Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.94
      1 /*	$NetBSD: if_bnx.c,v 1.94 2020/02/28 14:57:55 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.94 2020/02/28 14:57:55 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 	device_t dev = sc->bnx_dev;
    466 	int i = 0;
    467 
    468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    471 	    ? "Serdes " : "", sc->bnx_chipid);
    472 
    473 	/* Bus info. */
    474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
    476 		switch (sc->link_speed) {
    477 		case 1: aprint_normal("2.5GT/s\n"); break;
    478 		case 2:	aprint_normal("5GT/s\n"); break;
    479 		default: aprint_normal("Unknown link speed\n");
    480 		}
    481 	} else {
    482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
    483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    485 		    sc->bus_speed_mhz);
    486 	}
    487 
    488 	/* Firmware version and device features. */
    489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
    490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
    491 
    492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
    493 		if (i > 0) aprint_normal("|");
    494 		aprint_normal("2.5G"); i++;
    495 	}
    496 
    497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
    498 		if (i > 0) aprint_normal("|");
    499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
    500 	} else {
    501 		aprint_normal(")\n");
    502 	}
    503 
    504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    505 	    sc->bnx_rx_quick_cons_trip_int,
    506 	    sc->bnx_rx_quick_cons_trip,
    507 	    sc->bnx_rx_ticks_int,
    508 	    sc->bnx_rx_ticks,
    509 	    sc->bnx_tx_quick_cons_trip_int,
    510 	    sc->bnx_tx_quick_cons_trip,
    511 	    sc->bnx_tx_ticks_int,
    512 	    sc->bnx_tx_ticks);
    513 }
    514 
    515 
    516 /****************************************************************************/
    517 /* PCI Capabilities Probe Function.                                         */
    518 /*                                                                          */
    519 /* Walks the PCI capabiites list for the device to find what features are   */
    520 /* supported.                                                               */
    521 /*                                                                          */
    522 /* Returns:                                                                 */
    523 /*   None.                                                                  */
    524 /****************************************************************************/
    525 static void
    526 bnx_probe_pci_caps(struct bnx_softc *sc)
    527 {
    528 	struct pci_attach_args *pa = &(sc->bnx_pa);
    529 	pcireg_t reg;
    530 
    531 	/* Check if PCI-X capability is enabled. */
    532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    533 		NULL) != 0) {
    534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    535 	}
    536 
    537 	/* Check if PCIe capability is enabled. */
    538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    539 		NULL) != 0) {
    540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    541 		    reg + PCIE_LCSR);
    542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    543 		    "0x%08X\n",	link_status);
    544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    547 		sc->bnx_flags |= BNX_PCIE_FLAG;
    548 	}
    549 
    550 	/* Check if MSI capability is enabled. */
    551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    552 		NULL) != 0)
    553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    554 
    555 	/* Check if MSI-X capability is enabled. */
    556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    557 		NULL) != 0)
    558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    559 }
    560 
    561 
    562 /****************************************************************************/
    563 /* Device attach function.                                                  */
    564 /*                                                                          */
    565 /* Allocates device resources, performs secondary chip identification,      */
    566 /* resets and initializes the hardware, and initializes driver instance     */
    567 /* variables.                                                               */
    568 /*                                                                          */
    569 /* Returns:                                                                 */
    570 /*   0 on success, positive value on failure.                               */
    571 /****************************************************************************/
    572 void
    573 bnx_attach(device_t parent, device_t self, void *aux)
    574 {
    575 	const struct bnx_product *bp;
    576 	struct bnx_softc	*sc = device_private(self);
    577 	prop_dictionary_t	dict;
    578 	struct pci_attach_args	*pa = aux;
    579 	pci_chipset_tag_t	pc = pa->pa_pc;
    580 	pci_intr_handle_t	ih;
    581 	const char		*intrstr = NULL;
    582 	uint32_t		command;
    583 	struct ifnet		*ifp;
    584 	struct mii_data * const mii = &sc->bnx_mii;
    585 	uint32_t		val;
    586 	int			mii_flags = MIIF_FORCEANEG;
    587 	pcireg_t		memtype;
    588 	char intrbuf[PCI_INTRSTR_LEN];
    589 	int i, j;
    590 
    591 	if (bnx_tx_pool == NULL) {
    592 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
    593 		pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    594 		    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    595 	}
    596 
    597 	bp = bnx_lookup(pa);
    598 	if (bp == NULL)
    599 		panic("unknown device");
    600 
    601 	sc->bnx_dev = self;
    602 
    603 	aprint_naive("\n");
    604 	aprint_normal(": %s\n", bp->bp_name);
    605 
    606 	sc->bnx_pa = *pa;
    607 
    608 	/*
    609 	 * Map control/status registers.
    610 	*/
    611 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    612 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    613 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    614 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    615 
    616 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    617 		aprint_error_dev(sc->bnx_dev,
    618 		    "failed to enable memory mapping!\n");
    619 		return;
    620 	}
    621 
    622 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    623 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    624 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    625 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    626 		return;
    627 	}
    628 
    629 	if (pci_intr_map(pa, &ih)) {
    630 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    631 		goto bnx_attach_fail;
    632 	}
    633 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    634 
    635 	/*
    636 	 * Configure byte swap and enable indirect register access.
    637 	 * Rely on CPU to do target byte swapping on big endian systems.
    638 	 * Access to registers outside of PCI configurtion space are not
    639 	 * valid until this is done.
    640 	 */
    641 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    642 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    643 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    644 
    645 	/* Save ASIC revsion info. */
    646 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    647 
    648 	/*
    649 	 * Find the base address for shared memory access.
    650 	 * Newer versions of bootcode use a signature and offset
    651 	 * while older versions use a fixed address.
    652 	 */
    653 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    654 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    655 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    656 		    (sc->bnx_pa.pa_function << 2));
    657 	else
    658 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    659 
    660 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    661 
    662 	/* Set initial device and PHY flags */
    663 	sc->bnx_flags = 0;
    664 	sc->bnx_phy_flags = 0;
    665 
    666 	/* Fetch the bootcode revision. */
    667 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
    668 	for (i = 0, j = 0; i < 3; i++) {
    669 		uint8_t num;
    670 		int k, skip0;
    671 
    672 		num = (uint8_t)(val >> (24 - (i * 8)));
    673 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
    674 			if (num >= k || !skip0 || k == 1) {
    675 				sc->bnx_bc_ver[j++] = (num / k) + '0';
    676 				skip0 = 0;
    677 			}
    678 		}
    679 		if (i != 2)
    680 			sc->bnx_bc_ver[j++] = '.';
    681 	}
    682 
    683 	/* Check if any management firmware is enabled. */
    684 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
    685 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
    686 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
    687 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
    688 
    689 		/* Allow time for firmware to enter the running state. */
    690 		for (i = 0; i < 30; i++) {
    691 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    692 			    BNX_BC_STATE_CONDITION);
    693 			if (val & BNX_CONDITION_MFW_RUN_MASK)
    694 				break;
    695 			DELAY(10000);
    696 		}
    697 
    698 		/* Check if management firmware is running. */
    699 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
    700 		    BNX_BC_STATE_CONDITION);
    701 		val &= BNX_CONDITION_MFW_RUN_MASK;
    702 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
    703 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
    704 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
    705 			    BNX_MFW_VER_PTR);
    706 
    707 			/* Read the management firmware version string. */
    708 			for (j = 0; j < 3; j++) {
    709 				val = bnx_reg_rd_ind(sc, addr + j * 4);
    710 				val = bswap32(val);
    711 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
    712 				i += 4;
    713 			}
    714 		} else {
    715 			/* May cause firmware synchronization timeouts. */
    716 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
    717 			    "but not running!\n", __FILE__, __LINE__);
    718 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
    719 
    720 			/* ToDo: Any action the driver should take? */
    721 		}
    722 	}
    723 
    724 	bnx_probe_pci_caps(sc);
    725 
    726 	/* Get PCI bus information (speed and type). */
    727 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    728 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    729 		uint32_t clkreg;
    730 
    731 		sc->bnx_flags |= BNX_PCIX_FLAG;
    732 
    733 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    734 
    735 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    736 		switch (clkreg) {
    737 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    738 			sc->bus_speed_mhz = 133;
    739 			break;
    740 
    741 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    742 			sc->bus_speed_mhz = 100;
    743 			break;
    744 
    745 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    746 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    747 			sc->bus_speed_mhz = 66;
    748 			break;
    749 
    750 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    751 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    752 			sc->bus_speed_mhz = 50;
    753 			break;
    754 
    755 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    756 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    757 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    758 			sc->bus_speed_mhz = 33;
    759 			break;
    760 		}
    761 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    762 			sc->bus_speed_mhz = 66;
    763 		else
    764 			sc->bus_speed_mhz = 33;
    765 
    766 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    767 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    768 
    769 	/* Reset the controller. */
    770 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    771 		goto bnx_attach_fail;
    772 
    773 	/* Initialize the controller. */
    774 	if (bnx_chipinit(sc)) {
    775 		aprint_error_dev(sc->bnx_dev,
    776 		    "Controller initialization failed!\n");
    777 		goto bnx_attach_fail;
    778 	}
    779 
    780 	/* Perform NVRAM test. */
    781 	if (bnx_nvram_test(sc)) {
    782 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    783 		goto bnx_attach_fail;
    784 	}
    785 
    786 	/* Fetch the permanent Ethernet MAC address. */
    787 	bnx_get_mac_addr(sc);
    788 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    789 	    ether_sprintf(sc->eaddr));
    790 
    791 	/*
    792 	 * Trip points control how many BDs
    793 	 * should be ready before generating an
    794 	 * interrupt while ticks control how long
    795 	 * a BD can sit in the chain before
    796 	 * generating an interrupt.  Set the default
    797 	 * values for the RX and TX rings.
    798 	 */
    799 
    800 #ifdef BNX_DEBUG
    801 	/* Force more frequent interrupts. */
    802 	sc->bnx_tx_quick_cons_trip_int = 1;
    803 	sc->bnx_tx_quick_cons_trip     = 1;
    804 	sc->bnx_tx_ticks_int	       = 0;
    805 	sc->bnx_tx_ticks	       = 0;
    806 
    807 	sc->bnx_rx_quick_cons_trip_int = 1;
    808 	sc->bnx_rx_quick_cons_trip     = 1;
    809 	sc->bnx_rx_ticks_int	       = 0;
    810 	sc->bnx_rx_ticks	       = 0;
    811 #else
    812 	sc->bnx_tx_quick_cons_trip_int = 20;
    813 	sc->bnx_tx_quick_cons_trip     = 20;
    814 	sc->bnx_tx_ticks_int	       = 80;
    815 	sc->bnx_tx_ticks	       = 80;
    816 
    817 	sc->bnx_rx_quick_cons_trip_int = 6;
    818 	sc->bnx_rx_quick_cons_trip     = 6;
    819 	sc->bnx_rx_ticks_int	       = 18;
    820 	sc->bnx_rx_ticks	       = 18;
    821 #endif
    822 
    823 	/* Update statistics once every second. */
    824 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    825 
    826 	/* Find the media type for the adapter. */
    827 	bnx_get_media(sc);
    828 
    829 	/*
    830 	 * Store config data needed by the PHY driver for
    831 	 * backplane applications
    832 	 */
    833 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    834 	    BNX_SHARED_HW_CFG_CONFIG);
    835 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    836 	    BNX_PORT_HW_CFG_CONFIG);
    837 
    838 	/* Allocate DMA memory resources. */
    839 	sc->bnx_dmatag = pa->pa_dmat;
    840 	if (bnx_dma_alloc(sc)) {
    841 		aprint_error_dev(sc->bnx_dev,
    842 		    "DMA resource allocation failed!\n");
    843 		goto bnx_attach_fail;
    844 	}
    845 
    846 	/* Initialize the ifnet interface. */
    847 	ifp = &sc->bnx_ec.ec_if;
    848 	ifp->if_softc = sc;
    849 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    850 	ifp->if_ioctl = bnx_ioctl;
    851 	ifp->if_stop = bnx_stop;
    852 	ifp->if_start = bnx_start;
    853 	ifp->if_init = bnx_init;
    854 	ifp->if_watchdog = bnx_watchdog;
    855 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    856 	IFQ_SET_READY(&ifp->if_snd);
    857 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    858 
    859 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    860 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    861 	sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    862 
    863 	ifp->if_capabilities |=
    864 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    865 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    866 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    867 
    868 	/* create workqueue to handle packet allocations */
    869 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    870 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    871 		aprint_error_dev(self, "failed to create workqueue\n");
    872 		goto bnx_attach_fail;
    873 	}
    874 
    875 	mii->mii_ifp = ifp;
    876 	mii->mii_readreg = bnx_miibus_read_reg;
    877 	mii->mii_writereg = bnx_miibus_write_reg;
    878 	mii->mii_statchg = bnx_miibus_statchg;
    879 
    880 	/* Handle any special PHY initialization for SerDes PHYs. */
    881 	bnx_init_media(sc);
    882 
    883 	sc->bnx_ec.ec_mii = mii;
    884 	ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
    885 
    886 	/* set phyflags and chipid before mii_attach() */
    887 	dict = device_properties(self);
    888 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    889 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    890 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    891 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    892 
    893 	/* Print some useful adapter info */
    894 	bnx_print_adapter_info(sc);
    895 
    896 	mii_flags |= MIIF_DOPAUSE;
    897 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    898 		mii_flags |= MIIF_HAVEFIBER;
    899 	mii_attach(self, mii, 0xffffffff,
    900 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    901 
    902 	if (LIST_EMPTY(&mii->mii_phys)) {
    903 		aprint_error_dev(self, "no PHY found!\n");
    904 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    905 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    906 	} else
    907 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    908 
    909 	/* Attach to the Ethernet interface list. */
    910 	if_attach(ifp);
    911 	if_deferred_start_init(ifp, NULL);
    912 	ether_ifattach(ifp, sc->eaddr);
    913 
    914 	callout_init(&sc->bnx_timeout, 0);
    915 	callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
    916 
    917 	/* Hookup IRQ last. */
    918 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    919 	    sc, device_xname(self));
    920 	if (sc->bnx_intrhand == NULL) {
    921 		aprint_error_dev(self, "couldn't establish interrupt");
    922 		if (intrstr != NULL)
    923 			aprint_error(" at %s", intrstr);
    924 		aprint_error("\n");
    925 		goto bnx_attach_fail;
    926 	}
    927 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    928 
    929 	if (pmf_device_register(self, NULL, NULL))
    930 		pmf_class_network_register(self, ifp);
    931 	else
    932 		aprint_error_dev(self, "couldn't establish power handler\n");
    933 
    934 	/* Print some important debugging info. */
    935 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    936 
    937 	/* Get the firmware running so ASF still works. */
    938 	bnx_mgmt_init(sc);
    939 
    940 	goto bnx_attach_exit;
    941 
    942 bnx_attach_fail:
    943 	bnx_release_resources(sc);
    944 
    945 bnx_attach_exit:
    946 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    947 }
    948 
    949 /****************************************************************************/
    950 /* Device detach function.                                                  */
    951 /*                                                                          */
    952 /* Stops the controller, resets the controller, and releases resources.     */
    953 /*                                                                          */
    954 /* Returns:                                                                 */
    955 /*   0 on success, positive value on failure.                               */
    956 /****************************************************************************/
    957 int
    958 bnx_detach(device_t dev, int flags)
    959 {
    960 	int s;
    961 	struct bnx_softc *sc;
    962 	struct ifnet *ifp;
    963 
    964 	sc = device_private(dev);
    965 	ifp = &sc->bnx_ec.ec_if;
    966 
    967 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    968 
    969 	/* Stop and reset the controller. */
    970 	s = splnet();
    971 	bnx_stop(ifp, 1);
    972 	splx(s);
    973 
    974 	pmf_device_deregister(dev);
    975 	callout_destroy(&sc->bnx_timeout);
    976 	ether_ifdetach(ifp);
    977 	workqueue_destroy(sc->bnx_wq);
    978 
    979 	if_detach(ifp);
    980 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    981 
    982 	/* Delete all remaining media. */
    983 	ifmedia_fini(&sc->bnx_mii.mii_media);
    984 
    985 	/* Release all remaining resources. */
    986 	bnx_release_resources(sc);
    987 
    988 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    989 
    990 	return 0;
    991 }
    992 
    993 /****************************************************************************/
    994 /* Indirect register read.                                                  */
    995 /*                                                                          */
    996 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    997 /* configuration space.  Using this mechanism avoids issues with posted     */
    998 /* reads but is much slower than memory-mapped I/O.                         */
    999 /*                                                                          */
   1000 /* Returns:                                                                 */
   1001 /*   The value of the register.                                             */
   1002 /****************************************************************************/
   1003 uint32_t
   1004 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
   1005 {
   1006 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1007 
   1008 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1009 	    offset);
   1010 #ifdef BNX_DEBUG
   1011 	{
   1012 		uint32_t val;
   1013 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1014 		    BNX_PCICFG_REG_WINDOW);
   1015 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
   1016 		    "val = 0x%08X\n", __func__, offset, val);
   1017 		return val;
   1018 	}
   1019 #else
   1020 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
   1021 #endif
   1022 }
   1023 
   1024 /****************************************************************************/
   1025 /* Indirect register write.                                                 */
   1026 /*                                                                          */
   1027 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
   1028 /* configuration space.  Using this mechanism avoids issues with posted     */
   1029 /* writes but is muchh slower than memory-mapped I/O.                       */
   1030 /*                                                                          */
   1031 /* Returns:                                                                 */
   1032 /*   Nothing.                                                               */
   1033 /****************************************************************************/
   1034 void
   1035 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
   1036 {
   1037 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1038 
   1039 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
   1040 		__func__, offset, val);
   1041 
   1042 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1043 	    offset);
   1044 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
   1045 }
   1046 
   1047 /****************************************************************************/
   1048 /* Context memory write.                                                    */
   1049 /*                                                                          */
   1050 /* The NetXtreme II controller uses context memory to track connection      */
   1051 /* information for L2 and higher network protocols.                         */
   1052 /*                                                                          */
   1053 /* Returns:                                                                 */
   1054 /*   Nothing.                                                               */
   1055 /****************************************************************************/
   1056 void
   1057 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
   1058     uint32_t ctx_val)
   1059 {
   1060 	uint32_t idx, offset = ctx_offset + cid_addr;
   1061 	uint32_t val, retry_cnt = 5;
   1062 
   1063 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1064 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
   1065 		REG_WR(sc, BNX_CTX_CTX_CTRL,
   1066 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
   1067 
   1068 		for (idx = 0; idx < retry_cnt; idx++) {
   1069 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1070 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1071 				break;
   1072 			DELAY(5);
   1073 		}
   1074 
   1075 #if 0
   1076 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1077 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1078 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1079 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1080 #endif
   1081 
   1082 	} else {
   1083 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1084 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1085 	}
   1086 }
   1087 
   1088 /****************************************************************************/
   1089 /* PHY register read.                                                       */
   1090 /*                                                                          */
   1091 /* Implements register reads on the MII bus.                                */
   1092 /*                                                                          */
   1093 /* Returns:                                                                 */
   1094 /*   The value of the register.                                             */
   1095 /****************************************************************************/
   1096 int
   1097 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1098 {
   1099 	struct bnx_softc	*sc = device_private(dev);
   1100 	uint32_t		data;
   1101 	int			i, rv = 0;
   1102 
   1103 	/*
   1104 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1105 	 * with special mappings to work with IEEE
   1106 	 * Clause 22 register accesses.
   1107 	 */
   1108 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1109 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1110 			reg += 0x10;
   1111 	}
   1112 
   1113 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1114 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1115 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1116 
   1117 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1118 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1119 
   1120 		DELAY(40);
   1121 	}
   1122 
   1123 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1124 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1125 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1126 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1127 
   1128 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1129 		DELAY(10);
   1130 
   1131 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1132 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1133 			DELAY(5);
   1134 
   1135 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1136 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1137 
   1138 			break;
   1139 		}
   1140 	}
   1141 
   1142 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1143 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1144 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1145 		rv = ETIMEDOUT;
   1146 	} else {
   1147 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1148 		*val = data & 0xffff;
   1149 
   1150 		DBPRINT(sc, BNX_EXCESSIVE,
   1151 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1152 		    phy, (uint16_t) reg & 0xffff, *val);
   1153 	}
   1154 
   1155 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1156 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1157 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1158 
   1159 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1160 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1161 
   1162 		DELAY(40);
   1163 	}
   1164 
   1165 	return rv;
   1166 }
   1167 
   1168 /****************************************************************************/
   1169 /* PHY register write.                                                      */
   1170 /*                                                                          */
   1171 /* Implements register writes on the MII bus.                               */
   1172 /*                                                                          */
   1173 /* Returns:                                                                 */
   1174 /*   The value of the register.                                             */
   1175 /****************************************************************************/
   1176 int
   1177 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1178 {
   1179 	struct bnx_softc	*sc = device_private(dev);
   1180 	uint32_t		val1;
   1181 	int			i, rv = 0;
   1182 
   1183 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1184 	    "val = 0x%04hX\n", __func__,
   1185 	    phy, (uint16_t) reg & 0xffff, val);
   1186 
   1187 	/*
   1188 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1189 	 * with special mappings to work with IEEE
   1190 	 * Clause 22 register accesses.
   1191 	 */
   1192 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1193 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1194 			reg += 0x10;
   1195 	}
   1196 
   1197 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1198 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1199 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1200 
   1201 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1202 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1203 
   1204 		DELAY(40);
   1205 	}
   1206 
   1207 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1208 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1209 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1210 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1211 
   1212 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1213 		DELAY(10);
   1214 
   1215 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1216 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1217 			DELAY(5);
   1218 			break;
   1219 		}
   1220 	}
   1221 
   1222 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1223 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1224 		    __LINE__);
   1225 		rv = ETIMEDOUT;
   1226 	}
   1227 
   1228 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1229 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1230 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1231 
   1232 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1233 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1234 
   1235 		DELAY(40);
   1236 	}
   1237 
   1238 	return rv;
   1239 }
   1240 
   1241 /****************************************************************************/
   1242 /* MII bus status change.                                                   */
   1243 /*                                                                          */
   1244 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1245 /* MAC interface registers.                                                 */
   1246 /*                                                                          */
   1247 /* Returns:                                                                 */
   1248 /*   Nothing.                                                               */
   1249 /****************************************************************************/
   1250 void
   1251 bnx_miibus_statchg(struct ifnet *ifp)
   1252 {
   1253 	struct bnx_softc	*sc = ifp->if_softc;
   1254 	struct mii_data		*mii = &sc->bnx_mii;
   1255 	uint32_t		rx_mode = sc->rx_mode;
   1256 	int			val;
   1257 
   1258 	val = REG_RD(sc, BNX_EMAC_MODE);
   1259 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1260 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1261 	    BNX_EMAC_MODE_25G);
   1262 
   1263 	/*
   1264 	 * Get flow control negotiation result.
