if_bnx.c revision 1.96 1 /* $NetBSD: if_bnx.c,v 1.96 2020/07/12 19:05:32 jdolecek Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.96 2020/07/12 19:05:32 jdolecek Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187
188 /* Slow EEPROM */
189 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
190 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
191 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
192 "EEPROM - slow"},
193 /* Expansion entry 0001 */
194 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
195 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
196 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
197 "Entry 0001"},
198 /* Saifun SA25F010 (non-buffered flash) */
199 /* strap, cfg1, & write1 need updates */
200 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
201 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
202 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
203 "Non-buffered flash (128kB)"},
204 /* Saifun SA25F020 (non-buffered flash) */
205 /* strap, cfg1, & write1 need updates */
206 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
207 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
208 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
209 "Non-buffered flash (256kB)"},
210 /* Expansion entry 0100 */
211 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
212 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
213 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
214 "Entry 0100"},
215 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
216 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
217 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
218 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
219 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
220 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
221 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
222 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
223 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
224 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
225 /* Saifun SA25F005 (non-buffered flash) */
226 /* strap, cfg1, & write1 need updates */
227 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
228 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
229 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
230 "Non-buffered flash (64kB)"},
231 /* Fast EEPROM */
232 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
233 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
234 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
235 "EEPROM - fast"},
236 /* Expansion entry 1001 */
237 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
238 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
239 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
240 "Entry 1001"},
241 /* Expansion entry 1010 */
242 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
243 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
244 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
245 "Entry 1010"},
246 /* ATMEL AT45DB011B (buffered flash) */
247 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
248 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
249 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
250 "Buffered flash (128kB)"},
251 /* Expansion entry 1100 */
252 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
253 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
254 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
255 "Entry 1100"},
256 /* Expansion entry 1101 */
257 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
258 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
259 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
260 "Entry 1101"},
261 /* Ateml Expansion entry 1110 */
262 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
263 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
264 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
265 "Entry 1110 (Atmel)"},
266 /* ATMEL AT45DB021B (buffered flash) */
267 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
268 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
269 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
270 "Buffered flash (256kB)"},
271 };
272
273 /*
274 * The BCM5709 controllers transparently handle the
275 * differences between Atmel 264 byte pages and all
276 * flash devices which use 256 byte pages, so no
277 * logical-to-physical mapping is required in the
278 * driver.
279 */
280 static struct flash_spec flash_5709 = {
281 .flags = BNX_NV_BUFFERED,
282 .page_bits = BCM5709_FLASH_PAGE_BITS,
283 .page_size = BCM5709_FLASH_PAGE_SIZE,
284 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
285 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
286 .name = "5709 buffered flash (256kB)",
287 };
288
289 /****************************************************************************/
290 /* OpenBSD device entry points. */
291 /****************************************************************************/
292 static int bnx_probe(device_t, cfdata_t, void *);
293 void bnx_attach(device_t, device_t, void *);
294 int bnx_detach(device_t, int);
295
296 /****************************************************************************/
297 /* BNX Debug Data Structure Dump Routines */
298 /****************************************************************************/
299 #ifdef BNX_DEBUG
300 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
301 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
303 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
304 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
305 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
306 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
308 void bnx_dump_status_block(struct bnx_softc *);
309 void bnx_dump_stats_block(struct bnx_softc *);
310 void bnx_dump_driver_state(struct bnx_softc *);
311 void bnx_dump_hw_state(struct bnx_softc *);
312 void bnx_breakpoint(struct bnx_softc *);
313 #endif
314
315 /****************************************************************************/
316 /* BNX Register/Memory Access Routines */
317 /****************************************************************************/
318 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
319 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
320 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
321 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
322 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
323 void bnx_miibus_statchg(struct ifnet *);
324
325 /****************************************************************************/
326 /* BNX NVRAM Access Routines */
327 /****************************************************************************/
328 int bnx_acquire_nvram_lock(struct bnx_softc *);
329 int bnx_release_nvram_lock(struct bnx_softc *);
330 void bnx_enable_nvram_access(struct bnx_softc *);
331 void bnx_disable_nvram_access(struct bnx_softc *);
332 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
333 uint32_t);
334 int bnx_init_nvram(struct bnx_softc *);
335 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
336 int bnx_nvram_test(struct bnx_softc *);
337 #ifdef BNX_NVRAM_WRITE_SUPPORT
338 int bnx_enable_nvram_write(struct bnx_softc *);
339 void bnx_disable_nvram_write(struct bnx_softc *);
340 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
341 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
342 uint32_t);
343 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
344 #endif
345
346 /****************************************************************************/
347 /* */
348 /****************************************************************************/
349 void bnx_get_media(struct bnx_softc *);
350 void bnx_init_media(struct bnx_softc *);
351 int bnx_dma_alloc(struct bnx_softc *);
352 void bnx_dma_free(struct bnx_softc *);
353 void bnx_release_resources(struct bnx_softc *);
354
355 /****************************************************************************/
356 /* BNX Firmware Synchronization and Load */
357 /****************************************************************************/
358 int bnx_fw_sync(struct bnx_softc *, uint32_t);
359 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 static void bnx_print_adapter_info(struct bnx_softc *);
365 static void bnx_probe_pci_caps(struct bnx_softc *);
366 void bnx_stop(struct ifnet *, int);
367 int bnx_reset(struct bnx_softc *, uint32_t);
368 int bnx_chipinit(struct bnx_softc *);
369 int bnx_blockinit(struct bnx_softc *);
370 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
371 uint16_t *, uint32_t *);
372 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
373
374 int bnx_init_tx_chain(struct bnx_softc *);
375 void bnx_init_tx_context(struct bnx_softc *);
376 int bnx_init_rx_chain(struct bnx_softc *);
377 void bnx_init_rx_context(struct bnx_softc *);
378 void bnx_free_rx_chain(struct bnx_softc *);
379 void bnx_free_tx_chain(struct bnx_softc *);
380
381 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
382 void bnx_start(struct ifnet *);
383 int bnx_ioctl(struct ifnet *, u_long, void *);
384 void bnx_watchdog(struct ifnet *);
385 int bnx_ifmedia_upd(struct ifnet *);
386 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
387 int bnx_init(struct ifnet *);
388 static void bnx_mgmt_init(struct bnx_softc *);
389
390 void bnx_init_context(struct bnx_softc *);
391 void bnx_get_mac_addr(struct bnx_softc *);
392 void bnx_set_mac_addr(struct bnx_softc *);
393 void bnx_phy_intr(struct bnx_softc *);
394 void bnx_rx_intr(struct bnx_softc *);
395 void bnx_tx_intr(struct bnx_softc *);
396 void bnx_disable_intr(struct bnx_softc *);
397 void bnx_enable_intr(struct bnx_softc *);
398
399 int bnx_intr(void *);
400 void bnx_iff(struct bnx_softc *);
401 void bnx_stats_update(struct bnx_softc *);
402 void bnx_tick(void *);
403
404 struct pool *bnx_tx_pool = NULL;
405 void bnx_alloc_pkts(struct work *, void *);
406
407 /****************************************************************************/
408 /* OpenBSD device dispatch table. */
409 /****************************************************************************/
410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
411 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
412
413 /****************************************************************************/
414 /* Device probe function. */
415 /* */
416 /* Compares the device to the driver's list of supported devices and */
417 /* reports back to the OS whether this is the right driver for the device. */
418 /* */
419 /* Returns: */
420 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
421 /****************************************************************************/
422 static const struct bnx_product *
423 bnx_lookup(const struct pci_attach_args *pa)
424 {
425 int i;
426 pcireg_t subid;
427
428 for (i = 0; i < __arraycount(bnx_devices); i++) {
429 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
430 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
431 continue;
432 if (!bnx_devices[i].bp_subvendor)
433 return &bnx_devices[i];
434 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
435 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
436 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
437 return &bnx_devices[i];
438 }
439
440 return NULL;
441 }
442 static int
443 bnx_probe(device_t parent, cfdata_t match, void *aux)
444 {
445 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
446
447 if (bnx_lookup(pa) != NULL)
448 return 1;
449
450 return 0;
451 }
452
453 /****************************************************************************/
454 /* PCI Capabilities Probe Function. */
455 /* */
456 /* Walks the PCI capabiites list for the device to find what features are */
457 /* supported. */
458 /* */
459 /* Returns: */
460 /* None. */
461 /****************************************************************************/
462 static void
463 bnx_print_adapter_info(struct bnx_softc *sc)
464 {
465 device_t dev = sc->bnx_dev;
466 int i = 0;
467
468 aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
469 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
470 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
471 ? "Serdes " : "", sc->bnx_chipid);
472
473 /* Bus info. */
474 if (sc->bnx_flags & BNX_PCIE_FLAG) {
475 aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
476 switch (sc->link_speed) {
477 case 1: aprint_normal("2.5GT/s\n"); break;
478 case 2: aprint_normal("5GT/s\n"); break;
479 default: aprint_normal("Unknown link speed\n");
480 }
481 } else {
482 aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
483 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
484 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
485 sc->bus_speed_mhz);
486 }
487
488 /* Firmware version and device features. */
489 aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
490 sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
491
492 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
493 if (i > 0) aprint_normal("|");
494 aprint_normal("2.5G"); i++;
495 }
496
497 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
498 if (i > 0) aprint_normal("|");
499 aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
500 } else {
501 aprint_normal(")\n");
502 }
503
504 aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
505 sc->bnx_rx_quick_cons_trip_int,
506 sc->bnx_rx_quick_cons_trip,
507 sc->bnx_rx_ticks_int,
508 sc->bnx_rx_ticks,
509 sc->bnx_tx_quick_cons_trip_int,
510 sc->bnx_tx_quick_cons_trip,
511 sc->bnx_tx_ticks_int,
512 sc->bnx_tx_ticks);
513 }
514
515
516 /****************************************************************************/
517 /* PCI Capabilities Probe Function. */
518 /* */
519 /* Walks the PCI capabiites list for the device to find what features are */
520 /* supported. */
521 /* */
522 /* Returns: */
523 /* None. */
524 /****************************************************************************/
525 static void
526 bnx_probe_pci_caps(struct bnx_softc *sc)
527 {
528 struct pci_attach_args *pa = &(sc->bnx_pa);
529 pcireg_t reg;
530
531 /* Check if PCI-X capability is enabled. */
532 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
533 NULL) != 0) {
534 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
535 }
536
537 /* Check if PCIe capability is enabled. */
538 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
539 NULL) != 0) {
540 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
541 reg + PCIE_LCSR);
542 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
543 "0x%08X\n", link_status);
544 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
545 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
546 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
547 sc->bnx_flags |= BNX_PCIE_FLAG;
548 }
549
550 /* Check if MSI capability is enabled. */
551 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
552 NULL) != 0)
553 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
554
555 /* Check if MSI-X capability is enabled. */
556 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
557 NULL) != 0)
558 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
559 }
560
561
562 /****************************************************************************/
563 /* Device attach function. */
564 /* */
565 /* Allocates device resources, performs secondary chip identification, */
566 /* resets and initializes the hardware, and initializes driver instance */
567 /* variables. */
568 /* */
569 /* Returns: */
570 /* 0 on success, positive value on failure. */
571 /****************************************************************************/
572 void
573 bnx_attach(device_t parent, device_t self, void *aux)
574 {
575 const struct bnx_product *bp;
576 struct bnx_softc *sc = device_private(self);
577 prop_dictionary_t dict;
578 struct pci_attach_args *pa = aux;
579 pci_chipset_tag_t pc = pa->pa_pc;
580 const char *intrstr = NULL;
581 uint32_t command;
582 struct ifnet *ifp;
583 struct mii_data * const mii = &sc->bnx_mii;
584 uint32_t val;
585 int mii_flags = MIIF_FORCEANEG;
586 pcireg_t memtype;
587 char intrbuf[PCI_INTRSTR_LEN];
588 int i, j;
589
590 if (bnx_tx_pool == NULL) {
591 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
592 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
593 0, 0, 0, "bnxpkts", NULL, IPL_NET);
594 }
595
596 bp = bnx_lookup(pa);
597 if (bp == NULL)
598 panic("unknown device");
599
600 sc->bnx_dev = self;
601
602 aprint_naive("\n");
603 aprint_normal(": %s\n", bp->bp_name);
604
605 sc->bnx_pa = *pa;
606
607 /*
608 * Map control/status registers.
609 */
610 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
611 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
612 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
613 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
614
615 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
616 aprint_error_dev(sc->bnx_dev,
617 "failed to enable memory mapping!\n");
618 return;
619 }
620
621 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
622 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
623 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
624 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
625 return;
626 }
627
628 if (pci_intr_alloc(pa, &sc->bnx_ih, NULL, 0)) {
629 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
630 goto bnx_attach_fail;
631 }
632 intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
633
634 /*
635 * Configure byte swap and enable indirect register access.
636 * Rely on CPU to do target byte swapping on big endian systems.
637 * Access to registers outside of PCI configurtion space are not
638 * valid until this is done.
639 */
640 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
641 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
642 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
643
644 /* Save ASIC revision info. */
645 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
646
647 /*
648 * Find the base address for shared memory access.
649 * Newer versions of bootcode use a signature and offset
650 * while older versions use a fixed address.
651 */
652 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
653 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
654 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
655 (sc->bnx_pa.pa_function << 2));
656 else
657 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
658
659 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
660
661 /* Set initial device and PHY flags */
662 sc->bnx_flags = 0;
663 sc->bnx_phy_flags = 0;
664
665 /* Fetch the bootcode revision. */
666 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
667 for (i = 0, j = 0; i < 3; i++) {
668 uint8_t num;
669 int k, skip0;
670
671 num = (uint8_t)(val >> (24 - (i * 8)));
672 for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
673 if (num >= k || !skip0 || k == 1) {
674 sc->bnx_bc_ver[j++] = (num / k) + '0';
675 skip0 = 0;
676 }
677 }
678 if (i != 2)
679 sc->bnx_bc_ver[j++] = '.';
680 }
681
682 /* Check if any management firmware is enabled. */
683 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
684 if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
685 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
686 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
687
688 /* Allow time for firmware to enter the running state. */
689 for (i = 0; i < 30; i++) {
690 val = REG_RD_IND(sc, sc->bnx_shmem_base +
691 BNX_BC_STATE_CONDITION);
692 if (val & BNX_CONDITION_MFW_RUN_MASK)
693 break;
694 DELAY(10000);
695 }
696
697 /* Check if management firmware is running. */
698 val = REG_RD_IND(sc, sc->bnx_shmem_base +
699 BNX_BC_STATE_CONDITION);
700 val &= BNX_CONDITION_MFW_RUN_MASK;
701 if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
702 (val != BNX_CONDITION_MFW_RUN_NONE)) {
703 uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
704 BNX_MFW_VER_PTR);
705
706 /* Read the management firmware version string. */
707 for (j = 0; j < 3; j++) {
708 val = bnx_reg_rd_ind(sc, addr + j * 4);
709 val = bswap32(val);
710 memcpy(&sc->bnx_mfw_ver[i], &val, 4);
711 i += 4;
712 }
713 } else {
714 /* May cause firmware synchronization timeouts. */
715 BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
716 "but not running!\n", __FILE__, __LINE__);
717 strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
718
719 /* ToDo: Any action the driver should take? */
720 }
721 }
722
723 bnx_probe_pci_caps(sc);
724
725 /* Get PCI bus information (speed and type). */
726 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
727 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
728 uint32_t clkreg;
729
730 sc->bnx_flags |= BNX_PCIX_FLAG;
731
732 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
733
734 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
735 switch (clkreg) {
736 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
737 sc->bus_speed_mhz = 133;
738 break;
739
740 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
741 sc->bus_speed_mhz = 100;
742 break;
743
744 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
745 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
746 sc->bus_speed_mhz = 66;
747 break;
748
749 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
750 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
751 sc->bus_speed_mhz = 50;
752 break;
753
754 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
755 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
756 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
757 sc->bus_speed_mhz = 33;
758 break;
759 }
760 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
761 sc->bus_speed_mhz = 66;
762 else
763 sc->bus_speed_mhz = 33;
764
765 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
766 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
767
768 /* Reset the controller. */
769 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
770 goto bnx_attach_fail;
771
772 /* Initialize the controller. */
773 if (bnx_chipinit(sc)) {
774 aprint_error_dev(sc->bnx_dev,
775 "Controller initialization failed!\n");
776 goto bnx_attach_fail;
777 }
778
779 /* Perform NVRAM test. */
780 if (bnx_nvram_test(sc)) {
781 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
782 goto bnx_attach_fail;
783 }
784
785 /* Fetch the permanent Ethernet MAC address. */
786 bnx_get_mac_addr(sc);
787 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
788 ether_sprintf(sc->eaddr));
789
790 /*
791 * Trip points control how many BDs
792 * should be ready before generating an
793 * interrupt while ticks control how long
794 * a BD can sit in the chain before
795 * generating an interrupt. Set the default
796 * values for the RX and TX rings.
797 */
798
799 #ifdef BNX_DEBUG
800 /* Force more frequent interrupts. */
801 sc->bnx_tx_quick_cons_trip_int = 1;
802 sc->bnx_tx_quick_cons_trip = 1;
803 sc->bnx_tx_ticks_int = 0;
804 sc->bnx_tx_ticks = 0;
805
806 sc->bnx_rx_quick_cons_trip_int = 1;
807 sc->bnx_rx_quick_cons_trip = 1;
808 sc->bnx_rx_ticks_int = 0;
809 sc->bnx_rx_ticks = 0;
810 #else
811 sc->bnx_tx_quick_cons_trip_int = 20;
812 sc->bnx_tx_quick_cons_trip = 20;
813 sc->bnx_tx_ticks_int = 80;
814 sc->bnx_tx_ticks = 80;
815
816 sc->bnx_rx_quick_cons_trip_int = 6;
817 sc->bnx_rx_quick_cons_trip = 6;
818 sc->bnx_rx_ticks_int = 18;
819 sc->bnx_rx_ticks = 18;
820 #endif
821
822 /* Update statistics once every second. */
823 sc->bnx_stats_ticks = 1000000 & 0xffff00;
824
825 /* Find the media type for the adapter. */
826 bnx_get_media(sc);
827
828 /*
829 * Store config data needed by the PHY driver for
830 * backplane applications
831 */
832 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
833 BNX_SHARED_HW_CFG_CONFIG);
834 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
835 BNX_PORT_HW_CFG_CONFIG);
836
837 /* Allocate DMA memory resources. */
838 sc->bnx_dmatag = pa->pa_dmat;
839 if (bnx_dma_alloc(sc)) {
840 aprint_error_dev(sc->bnx_dev,
841 "DMA resource allocation failed!\n");
842 goto bnx_attach_fail;
843 }
844
845 /* Initialize the ifnet interface. */
846 ifp = &sc->bnx_ec.ec_if;
847 ifp->if_softc = sc;
848 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
849 ifp->if_ioctl = bnx_ioctl;
850 ifp->if_stop = bnx_stop;
851 ifp->if_start = bnx_start;
852 ifp->if_init = bnx_init;
853 ifp->if_watchdog = bnx_watchdog;
854 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
855 IFQ_SET_READY(&ifp->if_snd);
856 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
857
858 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
859 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
860 sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
861
862 ifp->if_capabilities |=
863 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
864 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
865 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
866
867 /* create workqueue to handle packet allocations */
868 if (workqueue_create(&sc->bnx_wq, device_xname(self),
869 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
870 aprint_error_dev(self, "failed to create workqueue\n");
871 goto bnx_attach_fail;
872 }
873
874 mii->mii_ifp = ifp;
875 mii->mii_readreg = bnx_miibus_read_reg;
876 mii->mii_writereg = bnx_miibus_write_reg;
877 mii->mii_statchg = bnx_miibus_statchg;
878
879 /* Handle any special PHY initialization for SerDes PHYs. */
880 bnx_init_media(sc);
881
882 sc->bnx_ec.ec_mii = mii;
883 ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
884
885 /* set phyflags and chipid before mii_attach() */
886 dict = device_properties(self);
887 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
888 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
889 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
890 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
891
892 /* Print some useful adapter info */
893 bnx_print_adapter_info(sc);
894
895 mii_flags |= MIIF_DOPAUSE;
896 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
897 mii_flags |= MIIF_HAVEFIBER;
898 mii_attach(self, mii, 0xffffffff,
899 sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
900
901 if (LIST_EMPTY(&mii->mii_phys)) {
902 aprint_error_dev(self, "no PHY found!\n");
903 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
904 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
905 } else
906 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
907
908 /* Attach to the Ethernet interface list. */
909 if_attach(ifp);
910 if_deferred_start_init(ifp, NULL);
911 ether_ifattach(ifp, sc->eaddr);
912
913 callout_init(&sc->bnx_timeout, 0);
914 callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
915
916 /* Hookup IRQ last. */
917 sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
918 bnx_intr, sc, device_xname(self));
919 if (sc->bnx_intrhand == NULL) {
920 aprint_error_dev(self, "couldn't establish interrupt");
921 if (intrstr != NULL)
922 aprint_error(" at %s", intrstr);
923 aprint_error("\n");
924 goto bnx_attach_fail;
925 }
926 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
927
928 if (pmf_device_register(self, NULL, NULL))
929 pmf_class_network_register(self, ifp);
930 else
931 aprint_error_dev(self, "couldn't establish power handler\n");
932
933 /* Print some important debugging info. */
934 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
935
936 /* Get the firmware running so ASF still works. */
937 bnx_mgmt_init(sc);
938
939 goto bnx_attach_exit;
940
941 bnx_attach_fail:
942 bnx_release_resources(sc);
943
944 bnx_attach_exit:
945 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
946 }
947
948 /****************************************************************************/
949 /* Device detach function. */
950 /* */
951 /* Stops the controller, resets the controller, and releases resources. */
952 /* */
953 /* Returns: */
954 /* 0 on success, positive value on failure. */
955 /****************************************************************************/
956 int
957 bnx_detach(device_t dev, int flags)
958 {
959 int s;
960 struct bnx_softc *sc;
961 struct ifnet *ifp;
962
963 sc = device_private(dev);
964 ifp = &sc->bnx_ec.ec_if;
965
966 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
967
968 /* Stop and reset the controller. */
969 s = splnet();
970 bnx_stop(ifp, 1);
971 splx(s);
972
973 pmf_device_deregister(dev);
974 callout_destroy(&sc->bnx_timeout);
975 ether_ifdetach(ifp);
976 workqueue_destroy(sc->bnx_wq);
977
978 if_detach(ifp);
979 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
980
981 /* Delete all remaining media. */
982 ifmedia_fini(&sc->bnx_mii.mii_media);
983
984 /* Release all remaining resources. */
985 bnx_release_resources(sc);
986
987 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
988
989 return 0;
990 }
991
992 /****************************************************************************/
993 /* Indirect register read. */
994 /* */
995 /* Reads NetXtreme II registers using an index/data register pair in PCI */
996 /* configuration space. Using this mechanism avoids issues with posted */
997 /* reads but is much slower than memory-mapped I/O. */
998 /* */
999 /* Returns: */
1000 /* The value of the register. */
1001 /****************************************************************************/
1002 uint32_t
1003 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
1004 {
1005 struct pci_attach_args *pa = &(sc->bnx_pa);
1006
1007 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1008 offset);
1009 #ifdef BNX_DEBUG
1010 {
1011 uint32_t val;
1012 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
1013 BNX_PCICFG_REG_WINDOW);
1014 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
1015 "val = 0x%08X\n", __func__, offset, val);
1016 return val;
1017 }
1018 #else
1019 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
1020 #endif
1021 }
1022
1023 /****************************************************************************/
1024 /* Indirect register write. */
1025 /* */
1026 /* Writes NetXtreme II registers using an index/data register pair in PCI */
1027 /* configuration space. Using this mechanism avoids issues with posted */
1028 /* writes but is muchh slower than memory-mapped I/O. */
1029 /* */
1030 /* Returns: */
1031 /* Nothing. */
1032 /****************************************************************************/
1033 void
1034 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
1035 {
1036 struct pci_attach_args *pa = &(sc->bnx_pa);
1037
1038 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
1039 __func__, offset, val);
1040
1041 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
1042 offset);
1043 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
1044 }
1045
1046 /****************************************************************************/
1047 /* Context memory write. */
1048 /* */
1049 /* The NetXtreme II controller uses context memory to track connection */
1050 /* information for L2 and higher network protocols. */
1051 /* */
1052 /* Returns: */
1053 /* Nothing. */
1054 /****************************************************************************/
1055 void
1056 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
1057 uint32_t ctx_val)
1058 {
1059 uint32_t idx, offset = ctx_offset + cid_addr;
1060 uint32_t val, retry_cnt = 5;
1061
1062 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1063 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
1064 REG_WR(sc, BNX_CTX_CTX_CTRL,
1065 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
1066
1067 for (idx = 0; idx < retry_cnt; idx++) {
1068 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1069 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1070 break;
1071 DELAY(5);
1072 }
1073
1074 #if 0
1075 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1076 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1077 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1078 __FILE__, __LINE__, cid_addr, ctx_offset);
1079 #endif
1080
1081 } else {
1082 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1083 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1084 }
1085 }
1086
1087 /****************************************************************************/
1088 /* PHY register read. */
1089 /* */
1090 /* Implements register reads on the MII bus. */
1091 /* */
1092 /* Returns: */
1093 /* The value of the register. */
1094 /****************************************************************************/
1095 int
1096 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1097 {
1098 struct bnx_softc *sc = device_private(dev);
1099 uint32_t data;
1100 int i, rv = 0;
1101
1102 /*
1103 * The BCM5709S PHY is an IEEE Clause 45 PHY
1104 * with special mappings to work with IEEE
1105 * Clause 22 register accesses.
