;
   1907 
   1908 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1909 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1910 
   1911 		memcpy(ret_buf, buf, 4 - extra);
   1912 	}
   1913 
   1914 	/* Disable access to flash interface and release the lock. */
   1915 	bnx_disable_nvram_access(sc);
   1916 	bnx_release_nvram_lock(sc);
   1917 
   1918 	return rc;
   1919 }
   1920 
   1921 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1922 /****************************************************************************/
   1923 /* Write an arbitrary range of data from NVRAM.                             */
   1924 /*                                                                          */
   1925 /* Prepares the NVRAM interface for write access and writes the requested   */
   1926 /* data from the supplied buffer.  The caller is responsible for            */
   1927 /* calculating any appropriate CRCs.                                        */
   1928 /*                                                                          */
   1929 /* Returns:                                                                 */
   1930 /*   0 on success, positive value on failure.                               */
   1931 /****************************************************************************/
   1932 int
   1933 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1934     int buf_size)
   1935 {
   1936 	uint32_t		written, offset32, len32;
   1937 	uint8_t		*buf, start[4], end[4];
   1938 	int			rc = 0;
   1939 	int			align_start, align_end;
   1940 
   1941 	buf = data_buf;
   1942 	offset32 = offset;
   1943 	len32 = buf_size;
   1944 	align_start = align_end = 0;
   1945 
   1946 	if ((align_start = (offset32 & 3))) {
   1947 		offset32 &= ~3;
   1948 		len32 += align_start;
   1949 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1950 			return rc;
   1951 	}
   1952 
   1953 	if (len32 & 3) {
   1954 		if ((len32 > 4) || !align_start) {
   1955 			align_end = 4 - (len32 & 3);
   1956 			len32 += align_end;
   1957 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1958 			    end, 4)))
   1959 				return rc;
   1960 		}
   1961 	}
   1962 
   1963 	if (align_start || align_end) {
   1964 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1965 		if (buf == NULL)
   1966 			return ENOMEM;
   1967 
   1968 		if (align_start)
   1969 			memcpy(buf, start, 4);
   1970 
   1971 		if (align_end)
   1972 			memcpy(buf + len32 - 4, end, 4);
   1973 
   1974 		memcpy(buf + align_start, data_buf, buf_size);
   1975 	}
   1976 
   1977 	written = 0;
   1978 	while ((written < len32) && (rc == 0)) {
   1979 		uint32_t page_start, page_end, data_start, data_end;
   1980 		uint32_t addr, cmd_flags;
   1981 		int i;
   1982 		uint8_t flash_buffer[264];
   1983 
   1984 	    /* Find the page_start addr */
   1985 		page_start = offset32 + written;
   1986 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1987 		/* Find the page_end addr */
   1988 		page_end = page_start + sc->bnx_flash_info->page_size;
   1989 		/* Find the data_start addr */
   1990 		data_start = (written == 0) ? offset32 : page_start;
   1991 		/* Find the data_end addr */
   1992 		data_end = (page_end > offset32 + len32) ?
   1993 		    (offset32 + len32) : page_end;
   1994 
   1995 		/* Request access to the flash interface. */
   1996 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1997 			goto nvram_write_end;
   1998 
   1999 		/* Enable access to flash interface */
   2000 		bnx_enable_nvram_access(sc);
   2001 
   2002 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   2003 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2004 			int j;
   2005 
   2006 			/* Read the whole page into the buffer
   2007 			 * (non-buffer flash only) */
   2008 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   2009 				if (j == (sc->bnx_flash_info->page_size - 4))
   2010 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   2011 
   2012 				rc = bnx_nvram_read_dword(sc,
   2013 					page_start + j,
   2014 					&flash_buffer[j],
   2015 					cmd_flags);
   2016 
   2017 				if (rc)
   2018 					goto nvram_write_end;
   2019 
   2020 				cmd_flags = 0;
   2021 			}
   2022 		}
   2023 
   2024 		/* Enable writes to flash interface (unlock write-protect) */
   2025 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   2026 			goto nvram_write_end;
   2027 
   2028 		/* Erase the page */
   2029 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   2030 			goto nvram_write_end;
   2031 
   2032 		/* Re-enable the write again for the actual write */
   2033 		bnx_enable_nvram_write(sc);
   2034 
   2035 		/* Loop to write back the buffer data from page_start to
   2036 		 * data_start */
   2037 		i = 0;
   2038 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2039 			for (addr = page_start; addr < data_start;
   2040 				addr += 4, i += 4) {
   2041 
   2042 				rc = bnx_nvram_write_dword(sc, addr,
   2043 				    &flash_buffer[i], cmd_flags);
   2044 
   2045 				if (rc != 0)
   2046 					goto nvram_write_end;
   2047 
   2048 				cmd_flags = 0;
   2049 			}
   2050 		}
   2051 
   2052 		/* Loop to write the new data from data_start to data_end */
   2053 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   2054 			if ((addr == page_end - 4) ||
   2055 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   2056 			    && (addr == data_end - 4))) {
   2057 
   2058 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   2059 			}
   2060 
   2061 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2062 
   2063 			if (rc != 0)
   2064 				goto nvram_write_end;
   2065 
   2066 			cmd_flags = 0;
   2067 			buf += 4;
   2068 		}
   2069 
   2070 		/* Loop to write back the buffer data from data_end
   2071 		 * to page_end */
   2072 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2073 			for (addr = data_end; addr < page_end;
   2074 			    addr += 4, i += 4) {
   2075 
   2076 				if (addr == page_end-4)
   2077 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2078 
   2079 				rc = bnx_nvram_write_dword(sc, addr,
   2080 				    &flash_buffer[i], cmd_flags);
   2081 
   2082 				if (rc != 0)
   2083 					goto nvram_write_end;
   2084 
   2085 				cmd_flags = 0;
   2086 			}
   2087 		}
   2088 
   2089 		/* Disable writes to flash interface (lock write-protect) */
   2090 		bnx_disable_nvram_write(sc);
   2091 
   2092 		/* Disable access to flash interface */
   2093 		bnx_disable_nvram_access(sc);
   2094 		bnx_release_nvram_lock(sc);
   2095 
   2096 		/* Increment written */
   2097 		written += data_end - data_start;
   2098 	}
   2099 
   2100 nvram_write_end:
   2101 	if (align_start || align_end)
   2102 		free(buf, M_DEVBUF);
   2103 
   2104 	return rc;
   2105 }
   2106 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2107 
   2108 /****************************************************************************/
   2109 /* Verifies that NVRAM is accessible and contains valid data.               */
   2110 /*                                                                          */
   2111 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2112 /* correct.                                                                 */
   2113 /*                                                                          */
   2114 /* Returns:                                                                 */
   2115 /*   0 on success, positive value on failure.                               */
   2116 /****************************************************************************/
   2117 int
   2118 bnx_nvram_test(struct bnx_softc *sc)
   2119 {
   2120 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2121 	uint8_t		*data = (uint8_t *) buf;
   2122 	int			rc = 0;
   2123 	uint32_t		magic, csum;
   2124 
   2125 	/*
   2126 	 * Check that the device NVRAM is valid by reading
   2127 	 * the magic value at offset 0.
   2128 	 */
   2129 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2130 		goto bnx_nvram_test_done;
   2131 
   2132 	magic = be32toh(buf[0]);
   2133 	if (magic != BNX_NVRAM_MAGIC) {
   2134 		rc = ENODEV;
   2135 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2136 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2137 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2138 		goto bnx_nvram_test_done;
   2139 	}
   2140 
   2141 	/*
   2142 	 * Verify that the device NVRAM includes valid
   2143 	 * configuration data.
   2144 	 */
   2145 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2146 		goto bnx_nvram_test_done;
   2147 
   2148 	csum = ether_crc32_le(data, 0x100);
   2149 	if (csum != BNX_CRC32_RESIDUAL) {
   2150 		rc = ENODEV;
   2151 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2152 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2153 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2154 		goto bnx_nvram_test_done;
   2155 	}
   2156 
   2157 	csum = ether_crc32_le(data + 0x100, 0x100);
   2158 	if (csum != BNX_CRC32_RESIDUAL) {
   2159 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2160 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2161 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2162 		rc = ENODEV;
   2163 	}
   2164 
   2165 bnx_nvram_test_done:
   2166 	return rc;
   2167 }
   2168 
   2169 /****************************************************************************/
   2170 /* Identifies the current media type of the controller and sets the PHY     */
   2171 /* address.                                                                 */
   2172 /*                                                                          */
   2173 /* Returns:                                                                 */
   2174 /*   Nothing.                                                               */
   2175 /****************************************************************************/
   2176 void
   2177 bnx_get_media(struct bnx_softc *sc)
   2178 {
   2179 	sc->bnx_phy_addr = 1;
   2180 
   2181 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2182 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2183 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2184 		uint32_t strap;
   2185 
   2186 		/*
   2187 		 * The BCM5709S is software configurable
   2188 		 * for Copper or SerDes operation.
   2189 		 */
   2190 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2191 			DBPRINT(sc, BNX_INFO_LOAD,
   2192 			    "5709 bonded for copper.\n");
   2193 			goto bnx_get_media_exit;
   2194 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2195 			DBPRINT(sc, BNX_INFO_LOAD,
   2196 			    "5709 bonded for dual media.\n");
   2197 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2198 			goto bnx_get_media_exit;
   2199 		}
   2200 
   2201 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2202 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2203 		else {
   2204 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2205 			    >> 8;
   2206 		}
   2207 
   2208 		if (sc->bnx_pa.pa_function == 0) {
   2209 			switch (strap) {
   2210 			case 0x4:
   2211 			case 0x5:
   2212 			case 0x6:
   2213 				DBPRINT(sc, BNX_INFO_LOAD,
   2214 					"BCM5709 s/w configured for SerDes.\n");
   2215 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2216 				break;
   2217 			default:
   2218 				DBPRINT(sc, BNX_INFO_LOAD,
   2219 					"BCM5709 s/w configured for Copper.\n");
   2220 			}
   2221 		} else {
   2222 			switch (strap) {
   2223 			case 0x1:
   2224 			case 0x2:
   2225 			case 0x4:
   2226 				DBPRINT(sc, BNX_INFO_LOAD,
   2227 					"BCM5709 s/w configured for SerDes.\n");
   2228 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2229 				break;
   2230 			default:
   2231 				DBPRINT(sc, BNX_INFO_LOAD,
   2232 					"BCM5709 s/w configured for Copper.\n");
   2233 			}
   2234 		}
   2235 
   2236 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2237 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2238 
   2239 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2240 		uint32_t val;
   2241 
   2242 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2243 
   2244 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2245 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2246 
   2247 		/*
   2248 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2249 		 * separate PHY for SerDes.
   2250 		 */
   2251 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2252 			sc->bnx_phy_addr = 2;
   2253 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2254 				 BNX_SHARED_HW_CFG_CONFIG);
   2255 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2256 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2257 				DBPRINT(sc, BNX_INFO_LOAD,
   2258 				    "Found 2.5Gb capable adapter\n");
   2259 			}
   2260 		}
   2261 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2262 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2263 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2264 
   2265 bnx_get_media_exit:
   2266 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2267 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2268 }
   2269 
   2270 /****************************************************************************/
   2271 /* Performs PHY initialization required before MII drivers access the       */
   2272 /* device.                                                                  */
   2273 /*                                                                          */
   2274 /* Returns:                                                                 */
   2275 /*   Nothing.                                                               */
   2276 /****************************************************************************/
   2277 void
   2278 bnx_init_media(struct bnx_softc *sc)
   2279 {
   2280 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2281 		/*
   2282 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2283 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2284 		 * the PHY to the mii(4) layer. PHY specific configuration
   2285 		 * is done by the mii(4) layer.
   2286 		 */
   2287 
   2288 		/* Select auto-negotiation MMD of the PHY. */
   2289 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2290 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2291 
   2292 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2293 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2294 
   2295 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2296 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2297 	}
   2298 }
   2299 
   2300 /****************************************************************************/
   2301 /* Free any DMA memory owned by the driver.                                 */
   2302 /*                                                                          */
   2303 /* Scans through each data structre that requires DMA memory and frees      */
   2304 /* the memory if allocated.                                                 */
   2305 /*                                                                          */
   2306 /* Returns:                                                                 */
   2307 /*   Nothing.                                                               */
   2308 /****************************************************************************/
   2309 void
   2310 bnx_dma_free(struct bnx_softc *sc)
   2311 {
   2312 	int			i;
   2313 
   2314 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2315 
   2316 	/* Destroy the status block. */
   2317 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2318 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2319 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2320 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2321 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2322 		    BNX_STATUS_BLK_SZ);
   2323 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2324 		    sc->status_rseg);
   2325 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2326 		sc->status_block = NULL;
   2327 		sc->status_map = NULL;
   2328 	}
   2329 
   2330 	/* Destroy the statistics block. */
   2331 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2332 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2333 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2334 		    BNX_STATS_BLK_SZ);
   2335 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2336 		    sc->stats_rseg);
   2337 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2338 		sc->stats_block = NULL;
   2339 		sc->stats_map = NULL;
   2340 	}
   2341 
   2342 	/* Free, unmap and destroy all context memory pages. */
   2343 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2344 		for (i = 0; i < sc->ctx_pages; i++) {
   2345 			if (sc->ctx_block[i] != NULL) {
   2346 				bus_dmamap_unload(sc->bnx_dmatag,
   2347 				    sc->ctx_map[i]);
   2348 				bus_dmamem_unmap(sc->bnx_dmatag,
   2349 				    (void *)sc->ctx_block[i],
   2350 				    BCM_PAGE_SIZE);
   2351 				bus_dmamem_free(sc->bnx_dmatag,
   2352 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2353 				bus_dmamap_destroy(sc->bnx_dmatag,
   2354 				    sc->ctx_map[i]);
   2355 				sc->ctx_block[i] = NULL;
   2356 			}
   2357 		}
   2358 	}
   2359 
   2360 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2361 	for (i = 0; i < TX_PAGES; i++ ) {
   2362 		if (sc->tx_bd_chain[i] != NULL &&
   2363 		    sc->tx_bd_chain_map[i] != NULL) {
   2364 			bus_dmamap_unload(sc->bnx_dmatag,
   2365 			    sc->tx_bd_chain_map[i]);
   2366 			bus_dmamem_unmap(sc->bnx_dmatag,
   2367 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2368 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2369 			    sc->tx_bd_chain_rseg[i]);
   2370 			bus_dmamap_destroy(sc->bnx_dmatag,
   2371 			    sc->tx_bd_chain_map[i]);
   2372 			sc->tx_bd_chain[i] = NULL;
   2373 			sc->tx_bd_chain_map[i] = NULL;
   2374 		}
   2375 	}
   2376 
   2377 	/* Destroy the TX dmamaps. */
   2378 	/* This isn't necessary since we dont allocate them up front */
   2379 
   2380 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2381 	for (i = 0; i < RX_PAGES; i++ ) {
   2382 		if (sc->rx_bd_chain[i] != NULL &&
   2383 		    sc->rx_bd_chain_map[i] != NULL) {
   2384 			bus_dmamap_unload(sc->bnx_dmatag,
   2385 			    sc->rx_bd_chain_map[i]);
   2386 			bus_dmamem_unmap(sc->bnx_dmatag,
   2387 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2388 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2389 			    sc->rx_bd_chain_rseg[i]);
   2390 
   2391 			bus_dmamap_destroy(sc->bnx_dmatag,
   2392 			    sc->rx_bd_chain_map[i]);
   2393 			sc->rx_bd_chain[i] = NULL;
   2394 			sc->rx_bd_chain_map[i] = NULL;
   2395 		}
   2396 	}
   2397 
   2398 	/* Unload and destroy the RX mbuf maps. */
   2399 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2400 		if (sc->rx_mbuf_map[i] != NULL) {
   2401 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2402 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2403 		}
   2404 	}
   2405 
   2406 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2407 }
   2408 
   2409 /****************************************************************************/
   2410 /* Allocate any DMA memory needed by the driver.                            */
   2411 /*                                                                          */
   2412 /* Allocates DMA memory needed for the various global structures needed by  */
   2413 /* hardware.                                                                */
   2414 /*                                                                          */
   2415 /* Returns:                                                                 */
   2416 /*   0 for success, positive value for failure.                             */
   2417 /****************************************************************************/
   2418 int
   2419 bnx_dma_alloc(struct bnx_softc *sc)
   2420 {
   2421 	int			i, rc = 0;
   2422 
   2423 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2424 
   2425 	/*
   2426 	 * Allocate DMA memory for the status block, map the memory into DMA
   2427 	 * space, and fetch the physical address of the block.