   1265 	 */
   1266 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1267 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1268 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1269 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1270 	}
   1271 
   1272 	/* Set MII or GMII interface based on the speed
   1273 	 * negotiated by the PHY.
   1274 	 */
   1275 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1276 	case IFM_10_T:
   1277 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1278 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1279 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1280 			break;
   1281 		}
   1282 		/* FALLTHROUGH */
   1283 	case IFM_100_TX:
   1284 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1285 		val |= BNX_EMAC_MODE_PORT_MII;
   1286 		break;
   1287 	case IFM_2500_SX:
   1288 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1289 		val |= BNX_EMAC_MODE_25G;
   1290 		/* FALLTHROUGH */
   1291 	case IFM_1000_T:
   1292 	case IFM_1000_SX:
   1293 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1294 		val |= BNX_EMAC_MODE_PORT_GMII;
   1295 		break;
   1296 	default:
   1297 		val |= BNX_EMAC_MODE_PORT_GMII;
   1298 		break;
   1299 	}
   1300 
   1301 	/* Set half or full duplex based on the duplicity
   1302 	 * negotiated by the PHY.
   1303 	 */
   1304 	if ((mii->mii_media_active & IFM_HDX) != 0) {
   1305 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1306 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1307 	} else
   1308 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1309 
   1310 	REG_WR(sc, BNX_EMAC_MODE, val);
   1311 
   1312 	/*
   1313 	 * 802.3x flow control
   1314 	 */
   1315 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1316 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1317 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1318 	} else {
   1319 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1320 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1321 	}
   1322 
   1323 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1324 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1325 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1326 	} else {
   1327 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1328 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1329 	}
   1330 
   1331 	/* Only make changes if the receive mode has actually changed. */
   1332 	if (rx_mode != sc->rx_mode) {
   1333 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1334 		    rx_mode);
   1335 
   1336 		sc->rx_mode = rx_mode;
   1337 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1338 
   1339 		bnx_init_rx_context(sc);
   1340 	}
   1341 }
   1342 
   1343 /****************************************************************************/
   1344 /* Acquire NVRAM lock.                                                      */
   1345 /*                                                                          */
   1346 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1347 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1348 /* for use by the driver.                                                   */
   1349 /*                                                                          */
   1350 /* Returns:                                                                 */
   1351 /*   0 on success, positive value on failure.                               */
   1352 /****************************************************************************/
   1353 int
   1354 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1355 {
   1356 	uint32_t		val;
   1357 	int			j;
   1358 
   1359 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1360 
   1361 	/* Request access to the flash interface. */
   1362 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1363 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1364 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1365 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1366 			break;
   1367 
   1368 		DELAY(5);
   1369 	}
   1370 
   1371 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1372 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1373 		return EBUSY;
   1374 	}
   1375 
   1376 	return 0;
   1377 }
   1378 
   1379 /****************************************************************************/
   1380 /* Release NVRAM lock.                                                      */
   1381 /*                                                                          */
   1382 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1383 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1384 /* for use by the driver.                                                   */
   1385 /*                                                                          */
   1386 /* Returns:                                                                 */
   1387 /*   0 on success, positive value on failure.                               */
   1388 /****************************************************************************/
   1389 int
   1390 bnx_release_nvram_lock(struct bnx_softc *sc)
   1391 {
   1392 	int			j;
   1393 	uint32_t		val;
   1394 
   1395 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1396 
   1397 	/* Relinquish nvram interface. */
   1398 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1399 
   1400 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1401 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1402 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1403 			break;
   1404 
   1405 		DELAY(5);
   1406 	}
   1407 
   1408 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1409 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1410 		return EBUSY;
   1411 	}
   1412 
   1413 	return 0;
   1414 }
   1415 
   1416 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1417 /****************************************************************************/
   1418 /* Enable NVRAM write access.                                               */
   1419 /*                                                                          */
   1420 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1421 /*                                                                          */
   1422 /* Returns:                                                                 */
   1423 /*   0 on success, positive value on failure.                               */
   1424 /****************************************************************************/
   1425 int
   1426 bnx_enable_nvram_write(struct bnx_softc *sc)
   1427 {
   1428 	uint32_t		val;
   1429 
   1430 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1431 
   1432 	val = REG_RD(sc, BNX_MISC_CFG);
   1433 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1434 
   1435 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1436 		int j;
   1437 
   1438 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1439 		REG_WR(sc, BNX_NVM_COMMAND,
   1440 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1441 
   1442 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1443 			DELAY(5);
   1444 
   1445 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1446 			if (val & BNX_NVM_COMMAND_DONE)
   1447 				break;
   1448 		}
   1449 
   1450 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1451 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1452 			return EBUSY;
   1453 		}
   1454 	}
   1455 
   1456 	return 0;
   1457 }
   1458 
   1459 /****************************************************************************/
   1460 /* Disable NVRAM write access.                                              */
   1461 /*                                                                          */
   1462 /* When the caller is finished writing to NVRAM write access must be        */
   1463 /* disabled.                                                                */
   1464 /*                                                                          */
   1465 /* Returns:                                                                 */
   1466 /*   Nothing.                                                               */
   1467 /****************************************************************************/
   1468 void
   1469 bnx_disable_nvram_write(struct bnx_softc *sc)
   1470 {
   1471 	uint32_t		val;
   1472 
   1473 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1474 
   1475 	val = REG_RD(sc, BNX_MISC_CFG);
   1476 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1477 }
   1478 #endif
   1479 
   1480 /****************************************************************************/
   1481 /* Enable NVRAM access.                                                     */
   1482 /*                                                                          */
   1483 /* Before accessing NVRAM for read or write operations the caller must      */
   1484 /* enabled NVRAM access.                                                    */
   1485 /*                                                                          */
   1486 /* Returns:                                                                 */
   1487 /*   Nothing.                                                               */
   1488 /****************************************************************************/
   1489 void
   1490 bnx_enable_nvram_access(struct bnx_softc *sc)
   1491 {
   1492 	uint32_t		val;
   1493 
   1494 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1495 
   1496 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1497 	/* Enable both bits, even on read. */
   1498 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1499 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1500 }
   1501 
   1502 /****************************************************************************/
   1503 /* Disable NVRAM access.                                                    */
   1504 /*                                                                          */
   1505 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1506 /*                                                                          */
   1507 /* Returns:                                                                 */
   1508 /*   Nothing.                                                               */
   1509 /****************************************************************************/
   1510 void
   1511 bnx_disable_nvram_access(struct bnx_softc *sc)
   1512 {
   1513 	uint32_t		val;
   1514 
   1515 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1516 
   1517 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1518 
   1519 	/* Disable both bits, even after read. */
   1520 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1521 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1522 }
   1523 
   1524 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1525 /****************************************************************************/
   1526 /* Erase NVRAM page before writing.                                         */
   1527 /*                                                                          */
   1528 /* Non-buffered flash parts require that a page be erased before it is      */
   1529 /* written.                                                                 */
   1530 /*                                                                          */
   1531 /* Returns:                                                                 */
   1532 /*   0 on success, positive value on failure.                               */
   1533 /****************************************************************************/
   1534 int
   1535 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1536 {
   1537 	uint32_t		cmd;
   1538 	int			j;
   1539 
   1540 	/* Buffered flash doesn't require an erase. */
   1541 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1542 		return 0;
   1543 
   1544 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1545 
   1546 	/* Build an erase command. */
   1547 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1548 	    BNX_NVM_COMMAND_DOIT;
   1549 
   1550 	/*
   1551 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1552 	 * and issue the erase command.
   1553 	 */
   1554 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1555 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1556 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1557 
   1558 	/* Wait for completion. */
   1559 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1560 		uint32_t val;
   1561 
   1562 		DELAY(5);
   1563 
   1564 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1565 		if (val & BNX_NVM_COMMAND_DONE)
   1566 			break;
   1567 	}
   1568 
   1569 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1570 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1571 		return EBUSY;
   1572 	}
   1573 
   1574 	return 0;
   1575 }
   1576 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1577 
   1578 /****************************************************************************/
   1579 /* Read a dword (32 bits) from NVRAM.                                       */
   1580 /*                                                                          */
   1581 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1582 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1583 /*                                                                          */
   1584 /* Returns:                                                                 */
   1585 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1586 /****************************************************************************/
   1587 int
   1588 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1589     uint8_t *ret_val, uint32_t cmd_flags)
   1590 {
   1591 	uint32_t		cmd;
   1592 	int			i, rc = 0;
   1593 
   1594 	/* Build the command word. */
   1595 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1596 
   1597 	/* Calculate the offset for buffered flash if translation is used. */
   1598 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1599 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1600 		    sc->bnx_flash_info->page_bits) +
   1601 		    (offset % sc->bnx_flash_info->page_size);
   1602 	}
   1603 
   1604 	/*
   1605 	 * Clear the DONE bit separately, set the address to read,
   1606 	 * and issue the read.
   1607 	 */
   1608 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1609 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1610 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1611 
   1612 	/* Wait for completion. */
   1613 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1614 		uint32_t val;
   1615 
   1616 		DELAY(5);
   1617 
   1618 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1619 		if (val & BNX_NVM_COMMAND_DONE) {
   1620 			val = REG_RD(sc, BNX_NVM_READ);
   1621 
   1622 			val = be32toh(val);
   1623 			memcpy(ret_val, &val, 4);
   1624 			break;
   1625 		}
   1626 	}
   1627 
   1628 	/* Check for errors. */
   1629 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1630 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1631 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1632 		rc = EBUSY;
   1633 	}
   1634 
   1635 	return rc;
   1636 }
   1637 
   1638 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1639 /****************************************************************************/
   1640 /* Write a dword (32 bits) to NVRAM.                                        */
   1641 /*                                                                          */
   1642 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1643 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1644 /* enabled NVRAM write access.                                              */
   1645 /*                                                                          */
   1646 /* Returns:                                                                 */
   1647 /*   0 on success, positive value on failure.                               */
   1648 /****************************************************************************/
   1649 int
   1650 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1651     uint32_t cmd_flags)
   1652 {
   1653 	uint32_t		cmd, val32;
   1654 	int			j;
   1655 
   1656 	/* Build the command word. */
   1657 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1658 
   1659 	/* Calculate the offset for buffered flash if translation is used. */
   1660 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1661 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1662 		    sc->bnx_flash_info->page_bits) +
   1663 		    (offset % sc->bnx_flash_info->page_size);
   1664 	}
   1665 
   1666 	/*
   1667 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1668 	 * set the NVRAM address to write, and issue the write command
   1669 	 */
   1670 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1671 	memcpy(&val32, val, 4);
   1672 	val32 = htobe32(val32);
   1673 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1674 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1675 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1676 
   1677 	/* Wait for completion. */
   1678 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1679 		DELAY(5);
   1680 
   1681 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1682 			break;
   1683 	}
   1684 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1685 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1686 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1687 		return EBUSY;
   1688 	}
   1689 
   1690 	return 0;
   1691 }
   1692 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1693 
   1694 /****************************************************************************/
   1695 /* Initialize NVRAM access.                                                 */
   1696 /*                                                                          */
   1697 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1698 /* access that device.                                                      */
   1699 /*                                                                          */
   1700 /* Returns:                                                                 */
   1701 /*   0 on success, positive value on failure.                               */
   1702 /****************************************************************************/
   1703 int
   1704 bnx_init_nvram(struct bnx_softc *sc)
   1705 {
   1706 	uint32_t		val;
   1707 	int			j, entry_count, rc = 0;
   1708 	struct flash_spec	*flash;
   1709 
   1710 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1711 
   1712 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1713 		sc->bnx_flash_info = &flash_5709;
   1714 		goto bnx_init_nvram_get_flash_size;
   1715 	}
   1716 
   1717 	/* Determine the selected interface. */
   1718 	val = REG_RD(sc, BNX_NVM_CFG1);
   1719 
   1720 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1721 
   1722 	/*
   1723 	 * Flash reconfiguration is required to support additional
   1724 	 * NVRAM devices not directly supported in hardware.
   1725 	 * Check if the flash interface was reconfigured
   1726 	 * by the bootcode.
   1727 	 */
   1728 
   1729 	if (val & 0x40000000) {
   1730 		/* Flash interface reconfigured by bootcode. */
   1731 
   1732 		DBPRINT(sc, BNX_INFO_LOAD,
   1733 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1734 
   1735 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1736 		     j++, flash++) {
   1737 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1738 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1739 				sc->bnx_flash_info = flash;
   1740 				break;
   1741 			}
   1742 		}
   1743 	} else {
   1744 		/* Flash interface not yet reconfigured. */
   1745 		uint32_t mask;
   1746 
   1747 		DBPRINT(sc, BNX_INFO_LOAD,
   1748 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1749 
   1750 		if (val & (1 << 23))
   1751 			mask = FLASH_BACKUP_STRAP_MASK;
   1752 		else
   1753 			mask = FLASH_STRAP_MASK;
   1754 
   1755 		/* Look for the matching NVRAM device configuration data. */
   1756 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1757 		    j++, flash++) {
   1758 			/* Check if the dev matches any of the known devices. */
   1759 			if ((val & mask) == (flash->strapping & mask)) {
   1760 				/* Found a device match. */
   1761 				sc->bnx_flash_info = flash;
   1762 
   1763 				/* Request access to the flash interface. */
   1764 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1765 					return rc;
   1766 
   1767 				/* Reconfigure the flash interface. */
   1768 				bnx_enable_nvram_access(sc);
   1769 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1770 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1771 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1772 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1773 				bnx_disable_nvram_access(sc);
   1774 				bnx_release_nvram_lock(sc);
   1775 
   1776 				break;
   1777 			}
   1778 		}
   1779 	}
   1780 
   1781 	/* Check if a matching device was found. */
   1782 	if (j == entry_count) {
   1783 		sc->bnx_flash_info = NULL;
   1784 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1785 			__FILE__, __LINE__);
   1786 		rc = ENODEV;
   1787 	}
   1788 
   1789 bnx_init_nvram_get_flash_size:
   1790 	/* Write the flash config data to the shared memory interface. */
   1791 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1792 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1793 	if (val)
   1794 		sc->bnx_flash_size = val;
   1795 	else
   1796 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1797 
   1798 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1799 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1800 
   1801 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1802 
   1803 	return rc;
   1804 }
   1805 
   1806 /****************************************************************************/
   1807 /* Read an arbitrary range of data from NVRAM.                              */
   1808 /*                                                                          */
   1809 /* Prepares the NVRAM interface for access and reads the requested data     */
   1810 /* into the supplied buffer.                                                */
   1811 /*                                                                          */
   1812 /* Returns:                                                                 */
   1813 /*   0 on success and the data read, positive value on failure.             */
   1814 /****************************************************************************/
   1815 int
   1816 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1817     int buf_size)
   1818 {
   1819 	int			rc = 0;
   1820 	uint32_t		cmd_flags, offset32, len32, extra;
   1821 
   1822 	if (buf_size == 0)
   1823 		return 0;
   1824 
   1825 	/* Request access to the flash interface. */
   1826 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1827 		return rc;
   1828 
   1829 	/* Enable access to flash interface */
   1830 	bnx_enable_nvram_access(sc);
   1831 
   1832 	len32 = buf_size;
   1833 	offset32 = offset;
   1834 	extra = 0;
   1835 
   1836 	cmd_flags = 0;
   1837 
   1838 	if (offset32 & 3) {
   1839 		uint8_t buf[4];
   1840 		uint32_t pre_len;
   1841 
   1842 		offset32 &= ~3;
   1843 		pre_len = 4 - (offset & 3);
   1844 
   1845 		if (pre_len >= len32) {
   1846 			pre_len = len32;
   1847 			cmd_flags =
   1848 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1849 		} else
   1850 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1851 
   1852 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1853 
   1854 		if (rc)
   1855 			return rc;
   1856 
   1857 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1858 
   1859 		offset32 += 4;
   1860 		ret_buf += pre_len;
   1861 		len32 -= pre_len;
   1862 	}
   1863 
   1864 	if (len32 & 3) {
   1865 		extra = 4 - (len32 & 3);
   1866 		len32 = (len32 + 4) & ~3;
   1867 	}
   1868 
   1869 	if (len32 == 4) {
   1870 		uint8_t buf[4];
   1871 
   1872 		if (cmd_flags)
   1873 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1874 		else
   1875 			cmd_flags =
   1876 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1877 
   1878 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1879 
   1880 		memcpy(ret_buf, buf, 4 - extra);
   1881 	} else if (len32 > 0) {
   1882 		uint8_t buf[4];
   1883 
   1884 		/* Read the first word. */
   1885 		if (cmd_flags)
   1886 			cmd_flags = 0;
   1887 		else
   1888 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1889 
   1890 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1891 
   1892 		/* Advance to the next dword. */
   1893 		offset32 += 4;
   1894 		ret_buf += 4;
   1895 		len32 -= 4;
   1896 
   1897 		while (len32 > 4 && rc == 0) {
   1898 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1899 
   1900 			/* Advance to the next dword. */
   1901 			offset32 += 4;
   1902 			ret_buf += 4;
   1903 			len32 -= 4;
   1904 		}
   1905 
   1906 		if (rc)
   1907 			return rc;
   1908 
   1909 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1910 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1911 
   1912 		memcpy(ret_buf, buf, 4 - extra);
   1913 	}
   1914 
   1915 	/* Disable access to flash interface and release the lock. */
   1916 	bnx_disable_nvram_access(sc);
   1917 	bnx_release_nvram_lock(sc);
   1918 
   1919 	return rc;
   1920 }
   1921 
   1922 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1923 /****************************************************************************/
   1924 /* Write an arbitrary range of data from NVRAM.                             */
   1925 /*                                                                          */
   1926 /* Prepares the NVRAM interface for write access and writes the requested   */
   1927 /* data from the supplied buffer.  The caller is responsible for            */
   1928 /* calculating any appropriate CRCs.                                        */
   1929 /*                                                                          */
   1930 /* Returns:                                                                 */
   1931 /*   0 on success, positive value on failure.                               */
   1932 /****************************************************************************/
   1933 int
   1934 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1935     int buf_size)
   1936 {
   1937 	uint32_t		written, offset32, len32;
   1938 	uint8_t		*buf, start[4], end[4];
   1939 	int			rc = 0;
   1940 	int			align_start, align_end;
   1941 
   1942 	buf = data_buf;
   1943 	offset32 = offset;
   1944 	len32 = buf_size;
   1945 	align_start = align_end = 0;
   1946 
   1947 	if ((align_start = (offset32 & 3))) {
   1948 		offset32 &= ~3;
   1949 		len32 += align_start;
   1950 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1951 			return rc;
   1952 	}
   1953 
   1954 	if (len32 & 3) {
   1955 		if ((len32 > 4) || !align_start) {
   1956 			align_end = 4 - (len32 & 3);
   1957 			len32 += align_end;
   1958 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1959 			    end, 4)))
   1960 				return rc;
   1961 		}
   1962 	}
   1963 
   1964 	if (align_start || align_end) {
   1965 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1966 		if (buf == NULL)
   1967 			return ENOMEM;
   1968 
   1969 		if (align_start)
   1970 			memcpy(buf, start, 4);
   1971 
   1972 		if (align_end)
   1973 			memcpy(buf + len32 - 4, end, 4);
   1974 
   1975 		memcpy(buf + align_start, data_buf, buf_size);
   1976 	}
   1977 
   1978 	written = 0;
   1979 	while ((written < len32) && (rc == 0)) {
   1980 		uint32_t page_start, page_end, data_start, data_end;
   1981 		uint32_t addr, cmd_flags;
   1982 		int i;
   1983 		uint8_t flash_buffer[264];
   1984 
   1985 	    /* Find the page_start addr */
   1986 		page_start = offset32 + written;
   1987 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1988 		/* Find the page_end addr */
   1989 		page_end = page_start + sc->bnx_flash_info->page_size;
   1990 		/* Find the data_start addr */
   1991 		data_start = (written == 0) ? offset32 : page_start;
   1992 		/* Find the data_end addr */
   1993 		data_end = (page_end > offset32 + len32) ?
   1994 		    (offset32 + len32) : page_end;
   1995 
   1996 		/* Request access to the flash interface. */
   1997 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1998 			goto nvram_write_end;
   1999 
   2000 		/* Enable access to flash interface */
   2001 		bnx_enable_nvram_access(sc);
   2002 
   2003 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   2004 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2005 			int j;
   2006 
   2007 			/* Read the whole page into the buffer
   2008 			 * (non-buffer flash only) */
   2009 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   2010 				if (j == (sc->bnx_flash_info->page_size - 4))
   2011 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   2012 
   2013 				rc = bnx_nvram_read_dword(sc,
   2014 					page_start + j,
   2015 					&flash_buffer[j],
   2016 					cmd_flags);
   2017 
   2018 				if (rc)
   2019 					goto nvram_write_end;
   2020 
   2021 				cmd_flags = 0;
   2022 			}
   2023 		}
   2024 
   2025 		/* Enable writes to flash interface (unlock write-protect) */
   2026 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   2027 			goto nvram_write_end;
   2028 
   2029 		/* Erase the page */
   2030 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   2031 			goto nvram_write_end;
   2032 
   2033 		/* Re-enable the write again for the actual write */
   2034 		bnx_enable_nvram_write(sc);
   2035 
   2036 		/* Loop to write back the buffer data from page_start to
   2037 		 * data_start */
   2038 		i = 0;
   2039 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2040 			for (addr = page_start; addr < data_start;
   2041 				addr += 4, i += 4) {
   2042 
   2043 				rc = bnx_nvram_write_dword(sc, addr,
   2044 				    &flash_buffer[i], cmd_flags);
   2045 
   2046 				if (rc != 0)
   2047 					goto nvram_write_end;
   2048 
   2049 				cmd_flags = 0;
   2050 			}
   2051 		}
   2052 
   2053 		/* Loop to write the new data from data_start to data_end */
   2054 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   2055 			if ((addr == page_end - 4) ||
   2056 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   2057 			    && (addr == data_end - 4))) {
   2058 
   2059 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   2060 			}
   2061 
   2062 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2063 
   2064 			if (rc != 0)
   2065 				goto nvram_write_end;
   2066 
   2067 			cmd_flags = 0;
   2068 			buf += 4;
   2069 		}
   2070 
   2071 		/* Loop to write back the buffer data from data_end
   2072 		 * to page_end */
   2073 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2074 			for (addr = data_end; addr < page_end;
   2075 			    addr += 4, i += 4) {
   2076 
   2077 				if (addr == page_end-4)
   2078 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2079 
   2080 				rc = bnx_nvram_write_dword(sc, addr,
   2081 				    &flash_buffer[i], cmd_flags);
   2082 
   2083 				if (rc != 0)
   2084 					goto nvram_write_end;
   2085 
   2086 				cmd_flags = 0;
   2087 			}
   2088 		}
   2089 
   2090 		/* Disable writes to flash interface (lock write-protect) */
   2091 		bnx_disable_nvram_write(sc);
   2092 
   2093 		/* Disable access to flash interface */
   2094 		bnx_disable_nvram_access(sc);
   2095 		bnx_release_nvram_lock(sc);
   2096 
   2097 		/* Increment written */
   2098 		written += data_end - data_start;
   2099 	}
   2100 
   2101 nvram_write_end:
   2102 	if (align_start || align_end)
   2103 		free(buf, M_DEVBUF);
   2104 
   2105 	return rc;
   2106 }
   2107 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2108 
   2109 /****************************************************************************/
   2110 /* Verifies that NVRAM is accessible and contains valid data.               */
   2111 /*                                                                          */
   2112 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2113 /* correct.                                                                 */
   2114 /*                                                                          */
   2115 /* Returns:                                                                 */
   2116 /*   0 on success, positive value on failure.                               */
   2117 /****************************************************************************/
   2118 int
   2119 bnx_nvram_test(struct bnx_softc *sc)
   2120 {
   2121 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2122 	uint8_t		*data = (uint8_t *) buf;
   2123 	int			rc = 0;
   2124 	uint32_t		magic, csum;
   2125 
   2126 	/*
   2127 	 * Check that the device NVRAM is valid by reading
   2128 	 * the magic value at offset 0.