1106 */
1107 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1108 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1109 reg += 0x10;
1110 }
1111
1112 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1113 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1114 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1115
1116 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1117 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1118
1119 DELAY(40);
1120 }
1121
1122 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1123 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1124 BNX_EMAC_MDIO_COMM_START_BUSY;
1125 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1126
1127 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1128 DELAY(10);
1129
1130 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1131 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1132 DELAY(5);
1133
1134 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1135 data &= BNX_EMAC_MDIO_COMM_DATA;
1136
1137 break;
1138 }
1139 }
1140
1141 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1142 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1143 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1144 rv = ETIMEDOUT;
1145 } else {
1146 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1147 *val = data & 0xffff;
1148
1149 DBPRINT(sc, BNX_EXCESSIVE,
1150 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1151 phy, (uint16_t) reg & 0xffff, *val);
1152 }
1153
1154 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1155 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1156 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1157
1158 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1159 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1160
1161 DELAY(40);
1162 }
1163
1164 return rv;
1165 }
1166
1167 /****************************************************************************/
1168 /* PHY register write. */
1169 /* */
1170 /* Implements register writes on the MII bus. */
1171 /* */
1172 /* Returns: */
1173 /* The value of the register. */
1174 /****************************************************************************/
1175 int
1176 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1177 {
1178 struct bnx_softc *sc = device_private(dev);
1179 uint32_t val1;
1180 int i, rv = 0;
1181
1182 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1183 "val = 0x%04hX\n", __func__,
1184 phy, (uint16_t) reg & 0xffff, val);
1185
1186 /*
1187 * The BCM5709S PHY is an IEEE Clause 45 PHY
1188 * with special mappings to work with IEEE
1189 * Clause 22 register accesses.
1190 */
1191 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1192 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1193 reg += 0x10;
1194 }
1195
1196 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1197 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1198 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1199
1200 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1201 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1202
1203 DELAY(40);
1204 }
1205
1206 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1207 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1208 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1209 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1210
1211 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1212 DELAY(10);
1213
1214 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1215 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1216 DELAY(5);
1217 break;
1218 }
1219 }
1220
1221 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1222 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1223 __LINE__);
1224 rv = ETIMEDOUT;
1225 }
1226
1227 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1228 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1229 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1230
1231 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1232 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1233
1234 DELAY(40);
1235 }
1236
1237 return rv;
1238 }
1239
1240 /****************************************************************************/
1241 /* MII bus status change. */
1242 /* */
1243 /* Called by the MII bus driver when the PHY establishes link to set the */
1244 /* MAC interface registers. */
1245 /* */
1246 /* Returns: */
1247 /* Nothing. */
1248 /****************************************************************************/
1249 void
1250 bnx_miibus_statchg(struct ifnet *ifp)
1251 {
1252 struct bnx_softc *sc = ifp->if_softc;
1253 struct mii_data *mii = &sc->bnx_mii;
1254 uint32_t rx_mode = sc->rx_mode;
1255 int val;
1256
1257 val = REG_RD(sc, BNX_EMAC_MODE);
1258 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1259 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1260 BNX_EMAC_MODE_25G);
1261
1262 /*
1263 * Get flow control negotiation result.
1264 */
1265 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1266 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1267 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1268 mii->mii_media_active &= ~IFM_ETH_FMASK;
1269 }
1270
1271 /* Set MII or GMII interface based on the speed
1272 * negotiated by the PHY.
1273 */
1274 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1275 case IFM_10_T:
1276 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1277 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1278 val |= BNX_EMAC_MODE_PORT_MII_10;
1279 break;
1280 }
1281 /* FALLTHROUGH */
1282 case IFM_100_TX:
1283 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1284 val |= BNX_EMAC_MODE_PORT_MII;
1285 break;
1286 case IFM_2500_SX:
1287 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1288 val |= BNX_EMAC_MODE_25G;
1289 /* FALLTHROUGH */
1290 case IFM_1000_T:
1291 case IFM_1000_SX:
1292 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1293 val |= BNX_EMAC_MODE_PORT_GMII;
1294 break;
1295 default:
1296 val |= BNX_EMAC_MODE_PORT_GMII;
1297 break;
1298 }
1299
1300 /* Set half or full duplex based on the duplicity
1301 * negotiated by the PHY.
1302 */
1303 if ((mii->mii_media_active & IFM_HDX) != 0) {
1304 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1305 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1306 } else
1307 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1308
1309 REG_WR(sc, BNX_EMAC_MODE, val);
1310
1311 /*
1312 * 802.3x flow control
1313 */
1314 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1315 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1316 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1317 } else {
1318 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1319 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1320 }
1321
1322 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1323 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1324 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1325 } else {
1326 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1327 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1328 }
1329
1330 /* Only make changes if the receive mode has actually changed. */
1331 if (rx_mode != sc->rx_mode) {
1332 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1333 rx_mode);
1334
1335 sc->rx_mode = rx_mode;
1336 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1337
1338 bnx_init_rx_context(sc);
1339 }
1340 }
1341
1342 /****************************************************************************/
1343 /* Acquire NVRAM lock. */
1344 /* */
1345 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1346 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1347 /* for use by the driver. */
1348 /* */
1349 /* Returns: */
1350 /* 0 on success, positive value on failure. */
1351 /****************************************************************************/
1352 int
1353 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1354 {
1355 uint32_t val;
1356 int j;
1357
1358 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1359
1360 /* Request access to the flash interface. */
1361 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1362 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1363 val = REG_RD(sc, BNX_NVM_SW_ARB);
1364 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1365 break;
1366
1367 DELAY(5);
1368 }
1369
1370 if (j >= NVRAM_TIMEOUT_COUNT) {
1371 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1372 return EBUSY;
1373 }
1374
1375 return 0;
1376 }
1377
1378 /****************************************************************************/
1379 /* Release NVRAM lock. */
1380 /* */
1381 /* When the caller is finished accessing NVRAM the lock must be released. */
1382 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1383 /* for use by the driver. */
1384 /* */
1385 /* Returns: */
1386 /* 0 on success, positive value on failure. */
1387 /****************************************************************************/
1388 int
1389 bnx_release_nvram_lock(struct bnx_softc *sc)
1390 {
1391 int j;
1392 uint32_t val;
1393
1394 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1395
1396 /* Relinquish nvram interface. */
1397 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1398
1399 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1400 val = REG_RD(sc, BNX_NVM_SW_ARB);
1401 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1402 break;
1403
1404 DELAY(5);
1405 }
1406
1407 if (j >= NVRAM_TIMEOUT_COUNT) {
1408 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1409 return EBUSY;
1410 }
1411
1412 return 0;
1413 }
1414
1415 #ifdef BNX_NVRAM_WRITE_SUPPORT
1416 /****************************************************************************/
1417 /* Enable NVRAM write access. */
1418 /* */
1419 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1420 /* */
1421 /* Returns: */
1422 /* 0 on success, positive value on failure. */
1423 /****************************************************************************/
1424 int
1425 bnx_enable_nvram_write(struct bnx_softc *sc)
1426 {
1427 uint32_t val;
1428
1429 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1430
1431 val = REG_RD(sc, BNX_MISC_CFG);
1432 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1433
1434 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1435 int j;
1436
1437 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1438 REG_WR(sc, BNX_NVM_COMMAND,
1439 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1440
1441 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1442 DELAY(5);
1443
1444 val = REG_RD(sc, BNX_NVM_COMMAND);
1445 if (val & BNX_NVM_COMMAND_DONE)
1446 break;
1447 }
1448
1449 if (j >= NVRAM_TIMEOUT_COUNT) {
1450 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1451 return EBUSY;
1452 }
1453 }
1454
1455 return 0;
1456 }
1457
1458 /****************************************************************************/
1459 /* Disable NVRAM write access. */
1460 /* */
1461 /* When the caller is finished writing to NVRAM write access must be */
1462 /* disabled. */
1463 /* */
1464 /* Returns: */
1465 /* Nothing. */
1466 /****************************************************************************/
1467 void
1468 bnx_disable_nvram_write(struct bnx_softc *sc)
1469 {
1470 uint32_t val;
1471
1472 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1473
1474 val = REG_RD(sc, BNX_MISC_CFG);
1475 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1476 }
1477 #endif
1478
1479 /****************************************************************************/
1480 /* Enable NVRAM access. */
1481 /* */
1482 /* Before accessing NVRAM for read or write operations the caller must */
1483 /* enabled NVRAM access. */
1484 /* */
1485 /* Returns: */
1486 /* Nothing. */
1487 /****************************************************************************/
1488 void
1489 bnx_enable_nvram_access(struct bnx_softc *sc)
1490 {
1491 uint32_t val;
1492
1493 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1494
1495 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1496 /* Enable both bits, even on read. */
1497 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1498 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1499 }
1500
1501 /****************************************************************************/
1502 /* Disable NVRAM access. */
1503 /* */
1504 /* When the caller is finished accessing NVRAM access must be disabled. */
1505 /* */
1506 /* Returns: */
1507 /* Nothing. */
1508 /****************************************************************************/
1509 void
1510 bnx_disable_nvram_access(struct bnx_softc *sc)
1511 {
1512 uint32_t val;
1513
1514 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1515
1516 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1517
1518 /* Disable both bits, even after read. */
1519 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1520 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1521 }
1522
1523 #ifdef BNX_NVRAM_WRITE_SUPPORT
1524 /****************************************************************************/
1525 /* Erase NVRAM page before writing. */
1526 /* */
1527 /* Non-buffered flash parts require that a page be erased before it is */
1528 /* written. */
1529 /* */
1530 /* Returns: */
1531 /* 0 on success, positive value on failure. */
1532 /****************************************************************************/
1533 int
1534 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1535 {
1536 uint32_t cmd;
1537 int j;
1538
1539 /* Buffered flash doesn't require an erase. */
1540 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1541 return 0;
1542
1543 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1544
1545 /* Build an erase command. */
1546 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1547 BNX_NVM_COMMAND_DOIT;
1548
1549 /*
1550 * Clear the DONE bit separately, set the NVRAM address to erase,
1551 * and issue the erase command.
1552 */
1553 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1554 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1555 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1556
1557 /* Wait for completion. */
1558 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1559 uint32_t val;
1560
1561 DELAY(5);
1562
1563 val = REG_RD(sc, BNX_NVM_COMMAND);
1564 if (val & BNX_NVM_COMMAND_DONE)
1565 break;
1566 }
1567
1568 if (j >= NVRAM_TIMEOUT_COUNT) {
1569 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1570 return EBUSY;
1571 }
1572
1573 return 0;
1574 }
1575 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1576
1577 /****************************************************************************/
1578 /* Read a dword (32 bits) from NVRAM. */
1579 /* */
1580 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1581 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1582 /* */
1583 /* Returns: */
1584 /* 0 on success and the 32 bit value read, positive value on failure. */
1585 /****************************************************************************/
1586 int
1587 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1588 uint8_t *ret_val, uint32_t cmd_flags)
1589 {
1590 uint32_t cmd;
1591 int i, rc = 0;
1592
1593 /* Build the command word. */
1594 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1595
1596 /* Calculate the offset for buffered flash if translation is used. */
1597 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1598 offset = ((offset / sc->bnx_flash_info->page_size) <<
1599 sc->bnx_flash_info->page_bits) +
1600 (offset % sc->bnx_flash_info->page_size);
1601 }
1602
1603 /*
1604 * Clear the DONE bit separately, set the address to read,
1605 * and issue the read.
1606 */
1607 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1608 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1609 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1610
1611 /* Wait for completion. */
1612 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1613 uint32_t val;
1614
1615 DELAY(5);
1616
1617 val = REG_RD(sc, BNX_NVM_COMMAND);
1618 if (val & BNX_NVM_COMMAND_DONE) {
1619 val = REG_RD(sc, BNX_NVM_READ);
1620
1621 val = be32toh(val);
1622 memcpy(ret_val, &val, 4);
1623 break;
1624 }
1625 }
1626
1627 /* Check for errors. */
1628 if (i >= NVRAM_TIMEOUT_COUNT) {
1629 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1630 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1631 rc = EBUSY;
1632 }
1633
1634 return rc;
1635 }
1636
1637 #ifdef BNX_NVRAM_WRITE_SUPPORT
1638 /****************************************************************************/
1639 /* Write a dword (32 bits) to NVRAM. */
1640 /* */
1641 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1642 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1643 /* enabled NVRAM write access. */
1644 /* */
1645 /* Returns: */
1646 /* 0 on success, positive value on failure. */
1647 /****************************************************************************/
1648 int
1649 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1650 uint32_t cmd_flags)
1651 {
1652 uint32_t cmd, val32;
1653 int j;
1654
1655 /* Build the command word. */
1656 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1657
1658 /* Calculate the offset for buffered flash if translation is used. */
1659 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1660 offset = ((offset / sc->bnx_flash_info->page_size) <<
1661 sc->bnx_flash_info->page_bits) +
1662 (offset % sc->bnx_flash_info->page_size);
1663 }
1664
1665 /*
1666 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1667 * set the NVRAM address to write, and issue the write command
1668 */
1669 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1670 memcpy(&val32, val, 4);
1671 val32 = htobe32(val32);
1672 REG_WR(sc, BNX_NVM_WRITE, val32);
1673 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1674 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1675
1676 /* Wait for completion. */
1677 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1678 DELAY(5);
1679
1680 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1681 break;
1682 }
1683 if (j >= NVRAM_TIMEOUT_COUNT) {
1684 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1685 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1686 return EBUSY;
1687 }
1688
1689 return 0;
1690 }
1691 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1692
1693 /****************************************************************************/
1694 /* Initialize NVRAM access. */
1695 /* */
1696 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1697 /* access that device. */
1698 /* */
1699 /* Returns: */
1700 /* 0 on success, positive value on failure. */
1701 /****************************************************************************/
1702 int
1703 bnx_init_nvram(struct bnx_softc *sc)
1704 {
1705 uint32_t val;
1706 int j, entry_count, rc = 0;
1707 struct flash_spec *flash;
1708
1709 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1710
1711 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1712 sc->bnx_flash_info = &flash_5709;
1713 goto bnx_init_nvram_get_flash_size;
1714 }
1715
1716 /* Determine the selected interface. */
1717 val = REG_RD(sc, BNX_NVM_CFG1);
1718
1719 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1720
1721 /*
1722 * Flash reconfiguration is required to support additional
1723 * NVRAM devices not directly supported in hardware.
1724 * Check if the flash interface was reconfigured
1725 * by the bootcode.
1726 */
1727
1728 if (val & 0x40000000) {
1729 /* Flash interface reconfigured by bootcode. */
1730
1731 DBPRINT(sc, BNX_INFO_LOAD,
1732 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1733
1734 for (j = 0, flash = &flash_table[0]; j < entry_count;
1735 j++, flash++) {
1736 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1737 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1738 sc->bnx_flash_info = flash;
1739 break;
1740 }
1741 }
1742 } else {
1743 /* Flash interface not yet reconfigured. */
1744 uint32_t mask;
1745
1746 DBPRINT(sc, BNX_INFO_LOAD,
1747 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1748
1749 if (val & (1 << 23))
1750 mask = FLASH_BACKUP_STRAP_MASK;
1751 else
1752 mask = FLASH_STRAP_MASK;
1753
1754 /* Look for the matching NVRAM device configuration data. */
1755 for (j = 0, flash = &flash_table[0]; j < entry_count;
1756 j++, flash++) {
1757 /* Check if the dev matches any of the known devices. */
1758 if ((val & mask) == (flash->strapping & mask)) {
1759 /* Found a device match. */
1760 sc->bnx_flash_info = flash;
1761
1762 /* Request access to the flash interface. */
1763 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1764 return rc;
1765
1766 /* Reconfigure the flash interface. */
1767 bnx_enable_nvram_access(sc);
1768 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1769 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1770 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1771 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1772 bnx_disable_nvram_access(sc);
1773 bnx_release_nvram_lock(sc);
1774
1775 break;
1776 }
1777 }
1778 }
1779
1780 /* Check if a matching device was found. */
1781 if (j == entry_count) {
1782 sc->bnx_flash_info = NULL;
1783 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1784 __FILE__, __LINE__);
1785 rc = ENODEV;
1786 }
1787
1788 bnx_init_nvram_get_flash_size:
1789 /* Write the flash config data to the shared memory interface. */
1790 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1791 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1792 if (val)
1793 sc->bnx_flash_size = val;
1794 else
1795 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1796
1797 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1798 "0x%08X\n", sc->bnx_flash_info->total_size);
1799
1800 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1801
1802 return rc;
1803 }
1804
1805 /****************************************************************************/
1806 /* Read an arbitrary range of data from NVRAM. */
1807 /* */
1808 /* Prepares the NVRAM interface for access and reads the requested data */
1809 /* into the supplied buffer. */
1810 /* */
1811 /* Returns: */
1812 /* 0 on success and the data read, positive value on failure. */
1813 /****************************************************************************/
1814 int
1815 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1816 int buf_size)
1817 {
1818 int rc = 0;
1819 uint32_t cmd_flags, offset32, len32, extra;
1820
1821 if (buf_size == 0)
1822 return 0;
1823
1824 /* Request access to the flash interface. */
1825 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1826 return rc;
1827
1828 /* Enable access to flash interface */
1829 bnx_enable_nvram_access(sc);
1830
1831 len32 = buf_size;
1832 offset32 = offset;
1833 extra = 0;
1834
1835 cmd_flags = 0;
1836
1837 if (offset32 & 3) {
1838 uint8_t buf[4];
1839 uint32_t pre_len;
1840
1841 offset32 &= ~3;
1842 pre_len = 4 - (offset & 3);
1843
1844 if (pre_len >= len32) {
1845 pre_len = len32;
1846 cmd_flags =
1847 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1848 } else
1849 cmd_flags = BNX_NVM_COMMAND_FIRST;
1850
1851 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1852
1853 if (rc)
1854 return rc;
1855
1856 memcpy(ret_buf, buf + (offset & 3), pre_len);
1857
1858 offset32 += 4;
1859 ret_buf += pre_len;
1860 len32 -= pre_len;
1861 }
1862
1863 if (len32 & 3) {
1864 extra = 4 - (len32 & 3);
1865 len32 = (len32 + 4) & ~3;
1866 }
1867
1868 if (len32 == 4) {
1869 uint8_t buf[4];
1870
1871 if (cmd_flags)
1872 cmd_flags = BNX_NVM_COMMAND_LAST;
1873 else
1874 cmd_flags =
1875 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1876
1877 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1878
1879 memcpy(ret_buf, buf, 4 - extra);
1880 } else if (len32 > 0) {
1881 uint8_t buf[4];
1882
1883 /* Read the first word. */
1884 if (cmd_flags)
1885 cmd_flags = 0;
1886 else
1887 cmd_flags = BNX_NVM_COMMAND_FIRST;
1888
1889 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1890
1891 /* Advance to the next dword. */
1892 offset32 += 4;
1893 ret_buf += 4;
1894 len32 -= 4;
1895
1896 while (len32 > 4 && rc == 0) {
1897 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1898
1899 /* Advance to the next dword. */
1900 offset32 += 4;
1901 ret_buf += 4;
1902 len32 -= 4;
1903 }
1904
1905 if (rc)
1906 return rc;
1907
1908 cmd_flags = BNX_NVM_COMMAND_LAST;
1909 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1910
1911 memcpy(ret_buf, buf, 4 - extra);
1912 }
1913
1914 /* Disable access to flash interface and release the lock. */
1915 bnx_disable_nvram_access(sc);
1916 bnx_release_nvram_lock(sc);
1917
1918 return rc;
1919 }
1920
1921 #ifdef BNX_NVRAM_WRITE_SUPPORT
1922 /****************************************************************************/
1923 /* Write an arbitrary range of data from NVRAM. */
1924 /* */
1925 /* Prepares the NVRAM interface for write access and writes the requested */
1926 /* data from the supplied buffer. The caller is responsible for */
1927 /* calculating any appropriate CRCs. */
1928 /* */
1929 /* Returns: */
1930 /* 0 on success, positive value on failure. */
1931 /****************************************************************************/
1932 int
1933 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1934 int buf_size)
1935 {
1936 uint32_t written, offset32, len32;
1937 uint8_t *buf, start[4], end[4];
1938 int rc = 0;
1939 int align_start, align_end;
1940
1941 buf = data_buf;
1942 offset32 = offset;
1943 len32 = buf_size;
1944 align_start = align_end = 0;
1945
1946 if ((align_start = (offset32 & 3))) {
1947 offset32 &= ~3;
1948 len32 += align_start;
1949 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1950 return rc;
1951 }
1952
1953 if (len32 & 3) {
1954 if ((len32 > 4) || !align_start) {
1955 align_end = 4 - (len32 & 3);
1956 len32 += align_end;
1957 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1958 end, 4)))
1959 return rc;
1960 }
1961 }
1962
1963 if (align_start || align_end) {
1964 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1965 if (buf == NULL)
1966 return ENOMEM;
1967
1968 if (align_start)
1969 memcpy(buf, start, 4);
1970
1971 if (align_end)
1972 memcpy(buf + len32 - 4, end, 4);
1973
1974 memcpy(buf + align_start, data_buf, buf_size);
1975 }
1976
1977 written = 0;
1978 while ((written < len32) && (rc == 0)) {
1979 uint32_t page_start, page_end, data_start, data_end;
1980 uint32_t addr, cmd_flags;
1981 int i;
1982 uint8_t flash_buffer[264];
1983
1984 /* Find the page_start addr */
1985 page_start = offset32 + written;
1986 page_start -= (page_start % sc->bnx_flash_info->page_size);
1987 /* Find the page_end addr */
1988 page_end = page_start + sc->bnx_flash_info->page_size;
1989 /* Find the data_start addr */
1990 data_start = (written == 0) ? offset32 : page_start;
1991 /* Find the data_end addr */
1992 data_end = (page_end > offset32 + len32) ?