   2428 	 */
   2429 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2430 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2431 		aprint_error_dev(sc->bnx_dev,
   2432 		    "Could not create status block DMA map!\n");
   2433 		rc = ENOMEM;
   2434 		goto bnx_dma_alloc_exit;
   2435 	}
   2436 
   2437 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2438 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2439 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2440 		aprint_error_dev(sc->bnx_dev,
   2441 		    "Could not allocate status block DMA memory!\n");
   2442 		rc = ENOMEM;
   2443 		goto bnx_dma_alloc_exit;
   2444 	}
   2445 
   2446 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2447 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2448 		aprint_error_dev(sc->bnx_dev,
   2449 		    "Could not map status block DMA memory!\n");
   2450 		rc = ENOMEM;
   2451 		goto bnx_dma_alloc_exit;
   2452 	}
   2453 
   2454 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2455 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2456 		aprint_error_dev(sc->bnx_dev,
   2457 		    "Could not load status block DMA memory!\n");
   2458 		rc = ENOMEM;
   2459 		goto bnx_dma_alloc_exit;
   2460 	}
   2461 
   2462 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2463 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2464 
   2465 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2466 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2467 
   2468 	/* DRC - Fix for 64 bit addresses. */
   2469 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2470 		(uint32_t) sc->status_block_paddr);
   2471 
   2472 	/* BCM5709 uses host memory as cache for context memory. */
   2473 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2474 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2475 		if (sc->ctx_pages == 0)
   2476 			sc->ctx_pages = 1;
   2477 		if (sc->ctx_pages > 4) /* XXX */
   2478 			sc->ctx_pages = 4;
   2479 
   2480 		DBRUNIF((sc->ctx_pages > 512),
   2481 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2482 				__FILE__, __LINE__, sc->ctx_pages));
   2483 
   2484 
   2485 		for (i = 0; i < sc->ctx_pages; i++) {
   2486 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2487 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2488 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2489 			    &sc->ctx_map[i]) != 0) {
   2490 				rc = ENOMEM;
   2491 				goto bnx_dma_alloc_exit;
   2492 			}
   2493 
   2494 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2495 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2496 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2497 				rc = ENOMEM;
   2498 				goto bnx_dma_alloc_exit;
   2499 			}
   2500 
   2501 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2502 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2503 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2504 				rc = ENOMEM;
   2505 				goto bnx_dma_alloc_exit;
   2506 			}
   2507 
   2508 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2509 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2510 			    BUS_DMA_NOWAIT) != 0) {
   2511 				rc = ENOMEM;
   2512 				goto bnx_dma_alloc_exit;
   2513 			}
   2514 
   2515 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2516 		}
   2517 	}
   2518 
   2519 	/*
   2520 	 * Allocate DMA memory for the statistics block, map the memory into
   2521 	 * DMA space, and fetch the physical address of the block.
   2522 	 */
   2523 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2524 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2525 		aprint_error_dev(sc->bnx_dev,
   2526 		    "Could not create stats block DMA map!\n");
   2527 		rc = ENOMEM;
   2528 		goto bnx_dma_alloc_exit;
   2529 	}
   2530 
   2531 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2532 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2533 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2534 		aprint_error_dev(sc->bnx_dev,
   2535 		    "Could not allocate stats block DMA memory!\n");
   2536 		rc = ENOMEM;
   2537 		goto bnx_dma_alloc_exit;
   2538 	}
   2539 
   2540 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2541 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2542 		aprint_error_dev(sc->bnx_dev,
   2543 		    "Could not map stats block DMA memory!\n");
   2544 		rc = ENOMEM;
   2545 		goto bnx_dma_alloc_exit;
   2546 	}
   2547 
   2548 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2549 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2550 		aprint_error_dev(sc->bnx_dev,
   2551 		    "Could not load status block DMA memory!\n");
   2552 		rc = ENOMEM;
   2553 		goto bnx_dma_alloc_exit;
   2554 	}
   2555 
   2556 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2557 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2558 
   2559 	/* DRC - Fix for 64 bit address. */
   2560 	DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2561 	    (uint32_t) sc->stats_block_paddr);
   2562 
   2563 	/*
   2564 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2565 	 * and fetch the physical address of the block.
   2566 	 */
   2567 	for (i = 0; i < TX_PAGES; i++) {
   2568 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2569 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2570 		    &sc->tx_bd_chain_map[i])) {
   2571 			aprint_error_dev(sc->bnx_dev,
   2572 			    "Could not create Tx desc %d DMA map!\n", i);
   2573 			rc = ENOMEM;
   2574 			goto bnx_dma_alloc_exit;
   2575 		}
   2576 
   2577 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2578 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2579 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2580 			aprint_error_dev(sc->bnx_dev,
   2581 			    "Could not allocate TX desc %d DMA memory!\n",
   2582 			    i);
   2583 			rc = ENOMEM;
   2584 			goto bnx_dma_alloc_exit;
   2585 		}
   2586 
   2587 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2588 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2589 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2590 			aprint_error_dev(sc->bnx_dev,
   2591 			    "Could not map TX desc %d DMA memory!\n", i);
   2592 			rc = ENOMEM;
   2593 			goto bnx_dma_alloc_exit;
   2594 		}
   2595 
   2596 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2597 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2598 		    BUS_DMA_NOWAIT)) {
   2599 			aprint_error_dev(sc->bnx_dev,
   2600 			    "Could not load TX desc %d DMA memory!\n", i);
   2601 			rc = ENOMEM;
   2602 			goto bnx_dma_alloc_exit;
   2603 		}
   2604 
   2605 		sc->tx_bd_chain_paddr[i] =
   2606 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2607 
   2608 		/* DRC - Fix for 64 bit systems. */
   2609 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2610 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2611 	}
   2612 
   2613 	/*
   2614 	 * Create lists to hold TX mbufs.
   2615 	 */
   2616 	TAILQ_INIT(&sc->tx_free_pkts);
   2617 	TAILQ_INIT(&sc->tx_used_pkts);
   2618 	sc->tx_pkt_count = 0;
   2619 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2620 
   2621 	/*
   2622 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2623 	 * and fetch the physical address of the block.
   2624 	 */
   2625 	for (i = 0; i < RX_PAGES; i++) {
   2626 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2627 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2628 		    &sc->rx_bd_chain_map[i])) {
   2629 			aprint_error_dev(sc->bnx_dev,
   2630 			    "Could not create Rx desc %d DMA map!\n", i);
   2631 			rc = ENOMEM;
   2632 			goto bnx_dma_alloc_exit;
   2633 		}
   2634 
   2635 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2636 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2637 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2638 			aprint_error_dev(sc->bnx_dev,
   2639 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2640 			rc = ENOMEM;
   2641 			goto bnx_dma_alloc_exit;
   2642 		}
   2643 
   2644 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2645 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2646 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2647 			aprint_error_dev(sc->bnx_dev,
   2648 			    "Could not map Rx desc %d DMA memory!\n", i);
   2649 			rc = ENOMEM;
   2650 			goto bnx_dma_alloc_exit;
   2651 		}
   2652 
   2653 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2654 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2655 		    BUS_DMA_NOWAIT)) {
   2656 			aprint_error_dev(sc->bnx_dev,
   2657 			    "Could not load Rx desc %d DMA memory!\n", i);
   2658 			rc = ENOMEM;
   2659 			goto bnx_dma_alloc_exit;
   2660 		}
   2661 
   2662 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2663 		sc->rx_bd_chain_paddr[i] =
   2664 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2665 
   2666 		/* DRC - Fix for 64 bit systems. */
   2667 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2668 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2669 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2670 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2671 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2672 	}
   2673 
   2674 	/*
   2675 	 * Create DMA maps for the Rx buffer mbufs.
   2676 	 */
   2677 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2678 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2679 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2680 		    &sc->rx_mbuf_map[i])) {
   2681 			aprint_error_dev(sc->bnx_dev,
   2682 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2683 			rc = ENOMEM;
   2684 			goto bnx_dma_alloc_exit;
   2685 		}
   2686 	}
   2687 
   2688  bnx_dma_alloc_exit:
   2689 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2690 
   2691 	return rc;
   2692 }
   2693 
   2694 /****************************************************************************/
   2695 /* Release all resources used by the driver.                                */
   2696 /*                                                                          */
   2697 /* Releases all resources acquired by the driver including interrupts,      */
   2698 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2699 /*                                                                          */
   2700 /* Returns:                                                                 */
   2701 /*   Nothing.                                                               */
   2702 /****************************************************************************/
   2703 void
   2704 bnx_release_resources(struct bnx_softc *sc)
   2705 {
   2706 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2707 
   2708 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2709 
   2710 	bnx_dma_free(sc);
   2711 
   2712 	if (sc->bnx_intrhand != NULL)
   2713 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2714 
   2715 	if (sc->bnx_size)
   2716 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2717 
   2718 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2719 }
   2720 
   2721 /****************************************************************************/
   2722 /* Firmware synchronization.                                                */
   2723 /*                                                                          */
   2724 /* Before performing certain events such as a chip reset, synchronize with  */
   2725 /* the firmware first.                                                      */
   2726 /*                                                                          */
   2727 /* Returns:                                                                 */
   2728 /*   0 for success, positive value for failure.                             */
   2729 /****************************************************************************/
   2730 int
   2731 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2732 {
   2733 	int			i, rc = 0;
   2734 	uint32_t		val;
   2735 
   2736 	/* Don't waste any time if we've timed out before. */
   2737 	if (sc->bnx_fw_timed_out) {
   2738 		rc = EBUSY;
   2739 		goto bnx_fw_sync_exit;
   2740 	}
   2741 
   2742 	/* Increment the message sequence number. */
   2743 	sc->bnx_fw_wr_seq++;
   2744 	msg_data |= sc->bnx_fw_wr_seq;
   2745 
   2746 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2747 	    msg_data);
   2748 
   2749 	/* Send the message to the bootcode driver mailbox. */
   2750 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2751 
   2752 	/* Wait for the bootcode to acknowledge the message. */
   2753 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2754 		/* Check for a response in the bootcode firmware mailbox. */
   2755 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2756 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2757 			break;
   2758 		DELAY(1000);
   2759 	}
   2760 
   2761 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2762 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2763 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2764 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2765 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2766 
   2767 		msg_data &= ~BNX_DRV_MSG_CODE;
   2768 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2769 
   2770 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2771 
   2772 		sc->bnx_fw_timed_out = 1;
   2773 		rc = EBUSY;
   2774 	}
   2775 
   2776 bnx_fw_sync_exit:
   2777 	return rc;
   2778 }
   2779 
   2780 /****************************************************************************/
   2781 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2782 /*                                                                          */
   2783 /* Returns:                                                                 */
   2784 /*   Nothing.                                                               */
   2785 /****************************************************************************/
   2786 void
   2787 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2788     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2789 {
   2790 	int			i;
   2791 	uint32_t		val;
   2792 
   2793 	/* Set the page size used by RV2P. */
   2794 	if (rv2p_proc == RV2P_PROC2) {
   2795 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2796 		    USABLE_RX_BD_PER_PAGE);
   2797 	}
   2798 
   2799 	for (i = 0; i < rv2p_code_len; i += 8) {
   2800 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2801 		rv2p_code++;
   2802 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2803 		rv2p_code++;
   2804 
   2805 		if (rv2p_proc == RV2P_PROC1) {
   2806 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2807 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2808 		} else {
   2809 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2810 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2811 		}
   2812 	}
   2813 
   2814 	/* Reset the processor, un-stall is done later. */
   2815 	if (rv2p_proc == RV2P_PROC1)
   2816 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2817 	else
   2818 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2819 }
   2820 
   2821 /****************************************************************************/
   2822 /* Load RISC processor firmware.                                            */
   2823 /*                                                                          */
   2824 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2825 /* associated with a particular processor.                                  */
   2826 /*                                                                          */
   2827 /* Returns:                                                                 */
   2828 /*   Nothing.                                                               */
   2829 /****************************************************************************/
   2830 void
   2831 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2832     struct fw_info *fw)
   2833 {
   2834 	uint32_t		offset;
   2835 	uint32_t		val;
   2836 
   2837 	/* Halt the CPU. */
   2838 	val = REG_RD_IND(sc, cpu_reg->mode);
   2839 	val |= cpu_reg->mode_value_halt;
   2840 	REG_WR_IND(sc, cpu_reg->mode, val);
   2841 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2842 
   2843 	/* Load the Text area. */
   2844 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2845 	if (fw->text) {
   2846 		int j;
   2847 
   2848 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2849 			REG_WR_IND(sc, offset, fw->text[j]);
   2850 	}
   2851 
   2852 	/* Load the Data area. */
   2853 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2854 	if (fw->data) {
   2855 		int j;
   2856 
   2857 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2858 			REG_WR_IND(sc, offset, fw->data[j]);
   2859 	}
   2860 
   2861 	/* Load the SBSS area. */
   2862 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2863 	if (fw->sbss) {
   2864 		int j;
   2865 
   2866 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2867 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2868 	}
   2869 
   2870 	/* Load the BSS area. */
   2871 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2872 	if (fw->bss) {
   2873 		int j;
   2874 
   2875 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2876 			REG_WR_IND(sc, offset, fw->bss[j]);
   2877 	}
   2878 
   2879 	/* Load the Read-Only area. */
   2880 	offset = cpu_reg->spad_base +
   2881 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2882 	if (fw->rodata) {
   2883 		int j;
   2884 
   2885 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2886 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2887 	}
   2888 
   2889 	/* Clear the pre-fetch instruction. */
   2890 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2891 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2892 
   2893 	/* Start the CPU. */
   2894 	val = REG_RD_IND(sc, cpu_reg->mode);
   2895 	val &= ~cpu_reg->mode_value_halt;
   2896 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2897 	REG_WR_IND(sc, cpu_reg->mode, val);
   2898 }
   2899 
   2900 /****************************************************************************/
   2901 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2902 /*                                                                          */
   2903 /* Loads the firmware for each CPU and starts the CPU.                      */
   2904 /*                                                                          */
   2905 /* Returns:                                                                 */
   2906 /*   Nothing.                                                               */
   2907 /****************************************************************************/
   2908 void
   2909 bnx_init_cpus(struct bnx_softc *sc)
   2910 {
   2911 	struct cpu_reg cpu_reg;
   2912 	struct fw_info fw;
   2913 
   2914 	switch (BNX_CHIP_NUM(sc)) {
   2915 	case BNX_CHIP_NUM_5709:
   2916 		/* Initialize the RV2P processor. */
   2917 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2918 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2919 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2920 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2921 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2922 		} else {
   2923 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2924 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2925 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2926 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2927 		}
   2928 
   2929 		/* Initialize the RX Processor. */
   2930 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2931 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2932 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2933 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2934 		cpu_reg.state_value_clear = 0xffffff;
   2935 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2936 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2937 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2938 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2939 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2940 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2941 		cpu_reg.mips_view_base = 0x8000000;
   2942 
   2943 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2944 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2945 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2946 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2947 
   2948 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2949 		fw.text_len = bnx_RXP_b09FwTextLen;
   2950 		fw.text_index = 0;
   2951 		fw.text = bnx_RXP_b09FwText;
   2952 
   2953 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2954 		fw.data_len = bnx_RXP_b09FwDataLen;
   2955 		fw.data_index = 0;
   2956 		fw.data = bnx_RXP_b09FwData;
   2957 
   2958 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2959 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2960 		fw.sbss_index = 0;
   2961 		fw.sbss = bnx_RXP_b09FwSbss;
   2962 
   2963 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2964 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2965 		fw.bss_index = 0;
   2966 		fw.bss = bnx_RXP_b09FwBss;
   2967 
   2968 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2969 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2970 		fw.rodata_index = 0;
   2971 		fw.rodata = bnx_RXP_b09FwRodata;
   2972 
   2973 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2974 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2975 
   2976 		/* Initialize the TX Processor. */
   2977 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2978 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2979 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2980 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2981 		cpu_reg.state_value_clear = 0xffffff;
   2982 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2983 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2984 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2985 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2986 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2987 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2988 		cpu_reg.mips_view_base = 0x8000000;
   2989 
   2990 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2991 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2992 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2993 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2994 
   2995 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2996 		fw.text_len = bnx_TXP_b09FwTextLen;
   2997 		fw.text_index = 0;
   2998 		fw.text = bnx_TXP_b09FwText;
   2999 
   3000 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   3001 		fw.data_len = bnx_TXP_b09FwDataLen;
   3002 		fw.data_index = 0;
   3003 		fw.data = bnx_TXP_b09FwData;
   3004 
   3005 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   3006 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   3007 		fw.sbss_index = 0;
   3008 		fw.sbss = bnx_TXP_b09FwSbss;
   3009 
   3010 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   3011 		fw.bss_len = bnx_TXP_b09FwBssLen;
   3012 		fw.bss_index = 0;
   3013 		fw.bss = bnx_TXP_b09FwBss;
   3014 
   3015 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   3016 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   3017 		fw.rodata_index = 0;
   3018 		fw.rodata = bnx_TXP_b09FwRodata;
   3019 
   3020 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3021 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3022 
   3023 		/* Initialize the TX Patch-up Processor. */
   3024 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3025 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3026 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3027 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3028 		cpu_reg.state_value_clear = 0xffffff;
   3029 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3030 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3031 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3032 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3033 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3034 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3035 		cpu_reg.mips_view_base = 0x8000000;
   3036 
   3037 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   3038 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   3039 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   3040 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   3041 
   3042 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   3043 		fw.text_len = bnx_TPAT_b09FwTextLen;