   2129 	 */
   2130 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2131 		goto bnx_nvram_test_done;
   2132 
   2133 	magic = be32toh(buf[0]);
   2134 	if (magic != BNX_NVRAM_MAGIC) {
   2135 		rc = ENODEV;
   2136 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2137 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2138 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2139 		goto bnx_nvram_test_done;
   2140 	}
   2141 
   2142 	/*
   2143 	 * Verify that the device NVRAM includes valid
   2144 	 * configuration data.
   2145 	 */
   2146 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2147 		goto bnx_nvram_test_done;
   2148 
   2149 	csum = ether_crc32_le(data, 0x100);
   2150 	if (csum != BNX_CRC32_RESIDUAL) {
   2151 		rc = ENODEV;
   2152 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2153 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2154 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2155 		goto bnx_nvram_test_done;
   2156 	}
   2157 
   2158 	csum = ether_crc32_le(data + 0x100, 0x100);
   2159 	if (csum != BNX_CRC32_RESIDUAL) {
   2160 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2161 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2162 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2163 		rc = ENODEV;
   2164 	}
   2165 
   2166 bnx_nvram_test_done:
   2167 	return rc;
   2168 }
   2169 
   2170 /****************************************************************************/
   2171 /* Identifies the current media type of the controller and sets the PHY     */
   2172 /* address.                                                                 */
   2173 /*                                                                          */
   2174 /* Returns:                                                                 */
   2175 /*   Nothing.                                                               */
   2176 /****************************************************************************/
   2177 void
   2178 bnx_get_media(struct bnx_softc *sc)
   2179 {
   2180 	sc->bnx_phy_addr = 1;
   2181 
   2182 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2183 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2184 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2185 		uint32_t strap;
   2186 
   2187 		/*
   2188 		 * The BCM5709S is software configurable
   2189 		 * for Copper or SerDes operation.
   2190 		 */
   2191 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2192 			DBPRINT(sc, BNX_INFO_LOAD,
   2193 			    "5709 bonded for copper.\n");
   2194 			goto bnx_get_media_exit;
   2195 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2196 			DBPRINT(sc, BNX_INFO_LOAD,
   2197 			    "5709 bonded for dual media.\n");
   2198 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2199 			goto bnx_get_media_exit;
   2200 		}
   2201 
   2202 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2203 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2204 		else {
   2205 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2206 			    >> 8;
   2207 		}
   2208 
   2209 		if (sc->bnx_pa.pa_function == 0) {
   2210 			switch (strap) {
   2211 			case 0x4:
   2212 			case 0x5:
   2213 			case 0x6:
   2214 				DBPRINT(sc, BNX_INFO_LOAD,
   2215 					"BCM5709 s/w configured for SerDes.\n");
   2216 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2217 				break;
   2218 			default:
   2219 				DBPRINT(sc, BNX_INFO_LOAD,
   2220 					"BCM5709 s/w configured for Copper.\n");
   2221 			}
   2222 		} else {
   2223 			switch (strap) {
   2224 			case 0x1:
   2225 			case 0x2:
   2226 			case 0x4:
   2227 				DBPRINT(sc, BNX_INFO_LOAD,
   2228 					"BCM5709 s/w configured for SerDes.\n");
   2229 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2230 				break;
   2231 			default:
   2232 				DBPRINT(sc, BNX_INFO_LOAD,
   2233 					"BCM5709 s/w configured for Copper.\n");
   2234 			}
   2235 		}
   2236 
   2237 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2238 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2239 
   2240 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2241 		uint32_t val;
   2242 
   2243 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2244 
   2245 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2246 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2247 
   2248 		/*
   2249 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2250 		 * separate PHY for SerDes.
   2251 		 */
   2252 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2253 			sc->bnx_phy_addr = 2;
   2254 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2255 				 BNX_SHARED_HW_CFG_CONFIG);
   2256 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2257 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2258 				DBPRINT(sc, BNX_INFO_LOAD,
   2259 				    "Found 2.5Gb capable adapter\n");
   2260 			}
   2261 		}
   2262 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2263 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2264 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2265 
   2266 bnx_get_media_exit:
   2267 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2268 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2269 }
   2270 
   2271 /****************************************************************************/
   2272 /* Performs PHY initialization required before MII drivers access the       */
   2273 /* device.                                                                  */
   2274 /*                                                                          */
   2275 /* Returns:                                                                 */
   2276 /*   Nothing.                                                               */
   2277 /****************************************************************************/
   2278 void
   2279 bnx_init_media(struct bnx_softc *sc)
   2280 {
   2281 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2282 		/*
   2283 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2284 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2285 		 * the PHY to the mii(4) layer. PHY specific configuration
   2286 		 * is done by the mii(4) layer.
   2287 		 */
   2288 
   2289 		/* Select auto-negotiation MMD of the PHY. */
   2290 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2291 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2292 
   2293 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2294 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2295 
   2296 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2297 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2298 	}
   2299 }
   2300 
   2301 /****************************************************************************/
   2302 /* Free any DMA memory owned by the driver.                                 */
   2303 /*                                                                          */
   2304 /* Scans through each data structre that requires DMA memory and frees      */
   2305 /* the memory if allocated.                                                 */
   2306 /*                                                                          */
   2307 /* Returns:                                                                 */
   2308 /*   Nothing.                                                               */
   2309 /****************************************************************************/
   2310 void
   2311 bnx_dma_free(struct bnx_softc *sc)
   2312 {
   2313 	int			i;
   2314 
   2315 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2316 
   2317 	/* Destroy the status block. */
   2318 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2319 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2320 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2321 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2322 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2323 		    BNX_STATUS_BLK_SZ);
   2324 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2325 		    sc->status_rseg);
   2326 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2327 		sc->status_block = NULL;
   2328 		sc->status_map = NULL;
   2329 	}
   2330 
   2331 	/* Destroy the statistics block. */
   2332 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2333 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2334 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2335 		    BNX_STATS_BLK_SZ);
   2336 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2337 		    sc->stats_rseg);
   2338 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2339 		sc->stats_block = NULL;
   2340 		sc->stats_map = NULL;
   2341 	}
   2342 
   2343 	/* Free, unmap and destroy all context memory pages. */
   2344 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2345 		for (i = 0; i < sc->ctx_pages; i++) {
   2346 			if (sc->ctx_block[i] != NULL) {
   2347 				bus_dmamap_unload(sc->bnx_dmatag,
   2348 				    sc->ctx_map[i]);
   2349 				bus_dmamem_unmap(sc->bnx_dmatag,
   2350 				    (void *)sc->ctx_block[i],
   2351 				    BCM_PAGE_SIZE);
   2352 				bus_dmamem_free(sc->bnx_dmatag,
   2353 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2354 				bus_dmamap_destroy(sc->bnx_dmatag,
   2355 				    sc->ctx_map[i]);
   2356 				sc->ctx_block[i] = NULL;
   2357 			}
   2358 		}
   2359 	}
   2360 
   2361 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2362 	for (i = 0; i < TX_PAGES; i++ ) {
   2363 		if (sc->tx_bd_chain[i] != NULL &&
   2364 		    sc->tx_bd_chain_map[i] != NULL) {
   2365 			bus_dmamap_unload(sc->bnx_dmatag,
   2366 			    sc->tx_bd_chain_map[i]);
   2367 			bus_dmamem_unmap(sc->bnx_dmatag,
   2368 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2369 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2370 			    sc->tx_bd_chain_rseg[i]);
   2371 			bus_dmamap_destroy(sc->bnx_dmatag,
   2372 			    sc->tx_bd_chain_map[i]);
   2373 			sc->tx_bd_chain[i] = NULL;
   2374 			sc->tx_bd_chain_map[i] = NULL;
   2375 		}
   2376 	}
   2377 
   2378 	/* Destroy the TX dmamaps. */
   2379 	/* This isn't necessary since we dont allocate them up front */
   2380 
   2381 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2382 	for (i = 0; i < RX_PAGES; i++ ) {
   2383 		if (sc->rx_bd_chain[i] != NULL &&
   2384 		    sc->rx_bd_chain_map[i] != NULL) {
   2385 			bus_dmamap_unload(sc->bnx_dmatag,
   2386 			    sc->rx_bd_chain_map[i]);
   2387 			bus_dmamem_unmap(sc->bnx_dmatag,
   2388 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2389 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2390 			    sc->rx_bd_chain_rseg[i]);
   2391 
   2392 			bus_dmamap_destroy(sc->bnx_dmatag,
   2393 			    sc->rx_bd_chain_map[i]);
   2394 			sc->rx_bd_chain[i] = NULL;
   2395 			sc->rx_bd_chain_map[i] = NULL;
   2396 		}
   2397 	}
   2398 
   2399 	/* Unload and destroy the RX mbuf maps. */
   2400 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2401 		if (sc->rx_mbuf_map[i] != NULL) {
   2402 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2403 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2404 		}
   2405 	}
   2406 
   2407 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2408 }
   2409 
   2410 /****************************************************************************/
   2411 /* Allocate any DMA memory needed by the driver.                            */
   2412 /*                                                                          */
   2413 /* Allocates DMA memory needed for the various global structures needed by  */
   2414 /* hardware.                                                                */
   2415 /*                                                                          */
   2416 /* Returns:                                                                 */
   2417 /*   0 for success, positive value for failure.                             */
   2418 /****************************************************************************/
   2419 int
   2420 bnx_dma_alloc(struct bnx_softc *sc)
   2421 {
   2422 	int			i, rc = 0;
   2423 
   2424 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2425 
   2426 	/*
   2427 	 * Allocate DMA memory for the status block, map the memory into DMA
   2428 	 * space, and fetch the physical address of the block.
   2429 	 */
   2430 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2431 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2432 		aprint_error_dev(sc->bnx_dev,
   2433 		    "Could not create status block DMA map!\n");
   2434 		rc = ENOMEM;
   2435 		goto bnx_dma_alloc_exit;
   2436 	}
   2437 
   2438 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2439 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2440 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2441 		aprint_error_dev(sc->bnx_dev,
   2442 		    "Could not allocate status block DMA memory!\n");
   2443 		rc = ENOMEM;
   2444 		goto bnx_dma_alloc_exit;
   2445 	}
   2446 
   2447 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2448 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2449 		aprint_error_dev(sc->bnx_dev,
   2450 		    "Could not map status block DMA memory!\n");
   2451 		rc = ENOMEM;
   2452 		goto bnx_dma_alloc_exit;
   2453 	}
   2454 
   2455 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2456 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2457 		aprint_error_dev(sc->bnx_dev,
   2458 		    "Could not load status block DMA memory!\n");
   2459 		rc = ENOMEM;
   2460 		goto bnx_dma_alloc_exit;
   2461 	}
   2462 
   2463 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2464 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2465 
   2466 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2467 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2468 
   2469 	/* DRC - Fix for 64 bit addresses. */
   2470 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2471 		(uint32_t) sc->status_block_paddr);
   2472 
   2473 	/* BCM5709 uses host memory as cache for context memory. */
   2474 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2475 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2476 		if (sc->ctx_pages == 0)
   2477 			sc->ctx_pages = 1;
   2478 		if (sc->ctx_pages > 4) /* XXX */
   2479 			sc->ctx_pages = 4;
   2480 
   2481 		DBRUNIF((sc->ctx_pages > 512),
   2482 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2483 				__FILE__, __LINE__, sc->ctx_pages));
   2484 
   2485 
   2486 		for (i = 0; i < sc->ctx_pages; i++) {
   2487 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2488 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2489 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2490 			    &sc->ctx_map[i]) != 0) {
   2491 				rc = ENOMEM;
   2492 				goto bnx_dma_alloc_exit;
   2493 			}
   2494 
   2495 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2496 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2497 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2498 				rc = ENOMEM;
   2499 				goto bnx_dma_alloc_exit;
   2500 			}
   2501 
   2502 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2503 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2504 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2505 				rc = ENOMEM;
   2506 				goto bnx_dma_alloc_exit;
   2507 			}
   2508 
   2509 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2510 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2511 			    BUS_DMA_NOWAIT) != 0) {
   2512 				rc = ENOMEM;
   2513 				goto bnx_dma_alloc_exit;
   2514 			}
   2515 
   2516 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2517 		}
   2518 	}
   2519 
   2520 	/*
   2521 	 * Allocate DMA memory for the statistics block, map the memory into
   2522 	 * DMA space, and fetch the physical address of the block.
   2523 	 */
   2524 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2525 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2526 		aprint_error_dev(sc->bnx_dev,
   2527 		    "Could not create stats block DMA map!\n");
   2528 		rc = ENOMEM;
   2529 		goto bnx_dma_alloc_exit;
   2530 	}
   2531 
   2532 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2533 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2534 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2535 		aprint_error_dev(sc->bnx_dev,
   2536 		    "Could not allocate stats block DMA memory!\n");
   2537 		rc = ENOMEM;
   2538 		goto bnx_dma_alloc_exit;
   2539 	}
   2540 
   2541 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2542 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2543 		aprint_error_dev(sc->bnx_dev,
   2544 		    "Could not map stats block DMA memory!\n");
   2545 		rc = ENOMEM;
   2546 		goto bnx_dma_alloc_exit;
   2547 	}
   2548 
   2549 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2550 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2551 		aprint_error_dev(sc->bnx_dev,
   2552 		    "Could not load status block DMA memory!\n");
   2553 		rc = ENOMEM;
   2554 		goto bnx_dma_alloc_exit;
   2555 	}
   2556 
   2557 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2558 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2559 
   2560 	/* DRC - Fix for 64 bit address. */
   2561 	DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2562 	    (uint32_t) sc->stats_block_paddr);
   2563 
   2564 	/*
   2565 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2566 	 * and fetch the physical address of the block.
   2567 	 */
   2568 	for (i = 0; i < TX_PAGES; i++) {
   2569 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2570 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2571 		    &sc->tx_bd_chain_map[i])) {
   2572 			aprint_error_dev(sc->bnx_dev,
   2573 			    "Could not create Tx desc %d DMA map!\n", i);
   2574 			rc = ENOMEM;
   2575 			goto bnx_dma_alloc_exit;
   2576 		}
   2577 
   2578 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2579 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2580 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2581 			aprint_error_dev(sc->bnx_dev,
   2582 			    "Could not allocate TX desc %d DMA memory!\n",
   2583 			    i);
   2584 			rc = ENOMEM;
   2585 			goto bnx_dma_alloc_exit;
   2586 		}
   2587 
   2588 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2589 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2590 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2591 			aprint_error_dev(sc->bnx_dev,
   2592 			    "Could not map TX desc %d DMA memory!\n", i);
   2593 			rc = ENOMEM;
   2594 			goto bnx_dma_alloc_exit;
   2595 		}
   2596 
   2597 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2598 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2599 		    BUS_DMA_NOWAIT)) {
   2600 			aprint_error_dev(sc->bnx_dev,
   2601 			    "Could not load TX desc %d DMA memory!\n", i);
   2602 			rc = ENOMEM;
   2603 			goto bnx_dma_alloc_exit;
   2604 		}
   2605 
   2606 		sc->tx_bd_chain_paddr[i] =
   2607 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2608 
   2609 		/* DRC - Fix for 64 bit systems. */
   2610 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2611 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2612 	}
   2613 
   2614 	/*
   2615 	 * Create lists to hold TX mbufs.
   2616 	 */
   2617 	TAILQ_INIT(&sc->tx_free_pkts);
   2618 	TAILQ_INIT(&sc->tx_used_pkts);
   2619 	sc->tx_pkt_count = 0;
   2620 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2621 
   2622 	/*
   2623 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2624 	 * and fetch the physical address of the block.
   2625 	 */
   2626 	for (i = 0; i < RX_PAGES; i++) {
   2627 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2628 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2629 		    &sc->rx_bd_chain_map[i])) {
   2630 			aprint_error_dev(sc->bnx_dev,
   2631 			    "Could not create Rx desc %d DMA map!\n", i);
   2632 			rc = ENOMEM;
   2633 			goto bnx_dma_alloc_exit;
   2634 		}
   2635 
   2636 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2637 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2638 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2639 			aprint_error_dev(sc->bnx_dev,
   2640 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2641 			rc = ENOMEM;
   2642 			goto bnx_dma_alloc_exit;
   2643 		}
   2644 
   2645 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2646 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2647 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2648 			aprint_error_dev(sc->bnx_dev,
   2649 			    "Could not map Rx desc %d DMA memory!\n", i);
   2650 			rc = ENOMEM;
   2651 			goto bnx_dma_alloc_exit;
   2652 		}
   2653 
   2654 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2655 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2656 		    BUS_DMA_NOWAIT)) {
   2657 			aprint_error_dev(sc->bnx_dev,
   2658 			    "Could not load Rx desc %d DMA memory!\n", i);
   2659 			rc = ENOMEM;
   2660 			goto bnx_dma_alloc_exit;
   2661 		}
   2662 
   2663 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2664 		sc->rx_bd_chain_paddr[i] =
   2665 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2666 
   2667 		/* DRC - Fix for 64 bit systems. */
   2668 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2669 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2670 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2671 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2672 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2673 	}
   2674 
   2675 	/*
   2676 	 * Create DMA maps for the Rx buffer mbufs.