1993 (offset32 + len32) : page_end;
1994
1995 /* Request access to the flash interface. */
1996 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1997 goto nvram_write_end;
1998
1999 /* Enable access to flash interface */
2000 bnx_enable_nvram_access(sc);
2001
2002 cmd_flags = BNX_NVM_COMMAND_FIRST;
2003 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2004 int j;
2005
2006 /* Read the whole page into the buffer
2007 * (non-buffer flash only) */
2008 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
2009 if (j == (sc->bnx_flash_info->page_size - 4))
2010 cmd_flags |= BNX_NVM_COMMAND_LAST;
2011
2012 rc = bnx_nvram_read_dword(sc,
2013 page_start + j,
2014 &flash_buffer[j],
2015 cmd_flags);
2016
2017 if (rc)
2018 goto nvram_write_end;
2019
2020 cmd_flags = 0;
2021 }
2022 }
2023
2024 /* Enable writes to flash interface (unlock write-protect) */
2025 if ((rc = bnx_enable_nvram_write(sc)) != 0)
2026 goto nvram_write_end;
2027
2028 /* Erase the page */
2029 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
2030 goto nvram_write_end;
2031
2032 /* Re-enable the write again for the actual write */
2033 bnx_enable_nvram_write(sc);
2034
2035 /* Loop to write back the buffer data from page_start to
2036 * data_start */
2037 i = 0;
2038 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2039 for (addr = page_start; addr < data_start;
2040 addr += 4, i += 4) {
2041
2042 rc = bnx_nvram_write_dword(sc, addr,
2043 &flash_buffer[i], cmd_flags);
2044
2045 if (rc != 0)
2046 goto nvram_write_end;
2047
2048 cmd_flags = 0;
2049 }
2050 }
2051
2052 /* Loop to write the new data from data_start to data_end */
2053 for (addr = data_start; addr < data_end; addr += 4, i++) {
2054 if ((addr == page_end - 4) ||
2055 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
2056 && (addr == data_end - 4))) {
2057
2058 cmd_flags |= BNX_NVM_COMMAND_LAST;
2059 }
2060
2061 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2062
2063 if (rc != 0)
2064 goto nvram_write_end;
2065
2066 cmd_flags = 0;
2067 buf += 4;
2068 }
2069
2070 /* Loop to write back the buffer data from data_end
2071 * to page_end */
2072 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2073 for (addr = data_end; addr < page_end;
2074 addr += 4, i += 4) {
2075
2076 if (addr == page_end-4)
2077 cmd_flags = BNX_NVM_COMMAND_LAST;
2078
2079 rc = bnx_nvram_write_dword(sc, addr,
2080 &flash_buffer[i], cmd_flags);
2081
2082 if (rc != 0)
2083 goto nvram_write_end;
2084
2085 cmd_flags = 0;
2086 }
2087 }
2088
2089 /* Disable writes to flash interface (lock write-protect) */
2090 bnx_disable_nvram_write(sc);
2091
2092 /* Disable access to flash interface */
2093 bnx_disable_nvram_access(sc);
2094 bnx_release_nvram_lock(sc);
2095
2096 /* Increment written */
2097 written += data_end - data_start;
2098 }
2099
2100 nvram_write_end:
2101 if (align_start || align_end)
2102 free(buf, M_DEVBUF);
2103
2104 return rc;
2105 }
2106 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2107
2108 /****************************************************************************/
2109 /* Verifies that NVRAM is accessible and contains valid data. */
2110 /* */
2111 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2112 /* correct. */
2113 /* */
2114 /* Returns: */
2115 /* 0 on success, positive value on failure. */
2116 /****************************************************************************/
2117 int
2118 bnx_nvram_test(struct bnx_softc *sc)
2119 {
2120 uint32_t buf[BNX_NVRAM_SIZE / 4];
2121 uint8_t *data = (uint8_t *) buf;
2122 int rc = 0;
2123 uint32_t magic, csum;
2124
2125 /*
2126 * Check that the device NVRAM is valid by reading
2127 * the magic value at offset 0.
2128 */
2129 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2130 goto bnx_nvram_test_done;
2131
2132 magic = be32toh(buf[0]);
2133 if (magic != BNX_NVRAM_MAGIC) {
2134 rc = ENODEV;
2135 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2136 "Expected: 0x%08X, Found: 0x%08X\n",
2137 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2138 goto bnx_nvram_test_done;
2139 }
2140
2141 /*
2142 * Verify that the device NVRAM includes valid
2143 * configuration data.
2144 */
2145 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2146 goto bnx_nvram_test_done;
2147
2148 csum = ether_crc32_le(data, 0x100);
2149 if (csum != BNX_CRC32_RESIDUAL) {
2150 rc = ENODEV;
2151 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2152 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2153 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2154 goto bnx_nvram_test_done;
2155 }
2156
2157 csum = ether_crc32_le(data + 0x100, 0x100);
2158 if (csum != BNX_CRC32_RESIDUAL) {
2159 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2160 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2161 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2162 rc = ENODEV;
2163 }
2164
2165 bnx_nvram_test_done:
2166 return rc;
2167 }
2168
2169 /****************************************************************************/
2170 /* Identifies the current media type of the controller and sets the PHY */
2171 /* address. */
2172 /* */
2173 /* Returns: */
2174 /* Nothing. */
2175 /****************************************************************************/
2176 void
2177 bnx_get_media(struct bnx_softc *sc)
2178 {
2179 sc->bnx_phy_addr = 1;
2180
2181 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2182 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2183 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2184 uint32_t strap;
2185
2186 /*
2187 * The BCM5709S is software configurable
2188 * for Copper or SerDes operation.
2189 */
2190 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2191 DBPRINT(sc, BNX_INFO_LOAD,
2192 "5709 bonded for copper.\n");
2193 goto bnx_get_media_exit;
2194 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2195 DBPRINT(sc, BNX_INFO_LOAD,
2196 "5709 bonded for dual media.\n");
2197 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2198 goto bnx_get_media_exit;
2199 }
2200
2201 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2202 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2203 else {
2204 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2205 >> 8;
2206 }
2207
2208 if (sc->bnx_pa.pa_function == 0) {
2209 switch (strap) {
2210 case 0x4:
2211 case 0x5:
2212 case 0x6:
2213 DBPRINT(sc, BNX_INFO_LOAD,
2214 "BCM5709 s/w configured for SerDes.\n");
2215 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2216 break;
2217 default:
2218 DBPRINT(sc, BNX_INFO_LOAD,
2219 "BCM5709 s/w configured for Copper.\n");
2220 }
2221 } else {
2222 switch (strap) {
2223 case 0x1:
2224 case 0x2:
2225 case 0x4:
2226 DBPRINT(sc, BNX_INFO_LOAD,
2227 "BCM5709 s/w configured for SerDes.\n");
2228 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2229 break;
2230 default:
2231 DBPRINT(sc, BNX_INFO_LOAD,
2232 "BCM5709 s/w configured for Copper.\n");
2233 }
2234 }
2235
2236 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2237 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2238
2239 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2240 uint32_t val;
2241
2242 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2243
2244 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2245 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2246
2247 /*
2248 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2249 * separate PHY for SerDes.
2250 */
2251 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2252 sc->bnx_phy_addr = 2;
2253 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2254 BNX_SHARED_HW_CFG_CONFIG);
2255 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2256 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2257 DBPRINT(sc, BNX_INFO_LOAD,
2258 "Found 2.5Gb capable adapter\n");
2259 }
2260 }
2261 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2262 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2263 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2264
2265 bnx_get_media_exit:
2266 DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
2267 "Using PHY address %d.\n", sc->bnx_phy_addr);
2268 }
2269
2270 /****************************************************************************/
2271 /* Performs PHY initialization required before MII drivers access the */
2272 /* device. */
2273 /* */
2274 /* Returns: */
2275 /* Nothing. */
2276 /****************************************************************************/
2277 void
2278 bnx_init_media(struct bnx_softc *sc)
2279 {
2280 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2281 /*
2282 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2283 * IEEE Clause 22 method. Otherwise we have no way to attach
2284 * the PHY to the mii(4) layer. PHY specific configuration
2285 * is done by the mii(4) layer.
2286 */
2287
2288 /* Select auto-negotiation MMD of the PHY. */
2289 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2290 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2291
2292 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2293 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2294
2295 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2296 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2297 }
2298 }
2299
2300 /****************************************************************************/
2301 /* Free any DMA memory owned by the driver. */
2302 /* */
2303 /* Scans through each data structre that requires DMA memory and frees */
2304 /* the memory if allocated. */
2305 /* */
2306 /* Returns: */
2307 /* Nothing. */
2308 /****************************************************************************/
2309 void
2310 bnx_dma_free(struct bnx_softc *sc)
2311 {
2312 int i;
2313
2314 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2315
2316 /* Destroy the status block. */
2317 if (sc->status_block != NULL && sc->status_map != NULL) {
2318 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2319 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2320 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2321 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2322 BNX_STATUS_BLK_SZ);
2323 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2324 sc->status_rseg);
2325 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2326 sc->status_block = NULL;
2327 sc->status_map = NULL;
2328 }
2329
2330 /* Destroy the statistics block. */
2331 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2332 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2333 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2334 BNX_STATS_BLK_SZ);
2335 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2336 sc->stats_rseg);
2337 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2338 sc->stats_block = NULL;
2339 sc->stats_map = NULL;
2340 }
2341
2342 /* Free, unmap and destroy all context memory pages. */
2343 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2344 for (i = 0; i < sc->ctx_pages; i++) {
2345 if (sc->ctx_block[i] != NULL) {
2346 bus_dmamap_unload(sc->bnx_dmatag,
2347 sc->ctx_map[i]);
2348 bus_dmamem_unmap(sc->bnx_dmatag,
2349 (void *)sc->ctx_block[i],
2350 BCM_PAGE_SIZE);
2351 bus_dmamem_free(sc->bnx_dmatag,
2352 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2353 bus_dmamap_destroy(sc->bnx_dmatag,
2354 sc->ctx_map[i]);
2355 sc->ctx_block[i] = NULL;
2356 }
2357 }
2358 }
2359
2360 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2361 for (i = 0; i < TX_PAGES; i++ ) {
2362 if (sc->tx_bd_chain[i] != NULL &&
2363 sc->tx_bd_chain_map[i] != NULL) {
2364 bus_dmamap_unload(sc->bnx_dmatag,
2365 sc->tx_bd_chain_map[i]);
2366 bus_dmamem_unmap(sc->bnx_dmatag,
2367 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2368 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2369 sc->tx_bd_chain_rseg[i]);
2370 bus_dmamap_destroy(sc->bnx_dmatag,
2371 sc->tx_bd_chain_map[i]);
2372 sc->tx_bd_chain[i] = NULL;
2373 sc->tx_bd_chain_map[i] = NULL;
2374 }
2375 }
2376
2377 /* Destroy the TX dmamaps. */
2378 /* This isn't necessary since we dont allocate them up front */
2379
2380 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2381 for (i = 0; i < RX_PAGES; i++ ) {
2382 if (sc->rx_bd_chain[i] != NULL &&
2383 sc->rx_bd_chain_map[i] != NULL) {
2384 bus_dmamap_unload(sc->bnx_dmatag,
2385 sc->rx_bd_chain_map[i]);
2386 bus_dmamem_unmap(sc->bnx_dmatag,
2387 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2388 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2389 sc->rx_bd_chain_rseg[i]);
2390
2391 bus_dmamap_destroy(sc->bnx_dmatag,
2392 sc->rx_bd_chain_map[i]);
2393 sc->rx_bd_chain[i] = NULL;
2394 sc->rx_bd_chain_map[i] = NULL;
2395 }
2396 }
2397
2398 /* Unload and destroy the RX mbuf maps. */
2399 for (i = 0; i < TOTAL_RX_BD; i++) {
2400 if (sc->rx_mbuf_map[i] != NULL) {
2401 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2402 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2403 }
2404 }
2405
2406 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2407 }
2408
2409 /****************************************************************************/
2410 /* Allocate any DMA memory needed by the driver. */
2411 /* */
2412 /* Allocates DMA memory needed for the various global structures needed by */
2413 /* hardware. */
2414 /* */
2415 /* Returns: */
2416 /* 0 for success, positive value for failure. */
2417 /****************************************************************************/
2418 int
2419 bnx_dma_alloc(struct bnx_softc *sc)
2420 {
2421 int i, rc = 0;
2422
2423 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2424
2425 /*
2426 * Allocate DMA memory for the status block, map the memory into DMA
2427 * space, and fetch the physical address of the block.
2428 */
2429 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2430 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2431 aprint_error_dev(sc->bnx_dev,
2432 "Could not create status block DMA map!\n");
2433 rc = ENOMEM;
2434 goto bnx_dma_alloc_exit;
2435 }
2436
2437 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2438 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2439 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2440 aprint_error_dev(sc->bnx_dev,
2441 "Could not allocate status block DMA memory!\n");
2442 rc = ENOMEM;
2443 goto bnx_dma_alloc_exit;
2444 }
2445
2446 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2447 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2448 aprint_error_dev(sc->bnx_dev,
2449 "Could not map status block DMA memory!\n");
2450 rc = ENOMEM;
2451 goto bnx_dma_alloc_exit;
2452 }
2453
2454 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2455 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2456 aprint_error_dev(sc->bnx_dev,
2457 "Could not load status block DMA memory!\n");
2458 rc = ENOMEM;
2459 goto bnx_dma_alloc_exit;
2460 }
2461
2462 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2463 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2464
2465 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2466 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2467
2468 /* DRC - Fix for 64 bit addresses. */
2469 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2470 (uint32_t) sc->status_block_paddr);
2471
2472 /* BCM5709 uses host memory as cache for context memory. */
2473 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2474 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2475 if (sc->ctx_pages == 0)
2476 sc->ctx_pages = 1;
2477 if (sc->ctx_pages > 4) /* XXX */
2478 sc->ctx_pages = 4;
2479
2480 DBRUNIF((sc->ctx_pages > 512),
2481 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2482 __FILE__, __LINE__, sc->ctx_pages));
2483
2484
2485 for (i = 0; i < sc->ctx_pages; i++) {
2486 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2487 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2488 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2489 &sc->ctx_map[i]) != 0) {
2490 rc = ENOMEM;
2491 goto bnx_dma_alloc_exit;
2492 }
2493
2494 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2495 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2496 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2497 rc = ENOMEM;
2498 goto bnx_dma_alloc_exit;
2499 }
2500
2501 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2502 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2503 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2504 rc = ENOMEM;
2505 goto bnx_dma_alloc_exit;
2506 }
2507
2508 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2509 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2510 BUS_DMA_NOWAIT) != 0) {
2511 rc = ENOMEM;
2512 goto bnx_dma_alloc_exit;
2513 }
2514
2515 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2516 }
2517 }
2518
2519 /*
2520 * Allocate DMA memory for the statistics block, map the memory into
2521 * DMA space, and fetch the physical address of the block.
2522 */
2523 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2524 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2525 aprint_error_dev(sc->bnx_dev,
2526 "Could not create stats block DMA map!\n");
2527 rc = ENOMEM;
2528 goto bnx_dma_alloc_exit;
2529 }
2530
2531 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2532 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2533 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2534 aprint_error_dev(sc->bnx_dev,
2535 "Could not allocate stats block DMA memory!\n");
2536 rc = ENOMEM;
2537 goto bnx_dma_alloc_exit;
2538 }
2539
2540 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2541 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2542 aprint_error_dev(sc->bnx_dev,
2543 "Could not map stats block DMA memory!\n");
2544 rc = ENOMEM;
2545 goto bnx_dma_alloc_exit;
2546 }
2547
2548 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2549 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2550 aprint_error_dev(sc->bnx_dev,
2551 "Could not load status block DMA memory!\n");
2552 rc = ENOMEM;
2553 goto bnx_dma_alloc_exit;
2554 }
2555
2556 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2557 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2558
2559 /* DRC - Fix for 64 bit address. */
2560 DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
2561 (uint32_t) sc->stats_block_paddr);
2562
2563 /*
2564 * Allocate DMA memory for the TX buffer descriptor chain,
2565 * and fetch the physical address of the block.
2566 */
2567 for (i = 0; i < TX_PAGES; i++) {
2568 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2569 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2570 &sc->tx_bd_chain_map[i])) {
2571 aprint_error_dev(sc->bnx_dev,
2572 "Could not create Tx desc %d DMA map!\n", i);
2573 rc = ENOMEM;
2574 goto bnx_dma_alloc_exit;
2575 }
2576
2577 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2578 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2579 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2580 aprint_error_dev(sc->bnx_dev,
2581 "Could not allocate TX desc %d DMA memory!\n",
2582 i);
2583 rc = ENOMEM;
2584 goto bnx_dma_alloc_exit;
2585 }
2586
2587 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2588 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2589 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2590 aprint_error_dev(sc->bnx_dev,
2591 "Could not map TX desc %d DMA memory!\n", i);
2592 rc = ENOMEM;
2593 goto bnx_dma_alloc_exit;
2594 }
2595
2596 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2597 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2598 BUS_DMA_NOWAIT)) {
2599 aprint_error_dev(sc->bnx_dev,
2600 "Could not load TX desc %d DMA memory!\n", i);
2601 rc = ENOMEM;
2602 goto bnx_dma_alloc_exit;
2603 }
2604
2605 sc->tx_bd_chain_paddr[i] =
2606 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2607
2608 /* DRC - Fix for 64 bit systems. */
2609 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2610 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2611 }
2612
2613 /*
2614 * Create lists to hold TX mbufs.
2615 */
2616 TAILQ_INIT(&sc->tx_free_pkts);
2617 TAILQ_INIT(&sc->tx_used_pkts);
2618 sc->tx_pkt_count = 0;
2619 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2620
2621 /*
2622 * Allocate DMA memory for the Rx buffer descriptor chain,
2623 * and fetch the physical address of the block.
2624 */
2625 for (i = 0; i < RX_PAGES; i++) {
2626 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2627 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2628 &sc->rx_bd_chain_map[i])) {
2629 aprint_error_dev(sc->bnx_dev,
2630 "Could not create Rx desc %d DMA map!\n", i);
2631 rc = ENOMEM;
2632 goto bnx_dma_alloc_exit;
2633 }
2634
2635 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2636 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2637 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2638 aprint_error_dev(sc->bnx_dev,
2639 "Could not allocate Rx desc %d DMA memory!\n", i);
2640 rc = ENOMEM;
2641 goto bnx_dma_alloc_exit;
2642 }
2643
2644 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2645 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2646 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2647 aprint_error_dev(sc->bnx_dev,
2648 "Could not map Rx desc %d DMA memory!\n", i);
2649 rc = ENOMEM;
2650 goto bnx_dma_alloc_exit;
2651 }
2652
2653 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2654 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2655 BUS_DMA_NOWAIT)) {
2656 aprint_error_dev(sc->bnx_dev,
2657 "Could not load Rx desc %d DMA memory!\n", i);
2658 rc = ENOMEM;
2659 goto bnx_dma_alloc_exit;
2660 }
2661
2662 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2663 sc->rx_bd_chain_paddr[i] =
2664 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2665
2666 /* DRC - Fix for 64 bit systems. */
2667 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2668 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2669 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2670 0, BNX_RX_CHAIN_PAGE_SZ,
2671 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2672 }
2673
2674 /*
2675 * Create DMA maps for the Rx buffer mbufs.
