Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.99
      1 /*	$NetBSD: if_bnx.c,v 1.99 2020/07/14 15:37:40 jdolecek Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.99 2020/07/14 15:37:40 jdolecek Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 	device_t dev = sc->bnx_dev;
    466 	int i = 0;
    467 
    468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    471 	    ? "Serdes " : "", sc->bnx_chipid);
    472 
    473 	/* Bus info. */
    474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
    476 		switch (sc->link_speed) {
    477 		case 1: aprint_normal("2.5GT/s\n"); break;
    478 		case 2:	aprint_normal("5GT/s\n"); break;
    479 		default: aprint_normal("Unknown link speed\n");
    480 		}
    481 	} else {
    482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
    483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    485 		    sc->bus_speed_mhz);
    486 	}
    487 
    488 	/* Firmware version and device features. */
    489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
    490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
    491 
    492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
    493 		if (i > 0) aprint_normal("|");
    494 		aprint_normal("2.5G"); i++;
    495 	}
    496 
    497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
    498 		if (i > 0) aprint_normal("|");
    499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
    500 	} else {
    501 		aprint_normal(")\n");
    502 	}
    503 
    504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    505 	    sc->bnx_rx_quick_cons_trip_int,
    506 	    sc->bnx_rx_quick_cons_trip,
    507 	    sc->bnx_rx_ticks_int,
    508 	    sc->bnx_rx_ticks,
    509 	    sc->bnx_tx_quick_cons_trip_int,
    510 	    sc->bnx_tx_quick_cons_trip,
    511 	    sc->bnx_tx_ticks_int,
    512 	    sc->bnx_tx_ticks);
    513 }
    514 
    515 
    516 /****************************************************************************/
    517 /* PCI Capabilities Probe Function.                                         */
    518 /*                                                                          */
    519 /* Walks the PCI capabiites list for the device to find what features are   */
    520 /* supported.                                                               */
    521 /*                                                                          */
    522 /* Returns:                                                                 */
    523 /*   None.                                                                  */
    524 /****************************************************************************/
    525 static void
    526 bnx_probe_pci_caps(struct bnx_softc *sc)
    527 {
    528 	struct pci_attach_args *pa = &(sc->bnx_pa);
    529 	pcireg_t reg;
    530 
    531 	/* Check if PCI-X capability is enabled. */
    532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    533 		NULL) != 0) {
    534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    535 	}
    536 
    537 	/* Check if PCIe capability is enabled. */
    538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    539 		NULL) != 0) {
    540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    541 		    reg + PCIE_LCSR);
    542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    543 		    "0x%08X\n",	link_status);
    544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    547 		sc->bnx_flags |= BNX_PCIE_FLAG;
    548 	}
    549 
    550 	/* Check if MSI capability is enabled. */
    551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    552 		NULL) != 0)
    553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    554 
    555 	/* Check if MSI-X capability is enabled. */
    556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    557 		NULL) != 0)
    558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    559 }
    560 
    561 
    562 /****************************************************************************/
    563 /* Device attach function.                                                  */
    564 /*                                                                          */
    565 /* Allocates device resources, performs secondary chip identification,      */
    566 /* resets and initializes the hardware, and initializes driver instance     */
    567 /* variables.                                                               */
    568 /*                                                                          */
    569 /* Returns:                                                                 */
    570 /*   0 on success, positive value on failure.                               */
    571 /****************************************************************************/
    572 void
    573 bnx_attach(device_t parent, device_t self, void *aux)
    574 {
    575 	const struct bnx_product *bp;
    576 	struct bnx_softc	*sc = device_private(self);
    577 	prop_dictionary_t	dict;
    578 	struct pci_attach_args	*pa = aux;
    579 	pci_chipset_tag_t	pc = pa->pa_pc;
    580 	const char		*intrstr = NULL;
    581 	uint32_t		command;
    582 	struct ifnet		*ifp;
    583 	struct mii_data * const mii = &sc->bnx_mii;
    584 	uint32_t		val;
    585 	int			mii_flags = MIIF_FORCEANEG;
    586 	pcireg_t		memtype;
    587 	char intrbuf[PCI_INTRSTR_LEN];
    588 	int i, j;
    589 
    590 	if (bnx_tx_pool == NULL) {
    591 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
    592 		pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    593 		    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    594 	}
    595 
    596 	bp = bnx_lookup(pa);
    597 	if (bp == NULL)
    598 		panic("unknown device");
    599 
    600 	sc->bnx_dev = self;
    601 
    602 	aprint_naive("\n");
    603 	aprint_normal(": %s\n", bp->bp_name);
    604 
    605 	sc->bnx_pa = *pa;
    606 
    607 	/*
    608 	 * Map control/status registers.
    609 	*/
    610 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    611 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    612 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    613 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    614 
    615 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    616 		aprint_error_dev(sc->bnx_dev,
    617 		    "failed to enable memory mapping!\n");
    618 		return;
    619 	}
    620 
    621 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    622 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    623 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    624 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    625 		return;
    626 	}
    627 
    628 	if (pci_intr_alloc(pa, &sc->bnx_ih, NULL, 0)) {
    629 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    630 		goto bnx_attach_fail;
    631 	}
    632 	intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
    633 
    634 	/*
    635 	 * Configure byte swap and enable indirect register access.
    636 	 * Rely on CPU to do target byte swapping on big endian systems.
    637 	 * Access to registers outside of PCI configurtion space are not
    638 	 * valid until this is done.
    639 	 */
    640 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    641 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    642 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    643 
    644 	/* Save ASIC revision info. */
    645 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    646 
    647 	/*
    648 	 * Find the base address for shared memory access.
    649 	 * Newer versions of bootcode use a signature and offset
    650 	 * while older versions use a fixed address.
    651 	 */
    652 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    653 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    654 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    655 		    (sc->bnx_pa.pa_function << 2));
    656 	else
    657 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    658 
    659 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    660 
    661 	/* Set initial device and PHY flags */
    662 	sc->bnx_flags = 0;
    663 	sc->bnx_phy_flags = 0;
    664 
    665 	/* Fetch the bootcode revision. */
    666 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
    667 	for (i = 0, j = 0; i < 3; i++) {
    668 		uint8_t num;
    669 		int k, skip0;
    670 
    671 		num = (uint8_t)(val >> (24 - (i * 8)));
    672 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
    673 			if (num >= k || !skip0 || k == 1) {
    674 				sc->bnx_bc_ver[j++] = (num / k) + '0';
    675 				skip0 = 0;
    676 			}
    677 		}
    678 		if (i != 2)
    679 			sc->bnx_bc_ver[j++] = '.';
    680 	}
    681 
    682 	/* Check if any management firmware is enabled. */
    683 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
    684 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
    685 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
    686 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
    687 
    688 		/* Allow time for firmware to enter the running state. */
    689 		for (i = 0; i < 30; i++) {
    690 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    691 			    BNX_BC_STATE_CONDITION);
    692 			if (val & BNX_CONDITION_MFW_RUN_MASK)
    693 				break;
    694 			DELAY(10000);
    695 		}
    696 
    697 		/* Check if management firmware is running. */
    698 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
    699 		    BNX_BC_STATE_CONDITION);
    700 		val &= BNX_CONDITION_MFW_RUN_MASK;
    701 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
    702 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
    703 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
    704 			    BNX_MFW_VER_PTR);
    705 
    706 			/* Read the management firmware version string. */
    707 			for (j = 0; j < 3; j++) {
    708 				val = bnx_reg_rd_ind(sc, addr + j * 4);
    709 				val = bswap32(val);
    710 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
    711 				i += 4;
    712 			}
    713 		} else {
    714 			/* May cause firmware synchronization timeouts. */
    715 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
    716 			    "but not running!\n", __FILE__, __LINE__);
    717 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
    718 
    719 			/* ToDo: Any action the driver should take? */
    720 		}
    721 	}
    722 
    723 	bnx_probe_pci_caps(sc);
    724 
    725 	/* Get PCI bus information (speed and type). */
    726 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    727 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    728 		uint32_t clkreg;
    729 
    730 		sc->bnx_flags |= BNX_PCIX_FLAG;
    731 
    732 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    733 
    734 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    735 		switch (clkreg) {
    736 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    737 			sc->bus_speed_mhz = 133;
    738 			break;
    739 
    740 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    741 			sc->bus_speed_mhz = 100;
    742 			break;
    743 
    744 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    745 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    746 			sc->bus_speed_mhz = 66;
    747 			break;
    748 
    749 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    750 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    751 			sc->bus_speed_mhz = 50;
    752 			break;
    753 
    754 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    755 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    756 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    757 			sc->bus_speed_mhz = 33;
    758 			break;
    759 		}
    760 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    761 			sc->bus_speed_mhz = 66;
    762 		else
    763 			sc->bus_speed_mhz = 33;
    764 
    765 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    766 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    767 
    768 	/* Reset the controller. */
    769 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    770 		goto bnx_attach_fail;
    771 
    772 	/* Initialize the controller. */
    773 	if (bnx_chipinit(sc)) {
    774 		aprint_error_dev(sc->bnx_dev,
    775 		    "Controller initialization failed!\n");
    776 		goto bnx_attach_fail;
    777 	}
    778 
    779 	/* Perform NVRAM test. */
    780 	if (bnx_nvram_test(sc)) {
    781 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    782 		goto bnx_attach_fail;
    783 	}
    784 
    785 	/* Fetch the permanent Ethernet MAC address. */
    786 	bnx_get_mac_addr(sc);
    787 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    788 	    ether_sprintf(sc->eaddr));
    789 
    790 	/*
    791 	 * Trip points control how many BDs
    792 	 * should be ready before generating an
    793 	 * interrupt while ticks control how long
    794 	 * a BD can sit in the chain before
    795 	 * generating an interrupt.  Set the default
    796 	 * values for the RX and TX rings.
    797 	 */
    798 
    799 #ifdef BNX_DEBUG
    800 	/* Force more frequent interrupts. */
    801 	sc->bnx_tx_quick_cons_trip_int = 1;
    802 	sc->bnx_tx_quick_cons_trip     = 1;
    803 	sc->bnx_tx_ticks_int	       = 0;
    804 	sc->bnx_tx_ticks	       = 0;
    805 
    806 	sc->bnx_rx_quick_cons_trip_int = 1;
    807 	sc->bnx_rx_quick_cons_trip     = 1;
    808 	sc->bnx_rx_ticks_int	       = 0;
    809 	sc->bnx_rx_ticks	       = 0;
    810 #else
    811 	sc->bnx_tx_quick_cons_trip_int = 20;
    812 	sc->bnx_tx_quick_cons_trip     = 20;
    813 	sc->bnx_tx_ticks_int	       = 80;
    814 	sc->bnx_tx_ticks	       = 80;
    815 
    816 	sc->bnx_rx_quick_cons_trip_int = 6;
    817 	sc->bnx_rx_quick_cons_trip     = 6;
    818 	sc->bnx_rx_ticks_int	       = 18;
    819 	sc->bnx_rx_ticks	       = 18;
    820 #endif
    821 
    822 	/* Update statistics once every second. */
    823 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    824 
    825 	/* Find the media type for the adapter. */
    826 	bnx_get_media(sc);
    827 
    828 	/*
    829 	 * Store config data needed by the PHY driver for
    830 	 * backplane applications
    831 	 */
    832 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    833 	    BNX_SHARED_HW_CFG_CONFIG);
    834 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    835 	    BNX_PORT_HW_CFG_CONFIG);
    836 
    837 	/* Allocate DMA memory resources. */
    838 	sc->bnx_dmatag = pa->pa_dmat;
    839 	if (bnx_dma_alloc(sc)) {
    840 		aprint_error_dev(sc->bnx_dev,
    841 		    "DMA resource allocation failed!\n");
    842 		goto bnx_attach_fail;
    843 	}
    844 
    845 	/* Initialize the ifnet interface. */
    846 	ifp = &sc->bnx_ec.ec_if;
    847 	ifp->if_softc = sc;
    848 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    849 	ifp->if_ioctl = bnx_ioctl;
    850 	ifp->if_stop = bnx_stop;
    851 	ifp->if_start = bnx_start;
    852 	ifp->if_init = bnx_init;
    853 	ifp->if_watchdog = bnx_watchdog;
    854 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    855 	IFQ_SET_READY(&ifp->if_snd);
    856 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    857 
    858 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    859 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    860 	sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    861 
    862 	ifp->if_capabilities |=
    863 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    864 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    865 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    866 
    867 	/* create workqueue to handle packet allocations */
    868 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    869 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    870 		aprint_error_dev(self, "failed to create workqueue\n");
    871 		goto bnx_attach_fail;
    872 	}
    873 
    874 	mii->mii_ifp = ifp;
    875 	mii->mii_readreg = bnx_miibus_read_reg;
    876 	mii->mii_writereg = bnx_miibus_write_reg;
    877 	mii->mii_statchg = bnx_miibus_statchg;
    878 
    879 	/* Handle any special PHY initialization for SerDes PHYs. */
    880 	bnx_init_media(sc);
    881 
    882 	sc->bnx_ec.ec_mii = mii;
    883 	ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
    884 
    885 	/* set phyflags and chipid before mii_attach() */
    886 	dict = device_properties(self);
    887 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    888 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    889 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    890 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    891 
    892 	/* Print some useful adapter info */
    893 	bnx_print_adapter_info(sc);
    894 
    895 	mii_flags |= MIIF_DOPAUSE;
    896 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    897 		mii_flags |= MIIF_HAVEFIBER;
    898 	mii_attach(self, mii, 0xffffffff,
    899 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    900 
    901 	if (LIST_EMPTY(&mii->mii_phys)) {
    902 		aprint_error_dev(self, "no PHY found!\n");
    903 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    904 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    905 	} else
    906 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    907 
    908 	/* Attach to the Ethernet interface list. */
    909 	if_attach(ifp);
    910 	if_deferred_start_init(ifp, NULL);
    911 	ether_ifattach(ifp, sc->eaddr);
    912 
    913 	callout_init(&sc->bnx_timeout, 0);
    914 	callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
    915 
    916 	/* Hookup IRQ last. */
    917 	sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
    918 	    bnx_intr, sc, device_xname(self));
    919 	if (sc->bnx_intrhand == NULL) {
    920 		aprint_error_dev(self, "couldn't establish interrupt");
    921 		if (intrstr != NULL)
    922 			aprint_error(" at %s", intrstr);
    923 		aprint_error("\n");
    924 		goto bnx_attach_fail;
    925 	}
    926 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    927 
    928 	if (pmf_device_register(self, NULL, NULL))
    929 		pmf_class_network_register(self, ifp);
    930 	else
    931 		aprint_error_dev(self, "couldn't establish power handler\n");
    932 
    933 	/* Print some important debugging info. */
    934 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    935 
    936 	/* Get the firmware running so ASF still works. */
    937 	bnx_mgmt_init(sc);
    938 
    939 	goto bnx_attach_exit;
    940 
    941 bnx_attach_fail:
    942 	bnx_release_resources(sc);
    943 
    944 bnx_attach_exit:
    945 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    946 }
    947 
    948 /****************************************************************************/
    949 /* Device detach function.                                                  */
    950 /*                                                                          */
    951 /* Stops the controller, resets the controller, and releases resources.     */
    952 /*                                                                          */
    953 /* Returns:                                                                 */
    954 /*   0 on success, positive value on failure.                               */
    955 /****************************************************************************/
    956 int
    957 bnx_detach(device_t dev, int flags)
    958 {
    959 	int s;
    960 	struct bnx_softc *sc;
    961 	struct ifnet *ifp;
    962 
    963 	sc = device_private(dev);
    964 	ifp = &sc->bnx_ec.ec_if;
    965 
    966 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    967 
    968 	/* Stop and reset the controller. */
    969 	s = splnet();
    970 	bnx_stop(ifp, 1);
    971 	splx(s);
    972 
    973 	pmf_device_deregister(dev);
    974 	callout_destroy(&sc->bnx_timeout);
    975 	ether_ifdetach(ifp);
    976 	workqueue_destroy(sc->bnx_wq);
    977 
    978 	if_detach(ifp);
    979 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    980 
    981 	/* Delete all remaining media. */
    982 	ifmedia_fini(&sc->bnx_mii.mii_media);
    983 
    984 	/* Release all remaining resources. */
    985 	bnx_release_resources(sc);
    986 
    987 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    988 
    989 	return 0;
    990 }
    991 
    992 /****************************************************************************/
    993 /* Indirect register read.                                                  */
    994 /*                                                                          */
    995 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    996 /* configuration space.  Using this mechanism avoids issues with posted     */
    997 /* reads but is much slower than memory-mapped I/O.                         */
    998 /*                                                                          */
    999 /* Returns:                                                                 */
   1000 /*   The value of the register.                                             */
   1001 /****************************************************************************/
   1002 uint32_t
   1003 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
   1004 {
   1005 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1006 
   1007 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1008 	    offset);
   1009 #ifdef BNX_DEBUG
   1010 	{
   1011 		uint32_t val;
   1012 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1013 		    BNX_PCICFG_REG_WINDOW);
   1014 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
   1015 		    "val = 0x%08X\n", __func__, offset, val);
   1016 		return val;
   1017 	}
   1018 #else
   1019 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
   1020 #endif
   1021 }
   1022 
   1023 /****************************************************************************/
   1024 /* Indirect register write.                                                 */
   1025 /*                                                                          */
   1026 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
   1027 /* configuration space.  Using this mechanism avoids issues with posted     */
   1028 /* writes but is muchh slower than memory-mapped I/O.                       */
   1029 /*                                                                          */
   1030 /* Returns:                                                                 */
   1031 /*   Nothing.                                                               */
   1032 /****************************************************************************/
   1033 void
   1034 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
   1035 {
   1036 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1037 
   1038 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
   1039 		__func__, offset, val);
   1040 
   1041 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1042 	    offset);
   1043 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
   1044 }
   1045 
   1046 /****************************************************************************/
   1047 /* Context memory write.                                                    */
   1048 /*                                                                          */
   1049 /* The NetXtreme II controller uses context memory to track connection      */
   1050 /* information for L2 and higher network protocols.                         */
   1051 /*                                                                          */
   1052 /* Returns:                                                                 */
   1053 /*   Nothing.                                                               */
   1054 /****************************************************************************/
   1055 void
   1056 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
   1057     uint32_t ctx_val)
   1058 {
   1059 	uint32_t idx, offset = ctx_offset + cid_addr;
   1060 	uint32_t val, retry_cnt = 5;
   1061 
   1062 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1063 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
   1064 		REG_WR(sc, BNX_CTX_CTX_CTRL,
   1065 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
   1066 
   1067 		for (idx = 0; idx < retry_cnt; idx++) {
   1068 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1069 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1070 				break;
   1071 			DELAY(5);
   1072 		}
   1073 
   1074 #if 0
   1075 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1076 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1077 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1078 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1079 #endif
   1080 
   1081 	} else {
   1082 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1083 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1084 	}
   1085 }
   1086 
   1087 /****************************************************************************/
   1088 /* PHY register read.                                                       */
   1089 /*                                                                          */
   1090 /* Implements register reads on the MII bus.                                */
   1091 /*                                                                          */
   1092 /* Returns:                                                                 */
   1093 /*   The value of the register.                                             */
   1094 /****************************************************************************/
   1095 int
   1096 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1097 {
   1098 	struct bnx_softc	*sc = device_private(dev);
   1099 	uint32_t		data;
   1100 	int			i, rv = 0;
   1101 
   1102 	/*
   1103 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1104 	 * with special mappings to work with IEEE
   1105 	 * Clause 22 register accesses.