   2677 	 */
   2678 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2679 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2680 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2681 		    &sc->rx_mbuf_map[i])) {
   2682 			aprint_error_dev(sc->bnx_dev,
   2683 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2684 			rc = ENOMEM;
   2685 			goto bnx_dma_alloc_exit;
   2686 		}
   2687 	}
   2688 
   2689  bnx_dma_alloc_exit:
   2690 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2691 
   2692 	return rc;
   2693 }
   2694 
   2695 /****************************************************************************/
   2696 /* Release all resources used by the driver.                                */
   2697 /*                                                                          */
   2698 /* Releases all resources acquired by the driver including interrupts,      */
   2699 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2700 /*                                                                          */
   2701 /* Returns:                                                                 */
   2702 /*   Nothing.                                                               */
   2703 /****************************************************************************/
   2704 void
   2705 bnx_release_resources(struct bnx_softc *sc)
   2706 {
   2707 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2708 
   2709 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2710 
   2711 	bnx_dma_free(sc);
   2712 
   2713 	if (sc->bnx_intrhand != NULL)
   2714 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2715 
   2716 	if (sc->bnx_size)
   2717 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2718 
   2719 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2720 }
   2721 
   2722 /****************************************************************************/
   2723 /* Firmware synchronization.                                                */
   2724 /*                                                                          */
   2725 /* Before performing certain events such as a chip reset, synchronize with  */
   2726 /* the firmware first.                                                      */
   2727 /*                                                                          */
   2728 /* Returns:                                                                 */
   2729 /*   0 for success, positive value for failure.                             */
   2730 /****************************************************************************/
   2731 int
   2732 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2733 {
   2734 	int			i, rc = 0;
   2735 	uint32_t		val;
   2736 
   2737 	/* Don't waste any time if we've timed out before. */
   2738 	if (sc->bnx_fw_timed_out) {
   2739 		rc = EBUSY;
   2740 		goto bnx_fw_sync_exit;
   2741 	}
   2742 
   2743 	/* Increment the message sequence number. */
   2744 	sc->bnx_fw_wr_seq++;
   2745 	msg_data |= sc->bnx_fw_wr_seq;
   2746 
   2747 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2748 	    msg_data);
   2749 
   2750 	/* Send the message to the bootcode driver mailbox. */
   2751 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2752 
   2753 	/* Wait for the bootcode to acknowledge the message. */
   2754 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2755 		/* Check for a response in the bootcode firmware mailbox. */
   2756 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2757 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2758 			break;
   2759 		DELAY(1000);
   2760 	}
   2761 
   2762 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2763 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2764 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2765 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2766 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2767 
   2768 		msg_data &= ~BNX_DRV_MSG_CODE;
   2769 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2770 
   2771 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2772 
   2773 		sc->bnx_fw_timed_out = 1;
   2774 		rc = EBUSY;
   2775 	}
   2776 
   2777 bnx_fw_sync_exit:
   2778 	return rc;
   2779 }
   2780 
   2781 /****************************************************************************/
   2782 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2783 /*                                                                          */
   2784 /* Returns:                                                                 */
   2785 /*   Nothing.                                                               */
   2786 /****************************************************************************/
   2787 void
   2788 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2789     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2790 {
   2791 	int			i;
   2792 	uint32_t		val;
   2793 
   2794 	/* Set the page size used by RV2P. */
   2795 	if (rv2p_proc == RV2P_PROC2) {
   2796 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2797 		    USABLE_RX_BD_PER_PAGE);
   2798 	}
   2799 
   2800 	for (i = 0; i < rv2p_code_len; i += 8) {
   2801 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2802 		rv2p_code++;
   2803 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2804 		rv2p_code++;
   2805 
   2806 		if (rv2p_proc == RV2P_PROC1) {
   2807 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2808 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2809 		} else {
   2810 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2811 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2812 		}
   2813 	}
   2814 
   2815 	/* Reset the processor, un-stall is done later. */
   2816 	if (rv2p_proc == RV2P_PROC1)
   2817 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2818 	else
   2819 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2820 }
   2821 
   2822 /****************************************************************************/
   2823 /* Load RISC processor firmware.                                            */
   2824 /*                                                                          */
   2825 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2826 /* associated with a particular processor.                                  */
   2827 /*                                                                          */
   2828 /* Returns:                                                                 */
   2829 /*   Nothing.                                                               */
   2830 /****************************************************************************/
   2831 void
   2832 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2833     struct fw_info *fw)
   2834 {
   2835 	uint32_t		offset;
   2836 	uint32_t		val;
   2837 
   2838 	/* Halt the CPU. */
   2839 	val = REG_RD_IND(sc, cpu_reg->mode);
   2840 	val |= cpu_reg->mode_value_halt;
   2841 	REG_WR_IND(sc, cpu_reg->mode, val);
   2842 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2843 
   2844 	/* Load the Text area. */
   2845 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2846 	if (fw->text) {
   2847 		int j;
   2848 
   2849 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2850 			REG_WR_IND(sc, offset, fw->text[j]);
   2851 	}
   2852 
   2853 	/* Load the Data area. */
   2854 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2855 	if (fw->data) {
   2856 		int j;
   2857 
   2858 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2859 			REG_WR_IND(sc, offset, fw->data[j]);
   2860 	}
   2861 
   2862 	/* Load the SBSS area. */
   2863 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2864 	if (fw->sbss) {
   2865 		int j;
   2866 
   2867 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2868 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2869 	}
   2870 
   2871 	/* Load the BSS area. */
   2872 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2873 	if (fw->bss) {
   2874 		int j;
   2875 
   2876 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2877 			REG_WR_IND(sc, offset, fw->bss[j]);
   2878 	}
   2879 
   2880 	/* Load the Read-Only area. */
   2881 	offset = cpu_reg->spad_base +
   2882 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2883 	if (fw->rodata) {
   2884 		int j;
   2885 
   2886 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2887 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2888 	}
   2889 
   2890 	/* Clear the pre-fetch instruction. */
   2891 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2892 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2893 
   2894 	/* Start the CPU. */
   2895 	val = REG_RD_IND(sc, cpu_reg->mode);
   2896 	val &= ~cpu_reg->mode_value_halt;
   2897 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2898 	REG_WR_IND(sc, cpu_reg->mode, val);
   2899 }
   2900 
   2901 /****************************************************************************/
   2902 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2903 /*                                                                          */
   2904 /* Loads the firmware for each CPU and starts the CPU.                      */
   2905 /*                                                                          */
   2906 /* Returns:                                                                 */
   2907 /*   Nothing.                                                               */
   2908 /****************************************************************************/
   2909 void
   2910 bnx_init_cpus(struct bnx_softc *sc)
   2911 {
   2912 	struct cpu_reg cpu_reg;
   2913 	struct fw_info fw;
   2914 
   2915 	switch (BNX_CHIP_NUM(sc)) {
   2916 	case BNX_CHIP_NUM_5709:
   2917 		/* Initialize the RV2P processor. */
   2918 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2919 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2920 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2921 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2922 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2923 		} else {
   2924 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2925 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2926 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2927 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2928 		}
   2929 
   2930 		/* Initialize the RX Processor. */
   2931 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2932 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2933 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2934 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2935 		cpu_reg.state_value_clear = 0xffffff;
   2936 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2937 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2938 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2939 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2940 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2941 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2942 		cpu_reg.mips_view_base = 0x8000000;
   2943 
   2944 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2945 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2946 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2947 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2948 
   2949 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2950 		fw.text_len = bnx_RXP_b09FwTextLen;
   2951 		fw.text_index = 0;
   2952 		fw.text = bnx_RXP_b09FwText;
   2953 
   2954 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2955 		fw.data_len = bnx_RXP_b09FwDataLen;
   2956 		fw.data_index = 0;
   2957 		fw.data = bnx_RXP_b09FwData;
   2958 
   2959 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2960 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2961 		fw.sbss_index = 0;
   2962 		fw.sbss = bnx_RXP_b09FwSbss;
   2963 
   2964 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2965 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2966 		fw.bss_index = 0;
   2967 		fw.bss = bnx_RXP_b09FwBss;
   2968 
   2969 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2970 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2971 		fw.rodata_index = 0;
   2972 		fw.rodata = bnx_RXP_b09FwRodata;
   2973 
   2974 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2975 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2976 
   2977 		/* Initialize the TX Processor. */
   2978 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2979 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2980 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2981 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2982 		cpu_reg.state_value_clear = 0xffffff;
   2983 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2984 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2985 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2986 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2987 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2988 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2989 		cpu_reg.mips_view_base = 0x8000000;
   2990 
   2991 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2992 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2993 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2994 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2995 
   2996 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2997 		fw.text_len = bnx_TXP_b09FwTextLen;
   2998 		fw.text_index = 0;
   2999 		fw.text = bnx_TXP_b09FwText;
   3000 
   3001 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   3002 		fw.data_len = bnx_TXP_b09FwDataLen;
   3003 		fw.data_index = 0;
   3004 		fw.data = bnx_TXP_b09FwData;
   3005 
   3006 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   3007 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   3008 		fw.sbss_index = 0;
   3009 		fw.sbss = bnx_TXP_b09FwSbss;
   3010 
   3011 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   3012 		fw.bss_len = bnx_TXP_b09FwBssLen;
   3013 		fw.bss_index = 0;
   3014 		fw.bss = bnx_TXP_b09FwBss;
   3015 
   3016 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   3017 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   3018 		fw.rodata_index = 0;
   3019 		fw.rodata = bnx_TXP_b09FwRodata;
   3020 
   3021 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3022 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3023 
   3024 		/* Initialize the TX Patch-up Processor. */
   3025 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3026 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3027 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3028 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3029 		cpu_reg.state_value_clear = 0xffffff;
   3030 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3031 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3032 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3033 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3034 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3035 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3036 		cpu_reg.mips_view_base = 0x8000000;
   3037 
   3038 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   3039 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   3040 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   3041 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   3042 
   3043 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   3044 		fw.text_len = bnx_TPAT_b09FwTextLen;
   3045 		fw.text_index = 0;
   3046 		fw.text = bnx_TPAT_b09FwText;
   3047 
   3048 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   3049 		fw.data_len = bnx_TPAT_b09FwDataLen;
   3050 		fw.data_index = 0;
   3051 		fw.data = bnx_TPAT_b09FwData;
   3052 
   3053 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   3054 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   3055 		fw.sbss_index = 0;
   3056 		fw.sbss = bnx_TPAT_b09FwSbss;
   3057 
   3058 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   3059 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   3060 		fw.bss_index = 0;
   3061 		fw.bss = bnx_TPAT_b09FwBss;
   3062 
   3063 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3064 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3065 		fw.rodata_index = 0;
   3066 		fw.rodata = bnx_TPAT_b09FwRodata;
   3067 
   3068 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3069 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3070 
   3071 		/* Initialize the Completion Processor. */
   3072 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3073 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3074 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3075 		cpu_reg.state = BNX_COM_CPU_STATE;
   3076 		cpu_reg.state_value_clear = 0xffffff;
   3077 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3078 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3079 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3080 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3081 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3082 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3083 		cpu_reg.mips_view_base = 0x8000000;
   3084 
   3085 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3086 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3087 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3088 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3089 
   3090 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3091 		fw.text_len = bnx_COM_b09FwTextLen;
   3092 		fw.text_index = 0;
   3093 		fw.text = bnx_COM_b09FwText;
   3094 
   3095 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3096 		fw.data_len = bnx_COM_b09FwDataLen;
   3097 		fw.data_index = 0;
   3098 		fw.data = bnx_COM_b09FwData;
   3099 
   3100 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3101 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3102 		fw.sbss_index = 0;
   3103 		fw.sbss = bnx_COM_b09FwSbss;
   3104 
   3105 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3106 		fw.bss_len = bnx_COM_b09FwBssLen;
   3107 		fw.bss_index = 0;
   3108 		fw.bss = bnx_COM_b09FwBss;
   3109 
   3110 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3111 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3112 		fw.rodata_index = 0;
   3113 		fw.rodata = bnx_COM_b09FwRodata;
   3114 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3115 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3116 		break;
   3117 	default:
   3118 		/* Initialize the RV2P processor. */
   3119 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3120 		    RV2P_PROC1);
   3121 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3122 		    RV2P_PROC2);
   3123 
   3124 		/* Initialize the RX Processor. */
   3125 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3126 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3127 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3128 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3129 		cpu_reg.state_value_clear = 0xffffff;
   3130 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3131 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3132 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3133 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3134 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3135 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3136 		cpu_reg.mips_view_base = 0x8000000;
   3137 
   3138 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3139 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3140 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3141 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3142 
   3143 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3144 		fw.text_len = bnx_RXP_b06FwTextLen;
   3145 		fw.text_index = 0;
   3146 		fw.text = bnx_RXP_b06FwText;
   3147 
   3148 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3149 		fw.data_len = bnx_RXP_b06FwDataLen;
   3150 		fw.data_index = 0;
   3151 		fw.data = bnx_RXP_b06FwData;
   3152 
   3153 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3154 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3155 		fw.sbss_index = 0;
   3156 		fw.sbss = bnx_RXP_b06FwSbss;
   3157 
   3158 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3159 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3160 		fw.bss_index = 0;
   3161 		fw.bss = bnx_RXP_b06FwBss;
   3162 
   3163 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3164 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3165 		fw.rodata_index = 0;
   3166 		fw.rodata = bnx_RXP_b06FwRodata;
   3167 
   3168 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3169 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3170 
   3171 		/* Initialize the TX Processor. */
   3172 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3173 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3174 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3175 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3176 		cpu_reg.state_value_clear = 0xffffff;
   3177 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3178 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3179 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3180 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3181 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3182 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3183 		cpu_reg.mips_view_base = 0x8000000;
   3184 
   3185 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3186 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3187 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3188 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3189 
   3190 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3191 		fw.text_len = bnx_TXP_b06FwTextLen;
   3192 		fw.text_index = 0;
   3193 		fw.text = bnx_TXP_b06FwText;
   3194 
   3195 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3196 		fw.data_len = bnx_TXP_b06FwDataLen;
   3197 		fw.data_index = 0;
   3198 		fw.data = bnx_TXP_b06FwData;
   3199 
   3200 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3201 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3202 		fw.sbss_index = 0;
   3203 		fw.sbss = bnx_TXP_b06FwSbss;
   3204 
   3205 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3206 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3207 		fw.bss_index = 0;
   3208 		fw.bss = bnx_TXP_b06FwBss;
   3209 
   3210 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3211 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3212 		fw.rodata_index = 0;
   3213 		fw.rodata = bnx_TXP_b06FwRodata;
   3214 
   3215 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3216 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3217 
   3218 		/* Initialize the TX Patch-up Processor. */
   3219 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3220 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3221 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3222 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3223 		cpu_reg.state_value_clear = 0xffffff;
   3224 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3225 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3226 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3227 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3228 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3229 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3230 		cpu_reg.mips_view_base = 0x8000000;
   3231 
   3232 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3233 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3234 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3235 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3236 
   3237 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3238 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3239 		fw.text_index = 0;
   3240 		fw.text = bnx_TPAT_b06FwText;
   3241 
   3242 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3243 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3244 		fw.data_index = 0;
   3245 		fw.data = bnx_TPAT_b06FwData;
   3246 
   3247 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3248 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3249 		fw.sbss_index = 0;
   3250 		fw.sbss = bnx_TPAT_b06FwSbss;
   3251 
   3252 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3253 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3254 		fw.bss_index = 0;
   3255 		fw.bss = bnx_TPAT_b06FwBss;
   3256 
   3257 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3258 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3259 		fw.rodata_index = 0;
   3260 		fw.rodata = bnx_TPAT_b06FwRodata;
   3261 
   3262 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3263 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3264 
   3265 		/* Initialize the Completion Processor. */
   3266 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3267 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3268 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3269 		cpu_reg.state = BNX_COM_CPU_STATE;
   3270 		cpu_reg.state_value_clear = 0xffffff;
   3271 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3272 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3273 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3274 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3275 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3276 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3277 		cpu_reg.mips_view_base = 0x8000000;
   3278 
   3279 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3280 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3281 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3282 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3283 
   3284 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3285 		fw.text_len = bnx_COM_b06FwTextLen;
   3286 		fw.text_index = 0;
   3287 		fw.text = bnx_COM_b06FwText;
   3288 
   3289 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3290 		fw.data_len = bnx_COM_b06FwDataLen;
   3291 		fw.data_index = 0;
   3292 		fw.data = bnx_COM_b06FwData;
   3293 
   3294 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3295 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3296 		fw.sbss_index = 0;
   3297 		fw.sbss = bnx_COM_b06FwSbss;
   3298 
   3299 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3300 		fw.bss_len = bnx_COM_b06FwBssLen;
   3301 		fw.bss_index = 0;
   3302 		fw.bss = bnx_COM_b06FwBss;
   3303 
   3304 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3305 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3306 		fw.rodata_index = 0;
   3307 		fw.rodata = bnx_COM_b06FwRodata;
   3308 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3309 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3310 		break;
   3311 	}
   3312 }
   3313 
   3314 /****************************************************************************/
   3315 /* Initialize context memory.                                               */
   3316 /*                                                                          */
   3317 /* Clears the memory associated with each Context ID (CID).                 */
   3318 /*                                                                          */
   3319 /* Returns:                                                                 */
   3320 /*   Nothing.                                                               */
   3321 /****************************************************************************/
   3322 void
   3323 bnx_init_context(struct bnx_softc *sc)
   3324 {
   3325 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3326 		/* DRC: Replace this constant value with a #define. */
   3327 		int i, retry_cnt = 10;
   3328 		uint32_t val;
   3329 
   3330 		/*
   3331 		 * BCM5709 context memory may be cached
   3332 		 * in host memory so prepare the host memory
   3333 		 * for access.
   3334 		 */
   3335 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3336 		    | (1 << 12);
   3337 		val |= (BCM_PAGE_BITS - 8) << 16;
   3338 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3339 
   3340 		/* Wait for mem init command to complete. */
   3341 		for (i = 0; i < retry_cnt; i++) {
   3342 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3343 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3344 				break;
   3345 			DELAY(2);
   3346 		}
   3347 
   3348 		/* ToDo: Consider returning an error here. */
   3349 
   3350 		for (i = 0; i < sc->ctx_pages; i++) {
   3351 			int j;
   3352 
   3353 			/* Set the physaddr of the context memory cache. */
   3354 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3355 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3356 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3357 			val = (uint32_t)
   3358 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3359 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3360 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3361 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3362 
   3363 			/* Verify that the context memory write was successful. */
   3364 			for (j = 0; j < retry_cnt; j++) {
   3365 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3366 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3367 					break;
   3368 				DELAY(5);
   3369 			}
   3370 
   3371 			/* ToDo: Consider returning an error here. */
   3372 		}
   3373 	} else {
   3374 		uint32_t vcid_addr, offset;
   3375 
   3376 		/*
   3377 		 * For the 5706/5708, context memory is local to the
   3378 		 * controller, so initialize the controller context memory.
   3379 		 */
   3380 
   3381 		vcid_addr = GET_CID_ADDR(96);
   3382 		while (vcid_addr) {
   3383 
   3384 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3385 
   3386 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3387 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3388 
   3389 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3390 			     offset += 4)
   3391 				CTX_WR(sc, 0x00, offset, 0);
   3392 
   3393 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3394 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3395 		}
   3396 	}
   3397 }
   3398 
   3399 /****************************************************************************/
   3400 /* Fetch the permanent MAC address of the controller.                       */
   3401 /*                                                                          */
   3402 /* Returns:                                                                 */
   3403 /*   Nothing.                                                               */
   3404 /****************************************************************************/
   3405 void
   3406 bnx_get_mac_addr(struct bnx_softc *sc)
   3407 {
   3408 	uint32_t		mac_lo = 0, mac_hi = 0;
   3409 
   3410 	/*
   3411 	 * The NetXtreme II bootcode populates various NIC
   3412 	 * power-on and runtime configuration items in a
   3413 	 * shared memory area.  The factory configured MAC
   3414 	 * address is available from both NVRAM and the
   3415 	 * shared memory area so we'll read the value from
   3416 	 * shared memory for speed.
   3417 	 */
   3418 
   3419 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3420 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3421 
   3422 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3423 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3424 		    __FILE__, __LINE__);
   3425 	} else {
   3426 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3427 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3428 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3429 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3430 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3431 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3432 	}
   3433 
   3434 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3435 	    "%s\n", ether_sprintf(sc->eaddr));
   3436 }
   3437 
   3438 /****************************************************************************/
   3439 /* Program the MAC address.                                                 */
   3440 /*                                                                          */
   3441 /* Returns:                                                                 */
   3442 /*   Nothing.                                                               */
   3443 /****************************************************************************/
   3444 void
   3445 bnx_set_mac_addr(struct bnx_softc *sc)
   3446 {
   3447 	uint32_t		val;
   3448 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3449 
   3450 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3451 	    "%s\n", ether_sprintf(sc->eaddr));
   3452 
   3453 	val = (mac_addr[0] << 8) | mac_addr[1];
   3454 
   3455 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3456 
   3457 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3458 		(mac_addr[4] << 8) | mac_addr[5];
   3459 
   3460 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3461 }
   3462 
   3463 /****************************************************************************/
   3464 /* Stop the controller.                                                     */
   3465 /*                                                                          */
   3466 /* Returns:                                                                 */
   3467 /*   Nothing.                                                               */
   3468 /****************************************************************************/
   3469 void
   3470 bnx_stop(struct ifnet *ifp, int disable)
   3471 {
   3472 	struct bnx_softc *sc = ifp->if_softc;
   3473 
   3474 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3475 
   3476 	if (disable) {
   3477 		sc->bnx_detaching = 1;
   3478 		callout_halt(&sc->bnx_timeout, NULL);
   3479 	} else
   3480 		callout_stop(&sc->bnx_timeout);
   3481 
   3482 	mii_down(&sc->bnx_mii);
   3483 
   3484 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3485 
   3486 	/* Disable the transmit/receive blocks. */
   3487 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3488 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3489 	DELAY(20);
   3490 
   3491 	bnx_disable_intr(sc);
   3492 
   3493 	/* Tell firmware that the driver is going away. */
   3494 	if (disable)
   3495 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3496 	else
   3497 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3498 
   3499 	/* Free RX buffers. */
   3500 	bnx_free_rx_chain(sc);
   3501 
   3502 	/* Free TX buffers. */
   3503 	bnx_free_tx_chain(sc);
   3504 
   3505 	ifp->if_timer = 0;
   3506 
   3507 	sc->bnx_link = 0;
   3508 
   3509 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3510 
   3511 	bnx_mgmt_init(sc);
   3512 }
   3513 
   3514 int
   3515 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3516 {
   3517 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3518 	uint32_t		val;
   3519 	int			i, rc = 0;
   3520 
   3521 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3522 
   3523 	/* Wait for pending PCI transactions to complete. */
   3524 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   3525 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
   3526 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3527 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3528 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3529 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3530 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3531 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3532 		DELAY(5);
   3533 	} else {
   3534 		/* Disable DMA */
   3535 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3536 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3537 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3538 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
   3539 
   3540 		for (i = 0; i < 100; i++) {
   3541 			delay(1 * 1000);
   3542 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
   3543 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
   3544 				break;
   3545 		}
   3546 	}
   3547 
   3548 	/* Assume bootcode is running. */
   3549 	sc->bnx_fw_timed_out = 0;
   3550 
   3551 	/* Give the firmware a chance to prepare for the reset. */
   3552 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3553 	if (rc)
   3554 		goto bnx_reset_exit;
   3555 
   3556 	/* Set a firmware reminder that this is a soft reset. */
   3557 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3558 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3559 
   3560 	/* Dummy read to force the chip to complete all current transactions. */
   3561 	val = REG_RD(sc, BNX_MISC_ID);
   3562 
   3563 	/* Chip reset. */
   3564 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3565 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3566 		REG_RD(sc, BNX_MISC_COMMAND);
   3567 		DELAY(5);
   3568 
   3569 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3570 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3571 
   3572 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3573 		    val);
   3574 	} else {
   3575 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3576 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3577 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3578 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3579 
   3580 		/* Allow up to 30us for reset to complete. */
   3581 		for (i = 0; i < 10; i++) {
   3582 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3583 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3584 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3585 				break;
   3586 			}
   3587 			DELAY(10);
   3588 		}
   3589 
   3590 		/* Check that reset completed successfully. */
   3591 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3592 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3593 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3594 			    __FILE__, __LINE__);
   3595 			rc = EBUSY;
   3596 			goto bnx_reset_exit;
   3597 		}
   3598 	}
   3599 
   3600 	/* Make sure byte swapping is properly configured. */
   3601 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3602 	if (val != 0x01020304) {
   3603 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3604 		    __FILE__, __LINE__);
   3605 		rc = ENODEV;
   3606 		goto bnx_reset_exit;
   3607 	}
   3608 
   3609 	/* Just completed a reset, assume that firmware is running again. */
   3610 	sc->bnx_fw_timed_out = 0;
   3611 
   3612 	/* Wait for the firmware to finish its initialization. */
   3613 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3614 	if (rc)
   3615 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3616 		    "initialization!\n", __FILE__, __LINE__);
   3617 
   3618 bnx_reset_exit:
   3619 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3620 
   3621 	return rc;
   3622 }
   3623 
   3624 int
   3625 bnx_chipinit(struct bnx_softc *sc)
   3626 {
   3627 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3628 	uint32_t		val;
   3629 	int			rc = 0;
   3630 
   3631 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3632 
   3633 	/* Make sure the interrupt is not active. */
   3634 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3635 
   3636 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3637 	/* channels and PCI clock compensation delay.                      */
   3638 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3639 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3640 #if BYTE_ORDER == BIG_ENDIAN
   3641 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3642 #endif
   3643 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3644 	    DMA_READ_CHANS << 12 |
   3645 	    DMA_WRITE_CHANS << 16;
   3646 
   3647 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3648 
   3649 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3650 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3651 
   3652 	/*
   3653 	 * This setting resolves a problem observed on certain Intel PCI
   3654 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3655 	 * See errata E9_5706A1_65.