2676 */
2677 for (i = 0; i < TOTAL_RX_BD; i++) {
2678 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2679 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2680 &sc->rx_mbuf_map[i])) {
2681 aprint_error_dev(sc->bnx_dev,
2682 "Could not create Rx mbuf %d DMA map!\n", i);
2683 rc = ENOMEM;
2684 goto bnx_dma_alloc_exit;
2685 }
2686 }
2687
2688 bnx_dma_alloc_exit:
2689 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2690
2691 return rc;
2692 }
2693
2694 /****************************************************************************/
2695 /* Release all resources used by the driver. */
2696 /* */
2697 /* Releases all resources acquired by the driver including interrupts, */
2698 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2699 /* */
2700 /* Returns: */
2701 /* Nothing. */
2702 /****************************************************************************/
2703 void
2704 bnx_release_resources(struct bnx_softc *sc)
2705 {
2706 struct pci_attach_args *pa = &(sc->bnx_pa);
2707
2708 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2709
2710 bnx_dma_free(sc);
2711
2712 if (sc->bnx_intrhand != NULL)
2713 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2714
2715 if (sc->bnx_ih != NULL)
2716 pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
2717
2718 if (sc->bnx_size)
2719 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2720
2721 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2722 }
2723
2724 /****************************************************************************/
2725 /* Firmware synchronization. */
2726 /* */
2727 /* Before performing certain events such as a chip reset, synchronize with */
2728 /* the firmware first. */
2729 /* */
2730 /* Returns: */
2731 /* 0 for success, positive value for failure. */
2732 /****************************************************************************/
2733 int
2734 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2735 {
2736 int i, rc = 0;
2737 uint32_t val;
2738
2739 /* Don't waste any time if we've timed out before. */
2740 if (sc->bnx_fw_timed_out) {
2741 rc = EBUSY;
2742 goto bnx_fw_sync_exit;
2743 }
2744
2745 /* Increment the message sequence number. */
2746 sc->bnx_fw_wr_seq++;
2747 msg_data |= sc->bnx_fw_wr_seq;
2748
2749 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2750 msg_data);
2751
2752 /* Send the message to the bootcode driver mailbox. */
2753 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2754
2755 /* Wait for the bootcode to acknowledge the message. */
2756 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2757 /* Check for a response in the bootcode firmware mailbox. */
2758 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2759 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2760 break;
2761 DELAY(1000);
2762 }
2763
2764 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2765 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2766 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2767 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2768 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2769
2770 msg_data &= ~BNX_DRV_MSG_CODE;
2771 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2772
2773 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2774
2775 sc->bnx_fw_timed_out = 1;
2776 rc = EBUSY;
2777 }
2778
2779 bnx_fw_sync_exit:
2780 return rc;
2781 }
2782
2783 /****************************************************************************/
2784 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2785 /* */
2786 /* Returns: */
2787 /* Nothing. */
2788 /****************************************************************************/
2789 void
2790 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2791 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2792 {
2793 int i;
2794 uint32_t val;
2795
2796 /* Set the page size used by RV2P. */
2797 if (rv2p_proc == RV2P_PROC2) {
2798 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2799 USABLE_RX_BD_PER_PAGE);
2800 }
2801
2802 for (i = 0; i < rv2p_code_len; i += 8) {
2803 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2804 rv2p_code++;
2805 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2806 rv2p_code++;
2807
2808 if (rv2p_proc == RV2P_PROC1) {
2809 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2810 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2811 } else {
2812 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2813 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2814 }
2815 }
2816
2817 /* Reset the processor, un-stall is done later. */
2818 if (rv2p_proc == RV2P_PROC1)
2819 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2820 else
2821 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2822 }
2823
2824 /****************************************************************************/
2825 /* Load RISC processor firmware. */
2826 /* */
2827 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2828 /* associated with a particular processor. */
2829 /* */
2830 /* Returns: */
2831 /* Nothing. */
2832 /****************************************************************************/
2833 void
2834 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2835 struct fw_info *fw)
2836 {
2837 uint32_t offset;
2838 uint32_t val;
2839
2840 /* Halt the CPU. */
2841 val = REG_RD_IND(sc, cpu_reg->mode);
2842 val |= cpu_reg->mode_value_halt;
2843 REG_WR_IND(sc, cpu_reg->mode, val);
2844 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2845
2846 /* Load the Text area. */
2847 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2848 if (fw->text) {
2849 int j;
2850
2851 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2852 REG_WR_IND(sc, offset, fw->text[j]);
2853 }
2854
2855 /* Load the Data area. */
2856 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2857 if (fw->data) {
2858 int j;
2859
2860 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2861 REG_WR_IND(sc, offset, fw->data[j]);
2862 }
2863
2864 /* Load the SBSS area. */
2865 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2866 if (fw->sbss) {
2867 int j;
2868
2869 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2870 REG_WR_IND(sc, offset, fw->sbss[j]);
2871 }
2872
2873 /* Load the BSS area. */
2874 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2875 if (fw->bss) {
2876 int j;
2877
2878 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2879 REG_WR_IND(sc, offset, fw->bss[j]);
2880 }
2881
2882 /* Load the Read-Only area. */
2883 offset = cpu_reg->spad_base +
2884 (fw->rodata_addr - cpu_reg->mips_view_base);
2885 if (fw->rodata) {
2886 int j;
2887
2888 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2889 REG_WR_IND(sc, offset, fw->rodata[j]);
2890 }
2891
2892 /* Clear the pre-fetch instruction. */
2893 REG_WR_IND(sc, cpu_reg->inst, 0);
2894 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2895
2896 /* Start the CPU. */
2897 val = REG_RD_IND(sc, cpu_reg->mode);
2898 val &= ~cpu_reg->mode_value_halt;
2899 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2900 REG_WR_IND(sc, cpu_reg->mode, val);
2901 }
2902
2903 /****************************************************************************/
2904 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2905 /* */
2906 /* Loads the firmware for each CPU and starts the CPU. */
2907 /* */
2908 /* Returns: */
2909 /* Nothing. */
2910 /****************************************************************************/
2911 void
2912 bnx_init_cpus(struct bnx_softc *sc)
2913 {
2914 struct cpu_reg cpu_reg;
2915 struct fw_info fw;
2916
2917 switch (BNX_CHIP_NUM(sc)) {
2918 case BNX_CHIP_NUM_5709:
2919 /* Initialize the RV2P processor. */
2920 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2921 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2922 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2923 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2924 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2925 } else {
2926 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2927 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2928 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2929 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2930 }
2931
2932 /* Initialize the RX Processor. */
2933 cpu_reg.mode = BNX_RXP_CPU_MODE;
2934 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2935 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2936 cpu_reg.state = BNX_RXP_CPU_STATE;
2937 cpu_reg.state_value_clear = 0xffffff;
2938 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2939 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2940 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2941 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2942 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2943 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2944 cpu_reg.mips_view_base = 0x8000000;
2945
2946 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2947 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2948 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2949 fw.start_addr = bnx_RXP_b09FwStartAddr;
2950
2951 fw.text_addr = bnx_RXP_b09FwTextAddr;
2952 fw.text_len = bnx_RXP_b09FwTextLen;
2953 fw.text_index = 0;
2954 fw.text = bnx_RXP_b09FwText;
2955
2956 fw.data_addr = bnx_RXP_b09FwDataAddr;
2957 fw.data_len = bnx_RXP_b09FwDataLen;
2958 fw.data_index = 0;
2959 fw.data = bnx_RXP_b09FwData;
2960
2961 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2962 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2963 fw.sbss_index = 0;
2964 fw.sbss = bnx_RXP_b09FwSbss;
2965
2966 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2967 fw.bss_len = bnx_RXP_b09FwBssLen;
2968 fw.bss_index = 0;
2969 fw.bss = bnx_RXP_b09FwBss;
2970
2971 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2972 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2973 fw.rodata_index = 0;
2974 fw.rodata = bnx_RXP_b09FwRodata;
2975
2976 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2977 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2978
2979 /* Initialize the TX Processor. */
2980 cpu_reg.mode = BNX_TXP_CPU_MODE;
2981 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2982 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2983 cpu_reg.state = BNX_TXP_CPU_STATE;
2984 cpu_reg.state_value_clear = 0xffffff;
2985 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2986 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2987 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2988 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2989 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2990 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2991 cpu_reg.mips_view_base = 0x8000000;
2992
2993 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2994 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2995 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2996 fw.start_addr = bnx_TXP_b09FwStartAddr;
2997
2998 fw.text_addr = bnx_TXP_b09FwTextAddr;
2999 fw.text_len = bnx_TXP_b09FwTextLen;
3000 fw.text_index = 0;
3001 fw.text = bnx_TXP_b09FwText;
3002
3003 fw.data_addr = bnx_TXP_b09FwDataAddr;
3004 fw.data_len = bnx_TXP_b09FwDataLen;
3005 fw.data_index = 0;
3006 fw.data = bnx_TXP_b09FwData;
3007
3008 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
3009 fw.sbss_len = bnx_TXP_b09FwSbssLen;
3010 fw.sbss_index = 0;
3011 fw.sbss = bnx_TXP_b09FwSbss;
3012
3013 fw.bss_addr = bnx_TXP_b09FwBssAddr;
3014 fw.bss_len = bnx_TXP_b09FwBssLen;
3015 fw.bss_index = 0;
3016 fw.bss = bnx_TXP_b09FwBss;
3017
3018 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
3019 fw.rodata_len = bnx_TXP_b09FwRodataLen;
3020 fw.rodata_index = 0;
3021 fw.rodata = bnx_TXP_b09FwRodata;
3022
3023 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3024 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3025
3026 /* Initialize the TX Patch-up Processor. */
3027 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3028 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3029 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3030 cpu_reg.state = BNX_TPAT_CPU_STATE;
3031 cpu_reg.state_value_clear = 0xffffff;
3032 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3033 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3034 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3035 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3036 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3037 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3038 cpu_reg.mips_view_base = 0x8000000;
3039
3040 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
3041 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
3042 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
3043 fw.start_addr = bnx_TPAT_b09FwStartAddr;
3044
3045 fw.text_addr = bnx_TPAT_b09FwTextAddr;
3046 fw.text_len = bnx_TPAT_b09FwTextLen;
3047 fw.text_index = 0;
3048 fw.text = bnx_TPAT_b09FwText;
3049
3050 fw.data_addr = bnx_TPAT_b09FwDataAddr;
3051 fw.data_len = bnx_TPAT_b09FwDataLen;
3052 fw.data_index = 0;
3053 fw.data = bnx_TPAT_b09FwData;
3054
3055 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
3056 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
3057 fw.sbss_index = 0;
3058 fw.sbss = bnx_TPAT_b09FwSbss;
3059
3060 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
3061 fw.bss_len = bnx_TPAT_b09FwBssLen;
3062 fw.bss_index = 0;
3063 fw.bss = bnx_TPAT_b09FwBss;
3064
3065 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3066 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3067 fw.rodata_index = 0;
3068 fw.rodata = bnx_TPAT_b09FwRodata;
3069
3070 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3071 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3072
3073 /* Initialize the Completion Processor. */
3074 cpu_reg.mode = BNX_COM_CPU_MODE;
3075 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3076 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3077 cpu_reg.state = BNX_COM_CPU_STATE;
3078 cpu_reg.state_value_clear = 0xffffff;
3079 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3080 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3081 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3082 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3083 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3084 cpu_reg.spad_base = BNX_COM_SCRATCH;
3085 cpu_reg.mips_view_base = 0x8000000;
3086
3087 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3088 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3089 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3090 fw.start_addr = bnx_COM_b09FwStartAddr;
3091
3092 fw.text_addr = bnx_COM_b09FwTextAddr;
3093 fw.text_len = bnx_COM_b09FwTextLen;
3094 fw.text_index = 0;
3095 fw.text = bnx_COM_b09FwText;
3096
3097 fw.data_addr = bnx_COM_b09FwDataAddr;
3098 fw.data_len = bnx_COM_b09FwDataLen;
3099 fw.data_index = 0;
3100 fw.data = bnx_COM_b09FwData;
3101
3102 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3103 fw.sbss_len = bnx_COM_b09FwSbssLen;
3104 fw.sbss_index = 0;
3105 fw.sbss = bnx_COM_b09FwSbss;
3106
3107 fw.bss_addr = bnx_COM_b09FwBssAddr;
3108 fw.bss_len = bnx_COM_b09FwBssLen;
3109 fw.bss_index = 0;
3110 fw.bss = bnx_COM_b09FwBss;
3111
3112 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3113 fw.rodata_len = bnx_COM_b09FwRodataLen;
3114 fw.rodata_index = 0;
3115 fw.rodata = bnx_COM_b09FwRodata;
3116 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3117 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3118 break;
3119 default:
3120 /* Initialize the RV2P processor. */
3121 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3122 RV2P_PROC1);
3123 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3124 RV2P_PROC2);
3125
3126 /* Initialize the RX Processor. */
3127 cpu_reg.mode = BNX_RXP_CPU_MODE;
3128 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3129 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3130 cpu_reg.state = BNX_RXP_CPU_STATE;
3131 cpu_reg.state_value_clear = 0xffffff;
3132 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3133 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3134 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3135 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3136 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3137 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3138 cpu_reg.mips_view_base = 0x8000000;
3139
3140 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3141 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3142 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3143 fw.start_addr = bnx_RXP_b06FwStartAddr;
3144
3145 fw.text_addr = bnx_RXP_b06FwTextAddr;
3146 fw.text_len = bnx_RXP_b06FwTextLen;
3147 fw.text_index = 0;
3148 fw.text = bnx_RXP_b06FwText;
3149
3150 fw.data_addr = bnx_RXP_b06FwDataAddr;
3151 fw.data_len = bnx_RXP_b06FwDataLen;
3152 fw.data_index = 0;
3153 fw.data = bnx_RXP_b06FwData;
3154
3155 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3156 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3157 fw.sbss_index = 0;
3158 fw.sbss = bnx_RXP_b06FwSbss;
3159
3160 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3161 fw.bss_len = bnx_RXP_b06FwBssLen;
3162 fw.bss_index = 0;
3163 fw.bss = bnx_RXP_b06FwBss;
3164
3165 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3166 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3167 fw.rodata_index = 0;
3168 fw.rodata = bnx_RXP_b06FwRodata;
3169
3170 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3171 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3172
3173 /* Initialize the TX Processor. */
3174 cpu_reg.mode = BNX_TXP_CPU_MODE;
3175 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3176 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3177 cpu_reg.state = BNX_TXP_CPU_STATE;
3178 cpu_reg.state_value_clear = 0xffffff;
3179 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3180 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3181 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3182 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3183 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3184 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3185 cpu_reg.mips_view_base = 0x8000000;
3186
3187 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3188 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3189 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3190 fw.start_addr = bnx_TXP_b06FwStartAddr;
3191
3192 fw.text_addr = bnx_TXP_b06FwTextAddr;
3193 fw.text_len = bnx_TXP_b06FwTextLen;
3194 fw.text_index = 0;
3195 fw.text = bnx_TXP_b06FwText;
3196
3197 fw.data_addr = bnx_TXP_b06FwDataAddr;
3198 fw.data_len = bnx_TXP_b06FwDataLen;
3199 fw.data_index = 0;
3200 fw.data = bnx_TXP_b06FwData;
3201
3202 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3203 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3204 fw.sbss_index = 0;
3205 fw.sbss = bnx_TXP_b06FwSbss;
3206
3207 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3208 fw.bss_len = bnx_TXP_b06FwBssLen;
3209 fw.bss_index = 0;
3210 fw.bss = bnx_TXP_b06FwBss;
3211
3212 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3213 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3214 fw.rodata_index = 0;
3215 fw.rodata = bnx_TXP_b06FwRodata;
3216
3217 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3218 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3219
3220 /* Initialize the TX Patch-up Processor. */
3221 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3222 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3223 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3224 cpu_reg.state = BNX_TPAT_CPU_STATE;
3225 cpu_reg.state_value_clear = 0xffffff;
3226 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3227 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3228 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3229 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3230 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3231 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3232 cpu_reg.mips_view_base = 0x8000000;
3233
3234 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3235 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3236 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3237 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3238
3239 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3240 fw.text_len = bnx_TPAT_b06FwTextLen;
3241 fw.text_index = 0;
3242 fw.text = bnx_TPAT_b06FwText;
3243
3244 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3245 fw.data_len = bnx_TPAT_b06FwDataLen;
3246 fw.data_index = 0;
3247 fw.data = bnx_TPAT_b06FwData;
3248
3249 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3250 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3251 fw.sbss_index = 0;
3252 fw.sbss = bnx_TPAT_b06FwSbss;
3253
3254 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3255 fw.bss_len = bnx_TPAT_b06FwBssLen;
3256 fw.bss_index = 0;
3257 fw.bss = bnx_TPAT_b06FwBss;
3258
3259 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3260 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3261 fw.rodata_index = 0;
3262 fw.rodata = bnx_TPAT_b06FwRodata;
3263
3264 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3265 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3266
3267 /* Initialize the Completion Processor. */
3268 cpu_reg.mode = BNX_COM_CPU_MODE;
3269 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3270 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3271 cpu_reg.state = BNX_COM_CPU_STATE;
3272 cpu_reg.state_value_clear = 0xffffff;
3273 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3274 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3275 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3276 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3277 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3278 cpu_reg.spad_base = BNX_COM_SCRATCH;
3279 cpu_reg.mips_view_base = 0x8000000;
3280
3281 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3282 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3283 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3284 fw.start_addr = bnx_COM_b06FwStartAddr;
3285
3286 fw.text_addr = bnx_COM_b06FwTextAddr;
3287 fw.text_len = bnx_COM_b06FwTextLen;
3288 fw.text_index = 0;
3289 fw.text = bnx_COM_b06FwText;
3290
3291 fw.data_addr = bnx_COM_b06FwDataAddr;
3292 fw.data_len = bnx_COM_b06FwDataLen;
3293 fw.data_index = 0;
3294 fw.data = bnx_COM_b06FwData;
3295
3296 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3297 fw.sbss_len = bnx_COM_b06FwSbssLen;
3298 fw.sbss_index = 0;
3299 fw.sbss = bnx_COM_b06FwSbss;
3300
3301 fw.bss_addr = bnx_COM_b06FwBssAddr;
3302 fw.bss_len = bnx_COM_b06FwBssLen;
3303 fw.bss_index = 0;
3304 fw.bss = bnx_COM_b06FwBss;
3305
3306 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3307 fw.rodata_len = bnx_COM_b06FwRodataLen;
3308 fw.rodata_index = 0;
3309 fw.rodata = bnx_COM_b06FwRodata;
3310 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3311 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3312 break;
3313 }
3314 }
3315
3316 /****************************************************************************/
3317 /* Initialize context memory. */
3318 /* */
3319 /* Clears the memory associated with each Context ID (CID). */
3320 /* */
3321 /* Returns: */
3322 /* Nothing. */
3323 /****************************************************************************/
3324 void
3325 bnx_init_context(struct bnx_softc *sc)
3326 {
3327 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3328 /* DRC: Replace this constant value with a #define. */
3329 int i, retry_cnt = 10;
3330 uint32_t val;
3331
3332 /*
3333 * BCM5709 context memory may be cached
3334 * in host memory so prepare the host memory
3335 * for access.
3336 */
3337 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3338 | (1 << 12);
3339 val |= (BCM_PAGE_BITS - 8) << 16;
3340 REG_WR(sc, BNX_CTX_COMMAND, val);
3341
3342 /* Wait for mem init command to complete. */
3343 for (i = 0; i < retry_cnt; i++) {
3344 val = REG_RD(sc, BNX_CTX_COMMAND);
3345 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3346 break;
3347 DELAY(2);
3348 }
3349
3350 /* ToDo: Consider returning an error here. */
3351
3352 for (i = 0; i < sc->ctx_pages; i++) {
3353 int j;
3354
3355 /* Set the physaddr of the context memory cache. */
3356 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3357 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3358 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3359 val = (uint32_t)
3360 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3361 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3362 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3363 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3364
3365 /* Verify that the context memory write was successful. */
3366 for (j = 0; j < retry_cnt; j++) {
3367 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3368 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3369 break;
3370 DELAY(5);
3371 }
3372
3373 /* ToDo: Consider returning an error here. */
3374 }
3375 } else {
3376 uint32_t vcid_addr, offset;
3377
3378 /*
3379 * For the 5706/5708, context memory is local to the
3380 * controller, so initialize the controller context memory.
3381 */
3382
3383 vcid_addr = GET_CID_ADDR(96);
3384 while (vcid_addr) {
3385
3386 vcid_addr -= BNX_PHY_CTX_SIZE;
3387
3388 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3389 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3390
3391 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3392 offset += 4)
3393 CTX_WR(sc, 0x00, offset, 0);
3394
3395 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3396 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3397 }
3398 }
3399 }
3400
3401 /****************************************************************************/
3402 /* Fetch the permanent MAC address of the controller. */
3403 /* */
3404 /* Returns: */
3405 /* Nothing. */
3406 /****************************************************************************/
3407 void
3408 bnx_get_mac_addr(struct bnx_softc *sc)
3409 {
3410 uint32_t mac_lo = 0, mac_hi = 0;
3411
3412 /*
3413 * The NetXtreme II bootcode populates various NIC
3414 * power-on and runtime configuration items in a
3415 * shared memory area. The factory configured MAC
3416 * address is available from both NVRAM and the
3417 * shared memory area so we'll read the value from
3418 * shared memory for speed.