   1106 	 */
   1107 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1108 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1109 			reg += 0x10;
   1110 	}
   1111 
   1112 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1113 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1114 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1115 
   1116 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1117 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1118 
   1119 		DELAY(40);
   1120 	}
   1121 
   1122 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1123 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1124 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1125 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1126 
   1127 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1128 		DELAY(10);
   1129 
   1130 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1131 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1132 			DELAY(5);
   1133 
   1134 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1135 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1136 
   1137 			break;
   1138 		}
   1139 	}
   1140 
   1141 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1142 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1143 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1144 		rv = ETIMEDOUT;
   1145 	} else {
   1146 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1147 		*val = data & 0xffff;
   1148 
   1149 		DBPRINT(sc, BNX_EXCESSIVE,
   1150 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1151 		    phy, (uint16_t) reg & 0xffff, *val);
   1152 	}
   1153 
   1154 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1155 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1156 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1157 
   1158 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1159 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1160 
   1161 		DELAY(40);
   1162 	}
   1163 
   1164 	return rv;
   1165 }
   1166 
   1167 /****************************************************************************/
   1168 /* PHY register write.                                                      */
   1169 /*                                                                          */
   1170 /* Implements register writes on the MII bus.                               */
   1171 /*                                                                          */
   1172 /* Returns:                                                                 */
   1173 /*   The value of the register.                                             */
   1174 /****************************************************************************/
   1175 int
   1176 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1177 {
   1178 	struct bnx_softc	*sc = device_private(dev);
   1179 	uint32_t		val1;
   1180 	int			i, rv = 0;
   1181 
   1182 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1183 	    "val = 0x%04hX\n", __func__,
   1184 	    phy, (uint16_t) reg & 0xffff, val);
   1185 
   1186 	/*
   1187 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1188 	 * with special mappings to work with IEEE
   1189 	 * Clause 22 register accesses.
   1190 	 */
   1191 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1192 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1193 			reg += 0x10;
   1194 	}
   1195 
   1196 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1197 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1198 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1199 
   1200 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1201 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1202 
   1203 		DELAY(40);
   1204 	}
   1205 
   1206 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1207 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1208 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1209 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1210 
   1211 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1212 		DELAY(10);
   1213 
   1214 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1215 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1216 			DELAY(5);
   1217 			break;
   1218 		}
   1219 	}
   1220 
   1221 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1222 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1223 		    __LINE__);
   1224 		rv = ETIMEDOUT;
   1225 	}
   1226 
   1227 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1228 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1229 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1230 
   1231 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1232 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1233 
   1234 		DELAY(40);
   1235 	}
   1236 
   1237 	return rv;
   1238 }
   1239 
   1240 /****************************************************************************/
   1241 /* MII bus status change.                                                   */
   1242 /*                                                                          */
   1243 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1244 /* MAC interface registers.                                                 */
   1245 /*                                                                          */
   1246 /* Returns:                                                                 */
   1247 /*   Nothing.                                                               */
   1248 /****************************************************************************/
   1249 void
   1250 bnx_miibus_statchg(struct ifnet *ifp)
   1251 {
   1252 	struct bnx_softc	*sc = ifp->if_softc;
   1253 	struct mii_data		*mii = &sc->bnx_mii;
   1254 	uint32_t		rx_mode = sc->rx_mode;
   1255 	int			val;
   1256 
   1257 	val = REG_RD(sc, BNX_EMAC_MODE);
   1258 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1259 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1260 	    BNX_EMAC_MODE_25G);
   1261 
   1262 	/*
   1263 	 * Get flow control negotiation result.
   1264 	 */
   1265 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1266 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1267 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1268 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1269 	}
   1270 
   1271 	/* Set MII or GMII interface based on the speed
   1272 	 * negotiated by the PHY.
   1273 	 */
   1274 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1275 	case IFM_10_T:
   1276 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1277 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1278 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1279 			break;
   1280 		}
   1281 		/* FALLTHROUGH */
   1282 	case IFM_100_TX:
   1283 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1284 		val |= BNX_EMAC_MODE_PORT_MII;
   1285 		break;
   1286 	case IFM_2500_SX:
   1287 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1288 		val |= BNX_EMAC_MODE_25G;
   1289 		/* FALLTHROUGH */
   1290 	case IFM_1000_T:
   1291 	case IFM_1000_SX:
   1292 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1293 		val |= BNX_EMAC_MODE_PORT_GMII;
   1294 		break;
   1295 	default:
   1296 		val |= BNX_EMAC_MODE_PORT_GMII;
   1297 		break;
   1298 	}
   1299 
   1300 	/* Set half or full duplex based on the duplicity
   1301 	 * negotiated by the PHY.
   1302 	 */
   1303 	if ((mii->mii_media_active & IFM_HDX) != 0) {
   1304 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1305 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1306 	} else
   1307 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1308 
   1309 	REG_WR(sc, BNX_EMAC_MODE, val);
   1310 
   1311 	/*
   1312 	 * 802.3x flow control
   1313 	 */
   1314 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1315 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1316 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1317 	} else {
   1318 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1319 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1320 	}
   1321 
   1322 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1323 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1324 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1325 	} else {
   1326 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1327 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1328 	}
   1329 
   1330 	/* Only make changes if the receive mode has actually changed. */
   1331 	if (rx_mode != sc->rx_mode) {
   1332 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1333 		    rx_mode);
   1334 
   1335 		sc->rx_mode = rx_mode;
   1336 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1337 
   1338 		bnx_init_rx_context(sc);
   1339 	}
   1340 }
   1341 
   1342 /****************************************************************************/
   1343 /* Acquire NVRAM lock.                                                      */
   1344 /*                                                                          */
   1345 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1346 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1347 /* for use by the driver.                                                   */
   1348 /*                                                                          */
   1349 /* Returns:                                                                 */
   1350 /*   0 on success, positive value on failure.                               */
   1351 /****************************************************************************/
   1352 int
   1353 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1354 {
   1355 	uint32_t		val;
   1356 	int			j;
   1357 
   1358 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1359 
   1360 	/* Request access to the flash interface. */
   1361 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1362 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1363 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1364 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1365 			break;
   1366 
   1367 		DELAY(5);
   1368 	}
   1369 
   1370 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1371 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1372 		return EBUSY;
   1373 	}
   1374 
   1375 	return 0;
   1376 }
   1377 
   1378 /****************************************************************************/
   1379 /* Release NVRAM lock.                                                      */
   1380 /*                                                                          */
   1381 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1382 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1383 /* for use by the driver.                                                   */
   1384 /*                                                                          */
   1385 /* Returns:                                                                 */
   1386 /*   0 on success, positive value on failure.                               */
   1387 /****************************************************************************/
   1388 int
   1389 bnx_release_nvram_lock(struct bnx_softc *sc)
   1390 {
   1391 	int			j;
   1392 	uint32_t		val;
   1393 
   1394 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1395 
   1396 	/* Relinquish nvram interface. */
   1397 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1398 
   1399 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1400 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1401 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1402 			break;
   1403 
   1404 		DELAY(5);
   1405 	}
   1406 
   1407 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1408 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1409 		return EBUSY;
   1410 	}
   1411 
   1412 	return 0;
   1413 }
   1414 
   1415 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1416 /****************************************************************************/
   1417 /* Enable NVRAM write access.                                               */
   1418 /*                                                                          */
   1419 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1420 /*                                                                          */
   1421 /* Returns:                                                                 */
   1422 /*   0 on success, positive value on failure.                               */
   1423 /****************************************************************************/
   1424 int
   1425 bnx_enable_nvram_write(struct bnx_softc *sc)
   1426 {
   1427 	uint32_t		val;
   1428 
   1429 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1430 
   1431 	val = REG_RD(sc, BNX_MISC_CFG);
   1432 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1433 
   1434 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1435 		int j;
   1436 
   1437 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1438 		REG_WR(sc, BNX_NVM_COMMAND,
   1439 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1440 
   1441 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1442 			DELAY(5);
   1443 
   1444 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1445 			if (val & BNX_NVM_COMMAND_DONE)
   1446 				break;
   1447 		}
   1448 
   1449 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1450 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1451 			return EBUSY;
   1452 		}
   1453 	}
   1454 
   1455 	return 0;
   1456 }
   1457 
   1458 /****************************************************************************/
   1459 /* Disable NVRAM write access.                                              */
   1460 /*                                                                          */
   1461 /* When the caller is finished writing to NVRAM write access must be        */
   1462 /* disabled.                                                                */
   1463 /*                                                                          */
   1464 /* Returns:                                                                 */
   1465 /*   Nothing.                                                               */
   1466 /****************************************************************************/
   1467 void
   1468 bnx_disable_nvram_write(struct bnx_softc *sc)
   1469 {
   1470 	uint32_t		val;
   1471 
   1472 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1473 
   1474 	val = REG_RD(sc, BNX_MISC_CFG);
   1475 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1476 }
   1477 #endif
   1478 
   1479 /****************************************************************************/
   1480 /* Enable NVRAM access.                                                     */
   1481 /*                                                                          */
   1482 /* Before accessing NVRAM for read or write operations the caller must      */
   1483 /* enabled NVRAM access.                                                    */
   1484 /*                                                                          */
   1485 /* Returns:                                                                 */
   1486 /*   Nothing.                                                               */
   1487 /****************************************************************************/
   1488 void
   1489 bnx_enable_nvram_access(struct bnx_softc *sc)
   1490 {
   1491 	uint32_t		val;
   1492 
   1493 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1494 
   1495 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1496 	/* Enable both bits, even on read. */
   1497 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1498 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1499 }
   1500 
   1501 /****************************************************************************/
   1502 /* Disable NVRAM access.                                                    */
   1503 /*                                                                          */
   1504 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1505 /*                                                                          */
   1506 /* Returns:                                                                 */
   1507 /*   Nothing.                                                               */
   1508 /****************************************************************************/
   1509 void
   1510 bnx_disable_nvram_access(struct bnx_softc *sc)
   1511 {
   1512 	uint32_t		val;
   1513 
   1514 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1515 
   1516 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1517 
   1518 	/* Disable both bits, even after read. */
   1519 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1520 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1521 }
   1522 
   1523 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1524 /****************************************************************************/
   1525 /* Erase NVRAM page before writing.                                         */
   1526 /*                                                                          */
   1527 /* Non-buffered flash parts require that a page be erased before it is      */
   1528 /* written.                                                                 */
   1529 /*                                                                          */
   1530 /* Returns:                                                                 */
   1531 /*   0 on success, positive value on failure.                               */
   1532 /****************************************************************************/
   1533 int
   1534 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1535 {
   1536 	uint32_t		cmd;
   1537 	int			j;
   1538 
   1539 	/* Buffered flash doesn't require an erase. */
   1540 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1541 		return 0;
   1542 
   1543 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1544 
   1545 	/* Build an erase command. */
   1546 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1547 	    BNX_NVM_COMMAND_DOIT;
   1548 
   1549 	/*
   1550 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1551 	 * and issue the erase command.
   1552 	 */
   1553 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1554 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1555 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1556 
   1557 	/* Wait for completion. */
   1558 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1559 		uint32_t val;
   1560 
   1561 		DELAY(5);
   1562 
   1563 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1564 		if (val & BNX_NVM_COMMAND_DONE)
   1565 			break;
   1566 	}
   1567 
   1568 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1569 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1570 		return EBUSY;
   1571 	}
   1572 
   1573 	return 0;
   1574 }
   1575 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1576 
   1577 /****************************************************************************/
   1578 /* Read a dword (32 bits) from NVRAM.                                       */
   1579 /*                                                                          */
   1580 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1581 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1582 /*                                                                          */
   1583 /* Returns:                                                                 */
   1584 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1585 /****************************************************************************/
   1586 int
   1587 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1588     uint8_t *ret_val, uint32_t cmd_flags)
   1589 {
   1590 	uint32_t		cmd;
   1591 	int			i, rc = 0;
   1592 
   1593 	/* Build the command word. */
   1594 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1595 
   1596 	/* Calculate the offset for buffered flash if translation is used. */
   1597 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1598 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1599 		    sc->bnx_flash_info->page_bits) +
   1600 		    (offset % sc->bnx_flash_info->page_size);
   1601 	}
   1602 
   1603 	/*
   1604 	 * Clear the DONE bit separately, set the address to read,
   1605 	 * and issue the read.
   1606 	 */
   1607 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1608 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1609 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1610 
   1611 	/* Wait for completion. */
   1612 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1613 		uint32_t val;
   1614 
   1615 		DELAY(5);
   1616 
   1617 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1618 		if (val & BNX_NVM_COMMAND_DONE) {
   1619 			val = REG_RD(sc, BNX_NVM_READ);
   1620 
   1621 			val = be32toh(val);
   1622 			memcpy(ret_val, &val, 4);
   1623 			break;
   1624 		}
   1625 	}
   1626 
   1627 	/* Check for errors. */
   1628 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1629 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1630 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1631 		rc = EBUSY;
   1632 	}
   1633 
   1634 	return rc;
   1635 }
   1636 
   1637 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1638 /****************************************************************************/
   1639 /* Write a dword (32 bits) to NVRAM.                                        */
   1640 /*                                                                          */
   1641 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1642 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1643 /* enabled NVRAM write access.                                              */
   1644 /*                                                                          */
   1645 /* Returns:                                                                 */
   1646 /*   0 on success, positive value on failure.                               */
   1647 /****************************************************************************/
   1648 int
   1649 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1650     uint32_t cmd_flags)
   1651 {
   1652 	uint32_t		cmd, val32;
   1653 	int			j;
   1654 
   1655 	/* Build the command word. */
   1656 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1657 
   1658 	/* Calculate the offset for buffered flash if translation is used. */
   1659 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1660 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1661 		    sc->bnx_flash_info->page_bits) +
   1662 		    (offset % sc->bnx_flash_info->page_size);
   1663 	}
   1664 
   1665 	/*
   1666 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1667 	 * set the NVRAM address to write, and issue the write command
   1668 	 */
   1669 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1670 	memcpy(&val32, val, 4);
   1671 	val32 = htobe32(val32);
   1672 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1673 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1674 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1675 
   1676 	/* Wait for completion. */
   1677 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1678 		DELAY(5);
   1679 
   1680 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1681 			break;
   1682 	}
   1683 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1684 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1685 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1686 		return EBUSY;
   1687 	}
   1688 
   1689 	return 0;
   1690 }
   1691 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1692 
   1693 /****************************************************************************/
   1694 /* Initialize NVRAM access.                                                 */
   1695 /*                                                                          */
   1696 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1697 /* access that device.                                                      */
   1698 /*                                                                          */
   1699 /* Returns:                                                                 */
   1700 /*   0 on success, positive value on failure.                               */
   1701 /****************************************************************************/
   1702 int
   1703 bnx_init_nvram(struct bnx_softc *sc)
   1704 {
   1705 	uint32_t		val;
   1706 	int			j, entry_count, rc = 0;
   1707 	struct flash_spec	*flash;
   1708 
   1709 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1710 
   1711 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1712 		sc->bnx_flash_info = &flash_5709;
   1713 		goto bnx_init_nvram_get_flash_size;
   1714 	}
   1715 
   1716 	/* Determine the selected interface. */
   1717 	val = REG_RD(sc, BNX_NVM_CFG1);
   1718 
   1719 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1720 
   1721 	/*
   1722 	 * Flash reconfiguration is required to support additional
   1723 	 * NVRAM devices not directly supported in hardware.
   1724 	 * Check if the flash interface was reconfigured
   1725 	 * by the bootcode.