   3656 	 */
   3657 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3658 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3659 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3660 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3661 
   3662 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3663 
   3664 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3665 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3666 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3667 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3668 		    val & ~0x20000);
   3669 	}
   3670 
   3671 	/* Enable the RX_V2P and Context state machines before access. */
   3672 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3673 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3674 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3675 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3676 
   3677 	/* Initialize context mapping and zero out the quick contexts. */
   3678 	bnx_init_context(sc);
   3679 
   3680 	/* Initialize the on-boards CPUs */
   3681 	bnx_init_cpus(sc);
   3682 
   3683 	/* Enable management frames (NC-SI) to flow to the MCP. */
   3684 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3685 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
   3686 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3687 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3688 	}
   3689 
   3690 	/* Prepare NVRAM for access. */
   3691 	if (bnx_init_nvram(sc)) {
   3692 		rc = ENODEV;
   3693 		goto bnx_chipinit_exit;
   3694 	}
   3695 
   3696 	/* Set the kernel bypass block size */
   3697 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3698 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3699 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3700 
   3701 	/* Enable bins used on the 5709. */
   3702 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3703 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3704 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3705 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3706 	}
   3707 
   3708 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3709 
   3710 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3711 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3712 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3713 
   3714 	val = (BCM_PAGE_BITS - 8) << 24;
   3715 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3716 
   3717 	/* Configure page size. */
   3718 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3719 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3720 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3721 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3722 
   3723 #if 0
   3724 	/* Set the perfect match control register to default. */
   3725 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3726 #endif
   3727 
   3728 bnx_chipinit_exit:
   3729 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3730 
   3731 	return rc;
   3732 }
   3733 
   3734 /****************************************************************************/
   3735 /* Initialize the controller in preparation to send/receive traffic.        */
   3736 /*                                                                          */
   3737 /* Returns:                                                                 */
   3738 /*   0 for success, positive value for failure.                             */
   3739 /****************************************************************************/
   3740 int
   3741 bnx_blockinit(struct bnx_softc *sc)
   3742 {
   3743 	uint32_t		reg, val;
   3744 	int			rc = 0;
   3745 
   3746 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3747 
   3748 	/* Load the hardware default MAC address. */
   3749 	bnx_set_mac_addr(sc);
   3750 
   3751 	/* Set the Ethernet backoff seed value */
   3752 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3753 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3754 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3755 
   3756 	sc->last_status_idx = 0;
   3757 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3758 
   3759 	/* Set up link change interrupt generation. */
   3760 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3761 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3762 
   3763 	/* Program the physical address of the status block. */
   3764 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3765 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3766 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3767 
   3768 	/* Program the physical address of the statistics block. */
   3769 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3770 	    (uint32_t)(sc->stats_block_paddr));
   3771 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3772 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3773 
   3774 	/* Program various host coalescing parameters. */
   3775 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3776 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3777 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3778 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3779 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3780 	    sc->bnx_comp_prod_trip);
   3781 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3782 	    sc->bnx_tx_ticks);
   3783 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3784 	    sc->bnx_rx_ticks);
   3785 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3786 	    sc->bnx_com_ticks);
   3787 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3788 	    sc->bnx_cmd_ticks);
   3789 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3790 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3791 	REG_WR(sc, BNX_HC_CONFIG,
   3792 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3793 	    BNX_HC_CONFIG_COLLECT_STATS));
   3794 
   3795 	/* Clear the internal statistics counters. */
   3796 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3797 
   3798 	/* Verify that bootcode is running. */
   3799 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3800 
   3801 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3802 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3803 	    __FILE__, __LINE__); reg = 0);
   3804 
   3805 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3806 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3807 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3808 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3809 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3810 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3811 		rc = ENODEV;
   3812 		goto bnx_blockinit_exit;
   3813 	}
   3814 
   3815 	/* Enable DMA */
   3816 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3817 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3818 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3819 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3820 	}
   3821 
   3822 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3823 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3824 
   3825 	/* Disable management frames (NC-SI) from flowing to the MCP. */
   3826 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3827 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
   3828 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3829 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3830 	}
   3831 
   3832 	/* Enable all remaining blocks in the MAC. */
   3833 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3834 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3835 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3836 	} else
   3837 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3838 
   3839 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3840 	DELAY(20);
   3841 
   3842 bnx_blockinit_exit:
   3843 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3844 
   3845 	return rc;
   3846 }
   3847 
   3848 static int
   3849 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3850     uint16_t *chain_prod, uint32_t *prod_bseq)
   3851 {
   3852 	bus_dmamap_t		map;
   3853 	struct rx_bd		*rxbd;
   3854 	uint32_t		addr;
   3855 	int i;
   3856 #ifdef BNX_DEBUG
   3857 	uint16_t debug_chain_prod =	*chain_prod;
   3858 #endif
   3859 	uint16_t first_chain_prod;
   3860 
   3861 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3862 
   3863 	/* Map the mbuf cluster into device memory. */
   3864 	map = sc->rx_mbuf_map[*chain_prod];
   3865 	first_chain_prod = *chain_prod;
   3866 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3867 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3868 		    __FILE__, __LINE__);
   3869 
   3870 		m_freem(m_new);
   3871 
   3872 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3873 
   3874 		return ENOBUFS;
   3875 	}
   3876 	/* Make sure there is room in the receive chain. */
   3877 	if (map->dm_nsegs > sc->free_rx_bd) {
   3878 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3879 		m_freem(m_new);
   3880 		return EFBIG;
   3881 	}
   3882 #ifdef BNX_DEBUG
   3883 	/* Track the distribution of buffer segments. */
   3884 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3885 #endif
   3886 
   3887 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3888 	    BUS_DMASYNC_PREREAD);
   3889 
   3890 	/* Update some debug statistics counters */
   3891 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3892 	    sc->rx_low_watermark = sc->free_rx_bd);
   3893 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3894 
   3895 	/*
   3896 	 * Setup the rx_bd for the first segment
   3897 	 */
   3898 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3899 
   3900 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3901 	rxbd->rx_bd_haddr_lo = addr;
   3902 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3903 	rxbd->rx_bd_haddr_hi = addr;
   3904 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3905 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3906 	*prod_bseq += map->dm_segs[0].ds_len;
   3907 	bus_dmamap_sync(sc->bnx_dmatag,
   3908 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3909 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3910 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3911 
   3912 	for (i = 1; i < map->dm_nsegs; i++) {
   3913 		*prod = NEXT_RX_BD(*prod);
   3914 		*chain_prod = RX_CHAIN_IDX(*prod);
   3915 
   3916 		rxbd =
   3917 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3918 
   3919 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3920 		rxbd->rx_bd_haddr_lo = addr;
   3921 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3922 		rxbd->rx_bd_haddr_hi = addr;
   3923 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3924 		rxbd->rx_bd_flags = 0;
   3925 		*prod_bseq += map->dm_segs[i].ds_len;
   3926 		bus_dmamap_sync(sc->bnx_dmatag,
   3927 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3928 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3929 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3930 	}
   3931 
   3932 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3933 	bus_dmamap_sync(sc->bnx_dmatag,
   3934 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3935 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3936 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3937 
   3938 	/*
   3939 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3940 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3941 	 * and update our counter.
   3942 	 */
   3943 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3944 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3945 	sc->rx_mbuf_map[*chain_prod] = map;
   3946 	sc->free_rx_bd -= map->dm_nsegs;
   3947 
   3948 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3949 	    map->dm_nsegs));
   3950 	*prod = NEXT_RX_BD(*prod);
   3951 	*chain_prod = RX_CHAIN_IDX(*prod);
   3952 
   3953 	return 0;
   3954 }
   3955 
   3956 /****************************************************************************/
   3957 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3958 /*                                                                          */
   3959 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3960 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3961 /* necessary.                                                               */
   3962 /*                                                                          */
   3963 /* Returns:                                                                 */
   3964 /*   0 for success, positive value for failure.                             */
   3965 /****************************************************************************/
   3966 int
   3967 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3968     uint16_t *chain_prod, uint32_t *prod_bseq)
   3969 {
   3970 	struct mbuf		*m_new = NULL;
   3971 	int			rc = 0;
   3972 	uint16_t min_free_bd;
   3973 
   3974 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3975 	    __func__);
   3976 
   3977 	/* Make sure the inputs are valid. */
   3978 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3979 	    aprint_error_dev(sc->bnx_dev,
   3980 		"RX producer out of range: 0x%04X > 0x%04X\n",
   3981 		*chain_prod, (uint16_t)MAX_RX_BD));
   3982 
   3983 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3984 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3985 	    *prod_bseq);
   3986 
   3987 	/* try to get in as many mbufs as possible */
   3988 	if (sc->mbuf_alloc_size == MCLBYTES)
   3989 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3990 	else
   3991 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3992 	while (sc->free_rx_bd >= min_free_bd) {
   3993 		/* Simulate an mbuf allocation failure. */
   3994 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3995 		    aprint_error_dev(sc->bnx_dev,
   3996 		    "Simulating mbuf allocation failure.\n");
   3997 			sc->mbuf_sim_alloc_failed++;
   3998 			rc = ENOBUFS;
   3999 			goto bnx_get_buf_exit);
   4000 
   4001 		/* This is a new mbuf allocation. */
   4002 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   4003 		if (m_new == NULL) {
   4004 			DBPRINT(sc, BNX_WARN,
   4005 			    "%s(%d): RX mbuf header allocation failed!\n",
   4006 			    __FILE__, __LINE__);
   4007 
   4008 			sc->mbuf_alloc_failed++;
   4009 
   4010 			rc = ENOBUFS;
   4011 			goto bnx_get_buf_exit;
   4012 		}
   4013 
   4014 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   4015 
   4016 		/* Simulate an mbuf cluster allocation failure. */
   4017 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4018 			m_freem(m_new);
   4019 			sc->rx_mbuf_alloc--;
   4020 			sc->mbuf_alloc_failed++;
   4021 			sc->mbuf_sim_alloc_failed++;
   4022 			rc = ENOBUFS;
   4023 			goto bnx_get_buf_exit);
   4024 
   4025 		if (sc->mbuf_alloc_size == MCLBYTES)
   4026 			MCLGET(m_new, M_DONTWAIT);
   4027 		else
   4028 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   4029 			    M_DONTWAIT);
   4030 		if (!(m_new->m_flags & M_EXT)) {
   4031 			DBPRINT(sc, BNX_WARN,
   4032 			    "%s(%d): RX mbuf chain allocation failed!\n",
   4033 			    __FILE__, __LINE__);
   4034 
   4035 			m_freem(m_new);
   4036 
   4037 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4038 			sc->mbuf_alloc_failed++;
   4039 
   4040 			rc = ENOBUFS;
   4041 			goto bnx_get_buf_exit;
   4042 		}
   4043 
   4044 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   4045 		if (rc != 0)
   4046 			goto bnx_get_buf_exit;
   4047 	}
   4048 
   4049 bnx_get_buf_exit:
   4050 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   4051 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   4052 	    *chain_prod, *prod_bseq);
   4053 
   4054 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   4055 	    __func__);
   4056 
   4057 	return rc;
   4058 }
   4059 
   4060 void
   4061 bnx_alloc_pkts(struct work * unused, void * arg)
   4062 {
   4063 	struct bnx_softc *sc = arg;
   4064 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   4065 	struct bnx_pkt *pkt;
   4066 	int i, s;
   4067 
   4068 	for (i = 0; i < 4; i++) { /* magic! */
   4069 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   4070 		if (pkt == NULL)
   4071 			break;
   4072 
   4073 		if (bus_dmamap_create(sc->bnx_dmatag,
   4074 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4075 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4076 		    &pkt->pkt_dmamap) != 0)
   4077 			goto put;
   4078 
   4079 		if (!ISSET(ifp->if_flags, IFF_UP))
   4080 			goto stopping;
   4081 
   4082 		mutex_enter(&sc->tx_pkt_mtx);
   4083 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4084 		sc->tx_pkt_count++;
   4085 		mutex_exit(&sc->tx_pkt_mtx);
   4086 	}
   4087 
   4088 	mutex_enter(&sc->tx_pkt_mtx);
   4089 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4090 	mutex_exit(&sc->tx_pkt_mtx);
   4091 
   4092 	/* fire-up TX now that allocations have been done */
   4093 	s = splnet();
   4094 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4095 		bnx_start(ifp);
   4096 	splx(s);
   4097 
   4098 	return;
   4099 
   4100 stopping:
   4101 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4102 put:
   4103 	pool_put(bnx_tx_pool, pkt);
   4104 	return;
   4105 }
   4106 
   4107 /****************************************************************************/
   4108 /* Initialize the TX context memory.                                        */
   4109 /*                                                                          */
   4110 /* Returns:                                                                 */
   4111 /*   Nothing                                                                */
   4112 /****************************************************************************/
   4113 void
   4114 bnx_init_tx_context(struct bnx_softc *sc)
   4115 {
   4116 	uint32_t val;
   4117 
   4118 	/* Initialize the context ID for an L2 TX chain. */
   4119 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4120 		/* Set the CID type to support an L2 connection. */
   4121 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4122 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4123 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4124 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4125 
   4126 		/* Point the hardware to the first page in the chain. */
   4127 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4128 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4129 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4130 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4131 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4132 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4133 	} else {
   4134 		/* Set the CID type to support an L2 connection. */
   4135 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4136 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4137 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4138 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4139 
   4140 		/* Point the hardware to the first page in the chain. */
   4141 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4142 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4143 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4144 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4145 	}
   4146 }
   4147 
   4148 
   4149 /****************************************************************************/
   4150 /* Allocate memory and initialize the TX data structures.                   */
   4151 /*                                                                          */
   4152 /* Returns:                                                                 */
   4153 /*   0 for success, positive value for failure.                             */
   4154 /****************************************************************************/
   4155 int
   4156 bnx_init_tx_chain(struct bnx_softc *sc)
   4157 {
   4158 	struct tx_bd		*txbd;
   4159 	uint32_t		addr;
   4160 	int			i, rc = 0;
   4161 
   4162 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4163 
   4164 	/* Force an allocation of some dmamaps for tx up front */
   4165 	bnx_alloc_pkts(NULL, sc);
   4166 
   4167 	/* Set the initial TX producer/consumer indices. */
   4168 	sc->tx_prod = 0;
   4169 	sc->tx_cons = 0;
   4170 	sc->tx_prod_bseq = 0;
   4171 	sc->used_tx_bd = 0;
   4172 	sc->max_tx_bd = USABLE_TX_BD;
   4173 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4174 	DBRUNIF(1, sc->tx_full_count = 0);
   4175 
   4176 	/*
   4177 	 * The NetXtreme II supports a linked-list structure called
   4178 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4179 	 * consists of a series of 1 or more chain pages, each of which
   4180 	 * consists of a fixed number of BD entries.
   4181 	 * The last BD entry on each page is a pointer to the next page
   4182 	 * in the chain, and the last pointer in the BD chain
   4183 	 * points back to the beginning of the chain.
   4184 	 */
   4185 
   4186 	/* Set the TX next pointer chain entries. */
   4187 	for (i = 0; i < TX_PAGES; i++) {
   4188 		int j;
   4189 
   4190 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4191 
   4192 		/* Check if we've reached the last page. */
   4193 		if (i == (TX_PAGES - 1))
   4194 			j = 0;
   4195 		else
   4196 			j = i + 1;
   4197 
   4198 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4199 		txbd->tx_bd_haddr_lo = addr;
   4200 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4201 		txbd->tx_bd_haddr_hi = addr;
   4202 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4203 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4204 	}
   4205 
   4206 	/*
   4207 	 * Initialize the context ID for an L2 TX chain.
   4208 	 */
   4209 	bnx_init_tx_context(sc);
   4210 
   4211 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4212 
   4213 	return rc;
   4214 }
   4215 
   4216 /****************************************************************************/
   4217 /* Free memory and clear the TX data structures.                            */
   4218 /*                                                                          */
   4219 /* Returns:                                                                 */
   4220 /*   Nothing.                                                               */
   4221 /****************************************************************************/
   4222 void
   4223 bnx_free_tx_chain(struct bnx_softc *sc)
   4224 {
   4225 	struct bnx_pkt		*pkt;
   4226 	int			i;
   4227 
   4228 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4229 
   4230 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4231 	mutex_enter(&sc->tx_pkt_mtx);
   4232 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4233 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4234 		mutex_exit(&sc->tx_pkt_mtx);
   4235 
   4236 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4237 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4238 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4239 
   4240 		m_freem(pkt->pkt_mbuf);
   4241 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4242 
   4243 		mutex_enter(&sc->tx_pkt_mtx);
   4244 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4245 	}
   4246 
   4247 	/* Destroy all the dmamaps we allocated for TX */
   4248 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4249 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4250 		sc->tx_pkt_count--;
   4251 		mutex_exit(&sc->tx_pkt_mtx);
   4252 
   4253 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4254 		pool_put(bnx_tx_pool, pkt);
   4255 
   4256 		mutex_enter(&sc->tx_pkt_mtx);
   4257 	}
   4258 	mutex_exit(&sc->tx_pkt_mtx);
   4259 
   4260 
   4261 
   4262 	/* Clear each TX chain page. */
   4263 	for (i = 0; i < TX_PAGES; i++) {
   4264 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4265 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4266 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4267 	}
   4268 
   4269 	sc->used_tx_bd = 0;
   4270 
   4271 	/* Check if we lost any mbufs in the process. */
   4272 	DBRUNIF((sc->tx_mbuf_alloc),
   4273 	    aprint_error_dev(sc->bnx_dev,
   4274 		"Memory leak! Lost %d mbufs from tx chain!\n",
   4275 		sc->tx_mbuf_alloc));
   4276 
   4277 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4278 }
   4279 
   4280 /****************************************************************************/
   4281 /* Initialize the RX context memory.                                        */
   4282 /*                                                                          */
   4283 /* Returns:                                                                 */
   4284 /*   Nothing                                                                */
   4285 /****************************************************************************/
   4286 void
   4287 bnx_init_rx_context(struct bnx_softc *sc)
   4288 {
   4289 	uint32_t val;
   4290 
   4291 	/* Initialize the context ID for an L2 RX chain. */
   4292 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4293 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4294 
   4295 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4296 		val |= 0x000000ff;
   4297 
   4298 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4299 
   4300 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4301 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4302 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4303 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4304 	}
   4305 
   4306 	/* Point the hardware to the first page in the chain. */
   4307 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4308 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4309 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4310 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4311 }
   4312 
   4313 /****************************************************************************/
   4314 /* Allocate memory and initialize the RX data structures.                   */
   4315 /*                                                                          */
   4316 /* Returns:                                                                 */
   4317 /*   0 for success, positive value for failure.                             */
   4318 /****************************************************************************/
   4319 int
   4320 bnx_init_rx_chain(struct bnx_softc *sc)
   4321 {
   4322 	struct rx_bd		*rxbd;
   4323 	int			i, rc = 0;
   4324 	uint16_t		prod, chain_prod;
   4325 	uint32_t		prod_bseq, addr;
   4326 
   4327 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4328 
   4329 	/* Initialize the RX producer and consumer indices. */
   4330 	sc->rx_prod = 0;
   4331 	sc->rx_cons = 0;
   4332 	sc->rx_prod_bseq = 0;
   4333 	sc->free_rx_bd = USABLE_RX_BD;
   4334 	sc->max_rx_bd = USABLE_RX_BD;
   4335 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4336 	DBRUNIF(1, sc->rx_empty_count = 0);
   4337 
   4338 	/* Initialize the RX next pointer chain entries. */
   4339 	for (i = 0; i < RX_PAGES; i++) {
   4340 		int j;
   4341 
   4342 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4343 
   4344 		/* Check if we've reached the last page. */
   4345 		if (i == (RX_PAGES - 1))
   4346 			j = 0;
   4347 		else
   4348 			j = i + 1;
   4349 
   4350 		/* Setup the chain page pointers. */
   4351 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4352 		rxbd->rx_bd_haddr_hi = addr;
   4353 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4354 		rxbd->rx_bd_haddr_lo = addr;
   4355 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4356 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4357 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4358 	}
   4359 
   4360 	/* Allocate mbuf clusters for the rx_bd chain. */
   4361 	prod = prod_bseq = 0;
   4362 	chain_prod = RX_CHAIN_IDX(prod);
   4363 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4364 		BNX_PRINTF(sc,
   4365 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4366 	}
   4367 
   4368 	/* Save the RX chain producer index. */
   4369 	sc->rx_prod = prod;
   4370 	sc->rx_prod_bseq = prod_bseq;
   4371 
   4372 	for (i = 0; i < RX_PAGES; i++)
   4373 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4374 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4375 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4376 
   4377 	/* Tell the chip about the waiting rx_bd's. */
   4378 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4379 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4380 
   4381 	bnx_init_rx_context(sc);
   4382 
   4383 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4384 
   4385 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4386 
   4387 	return rc;
   4388 }
   4389 
   4390 /****************************************************************************/
   4391 /* Free memory and clear the RX data structures.                            */
   4392 /*                                                                          */
   4393 /* Returns:                                                                 */
   4394 /*   Nothing.                                                               */
   4395 /****************************************************************************/
   4396 void
   4397 bnx_free_rx_chain(struct bnx_softc *sc)
   4398 {
   4399 	int			i;
   4400 
   4401 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4402 
   4403 	/* Free any mbufs still in the RX mbuf chain. */
   4404 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4405 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4406 			if (sc->rx_mbuf_map[i] != NULL) {
   4407 				bus_dmamap_sync(sc->bnx_dmatag,
   4408 				    sc->rx_mbuf_map[i],	0,
   4409 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4410 				    BUS_DMASYNC_POSTREAD);
   4411 				bus_dmamap_unload(sc->bnx_dmatag,
   4412 				    sc->rx_mbuf_map[i]);
   4413 			}
   4414 			m_freem(sc->rx_mbuf_ptr[i]);
   4415 			sc->rx_mbuf_ptr[i] = NULL;
   4416 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4417 		}
   4418 	}
   4419 
   4420 	/* Clear each RX chain page. */
   4421 	for (i = 0; i < RX_PAGES; i++)
   4422 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4423 
   4424 	sc->free_rx_bd = sc->max_rx_bd;
   4425 
   4426 	/* Check if we lost any mbufs in the process. */
   4427 	DBRUNIF((sc->rx_mbuf_alloc),
   4428 	    aprint_error_dev(sc->bnx_dev,
   4429 		"Memory leak! Lost %d mbufs from rx chain!\n",
   4430 		sc->rx_mbuf_alloc));
   4431 
   4432 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4433 }
   4434 
   4435 /****************************************************************************/
   4436 /* Set media options.                                                       */
   4437 /*                                                                          */
   4438 /* Returns:                                                                 */
   4439 /*   0 for success, positive value for failure.                             */
   4440 /****************************************************************************/
   4441 int
   4442 bnx_ifmedia_upd(struct ifnet *ifp)
   4443 {
   4444 	struct bnx_softc	*sc;
   4445 	struct mii_data		*mii;
   4446 	int			rc = 0;
   4447 
   4448 	sc = ifp->if_softc;
   4449 
   4450 	mii = &sc->bnx_mii;
   4451 	sc->bnx_link = 0;
   4452 	if (mii->mii_instance) {
   4453 		struct mii_softc *miisc;
   4454 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4455 			mii_phy_reset(miisc);
   4456 	}
   4457 	mii_mediachg(mii);
   4458 
   4459 	return rc;
   4460 }
   4461 
   4462 /****************************************************************************/
   4463 /* Reports current media status.                                            */
   4464 /*                                                                          */
   4465 /* Returns:                                                                 */
   4466 /*   Nothing.                                                               */
   4467 /****************************************************************************/
   4468 void
   4469 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4470 {
   4471 	struct bnx_softc	*sc;
   4472 	struct mii_data		*mii;
   4473 	int			s;
   4474 
   4475 	sc = ifp->if_softc;
   4476 
   4477 	s = splnet();
   4478 
   4479 	mii = &sc->bnx_mii;
   4480 
   4481 	mii_pollstat(mii);
   4482 	ifmr->ifm_status = mii->mii_media_status;
   4483 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4484 	    sc->bnx_flowflags;
   4485 
   4486 	splx(s);
   4487 }
   4488 
   4489 /****************************************************************************/
   4490 /* Handles PHY generated interrupt events.                                  */
   4491 /*                                                                          */
   4492 /* Returns:                                                                 */
   4493 /*   Nothing.                                                               */
   4494 /****************************************************************************/
   4495 void
   4496 bnx_phy_intr(struct bnx_softc *sc)
   4497 {
   4498 	uint32_t		new_link_state, old_link_state;
   4499 
   4500 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4501 	    BUS_DMASYNC_POSTREAD);
   4502 	new_link_state = sc->status_block->status_attn_bits &
   4503 	    STATUS_ATTN_BITS_LINK_STATE;
   4504 	old_link_state = sc->status_block->status_attn_bits_ack &
   4505 	    STATUS_ATTN_BITS_LINK_STATE;
   4506 
   4507 	/* Handle any changes if the link state has changed. */
   4508 	if (new_link_state != old_link_state) {
   4509 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4510 
   4511 		sc->bnx_link = 0;
   4512 		callout_stop(&sc->bnx_timeout);
   4513 		bnx_tick(sc);
   4514 
   4515 		/* Update the status_attn_bits_ack field in the status block. */
   4516 		if (new_link_state) {
   4517 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4518 			    STATUS_ATTN_BITS_LINK_STATE);
   4519 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4520 		} else {
   4521 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4522 			    STATUS_ATTN_BITS_LINK_STATE);
   4523 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4524 		}
   4525 	}
   4526 
   4527 	/* Acknowledge the link change interrupt. */
   4528 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4529 }
   4530 
   4531 /****************************************************************************/
   4532 /* Handles received frame interrupt events.                                 */
   4533 /*                                                                          */
   4534 /* Returns:                                                                 */
   4535 /*   Nothing.                                                               */
   4536 /****************************************************************************/
   4537 void
   4538 bnx_rx_intr(struct bnx_softc *sc)
   4539 {
   4540 	struct status_block	*sblk = sc->status_block;
   4541 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4542 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4543 	uint16_t		sw_prod, sw_chain_prod;
   4544 	uint32_t		sw_prod_bseq;
   4545 	struct l2_fhdr		*l2fhdr;
   4546 	int			i;
   4547 
   4548 	DBRUNIF(1, sc->rx_interrupts++);
   4549 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4550 	    BUS_DMASYNC_POSTREAD);
   4551 
   4552 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4553 	for (i = 0; i < RX_PAGES; i++)
   4554 		bus_dmamap_sync(sc->bnx_dmatag,
   4555 		    sc->rx_bd_chain_map[i], 0,
   4556 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4557 		    BUS_DMASYNC_POSTWRITE);
   4558 
   4559 	/* Get the hardware's view of the RX consumer index. */
   4560 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4561 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4562 		hw_cons++;
   4563 
   4564 	/* Get working copies of the driver's view of the RX indices. */
   4565 	sw_cons = sc->rx_cons;
   4566 	sw_prod = sc->rx_prod;
   4567 	sw_prod_bseq = sc->rx_prod_bseq;
   4568 
   4569 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4570 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4571 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4572 
   4573 	/* Prevent speculative reads from getting ahead of the status block. */
   4574 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4575 	    BUS_SPACE_BARRIER_READ);
   4576 
   4577 	/* Update some debug statistics counters */
   4578 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4579 	    sc->rx_low_watermark = sc->free_rx_bd);
   4580 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4581 
   4582 	/*
   4583 	 * Scan through the receive chain as long
   4584 	 * as there is work to do.