3419 */
3420
3421 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3422 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3423
3424 if ((mac_lo == 0) && (mac_hi == 0)) {
3425 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3426 __FILE__, __LINE__);
3427 } else {
3428 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3429 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3430 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3431 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3432 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3433 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3434 }
3435
3436 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3437 "%s\n", ether_sprintf(sc->eaddr));
3438 }
3439
3440 /****************************************************************************/
3441 /* Program the MAC address. */
3442 /* */
3443 /* Returns: */
3444 /* Nothing. */
3445 /****************************************************************************/
3446 void
3447 bnx_set_mac_addr(struct bnx_softc *sc)
3448 {
3449 uint32_t val;
3450 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3451
3452 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3453 "%s\n", ether_sprintf(sc->eaddr));
3454
3455 val = (mac_addr[0] << 8) | mac_addr[1];
3456
3457 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3458
3459 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3460 (mac_addr[4] << 8) | mac_addr[5];
3461
3462 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3463 }
3464
3465 /****************************************************************************/
3466 /* Stop the controller. */
3467 /* */
3468 /* Returns: */
3469 /* Nothing. */
3470 /****************************************************************************/
3471 void
3472 bnx_stop(struct ifnet *ifp, int disable)
3473 {
3474 struct bnx_softc *sc = ifp->if_softc;
3475
3476 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3477
3478 if (disable) {
3479 sc->bnx_detaching = 1;
3480 callout_halt(&sc->bnx_timeout, NULL);
3481 } else
3482 callout_stop(&sc->bnx_timeout);
3483
3484 mii_down(&sc->bnx_mii);
3485
3486 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3487
3488 /* Disable the transmit/receive blocks. */
3489 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3490 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3491 DELAY(20);
3492
3493 bnx_disable_intr(sc);
3494
3495 /* Tell firmware that the driver is going away. */
3496 if (disable)
3497 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3498 else
3499 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3500
3501 /* Free RX buffers. */
3502 bnx_free_rx_chain(sc);
3503
3504 /* Free TX buffers. */
3505 bnx_free_tx_chain(sc);
3506
3507 ifp->if_timer = 0;
3508
3509 sc->bnx_link = 0;
3510
3511 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3512
3513 bnx_mgmt_init(sc);
3514 }
3515
3516 int
3517 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3518 {
3519 struct pci_attach_args *pa = &(sc->bnx_pa);
3520 uint32_t val;
3521 int i, rc = 0;
3522
3523 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3524
3525 /* Wait for pending PCI transactions to complete. */
3526 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
3527 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
3528 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3529 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3530 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3531 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3532 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3533 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3534 DELAY(5);
3535 } else {
3536 /* Disable DMA */
3537 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3538 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3539 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3540 REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
3541
3542 for (i = 0; i < 100; i++) {
3543 delay(1 * 1000);
3544 val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
3545 if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
3546 break;
3547 }
3548 }
3549
3550 /* Assume bootcode is running. */
3551 sc->bnx_fw_timed_out = 0;
3552
3553 /* Give the firmware a chance to prepare for the reset. */
3554 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3555 if (rc)
3556 goto bnx_reset_exit;
3557
3558 /* Set a firmware reminder that this is a soft reset. */
3559 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3560 BNX_DRV_RESET_SIGNATURE_MAGIC);
3561
3562 /* Dummy read to force the chip to complete all current transactions. */
3563 val = REG_RD(sc, BNX_MISC_ID);
3564
3565 /* Chip reset. */
3566 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3567 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3568 REG_RD(sc, BNX_MISC_COMMAND);
3569 DELAY(5);
3570
3571 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3572 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3573
3574 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3575 val);
3576 } else {
3577 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3578 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3579 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3580 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3581
3582 /* Allow up to 30us for reset to complete. */
3583 for (i = 0; i < 10; i++) {
3584 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3585 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3586 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3587 break;
3588 }
3589 DELAY(10);
3590 }
3591
3592 /* Check that reset completed successfully. */
3593 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3594 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3595 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3596 __FILE__, __LINE__);
3597 rc = EBUSY;
3598 goto bnx_reset_exit;
3599 }
3600 }
3601
3602 /* Make sure byte swapping is properly configured. */
3603 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3604 if (val != 0x01020304) {
3605 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3606 __FILE__, __LINE__);
3607 rc = ENODEV;
3608 goto bnx_reset_exit;
3609 }
3610
3611 /* Just completed a reset, assume that firmware is running again. */
3612 sc->bnx_fw_timed_out = 0;
3613
3614 /* Wait for the firmware to finish its initialization. */
3615 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3616 if (rc)
3617 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3618 "initialization!\n", __FILE__, __LINE__);
3619
3620 bnx_reset_exit:
3621 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3622
3623 return rc;
3624 }
3625
3626 int
3627 bnx_chipinit(struct bnx_softc *sc)
3628 {
3629 struct pci_attach_args *pa = &(sc->bnx_pa);
3630 uint32_t val;
3631 int rc = 0;
3632
3633 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3634
3635 /* Make sure the interrupt is not active. */
3636 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3637
3638 /* Initialize DMA byte/word swapping, configure the number of DMA */
3639 /* channels and PCI clock compensation delay. */
3640 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3641 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3642 #if BYTE_ORDER == BIG_ENDIAN
3643 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3644 #endif
3645 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3646 DMA_READ_CHANS << 12 |
3647 DMA_WRITE_CHANS << 16;
3648
3649 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3650
3651 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3652 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3653
3654 /*
3655 * This setting resolves a problem observed on certain Intel PCI
3656 * chipsets that cannot handle multiple outstanding DMA operations.
3657 * See errata E9_5706A1_65.
3658 */
3659 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3660 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3661 !(sc->bnx_flags & BNX_PCIX_FLAG))
3662 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3663
3664 REG_WR(sc, BNX_DMA_CONFIG, val);
3665
3666 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3667 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3668 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3669 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3670 val & ~0x20000);
3671 }
3672
3673 /* Enable the RX_V2P and Context state machines before access. */
3674 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3675 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3676 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3677 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3678
3679 /* Initialize context mapping and zero out the quick contexts. */
3680 bnx_init_context(sc);
3681
3682 /* Initialize the on-boards CPUs */
3683 bnx_init_cpus(sc);
3684
3685 /* Enable management frames (NC-SI) to flow to the MCP. */
3686 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3687 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
3688 BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3689 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3690 }
3691
3692 /* Prepare NVRAM for access. */
3693 if (bnx_init_nvram(sc)) {
3694 rc = ENODEV;
3695 goto bnx_chipinit_exit;
3696 }
3697
3698 /* Set the kernel bypass block size */
3699 val = REG_RD(sc, BNX_MQ_CONFIG);
3700 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3701 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3702
3703 /* Enable bins used on the 5709. */
3704 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3705 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3706 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3707 val |= BNX_MQ_CONFIG_HALT_DIS;
3708 }
3709
3710 REG_WR(sc, BNX_MQ_CONFIG, val);
3711
3712 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3713 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3714 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3715
3716 val = (BCM_PAGE_BITS - 8) << 24;
3717 REG_WR(sc, BNX_RV2P_CONFIG, val);
3718
3719 /* Configure page size. */
3720 val = REG_RD(sc, BNX_TBDR_CONFIG);
3721 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3722 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3723 REG_WR(sc, BNX_TBDR_CONFIG, val);
3724
3725 #if 0
3726 /* Set the perfect match control register to default. */
3727 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3728 #endif
3729
3730 bnx_chipinit_exit:
3731 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3732
3733 return rc;
3734 }
3735
3736 /****************************************************************************/
3737 /* Initialize the controller in preparation to send/receive traffic. */
3738 /* */
3739 /* Returns: */
3740 /* 0 for success, positive value for failure. */
3741 /****************************************************************************/
3742 int
3743 bnx_blockinit(struct bnx_softc *sc)
3744 {
3745 uint32_t reg, val;
3746 int rc = 0;
3747
3748 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3749
3750 /* Load the hardware default MAC address. */
3751 bnx_set_mac_addr(sc);
3752
3753 /* Set the Ethernet backoff seed value */
3754 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3755 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3756 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3757
3758 sc->last_status_idx = 0;
3759 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3760
3761 /* Set up link change interrupt generation. */
3762 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3763 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3764
3765 /* Program the physical address of the status block. */
3766 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3767 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3768 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3769
3770 /* Program the physical address of the statistics block. */
3771 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3772 (uint32_t)(sc->stats_block_paddr));
3773 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3774 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3775
3776 /* Program various host coalescing parameters. */
3777 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3778 << 16) | sc->bnx_tx_quick_cons_trip);
3779 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3780 << 16) | sc->bnx_rx_quick_cons_trip);
3781 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3782 sc->bnx_comp_prod_trip);
3783 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3784 sc->bnx_tx_ticks);
3785 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3786 sc->bnx_rx_ticks);
3787 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3788 sc->bnx_com_ticks);
3789 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3790 sc->bnx_cmd_ticks);
3791 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3792 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3793 REG_WR(sc, BNX_HC_CONFIG,
3794 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3795 BNX_HC_CONFIG_COLLECT_STATS));
3796
3797 /* Clear the internal statistics counters. */
3798 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3799
3800 /* Verify that bootcode is running. */
3801 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3802
3803 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3804 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3805 __FILE__, __LINE__); reg = 0);
3806
3807 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3808 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3809 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3810 "Expected: 08%08X\n", __FILE__, __LINE__,
3811 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3812 BNX_DEV_INFO_SIGNATURE_MAGIC);
3813 rc = ENODEV;
3814 goto bnx_blockinit_exit;
3815 }
3816
3817 /* Enable DMA */
3818 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3819 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3820 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3821 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3822 }
3823
3824 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3825 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3826
3827 /* Disable management frames (NC-SI) from flowing to the MCP. */
3828 if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
3829 val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
3830 ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
3831 REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
3832 }
3833
3834 /* Enable all remaining blocks in the MAC. */
3835 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3836 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3837 BNX_MISC_ENABLE_DEFAULT_XI);
3838 } else
3839 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3840
3841 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3842 DELAY(20);
3843
3844 bnx_blockinit_exit:
3845 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3846
3847 return rc;
3848 }
3849
3850 static int
3851 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3852 uint16_t *chain_prod, uint32_t *prod_bseq)
3853 {
3854 bus_dmamap_t map;
3855 struct rx_bd *rxbd;
3856 uint32_t addr;
3857 int i;
3858 #ifdef BNX_DEBUG
3859 uint16_t debug_chain_prod = *chain_prod;
3860 #endif
3861 uint16_t first_chain_prod;
3862
3863 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3864
3865 /* Map the mbuf cluster into device memory. */
3866 map = sc->rx_mbuf_map[*chain_prod];
3867 first_chain_prod = *chain_prod;
3868 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3869 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3870 __FILE__, __LINE__);
3871
3872 m_freem(m_new);
3873
3874 DBRUNIF(1, sc->rx_mbuf_alloc--);
3875
3876 return ENOBUFS;
3877 }
3878 /* Make sure there is room in the receive chain. */
3879 if (map->dm_nsegs > sc->free_rx_bd) {
3880 bus_dmamap_unload(sc->bnx_dmatag, map);
3881 m_freem(m_new);
3882 return EFBIG;
3883 }
3884 #ifdef BNX_DEBUG
3885 /* Track the distribution of buffer segments. */
3886 sc->rx_mbuf_segs[map->dm_nsegs]++;
3887 #endif
3888
3889 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3890 BUS_DMASYNC_PREREAD);
3891
3892 /* Update some debug statistics counters */
3893 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3894 sc->rx_low_watermark = sc->free_rx_bd);
3895 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3896
3897 /*
3898 * Setup the rx_bd for the first segment
3899 */
3900 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3901
3902 addr = (uint32_t)map->dm_segs[0].ds_addr;
3903 rxbd->rx_bd_haddr_lo = addr;
3904 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3905 rxbd->rx_bd_haddr_hi = addr;
3906 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3907 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3908 *prod_bseq += map->dm_segs[0].ds_len;
3909 bus_dmamap_sync(sc->bnx_dmatag,
3910 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3911 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3912 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3913
3914 for (i = 1; i < map->dm_nsegs; i++) {
3915 *prod = NEXT_RX_BD(*prod);
3916 *chain_prod = RX_CHAIN_IDX(*prod);
3917
3918 rxbd =
3919 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3920
3921 addr = (uint32_t)map->dm_segs[i].ds_addr;
3922 rxbd->rx_bd_haddr_lo = addr;
3923 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3924 rxbd->rx_bd_haddr_hi = addr;
3925 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3926 rxbd->rx_bd_flags = 0;
3927 *prod_bseq += map->dm_segs[i].ds_len;
3928 bus_dmamap_sync(sc->bnx_dmatag,
3929 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3930 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3931 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3932 }
3933
3934 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3935 bus_dmamap_sync(sc->bnx_dmatag,
3936 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3937 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3938 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3939
3940 /*
3941 * Save the mbuf, adjust the map pointer (swap map for first and
3942 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3943 * and update our counter.
3944 */
3945 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3946 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3947 sc->rx_mbuf_map[*chain_prod] = map;
3948 sc->free_rx_bd -= map->dm_nsegs;
3949
3950 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3951 map->dm_nsegs));
3952 *prod = NEXT_RX_BD(*prod);
3953 *chain_prod = RX_CHAIN_IDX(*prod);
3954
3955 return 0;
3956 }
3957
3958 /****************************************************************************/
3959 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3960 /* */
3961 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3962 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3963 /* necessary. */
3964 /* */
3965 /* Returns: */
3966 /* 0 for success, positive value for failure. */
3967 /****************************************************************************/
3968 int
3969 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3970 uint16_t *chain_prod, uint32_t *prod_bseq)
3971 {
3972 struct mbuf *m_new = NULL;
3973 int rc = 0;
3974 uint16_t min_free_bd;
3975
3976 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3977 __func__);
3978
3979 /* Make sure the inputs are valid. */
3980 DBRUNIF((*chain_prod > MAX_RX_BD),
3981 aprint_error_dev(sc->bnx_dev,
3982 "RX producer out of range: 0x%04X > 0x%04X\n",
3983 *chain_prod, (uint16_t)MAX_RX_BD));
3984
3985 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3986 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3987 *prod_bseq);
3988
3989 /* try to get in as many mbufs as possible */
3990 if (sc->mbuf_alloc_size == MCLBYTES)
3991 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3992 else
3993 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3994 while (sc->free_rx_bd >= min_free_bd) {
3995 /* Simulate an mbuf allocation failure. */
3996 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3997 aprint_error_dev(sc->bnx_dev,
3998 "Simulating mbuf allocation failure.\n");
3999 sc->mbuf_sim_alloc_failed++;
4000 rc = ENOBUFS;
4001 goto bnx_get_buf_exit);
4002
4003 /* This is a new mbuf allocation. */
4004 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
4005 if (m_new == NULL) {
4006 DBPRINT(sc, BNX_WARN,
4007 "%s(%d): RX mbuf header allocation failed!\n",
4008 __FILE__, __LINE__);
4009
4010 sc->mbuf_alloc_failed++;
4011
4012 rc = ENOBUFS;
4013 goto bnx_get_buf_exit;
4014 }
4015
4016 DBRUNIF(1, sc->rx_mbuf_alloc++);
4017
4018 /* Simulate an mbuf cluster allocation failure. */
4019 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
4020 m_freem(m_new);
4021 sc->rx_mbuf_alloc--;
4022 sc->mbuf_alloc_failed++;
4023 sc->mbuf_sim_alloc_failed++;
4024 rc = ENOBUFS;
4025 goto bnx_get_buf_exit);
4026
4027 if (sc->mbuf_alloc_size == MCLBYTES)
4028 MCLGET(m_new, M_DONTWAIT);
4029 else
4030 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
4031 M_DONTWAIT);
4032 if (!(m_new->m_flags & M_EXT)) {
4033 DBPRINT(sc, BNX_WARN,
4034 "%s(%d): RX mbuf chain allocation failed!\n",
4035 __FILE__, __LINE__);
4036
4037 m_freem(m_new);
4038
4039 DBRUNIF(1, sc->rx_mbuf_alloc--);
4040 sc->mbuf_alloc_failed++;
4041
4042 rc = ENOBUFS;
4043 goto bnx_get_buf_exit;
4044 }
4045
4046 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
4047 if (rc != 0)
4048 goto bnx_get_buf_exit;
4049 }
4050
4051 bnx_get_buf_exit:
4052 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
4053 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
4054 *chain_prod, *prod_bseq);
4055
4056 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
4057 __func__);
4058
4059 return rc;
4060 }
4061
4062 void
4063 bnx_alloc_pkts(struct work * unused, void * arg)
4064 {
4065 struct bnx_softc *sc = arg;
4066 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4067 struct bnx_pkt *pkt;
4068 int i, s;
4069
4070 for (i = 0; i < 4; i++) { /* magic! */
4071 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
4072 if (pkt == NULL)
4073 break;
4074
4075 if (bus_dmamap_create(sc->bnx_dmatag,
4076 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4077 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4078 &pkt->pkt_dmamap) != 0)
4079 goto put;
4080
4081 if (!ISSET(ifp->if_flags, IFF_UP))
4082 goto stopping;
4083
4084 mutex_enter(&sc->tx_pkt_mtx);
4085 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4086 sc->tx_pkt_count++;
4087 mutex_exit(&sc->tx_pkt_mtx);
4088 }
4089
4090 mutex_enter(&sc->tx_pkt_mtx);
4091 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4092 mutex_exit(&sc->tx_pkt_mtx);
4093
4094 /* fire-up TX now that allocations have been done */
4095 s = splnet();
4096 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4097 bnx_start(ifp);
4098 splx(s);
4099
4100 return;
4101
4102 stopping:
4103 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4104 put:
4105 pool_put(bnx_tx_pool, pkt);
4106 return;
4107 }
4108
4109 /****************************************************************************/
4110 /* Initialize the TX context memory. */
4111 /* */
4112 /* Returns: */
4113 /* Nothing */
4114 /****************************************************************************/
4115 void
4116 bnx_init_tx_context(struct bnx_softc *sc)
4117 {
4118 uint32_t val;
4119
4120 /* Initialize the context ID for an L2 TX chain. */
4121 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4122 /* Set the CID type to support an L2 connection. */
4123 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4124 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4125 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4126 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4127
4128 /* Point the hardware to the first page in the chain. */
4129 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4130 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4131 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4132 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4133 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4134 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4135 } else {
4136 /* Set the CID type to support an L2 connection. */
4137 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4138 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4139 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4140 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4141
4142 /* Point the hardware to the first page in the chain. */
4143 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4144 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4145 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4146 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4147 }
4148 }
4149
4150
4151 /****************************************************************************/
4152 /* Allocate memory and initialize the TX data structures. */
4153 /* */
4154 /* Returns: */
4155 /* 0 for success, positive value for failure. */
4156 /****************************************************************************/
4157 int
4158 bnx_init_tx_chain(struct bnx_softc *sc)
4159 {
4160 struct tx_bd *txbd;
4161 uint32_t addr;
4162 int i, rc = 0;
4163
4164 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4165
4166 /* Force an allocation of some dmamaps for tx up front */
4167 bnx_alloc_pkts(NULL, sc);
4168
4169 /* Set the initial TX producer/consumer indices. */
4170 sc->tx_prod = 0;
4171 sc->tx_cons = 0;
4172 sc->tx_prod_bseq = 0;
4173 sc->used_tx_bd = 0;
4174 sc->max_tx_bd = USABLE_TX_BD;
4175 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4176 DBRUNIF(1, sc->tx_full_count = 0);
4177
4178 /*
4179 * The NetXtreme II supports a linked-list structure called
4180 * a Buffer Descriptor Chain (or BD chain). A BD chain
4181 * consists of a series of 1 or more chain pages, each of which
4182 * consists of a fixed number of BD entries.
4183 * The last BD entry on each page is a pointer to the next page
4184 * in the chain, and the last pointer in the BD chain
4185 * points back to the beginning of the chain.
4186 */
4187
4188 /* Set the TX next pointer chain entries. */
4189 for (i = 0; i < TX_PAGES; i++) {
4190 int j;
4191
4192 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4193
4194 /* Check if we've reached the last page. */
4195 if (i == (TX_PAGES - 1))
4196 j = 0;
4197 else
4198 j = i + 1;
4199
4200 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4201 txbd->tx_bd_haddr_lo = addr;
4202 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4203 txbd->tx_bd_haddr_hi = addr;
4204 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4205 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4206 }
4207
4208 /*
4209 * Initialize the context ID for an L2 TX chain.