   3044 		fw.text_index = 0;
   3045 		fw.text = bnx_TPAT_b09FwText;
   3046 
   3047 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   3048 		fw.data_len = bnx_TPAT_b09FwDataLen;
   3049 		fw.data_index = 0;
   3050 		fw.data = bnx_TPAT_b09FwData;
   3051 
   3052 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   3053 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   3054 		fw.sbss_index = 0;
   3055 		fw.sbss = bnx_TPAT_b09FwSbss;
   3056 
   3057 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   3058 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   3059 		fw.bss_index = 0;
   3060 		fw.bss = bnx_TPAT_b09FwBss;
   3061 
   3062 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3063 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3064 		fw.rodata_index = 0;
   3065 		fw.rodata = bnx_TPAT_b09FwRodata;
   3066 
   3067 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3068 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3069 
   3070 		/* Initialize the Completion Processor. */
   3071 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3072 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3073 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3074 		cpu_reg.state = BNX_COM_CPU_STATE;
   3075 		cpu_reg.state_value_clear = 0xffffff;
   3076 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3077 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3078 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3079 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3080 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3081 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3082 		cpu_reg.mips_view_base = 0x8000000;
   3083 
   3084 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3085 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3086 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3087 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3088 
   3089 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3090 		fw.text_len = bnx_COM_b09FwTextLen;
   3091 		fw.text_index = 0;
   3092 		fw.text = bnx_COM_b09FwText;
   3093 
   3094 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3095 		fw.data_len = bnx_COM_b09FwDataLen;
   3096 		fw.data_index = 0;
   3097 		fw.data = bnx_COM_b09FwData;
   3098 
   3099 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3100 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3101 		fw.sbss_index = 0;
   3102 		fw.sbss = bnx_COM_b09FwSbss;
   3103 
   3104 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3105 		fw.bss_len = bnx_COM_b09FwBssLen;
   3106 		fw.bss_index = 0;
   3107 		fw.bss = bnx_COM_b09FwBss;
   3108 
   3109 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3110 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3111 		fw.rodata_index = 0;
   3112 		fw.rodata = bnx_COM_b09FwRodata;
   3113 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3114 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3115 		break;
   3116 	default:
   3117 		/* Initialize the RV2P processor. */
   3118 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3119 		    RV2P_PROC1);
   3120 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3121 		    RV2P_PROC2);
   3122 
   3123 		/* Initialize the RX Processor. */
   3124 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3125 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3126 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3127 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3128 		cpu_reg.state_value_clear = 0xffffff;
   3129 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3130 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3131 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3132 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3133 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3134 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3135 		cpu_reg.mips_view_base = 0x8000000;
   3136 
   3137 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3138 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3139 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3140 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3141 
   3142 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3143 		fw.text_len = bnx_RXP_b06FwTextLen;
   3144 		fw.text_index = 0;
   3145 		fw.text = bnx_RXP_b06FwText;
   3146 
   3147 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3148 		fw.data_len = bnx_RXP_b06FwDataLen;
   3149 		fw.data_index = 0;
   3150 		fw.data = bnx_RXP_b06FwData;
   3151 
   3152 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3153 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3154 		fw.sbss_index = 0;
   3155 		fw.sbss = bnx_RXP_b06FwSbss;
   3156 
   3157 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3158 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3159 		fw.bss_index = 0;
   3160 		fw.bss = bnx_RXP_b06FwBss;
   3161 
   3162 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3163 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3164 		fw.rodata_index = 0;
   3165 		fw.rodata = bnx_RXP_b06FwRodata;
   3166 
   3167 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3168 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3169 
   3170 		/* Initialize the TX Processor. */
   3171 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3172 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3173 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3174 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3175 		cpu_reg.state_value_clear = 0xffffff;
   3176 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3177 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3178 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3179 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3180 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3181 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3182 		cpu_reg.mips_view_base = 0x8000000;
   3183 
   3184 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3185 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3186 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3187 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3188 
   3189 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3190 		fw.text_len = bnx_TXP_b06FwTextLen;
   3191 		fw.text_index = 0;
   3192 		fw.text = bnx_TXP_b06FwText;
   3193 
   3194 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3195 		fw.data_len = bnx_TXP_b06FwDataLen;
   3196 		fw.data_index = 0;
   3197 		fw.data = bnx_TXP_b06FwData;
   3198 
   3199 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3200 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3201 		fw.sbss_index = 0;
   3202 		fw.sbss = bnx_TXP_b06FwSbss;
   3203 
   3204 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3205 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3206 		fw.bss_index = 0;
   3207 		fw.bss = bnx_TXP_b06FwBss;
   3208 
   3209 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3210 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3211 		fw.rodata_index = 0;
   3212 		fw.rodata = bnx_TXP_b06FwRodata;
   3213 
   3214 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3215 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3216 
   3217 		/* Initialize the TX Patch-up Processor. */
   3218 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3219 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3220 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3221 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3222 		cpu_reg.state_value_clear = 0xffffff;
   3223 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3224 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3225 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3226 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3227 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3228 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3229 		cpu_reg.mips_view_base = 0x8000000;
   3230 
   3231 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3232 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3233 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3234 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3235 
   3236 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3237 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3238 		fw.text_index = 0;
   3239 		fw.text = bnx_TPAT_b06FwText;
   3240 
   3241 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3242 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3243 		fw.data_index = 0;
   3244 		fw.data = bnx_TPAT_b06FwData;
   3245 
   3246 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3247 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3248 		fw.sbss_index = 0;
   3249 		fw.sbss = bnx_TPAT_b06FwSbss;
   3250 
   3251 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3252 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3253 		fw.bss_index = 0;
   3254 		fw.bss = bnx_TPAT_b06FwBss;
   3255 
   3256 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3257 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3258 		fw.rodata_index = 0;
   3259 		fw.rodata = bnx_TPAT_b06FwRodata;
   3260 
   3261 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3262 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3263 
   3264 		/* Initialize the Completion Processor. */
   3265 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3266 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3267 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3268 		cpu_reg.state = BNX_COM_CPU_STATE;
   3269 		cpu_reg.state_value_clear = 0xffffff;
   3270 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3271 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3272 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3273 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3274 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3275 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3276 		cpu_reg.mips_view_base = 0x8000000;
   3277 
   3278 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3279 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3280 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3281 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3282 
   3283 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3284 		fw.text_len = bnx_COM_b06FwTextLen;
   3285 		fw.text_index = 0;
   3286 		fw.text = bnx_COM_b06FwText;
   3287 
   3288 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3289 		fw.data_len = bnx_COM_b06FwDataLen;
   3290 		fw.data_index = 0;
   3291 		fw.data = bnx_COM_b06FwData;
   3292 
   3293 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3294 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3295 		fw.sbss_index = 0;
   3296 		fw.sbss = bnx_COM_b06FwSbss;
   3297 
   3298 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3299 		fw.bss_len = bnx_COM_b06FwBssLen;
   3300 		fw.bss_index = 0;
   3301 		fw.bss = bnx_COM_b06FwBss;
   3302 
   3303 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3304 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3305 		fw.rodata_index = 0;
   3306 		fw.rodata = bnx_COM_b06FwRodata;
   3307 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3308 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3309 		break;
   3310 	}
   3311 }
   3312 
   3313 /****************************************************************************/
   3314 /* Initialize context memory.                                               */
   3315 /*                                                                          */
   3316 /* Clears the memory associated with each Context ID (CID).                 */
   3317 /*                                                                          */
   3318 /* Returns:                                                                 */
   3319 /*   Nothing.                                                               */
   3320 /****************************************************************************/
   3321 void
   3322 bnx_init_context(struct bnx_softc *sc)
   3323 {
   3324 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3325 		/* DRC: Replace this constant value with a #define. */
   3326 		int i, retry_cnt = 10;
   3327 		uint32_t val;
   3328 
   3329 		/*
   3330 		 * BCM5709 context memory may be cached
   3331 		 * in host memory so prepare the host memory
   3332 		 * for access.
   3333 		 */
   3334 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3335 		    | (1 << 12);
   3336 		val |= (BCM_PAGE_BITS - 8) << 16;
   3337 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3338 
   3339 		/* Wait for mem init command to complete. */
   3340 		for (i = 0; i < retry_cnt; i++) {
   3341 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3342 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3343 				break;
   3344 			DELAY(2);
   3345 		}
   3346 
   3347 		/* ToDo: Consider returning an error here. */
   3348 
   3349 		for (i = 0; i < sc->ctx_pages; i++) {
   3350 			int j;
   3351 
   3352 			/* Set the physaddr of the context memory cache. */
   3353 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3354 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3355 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3356 			val = (uint32_t)
   3357 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3358 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3359 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3360 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3361 
   3362 			/* Verify that the context memory write was successful. */
   3363 			for (j = 0; j < retry_cnt; j++) {
   3364 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3365 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3366 					break;
   3367 				DELAY(5);
   3368 			}
   3369 
   3370 			/* ToDo: Consider returning an error here. */
   3371 		}
   3372 	} else {
   3373 		uint32_t vcid_addr, offset;
   3374 
   3375 		/*
   3376 		 * For the 5706/5708, context memory is local to the
   3377 		 * controller, so initialize the controller context memory.
   3378 		 */
   3379 
   3380 		vcid_addr = GET_CID_ADDR(96);
   3381 		while (vcid_addr) {
   3382 
   3383 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3384 
   3385 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3386 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3387 
   3388 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3389 			     offset += 4)
   3390 				CTX_WR(sc, 0x00, offset, 0);
   3391 
   3392 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3393 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3394 		}
   3395 	}
   3396 }
   3397 
   3398 /****************************************************************************/
   3399 /* Fetch the permanent MAC address of the controller.                       */
   3400 /*                                                                          */
   3401 /* Returns:                                                                 */
   3402 /*   Nothing.                                                               */
   3403 /****************************************************************************/
   3404 void
   3405 bnx_get_mac_addr(struct bnx_softc *sc)
   3406 {
   3407 	uint32_t		mac_lo = 0, mac_hi = 0;
   3408 
   3409 	/*
   3410 	 * The NetXtreme II bootcode populates various NIC
   3411 	 * power-on and runtime configuration items in a
   3412 	 * shared memory area.  The factory configured MAC
   3413 	 * address is available from both NVRAM and the
   3414 	 * shared memory area so we'll read the value from
   3415 	 * shared memory for speed.
   3416 	 */
   3417 
   3418 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3419 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3420 
   3421 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3422 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3423 		    __FILE__, __LINE__);
   3424 	} else {
   3425 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3426 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3427 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3428 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3429 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3430 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3431 	}
   3432 
   3433 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3434 	    "%s\n", ether_sprintf(sc->eaddr));
   3435 }
   3436 
   3437 /****************************************************************************/
   3438 /* Program the MAC address.                                                 */
   3439 /*                                                                          */
   3440 /* Returns:                                                                 */
   3441 /*   Nothing.                                                               */
   3442 /****************************************************************************/
   3443 void
   3444 bnx_set_mac_addr(struct bnx_softc *sc)
   3445 {
   3446 	uint32_t		val;
   3447 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3448 
   3449 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3450 	    "%s\n", ether_sprintf(sc->eaddr));
   3451 
   3452 	val = (mac_addr[0] << 8) | mac_addr[1];
   3453 
   3454 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3455 
   3456 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3457 		(mac_addr[4] << 8) | mac_addr[5];
   3458 
   3459 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3460 }
   3461 
   3462 /****************************************************************************/
   3463 /* Stop the controller.                                                     */
   3464 /*                                                                          */
   3465 /* Returns:                                                                 */
   3466 /*   Nothing.                                                               */
   3467 /****************************************************************************/
   3468 void
   3469 bnx_stop(struct ifnet *ifp, int disable)
   3470 {
   3471 	struct bnx_softc *sc = ifp->if_softc;
   3472 
   3473 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3474 
   3475 	if (disable) {
   3476 		sc->bnx_detaching = 1;
   3477 		callout_halt(&sc->bnx_timeout, NULL);
   3478 	} else
   3479 		callout_stop(&sc->bnx_timeout);
   3480 
   3481 	mii_down(&sc->bnx_mii);
   3482 
   3483 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3484 
   3485 	/* Disable the transmit/receive blocks. */
   3486 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3487 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3488 	DELAY(20);
   3489 
   3490 	bnx_disable_intr(sc);
   3491 
   3492 	/* Tell firmware that the driver is going away. */
   3493 	if (disable)
   3494 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3495 	else
   3496 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3497 
   3498 	/* Free RX buffers. */
   3499 	bnx_free_rx_chain(sc);
   3500 
   3501 	/* Free TX buffers. */
   3502 	bnx_free_tx_chain(sc);
   3503 
   3504 	ifp->if_timer = 0;
   3505 
   3506 	sc->bnx_link = 0;
   3507 
   3508 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3509 
   3510 	bnx_mgmt_init(sc);
   3511 }
   3512 
   3513 int
   3514 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3515 {
   3516 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3517 	uint32_t		val;
   3518 	int			i, rc = 0;
   3519 
   3520 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3521 
   3522 	/* Wait for pending PCI transactions to complete. */
   3523 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   3524 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
   3525 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3526 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3527 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3528 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3529 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3530 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3531 		DELAY(5);
   3532 	} else {
   3533 		/* Disable DMA */
   3534 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3535 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3536 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3537 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
   3538 
   3539 		for (i = 0; i < 100; i++) {
   3540 			delay(1 * 1000);
   3541 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
   3542 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
   3543 				break;
   3544 		}
   3545 	}
   3546 
   3547 	/* Assume bootcode is running. */
   3548 	sc->bnx_fw_timed_out = 0;
   3549 
   3550 	/* Give the firmware a chance to prepare for the reset. */
   3551 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3552 	if (rc)
   3553 		goto bnx_reset_exit;
   3554 
   3555 	/* Set a firmware reminder that this is a soft reset. */
   3556 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3557 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3558 
   3559 	/* Dummy read to force the chip to complete all current transactions. */
   3560 	val = REG_RD(sc, BNX_MISC_ID);
   3561 
   3562 	/* Chip reset. */
   3563 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3564 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3565 		REG_RD(sc, BNX_MISC_COMMAND);
   3566 		DELAY(5);
   3567 
   3568 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3569 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3570 
   3571 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3572 		    val);
   3573 	} else {
   3574 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3575 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3576 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3577 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3578 
   3579 		/* Allow up to 30us for reset to complete. */
   3580 		for (i = 0; i < 10; i++) {
   3581 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3582 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3583 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3584 				break;
   3585 			}
   3586 			DELAY(10);
   3587 		}
   3588 
   3589 		/* Check that reset completed successfully. */
   3590 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3591 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3592 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3593 			    __FILE__, __LINE__);
   3594 			rc = EBUSY;
   3595 			goto bnx_reset_exit;
   3596 		}
   3597 	}
   3598 
   3599 	/* Make sure byte swapping is properly configured. */
   3600 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3601 	if (val != 0x01020304) {
   3602 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3603 		    __FILE__, __LINE__);
   3604 		rc = ENODEV;
   3605 		goto bnx_reset_exit;
   3606 	}
   3607 
   3608 	/* Just completed a reset, assume that firmware is running again. */
   3609 	sc->bnx_fw_timed_out = 0;
   3610 
   3611 	/* Wait for the firmware to finish its initialization. */
   3612 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3613 	if (rc)
   3614 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3615 		    "initialization!\n", __FILE__, __LINE__);
   3616 
   3617 bnx_reset_exit:
   3618 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3619 
   3620 	return rc;
   3621 }
   3622 
   3623 int
   3624 bnx_chipinit(struct bnx_softc *sc)
   3625 {
   3626 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3627 	uint32_t		val;
   3628 	int			rc = 0;
   3629 
   3630 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3631 
   3632 	/* Make sure the interrupt is not active. */
   3633 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3634 
   3635 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3636 	/* channels and PCI clock compensation delay.                      */
   3637 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3638 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3639 #if BYTE_ORDER == BIG_ENDIAN
   3640 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3641 #endif
   3642 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3643 	    DMA_READ_CHANS << 12 |
   3644 	    DMA_WRITE_CHANS << 16;
   3645 
   3646 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3647 
   3648 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3649 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3650 
   3651 	/*
   3652 	 * This setting resolves a problem observed on certain Intel PCI
   3653 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3654 	 * See errata E9_5706A1_65.