   4585 	 */
   4586 	while (sw_cons != hw_cons) {
   4587 		struct mbuf *m;
   4588 		struct rx_bd *rxbd __diagused;
   4589 		unsigned int len;
   4590 		uint32_t status;
   4591 
   4592 		/* Convert the producer/consumer indices to an actual
   4593 		 * rx_bd index.
   4594 		 */
   4595 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4596 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4597 
   4598 		/* Get the used rx_bd. */
   4599 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4600 		sc->free_rx_bd++;
   4601 
   4602 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4603 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4604 
   4605 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4606 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4607 #ifdef DIAGNOSTIC
   4608 			/* Validate that this is the last rx_bd. */
   4609 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4610 			    printf("%s: Unexpected mbuf found in "
   4611 				"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4612 				sw_chain_cons);
   4613 			}
   4614 #endif
   4615 
   4616 			/* DRC - ToDo: If the received packet is small, say
   4617 			 *             less than 128 bytes, allocate a new mbuf
   4618 			 *             here, copy the data to that mbuf, and
   4619 			 *             recycle the mapped jumbo frame.
   4620 			 */
   4621 
   4622 			/* Unmap the mbuf from DMA space. */
   4623 #ifdef DIAGNOSTIC
   4624 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4625 				printf("invalid map sw_cons 0x%x "
   4626 				"sw_prod 0x%x "
   4627 				"sw_chain_cons 0x%x "
   4628 				"sw_chain_prod 0x%x "
   4629 				"hw_cons 0x%x "
   4630 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4631 				"TOTAL_RX_BD 0x%x\n",
   4632 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4633 				hw_cons,
   4634 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4635 			}
   4636 #endif
   4637 			bus_dmamap_sync(sc->bnx_dmatag,
   4638 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4639 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4640 			    BUS_DMASYNC_POSTREAD);
   4641 			bus_dmamap_unload(sc->bnx_dmatag,
   4642 			    sc->rx_mbuf_map[sw_chain_cons]);
   4643 
   4644 			/* Remove the mbuf from the driver's chain. */
   4645 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4646 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4647 
   4648 			/*
   4649 			 * Frames received on the NetXteme II are prepended
   4650 			 * with the l2_fhdr structure which provides status
   4651 			 * information about the received frame (including
   4652 			 * VLAN tags and checksum info) and are also
   4653 			 * automatically adjusted to align the IP header
   4654 			 * (i.e. two null bytes are inserted before the
   4655 			 * Ethernet header).
   4656 			 */
   4657 			l2fhdr = mtod(m, struct l2_fhdr *);
   4658 
   4659 			len    = l2fhdr->l2_fhdr_pkt_len;
   4660 			status = l2fhdr->l2_fhdr_status;
   4661 
   4662 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4663 			    aprint_error("Simulating l2_fhdr status error.\n");
   4664 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4665 
   4666 			/* Watch for unusual sized frames. */
   4667 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4668 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4669 			    aprint_error_dev(sc->bnx_dev,
   4670 				"Unusual frame size found. "
   4671 				"Min(%d), Actual(%d), Max(%d)\n",
   4672 				(int)BNX_MIN_MTU, len,
   4673 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4674 
   4675 			bnx_dump_mbuf(sc, m);
   4676 			bnx_breakpoint(sc));
   4677 
   4678 			len -= ETHER_CRC_LEN;
   4679 
   4680 			/* Check the received frame for errors. */
   4681 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4682 			    L2_FHDR_ERRORS_PHY_DECODE |
   4683 			    L2_FHDR_ERRORS_ALIGNMENT |
   4684 			    L2_FHDR_ERRORS_TOO_SHORT |
   4685 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4686 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4687 			    len >
   4688 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4689 				if_statinc(ifp, if_ierrors);
   4690 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4691 
   4692 				/* Reuse the mbuf for a new frame. */
   4693 				if (bnx_add_buf(sc, m, &sw_prod,
   4694 				    &sw_chain_prod, &sw_prod_bseq)) {
   4695 					DBRUNIF(1, bnx_breakpoint(sc));
   4696 					panic("%s: Can't reuse RX mbuf!\n",
   4697 					    device_xname(sc->bnx_dev));
   4698 				}
   4699 				continue;
   4700 			}
   4701 
   4702 			/*
   4703 			 * Get a new mbuf for the rx_bd.   If no new
   4704 			 * mbufs are available then reuse the current mbuf,
   4705 			 * log an ierror on the interface, and generate
   4706 			 * an error in the system log.
   4707 			 */
   4708 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4709 			    &sw_prod_bseq)) {
   4710 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4711 				    "Failed to allocate "
   4712 				    "new mbuf, incoming frame dropped!\n"));
   4713 
   4714 				if_statinc(ifp, if_ierrors);
   4715 
   4716 				/* Try and reuse the exisitng mbuf. */
   4717 				if (bnx_add_buf(sc, m, &sw_prod,
   4718 				    &sw_chain_prod, &sw_prod_bseq)) {
   4719 					DBRUNIF(1, bnx_breakpoint(sc));
   4720 					panic("%s: Double mbuf allocation "
   4721 					    "failure!",
   4722 					    device_xname(sc->bnx_dev));
   4723 				}
   4724 				continue;
   4725 			}
   4726 
   4727 			/* Skip over the l2_fhdr when passing the data up
   4728 			 * the stack.
   4729 			 */
   4730 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4731 
   4732 			/* Adjust the pckt length to match the received data. */
   4733 			m->m_pkthdr.len = m->m_len = len;
   4734 
   4735 			/* Send the packet to the appropriate interface. */
   4736 			m_set_rcvif(m, ifp);
   4737 
   4738 			DBRUN(BNX_VERBOSE_RECV,
   4739 			    struct ether_header *eh;
   4740 			    eh = mtod(m, struct ether_header *);
   4741 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4742 			    __func__, ether_sprintf(eh->ether_dhost),
   4743 			    ether_sprintf(eh->ether_shost),
   4744 			    htons(eh->ether_type)));
   4745 
   4746 			/* Validate the checksum. */
   4747 
   4748 			/* Check for an IP datagram. */
   4749 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4750 				/* Check if the IP checksum is valid. */
   4751 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4752 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4753 #ifdef BNX_DEBUG
   4754 				else
   4755 					DBPRINT(sc, BNX_WARN_SEND,
   4756 					    "%s(): Invalid IP checksum "
   4757 						"= 0x%04X!\n",
   4758 						__func__,
   4759 						l2fhdr->l2_fhdr_ip_xsum
   4760 						);
   4761 #endif
   4762 			}
   4763 
   4764 			/* Check for a valid TCP/UDP frame. */
   4765 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4766 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4767 				/* Check for a good TCP/UDP checksum. */
   4768 				if ((status &
   4769 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4770 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4771 					m->m_pkthdr.csum_flags |=
   4772 					    M_CSUM_TCPv4 |
   4773 					    M_CSUM_UDPv4;
   4774 				} else {
   4775 					DBPRINT(sc, BNX_WARN_SEND,
   4776 					    "%s(): Invalid TCP/UDP "
   4777 					    "checksum = 0x%04X!\n",
   4778 					    __func__,
   4779 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4780 				}
   4781 			}
   4782 
   4783 			/*
   4784 			 * If we received a packet with a vlan tag,
   4785 			 * attach that information to the packet.
   4786 			 */
   4787 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4788 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4789 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4790 			}
   4791 
   4792 			/* Pass the mbuf off to the upper layers. */
   4793 
   4794 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4795 			    "%s(): Passing received frame up.\n", __func__);
   4796 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4797 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4798 
   4799 		}
   4800 
   4801 		sw_cons = NEXT_RX_BD(sw_cons);
   4802 
   4803 		/* Refresh hw_cons to see if there's new work */
   4804 		if (sw_cons == hw_cons) {
   4805 			hw_cons = sc->hw_rx_cons =
   4806 			    sblk->status_rx_quick_consumer_index0;
   4807 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4808 			    USABLE_RX_BD_PER_PAGE)
   4809 				hw_cons++;
   4810 		}
   4811 
   4812 		/* Prevent speculative reads from getting ahead of
   4813 		 * the status block.
   4814 		 */
   4815 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4816 		    BUS_SPACE_BARRIER_READ);
   4817 	}
   4818 
   4819 	for (i = 0; i < RX_PAGES; i++)
   4820 		bus_dmamap_sync(sc->bnx_dmatag,
   4821 		    sc->rx_bd_chain_map[i], 0,
   4822 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4823 		    BUS_DMASYNC_PREWRITE);
   4824 
   4825 	sc->rx_cons = sw_cons;
   4826 	sc->rx_prod = sw_prod;
   4827 	sc->rx_prod_bseq = sw_prod_bseq;
   4828 
   4829 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4830 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4831 
   4832 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4833 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4834 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4835 }
   4836 
   4837 /****************************************************************************/
   4838 /* Handles transmit completion interrupt events.                            */
   4839 /*                                                                          */
   4840 /* Returns:                                                                 */
   4841 /*   Nothing.                                                               */
   4842 /****************************************************************************/
   4843 void
   4844 bnx_tx_intr(struct bnx_softc *sc)
   4845 {
   4846 	struct status_block	*sblk = sc->status_block;
   4847 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4848 	struct bnx_pkt		*pkt;
   4849 	bus_dmamap_t		map;
   4850 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4851 
   4852 	DBRUNIF(1, sc->tx_interrupts++);
   4853 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4854 	    BUS_DMASYNC_POSTREAD);
   4855 
   4856 	/* Get the hardware's view of the TX consumer index. */
   4857 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4858 
   4859 	/* Skip to the next entry if this is a chain page pointer. */
   4860 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4861 		hw_tx_cons++;
   4862 
   4863 	sw_tx_cons = sc->tx_cons;
   4864 
   4865 	/* Prevent speculative reads from getting ahead of the status block. */
   4866 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4867 	    BUS_SPACE_BARRIER_READ);
   4868 
   4869 	/* Cycle through any completed TX chain page entries. */
   4870 	while (sw_tx_cons != hw_tx_cons) {
   4871 #ifdef BNX_DEBUG
   4872 		struct tx_bd *txbd = NULL;
   4873 #endif
   4874 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4875 
   4876 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4877 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4878 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4879 
   4880 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4881 		    aprint_error_dev(sc->bnx_dev,
   4882 			"TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4883 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4884 
   4885 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4886 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4887 
   4888 		DBRUNIF((txbd == NULL),
   4889 		    aprint_error_dev(sc->bnx_dev,
   4890 			"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4891 		    bnx_breakpoint(sc));
   4892 
   4893 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4894 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4895 
   4896 
   4897 		mutex_enter(&sc->tx_pkt_mtx);
   4898 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4899 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4900 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4901 			mutex_exit(&sc->tx_pkt_mtx);
   4902 			/*
   4903 			 * Free the associated mbuf. Remember
   4904 			 * that only the last tx_bd of a packet
   4905 			 * has an mbuf pointer and DMA map.
   4906 			 */
   4907 			map = pkt->pkt_dmamap;
   4908 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4909 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4910 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4911 
   4912 			m_freem(pkt->pkt_mbuf);
   4913 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4914 
   4915 			if_statinc(ifp, if_opackets);
   4916 
   4917 			mutex_enter(&sc->tx_pkt_mtx);
   4918 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4919 		}
   4920 		mutex_exit(&sc->tx_pkt_mtx);
   4921 
   4922 		sc->used_tx_bd--;
   4923 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4924 			__FILE__, __LINE__, sc->used_tx_bd);
   4925 
   4926 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4927 
   4928 		/* Refresh hw_cons to see if there's new work. */
   4929 		hw_tx_cons = sc->hw_tx_cons =
   4930 		    sblk->status_tx_quick_consumer_index0;
   4931 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4932 		    USABLE_TX_BD_PER_PAGE)
   4933 			hw_tx_cons++;
   4934 
   4935 		/* Prevent speculative reads from getting ahead of
   4936 		 * the status block.
   4937 		 */
   4938 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4939 		    BUS_SPACE_BARRIER_READ);
   4940 	}
   4941 
   4942 	/* Clear the TX timeout timer. */
   4943 	ifp->if_timer = 0;
   4944 
   4945 	/* Clear the tx hardware queue full flag. */
   4946 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4947 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4948 		    aprint_debug_dev(sc->bnx_dev,
   4949 			"Open TX chain! %d/%d (used/total)\n",
   4950 			sc->used_tx_bd, sc->max_tx_bd));
   4951 		ifp->if_flags &= ~IFF_OACTIVE;
   4952 	}
   4953 
   4954 	sc->tx_cons = sw_tx_cons;
   4955 }
   4956 
   4957 /****************************************************************************/
   4958 /* Disables interrupt generation.                                           */
   4959 /*                                                                          */
   4960 /* Returns:                                                                 */
   4961 /*   Nothing.                                                               */
   4962 /****************************************************************************/
   4963 void
   4964 bnx_disable_intr(struct bnx_softc *sc)
   4965 {
   4966 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4967 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4968 }
   4969 
   4970 /****************************************************************************/
   4971 /* Enables interrupt generation.                                            */
   4972 /*                                                                          */
   4973 /* Returns:                                                                 */
   4974 /*   Nothing.                                                               */
   4975 /****************************************************************************/
   4976 void
   4977 bnx_enable_intr(struct bnx_softc *sc)
   4978 {
   4979 	uint32_t		val;
   4980 
   4981 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4982 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4983 
   4984 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4985 	    sc->last_status_idx);
   4986 
   4987 	val = REG_RD(sc, BNX_HC_COMMAND);
   4988 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4989 }
   4990 
   4991 /****************************************************************************/
   4992 /* Handles controller initialization.                                       */
   4993 /*                                                                          */
   4994 /****************************************************************************/
   4995 int
   4996 bnx_init(struct ifnet *ifp)
   4997 {
   4998 	struct bnx_softc	*sc = ifp->if_softc;
   4999 	uint32_t		ether_mtu;
   5000 	int			s, error = 0;
   5001 
   5002 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   5003 
   5004 	s = splnet();
   5005 
   5006 	bnx_stop(ifp, 0);
   5007 
   5008 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   5009 		aprint_error_dev(sc->bnx_dev,
   5010 		    "Controller reset failed!\n");
   5011 		goto bnx_init_exit;
   5012 	}
   5013 
   5014 	if ((error = bnx_chipinit(sc)) != 0) {
   5015 		aprint_error_dev(sc->bnx_dev,
   5016 		    "Controller initialization failed!\n");
   5017 		goto bnx_init_exit;
   5018 	}
   5019 
   5020 	if ((error = bnx_blockinit(sc)) != 0) {
   5021 		aprint_error_dev(sc->bnx_dev,
   5022 		    "Block initialization failed!\n");
   5023 		goto bnx_init_exit;
   5024 	}
   5025 
   5026 	/* Calculate and program the Ethernet MRU size. */
   5027 	if (ifp->if_mtu <= ETHERMTU) {
   5028 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   5029 		sc->mbuf_alloc_size = MCLBYTES;
   5030 	} else {
   5031 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   5032 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   5033 	}
   5034 
   5035 
   5036 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   5037 
   5038 	/*
   5039 	 * Program the MRU and enable Jumbo frame
   5040 	 * support.