   1726 	 */
   1727 
   1728 	if (val & 0x40000000) {
   1729 		/* Flash interface reconfigured by bootcode. */
   1730 
   1731 		DBPRINT(sc, BNX_INFO_LOAD,
   1732 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1733 
   1734 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1735 		     j++, flash++) {
   1736 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1737 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1738 				sc->bnx_flash_info = flash;
   1739 				break;
   1740 			}
   1741 		}
   1742 	} else {
   1743 		/* Flash interface not yet reconfigured. */
   1744 		uint32_t mask;
   1745 
   1746 		DBPRINT(sc, BNX_INFO_LOAD,
   1747 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1748 
   1749 		if (val & (1 << 23))
   1750 			mask = FLASH_BACKUP_STRAP_MASK;
   1751 		else
   1752 			mask = FLASH_STRAP_MASK;
   1753 
   1754 		/* Look for the matching NVRAM device configuration data. */
   1755 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1756 		    j++, flash++) {
   1757 			/* Check if the dev matches any of the known devices. */
   1758 			if ((val & mask) == (flash->strapping & mask)) {
   1759 				/* Found a device match. */
   1760 				sc->bnx_flash_info = flash;
   1761 
   1762 				/* Request access to the flash interface. */
   1763 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1764 					return rc;
   1765 
   1766 				/* Reconfigure the flash interface. */
   1767 				bnx_enable_nvram_access(sc);
   1768 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1769 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1770 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1771 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1772 				bnx_disable_nvram_access(sc);
   1773 				bnx_release_nvram_lock(sc);
   1774 
   1775 				break;
   1776 			}
   1777 		}
   1778 	}
   1779 
   1780 	/* Check if a matching device was found. */
   1781 	if (j == entry_count) {
   1782 		sc->bnx_flash_info = NULL;
   1783 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1784 			__FILE__, __LINE__);
   1785 		rc = ENODEV;
   1786 	}
   1787 
   1788 bnx_init_nvram_get_flash_size:
   1789 	/* Write the flash config data to the shared memory interface. */
   1790 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1791 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1792 	if (val)
   1793 		sc->bnx_flash_size = val;
   1794 	else
   1795 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1796 
   1797 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1798 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1799 
   1800 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1801 
   1802 	return rc;
   1803 }
   1804 
   1805 /****************************************************************************/
   1806 /* Read an arbitrary range of data from NVRAM.                              */
   1807 /*                                                                          */
   1808 /* Prepares the NVRAM interface for access and reads the requested data     */
   1809 /* into the supplied buffer.                                                */
   1810 /*                                                                          */
   1811 /* Returns:                                                                 */
   1812 /*   0 on success and the data read, positive value on failure.             */
   1813 /****************************************************************************/
   1814 int
   1815 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1816     int buf_size)
   1817 {
   1818 	int			rc = 0;
   1819 	uint32_t		cmd_flags, offset32, len32, extra;
   1820 
   1821 	if (buf_size == 0)
   1822 		return 0;
   1823 
   1824 	/* Request access to the flash interface. */
   1825 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1826 		return rc;
   1827 
   1828 	/* Enable access to flash interface */
   1829 	bnx_enable_nvram_access(sc);
   1830 
   1831 	len32 = buf_size;
   1832 	offset32 = offset;
   1833 	extra = 0;
   1834 
   1835 	cmd_flags = 0;
   1836 
   1837 	if (offset32 & 3) {
   1838 		uint8_t buf[4];
   1839 		uint32_t pre_len;
   1840 
   1841 		offset32 &= ~3;
   1842 		pre_len = 4 - (offset & 3);
   1843 
   1844 		if (pre_len >= len32) {
   1845 			pre_len = len32;
   1846 			cmd_flags =
   1847 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1848 		} else
   1849 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1850 
   1851 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1852 
   1853 		if (rc)
   1854 			return rc;
   1855 
   1856 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1857 
   1858 		offset32 += 4;
   1859 		ret_buf += pre_len;
   1860 		len32 -= pre_len;
   1861 	}
   1862 
   1863 	if (len32 & 3) {
   1864 		extra = 4 - (len32 & 3);
   1865 		len32 = (len32 + 4) & ~3;
   1866 	}
   1867 
   1868 	if (len32 == 4) {
   1869 		uint8_t buf[4];
   1870 
   1871 		if (cmd_flags)
   1872 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1873 		else
   1874 			cmd_flags =
   1875 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1876 
   1877 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1878 
   1879 		memcpy(ret_buf, buf, 4 - extra);
   1880 	} else if (len32 > 0) {
   1881 		uint8_t buf[4];
   1882 
   1883 		/* Read the first word. */
   1884 		if (cmd_flags)
   1885 			cmd_flags = 0;
   1886 		else
   1887 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1888 
   1889 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1890 
   1891 		/* Advance to the next dword. */
   1892 		offset32 += 4;
   1893 		ret_buf += 4;
   1894 		len32 -= 4;
   1895 
   1896 		while (len32 > 4 && rc == 0) {
   1897 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1898 
   1899 			/* Advance to the next dword. */
   1900 			offset32 += 4;
   1901 			ret_buf += 4;
   1902 			len32 -= 4;
   1903 		}
   1904 
   1905 		if (rc)
   1906 			return rc;
   1907 
   1908 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1909 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1910 
   1911 		memcpy(ret_buf, buf, 4 - extra);
   1912 	}
   1913 
   1914 	/* Disable access to flash interface and release the lock. */
   1915 	bnx_disable_nvram_access(sc);
   1916 	bnx_release_nvram_lock(sc);
   1917 
   1918 	return rc;
   1919 }
   1920 
   1921 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1922 /****************************************************************************/
   1923 /* Write an arbitrary range of data from NVRAM.                             */
   1924 /*                                                                          */
   1925 /* Prepares the NVRAM interface for write access and writes the requested   */
   1926 /* data from the supplied buffer.  The caller is responsible for            */
   1927 /* calculating any appropriate CRCs.                                        */
   1928 /*                                                                          */
   1929 /* Returns:                                                                 */
   1930 /*   0 on success, positive value on failure.                               */
   1931 /****************************************************************************/
   1932 int
   1933 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1934     int buf_size)
   1935 {
   1936 	uint32_t		written, offset32, len32;
   1937 	uint8_t		*buf, start[4], end[4];
   1938 	int			rc = 0;
   1939 	int			align_start, align_end;
   1940 
   1941 	buf = data_buf;
   1942 	offset32 = offset;
   1943 	len32 = buf_size;
   1944 	align_start = align_end = 0;
   1945 
   1946 	if ((align_start = (offset32 & 3))) {
   1947 		offset32 &= ~3;
   1948 		len32 += align_start;
   1949 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1950 			return rc;
   1951 	}
   1952 
   1953 	if (len32 & 3) {
   1954 		if ((len32 > 4) || !align_start) {
   1955 			align_end = 4 - (len32 & 3);
   1956 			len32 += align_end;
   1957 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1958 			    end, 4)))
   1959 				return rc;
   1960 		}
   1961 	}
   1962 
   1963 	if (align_start || align_end) {
   1964 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1965 		if (buf == NULL)
   1966 			return ENOMEM;
   1967 
   1968 		if (align_start)
   1969 			memcpy(buf, start, 4);
   1970 
   1971 		if (align_end)
   1972 			memcpy(buf + len32 - 4, end, 4);
   1973 
   1974 		memcpy(buf + align_start, data_buf, buf_size);
   1975 	}
   1976 
   1977 	written = 0;
   1978 	while ((written < len32) && (rc == 0)) {
   1979 		uint32_t page_start, page_end, data_start, data_end;
   1980 		uint32_t addr, cmd_flags;
   1981 		int i;
   1982 		uint8_t flash_buffer[264];
   1983 
   1984 	    /* Find the page_start addr */
   1985 		page_start = offset32 + written;
   1986 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1987 		/* Find the page_end addr */
   1988 		page_end = page_start + sc->bnx_flash_info->page_size;
   1989 		/* Find the data_start addr */
   1990 		data_start = (written == 0) ? offset32 : page_start;
   1991 		/* Find the data_end addr */
   1992 		data_end = (page_end > offset32 + len32) ?
   1993 		    (offset32 + len32) : page_end;
   1994 
   1995 		/* Request access to the flash interface. */
   1996 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1997 			goto nvram_write_end;
   1998 
   1999 		/* Enable access to flash interface */
   2000 		bnx_enable_nvram_access(sc);
   2001 
   2002 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   2003 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2004 			int j;
   2005 
   2006 			/* Read the whole page into the buffer
   2007 			 * (non-buffer flash only) */
   2008 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   2009 				if (j == (sc->bnx_flash_info->page_size - 4))
   2010 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   2011 
   2012 				rc = bnx_nvram_read_dword(sc,
   2013 					page_start + j,
   2014 					&flash_buffer[j],
   2015 					cmd_flags);
   2016 
   2017 				if (rc)
   2018 					goto nvram_write_end;
   2019 
   2020 				cmd_flags = 0;
   2021 			}
   2022 		}
   2023 
   2024 		/* Enable writes to flash interface (unlock write-protect) */
   2025 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   2026 			goto nvram_write_end;
   2027 
   2028 		/* Erase the page */
   2029 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   2030 			goto nvram_write_end;
   2031 
   2032 		/* Re-enable the write again for the actual write */
   2033 		bnx_enable_nvram_write(sc);
   2034 
   2035 		/* Loop to write back the buffer data from page_start to
   2036 		 * data_start */
   2037 		i = 0;
   2038 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2039 			for (addr = page_start; addr < data_start;
   2040 				addr += 4, i += 4) {
   2041 
   2042 				rc = bnx_nvram_write_dword(sc, addr,
   2043 				    &flash_buffer[i], cmd_flags);
   2044 
   2045 				if (rc != 0)
   2046 					goto nvram_write_end;
   2047 
   2048 				cmd_flags = 0;
   2049 			}
   2050 		}
   2051 
   2052 		/* Loop to write the new data from data_start to data_end */
   2053 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   2054 			if ((addr == page_end - 4) ||
   2055 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   2056 			    && (addr == data_end - 4))) {
   2057 
   2058 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   2059 			}
   2060 
   2061 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2062 
   2063 			if (rc != 0)
   2064 				goto nvram_write_end;
   2065 
   2066 			cmd_flags = 0;
   2067 			buf += 4;
   2068 		}
   2069 
   2070 		/* Loop to write back the buffer data from data_end
   2071 		 * to page_end */
   2072 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2073 			for (addr = data_end; addr < page_end;
   2074 			    addr += 4, i += 4) {
   2075 
   2076 				if (addr == page_end-4)
   2077 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2078 
   2079 				rc = bnx_nvram_write_dword(sc, addr,
   2080 				    &flash_buffer[i], cmd_flags);
   2081 
   2082 				if (rc != 0)
   2083 					goto nvram_write_end;
   2084 
   2085 				cmd_flags = 0;
   2086 			}
   2087 		}
   2088 
   2089 		/* Disable writes to flash interface (lock write-protect) */
   2090 		bnx_disable_nvram_write(sc);
   2091 
   2092 		/* Disable access to flash interface */
   2093 		bnx_disable_nvram_access(sc);
   2094 		bnx_release_nvram_lock(sc);
   2095 
   2096 		/* Increment written */
   2097 		written += data_end - data_start;
   2098 	}
   2099 
   2100 nvram_write_end:
   2101 	if (align_start || align_end)
   2102 		free(buf, M_DEVBUF);
   2103 
   2104 	return rc;
   2105 }
   2106 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2107 
   2108 /****************************************************************************/
   2109 /* Verifies that NVRAM is accessible and contains valid data.               */
   2110 /*                                                                          */
   2111 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2112 /* correct.                                                                 */
   2113 /*                                                                          */
   2114 /* Returns:                                                                 */
   2115 /*   0 on success, positive value on failure.                               */
   2116 /****************************************************************************/
   2117 int
   2118 bnx_nvram_test(struct bnx_softc *sc)
   2119 {
   2120 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2121 	uint8_t		*data = (uint8_t *) buf;
   2122 	int			rc = 0;
   2123 	uint32_t		magic, csum;
   2124 
   2125 	/*
   2126 	 * Check that the device NVRAM is valid by reading
   2127 	 * the magic value at offset 0.
   2128 	 */
   2129 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2130 		goto bnx_nvram_test_done;
   2131 
   2132 	magic = be32toh(buf[0]);
   2133 	if (magic != BNX_NVRAM_MAGIC) {
   2134 		rc = ENODEV;
   2135 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2136 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2137 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2138 		goto bnx_nvram_test_done;
   2139 	}
   2140 
   2141 	/*
   2142 	 * Verify that the device NVRAM includes valid
   2143 	 * configuration data.
   2144 	 */
   2145 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2146 		goto bnx_nvram_test_done;
   2147 
   2148 	csum = ether_crc32_le(data, 0x100);
   2149 	if (csum != BNX_CRC32_RESIDUAL) {
   2150 		rc = ENODEV;
   2151 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2152 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2153 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2154 		goto bnx_nvram_test_done;
   2155 	}
   2156 
   2157 	csum = ether_crc32_le(data + 0x100, 0x100);
   2158 	if (csum != BNX_CRC32_RESIDUAL) {
   2159 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2160 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2161 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2162 		rc = ENODEV;
   2163 	}
   2164 
   2165 bnx_nvram_test_done:
   2166 	return rc;
   2167 }
   2168 
   2169 /****************************************************************************/
   2170 /* Identifies the current media type of the controller and sets the PHY     */
   2171 /* address.                                                                 */
   2172 /*                                                                          */
   2173 /* Returns:                                                                 */
   2174 /*   Nothing.                                                               */
   2175 /****************************************************************************/
   2176 void
   2177 bnx_get_media(struct bnx_softc *sc)
   2178 {
   2179 	sc->bnx_phy_addr = 1;
   2180 
   2181 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2182 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2183 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2184 		uint32_t strap;
   2185 
   2186 		/*
   2187 		 * The BCM5709S is software configurable
   2188 		 * for Copper or SerDes operation.
   2189 		 */
   2190 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2191 			DBPRINT(sc, BNX_INFO_LOAD,
   2192 			    "5709 bonded for copper.\n");
   2193 			goto bnx_get_media_exit;
   2194 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2195 			DBPRINT(sc, BNX_INFO_LOAD,
   2196 			    "5709 bonded for dual media.\n");
   2197 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2198 			goto bnx_get_media_exit;
   2199 		}
   2200 
   2201 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2202 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2203 		else {
   2204 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2205 			    >> 8;
   2206 		}
   2207 
   2208 		if (sc->bnx_pa.pa_function == 0) {
   2209 			switch (strap) {
   2210 			case 0x4:
   2211 			case 0x5:
   2212 			case 0x6:
   2213 				DBPRINT(sc, BNX_INFO_LOAD,
   2214 					"BCM5709 s/w configured for SerDes.\n");
   2215 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2216 				break;
   2217 			default:
   2218 				DBPRINT(sc, BNX_INFO_LOAD,
   2219 					"BCM5709 s/w configured for Copper.\n");
   2220 			}
   2221 		} else {
   2222 			switch (strap) {
   2223 			case 0x1:
   2224 			case 0x2:
   2225 			case 0x4:
   2226 				DBPRINT(sc, BNX_INFO_LOAD,
   2227 					"BCM5709 s/w configured for SerDes.\n");
   2228 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2229 				break;
   2230 			default:
   2231 				DBPRINT(sc, BNX_INFO_LOAD,
   2232 					"BCM5709 s/w configured for Copper.\n");
   2233 			}
   2234 		}
   2235 
   2236 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2237 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2238 
   2239 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2240 		uint32_t val;
   2241 
   2242 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2243 
   2244 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2245 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2246 
   2247 		/*
   2248 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2249 		 * separate PHY for SerDes.
   2250 		 */
   2251 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2252 			sc->bnx_phy_addr = 2;
   2253 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2254 				 BNX_SHARED_HW_CFG_CONFIG);
   2255 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2256 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2257 				DBPRINT(sc, BNX_INFO_LOAD,
   2258 				    "Found 2.5Gb capable adapter\n");
   2259 			}
   2260 		}
   2261 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2262 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2263 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2264 
   2265 bnx_get_media_exit:
   2266 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2267 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2268 }
   2269 
   2270 /****************************************************************************/
   2271 /* Performs PHY initialization required before MII drivers access the       */
   2272 /* device.                                                                  */
   2273 /*                                                                          */
   2274 /* Returns:                                                                 */
   2275 /*   Nothing.                                                               */
   2276 /****************************************************************************/
   2277 void
   2278 bnx_init_media(struct bnx_softc *sc)
   2279 {
   2280 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2281 		/*
   2282 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2283 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2284 		 * the PHY to the mii(4) layer. PHY specific configuration
   2285 		 * is done by the mii(4) layer.