   3655 	 */
   3656 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3657 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3658 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3659 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3660 
   3661 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3662 
   3663 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3664 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3665 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3666 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3667 		    val & ~0x20000);
   3668 	}
   3669 
   3670 	/* Enable the RX_V2P and Context state machines before access. */
   3671 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3672 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3673 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3674 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3675 
   3676 	/* Initialize context mapping and zero out the quick contexts. */
   3677 	bnx_init_context(sc);
   3678 
   3679 	/* Initialize the on-boards CPUs */
   3680 	bnx_init_cpus(sc);
   3681 
   3682 	/* Enable management frames (NC-SI) to flow to the MCP. */
   3683 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3684 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
   3685 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3686 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3687 	}
   3688 
   3689 	/* Prepare NVRAM for access. */
   3690 	if (bnx_init_nvram(sc)) {
   3691 		rc = ENODEV;
   3692 		goto bnx_chipinit_exit;
   3693 	}
   3694 
   3695 	/* Set the kernel bypass block size */
   3696 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3697 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3698 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3699 
   3700 	/* Enable bins used on the 5709. */
   3701 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3702 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3703 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3704 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3705 	}
   3706 
   3707 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3708 
   3709 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3710 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3711 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3712 
   3713 	val = (BCM_PAGE_BITS - 8) << 24;
   3714 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3715 
   3716 	/* Configure page size. */
   3717 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3718 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3719 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3720 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3721 
   3722 #if 0
   3723 	/* Set the perfect match control register to default. */
   3724 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3725 #endif
   3726 
   3727 bnx_chipinit_exit:
   3728 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3729 
   3730 	return rc;
   3731 }
   3732 
   3733 /****************************************************************************/
   3734 /* Initialize the controller in preparation to send/receive traffic.        */
   3735 /*                                                                          */
   3736 /* Returns:                                                                 */
   3737 /*   0 for success, positive value for failure.                             */
   3738 /****************************************************************************/
   3739 int
   3740 bnx_blockinit(struct bnx_softc *sc)
   3741 {
   3742 	uint32_t		reg, val;
   3743 	int			rc = 0;
   3744 
   3745 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3746 
   3747 	/* Load the hardware default MAC address. */
   3748 	bnx_set_mac_addr(sc);
   3749 
   3750 	/* Set the Ethernet backoff seed value */
   3751 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3752 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3753 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3754 
   3755 	sc->last_status_idx = 0;
   3756 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3757 
   3758 	/* Set up link change interrupt generation. */
   3759 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3760 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3761 
   3762 	/* Program the physical address of the status block. */
   3763 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3764 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3765 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3766 
   3767 	/* Program the physical address of the statistics block. */
   3768 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3769 	    (uint32_t)(sc->stats_block_paddr));
   3770 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3771 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3772 
   3773 	/* Program various host coalescing parameters. */
   3774 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3775 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3776 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3777 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3778 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3779 	    sc->bnx_comp_prod_trip);
   3780 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3781 	    sc->bnx_tx_ticks);
   3782 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3783 	    sc->bnx_rx_ticks);
   3784 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3785 	    sc->bnx_com_ticks);
   3786 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3787 	    sc->bnx_cmd_ticks);
   3788 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3789 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3790 	REG_WR(sc, BNX_HC_CONFIG,
   3791 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3792 	    BNX_HC_CONFIG_COLLECT_STATS));
   3793 
   3794 	/* Clear the internal statistics counters. */
   3795 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3796 
   3797 	/* Verify that bootcode is running. */
   3798 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3799 
   3800 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3801 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3802 	    __FILE__, __LINE__); reg = 0);
   3803 
   3804 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3805 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3806 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3807 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3808 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3809 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3810 		rc = ENODEV;
   3811 		goto bnx_blockinit_exit;
   3812 	}
   3813 
   3814 	/* Enable DMA */
   3815 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3816 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3817 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3818 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3819 	}
   3820 
   3821 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3822 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3823 
   3824 	/* Disable management frames (NC-SI) from flowing to the MCP. */
   3825 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3826 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
   3827 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3828 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3829 	}
   3830 
   3831 	/* Enable all remaining blocks in the MAC. */
   3832 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3833 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3834 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3835 	} else
   3836 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3837 
   3838 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3839 	DELAY(20);
   3840 
   3841 bnx_blockinit_exit:
   3842 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3843 
   3844 	return rc;
   3845 }
   3846 
   3847 static int
   3848 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3849     uint16_t *chain_prod, uint32_t *prod_bseq)
   3850 {
   3851 	bus_dmamap_t		map;
   3852 	struct rx_bd		*rxbd;
   3853 	uint32_t		addr;
   3854 	int i;
   3855 #ifdef BNX_DEBUG
   3856 	uint16_t debug_chain_prod =	*chain_prod;
   3857 #endif
   3858 	uint16_t first_chain_prod;
   3859 
   3860 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3861 
   3862 	/* Map the mbuf cluster into device memory. */
   3863 	map = sc->rx_mbuf_map[*chain_prod];
   3864 	first_chain_prod = *chain_prod;
   3865 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3866 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3867 		    __FILE__, __LINE__);
   3868 
   3869 		m_freem(m_new);
   3870 
   3871 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3872 
   3873 		return ENOBUFS;
   3874 	}
   3875 	/* Make sure there is room in the receive chain. */
   3876 	if (map->dm_nsegs > sc->free_rx_bd) {
   3877 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3878 		m_freem(m_new);
   3879 		return EFBIG;
   3880 	}
   3881 #ifdef BNX_DEBUG
   3882 	/* Track the distribution of buffer segments. */
   3883 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3884 #endif
   3885 
   3886 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3887 	    BUS_DMASYNC_PREREAD);
   3888 
   3889 	/* Update some debug statistics counters */
   3890 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3891 	    sc->rx_low_watermark = sc->free_rx_bd);
   3892 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3893 
   3894 	/*
   3895 	 * Setup the rx_bd for the first segment
   3896 	 */
   3897 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3898 
   3899 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3900 	rxbd->rx_bd_haddr_lo = addr;
   3901 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3902 	rxbd->rx_bd_haddr_hi = addr;
   3903 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3904 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3905 	*prod_bseq += map->dm_segs[0].ds_len;
   3906 	bus_dmamap_sync(sc->bnx_dmatag,
   3907 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3908 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3909 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3910 
   3911 	for (i = 1; i < map->dm_nsegs; i++) {
   3912 		*prod = NEXT_RX_BD(*prod);
   3913 		*chain_prod = RX_CHAIN_IDX(*prod);
   3914 
   3915 		rxbd =
   3916 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3917 
   3918 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3919 		rxbd->rx_bd_haddr_lo = addr;
   3920 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3921 		rxbd->rx_bd_haddr_hi = addr;
   3922 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3923 		rxbd->rx_bd_flags = 0;
   3924 		*prod_bseq += map->dm_segs[i].ds_len;
   3925 		bus_dmamap_sync(sc->bnx_dmatag,
   3926 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3927 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3928 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3929 	}
   3930 
   3931 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3932 	bus_dmamap_sync(sc->bnx_dmatag,
   3933 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3934 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3935 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3936 
   3937 	/*
   3938 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3939 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3940 	 * and update our counter.
   3941 	 */
   3942 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3943 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3944 	sc->rx_mbuf_map[*chain_prod] = map;
   3945 	sc->free_rx_bd -= map->dm_nsegs;
   3946 
   3947 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3948 	    map->dm_nsegs));
   3949 	*prod = NEXT_RX_BD(*prod);
   3950 	*chain_prod = RX_CHAIN_IDX(*prod);
   3951 
   3952 	return 0;
   3953 }
   3954 
   3955 /****************************************************************************/
   3956 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3957 /*                                                                          */
   3958 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3959 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3960 /* necessary.                                                               */
   3961 /*                                                                          */
   3962 /* Returns:                                                                 */
   3963 /*   0 for success, positive value for failure.                             */
   3964 /****************************************************************************/
   3965 int
   3966 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3967     uint16_t *chain_prod, uint32_t *prod_bseq)
   3968 {
   3969 	struct mbuf		*m_new = NULL;
   3970 	int			rc = 0;
   3971 	uint16_t min_free_bd;
   3972 
   3973 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3974 	    __func__);
   3975 
   3976 	/* Make sure the inputs are valid. */
   3977 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3978 	    aprint_error_dev(sc->bnx_dev,
   3979 		"RX producer out of range: 0x%04X > 0x%04X\n",
   3980 		*chain_prod, (uint16_t)MAX_RX_BD));
   3981 
   3982 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3983 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3984 	    *prod_bseq);
   3985 
   3986 	/* try to get in as many mbufs as possible */
   3987 	if (sc->mbuf_alloc_size == MCLBYTES)
   3988 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3989 	else
   3990 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3991 	while (sc->free_rx_bd >= min_free_bd) {
   3992 		/* Simulate an mbuf allocation failure. */
   3993 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3994 		    aprint_error_dev(sc->bnx_dev,
   3995 		    "Simulating mbuf allocation failure.\n");
   3996 			sc->mbuf_sim_alloc_failed++;
   3997 			rc = ENOBUFS;
   3998 			goto bnx_get_buf_exit);
   3999 
   4000 		/* This is a new mbuf allocation. */
   4001 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   4002 		if (m_new == NULL) {
   4003 			DBPRINT(sc, BNX_WARN,
   4004 			    "%s(%d): RX mbuf header allocation failed!\n",
   4005 			    __FILE__, __LINE__);
   4006 
   4007 			sc->mbuf_alloc_failed++;
   4008 
   4009 			rc = ENOBUFS;
   4010 			goto bnx_get_buf_exit;
   4011 		}
   4012 
   4013 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   4014 
   4015 		/* Simulate an mbuf cluster allocation failure. */
   4016 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4017 			m_freem(m_new);
   4018 			sc->rx_mbuf_alloc--;
   4019 			sc->mbuf_alloc_failed++;
   4020 			sc->mbuf_sim_alloc_failed++;
   4021 			rc = ENOBUFS;
   4022 			goto bnx_get_buf_exit);
   4023 
   4024 		if (sc->mbuf_alloc_size == MCLBYTES)
   4025 			MCLGET(m_new, M_DONTWAIT);
   4026 		else
   4027 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   4028 			    M_DONTWAIT);
   4029 		if (!(m_new->m_flags & M_EXT)) {
   4030 			DBPRINT(sc, BNX_WARN,
   4031 			    "%s(%d): RX mbuf chain allocation failed!\n",
   4032 			    __FILE__, __LINE__);
   4033 
   4034 			m_freem(m_new);
   4035 
   4036 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4037 			sc->mbuf_alloc_failed++;
   4038 
   4039 			rc = ENOBUFS;
   4040 			goto bnx_get_buf_exit;
   4041 		}
   4042 
   4043 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   4044 		if (rc != 0)
   4045 			goto bnx_get_buf_exit;
   4046 	}
   4047 
   4048 bnx_get_buf_exit:
   4049 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   4050 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   4051 	    *chain_prod, *prod_bseq);
   4052 
   4053 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   4054 	    __func__);
   4055 
   4056 	return rc;
   4057 }
   4058 
   4059 void
   4060 bnx_alloc_pkts(struct work * unused, void * arg)
   4061 {
   4062 	struct bnx_softc *sc = arg;
   4063 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   4064 	struct bnx_pkt *pkt;
   4065 	int i, s;
   4066 
   4067 	for (i = 0; i < 4; i++) { /* magic! */
   4068 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   4069 		if (pkt == NULL)
   4070 			break;
   4071 
   4072 		if (bus_dmamap_create(sc->bnx_dmatag,
   4073 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4074 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4075 		    &pkt->pkt_dmamap) != 0)
   4076 			goto put;
   4077 
   4078 		if (!ISSET(ifp->if_flags, IFF_UP))
   4079 			goto stopping;
   4080 
   4081 		mutex_enter(&sc->tx_pkt_mtx);
   4082 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4083 		sc->tx_pkt_count++;
   4084 		mutex_exit(&sc->tx_pkt_mtx);
   4085 	}
   4086 
   4087 	mutex_enter(&sc->tx_pkt_mtx);
   4088 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4089 	mutex_exit(&sc->tx_pkt_mtx);
   4090 
   4091 	/* fire-up TX now that allocations have been done */
   4092 	s = splnet();
   4093 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4094 		bnx_start(ifp);
   4095 	splx(s);
   4096 
   4097 	return;
   4098 
   4099 stopping:
   4100 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4101 put:
   4102 	pool_put(bnx_tx_pool, pkt);
   4103 	return;
   4104 }
   4105 
   4106 /****************************************************************************/
   4107 /* Initialize the TX context memory.                                        */
   4108 /*                                                                          */
   4109 /* Returns:                                                                 */
   4110 /*   Nothing                                                                */
   4111 /****************************************************************************/
   4112 void
   4113 bnx_init_tx_context(struct bnx_softc *sc)
   4114 {
   4115 	uint32_t val;
   4116 
   4117 	/* Initialize the context ID for an L2 TX chain. */
   4118 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4119 		/* Set the CID type to support an L2 connection. */
   4120 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4121 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4122 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4123 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4124 
   4125 		/* Point the hardware to the first page in the chain. */
   4126 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4127 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4128 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4129 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4130 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4131 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4132 	} else {
   4133 		/* Set the CID type to support an L2 connection. */
   4134 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4135 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4136 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4137 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4138 
   4139 		/* Point the hardware to the first page in the chain. */
   4140 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4141 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4142 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4143 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4144 	}
   4145 }
   4146 
   4147 
   4148 /****************************************************************************/
   4149 /* Allocate memory and initialize the TX data structures.                   */
   4150 /*                                                                          */
   4151 /* Returns:                                                                 */
   4152 /*   0 for success, positive value for failure.                             */
   4153 /****************************************************************************/
   4154 int
   4155 bnx_init_tx_chain(struct bnx_softc *sc)
   4156 {
   4157 	struct tx_bd		*txbd;
   4158 	uint32_t		addr;
   4159 	int			i, rc = 0;
   4160 
   4161 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4162 
   4163 	/* Force an allocation of some dmamaps for tx up front */
   4164 	bnx_alloc_pkts(NULL, sc);
   4165 
   4166 	/* Set the initial TX producer/consumer indices. */
   4167 	sc->tx_prod = 0;
   4168 	sc->tx_cons = 0;
   4169 	sc->tx_prod_bseq = 0;
   4170 	sc->used_tx_bd = 0;
   4171 	sc->max_tx_bd = USABLE_TX_BD;
   4172 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4173 	DBRUNIF(1, sc->tx_full_count = 0);
   4174 
   4175 	/*
   4176 	 * The NetXtreme II supports a linked-list structure called
   4177 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4178 	 * consists of a series of 1 or more chain pages, each of which
   4179 	 * consists of a fixed number of BD entries.
   4180 	 * The last BD entry on each page is a pointer to the next page
   4181 	 * in the chain, and the last pointer in the BD chain
   4182 	 * points back to the beginning of the chain.
   4183 	 */
   4184 
   4185 	/* Set the TX next pointer chain entries. */
   4186 	for (i = 0; i < TX_PAGES; i++) {
   4187 		int j;
   4188 
   4189 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4190 
   4191 		/* Check if we've reached the last page. */
   4192 		if (i == (TX_PAGES - 1))
   4193 			j = 0;
   4194 		else
   4195 			j = i + 1;
   4196 
   4197 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4198 		txbd->tx_bd_haddr_lo = addr;
   4199 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4200 		txbd->tx_bd_haddr_hi = addr;
   4201 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4202 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4203 	}
   4204 
   4205 	/*
   4206 	 * Initialize the context ID for an L2 TX chain.