   5041 	 */
   5042 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   5043 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   5044 
   5045 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   5046 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   5047 
   5048 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   5049 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   5050 	    sc->mbuf_alloc_size, sc->max_frame_size);
   5051 
   5052 	/* Program appropriate promiscuous/multicast filtering. */
   5053 	bnx_iff(sc);
   5054 
   5055 	/* Init RX buffer descriptor chain. */
   5056 	bnx_init_rx_chain(sc);
   5057 
   5058 	/* Init TX buffer descriptor chain. */
   5059 	bnx_init_tx_chain(sc);
   5060 
   5061 	/* Enable host interrupts. */
   5062 	bnx_enable_intr(sc);
   5063 
   5064 	mii_ifmedia_change(&sc->bnx_mii);
   5065 
   5066 	SET(ifp->if_flags, IFF_RUNNING);
   5067 	CLR(ifp->if_flags, IFF_OACTIVE);
   5068 
   5069 	callout_schedule(&sc->bnx_timeout, hz);
   5070 
   5071 bnx_init_exit:
   5072 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5073 
   5074 	splx(s);
   5075 
   5076 	return error;
   5077 }
   5078 
   5079 void
   5080 bnx_mgmt_init(struct bnx_softc *sc)
   5081 {
   5082 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5083 	uint32_t	val;
   5084 
   5085 	/* Check if the driver is still running and bail out if it is. */
   5086 	if (ifp->if_flags & IFF_RUNNING)
   5087 		goto bnx_mgmt_init_exit;
   5088 
   5089 	/* Initialize the on-boards CPUs */
   5090 	bnx_init_cpus(sc);
   5091 
   5092 	val = (BCM_PAGE_BITS - 8) << 24;
   5093 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5094 
   5095 	/* Enable all critical blocks in the MAC. */
   5096 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5097 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5098 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5099 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5100 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5101 	DELAY(20);
   5102 
   5103 	mii_ifmedia_change(&sc->bnx_mii);
   5104 
   5105 bnx_mgmt_init_exit:
   5106 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5107 }
   5108 
   5109 /****************************************************************************/
   5110 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5111 /* memory visible to the controller.                                        */
   5112 /*                                                                          */
   5113 /* Returns:                                                                 */
   5114 /*   0 for success, positive value for failure.                             */
   5115 /****************************************************************************/
   5116 int
   5117 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5118 {
   5119 	struct bnx_pkt		*pkt;
   5120 	bus_dmamap_t		map;
   5121 	struct tx_bd		*txbd = NULL;
   5122 	uint16_t		vlan_tag = 0, flags = 0;
   5123 	uint16_t		chain_prod, prod;
   5124 #ifdef BNX_DEBUG
   5125 	uint16_t		debug_prod;
   5126 #endif
   5127 	uint32_t		addr, prod_bseq;
   5128 	int			i, error;
   5129 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   5130 	bool			remap = true;
   5131 
   5132 	mutex_enter(&sc->tx_pkt_mtx);
   5133 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5134 	if (pkt == NULL) {
   5135 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5136 			mutex_exit(&sc->tx_pkt_mtx);
   5137 			return ENETDOWN;
   5138 		}
   5139 
   5140 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5141 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5142 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   5143 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5144 		}
   5145 
   5146 		mutex_exit(&sc->tx_pkt_mtx);
   5147 		return ENOMEM;
   5148 	}
   5149 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5150 	mutex_exit(&sc->tx_pkt_mtx);
   5151 
   5152 	/* Transfer any checksum offload flags to the bd. */
   5153 	if (m->m_pkthdr.csum_flags) {
   5154 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5155 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5156 		if (m->m_pkthdr.csum_flags &
   5157 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5158 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5159 	}
   5160 
   5161 	/* Transfer any VLAN tags to the bd. */
   5162 	if (vlan_has_tag(m)) {
   5163 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5164 		vlan_tag = vlan_get_tag(m);
   5165 	}
   5166 
   5167 	/* Map the mbuf into DMAable memory. */
   5168 	prod = sc->tx_prod;
   5169 	chain_prod = TX_CHAIN_IDX(prod);
   5170 	map = pkt->pkt_dmamap;
   5171 
   5172 	/* Map the mbuf into our DMA address space. */
   5173 retry:
   5174 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5175 	if (__predict_false(error)) {
   5176 		if (error == EFBIG) {
   5177 			if (remap == true) {
   5178 				struct mbuf *newm;
   5179 
   5180 				remap = false;
   5181 				newm = m_defrag(m, M_NOWAIT);
   5182 				if (newm != NULL) {
   5183 					m = newm;
   5184 					goto retry;
   5185 				}
   5186 			}
   5187 		}
   5188 		sc->tx_dma_map_failures++;
   5189 		goto maperr;
   5190 	}
   5191 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5192 	    BUS_DMASYNC_PREWRITE);
   5193 	/* Make sure there's room in the chain */
   5194 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5195 		goto nospace;
   5196 
   5197 	/* prod points to an empty tx_bd at this point. */
   5198 	prod_bseq = sc->tx_prod_bseq;
   5199 #ifdef BNX_DEBUG
   5200 	debug_prod = chain_prod;
   5201 #endif
   5202 	DBPRINT(sc, BNX_INFO_SEND,
   5203 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5204 		"prod_bseq = 0x%08X\n",
   5205 		__func__, prod, chain_prod, prod_bseq);
   5206 
   5207 	/*
   5208 	 * Cycle through each mbuf segment that makes up
   5209 	 * the outgoing frame, gathering the mapping info
   5210 	 * for that segment and creating a tx_bd for the
   5211 	 * mbuf.
   5212 	 */
   5213 	for (i = 0; i < map->dm_nsegs ; i++) {
   5214 		chain_prod = TX_CHAIN_IDX(prod);
   5215 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5216 
   5217 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5218 		txbd->tx_bd_haddr_lo = addr;
   5219 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5220 		txbd->tx_bd_haddr_hi = addr;
   5221 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5222 		txbd->tx_bd_vlan_tag = vlan_tag;
   5223 		txbd->tx_bd_flags = flags;
   5224 		prod_bseq += map->dm_segs[i].ds_len;
   5225 		if (i == 0)
   5226 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5227 		prod = NEXT_TX_BD(prod);
   5228 	}
   5229 
   5230 	/* Set the END flag on the last TX buffer descriptor. */
   5231 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5232 
   5233 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5234 
   5235 	DBPRINT(sc, BNX_INFO_SEND,
   5236 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5237 		"prod_bseq = 0x%08X\n",
   5238 		__func__, prod, chain_prod, prod_bseq);
   5239 
   5240 	pkt->pkt_mbuf = m;
   5241 	pkt->pkt_end_desc = chain_prod;
   5242 
   5243 	mutex_enter(&sc->tx_pkt_mtx);
   5244 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5245 	mutex_exit(&sc->tx_pkt_mtx);
   5246 
   5247 	sc->used_tx_bd += map->dm_nsegs;
   5248 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5249 		__FILE__, __LINE__, sc->used_tx_bd);
   5250 
   5251 	/* Update some debug statistics counters */
   5252 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5253 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5254 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5255 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5256 
   5257 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5258 	    map->dm_nsegs));
   5259 
   5260 	/* prod points to the next free tx_bd at this point. */
   5261 	sc->tx_prod = prod;
   5262 	sc->tx_prod_bseq = prod_bseq;
   5263 
   5264 	return 0;
   5265 
   5266 
   5267 nospace:
   5268 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5269 maperr:
   5270 	mutex_enter(&sc->tx_pkt_mtx);
   5271 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5272 	mutex_exit(&sc->tx_pkt_mtx);
   5273 
   5274 	return ENOMEM;
   5275 }
   5276 
   5277 /****************************************************************************/
   5278 /* Main transmit routine.                                                   */
   5279 /*                                                                          */
   5280 /* Returns:                                                                 */
   5281 /*   Nothing.                                                               */
   5282 /****************************************************************************/
   5283 void
   5284 bnx_start(struct ifnet *ifp)
   5285 {
   5286 	struct bnx_softc	*sc = ifp->if_softc;
   5287 	struct mbuf		*m_head = NULL;
   5288 	int			count = 0;
   5289 #ifdef BNX_DEBUG
   5290 	uint16_t		tx_chain_prod;
   5291 #endif
   5292 
   5293 	/* If there's no link or the transmit queue is empty then just exit. */
   5294 	if (!sc->bnx_link
   5295 	    ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
   5296 		DBPRINT(sc, BNX_INFO_SEND,
   5297 		    "%s(): output active or device not running.\n", __func__);
   5298 		goto bnx_start_exit;
   5299 	}
   5300 
   5301 	/* prod points to the next free tx_bd. */
   5302 #ifdef BNX_DEBUG
   5303 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5304 #endif
   5305 
   5306 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5307 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5308 	    "used_tx %d max_tx %d\n",
   5309 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5310 	    sc->used_tx_bd, sc->max_tx_bd);
   5311 
   5312 	/*
   5313 	 * Keep adding entries while there is space in the ring.
   5314 	 */
   5315 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5316 		/* Check for any frames to send. */
   5317 		IFQ_POLL(&ifp->if_snd, m_head);
   5318 		if (m_head == NULL)
   5319 			break;
   5320 
   5321 		/*
   5322 		 * Pack the data into the transmit ring. If we
   5323 		 * don't have room, set the OACTIVE flag to wait
   5324 		 * for the NIC to drain the chain.
   5325 		 */
   5326 		if (bnx_tx_encap(sc, m_head)) {
   5327 			ifp->if_flags |= IFF_OACTIVE;
   5328 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5329 			    "business! Total tx_bd used = %d\n",
   5330 			    sc->used_tx_bd);
   5331 			break;
   5332 		}
   5333 
   5334 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5335 		count++;
   5336 
   5337 		/* Send a copy of the frame to any BPF listeners. */
   5338 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5339 	}
   5340 
   5341 	if (count == 0) {
   5342 		/* no packets were dequeued */
   5343 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5344 		    "%s(): No packets were dequeued\n", __func__);
   5345 		goto bnx_start_exit;
   5346 	}
   5347 
   5348 	/* Update the driver's counters. */
   5349 #ifdef BNX_DEBUG
   5350 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5351 #endif
   5352 
   5353 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5354 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5355 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5356 
   5357 	/* Start the transmit. */
   5358 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5359 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5360 
   5361 	/* Set the tx timeout. */
   5362 	ifp->if_timer = BNX_TX_TIMEOUT;
   5363 
   5364 bnx_start_exit:
   5365 	return;
   5366 }
   5367 
   5368 /****************************************************************************/
   5369 /* Handles any IOCTL calls from the operating system.                       */
   5370 /*                                                                          */
   5371 /* Returns:                                                                 */
   5372 /*   0 for success, positive value for failure.                             */
   5373 /****************************************************************************/
   5374 int
   5375 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5376 {
   5377 	struct bnx_softc	*sc = ifp->if_softc;
   5378 	struct ifreq		*ifr = (struct ifreq *) data;
   5379 	struct mii_data		*mii = &sc->bnx_mii;
   5380 	int			s, error = 0;
   5381 
   5382 	s = splnet();
   5383 
   5384 	switch (command) {
   5385 	case SIOCSIFFLAGS:
   5386 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5387 			break;
   5388 		/* XXX set an ifflags callback and let ether_ioctl
   5389 		 * handle all of this.
   5390 		 */
   5391 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5392 			if (ifp->if_flags & IFF_RUNNING)
   5393 				error = ENETRESET;
   5394 			else
   5395 				bnx_init(ifp);
   5396 		} else if (ifp->if_flags & IFF_RUNNING)
   5397 			bnx_stop(ifp, 1);
   5398 		break;
   5399 
   5400 	case SIOCSIFMEDIA:
   5401 		/* Flow control requires full-duplex mode. */
   5402 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5403 		    (ifr->ifr_media & IFM_FDX) == 0)
   5404 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5405 
   5406 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5407 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5408 				/* We can do both TXPAUSE and RXPAUSE. */
   5409 				ifr->ifr_media |=
   5410 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5411 			}
   5412 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5413 		}
   5414 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5415 		    sc->bnx_phy_flags);
   5416 
   5417 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5418 		break;
   5419 
   5420 	default:
   5421 		error = ether_ioctl(ifp, command, data);
   5422 	}
   5423 
   5424 	if (error == ENETRESET) {
   5425 		if (ifp->if_flags & IFF_RUNNING)
   5426 			bnx_iff(sc);
   5427 		error = 0;
   5428 	}
   5429 
   5430 	splx(s);
   5431 	return error;
   5432 }
   5433 
   5434 /****************************************************************************/
   5435 /* Transmit timeout handler.                                                */
   5436 /*                                                                          */
   5437 /* Returns:                                                                 */
   5438 /*   Nothing.                                                               */
   5439 /****************************************************************************/
   5440 void
   5441 bnx_watchdog(struct ifnet *ifp)
   5442 {
   5443 	struct bnx_softc	*sc = ifp->if_softc;
   5444 
   5445 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5446 	    bnx_dump_status_block(sc));
   5447 	/*
   5448 	 * If we are in this routine because of pause frames, then
   5449 	 * don't reset the hardware.
   5450 	 */
   5451 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5452 		return;
   5453 
   5454 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5455 
   5456 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5457 
   5458 	bnx_init(ifp);
   5459 
   5460 	if_statinc(ifp, if_oerrors);
   5461 }
   5462 
   5463 /*
   5464  * Interrupt handler.
   5465  */
   5466 /****************************************************************************/
   5467 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5468 /* interrupt and then calls a separate routine for handle the various       */
   5469 /* interrupt causes (PHY, TX, RX).                                          */
   5470 /*                                                                          */
   5471 /* Returns:                                                                 */
   5472 /*   0 for success, positive value for failure.                             */
   5473 /****************************************************************************/
   5474 int
   5475 bnx_intr(void *xsc)
   5476 {
   5477 	struct bnx_softc	*sc = xsc;
   5478 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5479 	uint32_t		status_attn_bits;
   5480 	uint16_t		status_idx;
   5481 	const struct status_block *sblk;
   5482 	int			rv = 0;
   5483 
   5484 	if (!device_is_active(sc->bnx_dev) ||
   5485 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5486 		return 0;
   5487 
   5488 	DBRUNIF(1, sc->interrupts_generated++);
   5489 
   5490 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5491 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5492 
   5493 	sblk = sc->status_block;
   5494 	/*
   5495 	 * If the hardware status block index
   5496 	 * matches the last value read by the
   5497 	 * driver and we haven't asserted our
   5498 	 * interrupt then there's nothing to do.
   5499 	 */
   5500 	status_idx = sblk->status_idx;
   5501 	if ((status_idx != sc->last_status_idx) ||
   5502 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5503 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5504 		rv = 1;
   5505 
   5506 		/* Ack the interrupt */
   5507 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5508 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5509 
   5510 		status_attn_bits = sblk->status_attn_bits;
   5511 
   5512 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5513 		    aprint_debug("Simulating unexpected status attention bit set.");
   5514 		    status_attn_bits = status_attn_bits |
   5515 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5516 
   5517 		/* Was it a link change interrupt? */
   5518 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5519 		    (sblk->status_attn_bits_ack &
   5520 		    STATUS_ATTN_BITS_LINK_STATE))
   5521 			bnx_phy_intr(sc);
   5522 
   5523 		/* If any other attention is asserted then the chip is toast. */
   5524 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5525 		    (sblk->status_attn_bits_ack &
   5526 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5527 			DBRUN(sc->unexpected_attentions++);
   5528 
   5529 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5530 			    sblk->status_attn_bits);
   5531 
   5532 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5533 				    bnx_breakpoint(sc));
   5534 
   5535 			bnx_init(ifp);
   5536 			goto out;
   5537 		}
   5538 
   5539 		/* Check for any completed RX frames. */
   5540 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5541 			bnx_rx_intr(sc);
   5542 
   5543 		/* Check for any completed TX frames. */
   5544 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5545 			bnx_tx_intr(sc);
   5546 
   5547 		/*
   5548 		 * Save the status block index value for use during the
   5549 		 * next interrupt.
   5550 		 */
   5551 		sc->last_status_idx = status_idx;
   5552 
   5553 		/* Start moving packets again */
   5554 		if (ifp->if_flags & IFF_RUNNING)
   5555 			if_schedule_deferred_start(ifp);
   5556 	}
   5557 
   5558 out:
   5559 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5560 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5561 
   5562 	return rv;
   5563 }
   5564 
   5565 /****************************************************************************/
   5566 /* Programs the various packet receive modes (broadcast and multicast).     */
   5567 /*                                                                          */
   5568 /* Returns:                                                                 */
   5569 /*   Nothing.                                                               */
   5570 /****************************************************************************/
   5571 void
   5572 bnx_iff(struct bnx_softc *sc)
   5573 {
   5574 	struct ethercom		*ec = &sc->bnx_ec;
   5575 	struct ifnet		*ifp = &ec->ec_if;
   5576 	struct ether_multi	*enm;
   5577 	struct ether_multistep	step;
   5578 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5579 	uint32_t		rx_mode, sort_mode;
   5580 	int			h, i;
   5581 
   5582 	/* Initialize receive mode default settings. */
   5583 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5584 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5585 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5586 	ifp->if_flags &= ~IFF_ALLMULTI;
   5587 
   5588 	/*
   5589 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5590 	 * be enbled.
   5591 	 */
   5592 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5593 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5594 
   5595 	/*
   5596 	 * Check for promiscuous, all multicast, or selected
   5597 	 * multicast address filtering.
   5598 	 */
   5599 	if (ifp->if_flags & IFF_PROMISC) {
   5600 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5601 
   5602 		ifp->if_flags |= IFF_ALLMULTI;
   5603 		/* Enable promiscuous mode. */
   5604 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5605 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5606 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5607 allmulti:
   5608 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5609 
   5610 		ifp->if_flags |= IFF_ALLMULTI;
   5611 		/* Enable all multicast addresses. */
   5612 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5613 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5614 			    0xffffffff);
   5615 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5616 	} else {
   5617 		/* Accept one or more multicast(s). */
   5618 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5619 
   5620 		ETHER_LOCK(ec);
   5621 		ETHER_FIRST_MULTI(step, ec, enm);
   5622 		while (enm != NULL) {
   5623 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5624 			    ETHER_ADDR_LEN)) {
   5625 				ETHER_UNLOCK(ec);
   5626 				goto allmulti;
   5627 			}
   5628 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5629 			    0xFF;
   5630 			hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
   5631 			ETHER_NEXT_MULTI(step, enm);
   5632 		}
   5633 		ETHER_UNLOCK(ec);
   5634 
   5635 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5636 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5637 			    hashes[i]);
   5638 
   5639 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5640 	}
   5641 
   5642 	/* Only make changes if the receive mode has actually changed. */
   5643 	if (rx_mode != sc->rx_mode) {
   5644 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5645 		    rx_mode);
   5646 
   5647 		sc->rx_mode = rx_mode;
   5648 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5649 	}
   5650 
   5651 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5652 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5653 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5654 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5655 }
   5656 
   5657 /****************************************************************************/
   5658 /* Called periodically to updates statistics from the controllers           */
   5659 /* statistics block.                                                        */
   5660 /*                                                                          */
   5661 /* Returns:                                                                 */
   5662 /*   Nothing.                                                               */
   5663 /****************************************************************************/
   5664 void
   5665 bnx_stats_update(struct bnx_softc *sc)
   5666 {
   5667 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5668 	struct statistics_block	*stats;
   5669 
   5670 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5671 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5672 	    BUS_DMASYNC_POSTREAD);
   5673 
   5674 	stats = (struct statistics_block *)sc->stats_block;
   5675 
   5676 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   5677 	uint64_t value;
   5678 
   5679 	/*
   5680 	 * Update the interface statistics from the
   5681 	 * hardware statistics.
   5682 	 */
   5683 	value = (u_long)stats->stat_EtherStatsCollisions;
   5684 	if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
   5685 	sc->if_stat_collisions = value;
   5686 
   5687 	value = (u_long)stats->stat_EtherStatsUndersizePkts +
   5688 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5689 	    (u_long)stats->stat_IfInMBUFDiscards +
   5690 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5691 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5692 	if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
   5693 	sc->if_stat_ierrors = value;
   5694 
   5695 	value = (u_long)
   5696 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5697 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5698 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5699 	if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
   5700 	sc->if_stat_oerrors = value;
   5701 
   5702 	/*
   5703 	 * Certain controllers don't report
   5704 	 * carrier sense errors correctly.
   5705 	 * See errata E11_5708CA0_1165.
   5706 	 */
   5707 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5708 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
   5709 		if_statadd_ref(nsr, if_oerrors,
   5710 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
   5711 	}
   5712 
   5713 	IF_STAT_PUTREF(ifp);
   5714 
   5715 	/*
   5716 	 * Update the sysctl statistics from the
   5717 	 * hardware statistics.
   5718 	 */
   5719 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5720 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5721 
   5722 	sc->stat_IfHCInBadOctets =
   5723 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5724 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5725 
   5726 	sc->stat_IfHCOutOctets =
   5727 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5728 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5729 
   5730 	sc->stat_IfHCOutBadOctets =
   5731 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5732 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5733 
   5734 	sc->stat_IfHCInUcastPkts =
   5735 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5736 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5737 
   5738 	sc->stat_IfHCInMulticastPkts =
   5739 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5740 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5741 
   5742 	sc->stat_IfHCInBroadcastPkts =
   5743 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5744 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5745 
   5746 	sc->stat_IfHCOutUcastPkts =
   5747 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5748 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5749 
   5750 	sc->stat_IfHCOutMulticastPkts =
   5751 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5752 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5753 
   5754 	sc->stat_IfHCOutBroadcastPkts =
   5755 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5756 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5757 
   5758 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5759 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5760 
   5761 	sc->stat_Dot3StatsCarrierSenseErrors =
   5762 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5763 
   5764 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5765 
   5766 	sc->stat_Dot3StatsAlignmentErrors =
   5767 	    stats->stat_Dot3StatsAlignmentErrors;
   5768 
   5769 	sc->stat_Dot3StatsSingleCollisionFrames =
   5770 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5771 
   5772 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5773 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5774 
   5775 	sc->stat_Dot3StatsDeferredTransmissions =
   5776 	    stats->stat_Dot3StatsDeferredTransmissions;
   5777 
   5778 	sc->stat_Dot3StatsExcessiveCollisions =
   5779 	    stats->stat_Dot3StatsExcessiveCollisions;
   5780 
   5781 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5782 
   5783 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5784 
   5785 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5786 
   5787 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5788 
   5789 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5790 
   5791 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5792 
   5793 	sc->stat_EtherStatsPktsRx64Octets =
   5794 	    stats->stat_EtherStatsPktsRx64Octets;
   5795 
   5796 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5797 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5798 
   5799 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5800 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5801 
   5802 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5803 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5804 
   5805 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5806 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5807 
   5808 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5809 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5810 
   5811 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5812 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5813 
   5814 	sc->stat_EtherStatsPktsTx64Octets =
   5815 	    stats->stat_EtherStatsPktsTx64Octets;
   5816 
   5817 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5818 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5819 
   5820 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5821 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5822 
   5823 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5824 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5825 
   5826 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5827 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5828 
   5829 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5830 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5831 
   5832 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5833 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5834 
   5835 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5836 
   5837 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5838 
   5839 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5840 
   5841 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5842 
   5843 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5844 
   5845 	sc->stat_MacControlFramesReceived =
   5846 	    stats->stat_MacControlFramesReceived;
   5847 
   5848 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5849 
   5850 	sc->stat_IfInFramesL2FilterDiscards =
   5851 	    stats->stat_IfInFramesL2FilterDiscards;
   5852 
   5853 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5854 
   5855 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5856 
   5857 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5858 
   5859 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5860 
   5861 	sc->stat_CatchupInRuleCheckerDiscards =
   5862 	    stats->stat_CatchupInRuleCheckerDiscards;
   5863 
   5864 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5865 
   5866 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5867 
   5868 	sc->stat_CatchupInRuleCheckerP4Hit =
   5869 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5870 
   5871 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5872 }
   5873 
   5874 void
   5875 bnx_tick(void *xsc)
   5876 {
   5877 	struct bnx_softc	*sc = xsc;
   5878 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5879 	struct mii_data		*mii;
   5880 	uint32_t		msg;
   5881 	uint16_t		prod, chain_prod;
   5882 	uint32_t		prod_bseq;
   5883 	int s = splnet();
   5884 
   5885 	/* Tell the firmware that the driver is still running. */
   5886 #ifdef BNX_DEBUG
   5887 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5888 #else
   5889 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5890 #endif
   5891 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5892 
   5893 	/* Update the statistics from the hardware statistics block. */
   5894 	bnx_stats_update(sc);
   5895 
   5896 	/* Schedule the next tick. */
   5897 	if (!sc->bnx_detaching)
   5898 		callout_schedule(&sc->bnx_timeout, hz);
   5899 
   5900 	if (sc->bnx_link)
   5901 		goto bnx_tick_exit;
   5902 
   5903 	mii = &sc->bnx_mii;
   5904 	mii_tick(mii);
   5905 
   5906 	/* Check if the link has come up. */
   5907 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5908 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5909 		sc->bnx_link++;
   5910 		/* Now that link is up, handle any outstanding TX traffic. */
   5911 		if_schedule_deferred_start(ifp);
   5912 	}
   5913 
   5914 bnx_tick_exit:
   5915 	/* try to get more RX buffers, just in case */
   5916 	prod = sc->rx_prod;
   5917 	prod_bseq = sc->rx_prod_bseq;
   5918 	chain_prod = RX_CHAIN_IDX(prod);
   5919 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5920 	sc->rx_prod = prod;
   5921 	sc->rx_prod_bseq = prod_bseq;
   5922 
   5923 	splx(s);
   5924 	return;
   5925 }
   5926 
   5927 /****************************************************************************/
   5928 /* BNX Debug Routines                                                       */
   5929 /****************************************************************************/
   5930 #ifdef BNX_DEBUG
   5931 
   5932 /****************************************************************************/
   5933 /* Prints out information about an mbuf.                                    */
   5934 /*                                                                          */
   5935 /* Returns:                                                                 */
   5936 /*   Nothing.                                                               */
   5937 /****************************************************************************/
   5938 void
   5939 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5940 {
   5941 	struct mbuf		*mp = m;
   5942 
   5943 	if (m == NULL) {
   5944 		/* Index out of range. */
   5945 		aprint_error("mbuf ptr is null!\n");
   5946 		return;
   5947 	}
   5948 
   5949 	while (mp) {
   5950 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5951 		    mp, mp->m_len);
   5952 
   5953 		if (mp->m_flags & M_EXT)
   5954 			aprint_debug("M_EXT ");
   5955 		if (mp->m_flags & M_PKTHDR)
   5956 			aprint_debug("M_PKTHDR ");
   5957 		aprint_debug("\n");
   5958 
   5959 		if (mp->m_flags & M_EXT)
   5960 			aprint_debug("- m_ext: vaddr = %p, "
   5961 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5962 
   5963 		mp = mp->m_next;
   5964 	}
   5965 }
   5966 
   5967 /****************************************************************************/
   5968 /* Prints out the mbufs in the TX mbuf chain.                               */
   5969 /*                                                                          */
   5970 /* Returns:                                                                 */
   5971 /*   Nothing.                                                               */
   5972 /****************************************************************************/
   5973 void
   5974 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5975 {
   5976 #if 0
   5977 	struct mbuf		*m;
   5978 	int			i;
   5979 
   5980 	aprint_debug_dev(sc->bnx_dev,
   5981 	    "----------------------------"
   5982 	    "  tx mbuf data  "
   5983 	    "----------------------------\n");
   5984 
   5985 	for (i = 0; i < count; i++) {
   5986 		m = sc->tx_mbuf_ptr[chain_prod];
   5987 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5988 		bnx_dump_mbuf(sc, m);
   5989 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5990 	}
   5991 
   5992 	aprint_debug_dev(sc->bnx_dev,
   5993 	    "--------------------------------------------"
   5994 	    "----------------------------\n");
   5995 #endif
   5996 }
   5997 
   5998 /*
   5999  * This routine prints the RX mbuf chain.