   2286 		 */
   2287 
   2288 		/* Select auto-negotiation MMD of the PHY. */
   2289 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2290 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2291 
   2292 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2293 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2294 
   2295 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2296 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2297 	}
   2298 }
   2299 
   2300 /****************************************************************************/
   2301 /* Free any DMA memory owned by the driver.                                 */
   2302 /*                                                                          */
   2303 /* Scans through each data structre that requires DMA memory and frees      */
   2304 /* the memory if allocated.                                                 */
   2305 /*                                                                          */
   2306 /* Returns:                                                                 */
   2307 /*   Nothing.                                                               */
   2308 /****************************************************************************/
   2309 void
   2310 bnx_dma_free(struct bnx_softc *sc)
   2311 {
   2312 	int			i;
   2313 
   2314 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2315 
   2316 	/* Destroy the status block. */
   2317 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2318 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2319 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2320 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2321 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2322 		    BNX_STATUS_BLK_SZ);
   2323 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2324 		    sc->status_rseg);
   2325 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2326 		sc->status_block = NULL;
   2327 		sc->status_map = NULL;
   2328 	}
   2329 
   2330 	/* Destroy the statistics block. */
   2331 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2332 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2333 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2334 		    BNX_STATS_BLK_SZ);
   2335 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2336 		    sc->stats_rseg);
   2337 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2338 		sc->stats_block = NULL;
   2339 		sc->stats_map = NULL;
   2340 	}
   2341 
   2342 	/* Free, unmap and destroy all context memory pages. */
   2343 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2344 		for (i = 0; i < sc->ctx_pages; i++) {
   2345 			if (sc->ctx_block[i] != NULL) {
   2346 				bus_dmamap_unload(sc->bnx_dmatag,
   2347 				    sc->ctx_map[i]);
   2348 				bus_dmamem_unmap(sc->bnx_dmatag,
   2349 				    (void *)sc->ctx_block[i],
   2350 				    BCM_PAGE_SIZE);
   2351 				bus_dmamem_free(sc->bnx_dmatag,
   2352 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2353 				bus_dmamap_destroy(sc->bnx_dmatag,
   2354 				    sc->ctx_map[i]);
   2355 				sc->ctx_block[i] = NULL;
   2356 			}
   2357 		}
   2358 	}
   2359 
   2360 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2361 	for (i = 0; i < TX_PAGES; i++ ) {
   2362 		if (sc->tx_bd_chain[i] != NULL &&
   2363 		    sc->tx_bd_chain_map[i] != NULL) {
   2364 			bus_dmamap_unload(sc->bnx_dmatag,
   2365 			    sc->tx_bd_chain_map[i]);
   2366 			bus_dmamem_unmap(sc->bnx_dmatag,
   2367 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2368 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2369 			    sc->tx_bd_chain_rseg[i]);
   2370 			bus_dmamap_destroy(sc->bnx_dmatag,
   2371 			    sc->tx_bd_chain_map[i]);
   2372 			sc->tx_bd_chain[i] = NULL;
   2373 			sc->tx_bd_chain_map[i] = NULL;
   2374 		}
   2375 	}
   2376 
   2377 	/* Destroy the TX dmamaps. */
   2378 	struct bnx_pkt *pkt;
   2379 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   2380 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   2381 		sc->tx_pkt_count--;
   2382 
   2383 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   2384 		pool_put(bnx_tx_pool, pkt);
   2385 	}
   2386 
   2387 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2388 	for (i = 0; i < RX_PAGES; i++ ) {
   2389 		if (sc->rx_bd_chain[i] != NULL &&
   2390 		    sc->rx_bd_chain_map[i] != NULL) {
   2391 			bus_dmamap_unload(sc->bnx_dmatag,
   2392 			    sc->rx_bd_chain_map[i]);
   2393 			bus_dmamem_unmap(sc->bnx_dmatag,
   2394 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2395 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2396 			    sc->rx_bd_chain_rseg[i]);
   2397 
   2398 			bus_dmamap_destroy(sc->bnx_dmatag,
   2399 			    sc->rx_bd_chain_map[i]);
   2400 			sc->rx_bd_chain[i] = NULL;
   2401 			sc->rx_bd_chain_map[i] = NULL;
   2402 		}
   2403 	}
   2404 
   2405 	/* Unload and destroy the RX mbuf maps. */
   2406 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2407 		if (sc->rx_mbuf_map[i] != NULL) {
   2408 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2409 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2410 		}
   2411 	}
   2412 
   2413 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2414 }
   2415 
   2416 /****************************************************************************/
   2417 /* Allocate any DMA memory needed by the driver.                            */
   2418 /*                                                                          */
   2419 /* Allocates DMA memory needed for the various global structures needed by  */
   2420 /* hardware.                                                                */
   2421 /*                                                                          */
   2422 /* Returns:                                                                 */
   2423 /*   0 for success, positive value for failure.                             */
   2424 /****************************************************************************/
   2425 int
   2426 bnx_dma_alloc(struct bnx_softc *sc)
   2427 {
   2428 	int			i, rc = 0;
   2429 
   2430 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2431 
   2432 	/*
   2433 	 * Allocate DMA memory for the status block, map the memory into DMA
   2434 	 * space, and fetch the physical address of the block.
   2435 	 */
   2436 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2437 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2438 		aprint_error_dev(sc->bnx_dev,
   2439 		    "Could not create status block DMA map!\n");
   2440 		rc = ENOMEM;
   2441 		goto bnx_dma_alloc_exit;
   2442 	}
   2443 
   2444 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2445 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2446 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2447 		aprint_error_dev(sc->bnx_dev,
   2448 		    "Could not allocate status block DMA memory!\n");
   2449 		rc = ENOMEM;
   2450 		goto bnx_dma_alloc_exit;
   2451 	}
   2452 
   2453 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2454 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2455 		aprint_error_dev(sc->bnx_dev,
   2456 		    "Could not map status block DMA memory!\n");
   2457 		rc = ENOMEM;
   2458 		goto bnx_dma_alloc_exit;
   2459 	}
   2460 
   2461 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2462 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2463 		aprint_error_dev(sc->bnx_dev,
   2464 		    "Could not load status block DMA memory!\n");
   2465 		rc = ENOMEM;
   2466 		goto bnx_dma_alloc_exit;
   2467 	}
   2468 
   2469 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2470 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2471 
   2472 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2473 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2474 
   2475 	/* DRC - Fix for 64 bit addresses. */
   2476 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2477 		(uint32_t) sc->status_block_paddr);
   2478 
   2479 	/* BCM5709 uses host memory as cache for context memory. */
   2480 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2481 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2482 		if (sc->ctx_pages == 0)
   2483 			sc->ctx_pages = 1;
   2484 		if (sc->ctx_pages > 4) /* XXX */
   2485 			sc->ctx_pages = 4;
   2486 
   2487 		DBRUNIF((sc->ctx_pages > 512),
   2488 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2489 				__FILE__, __LINE__, sc->ctx_pages));
   2490 
   2491 
   2492 		for (i = 0; i < sc->ctx_pages; i++) {
   2493 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2494 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2495 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2496 			    &sc->ctx_map[i]) != 0) {
   2497 				rc = ENOMEM;
   2498 				goto bnx_dma_alloc_exit;
   2499 			}
   2500 
   2501 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2502 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2503 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2504 				rc = ENOMEM;
   2505 				goto bnx_dma_alloc_exit;
   2506 			}
   2507 
   2508 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2509 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2510 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2511 				rc = ENOMEM;
   2512 				goto bnx_dma_alloc_exit;
   2513 			}
   2514 
   2515 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2516 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2517 			    BUS_DMA_NOWAIT) != 0) {
   2518 				rc = ENOMEM;
   2519 				goto bnx_dma_alloc_exit;
   2520 			}
   2521 
   2522 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2523 		}
   2524 	}
   2525 
   2526 	/*
   2527 	 * Allocate DMA memory for the statistics block, map the memory into
   2528 	 * DMA space, and fetch the physical address of the block.
   2529 	 */
   2530 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2531 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2532 		aprint_error_dev(sc->bnx_dev,
   2533 		    "Could not create stats block DMA map!\n");
   2534 		rc = ENOMEM;
   2535 		goto bnx_dma_alloc_exit;
   2536 	}
   2537 
   2538 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2539 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2540 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2541 		aprint_error_dev(sc->bnx_dev,
   2542 		    "Could not allocate stats block DMA memory!\n");
   2543 		rc = ENOMEM;
   2544 		goto bnx_dma_alloc_exit;
   2545 	}
   2546 
   2547 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2548 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2549 		aprint_error_dev(sc->bnx_dev,
   2550 		    "Could not map stats block DMA memory!\n");
   2551 		rc = ENOMEM;
   2552 		goto bnx_dma_alloc_exit;
   2553 	}
   2554 
   2555 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2556 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2557 		aprint_error_dev(sc->bnx_dev,
   2558 		    "Could not load status block DMA memory!\n");
   2559 		rc = ENOMEM;
   2560 		goto bnx_dma_alloc_exit;
   2561 	}
   2562 
   2563 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2564 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2565 
   2566 	/* DRC - Fix for 64 bit address. */
   2567 	DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2568 	    (uint32_t) sc->stats_block_paddr);
   2569 
   2570 	/*
   2571 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2572 	 * and fetch the physical address of the block.
   2573 	 */
   2574 	for (i = 0; i < TX_PAGES; i++) {
   2575 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2576 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2577 		    &sc->tx_bd_chain_map[i])) {
   2578 			aprint_error_dev(sc->bnx_dev,
   2579 			    "Could not create Tx desc %d DMA map!\n", i);
   2580 			rc = ENOMEM;
   2581 			goto bnx_dma_alloc_exit;
   2582 		}
   2583 
   2584 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2585 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2586 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2587 			aprint_error_dev(sc->bnx_dev,
   2588 			    "Could not allocate TX desc %d DMA memory!\n",
   2589 			    i);
   2590 			rc = ENOMEM;
   2591 			goto bnx_dma_alloc_exit;
   2592 		}
   2593 
   2594 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2595 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2596 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2597 			aprint_error_dev(sc->bnx_dev,
   2598 			    "Could not map TX desc %d DMA memory!\n", i);
   2599 			rc = ENOMEM;
   2600 			goto bnx_dma_alloc_exit;
   2601 		}
   2602 
   2603 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2604 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2605 		    BUS_DMA_NOWAIT)) {
   2606 			aprint_error_dev(sc->bnx_dev,
   2607 			    "Could not load TX desc %d DMA memory!\n", i);
   2608 			rc = ENOMEM;
   2609 			goto bnx_dma_alloc_exit;
   2610 		}
   2611 
   2612 		sc->tx_bd_chain_paddr[i] =
   2613 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2614 
   2615 		/* DRC - Fix for 64 bit systems. */
   2616 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2617 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2618 	}
   2619 
   2620 	/*
   2621 	 * Create lists to hold TX mbufs.
   2622 	 */
   2623 	TAILQ_INIT(&sc->tx_free_pkts);
   2624 	TAILQ_INIT(&sc->tx_used_pkts);
   2625 	sc->tx_pkt_count = 0;
   2626 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2627 
   2628 	/*
   2629 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2630 	 * and fetch the physical address of the block.
   2631 	 */
   2632 	for (i = 0; i < RX_PAGES; i++) {
   2633 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2634 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2635 		    &sc->rx_bd_chain_map[i])) {
   2636 			aprint_error_dev(sc->bnx_dev,
   2637 			    "Could not create Rx desc %d DMA map!\n", i);
   2638 			rc = ENOMEM;
   2639 			goto bnx_dma_alloc_exit;
   2640 		}
   2641 
   2642 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2643 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2644 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2645 			aprint_error_dev(sc->bnx_dev,
   2646 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2647 			rc = ENOMEM;
   2648 			goto bnx_dma_alloc_exit;
   2649 		}
   2650 
   2651 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2652 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2653 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2654 			aprint_error_dev(sc->bnx_dev,
   2655 			    "Could not map Rx desc %d DMA memory!\n", i);
   2656 			rc = ENOMEM;
   2657 			goto bnx_dma_alloc_exit;
   2658 		}
   2659 
   2660 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2661 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2662 		    BUS_DMA_NOWAIT)) {
   2663 			aprint_error_dev(sc->bnx_dev,
   2664 			    "Could not load Rx desc %d DMA memory!\n", i);
   2665 			rc = ENOMEM;
   2666 			goto bnx_dma_alloc_exit;
   2667 		}
   2668 
   2669 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2670 		sc->rx_bd_chain_paddr[i] =
   2671 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2672 
   2673 		/* DRC - Fix for 64 bit systems. */
   2674 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2675 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2676 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2677 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2678 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2679 	}
   2680 
   2681 	/*
   2682 	 * Create DMA maps for the Rx buffer mbufs.
   2683 	 */
   2684 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2685 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2686 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2687 		    &sc->rx_mbuf_map[i])) {
   2688 			aprint_error_dev(sc->bnx_dev,
   2689 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2690 			rc = ENOMEM;
   2691 			goto bnx_dma_alloc_exit;
   2692 		}
   2693 	}
   2694 
   2695  bnx_dma_alloc_exit:
   2696 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2697 
   2698 	return rc;
   2699 }
   2700 
   2701 /****************************************************************************/
   2702 /* Release all resources used by the driver.                                */
   2703 /*                                                                          */
   2704 /* Releases all resources acquired by the driver including interrupts,      */
   2705 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2706 /*                                                                          */
   2707 /* Returns:                                                                 */
   2708 /*   Nothing.                                                               */
   2709 /****************************************************************************/
   2710 void
   2711 bnx_release_resources(struct bnx_softc *sc)
   2712 {
   2713 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2714 
   2715 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2716 
   2717 	bnx_dma_free(sc);
   2718 
   2719 	if (sc->bnx_intrhand != NULL)
   2720 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2721 
   2722 	if (sc->bnx_ih != NULL)
   2723 		pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
   2724 
   2725 	if (sc->bnx_size)
   2726 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2727 
   2728 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2729 }
   2730 
   2731 /****************************************************************************/
   2732 /* Firmware synchronization.                                                */
   2733 /*                                                                          */
   2734 /* Before performing certain events such as a chip reset, synchronize with  */
   2735 /* the firmware first.                                                      */
   2736 /*                                                                          */
   2737 /* Returns:                                                                 */
   2738 /*   0 for success, positive value for failure.                             */
   2739 /****************************************************************************/
   2740 int
   2741 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2742 {
   2743 	int			i, rc = 0;
   2744 	uint32_t		val;
   2745 
   2746 	/* Don't waste any time if we've timed out before. */
   2747 	if (sc->bnx_fw_timed_out) {
   2748 		rc = EBUSY;
   2749 		goto bnx_fw_sync_exit;
   2750 	}
   2751 
   2752 	/* Increment the message sequence number. */
   2753 	sc->bnx_fw_wr_seq++;
   2754 	msg_data |= sc->bnx_fw_wr_seq;
   2755 
   2756 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2757 	    msg_data);
   2758 
   2759 	/* Send the message to the bootcode driver mailbox. */
   2760 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2761 
   2762 	/* Wait for the bootcode to acknowledge the message. */
   2763 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2764 		/* Check for a response in the bootcode firmware mailbox. */
   2765 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2766 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2767 			break;
   2768 		DELAY(1000);
   2769 	}
   2770 
   2771 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2772 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2773 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2774 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2775 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2776 
   2777 		msg_data &= ~BNX_DRV_MSG_CODE;
   2778 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2779 
   2780 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2781 
   2782 		sc->bnx_fw_timed_out = 1;
   2783 		rc = EBUSY;
   2784 	}
   2785 
   2786 bnx_fw_sync_exit:
   2787 	return rc;
   2788 }
   2789 
   2790 /****************************************************************************/
   2791 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2792 /*                                                                          */
   2793 /* Returns:                                                                 */
   2794 /*   Nothing.                                                               */
   2795 /****************************************************************************/
   2796 void
   2797 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2798     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2799 {
   2800 	int			i;
   2801 	uint32_t		val;
   2802 
   2803 	/* Set the page size used by RV2P. */
   2804 	if (rv2p_proc == RV2P_PROC2) {
   2805 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2806 		    USABLE_RX_BD_PER_PAGE);
   2807 	}
   2808 
   2809 	for (i = 0; i < rv2p_code_len; i += 8) {
   2810 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2811 		rv2p_code++;
   2812 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2813 		rv2p_code++;
   2814 
   2815 		if (rv2p_proc == RV2P_PROC1) {
   2816 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2817 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2818 		} else {
   2819 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2820 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2821 		}
   2822 	}
   2823 
   2824 	/* Reset the processor, un-stall is done later. */
   2825 	if (rv2p_proc == RV2P_PROC1)
   2826 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2827 	else
   2828 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2829 }
   2830 
   2831 /****************************************************************************/
   2832 /* Load RISC processor firmware.                                            */
   2833 /*                                                                          */
   2834 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2835 /* associated with a particular processor.                                  */
   2836 /*                                                                          */
   2837 /* Returns:                                                                 */
   2838 /*   Nothing.                                                               */
   2839 /****************************************************************************/
   2840 void
   2841 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2842     struct fw_info *fw)
   2843 {
   2844 	uint32_t		offset;
   2845 	uint32_t		val;
   2846 
   2847 	/* Halt the CPU. */
   2848 	val = REG_RD_IND(sc, cpu_reg->mode);
   2849 	val |= cpu_reg->mode_value_halt;
   2850 	REG_WR_IND(sc, cpu_reg->mode, val);
   2851 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2852 
   2853 	/* Load the Text area. */
   2854 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2855 	if (fw->text) {
   2856 		int j;
   2857 
   2858 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2859 			REG_WR_IND(sc, offset, fw->text[j]);
   2860 	}
   2861 
   2862 	/* Load the Data area. */
   2863 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2864 	if (fw->data) {
   2865 		int j;
   2866 
   2867 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2868 			REG_WR_IND(sc, offset, fw->data[j]);
   2869 	}
   2870 
   2871 	/* Load the SBSS area. */
   2872 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2873 	if (fw->sbss) {
   2874 		int j;
   2875 