   4207 	 */
   4208 	bnx_init_tx_context(sc);
   4209 
   4210 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4211 
   4212 	return rc;
   4213 }
   4214 
   4215 /****************************************************************************/
   4216 /* Free memory and clear the TX data structures.                            */
   4217 /*                                                                          */
   4218 /* Returns:                                                                 */
   4219 /*   Nothing.                                                               */
   4220 /****************************************************************************/
   4221 void
   4222 bnx_free_tx_chain(struct bnx_softc *sc)
   4223 {
   4224 	struct bnx_pkt		*pkt;
   4225 	int			i;
   4226 
   4227 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4228 
   4229 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4230 	mutex_enter(&sc->tx_pkt_mtx);
   4231 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4232 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4233 		mutex_exit(&sc->tx_pkt_mtx);
   4234 
   4235 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4236 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4237 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4238 
   4239 		m_freem(pkt->pkt_mbuf);
   4240 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4241 
   4242 		mutex_enter(&sc->tx_pkt_mtx);
   4243 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4244 	}
   4245 
   4246 	/* Destroy all the dmamaps we allocated for TX */
   4247 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4248 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4249 		sc->tx_pkt_count--;
   4250 		mutex_exit(&sc->tx_pkt_mtx);
   4251 
   4252 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4253 		pool_put(bnx_tx_pool, pkt);
   4254 
   4255 		mutex_enter(&sc->tx_pkt_mtx);
   4256 	}
   4257 	mutex_exit(&sc->tx_pkt_mtx);
   4258 
   4259 
   4260 
   4261 	/* Clear each TX chain page. */
   4262 	for (i = 0; i < TX_PAGES; i++) {
   4263 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4264 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4265 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4266 	}
   4267 
   4268 	sc->used_tx_bd = 0;
   4269 
   4270 	/* Check if we lost any mbufs in the process. */
   4271 	DBRUNIF((sc->tx_mbuf_alloc),
   4272 	    aprint_error_dev(sc->bnx_dev,
   4273 		"Memory leak! Lost %d mbufs from tx chain!\n",
   4274 		sc->tx_mbuf_alloc));
   4275 
   4276 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4277 }
   4278 
   4279 /****************************************************************************/
   4280 /* Initialize the RX context memory.                                        */
   4281 /*                                                                          */
   4282 /* Returns:                                                                 */
   4283 /*   Nothing                                                                */
   4284 /****************************************************************************/
   4285 void
   4286 bnx_init_rx_context(struct bnx_softc *sc)
   4287 {
   4288 	uint32_t val;
   4289 
   4290 	/* Initialize the context ID for an L2 RX chain. */
   4291 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4292 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4293 
   4294 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4295 		val |= 0x000000ff;
   4296 
   4297 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4298 
   4299 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4300 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4301 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4302 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4303 	}
   4304 
   4305 	/* Point the hardware to the first page in the chain. */
   4306 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4307 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4308 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4309 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4310 }
   4311 
   4312 /****************************************************************************/
   4313 /* Allocate memory and initialize the RX data structures.                   */
   4314 /*                                                                          */
   4315 /* Returns:                                                                 */
   4316 /*   0 for success, positive value for failure.                             */
   4317 /****************************************************************************/
   4318 int
   4319 bnx_init_rx_chain(struct bnx_softc *sc)
   4320 {
   4321 	struct rx_bd		*rxbd;
   4322 	int			i, rc = 0;
   4323 	uint16_t		prod, chain_prod;
   4324 	uint32_t		prod_bseq, addr;
   4325 
   4326 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4327 
   4328 	/* Initialize the RX producer and consumer indices. */
   4329 	sc->rx_prod = 0;
   4330 	sc->rx_cons = 0;
   4331 	sc->rx_prod_bseq = 0;
   4332 	sc->free_rx_bd = USABLE_RX_BD;
   4333 	sc->max_rx_bd = USABLE_RX_BD;
   4334 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4335 	DBRUNIF(1, sc->rx_empty_count = 0);
   4336 
   4337 	/* Initialize the RX next pointer chain entries. */
   4338 	for (i = 0; i < RX_PAGES; i++) {
   4339 		int j;
   4340 
   4341 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4342 
   4343 		/* Check if we've reached the last page. */
   4344 		if (i == (RX_PAGES - 1))
   4345 			j = 0;
   4346 		else
   4347 			j = i + 1;
   4348 
   4349 		/* Setup the chain page pointers. */
   4350 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4351 		rxbd->rx_bd_haddr_hi = addr;
   4352 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4353 		rxbd->rx_bd_haddr_lo = addr;
   4354 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4355 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4356 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4357 	}
   4358 
   4359 	/* Allocate mbuf clusters for the rx_bd chain. */
   4360 	prod = prod_bseq = 0;
   4361 	chain_prod = RX_CHAIN_IDX(prod);
   4362 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4363 		BNX_PRINTF(sc,
   4364 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4365 	}
   4366 
   4367 	/* Save the RX chain producer index. */
   4368 	sc->rx_prod = prod;
   4369 	sc->rx_prod_bseq = prod_bseq;
   4370 
   4371 	for (i = 0; i < RX_PAGES; i++)
   4372 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4373 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4374 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4375 
   4376 	/* Tell the chip about the waiting rx_bd's. */
   4377 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4378 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4379 
   4380 	bnx_init_rx_context(sc);
   4381 
   4382 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4383 
   4384 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4385 
   4386 	return rc;
   4387 }
   4388 
   4389 /****************************************************************************/
   4390 /* Free memory and clear the RX data structures.                            */
   4391 /*                                                                          */
   4392 /* Returns:                                                                 */
   4393 /*   Nothing.                                                               */
   4394 /****************************************************************************/
   4395 void
   4396 bnx_free_rx_chain(struct bnx_softc *sc)
   4397 {
   4398 	int			i;
   4399 
   4400 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4401 
   4402 	/* Free any mbufs still in the RX mbuf chain. */
   4403 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4404 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4405 			if (sc->rx_mbuf_map[i] != NULL) {
   4406 				bus_dmamap_sync(sc->bnx_dmatag,
   4407 				    sc->rx_mbuf_map[i],	0,
   4408 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4409 				    BUS_DMASYNC_POSTREAD);
   4410 				bus_dmamap_unload(sc->bnx_dmatag,
   4411 				    sc->rx_mbuf_map[i]);
   4412 			}
   4413 			m_freem(sc->rx_mbuf_ptr[i]);
   4414 			sc->rx_mbuf_ptr[i] = NULL;
   4415 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4416 		}
   4417 	}
   4418 
   4419 	/* Clear each RX chain page. */
   4420 	for (i = 0; i < RX_PAGES; i++)
   4421 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4422 
   4423 	sc->free_rx_bd = sc->max_rx_bd;
   4424 
   4425 	/* Check if we lost any mbufs in the process. */
   4426 	DBRUNIF((sc->rx_mbuf_alloc),
   4427 	    aprint_error_dev(sc->bnx_dev,
   4428 		"Memory leak! Lost %d mbufs from rx chain!\n",
   4429 		sc->rx_mbuf_alloc));
   4430 
   4431 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4432 }
   4433 
   4434 /****************************************************************************/
   4435 /* Set media options.                                                       */
   4436 /*                                                                          */
   4437 /* Returns:                                                                 */
   4438 /*   0 for success, positive value for failure.                             */
   4439 /****************************************************************************/
   4440 int
   4441 bnx_ifmedia_upd(struct ifnet *ifp)
   4442 {
   4443 	struct bnx_softc	*sc;
   4444 	struct mii_data		*mii;
   4445 	int			rc = 0;
   4446 
   4447 	sc = ifp->if_softc;
   4448 
   4449 	mii = &sc->bnx_mii;
   4450 	sc->bnx_link = 0;
   4451 	if (mii->mii_instance) {
   4452 		struct mii_softc *miisc;
   4453 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4454 			mii_phy_reset(miisc);
   4455 	}
   4456 	mii_mediachg(mii);
   4457 
   4458 	return rc;
   4459 }
   4460 
   4461 /****************************************************************************/
   4462 /* Reports current media status.                                            */
   4463 /*                                                                          */
   4464 /* Returns:                                                                 */
   4465 /*   Nothing.                                                               */
   4466 /****************************************************************************/
   4467 void
   4468 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4469 {
   4470 	struct bnx_softc	*sc;
   4471 	struct mii_data		*mii;
   4472 	int			s;
   4473 
   4474 	sc = ifp->if_softc;
   4475 
   4476 	s = splnet();
   4477 
   4478 	mii = &sc->bnx_mii;
   4479 
   4480 	mii_pollstat(mii);
   4481 	ifmr->ifm_status = mii->mii_media_status;
   4482 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4483 	    sc->bnx_flowflags;
   4484 
   4485 	splx(s);
   4486 }
   4487 
   4488 /****************************************************************************/
   4489 /* Handles PHY generated interrupt events.                                  */
   4490 /*                                                                          */
   4491 /* Returns:                                                                 */
   4492 /*   Nothing.                                                               */
   4493 /****************************************************************************/
   4494 void
   4495 bnx_phy_intr(struct bnx_softc *sc)
   4496 {
   4497 	uint32_t		new_link_state, old_link_state;
   4498 
   4499 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4500 	    BUS_DMASYNC_POSTREAD);
   4501 	new_link_state = sc->status_block->status_attn_bits &
   4502 	    STATUS_ATTN_BITS_LINK_STATE;
   4503 	old_link_state = sc->status_block->status_attn_bits_ack &
   4504 	    STATUS_ATTN_BITS_LINK_STATE;
   4505 
   4506 	/* Handle any changes if the link state has changed. */
   4507 	if (new_link_state != old_link_state) {
   4508 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4509 
   4510 		sc->bnx_link = 0;
   4511 		callout_stop(&sc->bnx_timeout);
   4512 		bnx_tick(sc);
   4513 
   4514 		/* Update the status_attn_bits_ack field in the status block. */
   4515 		if (new_link_state) {
   4516 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4517 			    STATUS_ATTN_BITS_LINK_STATE);
   4518 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4519 		} else {
   4520 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4521 			    STATUS_ATTN_BITS_LINK_STATE);
   4522 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4523 		}
   4524 	}
   4525 
   4526 	/* Acknowledge the link change interrupt. */
   4527 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4528 }
   4529 
   4530 /****************************************************************************/
   4531 /* Handles received frame interrupt events.                                 */
   4532 /*                                                                          */
   4533 /* Returns:                                                                 */
   4534 /*   Nothing.                                                               */
   4535 /****************************************************************************/
   4536 void
   4537 bnx_rx_intr(struct bnx_softc *sc)
   4538 {
   4539 	struct status_block	*sblk = sc->status_block;
   4540 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4541 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4542 	uint16_t		sw_prod, sw_chain_prod;
   4543 	uint32_t		sw_prod_bseq;
   4544 	struct l2_fhdr		*l2fhdr;
   4545 	int			i;
   4546 
   4547 	DBRUNIF(1, sc->rx_interrupts++);
   4548 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4549 	    BUS_DMASYNC_POSTREAD);
   4550 
   4551 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4552 	for (i = 0; i < RX_PAGES; i++)
   4553 		bus_dmamap_sync(sc->bnx_dmatag,
   4554 		    sc->rx_bd_chain_map[i], 0,
   4555 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4556 		    BUS_DMASYNC_POSTWRITE);
   4557 
   4558 	/* Get the hardware's view of the RX consumer index. */
   4559 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4560 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4561 		hw_cons++;
   4562 
   4563 	/* Get working copies of the driver's view of the RX indices. */
   4564 	sw_cons = sc->rx_cons;
   4565 	sw_prod = sc->rx_prod;
   4566 	sw_prod_bseq = sc->rx_prod_bseq;
   4567 
   4568 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4569 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4570 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4571 
   4572 	/* Prevent speculative reads from getting ahead of the status block. */
   4573 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4574 	    BUS_SPACE_BARRIER_READ);
   4575 
   4576 	/* Update some debug statistics counters */
   4577 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4578 	    sc->rx_low_watermark = sc->free_rx_bd);
   4579 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4580 
   4581 	/*
   4582 	 * Scan through the receive chain as long
   4583 	 * as there is work to do.
   4584 	 */
   4585 	while (sw_cons != hw_cons) {
   4586 		struct mbuf *m;
   4587 		struct rx_bd *rxbd __diagused;
   4588 		unsigned int len;
   4589 		uint32_t status;
   4590 
   4591 		/* Convert the producer/consumer indices to an actual
   4592 		 * rx_bd index.
   4593 		 */
   4594 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4595 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4596 
   4597 		/* Get the used rx_bd. */
   4598 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4599 		sc->free_rx_bd++;
   4600 
   4601 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4602 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4603 
   4604 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4605 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4606 #ifdef DIAGNOSTIC
   4607 			/* Validate that this is the last rx_bd. */
   4608 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4609 			    printf("%s: Unexpected mbuf found in "
   4610 				"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4611 				sw_chain_cons);
   4612 			}
   4613 #endif
   4614 
   4615 			/* DRC - ToDo: If the received packet is small, say
   4616 			 *             less than 128 bytes, allocate a new mbuf
   4617 			 *             here, copy the data to that mbuf, and
   4618 			 *             recycle the mapped jumbo frame.
   4619 			 */
   4620 
   4621 			/* Unmap the mbuf from DMA space. */
   4622 #ifdef DIAGNOSTIC
   4623 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4624 				printf("invalid map sw_cons 0x%x "
   4625 				"sw_prod 0x%x "
   4626 				"sw_chain_cons 0x%x "
   4627 				"sw_chain_prod 0x%x "
   4628 				"hw_cons 0x%x "
   4629 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4630 				"TOTAL_RX_BD 0x%x\n",
   4631 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4632 				hw_cons,
   4633 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4634 			}
   4635 #endif
   4636 			bus_dmamap_sync(sc->bnx_dmatag,
   4637 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4638 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4639 			    BUS_DMASYNC_POSTREAD);
   4640 			bus_dmamap_unload(sc->bnx_dmatag,
   4641 			    sc->rx_mbuf_map[sw_chain_cons]);
   4642 
   4643 			/* Remove the mbuf from the driver's chain. */
   4644 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4645 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4646 
   4647 			/*
   4648 			 * Frames received on the NetXteme II are prepended
   4649 			 * with the l2_fhdr structure which provides status
   4650 			 * information about the received frame (including
   4651 			 * VLAN tags and checksum info) and are also
   4652 			 * automatically adjusted to align the IP header
   4653 			 * (i.e. two null bytes are inserted before the
   4654 			 * Ethernet header).
   4655 			 */
   4656 			l2fhdr = mtod(m, struct l2_fhdr *);
   4657 
   4658 			len    = l2fhdr->l2_fhdr_pkt_len;
   4659 			status = l2fhdr->l2_fhdr_status;
   4660 
   4661 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4662 			    aprint_error("Simulating l2_fhdr status error.\n");
   4663 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4664 
   4665 			/* Watch for unusual sized frames. */
   4666 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4667 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4668 			    aprint_error_dev(sc->bnx_dev,
   4669 				"Unusual frame size found. "
   4670 				"Min(%d), Actual(%d), Max(%d)\n",
   4671 				(int)BNX_MIN_MTU, len,
   4672 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4673 
   4674 			bnx_dump_mbuf(sc, m);
   4675 			bnx_breakpoint(sc));
   4676 
   4677 			len -= ETHER_CRC_LEN;
   4678 
   4679 			/* Check the received frame for errors. */
   4680 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4681 			    L2_FHDR_ERRORS_PHY_DECODE |
   4682 			    L2_FHDR_ERRORS_ALIGNMENT |
   4683 			    L2_FHDR_ERRORS_TOO_SHORT |
   4684 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4685 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4686 			    len >
   4687 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4688 				ifp->if_ierrors++;
   4689 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4690 
   4691 				/* Reuse the mbuf for a new frame. */
   4692 				if (bnx_add_buf(sc, m, &sw_prod,
   4693 				    &sw_chain_prod, &sw_prod_bseq)) {
   4694 					DBRUNIF(1, bnx_breakpoint(sc));
   4695 					panic("%s: Can't reuse RX mbuf!\n",
   4696 					    device_xname(sc->bnx_dev));
   4697 				}
   4698 				continue;
   4699 			}
   4700 
   4701 			/*
   4702 			 * Get a new mbuf for the rx_bd.   If no new
   4703 			 * mbufs are available then reuse the current mbuf,
   4704 			 * log an ierror on the interface, and generate
   4705 			 * an error in the system log.
   4706 			 */
   4707 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4708 			    &sw_prod_bseq)) {
   4709 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4710 				    "Failed to allocate "
   4711 				    "new mbuf, incoming frame dropped!\n"));
   4712 
   4713 				ifp->if_ierrors++;
   4714 
   4715 				/* Try and reuse the exisitng mbuf. */
   4716 				if (bnx_add_buf(sc, m, &sw_prod,
   4717 				    &sw_chain_prod, &sw_prod_bseq)) {
   4718 					DBRUNIF(1, bnx_breakpoint(sc));
   4719 					panic("%s: Double mbuf allocation "
   4720 					    "failure!",
   4721 					    device_xname(sc->bnx_dev));
   4722 				}
   4723 				continue;
   4724 			}
   4725 
   4726 			/* Skip over the l2_fhdr when passing the data up
   4727 			 * the stack.
   4728 			 */
   4729 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4730 
   4731 			/* Adjust the pckt length to match the received data. */
   4732 			m->m_pkthdr.len = m->m_len = len;
   4733 
   4734 			/* Send the packet to the appropriate interface. */
   4735 			m_set_rcvif(m, ifp);
   4736 
   4737 			DBRUN(BNX_VERBOSE_RECV,
   4738 			    struct ether_header *eh;
   4739 			    eh = mtod(m, struct ether_header *);
   4740 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4741 			    __func__, ether_sprintf(eh->ether_dhost),
   4742 			    ether_sprintf(eh->ether_shost),
   4743 			    htons(eh->ether_type)));
   4744 
   4745 			/* Validate the checksum. */
   4746 
   4747 			/* Check for an IP datagram. */
   4748 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4749 				/* Check if the IP checksum is valid. */
   4750 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4751 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4752 #ifdef BNX_DEBUG
   4753 				else
   4754 					DBPRINT(sc, BNX_WARN_SEND,
   4755 					    "%s(): Invalid IP checksum "
   4756 						"= 0x%04X!\n",
   4757 						__func__,
   4758 						l2fhdr->l2_fhdr_ip_xsum
   4759 						);
   4760 #endif
   4761 			}
   4762 
   4763 			/* Check for a valid TCP/UDP frame. */
   4764 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4765 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4766 				/* Check for a good TCP/UDP checksum. */
   4767 				if ((status &
   4768 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4769 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4770 					m->m_pkthdr.csum_flags |=
   4771 					    M_CSUM_TCPv4 |
   4772 					    M_CSUM_UDPv4;
   4773 				} else {
   4774 					DBPRINT(sc, BNX_WARN_SEND,
   4775 					    "%s(): Invalid TCP/UDP "
   4776 					    "checksum = 0x%04X!\n",
   4777 					    __func__,
   4778 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4779 				}
   4780 			}
   4781 
   4782 			/*
   4783 			 * If we received a packet with a vlan tag,
   4784 			 * attach that information to the packet.
   4785 			 */
   4786 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4787 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4788 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4789 			}
   4790 
   4791 			/* Pass the mbuf off to the upper layers. */
   4792 
   4793 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4794 			    "%s(): Passing received frame up.\n", __func__);
   4795 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4796 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4797 
   4798 		}
   4799 
   4800 		sw_cons = NEXT_RX_BD(sw_cons);
   4801 
   4802 		/* Refresh hw_cons to see if there's new work */
   4803 		if (sw_cons == hw_cons) {
   4804 			hw_cons = sc->hw_rx_cons =
   4805 			    sblk->status_rx_quick_consumer_index0;
   4806 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4807 			    USABLE_RX_BD_PER_PAGE)
   4808 				hw_cons++;
   4809 		}
   4810 
   4811 		/* Prevent speculative reads from getting ahead of
   4812 		 * the status block.
   4813 		 */
   4814 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4815 		    BUS_SPACE_BARRIER_READ);
   4816 	}
   4817 
   4818 	for (i = 0; i < RX_PAGES; i++)
   4819 		bus_dmamap_sync(sc->bnx_dmatag,
   4820 		    sc->rx_bd_chain_map[i], 0,
   4821 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4822 		    BUS_DMASYNC_PREWRITE);
   4823 
   4824 	sc->rx_cons = sw_cons;
   4825 	sc->rx_prod = sw_prod;
   4826 	sc->rx_prod_bseq = sw_prod_bseq;
   4827 
   4828 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4829 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4830 
   4831 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4832 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4833 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4834 }
   4835 
   4836 /****************************************************************************/
   4837 /* Handles transmit completion interrupt events.                            */
   4838 /*                                                                          */
   4839 /* Returns:                                                                 */
   4840 /*   Nothing.                                                               */
   4841 /****************************************************************************/
   4842 void
   4843 bnx_tx_intr(struct bnx_softc *sc)
   4844 {
   4845 	struct status_block	*sblk = sc->status_block;
   4846 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4847 	struct bnx_pkt		*pkt;
   4848 	bus_dmamap_t		map;
   4849 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4850 
   4851 	DBRUNIF(1, sc->tx_interrupts++);
   4852 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4853 	    BUS_DMASYNC_POSTREAD);
   4854 
   4855 	/* Get the hardware's view of the TX consumer index. */
   4856 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4857 
   4858 	/* Skip to the next entry if this is a chain page pointer. */
   4859 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4860 		hw_tx_cons++;
   4861 
   4862 	sw_tx_cons = sc->tx_cons;
   4863 
   4864 	/* Prevent speculative reads from getting ahead of the status block. */
   4865 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4866 	    BUS_SPACE_BARRIER_READ);
   4867 
   4868 	/* Cycle through any completed TX chain page entries. */
   4869 	while (sw_tx_cons != hw_tx_cons) {
   4870 #ifdef BNX_DEBUG
   4871 		struct tx_bd *txbd = NULL;
   4872 #endif
   4873 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4874 
   4875 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4876 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4877 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4878 
   4879 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4880 		    aprint_error_dev(sc->bnx_dev,
   4881 			"TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4882 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4883 
   4884 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4885 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4886 
   4887 		DBRUNIF((txbd == NULL),
   4888 		    aprint_error_dev(sc->bnx_dev,
   4889 			"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4890 		    bnx_breakpoint(sc));
   4891 
   4892 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4893 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4894 
   4895 
   4896 		mutex_enter(&sc->tx_pkt_mtx);
   4897 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4898 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4899 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4900 			mutex_exit(&sc->tx_pkt_mtx);
   4901 			/*
   4902 			 * Free the associated mbuf. Remember
   4903 			 * that only the last tx_bd of a packet
   4904 			 * has an mbuf pointer and DMA map.