4210 */
4211 bnx_init_tx_context(sc);
4212
4213 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4214
4215 return rc;
4216 }
4217
4218 /****************************************************************************/
4219 /* Free memory and clear the TX data structures. */
4220 /* */
4221 /* Returns: */
4222 /* Nothing. */
4223 /****************************************************************************/
4224 void
4225 bnx_free_tx_chain(struct bnx_softc *sc)
4226 {
4227 struct bnx_pkt *pkt;
4228 int i;
4229
4230 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4231
4232 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4233 mutex_enter(&sc->tx_pkt_mtx);
4234 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4235 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4236 mutex_exit(&sc->tx_pkt_mtx);
4237
4238 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4239 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4240 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4241
4242 m_freem(pkt->pkt_mbuf);
4243 DBRUNIF(1, sc->tx_mbuf_alloc--);
4244
4245 mutex_enter(&sc->tx_pkt_mtx);
4246 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4247 }
4248
4249 /* Destroy all the dmamaps we allocated for TX */
4250 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4251 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4252 sc->tx_pkt_count--;
4253 mutex_exit(&sc->tx_pkt_mtx);
4254
4255 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4256 pool_put(bnx_tx_pool, pkt);
4257
4258 mutex_enter(&sc->tx_pkt_mtx);
4259 }
4260 mutex_exit(&sc->tx_pkt_mtx);
4261
4262
4263
4264 /* Clear each TX chain page. */
4265 for (i = 0; i < TX_PAGES; i++) {
4266 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4267 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4268 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4269 }
4270
4271 sc->used_tx_bd = 0;
4272
4273 /* Check if we lost any mbufs in the process. */
4274 DBRUNIF((sc->tx_mbuf_alloc),
4275 aprint_error_dev(sc->bnx_dev,
4276 "Memory leak! Lost %d mbufs from tx chain!\n",
4277 sc->tx_mbuf_alloc));
4278
4279 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4280 }
4281
4282 /****************************************************************************/
4283 /* Initialize the RX context memory. */
4284 /* */
4285 /* Returns: */
4286 /* Nothing */
4287 /****************************************************************************/
4288 void
4289 bnx_init_rx_context(struct bnx_softc *sc)
4290 {
4291 uint32_t val;
4292
4293 /* Initialize the context ID for an L2 RX chain. */
4294 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4295 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4296
4297 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4298 val |= 0x000000ff;
4299
4300 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4301
4302 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4303 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4304 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4305 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4306 }
4307
4308 /* Point the hardware to the first page in the chain. */
4309 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4310 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4311 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4312 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4313 }
4314
4315 /****************************************************************************/
4316 /* Allocate memory and initialize the RX data structures. */
4317 /* */
4318 /* Returns: */
4319 /* 0 for success, positive value for failure. */
4320 /****************************************************************************/
4321 int
4322 bnx_init_rx_chain(struct bnx_softc *sc)
4323 {
4324 struct rx_bd *rxbd;
4325 int i, rc = 0;
4326 uint16_t prod, chain_prod;
4327 uint32_t prod_bseq, addr;
4328
4329 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4330
4331 /* Initialize the RX producer and consumer indices. */
4332 sc->rx_prod = 0;
4333 sc->rx_cons = 0;
4334 sc->rx_prod_bseq = 0;
4335 sc->free_rx_bd = USABLE_RX_BD;
4336 sc->max_rx_bd = USABLE_RX_BD;
4337 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4338 DBRUNIF(1, sc->rx_empty_count = 0);
4339
4340 /* Initialize the RX next pointer chain entries. */
4341 for (i = 0; i < RX_PAGES; i++) {
4342 int j;
4343
4344 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4345
4346 /* Check if we've reached the last page. */
4347 if (i == (RX_PAGES - 1))
4348 j = 0;
4349 else
4350 j = i + 1;
4351
4352 /* Setup the chain page pointers. */
4353 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4354 rxbd->rx_bd_haddr_hi = addr;
4355 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4356 rxbd->rx_bd_haddr_lo = addr;
4357 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4358 0, BNX_RX_CHAIN_PAGE_SZ,
4359 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4360 }
4361
4362 /* Allocate mbuf clusters for the rx_bd chain. */
4363 prod = prod_bseq = 0;
4364 chain_prod = RX_CHAIN_IDX(prod);
4365 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4366 BNX_PRINTF(sc,
4367 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4368 }
4369
4370 /* Save the RX chain producer index. */
4371 sc->rx_prod = prod;
4372 sc->rx_prod_bseq = prod_bseq;
4373
4374 for (i = 0; i < RX_PAGES; i++)
4375 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4376 sc->rx_bd_chain_map[i]->dm_mapsize,
4377 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4378
4379 /* Tell the chip about the waiting rx_bd's. */
4380 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4381 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4382
4383 bnx_init_rx_context(sc);
4384
4385 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4386
4387 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4388
4389 return rc;
4390 }
4391
4392 /****************************************************************************/
4393 /* Free memory and clear the RX data structures. */
4394 /* */
4395 /* Returns: */
4396 /* Nothing. */
4397 /****************************************************************************/
4398 void
4399 bnx_free_rx_chain(struct bnx_softc *sc)
4400 {
4401 int i;
4402
4403 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4404
4405 /* Free any mbufs still in the RX mbuf chain. */
4406 for (i = 0; i < TOTAL_RX_BD; i++) {
4407 if (sc->rx_mbuf_ptr[i] != NULL) {
4408 if (sc->rx_mbuf_map[i] != NULL) {
4409 bus_dmamap_sync(sc->bnx_dmatag,
4410 sc->rx_mbuf_map[i], 0,
4411 sc->rx_mbuf_map[i]->dm_mapsize,
4412 BUS_DMASYNC_POSTREAD);
4413 bus_dmamap_unload(sc->bnx_dmatag,
4414 sc->rx_mbuf_map[i]);
4415 }
4416 m_freem(sc->rx_mbuf_ptr[i]);
4417 sc->rx_mbuf_ptr[i] = NULL;
4418 DBRUNIF(1, sc->rx_mbuf_alloc--);
4419 }
4420 }
4421
4422 /* Clear each RX chain page. */
4423 for (i = 0; i < RX_PAGES; i++)
4424 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4425
4426 sc->free_rx_bd = sc->max_rx_bd;
4427
4428 /* Check if we lost any mbufs in the process. */
4429 DBRUNIF((sc->rx_mbuf_alloc),
4430 aprint_error_dev(sc->bnx_dev,
4431 "Memory leak! Lost %d mbufs from rx chain!\n",
4432 sc->rx_mbuf_alloc));
4433
4434 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4435 }
4436
4437 /****************************************************************************/
4438 /* Set media options. */
4439 /* */
4440 /* Returns: */
4441 /* 0 for success, positive value for failure. */
4442 /****************************************************************************/
4443 int
4444 bnx_ifmedia_upd(struct ifnet *ifp)
4445 {
4446 struct bnx_softc *sc;
4447 struct mii_data *mii;
4448 int rc = 0;
4449
4450 sc = ifp->if_softc;
4451
4452 mii = &sc->bnx_mii;
4453 sc->bnx_link = 0;
4454 if (mii->mii_instance) {
4455 struct mii_softc *miisc;
4456 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
4457 mii_phy_reset(miisc);
4458 }
4459 mii_mediachg(mii);
4460
4461 return rc;
4462 }
4463
4464 /****************************************************************************/
4465 /* Reports current media status. */
4466 /* */
4467 /* Returns: */
4468 /* Nothing. */
4469 /****************************************************************************/
4470 void
4471 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4472 {
4473 struct bnx_softc *sc;
4474 struct mii_data *mii;
4475 int s;
4476
4477 sc = ifp->if_softc;
4478
4479 s = splnet();
4480
4481 mii = &sc->bnx_mii;
4482
4483 mii_pollstat(mii);
4484 ifmr->ifm_status = mii->mii_media_status;
4485 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4486 sc->bnx_flowflags;
4487
4488 splx(s);
4489 }
4490
4491 /****************************************************************************/
4492 /* Handles PHY generated interrupt events. */
4493 /* */
4494 /* Returns: */
4495 /* Nothing. */
4496 /****************************************************************************/
4497 void
4498 bnx_phy_intr(struct bnx_softc *sc)
4499 {
4500 uint32_t new_link_state, old_link_state;
4501
4502 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4503 BUS_DMASYNC_POSTREAD);
4504 new_link_state = sc->status_block->status_attn_bits &
4505 STATUS_ATTN_BITS_LINK_STATE;
4506 old_link_state = sc->status_block->status_attn_bits_ack &
4507 STATUS_ATTN_BITS_LINK_STATE;
4508
4509 /* Handle any changes if the link state has changed. */
4510 if (new_link_state != old_link_state) {
4511 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4512
4513 sc->bnx_link = 0;
4514 callout_stop(&sc->bnx_timeout);
4515 bnx_tick(sc);
4516
4517 /* Update the status_attn_bits_ack field in the status block. */
4518 if (new_link_state) {
4519 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4520 STATUS_ATTN_BITS_LINK_STATE);
4521 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4522 } else {
4523 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4524 STATUS_ATTN_BITS_LINK_STATE);
4525 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4526 }
4527 }
4528
4529 /* Acknowledge the link change interrupt. */
4530 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4531 }
4532
4533 /****************************************************************************/
4534 /* Handles received frame interrupt events. */
4535 /* */
4536 /* Returns: */
4537 /* Nothing. */
4538 /****************************************************************************/
4539 void
4540 bnx_rx_intr(struct bnx_softc *sc)
4541 {
4542 struct status_block *sblk = sc->status_block;
4543 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4544 uint16_t hw_cons, sw_cons, sw_chain_cons;
4545 uint16_t sw_prod, sw_chain_prod;
4546 uint32_t sw_prod_bseq;
4547 struct l2_fhdr *l2fhdr;
4548 int i;
4549
4550 DBRUNIF(1, sc->rx_interrupts++);
4551 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4552 BUS_DMASYNC_POSTREAD);
4553
4554 /* Prepare the RX chain pages to be accessed by the host CPU. */
4555 for (i = 0; i < RX_PAGES; i++)
4556 bus_dmamap_sync(sc->bnx_dmatag,
4557 sc->rx_bd_chain_map[i], 0,
4558 sc->rx_bd_chain_map[i]->dm_mapsize,
4559 BUS_DMASYNC_POSTWRITE);
4560
4561 /* Get the hardware's view of the RX consumer index. */
4562 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4563 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4564 hw_cons++;
4565
4566 /* Get working copies of the driver's view of the RX indices. */
4567 sw_cons = sc->rx_cons;
4568 sw_prod = sc->rx_prod;
4569 sw_prod_bseq = sc->rx_prod_bseq;
4570
4571 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4572 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4573 __func__, sw_prod, sw_cons, sw_prod_bseq);
4574
4575 /* Prevent speculative reads from getting ahead of the status block. */
4576 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4577 BUS_SPACE_BARRIER_READ);
4578
4579 /* Update some debug statistics counters */
4580 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4581 sc->rx_low_watermark = sc->free_rx_bd);
4582 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4583
4584 /*
4585 * Scan through the receive chain as long
4586 * as there is work to do.
4587 */
4588 while (sw_cons != hw_cons) {
4589 struct mbuf *m;
4590 struct rx_bd *rxbd __diagused;
4591 unsigned int len;
4592 uint32_t status;
4593
4594 /* Convert the producer/consumer indices to an actual
4595 * rx_bd index.
4596 */
4597 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4598 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4599
4600 /* Get the used rx_bd. */
4601 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4602 sc->free_rx_bd++;
4603
4604 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4605 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4606
4607 /* The mbuf is stored with the last rx_bd entry of a packet. */
4608 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4609 #ifdef DIAGNOSTIC
4610 /* Validate that this is the last rx_bd. */
4611 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4612 printf("%s: Unexpected mbuf found in "
4613 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4614 sw_chain_cons);
4615 }
4616 #endif
4617
4618 /* DRC - ToDo: If the received packet is small, say
4619 * less than 128 bytes, allocate a new mbuf
4620 * here, copy the data to that mbuf, and
4621 * recycle the mapped jumbo frame.
4622 */
4623
4624 /* Unmap the mbuf from DMA space. */
4625 #ifdef DIAGNOSTIC
4626 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4627 printf("invalid map sw_cons 0x%x "
4628 "sw_prod 0x%x "
4629 "sw_chain_cons 0x%x "
4630 "sw_chain_prod 0x%x "
4631 "hw_cons 0x%x "
4632 "TOTAL_RX_BD_PER_PAGE 0x%x "
4633 "TOTAL_RX_BD 0x%x\n",
4634 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4635 hw_cons,
4636 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4637 }
4638 #endif
4639 bus_dmamap_sync(sc->bnx_dmatag,
4640 sc->rx_mbuf_map[sw_chain_cons], 0,
4641 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4642 BUS_DMASYNC_POSTREAD);
4643 bus_dmamap_unload(sc->bnx_dmatag,
4644 sc->rx_mbuf_map[sw_chain_cons]);
4645
4646 /* Remove the mbuf from the driver's chain. */
4647 m = sc->rx_mbuf_ptr[sw_chain_cons];
4648 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4649
4650 /*
4651 * Frames received on the NetXteme II are prepended
4652 * with the l2_fhdr structure which provides status
4653 * information about the received frame (including
4654 * VLAN tags and checksum info) and are also
4655 * automatically adjusted to align the IP header
4656 * (i.e. two null bytes are inserted before the
4657 * Ethernet header).
4658 */
4659 l2fhdr = mtod(m, struct l2_fhdr *);
4660
4661 len = l2fhdr->l2_fhdr_pkt_len;
4662 status = l2fhdr->l2_fhdr_status;
4663
4664 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4665 aprint_error("Simulating l2_fhdr status error.\n");
4666 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4667
4668 /* Watch for unusual sized frames. */
4669 DBRUNIF(((len < BNX_MIN_MTU) ||
4670 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4671 aprint_error_dev(sc->bnx_dev,
4672 "Unusual frame size found. "
4673 "Min(%d), Actual(%d), Max(%d)\n",
4674 (int)BNX_MIN_MTU, len,
4675 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4676
4677 bnx_dump_mbuf(sc, m);
4678 bnx_breakpoint(sc));
4679
4680 len -= ETHER_CRC_LEN;
4681
4682 /* Check the received frame for errors. */
4683 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4684 L2_FHDR_ERRORS_PHY_DECODE |
4685 L2_FHDR_ERRORS_ALIGNMENT |
4686 L2_FHDR_ERRORS_TOO_SHORT |
4687 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4688 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4689 len >
4690 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4691 if_statinc(ifp, if_ierrors);
4692 DBRUNIF(1, sc->l2fhdr_status_errors++);
4693
4694 /* Reuse the mbuf for a new frame. */
4695 if (bnx_add_buf(sc, m, &sw_prod,
4696 &sw_chain_prod, &sw_prod_bseq)) {
4697 DBRUNIF(1, bnx_breakpoint(sc));
4698 panic("%s: Can't reuse RX mbuf!\n",
4699 device_xname(sc->bnx_dev));
4700 }
4701 continue;
4702 }
4703
4704 /*
4705 * Get a new mbuf for the rx_bd. If no new
4706 * mbufs are available then reuse the current mbuf,
4707 * log an ierror on the interface, and generate
4708 * an error in the system log.
4709 */
4710 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4711 &sw_prod_bseq)) {
4712 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4713 "Failed to allocate "
4714 "new mbuf, incoming frame dropped!\n"));
4715
4716 if_statinc(ifp, if_ierrors);
4717
4718 /* Try and reuse the exisitng mbuf. */
4719 if (bnx_add_buf(sc, m, &sw_prod,
4720 &sw_chain_prod, &sw_prod_bseq)) {
4721 DBRUNIF(1, bnx_breakpoint(sc));
4722 panic("%s: Double mbuf allocation "
4723 "failure!",
4724 device_xname(sc->bnx_dev));
4725 }
4726 continue;
4727 }
4728
4729 /* Skip over the l2_fhdr when passing the data up
4730 * the stack.
4731 */
4732 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4733
4734 /* Adjust the pckt length to match the received data. */
4735 m->m_pkthdr.len = m->m_len = len;
4736
4737 /* Send the packet to the appropriate interface. */
4738 m_set_rcvif(m, ifp);
4739
4740 DBRUN(BNX_VERBOSE_RECV,
4741 struct ether_header *eh;
4742 eh = mtod(m, struct ether_header *);
4743 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4744 __func__, ether_sprintf(eh->ether_dhost),
4745 ether_sprintf(eh->ether_shost),
4746 htons(eh->ether_type)));
4747
4748 /* Validate the checksum. */
4749
4750 /* Check for an IP datagram. */
4751 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4752 /* Check if the IP checksum is valid. */
4753 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4754 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4755 #ifdef BNX_DEBUG
4756 else
4757 DBPRINT(sc, BNX_WARN_SEND,
4758 "%s(): Invalid IP checksum "
4759 "= 0x%04X!\n",
4760 __func__,
4761 l2fhdr->l2_fhdr_ip_xsum
4762 );
4763 #endif
4764 }
4765
4766 /* Check for a valid TCP/UDP frame. */
4767 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4768 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4769 /* Check for a good TCP/UDP checksum. */
4770 if ((status &
4771 (L2_FHDR_ERRORS_TCP_XSUM |
4772 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4773 m->m_pkthdr.csum_flags |=
4774 M_CSUM_TCPv4 |
4775 M_CSUM_UDPv4;
4776 } else {
4777 DBPRINT(sc, BNX_WARN_SEND,
4778 "%s(): Invalid TCP/UDP "
4779 "checksum = 0x%04X!\n",
4780 __func__,
4781 l2fhdr->l2_fhdr_tcp_udp_xsum);
4782 }
4783 }
4784
4785 /*
4786 * If we received a packet with a vlan tag,
4787 * attach that information to the packet.
4788 */
4789 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4790 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4791 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4792 }
4793
4794 /* Pass the mbuf off to the upper layers. */
4795
4796 DBPRINT(sc, BNX_VERBOSE_RECV,
4797 "%s(): Passing received frame up.\n", __func__);
4798 if_percpuq_enqueue(ifp->if_percpuq, m);
4799 DBRUNIF(1, sc->rx_mbuf_alloc--);
4800
4801 }
4802
4803 sw_cons = NEXT_RX_BD(sw_cons);
4804
4805 /* Refresh hw_cons to see if there's new work */
4806 if (sw_cons == hw_cons) {
4807 hw_cons = sc->hw_rx_cons =
4808 sblk->status_rx_quick_consumer_index0;
4809 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4810 USABLE_RX_BD_PER_PAGE)
4811 hw_cons++;
4812 }
4813
4814 /* Prevent speculative reads from getting ahead of
4815 * the status block.
4816 */
4817 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4818 BUS_SPACE_BARRIER_READ);
4819 }
4820
4821 for (i = 0; i < RX_PAGES; i++)
4822 bus_dmamap_sync(sc->bnx_dmatag,
4823 sc->rx_bd_chain_map[i], 0,
4824 sc->rx_bd_chain_map[i]->dm_mapsize,
4825 BUS_DMASYNC_PREWRITE);
4826
4827 sc->rx_cons = sw_cons;
4828 sc->rx_prod = sw_prod;
4829 sc->rx_prod_bseq = sw_prod_bseq;
4830
4831 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4832 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4833
4834 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4835 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4836 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4837 }
4838
4839 /****************************************************************************/
4840 /* Handles transmit completion interrupt events. */
4841 /* */
4842 /* Returns: */
4843 /* Nothing. */
4844 /****************************************************************************/
4845 void
4846 bnx_tx_intr(struct bnx_softc *sc)
4847 {
4848 struct status_block *sblk = sc->status_block;
4849 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4850 struct bnx_pkt *pkt;
4851 bus_dmamap_t map;
4852 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4853
4854 DBRUNIF(1, sc->tx_interrupts++);
4855 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4856 BUS_DMASYNC_POSTREAD);
4857
4858 /* Get the hardware's view of the TX consumer index. */
4859 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4860
4861 /* Skip to the next entry if this is a chain page pointer. */
4862 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4863 hw_tx_cons++;
4864
4865 sw_tx_cons = sc->tx_cons;
4866
4867 /* Prevent speculative reads from getting ahead of the status block. */
4868 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4869 BUS_SPACE_BARRIER_READ);
4870
4871 /* Cycle through any completed TX chain page entries. */
4872 while (sw_tx_cons != hw_tx_cons) {
4873 #ifdef BNX_DEBUG
4874 struct tx_bd *txbd = NULL;
4875 #endif
4876 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4877
4878 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4879 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4880 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4881
4882 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4883 aprint_error_dev(sc->bnx_dev,
4884 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4885 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4886
4887 DBRUNIF(1, txbd = &sc->tx_bd_chain
4888 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4889
4890 DBRUNIF((txbd == NULL),
4891 aprint_error_dev(sc->bnx_dev,
4892 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4893 bnx_breakpoint(sc));
4894
4895 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4896 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4897
4898
4899 mutex_enter(&sc->tx_pkt_mtx);
4900 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4901 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4902 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4903 mutex_exit(&sc->tx_pkt_mtx);
4904 /*
4905 * Free the associated mbuf. Remember
4906 * that only the last tx_bd of a packet
4907 * has an mbuf pointer and DMA map.
4908 */
4909 map = pkt->pkt_dmamap;
4910 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4911 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4912 bus_dmamap_unload(sc->bnx_dmatag, map);
4913
4914 m_freem(pkt->pkt_mbuf);
4915 DBRUNIF(1, sc->tx_mbuf_alloc--);
4916
4917 if_statinc(ifp, if_opackets);
4918
4919 mutex_enter(&sc->tx_pkt_mtx);
4920 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4921 }
4922 mutex_exit(&sc->tx_pkt_mtx);
4923
4924 sc->used_tx_bd--;
4925 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4926 __FILE__, __LINE__, sc->used_tx_bd);
4927
4928 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4929
4930 /* Refresh hw_cons to see if there's new work. */
4931 hw_tx_cons = sc->hw_tx_cons =
4932 sblk->status_tx_quick_consumer_index0;
4933 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4934 USABLE_TX_BD_PER_PAGE)
4935 hw_tx_cons++;
4936
4937 /* Prevent speculative reads from getting ahead of
4938 * the status block.
4939 */
4940 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4941 BUS_SPACE_BARRIER_READ);
4942 }
4943
4944 /* Clear the TX timeout timer. */
4945 ifp->if_timer = 0;
4946
4947 /* Clear the tx hardware queue full flag. */
4948 if (sc->used_tx_bd < sc->max_tx_bd) {
4949 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4950 aprint_debug_dev(sc->bnx_dev,
4951 "Open TX chain! %d/%d (used/total)\n",
4952 sc->used_tx_bd, sc->max_tx_bd));
4953 ifp->if_flags &= ~IFF_OACTIVE;
4954 }
4955
4956 sc->tx_cons = sw_tx_cons;
4957 }
4958
4959 /****************************************************************************/
4960 /* Disables interrupt generation. */
4961 /* */
4962 /* Returns: */
4963 /* Nothing. */
4964 /****************************************************************************/
4965 void
4966 bnx_disable_intr(struct bnx_softc *sc)
4967 {
4968 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4969 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4970 }
4971
4972 /****************************************************************************/
4973 /* Enables interrupt generation. */
4974 /* */
4975 /* Returns: */
4976 /* Nothing. */
4977 /****************************************************************************/
4978 void
4979 bnx_enable_intr(struct bnx_softc *sc)
4980 {
4981 uint32_t val;
4982
4983 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4984 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4985
4986 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4987 sc->last_status_idx);
4988
4989 val = REG_RD(sc, BNX_HC_COMMAND);
4990 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4991 }
4992
4993 /****************************************************************************/
4994 /* Handles controller initialization. */
4995 /* */
4996 /****************************************************************************/
4997 int
4998 bnx_init(struct ifnet *ifp)
4999 {
5000 struct bnx_softc *sc = ifp->if_softc;
5001 uint32_t ether_mtu;
5002 int s, error = 0;
5003
5004 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
5005
5006 s = splnet();
5007
5008 bnx_stop(ifp, 0);
5009
5010 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
5011 aprint_error_dev(sc->bnx_dev,
5012 "Controller reset failed!\n");
5013 goto bnx_init_exit;
5014 }
5015
5016 if ((error = bnx_chipinit(sc)) != 0) {
5017 aprint_error_dev(sc->bnx_dev,
5018 "Controller initialization failed!\n");
5019 goto bnx_init_exit;
5020 }
5021
5022 if ((error = bnx_blockinit(sc)) != 0) {
5023 aprint_error_dev(sc->bnx_dev,
5024 "Block initialization failed!\n");
5025 goto bnx_init_exit;
5026 }
5027
5028 /* Calculate and program the Ethernet MRU size. */
5029 if (ifp->if_mtu <= ETHERMTU) {
5030 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
5031 sc->mbuf_alloc_size = MCLBYTES;
5032 } else {
5033 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
5034 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
5035 }
5036
5037
5038 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
5039
5040 /*
5041 * Program the MRU and enable Jumbo frame
5042 * support.