   2876 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2877 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2878 	}
   2879 
   2880 	/* Load the BSS area. */
   2881 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2882 	if (fw->bss) {
   2883 		int j;
   2884 
   2885 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2886 			REG_WR_IND(sc, offset, fw->bss[j]);
   2887 	}
   2888 
   2889 	/* Load the Read-Only area. */
   2890 	offset = cpu_reg->spad_base +
   2891 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2892 	if (fw->rodata) {
   2893 		int j;
   2894 
   2895 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2896 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2897 	}
   2898 
   2899 	/* Clear the pre-fetch instruction. */
   2900 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2901 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2902 
   2903 	/* Start the CPU. */
   2904 	val = REG_RD_IND(sc, cpu_reg->mode);
   2905 	val &= ~cpu_reg->mode_value_halt;
   2906 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2907 	REG_WR_IND(sc, cpu_reg->mode, val);
   2908 }
   2909 
   2910 /****************************************************************************/
   2911 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2912 /*                                                                          */
   2913 /* Loads the firmware for each CPU and starts the CPU.                      */
   2914 /*                                                                          */
   2915 /* Returns:                                                                 */
   2916 /*   Nothing.                                                               */
   2917 /****************************************************************************/
   2918 void
   2919 bnx_init_cpus(struct bnx_softc *sc)
   2920 {
   2921 	struct cpu_reg cpu_reg;
   2922 	struct fw_info fw;
   2923 
   2924 	switch (BNX_CHIP_NUM(sc)) {
   2925 	case BNX_CHIP_NUM_5709:
   2926 		/* Initialize the RV2P processor. */
   2927 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2928 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2929 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2930 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2931 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2932 		} else {
   2933 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2934 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2935 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2936 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2937 		}
   2938 
   2939 		/* Initialize the RX Processor. */
   2940 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2941 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2942 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2943 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2944 		cpu_reg.state_value_clear = 0xffffff;
   2945 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2946 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2947 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2948 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2949 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2950 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2951 		cpu_reg.mips_view_base = 0x8000000;
   2952 
   2953 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2954 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2955 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2956 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2957 
   2958 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2959 		fw.text_len = bnx_RXP_b09FwTextLen;
   2960 		fw.text_index = 0;
   2961 		fw.text = bnx_RXP_b09FwText;
   2962 
   2963 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2964 		fw.data_len = bnx_RXP_b09FwDataLen;
   2965 		fw.data_index = 0;
   2966 		fw.data = bnx_RXP_b09FwData;
   2967 
   2968 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2969 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2970 		fw.sbss_index = 0;
   2971 		fw.sbss = bnx_RXP_b09FwSbss;
   2972 
   2973 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2974 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2975 		fw.bss_index = 0;
   2976 		fw.bss = bnx_RXP_b09FwBss;
   2977 
   2978 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2979 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2980 		fw.rodata_index = 0;
   2981 		fw.rodata = bnx_RXP_b09FwRodata;
   2982 
   2983 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2984 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2985 
   2986 		/* Initialize the TX Processor. */
   2987 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2988 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2989 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2990 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2991 		cpu_reg.state_value_clear = 0xffffff;
   2992 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2993 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2994 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2995 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2996 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2997 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2998 		cpu_reg.mips_view_base = 0x8000000;
   2999 
   3000 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   3001 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   3002 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   3003 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   3004 
   3005 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   3006 		fw.text_len = bnx_TXP_b09FwTextLen;
   3007 		fw.text_index = 0;
   3008 		fw.text = bnx_TXP_b09FwText;
   3009 
   3010 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   3011 		fw.data_len = bnx_TXP_b09FwDataLen;
   3012 		fw.data_index = 0;
   3013 		fw.data = bnx_TXP_b09FwData;
   3014 
   3015 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   3016 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   3017 		fw.sbss_index = 0;
   3018 		fw.sbss = bnx_TXP_b09FwSbss;
   3019 
   3020 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   3021 		fw.bss_len = bnx_TXP_b09FwBssLen;
   3022 		fw.bss_index = 0;
   3023 		fw.bss = bnx_TXP_b09FwBss;
   3024 
   3025 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   3026 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   3027 		fw.rodata_index = 0;
   3028 		fw.rodata = bnx_TXP_b09FwRodata;
   3029 
   3030 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3031 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3032 
   3033 		/* Initialize the TX Patch-up Processor. */
   3034 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3035 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3036 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3037 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3038 		cpu_reg.state_value_clear = 0xffffff;
   3039 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3040 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3041 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3042 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3043 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3044 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3045 		cpu_reg.mips_view_base = 0x8000000;
   3046 
   3047 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   3048 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   3049 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   3050 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   3051 
   3052 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   3053 		fw.text_len = bnx_TPAT_b09FwTextLen;
   3054 		fw.text_index = 0;
   3055 		fw.text = bnx_TPAT_b09FwText;
   3056 
   3057 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   3058 		fw.data_len = bnx_TPAT_b09FwDataLen;
   3059 		fw.data_index = 0;
   3060 		fw.data = bnx_TPAT_b09FwData;
   3061 
   3062 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   3063 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   3064 		fw.sbss_index = 0;
   3065 		fw.sbss = bnx_TPAT_b09FwSbss;
   3066 
   3067 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   3068 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   3069 		fw.bss_index = 0;
   3070 		fw.bss = bnx_TPAT_b09FwBss;
   3071 
   3072 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3073 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3074 		fw.rodata_index = 0;
   3075 		fw.rodata = bnx_TPAT_b09FwRodata;
   3076 
   3077 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3078 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3079 
   3080 		/* Initialize the Completion Processor. */
   3081 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3082 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3083 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3084 		cpu_reg.state = BNX_COM_CPU_STATE;
   3085 		cpu_reg.state_value_clear = 0xffffff;
   3086 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3087 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3088 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3089 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3090 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3091 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3092 		cpu_reg.mips_view_base = 0x8000000;
   3093 
   3094 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3095 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3096 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3097 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3098 
   3099 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3100 		fw.text_len = bnx_COM_b09FwTextLen;
   3101 		fw.text_index = 0;
   3102 		fw.text = bnx_COM_b09FwText;
   3103 
   3104 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3105 		fw.data_len = bnx_COM_b09FwDataLen;
   3106 		fw.data_index = 0;
   3107 		fw.data = bnx_COM_b09FwData;
   3108 
   3109 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3110 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3111 		fw.sbss_index = 0;
   3112 		fw.sbss = bnx_COM_b09FwSbss;
   3113 
   3114 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3115 		fw.bss_len = bnx_COM_b09FwBssLen;
   3116 		fw.bss_index = 0;
   3117 		fw.bss = bnx_COM_b09FwBss;
   3118 
   3119 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3120 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3121 		fw.rodata_index = 0;
   3122 		fw.rodata = bnx_COM_b09FwRodata;
   3123 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3124 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3125 		break;
   3126 	default:
   3127 		/* Initialize the RV2P processor. */
   3128 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3129 		    RV2P_PROC1);
   3130 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3131 		    RV2P_PROC2);
   3132 
   3133 		/* Initialize the RX Processor. */
   3134 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3135 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3136 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3137 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3138 		cpu_reg.state_value_clear = 0xffffff;
   3139 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3140 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3141 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3142 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3143 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3144 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3145 		cpu_reg.mips_view_base = 0x8000000;
   3146 
   3147 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3148 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3149 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3150 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3151 
   3152 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3153 		fw.text_len = bnx_RXP_b06FwTextLen;
   3154 		fw.text_index = 0;
   3155 		fw.text = bnx_RXP_b06FwText;
   3156 
   3157 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3158 		fw.data_len = bnx_RXP_b06FwDataLen;
   3159 		fw.data_index = 0;
   3160 		fw.data = bnx_RXP_b06FwData;
   3161 
   3162 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3163 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3164 		fw.sbss_index = 0;
   3165 		fw.sbss = bnx_RXP_b06FwSbss;
   3166 
   3167 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3168 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3169 		fw.bss_index = 0;
   3170 		fw.bss = bnx_RXP_b06FwBss;
   3171 
   3172 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3173 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3174 		fw.rodata_index = 0;
   3175 		fw.rodata = bnx_RXP_b06FwRodata;
   3176 
   3177 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3178 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3179 
   3180 		/* Initialize the TX Processor. */
   3181 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3182 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3183 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3184 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3185 		cpu_reg.state_value_clear = 0xffffff;
   3186 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3187 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3188 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3189 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3190 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3191 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3192 		cpu_reg.mips_view_base = 0x8000000;
   3193 
   3194 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3195 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3196 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3197 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3198 
   3199 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3200 		fw.text_len = bnx_TXP_b06FwTextLen;
   3201 		fw.text_index = 0;
   3202 		fw.text = bnx_TXP_b06FwText;
   3203 
   3204 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3205 		fw.data_len = bnx_TXP_b06FwDataLen;
   3206 		fw.data_index = 0;
   3207 		fw.data = bnx_TXP_b06FwData;
   3208 
   3209 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3210 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3211 		fw.sbss_index = 0;
   3212 		fw.sbss = bnx_TXP_b06FwSbss;
   3213 
   3214 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3215 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3216 		fw.bss_index = 0;
   3217 		fw.bss = bnx_TXP_b06FwBss;
   3218 
   3219 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3220 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3221 		fw.rodata_index = 0;
   3222 		fw.rodata = bnx_TXP_b06FwRodata;
   3223 
   3224 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3225 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3226 
   3227 		/* Initialize the TX Patch-up Processor. */
   3228 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3229 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3230 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3231 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3232 		cpu_reg.state_value_clear = 0xffffff;
   3233 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3234 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3235 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3236 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3237 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3238 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3239 		cpu_reg.mips_view_base = 0x8000000;
   3240 
   3241 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3242 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3243 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3244 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3245 
   3246 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3247 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3248 		fw.text_index = 0;
   3249 		fw.text = bnx_TPAT_b06FwText;
   3250 
   3251 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3252 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3253 		fw.data_index = 0;
   3254 		fw.data = bnx_TPAT_b06FwData;
   3255 
   3256 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3257 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3258 		fw.sbss_index = 0;
   3259 		fw.sbss = bnx_TPAT_b06FwSbss;
   3260 
   3261 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3262 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3263 		fw.bss_index = 0;
   3264 		fw.bss = bnx_TPAT_b06FwBss;
   3265 
   3266 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3267 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3268 		fw.rodata_index = 0;
   3269 		fw.rodata = bnx_TPAT_b06FwRodata;
   3270 
   3271 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3272 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3273 
   3274 		/* Initialize the Completion Processor. */
   3275 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3276 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3277 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3278 		cpu_reg.state = BNX_COM_CPU_STATE;
   3279 		cpu_reg.state_value_clear = 0xffffff;
   3280 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3281 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3282 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3283 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3284 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3285 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3286 		cpu_reg.mips_view_base = 0x8000000;
   3287 
   3288 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3289 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3290 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3291 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3292 
   3293 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3294 		fw.text_len = bnx_COM_b06FwTextLen;
   3295 		fw.text_index = 0;
   3296 		fw.text = bnx_COM_b06FwText;
   3297 
   3298 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3299 		fw.data_len = bnx_COM_b06FwDataLen;
   3300 		fw.data_index = 0;
   3301 		fw.data = bnx_COM_b06FwData;
   3302 
   3303 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3304 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3305 		fw.sbss_index = 0;
   3306 		fw.sbss = bnx_COM_b06FwSbss;
   3307 
   3308 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3309 		fw.bss_len = bnx_COM_b06FwBssLen;
   3310 		fw.bss_index = 0;
   3311 		fw.bss = bnx_COM_b06FwBss;
   3312 
   3313 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3314 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3315 		fw.rodata_index = 0;
   3316 		fw.rodata = bnx_COM_b06FwRodata;
   3317 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3318 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3319 		break;
   3320 	}
   3321 }
   3322 
   3323 /****************************************************************************/
   3324 /* Initialize context memory.                                               */
   3325 /*                                                                          */
   3326 /* Clears the memory associated with each Context ID (CID).                 */
   3327 /*                                                                          */
   3328 /* Returns:                                                                 */
   3329 /*   Nothing.                                                               */
   3330 /****************************************************************************/
   3331 void
   3332 bnx_init_context(struct bnx_softc *sc)
   3333 {
   3334 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3335 		/* DRC: Replace this constant value with a #define. */
   3336 		int i, retry_cnt = 10;
   3337 		uint32_t val;
   3338 
   3339 		/*
   3340 		 * BCM5709 context memory may be cached
   3341 		 * in host memory so prepare the host memory
   3342 		 * for access.
   3343 		 */
   3344 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3345 		    | (1 << 12);
   3346 		val |= (BCM_PAGE_BITS - 8) << 16;
   3347 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3348 
   3349 		/* Wait for mem init command to complete. */
   3350 		for (i = 0; i < retry_cnt; i++) {
   3351 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3352 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3353 				break;
   3354 			DELAY(2);
   3355 		}
   3356 
   3357 		/* ToDo: Consider returning an error here. */
   3358 
   3359 		for (i = 0; i < sc->ctx_pages; i++) {
   3360 			int j;
   3361 
   3362 			/* Set the physaddr of the context memory cache. */
   3363 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3364 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3365 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3366 			val = (uint32_t)
   3367 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3368 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3369 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3370 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3371 
   3372 			/* Verify that the context memory write was successful. */
   3373 			for (j = 0; j < retry_cnt; j++) {
   3374 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3375 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3376 					break;
   3377 				DELAY(5);
   3378 			}
   3379 
   3380 			/* ToDo: Consider returning an error here. */
   3381 		}
   3382 	} else {
   3383 		uint32_t vcid_addr, offset;
   3384 
   3385 		/*
   3386 		 * For the 5706/5708, context memory is local to the
   3387 		 * controller, so initialize the controller context memory.
   3388 		 */
   3389 
   3390 		vcid_addr = GET_CID_ADDR(96);
   3391 		while (vcid_addr) {
   3392 
   3393 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3394 
   3395 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3396 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3397 
   3398 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3399 			     offset += 4)
   3400 				CTX_WR(sc, 0x00, offset, 0);
   3401 
   3402 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3403 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3404 		}
   3405 	}
   3406 }
   3407 
   3408 /****************************************************************************/
   3409 /* Fetch the permanent MAC address of the controller.                       */
   3410 /*                                                                          */
   3411 /* Returns:                                                                 */
   3412 /*   Nothing.                                                               */
   3413 /****************************************************************************/
   3414 void
   3415 bnx_get_mac_addr(struct bnx_softc *sc)
   3416 {
   3417 	uint32_t		mac_lo = 0, mac_hi = 0;
   3418 
   3419 	/*
   3420 	 * The NetXtreme II bootcode populates various NIC
   3421 	 * power-on and runtime configuration items in a
   3422 	 * shared memory area.  The factory configured MAC
   3423 	 * address is available from both NVRAM and the
   3424 	 * shared memory area so we'll read the value from
   3425 	 * shared memory for speed.