   4905 			 */
   4906 			map = pkt->pkt_dmamap;
   4907 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4908 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4909 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4910 
   4911 			m_freem(pkt->pkt_mbuf);
   4912 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4913 
   4914 			ifp->if_opackets++;
   4915 
   4916 			mutex_enter(&sc->tx_pkt_mtx);
   4917 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4918 		}
   4919 		mutex_exit(&sc->tx_pkt_mtx);
   4920 
   4921 		sc->used_tx_bd--;
   4922 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4923 			__FILE__, __LINE__, sc->used_tx_bd);
   4924 
   4925 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4926 
   4927 		/* Refresh hw_cons to see if there's new work. */
   4928 		hw_tx_cons = sc->hw_tx_cons =
   4929 		    sblk->status_tx_quick_consumer_index0;
   4930 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4931 		    USABLE_TX_BD_PER_PAGE)
   4932 			hw_tx_cons++;
   4933 
   4934 		/* Prevent speculative reads from getting ahead of
   4935 		 * the status block.
   4936 		 */
   4937 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4938 		    BUS_SPACE_BARRIER_READ);
   4939 	}
   4940 
   4941 	/* Clear the TX timeout timer. */
   4942 	ifp->if_timer = 0;
   4943 
   4944 	/* Clear the tx hardware queue full flag. */
   4945 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4946 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4947 		    aprint_debug_dev(sc->bnx_dev,
   4948 			"Open TX chain! %d/%d (used/total)\n",
   4949 			sc->used_tx_bd, sc->max_tx_bd));
   4950 		ifp->if_flags &= ~IFF_OACTIVE;
   4951 	}
   4952 
   4953 	sc->tx_cons = sw_tx_cons;
   4954 }
   4955 
   4956 /****************************************************************************/
   4957 /* Disables interrupt generation.                                           */
   4958 /*                                                                          */
   4959 /* Returns:                                                                 */
   4960 /*   Nothing.                                                               */
   4961 /****************************************************************************/
   4962 void
   4963 bnx_disable_intr(struct bnx_softc *sc)
   4964 {
   4965 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4966 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4967 }
   4968 
   4969 /****************************************************************************/
   4970 /* Enables interrupt generation.                                            */
   4971 /*                                                                          */
   4972 /* Returns:                                                                 */
   4973 /*   Nothing.                                                               */
   4974 /****************************************************************************/
   4975 void
   4976 bnx_enable_intr(struct bnx_softc *sc)
   4977 {
   4978 	uint32_t		val;
   4979 
   4980 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4981 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4982 
   4983 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4984 	    sc->last_status_idx);
   4985 
   4986 	val = REG_RD(sc, BNX_HC_COMMAND);
   4987 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4988 }
   4989 
   4990 /****************************************************************************/
   4991 /* Handles controller initialization.                                       */
   4992 /*                                                                          */
   4993 /****************************************************************************/
   4994 int
   4995 bnx_init(struct ifnet *ifp)
   4996 {
   4997 	struct bnx_softc	*sc = ifp->if_softc;
   4998 	uint32_t		ether_mtu;
   4999 	int			s, error = 0;
   5000 
   5001 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   5002 
   5003 	s = splnet();
   5004 
   5005 	bnx_stop(ifp, 0);
   5006 
   5007 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   5008 		aprint_error_dev(sc->bnx_dev,
   5009 		    "Controller reset failed!\n");
   5010 		goto bnx_init_exit;
   5011 	}
   5012 
   5013 	if ((error = bnx_chipinit(sc)) != 0) {
   5014 		aprint_error_dev(sc->bnx_dev,
   5015 		    "Controller initialization failed!\n");
   5016 		goto bnx_init_exit;
   5017 	}
   5018 
   5019 	if ((error = bnx_blockinit(sc)) != 0) {
   5020 		aprint_error_dev(sc->bnx_dev,
   5021 		    "Block initialization failed!\n");
   5022 		goto bnx_init_exit;
   5023 	}
   5024 
   5025 	/* Calculate and program the Ethernet MRU size. */
   5026 	if (ifp->if_mtu <= ETHERMTU) {
   5027 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   5028 		sc->mbuf_alloc_size = MCLBYTES;
   5029 	} else {
   5030 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   5031 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   5032 	}
   5033 
   5034 
   5035 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   5036 
   5037 	/*
   5038 	 * Program the MRU and enable Jumbo frame
   5039 	 * support.
   5040 	 */
   5041 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   5042 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   5043 
   5044 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   5045 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   5046 
   5047 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   5048 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   5049 	    sc->mbuf_alloc_size, sc->max_frame_size);
   5050 
   5051 	/* Program appropriate promiscuous/multicast filtering. */
   5052 	bnx_iff(sc);
   5053 
   5054 	/* Init RX buffer descriptor chain. */
   5055 	bnx_init_rx_chain(sc);
   5056 
   5057 	/* Init TX buffer descriptor chain. */
   5058 	bnx_init_tx_chain(sc);
   5059 
   5060 	/* Enable host interrupts. */
   5061 	bnx_enable_intr(sc);
   5062 
   5063 	bnx_ifmedia_upd(ifp);
   5064 
   5065 	SET(ifp->if_flags, IFF_RUNNING);
   5066 	CLR(ifp->if_flags, IFF_OACTIVE);
   5067 
   5068 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5069 
   5070 bnx_init_exit:
   5071 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5072 
   5073 	splx(s);
   5074 
   5075 	return error;
   5076 }
   5077 
   5078 void
   5079 bnx_mgmt_init(struct bnx_softc *sc)
   5080 {
   5081 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5082 	uint32_t	val;
   5083 
   5084 	/* Check if the driver is still running and bail out if it is. */
   5085 	if (ifp->if_flags & IFF_RUNNING)
   5086 		goto bnx_mgmt_init_exit;
   5087 
   5088 	/* Initialize the on-boards CPUs */
   5089 	bnx_init_cpus(sc);
   5090 
   5091 	val = (BCM_PAGE_BITS - 8) << 24;
   5092 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5093 
   5094 	/* Enable all critical blocks in the MAC. */
   5095 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5096 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5097 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5098 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5099 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5100 	DELAY(20);
   5101 
   5102 	bnx_ifmedia_upd(ifp);
   5103 
   5104 bnx_mgmt_init_exit:
   5105 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5106 }
   5107 
   5108 /****************************************************************************/
   5109 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5110 /* memory visible to the controller.                                        */
   5111 /*                                                                          */
   5112 /* Returns:                                                                 */
   5113 /*   0 for success, positive value for failure.                             */
   5114 /****************************************************************************/
   5115 int
   5116 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5117 {
   5118 	struct bnx_pkt		*pkt;
   5119 	bus_dmamap_t		map;
   5120 	struct tx_bd		*txbd = NULL;
   5121 	uint16_t		vlan_tag = 0, flags = 0;
   5122 	uint16_t		chain_prod, prod;
   5123 #ifdef BNX_DEBUG
   5124 	uint16_t		debug_prod;
   5125 #endif
   5126 	uint32_t		addr, prod_bseq;
   5127 	int			i, error;
   5128 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   5129 	bool			remap = true;
   5130 
   5131 	mutex_enter(&sc->tx_pkt_mtx);
   5132 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5133 	if (pkt == NULL) {
   5134 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5135 			mutex_exit(&sc->tx_pkt_mtx);
   5136 			return ENETDOWN;
   5137 		}
   5138 
   5139 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5140 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5141 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   5142 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5143 		}
   5144 
   5145 		mutex_exit(&sc->tx_pkt_mtx);
   5146 		return ENOMEM;
   5147 	}
   5148 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5149 	mutex_exit(&sc->tx_pkt_mtx);
   5150 
   5151 	/* Transfer any checksum offload flags to the bd. */
   5152 	if (m->m_pkthdr.csum_flags) {
   5153 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5154 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5155 		if (m->m_pkthdr.csum_flags &
   5156 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5157 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5158 	}
   5159 
   5160 	/* Transfer any VLAN tags to the bd. */
   5161 	if (vlan_has_tag(m)) {
   5162 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5163 		vlan_tag = vlan_get_tag(m);
   5164 	}
   5165 
   5166 	/* Map the mbuf into DMAable memory. */
   5167 	prod = sc->tx_prod;
   5168 	chain_prod = TX_CHAIN_IDX(prod);
   5169 	map = pkt->pkt_dmamap;
   5170 
   5171 	/* Map the mbuf into our DMA address space. */
   5172 retry:
   5173 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5174 	if (__predict_false(error)) {
   5175 		if (error == EFBIG) {
   5176 			if (remap == true) {
   5177 				struct mbuf *newm;
   5178 
   5179 				remap = false;
   5180 				newm = m_defrag(m, M_NOWAIT);
   5181 				if (newm != NULL) {
   5182 					m = newm;
   5183 					goto retry;
   5184 				}
   5185 			}
   5186 		}
   5187 		sc->tx_dma_map_failures++;
   5188 		goto maperr;
   5189 	}
   5190 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5191 	    BUS_DMASYNC_PREWRITE);
   5192 	/* Make sure there's room in the chain */
   5193 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5194 		goto nospace;
   5195 
   5196 	/* prod points to an empty tx_bd at this point. */
   5197 	prod_bseq = sc->tx_prod_bseq;
   5198 #ifdef BNX_DEBUG
   5199 	debug_prod = chain_prod;
   5200 #endif
   5201 	DBPRINT(sc, BNX_INFO_SEND,
   5202 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5203 		"prod_bseq = 0x%08X\n",
   5204 		__func__, prod, chain_prod, prod_bseq);
   5205 
   5206 	/*
   5207 	 * Cycle through each mbuf segment that makes up
   5208 	 * the outgoing frame, gathering the mapping info
   5209 	 * for that segment and creating a tx_bd for the
   5210 	 * mbuf.
   5211 	 */
   5212 	for (i = 0; i < map->dm_nsegs ; i++) {
   5213 		chain_prod = TX_CHAIN_IDX(prod);
   5214 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5215 
   5216 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5217 		txbd->tx_bd_haddr_lo = addr;
   5218 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5219 		txbd->tx_bd_haddr_hi = addr;
   5220 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5221 		txbd->tx_bd_vlan_tag = vlan_tag;
   5222 		txbd->tx_bd_flags = flags;
   5223 		prod_bseq += map->dm_segs[i].ds_len;
   5224 		if (i == 0)
   5225 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5226 		prod = NEXT_TX_BD(prod);
   5227 	}
   5228 
   5229 	/* Set the END flag on the last TX buffer descriptor. */
   5230 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5231 
   5232 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5233 
   5234 	DBPRINT(sc, BNX_INFO_SEND,
   5235 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5236 		"prod_bseq = 0x%08X\n",
   5237 		__func__, prod, chain_prod, prod_bseq);
   5238 
   5239 	pkt->pkt_mbuf = m;
   5240 	pkt->pkt_end_desc = chain_prod;
   5241 
   5242 	mutex_enter(&sc->tx_pkt_mtx);
   5243 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5244 	mutex_exit(&sc->tx_pkt_mtx);
   5245 
   5246 	sc->used_tx_bd += map->dm_nsegs;
   5247 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5248 		__FILE__, __LINE__, sc->used_tx_bd);
   5249 
   5250 	/* Update some debug statistics counters */
   5251 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5252 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5253 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5254 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5255 
   5256 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5257 	    map->dm_nsegs));
   5258 
   5259 	/* prod points to the next free tx_bd at this point. */
   5260 	sc->tx_prod = prod;
   5261 	sc->tx_prod_bseq = prod_bseq;
   5262 
   5263 	return 0;
   5264 
   5265 
   5266 nospace:
   5267 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5268 maperr:
   5269 	mutex_enter(&sc->tx_pkt_mtx);
   5270 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5271 	mutex_exit(&sc->tx_pkt_mtx);
   5272 
   5273 	return ENOMEM;
   5274 }
   5275 
   5276 /****************************************************************************/
   5277 /* Main transmit routine.                                                   */
   5278 /*                                                                          */
   5279 /* Returns:                                                                 */
   5280 /*   Nothing.                                                               */
   5281 /****************************************************************************/
   5282 void
   5283 bnx_start(struct ifnet *ifp)
   5284 {
   5285 	struct bnx_softc	*sc = ifp->if_softc;
   5286 	struct mbuf		*m_head = NULL;
   5287 	int			count = 0;
   5288 #ifdef BNX_DEBUG
   5289 	uint16_t		tx_chain_prod;
   5290 #endif
   5291 
   5292 	/* If there's no link or the transmit queue is empty then just exit. */
   5293 	if (!sc->bnx_link
   5294 	    ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
   5295 		DBPRINT(sc, BNX_INFO_SEND,
   5296 		    "%s(): output active or device not running.\n", __func__);
   5297 		goto bnx_start_exit;
   5298 	}
   5299 
   5300 	/* prod points to the next free tx_bd. */
   5301 #ifdef BNX_DEBUG
   5302 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5303 #endif
   5304 
   5305 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5306 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5307 	    "used_tx %d max_tx %d\n",
   5308 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5309 	    sc->used_tx_bd, sc->max_tx_bd);
   5310 
   5311 	/*
   5312 	 * Keep adding entries while there is space in the ring.
   5313 	 */
   5314 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5315 		/* Check for any frames to send. */
   5316 		IFQ_POLL(&ifp->if_snd, m_head);
   5317 		if (m_head == NULL)
   5318 			break;
   5319 
   5320 		/*
   5321 		 * Pack the data into the transmit ring. If we
   5322 		 * don't have room, set the OACTIVE flag to wait
   5323 		 * for the NIC to drain the chain.
   5324 		 */
   5325 		if (bnx_tx_encap(sc, m_head)) {
   5326 			ifp->if_flags |= IFF_OACTIVE;
   5327 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5328 			    "business! Total tx_bd used = %d\n",
   5329 			    sc->used_tx_bd);
   5330 			break;
   5331 		}
   5332 
   5333 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5334 		count++;
   5335 
   5336 		/* Send a copy of the frame to any BPF listeners. */
   5337 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5338 	}
   5339 
   5340 	if (count == 0) {
   5341 		/* no packets were dequeued */
   5342 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5343 		    "%s(): No packets were dequeued\n", __func__);
   5344 		goto bnx_start_exit;
   5345 	}
   5346 
   5347 	/* Update the driver's counters. */
   5348 #ifdef BNX_DEBUG
   5349 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5350 #endif
   5351 
   5352 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5353 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5354 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5355 
   5356 	/* Start the transmit. */
   5357 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5358 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5359 
   5360 	/* Set the tx timeout. */
   5361 	ifp->if_timer = BNX_TX_TIMEOUT;
   5362 
   5363 bnx_start_exit:
   5364 	return;
   5365 }
   5366 
   5367 /****************************************************************************/
   5368 /* Handles any IOCTL calls from the operating system.                       */
   5369 /*                                                                          */
   5370 /* Returns:                                                                 */
   5371 /*   0 for success, positive value for failure.                             */
   5372 /****************************************************************************/
   5373 int
   5374 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5375 {
   5376 	struct bnx_softc	*sc = ifp->if_softc;
   5377 	struct ifreq		*ifr = (struct ifreq *) data;
   5378 	struct mii_data		*mii = &sc->bnx_mii;
   5379 	int			s, error = 0;
   5380 
   5381 	s = splnet();
   5382 
   5383 	switch (command) {
   5384 	case SIOCSIFFLAGS:
   5385 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5386 			break;
   5387 		/* XXX set an ifflags callback and let ether_ioctl
   5388 		 * handle all of this.