5043 */
5044 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
5045 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
5046
5047 /* Calculate the RX Ethernet frame size for rx_bd's. */
5048 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
5049
5050 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
5051 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
5052 sc->mbuf_alloc_size, sc->max_frame_size);
5053
5054 /* Program appropriate promiscuous/multicast filtering. */
5055 bnx_iff(sc);
5056
5057 /* Init RX buffer descriptor chain. */
5058 bnx_init_rx_chain(sc);
5059
5060 /* Init TX buffer descriptor chain. */
5061 bnx_init_tx_chain(sc);
5062
5063 /* Enable host interrupts. */
5064 bnx_enable_intr(sc);
5065
5066 mii_ifmedia_change(&sc->bnx_mii);
5067
5068 SET(ifp->if_flags, IFF_RUNNING);
5069 CLR(ifp->if_flags, IFF_OACTIVE);
5070
5071 callout_schedule(&sc->bnx_timeout, hz);
5072
5073 bnx_init_exit:
5074 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5075
5076 splx(s);
5077
5078 return error;
5079 }
5080
5081 void
5082 bnx_mgmt_init(struct bnx_softc *sc)
5083 {
5084 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5085 uint32_t val;
5086
5087 /* Check if the driver is still running and bail out if it is. */
5088 if (ifp->if_flags & IFF_RUNNING)
5089 goto bnx_mgmt_init_exit;
5090
5091 /* Initialize the on-boards CPUs */
5092 bnx_init_cpus(sc);
5093
5094 val = (BCM_PAGE_BITS - 8) << 24;
5095 REG_WR(sc, BNX_RV2P_CONFIG, val);
5096
5097 /* Enable all critical blocks in the MAC. */
5098 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
5099 BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
5100 BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
5101 BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
5102 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
5103 DELAY(20);
5104
5105 mii_ifmedia_change(&sc->bnx_mii);
5106
5107 bnx_mgmt_init_exit:
5108 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
5109 }
5110
5111 /****************************************************************************/
5112 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
5113 /* memory visible to the controller. */
5114 /* */
5115 /* Returns: */
5116 /* 0 for success, positive value for failure. */
5117 /****************************************************************************/
5118 int
5119 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
5120 {
5121 struct bnx_pkt *pkt;
5122 bus_dmamap_t map;
5123 struct tx_bd *txbd = NULL;
5124 uint16_t vlan_tag = 0, flags = 0;
5125 uint16_t chain_prod, prod;
5126 #ifdef BNX_DEBUG
5127 uint16_t debug_prod;
5128 #endif
5129 uint32_t addr, prod_bseq;
5130 int i, error;
5131 static struct work bnx_wk; /* Dummy work. Statically allocated. */
5132 bool remap = true;
5133
5134 mutex_enter(&sc->tx_pkt_mtx);
5135 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5136 if (pkt == NULL) {
5137 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5138 mutex_exit(&sc->tx_pkt_mtx);
5139 return ENETDOWN;
5140 }
5141
5142 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5143 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5144 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
5145 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5146 }
5147
5148 mutex_exit(&sc->tx_pkt_mtx);
5149 return ENOMEM;
5150 }
5151 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5152 mutex_exit(&sc->tx_pkt_mtx);
5153
5154 /* Transfer any checksum offload flags to the bd. */
5155 if (m->m_pkthdr.csum_flags) {
5156 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5157 flags |= TX_BD_FLAGS_IP_CKSUM;
5158 if (m->m_pkthdr.csum_flags &
5159 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5160 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5161 }
5162
5163 /* Transfer any VLAN tags to the bd. */
5164 if (vlan_has_tag(m)) {
5165 flags |= TX_BD_FLAGS_VLAN_TAG;
5166 vlan_tag = vlan_get_tag(m);
5167 }
5168
5169 /* Map the mbuf into DMAable memory. */
5170 prod = sc->tx_prod;
5171 chain_prod = TX_CHAIN_IDX(prod);
5172 map = pkt->pkt_dmamap;
5173
5174 /* Map the mbuf into our DMA address space. */
5175 retry:
5176 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5177 if (__predict_false(error)) {
5178 if (error == EFBIG) {
5179 if (remap == true) {
5180 struct mbuf *newm;
5181
5182 remap = false;
5183 newm = m_defrag(m, M_NOWAIT);
5184 if (newm != NULL) {
5185 m = newm;
5186 goto retry;
5187 }
5188 }
5189 }
5190 sc->tx_dma_map_failures++;
5191 goto maperr;
5192 }
5193 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5194 BUS_DMASYNC_PREWRITE);
5195 /* Make sure there's room in the chain */
5196 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5197 goto nospace;
5198
5199 /* prod points to an empty tx_bd at this point. */
5200 prod_bseq = sc->tx_prod_bseq;
5201 #ifdef BNX_DEBUG
5202 debug_prod = chain_prod;
5203 #endif
5204 DBPRINT(sc, BNX_INFO_SEND,
5205 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5206 "prod_bseq = 0x%08X\n",
5207 __func__, prod, chain_prod, prod_bseq);
5208
5209 /*
5210 * Cycle through each mbuf segment that makes up
5211 * the outgoing frame, gathering the mapping info
5212 * for that segment and creating a tx_bd for the
5213 * mbuf.
5214 */
5215 for (i = 0; i < map->dm_nsegs ; i++) {
5216 chain_prod = TX_CHAIN_IDX(prod);
5217 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5218
5219 addr = (uint32_t)map->dm_segs[i].ds_addr;
5220 txbd->tx_bd_haddr_lo = addr;
5221 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5222 txbd->tx_bd_haddr_hi = addr;
5223 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5224 txbd->tx_bd_vlan_tag = vlan_tag;
5225 txbd->tx_bd_flags = flags;
5226 prod_bseq += map->dm_segs[i].ds_len;
5227 if (i == 0)
5228 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5229 prod = NEXT_TX_BD(prod);
5230 }
5231
5232 /* Set the END flag on the last TX buffer descriptor. */
5233 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5234
5235 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5236
5237 DBPRINT(sc, BNX_INFO_SEND,
5238 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5239 "prod_bseq = 0x%08X\n",
5240 __func__, prod, chain_prod, prod_bseq);
5241
5242 pkt->pkt_mbuf = m;
5243 pkt->pkt_end_desc = chain_prod;
5244
5245 mutex_enter(&sc->tx_pkt_mtx);
5246 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5247 mutex_exit(&sc->tx_pkt_mtx);
5248
5249 sc->used_tx_bd += map->dm_nsegs;
5250 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5251 __FILE__, __LINE__, sc->used_tx_bd);
5252
5253 /* Update some debug statistics counters */
5254 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5255 sc->tx_hi_watermark = sc->used_tx_bd);
5256 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5257 DBRUNIF(1, sc->tx_mbuf_alloc++);
5258
5259 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5260 map->dm_nsegs));
5261
5262 /* prod points to the next free tx_bd at this point. */
5263 sc->tx_prod = prod;
5264 sc->tx_prod_bseq = prod_bseq;
5265
5266 return 0;
5267
5268
5269 nospace:
5270 bus_dmamap_unload(sc->bnx_dmatag, map);
5271 maperr:
5272 mutex_enter(&sc->tx_pkt_mtx);
5273 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5274 mutex_exit(&sc->tx_pkt_mtx);
5275
5276 return ENOMEM;
5277 }
5278
5279 /****************************************************************************/
5280 /* Main transmit routine. */
5281 /* */
5282 /* Returns: */
5283 /* Nothing. */
5284 /****************************************************************************/
5285 void
5286 bnx_start(struct ifnet *ifp)
5287 {
5288 struct bnx_softc *sc = ifp->if_softc;
5289 struct mbuf *m_head = NULL;
5290 int count = 0;
5291 #ifdef BNX_DEBUG
5292 uint16_t tx_chain_prod;
5293 #endif
5294
5295 /* If there's no link or the transmit queue is empty then just exit. */
5296 if (!sc->bnx_link
5297 ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
5298 DBPRINT(sc, BNX_INFO_SEND,
5299 "%s(): output active or device not running.\n", __func__);
5300 goto bnx_start_exit;
5301 }
5302
5303 /* prod points to the next free tx_bd. */
5304 #ifdef BNX_DEBUG
5305 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5306 #endif
5307
5308 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5309 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5310 "used_tx %d max_tx %d\n",
5311 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5312 sc->used_tx_bd, sc->max_tx_bd);
5313
5314 /*
5315 * Keep adding entries while there is space in the ring.
5316 */
5317 while (sc->used_tx_bd < sc->max_tx_bd) {
5318 /* Check for any frames to send. */
5319 IFQ_POLL(&ifp->if_snd, m_head);
5320 if (m_head == NULL)
5321 break;
5322
5323 /*
5324 * Pack the data into the transmit ring. If we
5325 * don't have room, set the OACTIVE flag to wait
5326 * for the NIC to drain the chain.
5327 */
5328 if (bnx_tx_encap(sc, m_head)) {
5329 ifp->if_flags |= IFF_OACTIVE;
5330 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5331 "business! Total tx_bd used = %d\n",
5332 sc->used_tx_bd);
5333 break;
5334 }
5335
5336 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5337 count++;
5338
5339 /* Send a copy of the frame to any BPF listeners. */
5340 bpf_mtap(ifp, m_head, BPF_D_OUT);
5341 }
5342
5343 if (count == 0) {
5344 /* no packets were dequeued */
5345 DBPRINT(sc, BNX_VERBOSE_SEND,
5346 "%s(): No packets were dequeued\n", __func__);
5347 goto bnx_start_exit;
5348 }
5349
5350 /* Update the driver's counters. */
5351 #ifdef BNX_DEBUG
5352 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5353 #endif
5354
5355 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5356 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5357 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5358
5359 /* Start the transmit. */
5360 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5361 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5362
5363 /* Set the tx timeout. */
5364 ifp->if_timer = BNX_TX_TIMEOUT;
5365
5366 bnx_start_exit:
5367 return;
5368 }
5369
5370 /****************************************************************************/
5371 /* Handles any IOCTL calls from the operating system. */
5372 /* */
5373 /* Returns: */
5374 /* 0 for success, positive value for failure. */
5375 /****************************************************************************/
5376 int
5377 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5378 {
5379 struct bnx_softc *sc = ifp->if_softc;
5380 struct ifreq *ifr = (struct ifreq *) data;
5381 struct mii_data *mii = &sc->bnx_mii;
5382 int s, error = 0;
5383
5384 s = splnet();
5385
5386 switch (command) {
5387 case SIOCSIFFLAGS:
5388 if ((error = ifioctl_common(ifp, command, data)) != 0)
5389 break;
5390 /* XXX set an ifflags callback and let ether_ioctl
5391 * handle all of this.
5392 */
5393 if (ISSET(ifp->if_flags, IFF_UP)) {
5394 if (ifp->if_flags & IFF_RUNNING)
5395 error = ENETRESET;
5396 else
5397 bnx_init(ifp);
5398 } else if (ifp->if_flags & IFF_RUNNING)
5399 bnx_stop(ifp, 1);
5400 break;
5401
5402 case SIOCSIFMEDIA:
5403 /* Flow control requires full-duplex mode. */
5404 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5405 (ifr->ifr_media & IFM_FDX) == 0)
5406 ifr->ifr_media &= ~IFM_ETH_FMASK;
5407
5408 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5409 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5410 /* We can do both TXPAUSE and RXPAUSE. */
5411 ifr->ifr_media |=
5412 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5413 }
5414 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5415 }
5416 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5417 sc->bnx_phy_flags);
5418
5419 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5420 break;
5421
5422 default:
5423 error = ether_ioctl(ifp, command, data);
5424 }
5425
5426 if (error == ENETRESET) {
5427 if (ifp->if_flags & IFF_RUNNING)
5428 bnx_iff(sc);
5429 error = 0;
5430 }
5431
5432 splx(s);
5433 return error;
5434 }
5435
5436 /****************************************************************************/
5437 /* Transmit timeout handler. */
5438 /* */
5439 /* Returns: */
5440 /* Nothing. */
5441 /****************************************************************************/
5442 void
5443 bnx_watchdog(struct ifnet *ifp)
5444 {
5445 struct bnx_softc *sc = ifp->if_softc;
5446
5447 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5448 bnx_dump_status_block(sc));
5449 /*
5450 * If we are in this routine because of pause frames, then
5451 * don't reset the hardware.
5452 */
5453 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5454 return;
5455
5456 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5457
5458 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5459
5460 bnx_init(ifp);
5461
5462 if_statinc(ifp, if_oerrors);
5463 }
5464
5465 /*
5466 * Interrupt handler.
5467 */
5468 /****************************************************************************/
5469 /* Main interrupt entry point. Verifies that the controller generated the */
5470 /* interrupt and then calls a separate routine for handle the various */
5471 /* interrupt causes (PHY, TX, RX). */
5472 /* */
5473 /* Returns: */
5474 /* 0 for success, positive value for failure. */
5475 /****************************************************************************/
5476 int
5477 bnx_intr(void *xsc)
5478 {
5479 struct bnx_softc *sc = xsc;
5480 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5481 uint32_t status_attn_bits;
5482 uint16_t status_idx;
5483 const struct status_block *sblk;
5484 int rv = 0;
5485
5486 if (!device_is_active(sc->bnx_dev) ||
5487 (ifp->if_flags & IFF_RUNNING) == 0)
5488 return 0;
5489
5490 DBRUNIF(1, sc->interrupts_generated++);
5491
5492 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5493 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5494
5495 sblk = sc->status_block;
5496 /*
5497 * If the hardware status block index
5498 * matches the last value read by the
5499 * driver and we haven't asserted our
5500 * interrupt then there's nothing to do.
5501 */
5502 status_idx = sblk->status_idx;
5503 if ((status_idx != sc->last_status_idx) ||
5504 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5505 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5506 rv = 1;
5507
5508 /* Ack the interrupt */
5509 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5510 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5511
5512 status_attn_bits = sblk->status_attn_bits;
5513
5514 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5515 aprint_debug("Simulating unexpected status attention bit set.");
5516 status_attn_bits = status_attn_bits |
5517 STATUS_ATTN_BITS_PARITY_ERROR);
5518
5519 /* Was it a link change interrupt? */
5520 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5521 (sblk->status_attn_bits_ack &
5522 STATUS_ATTN_BITS_LINK_STATE))
5523 bnx_phy_intr(sc);
5524
5525 /* If any other attention is asserted then the chip is toast. */
5526 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5527 (sblk->status_attn_bits_ack &
5528 ~STATUS_ATTN_BITS_LINK_STATE))) {
5529 DBRUN(sc->unexpected_attentions++);
5530
5531 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5532 sblk->status_attn_bits);
5533
5534 DBRUNIF((bnx_debug_unexpected_attention == 0),
5535 bnx_breakpoint(sc));
5536
5537 bnx_init(ifp);
5538 goto out;
5539 }
5540
5541 /* Check for any completed RX frames. */
5542 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5543 bnx_rx_intr(sc);
5544
5545 /* Check for any completed TX frames. */
5546 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5547 bnx_tx_intr(sc);
5548
5549 /*
5550 * Save the status block index value for use during the
5551 * next interrupt.
5552 */
5553 sc->last_status_idx = status_idx;
5554
5555 /* Start moving packets again */
5556 if (ifp->if_flags & IFF_RUNNING)
5557 if_schedule_deferred_start(ifp);
5558 }
5559
5560 out:
5561 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5562 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5563
5564 return rv;
5565 }
5566
5567 /****************************************************************************/
5568 /* Programs the various packet receive modes (broadcast and multicast). */
5569 /* */
5570 /* Returns: */
5571 /* Nothing. */
5572 /****************************************************************************/
5573 void
5574 bnx_iff(struct bnx_softc *sc)
5575 {
5576 struct ethercom *ec = &sc->bnx_ec;
5577 struct ifnet *ifp = &ec->ec_if;
5578 struct ether_multi *enm;
5579 struct ether_multistep step;
5580 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5581 uint32_t rx_mode, sort_mode;
5582 int h, i;
5583
5584 /* Initialize receive mode default settings. */
5585 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5586 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5587 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5588 ifp->if_flags &= ~IFF_ALLMULTI;
5589
5590 /*
5591 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5592 * be enbled.
5593 */
5594 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5595 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5596
5597 /*
5598 * Check for promiscuous, all multicast, or selected
5599 * multicast address filtering.
5600 */
5601 if (ifp->if_flags & IFF_PROMISC) {
5602 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5603
5604 ifp->if_flags |= IFF_ALLMULTI;
5605 /* Enable promiscuous mode. */
5606 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5607 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5608 } else if (ifp->if_flags & IFF_ALLMULTI) {
5609 allmulti:
5610 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5611
5612 ifp->if_flags |= IFF_ALLMULTI;
5613 /* Enable all multicast addresses. */
5614 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5615 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5616 0xffffffff);
5617 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5618 } else {
5619 /* Accept one or more multicast(s). */
5620 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5621
5622 ETHER_LOCK(ec);
5623 ETHER_FIRST_MULTI(step, ec, enm);
5624 while (enm != NULL) {
5625 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5626 ETHER_ADDR_LEN)) {
5627 ETHER_UNLOCK(ec);
5628 goto allmulti;
5629 }
5630 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5631 0xFF;
5632 hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
5633 ETHER_NEXT_MULTI(step, enm);
5634 }
5635 ETHER_UNLOCK(ec);
5636
5637 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5638 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5639 hashes[i]);
5640
5641 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5642 }
5643
5644 /* Only make changes if the receive mode has actually changed. */
5645 if (rx_mode != sc->rx_mode) {
5646 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5647 rx_mode);
5648
5649 sc->rx_mode = rx_mode;
5650 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5651 }
5652
5653 /* Disable and clear the exisitng sort before enabling a new sort. */
5654 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5655 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5656 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5657 }
5658
5659 /****************************************************************************/
5660 /* Called periodically to updates statistics from the controllers */
5661 /* statistics block. */
5662 /* */
5663 /* Returns: */
5664 /* Nothing. */
5665 /****************************************************************************/
5666 void
5667 bnx_stats_update(struct bnx_softc *sc)
5668 {
5669 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5670 struct statistics_block *stats;
5671
5672 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5673 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5674 BUS_DMASYNC_POSTREAD);
5675
5676 stats = (struct statistics_block *)sc->stats_block;
5677
5678 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
5679 uint64_t value;
5680
5681 /*
5682 * Update the interface statistics from the
5683 * hardware statistics.
5684 */
5685 value = (u_long)stats->stat_EtherStatsCollisions;
5686 if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
5687 sc->if_stat_collisions = value;
5688
5689 value = (u_long)stats->stat_EtherStatsUndersizePkts +
5690 (u_long)stats->stat_EtherStatsOverrsizePkts +
5691 (u_long)stats->stat_IfInMBUFDiscards +
5692 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5693 (u_long)stats->stat_Dot3StatsFCSErrors;
5694 if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
5695 sc->if_stat_ierrors = value;
5696
5697 value = (u_long)
5698 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5699 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5700 (u_long)stats->stat_Dot3StatsLateCollisions;
5701 if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
5702 sc->if_stat_oerrors = value;
5703
5704 /*
5705 * Certain controllers don't report
5706 * carrier sense errors correctly.
5707 * See errata E11_5708CA0_1165.
5708 */
5709 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5710 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
5711 if_statadd_ref(nsr, if_oerrors,
5712 (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
5713 }
5714
5715 IF_STAT_PUTREF(ifp);
5716
5717 /*
5718 * Update the sysctl statistics from the
5719 * hardware statistics.
5720 */
5721 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5722 (uint64_t) stats->stat_IfHCInOctets_lo;
5723
5724 sc->stat_IfHCInBadOctets =
5725 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5726 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5727
5728 sc->stat_IfHCOutOctets =
5729 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5730 (uint64_t) stats->stat_IfHCOutOctets_lo;
5731
5732 sc->stat_IfHCOutBadOctets =
5733 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5734 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5735
5736 sc->stat_IfHCInUcastPkts =
5737 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5738 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5739
5740 sc->stat_IfHCInMulticastPkts =
5741 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5742 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5743
5744 sc->stat_IfHCInBroadcastPkts =
5745 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5746 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5747
5748 sc->stat_IfHCOutUcastPkts =
5749 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5750 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5751
5752 sc->stat_IfHCOutMulticastPkts =
5753 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5754 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5755
5756 sc->stat_IfHCOutBroadcastPkts =
5757 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5758 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5759
5760 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5761 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5762
5763 sc->stat_Dot3StatsCarrierSenseErrors =
5764 stats->stat_Dot3StatsCarrierSenseErrors;
5765
5766 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5767
5768 sc->stat_Dot3StatsAlignmentErrors =
5769 stats->stat_Dot3StatsAlignmentErrors;
5770
5771 sc->stat_Dot3StatsSingleCollisionFrames =
5772 stats->stat_Dot3StatsSingleCollisionFrames;
5773
5774 sc->stat_Dot3StatsMultipleCollisionFrames =
5775 stats->stat_Dot3StatsMultipleCollisionFrames;
5776
5777 sc->stat_Dot3StatsDeferredTransmissions =
5778 stats->stat_Dot3StatsDeferredTransmissions;
5779
5780 sc->stat_Dot3StatsExcessiveCollisions =
5781 stats->stat_Dot3StatsExcessiveCollisions;
5782
5783 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5784
5785 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5786
5787 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5788
5789 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5790
5791 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5792
5793 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5794
5795 sc->stat_EtherStatsPktsRx64Octets =
5796 stats->stat_EtherStatsPktsRx64Octets;
5797
5798 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5799 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5800
5801 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5802 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5803
5804 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5805 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5806
5807 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5808 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5809
5810 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5811 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5812
5813 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5814 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5815
5816 sc->stat_EtherStatsPktsTx64Octets =
5817 stats->stat_EtherStatsPktsTx64Octets;
5818
5819 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5820 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5821
5822 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5823 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5824
5825 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5826 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5827
5828 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5829 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5830
5831 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5832 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5833
5834 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5835 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5836
5837 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5838
5839 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5840
5841 sc->stat_OutXonSent = stats->stat_OutXonSent;
5842
5843 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5844
5845 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5846
5847 sc->stat_MacControlFramesReceived =
5848 stats->stat_MacControlFramesReceived;
5849
5850 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5851
5852 sc->stat_IfInFramesL2FilterDiscards =
5853 stats->stat_IfInFramesL2FilterDiscards;
5854
5855 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5856
5857 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5858
5859 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5860
5861 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5862
5863 sc->stat_CatchupInRuleCheckerDiscards =
5864 stats->stat_CatchupInRuleCheckerDiscards;
5865
5866 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5867
5868 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5869
5870 sc->stat_CatchupInRuleCheckerP4Hit =
5871 stats->stat_CatchupInRuleCheckerP4Hit;
5872
5873 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5874 }
5875
5876 void
5877 bnx_tick(void *xsc)
5878 {
5879 struct bnx_softc *sc = xsc;
5880 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5881 struct mii_data *mii;
5882 uint32_t msg;
5883 uint16_t prod, chain_prod;
5884 uint32_t prod_bseq;
5885 int s = splnet();
5886
5887 /* Tell the firmware that the driver is still running. */
5888 #ifdef BNX_DEBUG
5889 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5890 #else
5891 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5892 #endif
5893 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5894
5895 /* Update the statistics from the hardware statistics block. */
5896 bnx_stats_update(sc);
5897
5898 /* Schedule the next tick. */
5899 if (!sc->bnx_detaching)
5900 callout_schedule(&sc->bnx_timeout, hz);
5901
5902 if (sc->bnx_link)
5903 goto bnx_tick_exit;
5904
5905 mii = &sc->bnx_mii;
5906 mii_tick(mii);
5907
5908 /* Check if the link has come up. */
5909 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
5910 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
5911 sc->bnx_link++;
5912 /* Now that link is up, handle any outstanding TX traffic. */
5913 if_schedule_deferred_start(ifp);
5914 }
5915
5916 bnx_tick_exit:
5917 /* try to get more RX buffers, just in case */
5918 prod = sc->rx_prod;
5919 prod_bseq = sc->rx_prod_bseq;
5920 chain_prod = RX_CHAIN_IDX(prod);
5921 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5922 sc->rx_prod = prod;
5923 sc->rx_prod_bseq = prod_bseq;
5924
5925 splx(s);
5926 return;
5927 }
5928
5929 /****************************************************************************/
5930 /* BNX Debug Routines */
5931 /****************************************************************************/
5932 #ifdef BNX_DEBUG
5933
5934 /****************************************************************************/
5935 /* Prints out information about an mbuf. */
5936 /* */
5937 /* Returns: */
5938 /* Nothing. */
5939 /****************************************************************************/
5940 void
5941 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5942 {
5943 struct mbuf *mp = m;
5944
5945 if (m == NULL) {
5946 /* Index out of range. */
5947 aprint_error("mbuf ptr is null!\n");
5948 return;
5949 }
5950
5951 while (mp) {
5952 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5953 mp, mp->m_len);
5954
5955 if (mp->m_flags & M_EXT)
5956 aprint_debug("M_EXT ");
5957 if (mp->m_flags & M_PKTHDR)
5958 aprint_debug("M_PKTHDR ");
5959 aprint_debug("\n");
5960
5961 if (mp->m_flags & M_EXT)
5962 aprint_debug("- m_ext: vaddr = %p, "
5963 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5964
5965 mp = mp->m_next;
5966 }
5967 }
5968
5969 /****************************************************************************/
5970 /* Prints out the mbufs in the TX mbuf chain. */
5971 /* */
5972 /* Returns: */
5973 /* Nothing. */
5974 /****************************************************************************/
5975 void
5976 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5977 {
5978 #if 0
5979 struct mbuf *m;
5980 int i;
5981
5982 aprint_debug_dev(sc->bnx_dev,
5983 "----------------------------"
5984 " tx mbuf data "
5985 "----------------------------\n");
5986
5987 for (i = 0; i < count; i++) {
5988 m = sc->tx_mbuf_ptr[chain_prod];
5989 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5990 bnx_dump_mbuf(sc, m);
5991 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5992 }
5993
5994 aprint_debug_dev(sc->bnx_dev,
5995 "--------------------------------------------"
5996 "----------------------------\n");
5997 #endif
5998 }
5999
6000 /*
6001 * This routine prints the RX mbuf chain.