   3426 	 */
   3427 
   3428 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3429 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3430 
   3431 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3432 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3433 		    __FILE__, __LINE__);
   3434 	} else {
   3435 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3436 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3437 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3438 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3439 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3440 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3441 	}
   3442 
   3443 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3444 	    "%s\n", ether_sprintf(sc->eaddr));
   3445 }
   3446 
   3447 /****************************************************************************/
   3448 /* Program the MAC address.                                                 */
   3449 /*                                                                          */
   3450 /* Returns:                                                                 */
   3451 /*   Nothing.                                                               */
   3452 /****************************************************************************/
   3453 void
   3454 bnx_set_mac_addr(struct bnx_softc *sc)
   3455 {
   3456 	uint32_t		val;
   3457 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3458 
   3459 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3460 	    "%s\n", ether_sprintf(sc->eaddr));
   3461 
   3462 	val = (mac_addr[0] << 8) | mac_addr[1];
   3463 
   3464 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3465 
   3466 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3467 		(mac_addr[4] << 8) | mac_addr[5];
   3468 
   3469 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3470 }
   3471 
   3472 /****************************************************************************/
   3473 /* Stop the controller.                                                     */
   3474 /*                                                                          */
   3475 /* Returns:                                                                 */
   3476 /*   Nothing.                                                               */
   3477 /****************************************************************************/
   3478 void
   3479 bnx_stop(struct ifnet *ifp, int disable)
   3480 {
   3481 	struct bnx_softc *sc = ifp->if_softc;
   3482 
   3483 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3484 
   3485 	if (disable) {
   3486 		sc->bnx_detaching = 1;
   3487 		callout_halt(&sc->bnx_timeout, NULL);
   3488 	} else
   3489 		callout_stop(&sc->bnx_timeout);
   3490 
   3491 	mii_down(&sc->bnx_mii);
   3492 
   3493 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3494 
   3495 	/* Disable the transmit/receive blocks. */
   3496 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3497 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3498 	DELAY(20);
   3499 
   3500 	bnx_disable_intr(sc);
   3501 
   3502 	/* Tell firmware that the driver is going away. */
   3503 	if (disable)
   3504 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3505 	else
   3506 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3507 
   3508 	/* Free RX buffers. */
   3509 	bnx_free_rx_chain(sc);
   3510 
   3511 	/* Free TX buffers. */
   3512 	bnx_free_tx_chain(sc);
   3513 
   3514 	ifp->if_timer = 0;
   3515 
   3516 	sc->bnx_link = 0;
   3517 
   3518 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3519 
   3520 	bnx_mgmt_init(sc);
   3521 }
   3522 
   3523 int
   3524 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3525 {
   3526 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3527 	uint32_t		val;
   3528 	int			i, rc = 0;
   3529 
   3530 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3531 
   3532 	/* Wait for pending PCI transactions to complete. */
   3533 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   3534 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
   3535 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3536 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3537 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3538 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3539 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3540 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3541 		DELAY(5);
   3542 	} else {
   3543 		/* Disable DMA */
   3544 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3545 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3546 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3547 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
   3548 
   3549 		for (i = 0; i < 100; i++) {
   3550 			delay(1 * 1000);
   3551 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
   3552 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
   3553 				break;
   3554 		}
   3555 	}
   3556 
   3557 	/* Assume bootcode is running. */
   3558 	sc->bnx_fw_timed_out = 0;
   3559 
   3560 	/* Give the firmware a chance to prepare for the reset. */
   3561 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3562 	if (rc)
   3563 		goto bnx_reset_exit;
   3564 
   3565 	/* Set a firmware reminder that this is a soft reset. */
   3566 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3567 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3568 
   3569 	/* Dummy read to force the chip to complete all current transactions. */
   3570 	val = REG_RD(sc, BNX_MISC_ID);
   3571 
   3572 	/* Chip reset. */
   3573 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3574 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3575 		REG_RD(sc, BNX_MISC_COMMAND);
   3576 		DELAY(5);
   3577 
   3578 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3579 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3580 
   3581 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3582 		    val);
   3583 	} else {
   3584 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3585 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3586 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3587 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3588 
   3589 		/* Allow up to 30us for reset to complete. */
   3590 		for (i = 0; i < 10; i++) {
   3591 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3592 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3593 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3594 				break;
   3595 			}
   3596 			DELAY(10);
   3597 		}
   3598 
   3599 		/* Check that reset completed successfully. */
   3600 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3601 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3602 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3603 			    __FILE__, __LINE__);
   3604 			rc = EBUSY;
   3605 			goto bnx_reset_exit;
   3606 		}
   3607 	}
   3608 
   3609 	/* Make sure byte swapping is properly configured. */
   3610 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3611 	if (val != 0x01020304) {
   3612 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3613 		    __FILE__, __LINE__);
   3614 		rc = ENODEV;
   3615 		goto bnx_reset_exit;
   3616 	}
   3617 
   3618 	/* Just completed a reset, assume that firmware is running again. */
   3619 	sc->bnx_fw_timed_out = 0;
   3620 
   3621 	/* Wait for the firmware to finish its initialization. */
   3622 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3623 	if (rc)
   3624 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3625 		    "initialization!\n", __FILE__, __LINE__);
   3626 
   3627 bnx_reset_exit:
   3628 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3629 
   3630 	return rc;
   3631 }
   3632 
   3633 int
   3634 bnx_chipinit(struct bnx_softc *sc)
   3635 {
   3636 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3637 	uint32_t		val;
   3638 	int			rc = 0;
   3639 
   3640 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3641 
   3642 	/* Make sure the interrupt is not active. */
   3643 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3644 
   3645 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3646 	/* channels and PCI clock compensation delay.                      */
   3647 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3648 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3649 #if BYTE_ORDER == BIG_ENDIAN
   3650 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3651 #endif
   3652 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3653 	    DMA_READ_CHANS << 12 |
   3654 	    DMA_WRITE_CHANS << 16;
   3655 
   3656 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3657 
   3658 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3659 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3660 
   3661 	/*
   3662 	 * This setting resolves a problem observed on certain Intel PCI
   3663 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3664 	 * See errata E9_5706A1_65.
   3665 	 */
   3666 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3667 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3668 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3669 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3670 
   3671 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3672 
   3673 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3674 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3675 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3676 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3677 		    val & ~0x20000);
   3678 	}
   3679 
   3680 	/* Enable the RX_V2P and Context state machines before access. */
   3681 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3682 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3683 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3684 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3685 
   3686 	/* Initialize context mapping and zero out the quick contexts. */
   3687 	bnx_init_context(sc);
   3688 
   3689 	/* Initialize the on-boards CPUs */
   3690 	bnx_init_cpus(sc);
   3691 
   3692 	/* Enable management frames (NC-SI) to flow to the MCP. */
   3693 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3694 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
   3695 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3696 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3697 	}
   3698 
   3699 	/* Prepare NVRAM for access. */
   3700 	if (bnx_init_nvram(sc)) {
   3701 		rc = ENODEV;
   3702 		goto bnx_chipinit_exit;
   3703 	}
   3704 
   3705 	/* Set the kernel bypass block size */
   3706 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3707 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3708 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3709 
   3710 	/* Enable bins used on the 5709. */
   3711 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3712 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3713 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3714 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3715 	}
   3716 
   3717 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3718 
   3719 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3720 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3721 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3722 
   3723 	val = (BCM_PAGE_BITS - 8) << 24;
   3724 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3725 
   3726 	/* Configure page size. */
   3727 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3728 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3729 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3730 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3731 
   3732 #if 0
   3733 	/* Set the perfect match control register to default. */
   3734 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3735 #endif
   3736 
   3737 bnx_chipinit_exit:
   3738 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3739 
   3740 	return rc;
   3741 }
   3742 
   3743 /****************************************************************************/
   3744 /* Initialize the controller in preparation to send/receive traffic.        */
   3745 /*                                                                          */
   3746 /* Returns:                                                                 */
   3747 /*   0 for success, positive value for failure.                             */
   3748 /****************************************************************************/
   3749 int
   3750 bnx_blockinit(struct bnx_softc *sc)
   3751 {
   3752 	uint32_t		reg, val;
   3753 	int			rc = 0;
   3754 
   3755 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3756 
   3757 	/* Load the hardware default MAC address. */
   3758 	bnx_set_mac_addr(sc);
   3759 
   3760 	/* Set the Ethernet backoff seed value */
   3761 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3762 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3763 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3764 
   3765 	sc->last_status_idx = 0;
   3766 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3767 
   3768 	/* Set up link change interrupt generation. */
   3769 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3770 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3771 
   3772 	/* Program the physical address of the status block. */
   3773 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3774 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3775 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3776 
   3777 	/* Program the physical address of the statistics block. */
   3778 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3779 	    (uint32_t)(sc->stats_block_paddr));
   3780 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3781 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3782 
   3783 	/* Program various host coalescing parameters. */
   3784 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3785 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3786 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3787 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3788 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3789 	    sc->bnx_comp_prod_trip);
   3790 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3791 	    sc->bnx_tx_ticks);
   3792 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3793 	    sc->bnx_rx_ticks);
   3794 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3795 	    sc->bnx_com_ticks);
   3796 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3797 	    sc->bnx_cmd_ticks);
   3798 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3799 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3800 	REG_WR(sc, BNX_HC_CONFIG,
   3801 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3802 	    BNX_HC_CONFIG_COLLECT_STATS));
   3803 
   3804 	/* Clear the internal statistics counters. */
   3805 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3806 
   3807 	/* Verify that bootcode is running. */
   3808 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3809 
   3810 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3811 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3812 	    __FILE__, __LINE__); reg = 0);
   3813 
   3814 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3815 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3816 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3817 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3818 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3819 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3820 		rc = ENODEV;
   3821 		goto bnx_blockinit_exit;
   3822 	}
   3823 
   3824 	/* Enable DMA */
   3825 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3826 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3827 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3828 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3829 	}
   3830 
   3831 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3832 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3833 
   3834 	/* Disable management frames (NC-SI) from flowing to the MCP. */
   3835 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3836 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
   3837 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3838 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3839 	}
   3840 
   3841 	/* Enable all remaining blocks in the MAC. */
   3842 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3843 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3844 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3845 	} else
   3846 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3847 
   3848 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3849 	DELAY(20);
   3850 
   3851 bnx_blockinit_exit:
   3852 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3853 
   3854 	return rc;
   3855 }
   3856 
   3857 static int
   3858 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3859     uint16_t *chain_prod, uint32_t *prod_bseq)
   3860 {
   3861 	bus_dmamap_t		map;
   3862 	struct rx_bd		*rxbd;
   3863 	uint32_t		addr;
   3864 	int i;
   3865 #ifdef BNX_DEBUG
   3866 	uint16_t debug_chain_prod =	*chain_prod;
   3867 #endif
   3868 	uint16_t first_chain_prod;
   3869 
   3870 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3871 
   3872 	/* Map the mbuf cluster into device memory. */
   3873 	map = sc->rx_mbuf_map[*chain_prod];
   3874 	first_chain_prod = *chain_prod;
   3875 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3876 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3877 		    __FILE__, __LINE__);
   3878 
   3879 		m_freem(m_new);
   3880 
   3881 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3882 
   3883 		return ENOBUFS;
   3884 	}
   3885 	/* Make sure there is room in the receive chain. */
   3886 	if (map->dm_nsegs > sc->free_rx_bd) {
   3887 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3888 		m_freem(m_new);
   3889 		return EFBIG;
   3890 	}
   3891 #ifdef BNX_DEBUG
   3892 	/* Track the distribution of buffer segments. */
   3893 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3894 #endif
   3895 
   3896 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3897 	    BUS_DMASYNC_PREREAD);
   3898 
   3899 	/* Update some debug statistics counters */
   3900 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3901 	    sc->rx_low_watermark = sc->free_rx_bd);
   3902 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3903 
   3904 	/*
   3905 	 * Setup the rx_bd for the first segment
   3906 	 */
   3907 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3908 
   3909 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3910 	rxbd->rx_bd_haddr_lo = addr;
   3911 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3912 	rxbd->rx_bd_haddr_hi = addr;
   3913 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3914 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3915 	*prod_bseq += map->dm_segs[0].ds_len;
   3916 	bus_dmamap_sync(sc->bnx_dmatag,
   3917 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3918 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3919 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3920 
   3921 	for (i = 1; i < map->dm_nsegs; i++) {
   3922 		*prod = NEXT_RX_BD(*prod);
   3923 		*chain_prod = RX_CHAIN_IDX(*prod);
   3924 
   3925 		rxbd =
   3926 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3927 
   3928 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3929 		rxbd->rx_bd_haddr_lo = addr;
   3930 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3931 		rxbd->rx_bd_haddr_hi = addr;
   3932 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3933 		rxbd->rx_bd_flags = 0;
   3934 		*prod_bseq += map->dm_segs[i].ds_len;
   3935 		bus_dmamap_sync(sc->bnx_dmatag,
   3936 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3937 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3938 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3939 	}
   3940 
   3941 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3942 	bus_dmamap_sync(sc->bnx_dmatag,
   3943 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3944 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3945 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3946 
   3947 	/*
   3948 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3949 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3950 	 * and update our counter.
   3951 	 */
   3952 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3953 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3954 	sc->rx_mbuf_map[*chain_prod] = map;
   3955 	sc->free_rx_bd -= map->dm_nsegs;
   3956 
   3957 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3958 	    map->dm_nsegs));
   3959 	*prod = NEXT_RX_BD(*prod);
   3960 	*chain_prod = RX_CHAIN_IDX(*prod);
   3961 
   3962 	return 0;
   3963 }
   3964 
   3965 /****************************************************************************/
   3966 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3967 /*                                                                          */
   3968 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3969 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3970 /* necessary.                                                               */
   3971 /*                                                                          */
   3972 /* Returns:                                                                 */
   3973 /*   0 for success, positive value for failure.                             */
   3974 /****************************************************************************/
   3975 int
   3976 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3977     uint16_t *chain_prod, uint32_t *prod_bseq)
   3978 {
   3979 	struct mbuf		*m_new = NULL;
   3980 	int			rc = 0;
   3981 	uint16_t min_free_bd;
   3982 
   3983 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3984 	    __func__);
   3985 
   3986 	/* Make sure the inputs are valid. */
   3987 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3988 	    aprint_error_dev(sc->bnx_dev,
   3989 		"RX producer out of range: 0x%04X > 0x%04X\n",
   3990 		*chain_prod, (uint16_t)MAX_RX_BD));
   3991 
   3992 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3993 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3994 	    *prod_bseq);
   3995 
   3996 	/* try to get in as many mbufs as possible */
   3997 	if (sc->mbuf_alloc_size == MCLBYTES)
   3998 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3999 	else
   4000 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   4001 	while (sc->free_rx_bd >= min_free_bd) {
   4002 		/* Simulate an mbuf allocation failure. */
   4003 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4004 		    aprint_error_dev(sc->bnx_dev,
   4005 		    "Simulating mbuf allocation failure.\n");
   4006 			sc->mbuf_sim_alloc_failed++;
   4007 			rc = ENOBUFS;
   4008 			goto bnx_get_buf_exit);
   4009 
   4010 		/* This is a new mbuf allocation. */
   4011 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   4012 		if (m_new == NULL) {
   4013 			DBPRINT(sc, BNX_WARN,
   4014 			    "%s(%d): RX mbuf header allocation failed!\n",
   4015 			    __FILE__, __LINE__);
   4016 
   4017 			sc->mbuf_alloc_failed++;
   4018 
   4019 			rc = ENOBUFS;
   4020 			goto bnx_get_buf_exit;
   4021 		}
   4022 
   4023 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   4024 
   4025 		/* Simulate an mbuf cluster allocation failure. */
   4026 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4027 			m_freem(m_new);
   4028 			sc->rx_mbuf_alloc--;
   4029 			sc->mbuf_alloc_failed++;
   4030 			sc->mbuf_sim_alloc_failed++;
   4031 			rc = ENOBUFS;
   4032 			goto bnx_get_buf_exit);
   4033 
   4034 		if (sc->mbuf_alloc_size == MCLBYTES)
   4035 			MCLGET(m_new, M_DONTWAIT);
   4036 		else
   4037 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   4038 			    M_DONTWAIT);
   4039 		if (!(m_new->m_flags & M_EXT)) {
   4040 			DBPRINT(sc, BNX_WARN,
   4041 			    "%s(%d): RX mbuf chain allocation failed!\n",
   4042 			    __FILE__, __LINE__);
   4043 
   4044 			m_freem(m_new);
   4045 
   4046 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4047 			sc->mbuf_alloc_failed++;
   4048 
   4049 			rc = ENOBUFS;
   4050 			goto bnx_get_buf_exit;
   4051 		}
   4052 
   4053 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   4054 		if (rc != 0)
   4055 			goto bnx_get_buf_exit;
   4056 	}
   4057 
   4058 bnx_get_buf_exit:
   4059 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   4060 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   4061 	    *chain_prod, *prod_bseq);
   4062 
   4063 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   4064 	    __func__);
   4065 
   4066 	return rc;
   4067 }
   4068 
   4069 void
   4070 bnx_alloc_pkts(struct work * unused, void * arg)
   4071 {
   4072 	struct bnx_softc *sc = arg;
   4073 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   4074 	struct bnx_pkt *pkt;
   4075 	int i, s;
   4076 
   4077 	for (i = 0; i < 4; i++) { /* magic! */
   4078 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   4079 		if (pkt == NULL)
   4080 			break;
   4081 
   4082 		if (bus_dmamap_create(sc->bnx_dmatag,
   4083 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4084 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4085 		    &pkt->pkt_dmamap) != 0)
   4086 			goto put;
   4087 
   4088 		if (!ISSET(ifp->if_flags, IFF_UP))
   4089 			goto stopping;
   4090 
   4091 		mutex_enter(&sc->tx_pkt_mtx);
   4092 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4093 		sc->tx_pkt_count++;
   4094 		mutex_exit(&sc->tx_pkt_mtx);
   4095 	}
   4096 
   4097 	mutex_enter(&sc->tx_pkt_mtx);
   4098 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4099 	mutex_exit(&sc->tx_pkt_mtx);
   4100 
   4101 	/* fire-up TX now that allocations have been done */
   4102 	s = splnet();
   4103 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4104 		bnx_start(ifp);
   4105 	splx(s);
   4106 
   4107 	return;
   4108 
   4109 stopping:
   4110 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4111 put:
   4112 	pool_put(bnx_tx_pool, pkt);
   4113 	return;
   4114 }
   4115 
   4116 /****************************************************************************/
   4117 /* Initialize the TX context memory.                                        */
   4118 /*                                                                          */
   4119 /* Returns:                                                                 */
   4120 /*   Nothing                                                                */
   4121 /****************************************************************************/
   4122 void
   4123 bnx_init_tx_context(struct bnx_softc *sc)
   4124 {
   4125 	uint32_t val;
   4126 
   4127 	/* Initialize the context ID for an L2 TX chain. */
   4128 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4129 		/* Set the CID type to support an L2 connection. */
   4130 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4131 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4132 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4133 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4134 
   4135 		/* Point the hardware to the first page in the chain. */
   4136 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4137 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4138 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4139 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4140 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4141 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4142 	} else {
   4143 		/* Set the CID type to support an L2 connection. */
   4144 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4145 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4146 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4147 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4148 
   4149 		/* Point the hardware to the first page in the chain. */
   4150 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4151 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4152 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4153 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4154 	}
   4155 }
   4156 
   4157 
   4158 /****************************************************************************/
   4159 /* Allocate memory and initialize the TX data structures.                   */
   4160 /*                                                                          */
   4161 /* Returns:                                                                 */
   4162 /*   0 for success, positive value for failure.                             */
   4163 /****************************************************************************/
   4164 int
   4165 bnx_init_tx_chain(struct bnx_softc *sc)
   4166 {
   4167 	struct tx_bd		*txbd;
   4168 	uint32_t		addr;
   4169 	int			i, rc = 0;
   4170 
   4171 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4172 
   4173 	/* Set the initial TX producer/consumer indices. */
   4174 	sc->tx_prod = 0;
   4175 	sc->tx_cons = 0;
   4176 	sc->tx_prod_bseq = 0;
   4177 	sc->used_tx_bd = 0;
   4178 	sc->max_tx_bd = USABLE_TX_BD;
   4179 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4180 	DBRUNIF(1, sc->tx_full_count = 0);
   4181 
   4182 	/*
   4183 	 * The NetXtreme II supports a linked-list structure called
   4184 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4185 	 * consists of a series of 1 or more chain pages, each of which
   4186 	 * consists of a fixed number of BD entries.