   5389 		 */
   5390 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5391 			if (ifp->if_flags & IFF_RUNNING)
   5392 				error = ENETRESET;
   5393 			else
   5394 				bnx_init(ifp);
   5395 		} else if (ifp->if_flags & IFF_RUNNING)
   5396 			bnx_stop(ifp, 1);
   5397 		break;
   5398 
   5399 	case SIOCSIFMEDIA:
   5400 		/* Flow control requires full-duplex mode. */
   5401 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5402 		    (ifr->ifr_media & IFM_FDX) == 0)
   5403 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5404 
   5405 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5406 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5407 				/* We can do both TXPAUSE and RXPAUSE. */
   5408 				ifr->ifr_media |=
   5409 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5410 			}
   5411 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5412 		}
   5413 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5414 		    sc->bnx_phy_flags);
   5415 
   5416 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5417 		break;
   5418 
   5419 	default:
   5420 		error = ether_ioctl(ifp, command, data);
   5421 	}
   5422 
   5423 	if (error == ENETRESET) {
   5424 		if (ifp->if_flags & IFF_RUNNING)
   5425 			bnx_iff(sc);
   5426 		error = 0;
   5427 	}
   5428 
   5429 	splx(s);
   5430 	return error;
   5431 }
   5432 
   5433 /****************************************************************************/
   5434 /* Transmit timeout handler.                                                */
   5435 /*                                                                          */
   5436 /* Returns:                                                                 */
   5437 /*   Nothing.                                                               */
   5438 /****************************************************************************/
   5439 void
   5440 bnx_watchdog(struct ifnet *ifp)
   5441 {
   5442 	struct bnx_softc	*sc = ifp->if_softc;
   5443 
   5444 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5445 	    bnx_dump_status_block(sc));
   5446 	/*
   5447 	 * If we are in this routine because of pause frames, then
   5448 	 * don't reset the hardware.
   5449 	 */
   5450 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5451 		return;
   5452 
   5453 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5454 
   5455 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5456 
   5457 	bnx_init(ifp);
   5458 
   5459 	ifp->if_oerrors++;
   5460 }
   5461 
   5462 /*
   5463  * Interrupt handler.
   5464  */
   5465 /****************************************************************************/
   5466 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5467 /* interrupt and then calls a separate routine for handle the various       */
   5468 /* interrupt causes (PHY, TX, RX).                                          */
   5469 /*                                                                          */
   5470 /* Returns:                                                                 */
   5471 /*   0 for success, positive value for failure.                             */
   5472 /****************************************************************************/
   5473 int
   5474 bnx_intr(void *xsc)
   5475 {
   5476 	struct bnx_softc	*sc = xsc;
   5477 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5478 	uint32_t		status_attn_bits;
   5479 	uint16_t		status_idx;
   5480 	const struct status_block *sblk;
   5481 	int			rv = 0;
   5482 
   5483 	if (!device_is_active(sc->bnx_dev) ||
   5484 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5485 		return 0;
   5486 
   5487 	DBRUNIF(1, sc->interrupts_generated++);
   5488 
   5489 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5490 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5491 
   5492 	sblk = sc->status_block;
   5493 	/*
   5494 	 * If the hardware status block index
   5495 	 * matches the last value read by the
   5496 	 * driver and we haven't asserted our
   5497 	 * interrupt then there's nothing to do.
   5498 	 */
   5499 	status_idx = sblk->status_idx;
   5500 	if ((status_idx != sc->last_status_idx) ||
   5501 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5502 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5503 		rv = 1;
   5504 
   5505 		/* Ack the interrupt */
   5506 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5507 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5508 
   5509 		status_attn_bits = sblk->status_attn_bits;
   5510 
   5511 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5512 		    aprint_debug("Simulating unexpected status attention bit set.");
   5513 		    status_attn_bits = status_attn_bits |
   5514 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5515 
   5516 		/* Was it a link change interrupt? */
   5517 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5518 		    (sblk->status_attn_bits_ack &
   5519 		    STATUS_ATTN_BITS_LINK_STATE))
   5520 			bnx_phy_intr(sc);
   5521 
   5522 		/* If any other attention is asserted then the chip is toast. */
   5523 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5524 		    (sblk->status_attn_bits_ack &
   5525 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5526 			DBRUN(sc->unexpected_attentions++);
   5527 
   5528 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5529 			    sblk->status_attn_bits);
   5530 
   5531 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5532 				    bnx_breakpoint(sc));
   5533 
   5534 			bnx_init(ifp);
   5535 			goto out;
   5536 		}
   5537 
   5538 		/* Check for any completed RX frames. */
   5539 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5540 			bnx_rx_intr(sc);
   5541 
   5542 		/* Check for any completed TX frames. */
   5543 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5544 			bnx_tx_intr(sc);
   5545 
   5546 		/*
   5547 		 * Save the status block index value for use during the
   5548 		 * next interrupt.
   5549 		 */
   5550 		sc->last_status_idx = status_idx;
   5551 
   5552 		/* Start moving packets again */
   5553 		if (ifp->if_flags & IFF_RUNNING)
   5554 			if_schedule_deferred_start(ifp);
   5555 	}
   5556 
   5557 out:
   5558 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5559 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5560 
   5561 	return rv;
   5562 }
   5563 
   5564 /****************************************************************************/
   5565 /* Programs the various packet receive modes (broadcast and multicast).     */
   5566 /*                                                                          */
   5567 /* Returns:                                                                 */
   5568 /*   Nothing.                                                               */
   5569 /****************************************************************************/
   5570 void
   5571 bnx_iff(struct bnx_softc *sc)
   5572 {
   5573 	struct ethercom		*ec = &sc->bnx_ec;
   5574 	struct ifnet		*ifp = &ec->ec_if;
   5575 	struct ether_multi	*enm;
   5576 	struct ether_multistep	step;
   5577 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5578 	uint32_t		rx_mode, sort_mode;
   5579 	int			h, i;
   5580 
   5581 	/* Initialize receive mode default settings. */
   5582 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5583 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5584 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5585 	ifp->if_flags &= ~IFF_ALLMULTI;
   5586 
   5587 	/*
   5588 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5589 	 * be enbled.
   5590 	 */
   5591 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5592 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5593 
   5594 	/*
   5595 	 * Check for promiscuous, all multicast, or selected
   5596 	 * multicast address filtering.
   5597 	 */
   5598 	if (ifp->if_flags & IFF_PROMISC) {
   5599 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5600 
   5601 		ifp->if_flags |= IFF_ALLMULTI;
   5602 		/* Enable promiscuous mode. */
   5603 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5604 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5605 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5606 allmulti:
   5607 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5608 
   5609 		ifp->if_flags |= IFF_ALLMULTI;
   5610 		/* Enable all multicast addresses. */
   5611 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5612 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5613 			    0xffffffff);
   5614 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5615 	} else {
   5616 		/* Accept one or more multicast(s). */
   5617 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5618 
   5619 		ETHER_LOCK(ec);
   5620 		ETHER_FIRST_MULTI(step, ec, enm);
   5621 		while (enm != NULL) {
   5622 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5623 			    ETHER_ADDR_LEN)) {
   5624 				ETHER_UNLOCK(ec);
   5625 				goto allmulti;
   5626 			}
   5627 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5628 			    0xFF;
   5629 			hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
   5630 			ETHER_NEXT_MULTI(step, enm);
   5631 		}
   5632 		ETHER_UNLOCK(ec);
   5633 
   5634 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5635 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5636 			    hashes[i]);
   5637 
   5638 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5639 	}
   5640 
   5641 	/* Only make changes if the recive mode has actually changed. */
   5642 	if (rx_mode != sc->rx_mode) {
   5643 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5644 		    rx_mode);
   5645 
   5646 		sc->rx_mode = rx_mode;
   5647 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5648 	}
   5649 
   5650 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5651 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5652 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5653 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5654 }
   5655 
   5656 /****************************************************************************/
   5657 /* Called periodically to updates statistics from the controllers           */
   5658 /* statistics block.                                                        */
   5659 /*                                                                          */
   5660 /* Returns:                                                                 */
   5661 /*   Nothing.                                                               */
   5662 /****************************************************************************/
   5663 void
   5664 bnx_stats_update(struct bnx_softc *sc)
   5665 {
   5666 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5667 	struct statistics_block	*stats;
   5668 
   5669 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5670 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5671 	    BUS_DMASYNC_POSTREAD);
   5672 
   5673 	stats = (struct statistics_block *)sc->stats_block;
   5674 
   5675 	/*
   5676 	 * Update the interface statistics from the
   5677 	 * hardware statistics.
   5678 	 */
   5679 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5680 
   5681 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5682 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5683 	    (u_long)stats->stat_IfInMBUFDiscards +
   5684 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5685 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5686 
   5687 	ifp->if_oerrors = (u_long)
   5688 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5689 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5690 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5691 
   5692 	/*
   5693 	 * Certain controllers don't report
   5694 	 * carrier sense errors correctly.
   5695 	 * See errata E11_5708CA0_1165.
   5696 	 */
   5697 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5698 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5699 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5700 
   5701 	/*
   5702 	 * Update the sysctl statistics from the
   5703 	 * hardware statistics.
   5704 	 */
   5705 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5706 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5707 
   5708 	sc->stat_IfHCInBadOctets =
   5709 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5710 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5711 
   5712 	sc->stat_IfHCOutOctets =
   5713 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5714 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5715 
   5716 	sc->stat_IfHCOutBadOctets =
   5717 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5718 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5719 
   5720 	sc->stat_IfHCInUcastPkts =
   5721 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5722 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5723 
   5724 	sc->stat_IfHCInMulticastPkts =
   5725 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5726 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5727 
   5728 	sc->stat_IfHCInBroadcastPkts =
   5729 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5730 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5731 
   5732 	sc->stat_IfHCOutUcastPkts =
   5733 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5734 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5735 
   5736 	sc->stat_IfHCOutMulticastPkts =
   5737 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5738 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5739 
   5740 	sc->stat_IfHCOutBroadcastPkts =
   5741 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5742 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5743 
   5744 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5745 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5746 
   5747 	sc->stat_Dot3StatsCarrierSenseErrors =
   5748 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5749 
   5750 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5751 
   5752 	sc->stat_Dot3StatsAlignmentErrors =
   5753 	    stats->stat_Dot3StatsAlignmentErrors;
   5754 
   5755 	sc->stat_Dot3StatsSingleCollisionFrames =
   5756 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5757 
   5758 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5759 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5760 
   5761 	sc->stat_Dot3StatsDeferredTransmissions =
   5762 	    stats->stat_Dot3StatsDeferredTransmissions;
   5763 
   5764 	sc->stat_Dot3StatsExcessiveCollisions =
   5765 	    stats->stat_Dot3StatsExcessiveCollisions;
   5766 
   5767 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5768 
   5769 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5770 
   5771 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5772 
   5773 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5774 
   5775 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5776 
   5777 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5778 
   5779 	sc->stat_EtherStatsPktsRx64Octets =
   5780 	    stats->stat_EtherStatsPktsRx64Octets;
   5781 
   5782 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5783 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5784 
   5785 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5786 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5787 
   5788 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5789 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5790 
   5791 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5792 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5793 
   5794 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5795 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5796 
   5797 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5798 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5799 
   5800 	sc->stat_EtherStatsPktsTx64Octets =
   5801 	    stats->stat_EtherStatsPktsTx64Octets;
   5802 
   5803 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5804 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5805 
   5806 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5807 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5808 
   5809 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5810 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5811 
   5812 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5813 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5814 
   5815 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5816 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5817 
   5818 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5819 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5820 
   5821 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5822 
   5823 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5824 
   5825 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5826 
   5827 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5828 
   5829 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5830 
   5831 	sc->stat_MacControlFramesReceived =
   5832 	    stats->stat_MacControlFramesReceived;
   5833 
   5834 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5835 
   5836 	sc->stat_IfInFramesL2FilterDiscards =
   5837 	    stats->stat_IfInFramesL2FilterDiscards;
   5838 
   5839 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5840 
   5841 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5842 
   5843 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5844 
   5845 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5846 
   5847 	sc->stat_CatchupInRuleCheckerDiscards =
   5848 	    stats->stat_CatchupInRuleCheckerDiscards;
   5849 
   5850 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5851 
   5852 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5853 
   5854 	sc->stat_CatchupInRuleCheckerP4Hit =
   5855 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5856 
   5857 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5858 }
   5859 
   5860 void
   5861 bnx_tick(void *xsc)
   5862 {
   5863 	struct bnx_softc	*sc = xsc;
   5864 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5865 	struct mii_data		*mii;
   5866 	uint32_t		msg;
   5867 	uint16_t		prod, chain_prod;
   5868 	uint32_t		prod_bseq;
   5869 	int s = splnet();
   5870 
   5871 	/* Tell the firmware that the driver is still running. */
   5872 #ifdef BNX_DEBUG
   5873 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5874 #else
   5875 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5876 #endif
   5877 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5878 
   5879 	/* Update the statistics from the hardware statistics block. */
   5880 	bnx_stats_update(sc);
   5881 
   5882 	/* Schedule the next tick. */
   5883 	if (!sc->bnx_detaching)
   5884 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5885 
   5886 	if (sc->bnx_link)
   5887 		goto bnx_tick_exit;
   5888 
   5889 	mii = &sc->bnx_mii;
   5890 	mii_tick(mii);
   5891 
   5892 	/* Check if the link has come up. */
   5893 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5894 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5895 		sc->bnx_link++;
   5896 		/* Now that link is up, handle any outstanding TX traffic. */
   5897 		if_schedule_deferred_start(ifp);
   5898 	}
   5899 
   5900 bnx_tick_exit:
   5901 	/* try to get more RX buffers, just in case */
   5902 	prod = sc->rx_prod;
   5903 	prod_bseq = sc->rx_prod_bseq;
   5904 	chain_prod = RX_CHAIN_IDX(prod);
   5905 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5906 	sc->rx_prod = prod;
   5907 	sc->rx_prod_bseq = prod_bseq;
   5908 
   5909 	splx(s);
   5910 	return;
   5911 }
   5912 
   5913 /****************************************************************************/
   5914 /* BNX Debug Routines                                                       */
   5915 /****************************************************************************/
   5916 #ifdef BNX_DEBUG
   5917 
   5918 /****************************************************************************/
   5919 /* Prints out information about an mbuf.                                    */
   5920 /*                                                                          */
   5921 /* Returns:                                                                 */
   5922 /*   Nothing.                                                               */
   5923 /****************************************************************************/
   5924 void
   5925 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5926 {
   5927 	struct mbuf		*mp = m;
   5928 
   5929 	if (m == NULL) {
   5930 		/* Index out of range. */
   5931 		aprint_error("mbuf ptr is null!\n");
   5932 		return;
   5933 	}
   5934 
   5935 	while (mp) {
   5936 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5937 		    mp, mp->m_len);
   5938 
   5939 		if (mp->m_flags & M_EXT)
   5940 			aprint_debug("M_EXT ");
   5941 		if (mp->m_flags & M_PKTHDR)
   5942 			aprint_debug("M_PKTHDR ");
   5943 		aprint_debug("\n");
   5944 
   5945 		if (mp->m_flags & M_EXT)
   5946 			aprint_debug("- m_ext: vaddr = %p, "
   5947 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5948 
   5949 		mp = mp->m_next;
   5950 	}
   5951 }
   5952 
   5953 /****************************************************************************/
   5954 /* Prints out the mbufs in the TX mbuf chain.                               */
   5955 /*                                                                          */
   5956 /* Returns:                                                                 */
   5957 /*   Nothing.                                                               */
   5958 /****************************************************************************/
   5959 void
   5960 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5961 {
   5962 #if 0
   5963 	struct mbuf		*m;
   5964 	int			i;
   5965 
   5966 	aprint_debug_dev(sc->bnx_dev,
   5967 	    "----------------------------"
   5968 	    "  tx mbuf data  "
   5969 	    "----------------------------\n");
   5970 
   5971 	for (i = 0; i < count; i++) {
   5972 		m = sc->tx_mbuf_ptr[chain_prod];
   5973 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5974 		bnx_dump_mbuf(sc, m);
   5975 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5976 	}
   5977 
   5978 	aprint_debug_dev(sc->bnx_dev,
   5979 	    "--------------------------------------------"
   5980 	    "----------------------------\n");
   5981 #endif
   5982 }
   5983 
   5984 /*
   5985  * This routine prints the RX mbuf chain.
   5986  */
   5987 void
   5988 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5989 {
   5990 	struct mbuf		*m;
   5991 	int			i;
   5992 
   5993 	aprint_debug_dev(sc->bnx_dev,
   5994 	    "----------------------------"
   5995 	    "  rx mbuf data  "
   5996 	    "----------------------------\n");
   5997 
   5998 	for (i = 0; i < count; i++) {
   5999 		m = sc->rx_mbuf_ptr[chain_prod];
   6000 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   6001 		bnx_dump_mbuf(sc, m);
   6002 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   6003 	}
   6004 
   6005 
   6006 	aprint_debug_dev(sc->bnx_dev,
   6007 	    "--------------------------------------------"
   6008 	    "----------------------------\n");
   6009 }
   6010 
   6011 void
   6012 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   6013 {
   6014 	if (idx > MAX_TX_BD)
   6015 		/* Index out of range. */
   6016 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   6017 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   6018 		/* TX Chain page pointer. */
   6019 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   6020 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   6021 		    txbd->tx_bd_haddr_lo);
   6022 	else
   6023 		/* Normal tx_bd entry. */
   6024 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6025 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   6026 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   6027 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   6028 		    txbd->tx_bd_flags);
   6029 }
   6030 
   6031 void
   6032 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   6033 {
   6034 	if (idx > MAX_RX_BD)
   6035 		/* Index out of range. */
   6036 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   6037 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   6038 		/* TX Chain page pointer. */
   6039 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   6040 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   6041 		    rxbd->rx_bd_haddr_lo);
   6042 	else
   6043 		/* Normal tx_bd entry. */
   6044 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6045 		    "0x%08X, flags = 0x%08X\n", idx,
   6046 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   6047 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   6048 }
   6049 
   6050 void
   6051 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   6052 {
   6053 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   6054 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   6055 	    "tcp_udp_xsum = 0x%04X\n", idx,
   6056 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   6057 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   6058 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   6059 }
   6060 
   6061 /*
   6062  * This routine prints the TX chain.