6002 */
6003 void
6004 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
6005 {
6006 struct mbuf *m;
6007 int i;
6008
6009 aprint_debug_dev(sc->bnx_dev,
6010 "----------------------------"
6011 " rx mbuf data "
6012 "----------------------------\n");
6013
6014 for (i = 0; i < count; i++) {
6015 m = sc->rx_mbuf_ptr[chain_prod];
6016 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
6017 bnx_dump_mbuf(sc, m);
6018 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
6019 }
6020
6021
6022 aprint_debug_dev(sc->bnx_dev,
6023 "--------------------------------------------"
6024 "----------------------------\n");
6025 }
6026
6027 void
6028 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
6029 {
6030 if (idx > MAX_TX_BD)
6031 /* Index out of range. */
6032 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
6033 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
6034 /* TX Chain page pointer. */
6035 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
6036 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
6037 txbd->tx_bd_haddr_lo);
6038 else
6039 /* Normal tx_bd entry. */
6040 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6041 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
6042 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
6043 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
6044 txbd->tx_bd_flags);
6045 }
6046
6047 void
6048 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
6049 {
6050 if (idx > MAX_RX_BD)
6051 /* Index out of range. */
6052 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
6053 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
6054 /* TX Chain page pointer. */
6055 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
6056 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
6057 rxbd->rx_bd_haddr_lo);
6058 else
6059 /* Normal tx_bd entry. */
6060 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
6061 "0x%08X, flags = 0x%08X\n", idx,
6062 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
6063 rxbd->rx_bd_len, rxbd->rx_bd_flags);
6064 }
6065
6066 void
6067 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
6068 {
6069 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
6070 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
6071 "tcp_udp_xsum = 0x%04X\n", idx,
6072 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
6073 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
6074 l2fhdr->l2_fhdr_tcp_udp_xsum);
6075 }
6076
6077 /*
6078 * This routine prints the TX chain.
6079 */
6080 void
6081 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
6082 {
6083 struct tx_bd *txbd;
6084 int i;
6085
6086 /* First some info about the tx_bd chain structure. */
6087 aprint_debug_dev(sc->bnx_dev,
6088 "----------------------------"
6089 " tx_bd chain "
6090 "----------------------------\n");
6091
6092 BNX_PRINTF(sc,
6093 "page size = 0x%08X, tx chain pages = 0x%08X\n",
6094 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
6095
6096 BNX_PRINTF(sc,
6097 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
6098 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
6099
6100 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
6101
6102 aprint_error_dev(sc->bnx_dev, ""
6103 "-----------------------------"
6104 " tx_bd data "
6105 "-----------------------------\n");
6106
6107 /* Now print out the tx_bd's themselves. */
6108 for (i = 0; i < count; i++) {
6109 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
6110 bnx_dump_txbd(sc, tx_prod, txbd);
6111 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
6112 }
6113
6114 aprint_debug_dev(sc->bnx_dev,
6115 "-----------------------------"
6116 "--------------"
6117 "-----------------------------\n");
6118 }
6119
6120 /*
6121 * This routine prints the RX chain.
6122 */
6123 void
6124 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
6125 {
6126 struct rx_bd *rxbd;
6127 int i;
6128
6129 /* First some info about the tx_bd chain structure. */
6130 aprint_debug_dev(sc->bnx_dev,
6131 "----------------------------"
6132 " rx_bd chain "
6133 "----------------------------\n");
6134
6135 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
6136
6137 BNX_PRINTF(sc,
6138 "page size = 0x%08X, rx chain pages = 0x%08X\n",
6139 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
6140
6141 BNX_PRINTF(sc,
6142 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
6143 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
6144
6145 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
6146
6147 aprint_error_dev(sc->bnx_dev,
6148 "----------------------------"
6149 " rx_bd data "
6150 "----------------------------\n");
6151
6152 /* Now print out the rx_bd's themselves. */
6153 for (i = 0; i < count; i++) {
6154 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
6155 bnx_dump_rxbd(sc, rx_prod, rxbd);
6156 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
6157 }
6158
6159 aprint_debug_dev(sc->bnx_dev,
6160 "----------------------------"
6161 "--------------"
6162 "----------------------------\n");
6163 }
6164
6165 /*
6166 * This routine prints the status block.
6167 */
6168 void
6169 bnx_dump_status_block(struct bnx_softc *sc)
6170 {
6171 struct status_block *sblk;
6172 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6173 BUS_DMASYNC_POSTREAD);
6174
6175 sblk = sc->status_block;
6176
6177 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6178 "Status Block -----------------------------\n");
6179
6180 BNX_PRINTF(sc,
6181 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6182 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6183 sblk->status_idx);
6184
6185 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6186 sblk->status_rx_quick_consumer_index0,
6187 sblk->status_tx_quick_consumer_index0);
6188
6189 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6190
6191 /* Theses indices are not used for normal L2 drivers. */
6192 if (sblk->status_rx_quick_consumer_index1 ||
6193 sblk->status_tx_quick_consumer_index1)
6194 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6195 sblk->status_rx_quick_consumer_index1,
6196 sblk->status_tx_quick_consumer_index1);
6197
6198 if (sblk->status_rx_quick_consumer_index2 ||
6199 sblk->status_tx_quick_consumer_index2)
6200 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6201 sblk->status_rx_quick_consumer_index2,
6202 sblk->status_tx_quick_consumer_index2);
6203
6204 if (sblk->status_rx_quick_consumer_index3 ||
6205 sblk->status_tx_quick_consumer_index3)
6206 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6207 sblk->status_rx_quick_consumer_index3,
6208 sblk->status_tx_quick_consumer_index3);
6209
6210 if (sblk->status_rx_quick_consumer_index4 ||
6211 sblk->status_rx_quick_consumer_index5)
6212 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6213 sblk->status_rx_quick_consumer_index4,
6214 sblk->status_rx_quick_consumer_index5);
6215
6216 if (sblk->status_rx_quick_consumer_index6 ||
6217 sblk->status_rx_quick_consumer_index7)
6218 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6219 sblk->status_rx_quick_consumer_index6,
6220 sblk->status_rx_quick_consumer_index7);
6221
6222 if (sblk->status_rx_quick_consumer_index8 ||
6223 sblk->status_rx_quick_consumer_index9)
6224 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6225 sblk->status_rx_quick_consumer_index8,
6226 sblk->status_rx_quick_consumer_index9);
6227
6228 if (sblk->status_rx_quick_consumer_index10 ||
6229 sblk->status_rx_quick_consumer_index11)
6230 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6231 sblk->status_rx_quick_consumer_index10,
6232 sblk->status_rx_quick_consumer_index11);
6233
6234 if (sblk->status_rx_quick_consumer_index12 ||
6235 sblk->status_rx_quick_consumer_index13)
6236 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6237 sblk->status_rx_quick_consumer_index12,
6238 sblk->status_rx_quick_consumer_index13);
6239
6240 if (sblk->status_rx_quick_consumer_index14 ||
6241 sblk->status_rx_quick_consumer_index15)
6242 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6243 sblk->status_rx_quick_consumer_index14,
6244 sblk->status_rx_quick_consumer_index15);
6245
6246 if (sblk->status_completion_producer_index ||
6247 sblk->status_cmd_consumer_index)
6248 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6249 sblk->status_completion_producer_index,
6250 sblk->status_cmd_consumer_index);
6251
6252 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6253 "-----------------------------\n");
6254 }
6255
6256 /*
6257 * This routine prints the statistics block.
6258 */
6259 void
6260 bnx_dump_stats_block(struct bnx_softc *sc)
6261 {
6262 struct statistics_block *sblk;
6263 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6264 BUS_DMASYNC_POSTREAD);
6265
6266 sblk = sc->stats_block;
6267
6268 aprint_debug_dev(sc->bnx_dev, ""
6269 "-----------------------------"
6270 " Stats Block "
6271 "-----------------------------\n");
6272
6273 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6274 "IfHcInBadOctets = 0x%08X:%08X\n",
6275 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6276 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6277
6278 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6279 "IfHcOutBadOctets = 0x%08X:%08X\n",
6280 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6281 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6282
6283 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6284 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6285 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6286 sblk->stat_IfHCInMulticastPkts_hi,
6287 sblk->stat_IfHCInMulticastPkts_lo);
6288
6289 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6290 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6291 sblk->stat_IfHCInBroadcastPkts_hi,
6292 sblk->stat_IfHCInBroadcastPkts_lo,
6293 sblk->stat_IfHCOutUcastPkts_hi,
6294 sblk->stat_IfHCOutUcastPkts_lo);
6295
6296 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6297 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6298 sblk->stat_IfHCOutMulticastPkts_hi,
6299 sblk->stat_IfHCOutMulticastPkts_lo,
6300 sblk->stat_IfHCOutBroadcastPkts_hi,
6301 sblk->stat_IfHCOutBroadcastPkts_lo);
6302
6303 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6304 BNX_PRINTF(sc, "0x%08X : "
6305 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6306 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6307
6308 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6309 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6310 sblk->stat_Dot3StatsCarrierSenseErrors);
6311
6312 if (sblk->stat_Dot3StatsFCSErrors)
6313 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6314 sblk->stat_Dot3StatsFCSErrors);
6315
6316 if (sblk->stat_Dot3StatsAlignmentErrors)
6317 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6318 sblk->stat_Dot3StatsAlignmentErrors);
6319
6320 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6321 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6322 sblk->stat_Dot3StatsSingleCollisionFrames);
6323
6324 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6325 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6326 sblk->stat_Dot3StatsMultipleCollisionFrames);
6327
6328 if (sblk->stat_Dot3StatsDeferredTransmissions)
6329 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6330 sblk->stat_Dot3StatsDeferredTransmissions);
6331
6332 if (sblk->stat_Dot3StatsExcessiveCollisions)
6333 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6334 sblk->stat_Dot3StatsExcessiveCollisions);
6335
6336 if (sblk->stat_Dot3StatsLateCollisions)
6337 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6338 sblk->stat_Dot3StatsLateCollisions);
6339
6340 if (sblk->stat_EtherStatsCollisions)
6341 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6342 sblk->stat_EtherStatsCollisions);
6343
6344 if (sblk->stat_EtherStatsFragments)
6345 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6346 sblk->stat_EtherStatsFragments);
6347
6348 if (sblk->stat_EtherStatsJabbers)
6349 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6350 sblk->stat_EtherStatsJabbers);
6351
6352 if (sblk->stat_EtherStatsUndersizePkts)
6353 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6354 sblk->stat_EtherStatsUndersizePkts);
6355
6356 if (sblk->stat_EtherStatsOverrsizePkts)
6357 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6358 sblk->stat_EtherStatsOverrsizePkts);
6359
6360 if (sblk->stat_EtherStatsPktsRx64Octets)
6361 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6362 sblk->stat_EtherStatsPktsRx64Octets);
6363
6364 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6365 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6366 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6367
6368 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6369 BNX_PRINTF(sc, "0x%08X : "
6370 "EtherStatsPktsRx128Octetsto255Octets\n",
6371 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6372
6373 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6374 BNX_PRINTF(sc, "0x%08X : "
6375 "EtherStatsPktsRx256Octetsto511Octets\n",
6376 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6377
6378 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6379 BNX_PRINTF(sc, "0x%08X : "
6380 "EtherStatsPktsRx512Octetsto1023Octets\n",
6381 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6382
6383 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6384 BNX_PRINTF(sc, "0x%08X : "
6385 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6386 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6387
6388 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6389 BNX_PRINTF(sc, "0x%08X : "
6390 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6391 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6392
6393 if (sblk->stat_EtherStatsPktsTx64Octets)
6394 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6395 sblk->stat_EtherStatsPktsTx64Octets);
6396
6397 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6398 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6399 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6400
6401 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6402 BNX_PRINTF(sc, "0x%08X : "
6403 "EtherStatsPktsTx128Octetsto255Octets\n",
6404 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6405
6406 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6407 BNX_PRINTF(sc, "0x%08X : "
6408 "EtherStatsPktsTx256Octetsto511Octets\n",
6409 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6410
6411 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6412 BNX_PRINTF(sc, "0x%08X : "
6413 "EtherStatsPktsTx512Octetsto1023Octets\n",
6414 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6415
6416 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6417 BNX_PRINTF(sc, "0x%08X : "
6418 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6419 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6420
6421 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6422 BNX_PRINTF(sc, "0x%08X : "
6423 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6424 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6425
6426 if (sblk->stat_XonPauseFramesReceived)
6427 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6428 sblk->stat_XonPauseFramesReceived);
6429
6430 if (sblk->stat_XoffPauseFramesReceived)
6431 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6432 sblk->stat_XoffPauseFramesReceived);
6433
6434 if (sblk->stat_OutXonSent)
6435 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6436 sblk->stat_OutXonSent);
6437
6438 if (sblk->stat_OutXoffSent)
6439 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6440 sblk->stat_OutXoffSent);
6441
6442 if (sblk->stat_FlowControlDone)
6443 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6444 sblk->stat_FlowControlDone);
6445
6446 if (sblk->stat_MacControlFramesReceived)
6447 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6448 sblk->stat_MacControlFramesReceived);
6449
6450 if (sblk->stat_XoffStateEntered)
6451 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6452 sblk->stat_XoffStateEntered);
6453
6454 if (sblk->stat_IfInFramesL2FilterDiscards)
6455 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6456 sblk->stat_IfInFramesL2FilterDiscards);
6457
6458 if (sblk->stat_IfInRuleCheckerDiscards)
6459 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6460 sblk->stat_IfInRuleCheckerDiscards);
6461
6462 if (sblk->stat_IfInFTQDiscards)
6463 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6464 sblk->stat_IfInFTQDiscards);
6465
6466 if (sblk->stat_IfInMBUFDiscards)
6467 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6468 sblk->stat_IfInMBUFDiscards);
6469
6470 if (sblk->stat_IfInRuleCheckerP4Hit)
6471 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6472 sblk->stat_IfInRuleCheckerP4Hit);
6473
6474 if (sblk->stat_CatchupInRuleCheckerDiscards)
6475 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6476 sblk->stat_CatchupInRuleCheckerDiscards);
6477
6478 if (sblk->stat_CatchupInFTQDiscards)
6479 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6480 sblk->stat_CatchupInFTQDiscards);
6481
6482 if (sblk->stat_CatchupInMBUFDiscards)
6483 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6484 sblk->stat_CatchupInMBUFDiscards);
6485
6486 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6487 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6488 sblk->stat_CatchupInRuleCheckerP4Hit);
6489
6490 aprint_debug_dev(sc->bnx_dev,
6491 "-----------------------------"
6492 "--------------"
6493 "-----------------------------\n");
6494 }
6495
6496 void
6497 bnx_dump_driver_state(struct bnx_softc *sc)
6498 {
6499 aprint_debug_dev(sc->bnx_dev,
6500 "-----------------------------"
6501 " Driver State "
6502 "-----------------------------\n");
6503
6504 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6505 "address\n", sc);
6506
6507 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6508 sc->status_block);
6509
6510 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6511 "address\n", sc->stats_block);
6512
6513 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6514 "address\n", sc->tx_bd_chain);
6515
6516 #if 0
6517 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6518 sc->rx_bd_chain);
6519
6520 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6521 sc->tx_mbuf_ptr);
6522 #endif
6523
6524 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6525 sc->rx_mbuf_ptr);
6526
6527 BNX_PRINTF(sc,
6528 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6529 sc->interrupts_generated);
6530
6531 BNX_PRINTF(sc,
6532 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6533 sc->rx_interrupts);
6534
6535 BNX_PRINTF(sc,
6536 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6537 sc->tx_interrupts);
6538
6539 BNX_PRINTF(sc,
6540 " 0x%08X - (sc->last_status_idx) status block index\n",
6541 sc->last_status_idx);
6542
6543 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6544 sc->tx_prod);
6545
6546 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6547 sc->tx_cons);
6548
6549 BNX_PRINTF(sc,
6550 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6551 sc->tx_prod_bseq);
6552 BNX_PRINTF(sc,
6553 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6554 sc->tx_mbuf_alloc);
6555
6556 BNX_PRINTF(sc,
6557 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6558 sc->used_tx_bd);
6559
6560 BNX_PRINTF(sc,
6561 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6562 sc->tx_hi_watermark, sc->max_tx_bd);
6563
6564
6565 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6566 sc->rx_prod);
6567
6568 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6569 sc->rx_cons);
6570
6571 BNX_PRINTF(sc,
6572 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6573 sc->rx_prod_bseq);
6574
6575 BNX_PRINTF(sc,
6576 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6577 sc->rx_mbuf_alloc);
6578
6579 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6580 sc->free_rx_bd);
6581
6582 BNX_PRINTF(sc,
6583 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6584 sc->rx_low_watermark, sc->max_rx_bd);
6585
6586 BNX_PRINTF(sc,
6587 " 0x%08X - (sc->mbuf_alloc_failed) "
6588 "mbuf alloc failures\n",
6589 sc->mbuf_alloc_failed);
6590
6591 BNX_PRINTF(sc,
6592 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6593 "simulated mbuf alloc failures\n",
6594 sc->mbuf_sim_alloc_failed);
6595
6596 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6597 "-----------------------------\n");
6598 }
6599
6600 void
6601 bnx_dump_hw_state(struct bnx_softc *sc)
6602 {
6603 uint32_t val1;
6604 int i;
6605
6606 aprint_debug_dev(sc->bnx_dev,
6607 "----------------------------"
6608 " Hardware State "
6609 "----------------------------\n");
6610
6611 val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
6612 BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
6613
6614 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6615 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6616 val1, BNX_MISC_ENABLE_STATUS_BITS);
6617
6618 val1 = REG_RD(sc, BNX_DMA_STATUS);
6619 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6620
6621 val1 = REG_RD(sc, BNX_CTX_STATUS);
6622 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6623
6624 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6625 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6626 BNX_EMAC_STATUS);
6627
6628 val1 = REG_RD(sc, BNX_RPM_STATUS);
6629 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6630
6631 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6632 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6633 BNX_TBDR_STATUS);
6634
6635 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6636 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6637 BNX_TDMA_STATUS);
6638
6639 val1 = REG_RD(sc, BNX_HC_STATUS);
6640 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6641
6642 aprint_debug_dev(sc->bnx_dev,
6643 "----------------------------"
6644 "----------------"
6645 "----------------------------\n");
6646
6647 aprint_debug_dev(sc->bnx_dev,
6648 "----------------------------"
6649 " Register Dump "
6650 "----------------------------\n");
6651
6652 for (i = 0x400; i < 0x8000; i += 0x10)
6653 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6654 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6655 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6656
6657 aprint_debug_dev(sc->bnx_dev,
6658 "----------------------------"
6659 "----------------"
6660 "----------------------------\n");
6661 }
6662
6663 void
6664 bnx_breakpoint(struct bnx_softc *sc)
6665 {
6666 /* Unreachable code to shut the compiler up about unused functions. */
6667 if (0) {
6668 bnx_dump_txbd(sc, 0, NULL);
6669 bnx_dump_rxbd(sc, 0, NULL);
6670 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6671 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6672 bnx_dump_l2fhdr(sc, 0, NULL);
6673 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6674 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6675 bnx_dump_status_block(sc);
6676 bnx_dump_stats_block(sc);
6677 bnx_dump_driver_state(sc);
6678 bnx_dump_hw_state(sc);
6679 }
6680
6681 bnx_dump_driver_state(sc);
6682 /* Print the important status block fields. */
6683 bnx_dump_status_block(sc);
6684
6685 #if 0
6686 /* Call the debugger. */
6687 breakpoint();
6688 #endif
6689
6690 return;
6691 }
6692 #endif
6693