   6000  */
   6001 void
   6002 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   6003 {
   6004 	struct mbuf		*m;
   6005 	int			i;
   6006 
   6007 	aprint_debug_dev(sc->bnx_dev,
   6008 	    "----------------------------"
   6009 	    "  rx mbuf data  "
   6010 	    "----------------------------\n");
   6011 
   6012 	for (i = 0; i < count; i++) {
   6013 		m = sc->rx_mbuf_ptr[chain_prod];
   6014 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   6015 		bnx_dump_mbuf(sc, m);
   6016 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   6017 	}
   6018 
   6019 
   6020 	aprint_debug_dev(sc->bnx_dev,
   6021 	    "--------------------------------------------"
   6022 	    "----------------------------\n");
   6023 }
   6024 
   6025 void
   6026 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   6027 {
   6028 	if (idx > MAX_TX_BD)
   6029 		/* Index out of range. */
   6030 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   6031 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   6032 		/* TX Chain page pointer. */
   6033 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   6034 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   6035 		    txbd->tx_bd_haddr_lo);
   6036 	else
   6037 		/* Normal tx_bd entry. */
   6038 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6039 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   6040 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   6041 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   6042 		    txbd->tx_bd_flags);
   6043 }
   6044 
   6045 void
   6046 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   6047 {
   6048 	if (idx > MAX_RX_BD)
   6049 		/* Index out of range. */
   6050 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   6051 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   6052 		/* TX Chain page pointer. */
   6053 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   6054 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   6055 		    rxbd->rx_bd_haddr_lo);
   6056 	else
   6057 		/* Normal tx_bd entry. */
   6058 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6059 		    "0x%08X, flags = 0x%08X\n", idx,
   6060 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   6061 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   6062 }
   6063 
   6064 void
   6065 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   6066 {
   6067 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   6068 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   6069 	    "tcp_udp_xsum = 0x%04X\n", idx,
   6070 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   6071 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   6072 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   6073 }
   6074 
   6075 /*
   6076  * This routine prints the TX chain.
   6077  */
   6078 void
   6079 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   6080 {
   6081 	struct tx_bd		*txbd;
   6082 	int			i;
   6083 
   6084 	/* First some info about the tx_bd chain structure. */
   6085 	aprint_debug_dev(sc->bnx_dev,
   6086 	    "----------------------------"
   6087 	    "  tx_bd  chain  "
   6088 	    "----------------------------\n");
   6089 
   6090 	BNX_PRINTF(sc,
   6091 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   6092 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6093 
   6094 	BNX_PRINTF(sc,
   6095 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6096 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6097 
   6098 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6099 
   6100 	aprint_error_dev(sc->bnx_dev, ""
   6101 	    "-----------------------------"
   6102 	    "   tx_bd data   "
   6103 	    "-----------------------------\n");
   6104 
   6105 	/* Now print out the tx_bd's themselves. */
   6106 	for (i = 0; i < count; i++) {
   6107 		txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6108 		bnx_dump_txbd(sc, tx_prod, txbd);
   6109 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6110 	}
   6111 
   6112 	aprint_debug_dev(sc->bnx_dev,
   6113 	    "-----------------------------"
   6114 	    "--------------"
   6115 	    "-----------------------------\n");
   6116 }
   6117 
   6118 /*
   6119  * This routine prints the RX chain.
   6120  */
   6121 void
   6122 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6123 {
   6124 	struct rx_bd		*rxbd;
   6125 	int			i;
   6126 
   6127 	/* First some info about the tx_bd chain structure. */
   6128 	aprint_debug_dev(sc->bnx_dev,
   6129 	    "----------------------------"
   6130 	    "  rx_bd  chain  "
   6131 	    "----------------------------\n");
   6132 
   6133 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6134 
   6135 	BNX_PRINTF(sc,
   6136 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6137 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6138 
   6139 	BNX_PRINTF(sc,
   6140 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6141 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6142 
   6143 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6144 
   6145 	aprint_error_dev(sc->bnx_dev,
   6146 	    "----------------------------"
   6147 	    "   rx_bd data   "
   6148 	    "----------------------------\n");
   6149 
   6150 	/* Now print out the rx_bd's themselves. */
   6151 	for (i = 0; i < count; i++) {
   6152 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6153 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6154 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6155 	}
   6156 
   6157 	aprint_debug_dev(sc->bnx_dev,
   6158 	    "----------------------------"
   6159 	    "--------------"
   6160 	    "----------------------------\n");
   6161 }
   6162 
   6163 /*
   6164  * This routine prints the status block.
   6165  */
   6166 void
   6167 bnx_dump_status_block(struct bnx_softc *sc)
   6168 {
   6169 	struct status_block	*sblk;
   6170 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6171 	    BUS_DMASYNC_POSTREAD);
   6172 
   6173 	sblk = sc->status_block;
   6174 
   6175 	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6176 	    "Status Block -----------------------------\n");
   6177 
   6178 	BNX_PRINTF(sc,
   6179 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6180 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6181 	    sblk->status_idx);
   6182 
   6183 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6184 	    sblk->status_rx_quick_consumer_index0,
   6185 	    sblk->status_tx_quick_consumer_index0);
   6186 
   6187 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6188 
   6189 	/* Theses indices are not used for normal L2 drivers. */
   6190 	if (sblk->status_rx_quick_consumer_index1 ||
   6191 		sblk->status_tx_quick_consumer_index1)
   6192 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6193 		    sblk->status_rx_quick_consumer_index1,
   6194 		    sblk->status_tx_quick_consumer_index1);
   6195 
   6196 	if (sblk->status_rx_quick_consumer_index2 ||
   6197 		sblk->status_tx_quick_consumer_index2)
   6198 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6199 		    sblk->status_rx_quick_consumer_index2,
   6200 		    sblk->status_tx_quick_consumer_index2);
   6201 
   6202 	if (sblk->status_rx_quick_consumer_index3 ||
   6203 		sblk->status_tx_quick_consumer_index3)
   6204 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6205 		    sblk->status_rx_quick_consumer_index3,
   6206 		    sblk->status_tx_quick_consumer_index3);
   6207 
   6208 	if (sblk->status_rx_quick_consumer_index4 ||
   6209 		sblk->status_rx_quick_consumer_index5)
   6210 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6211 		    sblk->status_rx_quick_consumer_index4,
   6212 		    sblk->status_rx_quick_consumer_index5);
   6213 
   6214 	if (sblk->status_rx_quick_consumer_index6 ||
   6215 		sblk->status_rx_quick_consumer_index7)
   6216 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6217 		    sblk->status_rx_quick_consumer_index6,
   6218 		    sblk->status_rx_quick_consumer_index7);
   6219 
   6220 	if (sblk->status_rx_quick_consumer_index8 ||
   6221 		sblk->status_rx_quick_consumer_index9)
   6222 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6223 		    sblk->status_rx_quick_consumer_index8,
   6224 		    sblk->status_rx_quick_consumer_index9);
   6225 
   6226 	if (sblk->status_rx_quick_consumer_index10 ||
   6227 		sblk->status_rx_quick_consumer_index11)
   6228 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6229 		    sblk->status_rx_quick_consumer_index10,
   6230 		    sblk->status_rx_quick_consumer_index11);
   6231 
   6232 	if (sblk->status_rx_quick_consumer_index12 ||
   6233 		sblk->status_rx_quick_consumer_index13)
   6234 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6235 		    sblk->status_rx_quick_consumer_index12,
   6236 		    sblk->status_rx_quick_consumer_index13);
   6237 
   6238 	if (sblk->status_rx_quick_consumer_index14 ||
   6239 		sblk->status_rx_quick_consumer_index15)
   6240 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6241 		    sblk->status_rx_quick_consumer_index14,
   6242 		    sblk->status_rx_quick_consumer_index15);
   6243 
   6244 	if (sblk->status_completion_producer_index ||
   6245 		sblk->status_cmd_consumer_index)
   6246 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6247 		    sblk->status_completion_producer_index,
   6248 		    sblk->status_cmd_consumer_index);
   6249 
   6250 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6251 	    "-----------------------------\n");
   6252 }
   6253 
   6254 /*
   6255  * This routine prints the statistics block.
   6256  */
   6257 void
   6258 bnx_dump_stats_block(struct bnx_softc *sc)
   6259 {
   6260 	struct statistics_block	*sblk;
   6261 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6262 	    BUS_DMASYNC_POSTREAD);
   6263 
   6264 	sblk = sc->stats_block;
   6265 
   6266 	aprint_debug_dev(sc->bnx_dev, ""
   6267 	    "-----------------------------"
   6268 	    " Stats  Block "
   6269 	    "-----------------------------\n");
   6270 
   6271 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6272 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6273 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6274 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6275 
   6276 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6277 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6278 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6279 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6280 
   6281 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6282 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6283 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6284 	    sblk->stat_IfHCInMulticastPkts_hi,
   6285 	    sblk->stat_IfHCInMulticastPkts_lo);
   6286 
   6287 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6288 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6289 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6290 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6291 	    sblk->stat_IfHCOutUcastPkts_hi,
   6292 	    sblk->stat_IfHCOutUcastPkts_lo);
   6293 
   6294 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6295 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6296 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6297 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6298 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6299 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6300 
   6301 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6302 		BNX_PRINTF(sc, "0x%08X : "
   6303 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6304 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6305 
   6306 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6307 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6308 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6309 
   6310 	if (sblk->stat_Dot3StatsFCSErrors)
   6311 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6312 		    sblk->stat_Dot3StatsFCSErrors);
   6313 
   6314 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6315 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6316 		    sblk->stat_Dot3StatsAlignmentErrors);
   6317 
   6318 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6319 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6320 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6321 
   6322 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6323 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6324 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6325 
   6326 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6327 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6328 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6329 
   6330 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6331 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6332 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6333 
   6334 	if (sblk->stat_Dot3StatsLateCollisions)
   6335 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6336 		    sblk->stat_Dot3StatsLateCollisions);
   6337 
   6338 	if (sblk->stat_EtherStatsCollisions)
   6339 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6340 		    sblk->stat_EtherStatsCollisions);
   6341 
   6342 	if (sblk->stat_EtherStatsFragments)
   6343 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6344 		    sblk->stat_EtherStatsFragments);
   6345 
   6346 	if (sblk->stat_EtherStatsJabbers)
   6347 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6348 		    sblk->stat_EtherStatsJabbers);
   6349 
   6350 	if (sblk->stat_EtherStatsUndersizePkts)
   6351 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6352 		    sblk->stat_EtherStatsUndersizePkts);
   6353 
   6354 	if (sblk->stat_EtherStatsOverrsizePkts)
   6355 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6356 		    sblk->stat_EtherStatsOverrsizePkts);
   6357 
   6358 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6359 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6360 		    sblk->stat_EtherStatsPktsRx64Octets);
   6361 
   6362 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6363 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6364 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6365 
   6366 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6367 		BNX_PRINTF(sc, "0x%08X : "
   6368 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6369 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6370 
   6371 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6372 		BNX_PRINTF(sc, "0x%08X : "
   6373 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6374 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6375 
   6376 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6377 		BNX_PRINTF(sc, "0x%08X : "
   6378 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6379 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6380 
   6381 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6382 		BNX_PRINTF(sc, "0x%08X : "
   6383 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6384 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6385 
   6386 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6387 		BNX_PRINTF(sc, "0x%08X : "
   6388 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6389 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6390 
   6391 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6392 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6393 		    sblk->stat_EtherStatsPktsTx64Octets);
   6394 
   6395 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6396 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6397 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6398 
   6399 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6400 		BNX_PRINTF(sc, "0x%08X : "
   6401 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6402 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6403 
   6404 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6405 		BNX_PRINTF(sc, "0x%08X : "
   6406 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6407 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6408 
   6409 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6410 		BNX_PRINTF(sc, "0x%08X : "
   6411 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6412 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6413 
   6414 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6415 		BNX_PRINTF(sc, "0x%08X : "
   6416 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6417 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6418 
   6419 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6420 		BNX_PRINTF(sc, "0x%08X : "
   6421 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6422 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6423 
   6424 	if (sblk->stat_XonPauseFramesReceived)
   6425 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6426 		    sblk->stat_XonPauseFramesReceived);
   6427 
   6428 	if (sblk->stat_XoffPauseFramesReceived)
   6429 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6430 		    sblk->stat_XoffPauseFramesReceived);
   6431 
   6432 	if (sblk->stat_OutXonSent)
   6433 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6434 		    sblk->stat_OutXonSent);
   6435 
   6436 	if (sblk->stat_OutXoffSent)
   6437 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6438 		    sblk->stat_OutXoffSent);
   6439 
   6440 	if (sblk->stat_FlowControlDone)
   6441 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6442 		    sblk->stat_FlowControlDone);
   6443 
   6444 	if (sblk->stat_MacControlFramesReceived)
   6445 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6446 		    sblk->stat_MacControlFramesReceived);
   6447 
   6448 	if (sblk->stat_XoffStateEntered)
   6449 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6450 		    sblk->stat_XoffStateEntered);
   6451 
   6452 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6453 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6454 		    sblk->stat_IfInFramesL2FilterDiscards);
   6455 
   6456 	if (sblk->stat_IfInRuleCheckerDiscards)
   6457 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6458 		    sblk->stat_IfInRuleCheckerDiscards);
   6459 
   6460 	if (sblk->stat_IfInFTQDiscards)
   6461 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6462 		    sblk->stat_IfInFTQDiscards);
   6463 
   6464 	if (sblk->stat_IfInMBUFDiscards)
   6465 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6466 		    sblk->stat_IfInMBUFDiscards);
   6467 
   6468 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6469 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6470 		    sblk->stat_IfInRuleCheckerP4Hit);
   6471 
   6472 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6473 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6474 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6475 
   6476 	if (sblk->stat_CatchupInFTQDiscards)
   6477 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6478 		    sblk->stat_CatchupInFTQDiscards);
   6479 
   6480 	if (sblk->stat_CatchupInMBUFDiscards)
   6481 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6482 		    sblk->stat_CatchupInMBUFDiscards);
   6483 
   6484 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6485 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6486 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6487 
   6488 	aprint_debug_dev(sc->bnx_dev,
   6489 	    "-----------------------------"
   6490 	    "--------------"
   6491 	    "-----------------------------\n");
   6492 }
   6493 
   6494 void
   6495 bnx_dump_driver_state(struct bnx_softc *sc)
   6496 {
   6497 	aprint_debug_dev(sc->bnx_dev,
   6498 	    "-----------------------------"
   6499 	    " Driver State "
   6500 	    "-----------------------------\n");
   6501 
   6502 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6503 	    "address\n", sc);
   6504 
   6505 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6506 	    sc->status_block);
   6507 
   6508 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6509 	    "address\n", sc->stats_block);
   6510 
   6511 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6512 	    "address\n", sc->tx_bd_chain);
   6513 
   6514 #if 0
   6515 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6516 	    sc->rx_bd_chain);
   6517 
   6518 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6519 	    sc->tx_mbuf_ptr);
   6520 #endif
   6521 
   6522 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6523 	    sc->rx_mbuf_ptr);
   6524 
   6525 	BNX_PRINTF(sc,
   6526 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6527 	    sc->interrupts_generated);
   6528 
   6529 	BNX_PRINTF(sc,
   6530 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6531 	    sc->rx_interrupts);
   6532 
   6533 	BNX_PRINTF(sc,
   6534 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6535 	    sc->tx_interrupts);
   6536 
   6537 	BNX_PRINTF(sc,
   6538 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6539 	    sc->last_status_idx);
   6540 
   6541 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6542 	    sc->tx_prod);
   6543 
   6544 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6545 	    sc->tx_cons);
   6546 
   6547 	BNX_PRINTF(sc,
   6548 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6549 	    sc->tx_prod_bseq);
   6550 	BNX_PRINTF(sc,
   6551 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6552 	    sc->tx_mbuf_alloc);
   6553 
   6554 	BNX_PRINTF(sc,
   6555 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6556 	    sc->used_tx_bd);
   6557 
   6558 	BNX_PRINTF(sc,
   6559 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6560 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6561 
   6562 
   6563 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6564 	    sc->rx_prod);
   6565 
   6566 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6567 	    sc->rx_cons);
   6568 
   6569 	BNX_PRINTF(sc,
   6570 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6571 	    sc->rx_prod_bseq);
   6572 
   6573 	BNX_PRINTF(sc,
   6574 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6575 	    sc->rx_mbuf_alloc);
   6576 
   6577 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6578 	    sc->free_rx_bd);
   6579 
   6580 	BNX_PRINTF(sc,
   6581 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6582 	    sc->rx_low_watermark, sc->max_rx_bd);
   6583 
   6584 	BNX_PRINTF(sc,
   6585 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6586 	    "mbuf alloc failures\n",
   6587 	    sc->mbuf_alloc_failed);
   6588 
   6589 	BNX_PRINTF(sc,
   6590 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6591 	    "simulated mbuf alloc failures\n",
   6592 	    sc->mbuf_sim_alloc_failed);
   6593 
   6594 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6595 	    "-----------------------------\n");
   6596 }
   6597 
   6598 void
   6599 bnx_dump_hw_state(struct bnx_softc *sc)
   6600 {
   6601 	uint32_t		val1;
   6602 	int			i;
   6603 
   6604 	aprint_debug_dev(sc->bnx_dev,
   6605 	    "----------------------------"
   6606 	    " Hardware State "
   6607 	    "----------------------------\n");
   6608 
   6609 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
   6610 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
   6611 
   6612 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6613 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6614 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6615 
   6616 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6617 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6618 
   6619 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6620 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6621 
   6622 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6623 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6624 	    BNX_EMAC_STATUS);
   6625 
   6626 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6627 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6628 
   6629 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6630 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6631 	    BNX_TBDR_STATUS);
   6632 
   6633 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6634 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6635 	    BNX_TDMA_STATUS);
   6636 
   6637 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6638 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6639 
   6640 	aprint_debug_dev(sc->bnx_dev,
   6641 	    "----------------------------"
   6642 	    "----------------"
   6643 	    "----------------------------\n");
   6644 
   6645 	aprint_debug_dev(sc->bnx_dev,
   6646 	    "----------------------------"
   6647 	    " Register  Dump "
   6648 	    "----------------------------\n");
   6649 
   6650 	for (i = 0x400; i < 0x8000; i += 0x10)
   6651 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6652 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6653 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6654 
   6655 	aprint_debug_dev(sc->bnx_dev,
   6656 	    "----------------------------"
   6657 	    "----------------"
   6658 	    "----------------------------\n");
   6659 }
   6660 
   6661 void
   6662 bnx_breakpoint(struct bnx_softc *sc)
   6663 {
   6664 	/* Unreachable code to shut the compiler up about unused functions. */
   6665 	if (0) {
   6666 		bnx_dump_txbd(sc, 0, NULL);
   6667 		bnx_dump_rxbd(sc, 0, NULL);
   6668 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6669 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6670 		bnx_dump_l2fhdr(sc, 0, NULL);
   6671 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6672 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6673 		bnx_dump_status_block(sc);
   6674 		bnx_dump_stats_block(sc);
   6675 		bnx_dump_driver_state(sc);
   6676 		bnx_dump_hw_state(sc);
   6677 	}
   6678 
   6679 	bnx_dump_driver_state(sc);
   6680 	/* Print the important status block fields. */
   6681 	bnx_dump_status_block(sc);
   6682 
   6683 #if 0
   6684 	/* Call the debugger. */
   6685 	breakpoint();
   6686 #endif
   6687 
   6688 	return;
   6689 }
   6690 #endif
   6691