   6063  */
   6064 void
   6065 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   6066 {
   6067 	struct tx_bd		*txbd;
   6068 	int			i;
   6069 
   6070 	/* First some info about the tx_bd chain structure. */
   6071 	aprint_debug_dev(sc->bnx_dev,
   6072 	    "----------------------------"
   6073 	    "  tx_bd  chain  "
   6074 	    "----------------------------\n");
   6075 
   6076 	BNX_PRINTF(sc,
   6077 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   6078 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6079 
   6080 	BNX_PRINTF(sc,
   6081 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6082 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6083 
   6084 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6085 
   6086 	aprint_error_dev(sc->bnx_dev, ""
   6087 	    "-----------------------------"
   6088 	    "   tx_bd data   "
   6089 	    "-----------------------------\n");
   6090 
   6091 	/* Now print out the tx_bd's themselves. */
   6092 	for (i = 0; i < count; i++) {
   6093 		txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6094 		bnx_dump_txbd(sc, tx_prod, txbd);
   6095 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6096 	}
   6097 
   6098 	aprint_debug_dev(sc->bnx_dev,
   6099 	    "-----------------------------"
   6100 	    "--------------"
   6101 	    "-----------------------------\n");
   6102 }
   6103 
   6104 /*
   6105  * This routine prints the RX chain.
   6106  */
   6107 void
   6108 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6109 {
   6110 	struct rx_bd		*rxbd;
   6111 	int			i;
   6112 
   6113 	/* First some info about the tx_bd chain structure. */
   6114 	aprint_debug_dev(sc->bnx_dev,
   6115 	    "----------------------------"
   6116 	    "  rx_bd  chain  "
   6117 	    "----------------------------\n");
   6118 
   6119 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6120 
   6121 	BNX_PRINTF(sc,
   6122 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6123 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6124 
   6125 	BNX_PRINTF(sc,
   6126 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6127 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6128 
   6129 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6130 
   6131 	aprint_error_dev(sc->bnx_dev,
   6132 	    "----------------------------"
   6133 	    "   rx_bd data   "
   6134 	    "----------------------------\n");
   6135 
   6136 	/* Now print out the rx_bd's themselves. */
   6137 	for (i = 0; i < count; i++) {
   6138 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6139 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6140 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6141 	}
   6142 
   6143 	aprint_debug_dev(sc->bnx_dev,
   6144 	    "----------------------------"
   6145 	    "--------------"
   6146 	    "----------------------------\n");
   6147 }
   6148 
   6149 /*
   6150  * This routine prints the status block.
   6151  */
   6152 void
   6153 bnx_dump_status_block(struct bnx_softc *sc)
   6154 {
   6155 	struct status_block	*sblk;
   6156 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6157 	    BUS_DMASYNC_POSTREAD);
   6158 
   6159 	sblk = sc->status_block;
   6160 
   6161 	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6162 	    "Status Block -----------------------------\n");
   6163 
   6164 	BNX_PRINTF(sc,
   6165 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6166 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6167 	    sblk->status_idx);
   6168 
   6169 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6170 	    sblk->status_rx_quick_consumer_index0,
   6171 	    sblk->status_tx_quick_consumer_index0);
   6172 
   6173 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6174 
   6175 	/* Theses indices are not used for normal L2 drivers. */
   6176 	if (sblk->status_rx_quick_consumer_index1 ||
   6177 		sblk->status_tx_quick_consumer_index1)
   6178 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6179 		    sblk->status_rx_quick_consumer_index1,
   6180 		    sblk->status_tx_quick_consumer_index1);
   6181 
   6182 	if (sblk->status_rx_quick_consumer_index2 ||
   6183 		sblk->status_tx_quick_consumer_index2)
   6184 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6185 		    sblk->status_rx_quick_consumer_index2,
   6186 		    sblk->status_tx_quick_consumer_index2);
   6187 
   6188 	if (sblk->status_rx_quick_consumer_index3 ||
   6189 		sblk->status_tx_quick_consumer_index3)
   6190 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6191 		    sblk->status_rx_quick_consumer_index3,
   6192 		    sblk->status_tx_quick_consumer_index3);
   6193 
   6194 	if (sblk->status_rx_quick_consumer_index4 ||
   6195 		sblk->status_rx_quick_consumer_index5)
   6196 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6197 		    sblk->status_rx_quick_consumer_index4,
   6198 		    sblk->status_rx_quick_consumer_index5);
   6199 
   6200 	if (sblk->status_rx_quick_consumer_index6 ||
   6201 		sblk->status_rx_quick_consumer_index7)
   6202 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6203 		    sblk->status_rx_quick_consumer_index6,
   6204 		    sblk->status_rx_quick_consumer_index7);
   6205 
   6206 	if (sblk->status_rx_quick_consumer_index8 ||
   6207 		sblk->status_rx_quick_consumer_index9)
   6208 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6209 		    sblk->status_rx_quick_consumer_index8,
   6210 		    sblk->status_rx_quick_consumer_index9);
   6211 
   6212 	if (sblk->status_rx_quick_consumer_index10 ||
   6213 		sblk->status_rx_quick_consumer_index11)
   6214 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6215 		    sblk->status_rx_quick_consumer_index10,
   6216 		    sblk->status_rx_quick_consumer_index11);
   6217 
   6218 	if (sblk->status_rx_quick_consumer_index12 ||
   6219 		sblk->status_rx_quick_consumer_index13)
   6220 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6221 		    sblk->status_rx_quick_consumer_index12,
   6222 		    sblk->status_rx_quick_consumer_index13);
   6223 
   6224 	if (sblk->status_rx_quick_consumer_index14 ||
   6225 		sblk->status_rx_quick_consumer_index15)
   6226 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6227 		    sblk->status_rx_quick_consumer_index14,
   6228 		    sblk->status_rx_quick_consumer_index15);
   6229 
   6230 	if (sblk->status_completion_producer_index ||
   6231 		sblk->status_cmd_consumer_index)
   6232 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6233 		    sblk->status_completion_producer_index,
   6234 		    sblk->status_cmd_consumer_index);
   6235 
   6236 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6237 	    "-----------------------------\n");
   6238 }
   6239 
   6240 /*
   6241  * This routine prints the statistics block.
   6242  */
   6243 void
   6244 bnx_dump_stats_block(struct bnx_softc *sc)
   6245 {
   6246 	struct statistics_block	*sblk;
   6247 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6248 	    BUS_DMASYNC_POSTREAD);
   6249 
   6250 	sblk = sc->stats_block;
   6251 
   6252 	aprint_debug_dev(sc->bnx_dev, ""
   6253 	    "-----------------------------"
   6254 	    " Stats  Block "
   6255 	    "-----------------------------\n");
   6256 
   6257 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6258 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6259 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6260 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6261 
   6262 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6263 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6264 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6265 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6266 
   6267 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6268 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6269 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6270 	    sblk->stat_IfHCInMulticastPkts_hi,
   6271 	    sblk->stat_IfHCInMulticastPkts_lo);
   6272 
   6273 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6274 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6275 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6276 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6277 	    sblk->stat_IfHCOutUcastPkts_hi,
   6278 	    sblk->stat_IfHCOutUcastPkts_lo);
   6279 
   6280 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6281 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6282 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6283 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6284 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6285 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6286 
   6287 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6288 		BNX_PRINTF(sc, "0x%08X : "
   6289 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6290 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6291 
   6292 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6293 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6294 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6295 
   6296 	if (sblk->stat_Dot3StatsFCSErrors)
   6297 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6298 		    sblk->stat_Dot3StatsFCSErrors);
   6299 
   6300 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6301 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6302 		    sblk->stat_Dot3StatsAlignmentErrors);
   6303 
   6304 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6305 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6306 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6307 
   6308 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6309 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6310 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6311 
   6312 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6313 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6314 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6315 
   6316 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6317 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6318 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6319 
   6320 	if (sblk->stat_Dot3StatsLateCollisions)
   6321 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6322 		    sblk->stat_Dot3StatsLateCollisions);
   6323 
   6324 	if (sblk->stat_EtherStatsCollisions)
   6325 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6326 		    sblk->stat_EtherStatsCollisions);
   6327 
   6328 	if (sblk->stat_EtherStatsFragments)
   6329 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6330 		    sblk->stat_EtherStatsFragments);
   6331 
   6332 	if (sblk->stat_EtherStatsJabbers)
   6333 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6334 		    sblk->stat_EtherStatsJabbers);
   6335 
   6336 	if (sblk->stat_EtherStatsUndersizePkts)
   6337 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6338 		    sblk->stat_EtherStatsUndersizePkts);
   6339 
   6340 	if (sblk->stat_EtherStatsOverrsizePkts)
   6341 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6342 		    sblk->stat_EtherStatsOverrsizePkts);
   6343 
   6344 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6345 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6346 		    sblk->stat_EtherStatsPktsRx64Octets);
   6347 
   6348 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6349 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6350 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6351 
   6352 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6353 		BNX_PRINTF(sc, "0x%08X : "
   6354 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6355 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6356 
   6357 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6358 		BNX_PRINTF(sc, "0x%08X : "
   6359 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6360 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6361 
   6362 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6363 		BNX_PRINTF(sc, "0x%08X : "
   6364 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6365 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6366 
   6367 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6368 		BNX_PRINTF(sc, "0x%08X : "
   6369 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6370 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6371 
   6372 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6373 		BNX_PRINTF(sc, "0x%08X : "
   6374 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6375 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6376 
   6377 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6378 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6379 		    sblk->stat_EtherStatsPktsTx64Octets);
   6380 
   6381 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6382 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6383 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6384 
   6385 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6386 		BNX_PRINTF(sc, "0x%08X : "
   6387 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6388 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6389 
   6390 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6391 		BNX_PRINTF(sc, "0x%08X : "
   6392 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6393 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6394 
   6395 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6396 		BNX_PRINTF(sc, "0x%08X : "
   6397 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6398 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6399 
   6400 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6401 		BNX_PRINTF(sc, "0x%08X : "
   6402 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6403 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6404 
   6405 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6406 		BNX_PRINTF(sc, "0x%08X : "
   6407 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6408 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6409 
   6410 	if (sblk->stat_XonPauseFramesReceived)
   6411 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6412 		    sblk->stat_XonPauseFramesReceived);
   6413 
   6414 	if (sblk->stat_XoffPauseFramesReceived)
   6415 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6416 		    sblk->stat_XoffPauseFramesReceived);
   6417 
   6418 	if (sblk->stat_OutXonSent)
   6419 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6420 		    sblk->stat_OutXonSent);
   6421 
   6422 	if (sblk->stat_OutXoffSent)
   6423 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6424 		    sblk->stat_OutXoffSent);
   6425 
   6426 	if (sblk->stat_FlowControlDone)
   6427 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6428 		    sblk->stat_FlowControlDone);
   6429 
   6430 	if (sblk->stat_MacControlFramesReceived)
   6431 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6432 		    sblk->stat_MacControlFramesReceived);
   6433 
   6434 	if (sblk->stat_XoffStateEntered)
   6435 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6436 		    sblk->stat_XoffStateEntered);
   6437 
   6438 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6439 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6440 		    sblk->stat_IfInFramesL2FilterDiscards);
   6441 
   6442 	if (sblk->stat_IfInRuleCheckerDiscards)
   6443 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6444 		    sblk->stat_IfInRuleCheckerDiscards);
   6445 
   6446 	if (sblk->stat_IfInFTQDiscards)
   6447 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6448 		    sblk->stat_IfInFTQDiscards);
   6449 
   6450 	if (sblk->stat_IfInMBUFDiscards)
   6451 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6452 		    sblk->stat_IfInMBUFDiscards);
   6453 
   6454 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6455 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6456 		    sblk->stat_IfInRuleCheckerP4Hit);
   6457 
   6458 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6459 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6460 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6461 
   6462 	if (sblk->stat_CatchupInFTQDiscards)
   6463 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6464 		    sblk->stat_CatchupInFTQDiscards);
   6465 
   6466 	if (sblk->stat_CatchupInMBUFDiscards)
   6467 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6468 		    sblk->stat_CatchupInMBUFDiscards);
   6469 
   6470 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6471 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6472 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6473 
   6474 	aprint_debug_dev(sc->bnx_dev,
   6475 	    "-----------------------------"
   6476 	    "--------------"
   6477 	    "-----------------------------\n");
   6478 }
   6479 
   6480 void
   6481 bnx_dump_driver_state(struct bnx_softc *sc)
   6482 {
   6483 	aprint_debug_dev(sc->bnx_dev,
   6484 	    "-----------------------------"
   6485 	    " Driver State "
   6486 	    "-----------------------------\n");
   6487 
   6488 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6489 	    "address\n", sc);
   6490 
   6491 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6492 	    sc->status_block);
   6493 
   6494 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6495 	    "address\n", sc->stats_block);
   6496 
   6497 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6498 	    "address\n", sc->tx_bd_chain);
   6499 
   6500 #if 0
   6501 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6502 	    sc->rx_bd_chain);
   6503 
   6504 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6505 	    sc->tx_mbuf_ptr);
   6506 #endif
   6507 
   6508 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6509 	    sc->rx_mbuf_ptr);
   6510 
   6511 	BNX_PRINTF(sc,
   6512 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6513 	    sc->interrupts_generated);
   6514 
   6515 	BNX_PRINTF(sc,
   6516 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6517 	    sc->rx_interrupts);
   6518 
   6519 	BNX_PRINTF(sc,
   6520 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6521 	    sc->tx_interrupts);
   6522 
   6523 	BNX_PRINTF(sc,
   6524 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6525 	    sc->last_status_idx);
   6526 
   6527 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6528 	    sc->tx_prod);
   6529 
   6530 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6531 	    sc->tx_cons);
   6532 
   6533 	BNX_PRINTF(sc,
   6534 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6535 	    sc->tx_prod_bseq);
   6536 	BNX_PRINTF(sc,
   6537 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6538 	    sc->tx_mbuf_alloc);
   6539 
   6540 	BNX_PRINTF(sc,
   6541 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6542 	    sc->used_tx_bd);
   6543 
   6544 	BNX_PRINTF(sc,
   6545 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6546 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6547 
   6548 
   6549 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6550 	    sc->rx_prod);
   6551 
   6552 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6553 	    sc->rx_cons);
   6554 
   6555 	BNX_PRINTF(sc,
   6556 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6557 	    sc->rx_prod_bseq);
   6558 
   6559 	BNX_PRINTF(sc,
   6560 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6561 	    sc->rx_mbuf_alloc);
   6562 
   6563 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6564 	    sc->free_rx_bd);
   6565 
   6566 	BNX_PRINTF(sc,
   6567 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6568 	    sc->rx_low_watermark, sc->max_rx_bd);
   6569 
   6570 	BNX_PRINTF(sc,
   6571 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6572 	    "mbuf alloc failures\n",
   6573 	    sc->mbuf_alloc_failed);
   6574 
   6575 	BNX_PRINTF(sc,
   6576 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6577 	    "simulated mbuf alloc failures\n",
   6578 	    sc->mbuf_sim_alloc_failed);
   6579 
   6580 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6581 	    "-----------------------------\n");
   6582 }
   6583 
   6584 void
   6585 bnx_dump_hw_state(struct bnx_softc *sc)
   6586 {
   6587 	uint32_t		val1;
   6588 	int			i;
   6589 
   6590 	aprint_debug_dev(sc->bnx_dev,
   6591 	    "----------------------------"
   6592 	    " Hardware State "
   6593 	    "----------------------------\n");
   6594 
   6595 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
   6596 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
   6597 
   6598 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6599 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6600 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6601 
   6602 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6603 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6604 
   6605 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6606 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6607 
   6608 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6609 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6610 	    BNX_EMAC_STATUS);
   6611 
   6612 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6613 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6614 
   6615 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6616 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6617 	    BNX_TBDR_STATUS);
   6618 
   6619 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6620 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6621 	    BNX_TDMA_STATUS);
   6622 
   6623 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6624 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6625 
   6626 	aprint_debug_dev(sc->bnx_dev,
   6627 	    "----------------------------"
   6628 	    "----------------"
   6629 	    "----------------------------\n");
   6630 
   6631 	aprint_debug_dev(sc->bnx_dev,
   6632 	    "----------------------------"
   6633 	    " Register  Dump "
   6634 	    "----------------------------\n");
   6635 
   6636 	for (i = 0x400; i < 0x8000; i += 0x10)
   6637 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6638 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6639 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6640 
   6641 	aprint_debug_dev(sc->bnx_dev,
   6642 	    "----------------------------"
   6643 	    "----------------"
   6644 	    "----------------------------\n");
   6645 }
   6646 
   6647 void
   6648 bnx_breakpoint(struct bnx_softc *sc)
   6649 {
   6650 	/* Unreachable code to shut the compiler up about unused functions. */
   6651 	if (0) {
   6652 		bnx_dump_txbd(sc, 0, NULL);
   6653 		bnx_dump_rxbd(sc, 0, NULL);
   6654 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6655 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6656 		bnx_dump_l2fhdr(sc, 0, NULL);
   6657 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6658 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6659 		bnx_dump_status_block(sc);
   6660 		bnx_dump_stats_block(sc);
   6661 		bnx_dump_driver_state(sc);
   6662 		bnx_dump_hw_state(sc);
   6663 	}
   6664 
   6665 	bnx_dump_driver_state(sc);
   6666 	/* Print the important status block fields. */
   6667 	bnx_dump_status_block(sc);
   6668 
   6669 #if 0
   6670 	/* Call the debugger. */
   6671 	breakpoint();
   6672 #endif
   6673 
   6674 	return;
   6675 }
   6676 #endif
   6677