   4187 	 * The last BD entry on each page is a pointer to the next page
   4188 	 * in the chain, and the last pointer in the BD chain
   4189 	 * points back to the beginning of the chain.
   4190 	 */
   4191 
   4192 	/* Set the TX next pointer chain entries. */
   4193 	for (i = 0; i < TX_PAGES; i++) {
   4194 		int j;
   4195 
   4196 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4197 
   4198 		/* Check if we've reached the last page. */
   4199 		if (i == (TX_PAGES - 1))
   4200 			j = 0;
   4201 		else
   4202 			j = i + 1;
   4203 
   4204 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4205 		txbd->tx_bd_haddr_lo = addr;
   4206 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4207 		txbd->tx_bd_haddr_hi = addr;
   4208 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4209 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4210 	}
   4211 
   4212 	/*
   4213 	 * Initialize the context ID for an L2 TX chain.
   4214 	 */
   4215 	bnx_init_tx_context(sc);
   4216 
   4217 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4218 
   4219 	return rc;
   4220 }
   4221 
   4222 /****************************************************************************/
   4223 /* Free memory and clear the TX data structures.                            */
   4224 /*                                                                          */
   4225 /* Returns:                                                                 */
   4226 /*   Nothing.                                                               */
   4227 /****************************************************************************/
   4228 void
   4229 bnx_free_tx_chain(struct bnx_softc *sc)
   4230 {
   4231 	struct bnx_pkt		*pkt;
   4232 	int			i;
   4233 
   4234 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4235 
   4236 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4237 	mutex_enter(&sc->tx_pkt_mtx);
   4238 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4239 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4240 		mutex_exit(&sc->tx_pkt_mtx);
   4241 
   4242 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4243 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4244 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4245 
   4246 		m_freem(pkt->pkt_mbuf);
   4247 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4248 
   4249 		mutex_enter(&sc->tx_pkt_mtx);
   4250 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4251 	}
   4252 	mutex_exit(&sc->tx_pkt_mtx);
   4253 
   4254 	/* Clear each TX chain page. */
   4255 	for (i = 0; i < TX_PAGES; i++) {
   4256 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4257 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4258 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4259 	}
   4260 
   4261 	sc->used_tx_bd = 0;
   4262 
   4263 	/* Check if we lost any mbufs in the process. */
   4264 	DBRUNIF((sc->tx_mbuf_alloc),
   4265 	    aprint_error_dev(sc->bnx_dev,
   4266 		"Memory leak! Lost %d mbufs from tx chain!\n",
   4267 		sc->tx_mbuf_alloc));
   4268 
   4269 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4270 }
   4271 
   4272 /****************************************************************************/
   4273 /* Initialize the RX context memory.                                        */
   4274 /*                                                                          */
   4275 /* Returns:                                                                 */
   4276 /*   Nothing                                                                */
   4277 /****************************************************************************/
   4278 void
   4279 bnx_init_rx_context(struct bnx_softc *sc)
   4280 {
   4281 	uint32_t val;
   4282 
   4283 	/* Initialize the context ID for an L2 RX chain. */
   4284 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4285 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4286 
   4287 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4288 		val |= 0x000000ff;
   4289 
   4290 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4291 
   4292 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4293 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4294 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4295 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4296 	}
   4297 
   4298 	/* Point the hardware to the first page in the chain. */
   4299 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4300 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4301 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4302 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4303 }
   4304 
   4305 /****************************************************************************/
   4306 /* Allocate memory and initialize the RX data structures.                   */
   4307 /*                                                                          */
   4308 /* Returns:                                                                 */
   4309 /*   0 for success, positive value for failure.                             */
   4310 /****************************************************************************/
   4311 int
   4312 bnx_init_rx_chain(struct bnx_softc *sc)
   4313 {
   4314 	struct rx_bd		*rxbd;
   4315 	int			i, rc = 0;
   4316 	uint16_t		prod, chain_prod;
   4317 	uint32_t		prod_bseq, addr;
   4318 
   4319 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4320 
   4321 	/* Initialize the RX producer and consumer indices. */
   4322 	sc->rx_prod = 0;
   4323 	sc->rx_cons = 0;
   4324 	sc->rx_prod_bseq = 0;
   4325 	sc->free_rx_bd = USABLE_RX_BD;
   4326 	sc->max_rx_bd = USABLE_RX_BD;
   4327 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4328 	DBRUNIF(1, sc->rx_empty_count = 0);
   4329 
   4330 	/* Initialize the RX next pointer chain entries. */
   4331 	for (i = 0; i < RX_PAGES; i++) {
   4332 		int j;
   4333 
   4334 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4335 
   4336 		/* Check if we've reached the last page. */
   4337 		if (i == (RX_PAGES - 1))
   4338 			j = 0;
   4339 		else
   4340 			j = i + 1;
   4341 
   4342 		/* Setup the chain page pointers. */
   4343 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4344 		rxbd->rx_bd_haddr_hi = addr;
   4345 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4346 		rxbd->rx_bd_haddr_lo = addr;
   4347 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4348 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4349 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4350 	}
   4351 
   4352 	/* Allocate mbuf clusters for the rx_bd chain. */
   4353 	prod = prod_bseq = 0;
   4354 	chain_prod = RX_CHAIN_IDX(prod);
   4355 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4356 		BNX_PRINTF(sc,
   4357 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4358 	}
   4359 
   4360 	/* Save the RX chain producer index. */
   4361 	sc->rx_prod = prod;
   4362 	sc->rx_prod_bseq = prod_bseq;
   4363 
   4364 	for (i = 0; i < RX_PAGES; i++)
   4365 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4366 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4367 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4368 
   4369 	/* Tell the chip about the waiting rx_bd's. */
   4370 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4371 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4372 
   4373 	bnx_init_rx_context(sc);
   4374 
   4375 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4376 
   4377 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4378 
   4379 	return rc;
   4380 }
   4381 
   4382 /****************************************************************************/
   4383 /* Free memory and clear the RX data structures.                            */
   4384 /*                                                                          */
   4385 /* Returns:                                                                 */
   4386 /*   Nothing.                                                               */
   4387 /****************************************************************************/
   4388 void
   4389 bnx_free_rx_chain(struct bnx_softc *sc)
   4390 {
   4391 	int			i;
   4392 
   4393 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4394 
   4395 	/* Free any mbufs still in the RX mbuf chain. */
   4396 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4397 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4398 			if (sc->rx_mbuf_map[i] != NULL) {
   4399 				bus_dmamap_sync(sc->bnx_dmatag,
   4400 				    sc->rx_mbuf_map[i],	0,
   4401 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4402 				    BUS_DMASYNC_POSTREAD);
   4403 				bus_dmamap_unload(sc->bnx_dmatag,
   4404 				    sc->rx_mbuf_map[i]);
   4405 			}
   4406 			m_freem(sc->rx_mbuf_ptr[i]);
   4407 			sc->rx_mbuf_ptr[i] = NULL;
   4408 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4409 		}
   4410 	}
   4411 
   4412 	/* Clear each RX chain page. */
   4413 	for (i = 0; i < RX_PAGES; i++)
   4414 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4415 
   4416 	sc->free_rx_bd = sc->max_rx_bd;
   4417 
   4418 	/* Check if we lost any mbufs in the process. */
   4419 	DBRUNIF((sc->rx_mbuf_alloc),
   4420 	    aprint_error_dev(sc->bnx_dev,
   4421 		"Memory leak! Lost %d mbufs from rx chain!\n",
   4422 		sc->rx_mbuf_alloc));
   4423 
   4424 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4425 }
   4426 
   4427 /****************************************************************************/
   4428 /* Set media options.                                                       */
   4429 /*                                                                          */
   4430 /* Returns:                                                                 */
   4431 /*   0 for success, positive value for failure.                             */
   4432 /****************************************************************************/
   4433 int
   4434 bnx_ifmedia_upd(struct ifnet *ifp)
   4435 {
   4436 	struct bnx_softc	*sc;
   4437 	struct mii_data		*mii;
   4438 	int			rc = 0;
   4439 
   4440 	sc = ifp->if_softc;
   4441 
   4442 	mii = &sc->bnx_mii;
   4443 	sc->bnx_link = 0;
   4444 	if (mii->mii_instance) {
   4445 		struct mii_softc *miisc;
   4446 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4447 			mii_phy_reset(miisc);
   4448 	}
   4449 	mii_mediachg(mii);
   4450 
   4451 	return rc;
   4452 }
   4453 
   4454 /****************************************************************************/
   4455 /* Reports current media status.                                            */
   4456 /*                                                                          */
   4457 /* Returns:                                                                 */
   4458 /*   Nothing.                                                               */
   4459 /****************************************************************************/
   4460 void
   4461 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4462 {
   4463 	struct bnx_softc	*sc;
   4464 	struct mii_data		*mii;
   4465 	int			s;
   4466 
   4467 	sc = ifp->if_softc;
   4468 
   4469 	s = splnet();
   4470 
   4471 	mii = &sc->bnx_mii;
   4472 
   4473 	mii_pollstat(mii);
   4474 	ifmr->ifm_status = mii->mii_media_status;
   4475 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4476 	    sc->bnx_flowflags;
   4477 
   4478 	splx(s);
   4479 }
   4480 
   4481 /****************************************************************************/
   4482 /* Handles PHY generated interrupt events.                                  */
   4483 /*                                                                          */
   4484 /* Returns:                                                                 */
   4485 /*   Nothing.                                                               */
   4486 /****************************************************************************/
   4487 void
   4488 bnx_phy_intr(struct bnx_softc *sc)
   4489 {
   4490 	uint32_t		new_link_state, old_link_state;
   4491 
   4492 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4493 	    BUS_DMASYNC_POSTREAD);
   4494 	new_link_state = sc->status_block->status_attn_bits &
   4495 	    STATUS_ATTN_BITS_LINK_STATE;
   4496 	old_link_state = sc->status_block->status_attn_bits_ack &
   4497 	    STATUS_ATTN_BITS_LINK_STATE;
   4498 
   4499 	/* Handle any changes if the link state has changed. */
   4500 	if (new_link_state != old_link_state) {
   4501 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4502 
   4503 		sc->bnx_link = 0;
   4504 		callout_stop(&sc->bnx_timeout);
   4505 		bnx_tick(sc);
   4506 
   4507 		/* Update the status_attn_bits_ack field in the status block. */
   4508 		if (new_link_state) {
   4509 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4510 			    STATUS_ATTN_BITS_LINK_STATE);
   4511 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4512 		} else {
   4513 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4514 			    STATUS_ATTN_BITS_LINK_STATE);
   4515 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4516 		}
   4517 	}
   4518 
   4519 	/* Acknowledge the link change interrupt. */
   4520 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4521 }
   4522 
   4523 /****************************************************************************/
   4524 /* Handles received frame interrupt events.                                 */
   4525 /*                                                                          */
   4526 /* Returns:                                                                 */
   4527 /*   Nothing.                                                               */
   4528 /****************************************************************************/
   4529 void
   4530 bnx_rx_intr(struct bnx_softc *sc)
   4531 {
   4532 	struct status_block	*sblk = sc->status_block;
   4533 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4534 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4535 	uint16_t		sw_prod, sw_chain_prod;
   4536 	uint32_t		sw_prod_bseq;
   4537 	struct l2_fhdr		*l2fhdr;
   4538 	int			i;
   4539 
   4540 	DBRUNIF(1, sc->rx_interrupts++);
   4541 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4542 	    BUS_DMASYNC_POSTREAD);
   4543 
   4544 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4545 	for (i = 0; i < RX_PAGES; i++)
   4546 		bus_dmamap_sync(sc->bnx_dmatag,
   4547 		    sc->rx_bd_chain_map[i], 0,
   4548 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4549 		    BUS_DMASYNC_POSTWRITE);
   4550 
   4551 	/* Get the hardware's view of the RX consumer index. */
   4552 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4553 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4554 		hw_cons++;
   4555 
   4556 	/* Get working copies of the driver's view of the RX indices. */
   4557 	sw_cons = sc->rx_cons;
   4558 	sw_prod = sc->rx_prod;
   4559 	sw_prod_bseq = sc->rx_prod_bseq;
   4560 
   4561 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4562 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4563 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4564 
   4565 	/* Prevent speculative reads from getting ahead of the status block. */
   4566 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4567 	    BUS_SPACE_BARRIER_READ);
   4568 
   4569 	/* Update some debug statistics counters */
   4570 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4571 	    sc->rx_low_watermark = sc->free_rx_bd);
   4572 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4573 
   4574 	/*
   4575 	 * Scan through the receive chain as long
   4576 	 * as there is work to do.
   4577 	 */
   4578 	while (sw_cons != hw_cons) {
   4579 		struct mbuf *m;
   4580 		struct rx_bd *rxbd __diagused;
   4581 		unsigned int len;
   4582 		uint32_t status;
   4583 
   4584 		/* Convert the producer/consumer indices to an actual
   4585 		 * rx_bd index.
   4586 		 */
   4587 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4588 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4589 
   4590 		/* Get the used rx_bd. */
   4591 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4592 		sc->free_rx_bd++;
   4593 
   4594 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4595 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4596 
   4597 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4598 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4599 #ifdef DIAGNOSTIC
   4600 			/* Validate that this is the last rx_bd. */
   4601 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4602 			    printf("%s: Unexpected mbuf found in "
   4603 				"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4604 				sw_chain_cons);
   4605 			}
   4606 #endif
   4607 
   4608 			/* DRC - ToDo: If the received packet is small, say
   4609 			 *             less than 128 bytes, allocate a new mbuf
   4610 			 *             here, copy the data to that mbuf, and
   4611 			 *             recycle the mapped jumbo frame.
   4612 			 */
   4613 
   4614 			/* Unmap the mbuf from DMA space. */
   4615 #ifdef DIAGNOSTIC
   4616 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4617 				printf("invalid map sw_cons 0x%x "
   4618 				"sw_prod 0x%x "
   4619 				"sw_chain_cons 0x%x "
   4620 				"sw_chain_prod 0x%x "
   4621 				"hw_cons 0x%x "
   4622 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4623 				"TOTAL_RX_BD 0x%x\n",
   4624 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4625 				hw_cons,
   4626 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4627 			}
   4628 #endif
   4629 			bus_dmamap_sync(sc->bnx_dmatag,
   4630 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4631 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4632 			    BUS_DMASYNC_POSTREAD);
   4633 			bus_dmamap_unload(sc->bnx_dmatag,
   4634 			    sc->rx_mbuf_map[sw_chain_cons]);
   4635 
   4636 			/* Remove the mbuf from the driver's chain. */
   4637 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4638 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4639 
   4640 			/*
   4641 			 * Frames received on the NetXteme II are prepended
   4642 			 * with the l2_fhdr structure which provides status
   4643 			 * information about the received frame (including
   4644 			 * VLAN tags and checksum info) and are also
   4645 			 * automatically adjusted to align the IP header
   4646 			 * (i.e. two null bytes are inserted before the
   4647 			 * Ethernet header).
   4648 			 */
   4649 			l2fhdr = mtod(m, struct l2_fhdr *);
   4650 
   4651 			len    = l2fhdr->l2_fhdr_pkt_len;
   4652 			status = l2fhdr->l2_fhdr_status;
   4653 
   4654 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4655 			    aprint_error("Simulating l2_fhdr status error.\n");
   4656 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4657 
   4658 			/* Watch for unusual sized frames. */
   4659 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4660 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4661 			    aprint_error_dev(sc->bnx_dev,
   4662 				"Unusual frame size found. "
   4663 				"Min(%d), Actual(%d), Max(%d)\n",
   4664 				(int)BNX_MIN_MTU, len,
   4665 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4666 
   4667 			bnx_dump_mbuf(sc, m);
   4668 			bnx_breakpoint(sc));
   4669 
   4670 			len -= ETHER_CRC_LEN;
   4671 
   4672 			/* Check the received frame for errors. */
   4673 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4674 			    L2_FHDR_ERRORS_PHY_DECODE |
   4675 			    L2_FHDR_ERRORS_ALIGNMENT |
   4676 			    L2_FHDR_ERRORS_TOO_SHORT |
   4677 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4678 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4679 			    len >
   4680 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4681 				if_statinc(ifp, if_ierrors);
   4682 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4683 
   4684 				/* Reuse the mbuf for a new frame. */
   4685 				if (bnx_add_buf(sc, m, &sw_prod,
   4686 				    &sw_chain_prod, &sw_prod_bseq)) {
   4687 					DBRUNIF(1, bnx_breakpoint(sc));
   4688 					panic("%s: Can't reuse RX mbuf!\n",
   4689 					    device_xname(sc->bnx_dev));
   4690 				}
   4691 				continue;
   4692 			}
   4693 
   4694 			/*
   4695 			 * Get a new mbuf for the rx_bd.   If no new
   4696 			 * mbufs are available then reuse the current mbuf,
   4697 			 * log an ierror on the interface, and generate
   4698 			 * an error in the system log.
   4699 			 */
   4700 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4701 			    &sw_prod_bseq)) {
   4702 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4703 				    "Failed to allocate "
   4704 				    "new mbuf, incoming frame dropped!\n"));
   4705 
   4706 				if_statinc(ifp, if_ierrors);
   4707 
   4708 				/* Try and reuse the exisitng mbuf. */
   4709 				if (bnx_add_buf(sc, m, &sw_prod,
   4710 				    &sw_chain_prod, &sw_prod_bseq)) {
   4711 					DBRUNIF(1, bnx_breakpoint(sc));
   4712 					panic("%s: Double mbuf allocation "
   4713 					    "failure!",
   4714 					    device_xname(sc->bnx_dev));
   4715 				}
   4716 				continue;
   4717 			}
   4718 
   4719 			/* Skip over the l2_fhdr when passing the data up
   4720 			 * the stack.
   4721 			 */
   4722 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4723 
   4724 			/* Adjust the pckt length to match the received data. */
   4725 			m->m_pkthdr.len = m->m_len = len;
   4726 
   4727 			/* Send the packet to the appropriate interface. */
   4728 			m_set_rcvif(m, ifp);
   4729 
   4730 			DBRUN(BNX_VERBOSE_RECV,
   4731 			    struct ether_header *eh;
   4732 			    eh = mtod(m, struct ether_header *);
   4733 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4734 			    __func__, ether_sprintf(eh->ether_dhost),
   4735 			    ether_sprintf(eh->ether_shost),
   4736 			    htons(eh->ether_type)));
   4737 
   4738 			/* Validate the checksum. */
   4739 
   4740 			/* Check for an IP datagram. */
   4741 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4742 				/* Check if the IP checksum is valid. */
   4743 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4744 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4745 #ifdef BNX_DEBUG
   4746 				else
   4747 					DBPRINT(sc, BNX_WARN_SEND,
   4748 					    "%s(): Invalid IP checksum "
   4749 						"= 0x%04X!\n",
   4750 						__func__,
   4751 						l2fhdr->l2_fhdr_ip_xsum
   4752 						);
   4753 #endif
   4754 			}
   4755 
   4756 			/* Check for a valid TCP/UDP frame. */
   4757 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4758 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4759 				/* Check for a good TCP/UDP checksum. */
   4760 				if ((status &
   4761 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4762 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4763 					m->m_pkthdr.csum_flags |=
   4764 					    M_CSUM_TCPv4 |
   4765 					    M_CSUM_UDPv4;
   4766 				} else {
   4767 					DBPRINT(sc, BNX_WARN_SEND,
   4768 					    "%s(): Invalid TCP/UDP "
   4769 					    "checksum = 0x%04X!\n",
   4770 					    __func__,
   4771 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4772 				}
   4773 			}
   4774 
   4775 			/*
   4776 			 * If we received a packet with a vlan tag,
   4777 			 * attach that information to the packet.
   4778 			 */
   4779 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4780 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4781 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4782 			}
   4783 
   4784 			/* Pass the mbuf off to the upper layers. */
   4785 
   4786 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4787 			    "%s(): Passing received frame up.\n", __func__);
   4788 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4789 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4790 
   4791 		}
   4792 
   4793 		sw_cons = NEXT_RX_BD(sw_cons);
   4794 
   4795 		/* Refresh hw_cons to see if there's new work */
   4796 		if (sw_cons == hw_cons) {
   4797 			hw_cons = sc->hw_rx_cons =
   4798 			    sblk->status_rx_quick_consumer_index0;
   4799 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4800 			    USABLE_RX_BD_PER_PAGE)
   4801 				hw_cons++;
   4802 		}
   4803 
   4804 		/* Prevent speculative reads from getting ahead of
   4805 		 * the status block.
   4806 		 */
   4807 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4808 		    BUS_SPACE_BARRIER_READ);
   4809 	}
   4810 
   4811 	for (i = 0; i < RX_PAGES; i++)
   4812 		bus_dmamap_sync(sc->bnx_dmatag,
   4813 		    sc->rx_bd_chain_map[i], 0,
   4814 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4815 		    BUS_DMASYNC_PREWRITE);
   4816 
   4817 	sc->rx_cons = sw_cons;
   4818 	sc->rx_prod = sw_prod;
   4819 	sc->rx_prod_bseq = sw_prod_bseq;
   4820 
   4821 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4822 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4823 
   4824 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4825 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4826 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4827 }
   4828 
   4829 /****************************************************************************/
   4830 /* Handles transmit completion interrupt events.                            */
   4831 /*                                                                          */
   4832 /* Returns:                                                                 */
   4833 /*   Nothing.                                                               */
   4834 /****************************************************************************/
   4835 void
   4836 bnx_tx_intr(struct bnx_softc *sc)
   4837 {
   4838 	struct status_block	*sblk = sc->status_block;
   4839 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4840 	struct bnx_pkt		*pkt;
   4841 	bus_dmamap_t		map;
   4842 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4843 
   4844 	DBRUNIF(1, sc->tx_interrupts++);
   4845 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4846 	    BUS_DMASYNC_POSTREAD);
   4847 
   4848 	/* Get the hardware's view of the TX consumer index. */
   4849 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4850 
   4851 	/* Skip to the next entry if this is a chain page pointer. */
   4852 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4853 		hw_tx_cons++;
   4854 
   4855 	sw_tx_cons = sc->tx_cons;
   4856 
   4857 	/* Prevent speculative reads from getting ahead of the status block. */
   4858 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4859 	    BUS_SPACE_BARRIER_READ);
   4860 
   4861 	/* Cycle through any completed TX chain page entries. */
   4862 	while (sw_tx_cons != hw_tx_cons) {
   4863 #ifdef BNX_DEBUG
   4864 		struct tx_bd *txbd = NULL;
   4865 #endif
   4866 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4867 
   4868 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4869 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4870 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4871 
   4872 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4873 		    aprint_error_dev(sc->bnx_dev,
   4874 			"TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4875 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4876 
   4877 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4878 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4879 
   4880 		DBRUNIF((txbd == NULL),
   4881 		    aprint_error_dev(sc->bnx_dev,
   4882 			"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4883 		    bnx_breakpoint(sc));
   4884 
   4885 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4886 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4887 
   4888 
   4889 		mutex_enter(&sc->tx_pkt_mtx);
   4890 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4891 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4892 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4893 			mutex_exit(&sc->tx_pkt_mtx);
   4894 			/*
   4895 			 * Free the associated mbuf. Remember
   4896 			 * that only the last tx_bd of a packet
   4897 			 * has an mbuf pointer and DMA map.
   4898 			 */
   4899 			map = pkt->pkt_dmamap;
   4900 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4901 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4902 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4903 
   4904 			m_freem(pkt->pkt_mbuf);
   4905 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4906 
   4907 			if_statinc(ifp, if_opackets);
   4908 
   4909 			mutex_enter(&sc->tx_pkt_mtx);
   4910 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4911 		}
   4912 		mutex_exit(&sc->tx_pkt_mtx);
   4913 
   4914 		sc->used_tx_bd--;
   4915 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4916 			__FILE__, __LINE__, sc->used_tx_bd);
   4917 
   4918 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4919 
   4920 		/* Refresh hw_cons to see if there's new work. */
   4921 		hw_tx_cons = sc->hw_tx_cons =
   4922 		    sblk->status_tx_quick_consumer_index0;
   4923 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4924 		    USABLE_TX_BD_PER_PAGE)
   4925 			hw_tx_cons++;
   4926 
   4927 		/* Prevent speculative reads from getting ahead of
   4928 		 * the status block.
   4929 		 */
   4930 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4931 		    BUS_SPACE_BARRIER_READ);
   4932 	}
   4933 
   4934 	/* Clear the TX timeout timer. */
   4935 	ifp->if_timer = 0;
   4936 
   4937 	/* Clear the tx hardware queue full flag. */
   4938 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4939 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4940 		    aprint_debug_dev(sc->bnx_dev,
   4941 			"Open TX chain! %d/%d (used/total)\n",
   4942 			sc->used_tx_bd, sc->max_tx_bd));
   4943 		ifp->if_flags &= ~IFF_OACTIVE;
   4944 	}
   4945 
   4946 	sc->tx_cons = sw_tx_cons;
   4947 }
   4948 
   4949 /****************************************************************************/
   4950 /* Disables interrupt generation.                                           */
   4951 /*                                                                          */
   4952 /* Returns:                                                                 */
   4953 /*   Nothing.                                                               */
   4954 /****************************************************************************/
   4955 void
   4956 bnx_disable_intr(struct bnx_softc *sc)
   4957 {
   4958 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4959 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4960 }
   4961 
   4962 /****************************************************************************/
   4963 /* Enables interrupt generation.                                            */
   4964 /*                                                                          */
   4965 /* Returns:                                                                 */
   4966 /*   Nothing.                                                               */
   4967 /****************************************************************************/
   4968 void
   4969 bnx_enable_intr(struct bnx_softc *sc)
   4970 {
   4971 	uint32_t		val;
   4972 
   4973 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4974 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4975 
   4976 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4977 	    sc->last_status_idx);
   4978 
   4979 	val = REG_RD(sc, BNX_HC_COMMAND);
   4980 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4981 }
   4982 
   4983 /****************************************************************************/
   4984 /* Handles controller initialization.                                       */
   4985 /*                                                                          */
   4986 /****************************************************************************/
   4987 int
   4988 bnx_init(struct ifnet *ifp)
   4989 {
   4990 	struct bnx_softc	*sc = ifp->if_softc;
   4991 	uint32_t		ether_mtu;
   4992 	int			s, error = 0;
   4993 
   4994 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4995 
   4996 	s = splnet();
   4997 
   4998 	bnx_stop(ifp, 0);
   4999 
   5000 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   5001 		aprint_error_dev(sc->bnx_dev,
   5002 		    "Controller reset failed!\n");
   5003 		goto bnx_init_exit;
   5004 	}
   5005 
   5006 	if ((error = bnx_chipinit(sc)) != 0) {
   5007 		aprint_error_dev(sc->bnx_dev,
   5008 		    "Controller initialization failed!\n");
   5009 		goto bnx_init_exit;
   5010 	}
   5011 
   5012 	if ((error = bnx_blockinit(sc)) != 0) {
   5013 		aprint_error_dev(sc->bnx_dev,
   5014 		    "Block initialization failed!\n");
   5015 		goto bnx_init_exit;
   5016 	}
   5017 
   5018 	/* Calculate and program the Ethernet MRU size. */
   5019 	if (ifp->if_mtu <= ETHERMTU) {
   5020 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   5021 		sc->mbuf_alloc_size = MCLBYTES;
   5022 	} else {
   5023 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   5024 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   5025 	}
   5026 
   5027 
   5028 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   5029 
   5030 	/*
   5031 	 * Program the MRU and enable Jumbo frame
   5032 	 * support.
   5033 	 */
   5034 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   5035 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   5036 
   5037 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   5038 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   5039 
   5040 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   5041 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   5042 	    sc->mbuf_alloc_size, sc->max_frame_size);
   5043 
   5044 	/* Program appropriate promiscuous/multicast filtering. */
   5045 	bnx_iff(sc);
   5046 
   5047 	/* Init RX buffer descriptor chain. */
   5048 	bnx_init_rx_chain(sc);
   5049 
   5050 	/* Init TX buffer descriptor chain. */
   5051 	bnx_init_tx_chain(sc);
   5052 
   5053 	/* Enable host interrupts. */
   5054 	bnx_enable_intr(sc);
   5055 
   5056 	mii_ifmedia_change(&sc->bnx_mii);
   5057 
   5058 	SET(ifp->if_flags, IFF_RUNNING);
   5059 	CLR(ifp->if_flags, IFF_OACTIVE);
   5060 
   5061 	callout_schedule(&sc->bnx_timeout, hz);
   5062 
   5063 bnx_init_exit:
   5064 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5065 
   5066 	splx(s);
   5067 
   5068 	return error;
   5069 }
   5070 
   5071 void
   5072 bnx_mgmt_init(struct bnx_softc *sc)
   5073 {
   5074 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5075 	uint32_t	val;
   5076 
   5077 	/* Check if the driver is still running and bail out if it is. */
   5078 	if (ifp->if_flags & IFF_RUNNING)
   5079 		goto bnx_mgmt_init_exit;
   5080 
   5081 	/* Initialize the on-boards CPUs */
   5082 	bnx_init_cpus(sc);
   5083 
   5084 	val = (BCM_PAGE_BITS - 8) << 24;
   5085 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5086 
   5087 	/* Enable all critical blocks in the MAC. */
   5088 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5089 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5090 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5091 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5092 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5093 	DELAY(20);
   5094 
   5095 	mii_ifmedia_change(&sc->bnx_mii);
   5096 
   5097 bnx_mgmt_init_exit:
   5098 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5099 }
   5100 
   5101 /****************************************************************************/
   5102 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5103 /* memory visible to the controller.                                        */
   5104 /*                                                                          */
   5105 /* Returns:                                                                 */
   5106 /*   0 for success, positive value for failure.                             */
   5107 /****************************************************************************/
   5108 int
   5109 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5110 {
   5111 	struct bnx_pkt		*pkt;
   5112 	bus_dmamap_t		map;
   5113 	struct tx_bd		*txbd = NULL;
   5114 	uint16_t		vlan_tag = 0, flags = 0;
   5115 	uint16_t		chain_prod, prod;
   5116 #ifdef BNX_DEBUG
   5117 	uint16_t		debug_prod;
   5118 #endif
   5119 	uint32_t		addr, prod_bseq;
   5120 	int			i, error;
   5121 	bool			remap = true;
   5122 
   5123 	mutex_enter(&sc->tx_pkt_mtx);
   5124 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5125 	if (pkt == NULL) {
   5126 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5127 			mutex_exit(&sc->tx_pkt_mtx);
   5128 			return ENETDOWN;
   5129 		}
   5130 
   5131 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5132 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5133 			workqueue_enqueue(sc->bnx_wq, &sc->bnx_wk, NULL);
   5134 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5135 		}
   5136 
   5137 		mutex_exit(&sc->tx_pkt_mtx);
   5138 		return ENOMEM;
   5139 	}
   5140 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5141 	mutex_exit(&sc->tx_pkt_mtx);
   5142 
   5143 	/* Transfer any checksum offload flags to the bd. */
   5144 	if (m->m_pkthdr.csum_flags) {
   5145 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5146 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5147 		if (m->m_pkthdr.csum_flags &
   5148 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5149 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5150 	}
   5151 
   5152 	/* Transfer any VLAN tags to the bd. */
   5153 	if (vlan_has_tag(m)) {
   5154 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5155 		vlan_tag = vlan_get_tag(m);
   5156 	}
   5157 
   5158 	/* Map the mbuf into DMAable memory. */
   5159 	prod = sc->tx_prod;
   5160 	chain_prod = TX_CHAIN_IDX(prod);
   5161 	map = pkt->pkt_dmamap;
   5162 
   5163 	/* Map the mbuf into our DMA address space. */
   5164 retry:
   5165 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5166 	if (__predict_false(error)) {
   5167 		if (error == EFBIG) {
   5168 			if (remap == true) {
   5169 				struct mbuf *newm;
   5170 
   5171 				remap = false;
   5172 				newm = m_defrag(m, M_NOWAIT);
   5173 				if (newm != NULL) {
   5174 					m = newm;
   5175 					goto retry;
   5176 				}
   5177 			}
   5178 		}
   5179 		sc->tx_dma_map_failures++;
   5180 		goto maperr;
   5181 	}
   5182 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5183 	    BUS_DMASYNC_PREWRITE);
   5184 	/* Make sure there's room in the chain */
   5185 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5186 		goto nospace;
   5187 
   5188 	/* prod points to an empty tx_bd at this point. */
   5189 	prod_bseq = sc->tx_prod_bseq;
   5190 #ifdef BNX_DEBUG
   5191 	debug_prod = chain_prod;
   5192 #endif
   5193 	DBPRINT(sc, BNX_INFO_SEND,
   5194 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5195 		"prod_bseq = 0x%08X\n",
   5196 		__func__, prod, chain_prod, prod_bseq);
   5197 
   5198 	/*
   5199 	 * Cycle through each mbuf segment that makes up
   5200 	 * the outgoing frame, gathering the mapping info
   5201 	 * for that segment and creating a tx_bd for the
   5202 	 * mbuf.
   5203 	 */
   5204 	for (i = 0; i < map->dm_nsegs ; i++) {
   5205 		chain_prod = TX_CHAIN_IDX(prod);
   5206 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5207 
   5208 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5209 		txbd->tx_bd_haddr_lo = addr;
   5210 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5211 		txbd->tx_bd_haddr_hi = addr;
   5212 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5213 		txbd->tx_bd_vlan_tag = vlan_tag;
   5214 		txbd->tx_bd_flags = flags;
   5215 		prod_bseq += map->dm_segs[i].ds_len;
   5216 		if (i == 0)
   5217 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5218 		prod = NEXT_TX_BD(prod);
   5219 	}
   5220 
   5221 	/* Set the END flag on the last TX buffer descriptor. */
   5222 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5223 
   5224 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5225 
   5226 	DBPRINT(sc, BNX_INFO_SEND,
   5227 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5228 		"prod_bseq = 0x%08X\n",
   5229 		__func__, prod, chain_prod, prod_bseq);
   5230 
   5231 	pkt->pkt_mbuf = m;
   5232 	pkt->pkt_end_desc = chain_prod;
   5233 
   5234 	mutex_enter(&sc->tx_pkt_mtx);
   5235 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5236 	mutex_exit(&sc->tx_pkt_mtx);
   5237 
   5238 	sc->used_tx_bd += map->dm_nsegs;
   5239 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5240 		__FILE__, __LINE__, sc->used_tx_bd);
   5241 
   5242 	/* Update some debug statistics counters */
   5243 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5244 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5245 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5246 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5247 
   5248 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5249 	    map->dm_nsegs));
   5250 
   5251 	/* prod points to the next free tx_bd at this point. */
   5252 	sc->tx_prod = prod;
   5253 	sc->tx_prod_bseq = prod_bseq;
   5254 
   5255 	return 0;
   5256 
   5257 
   5258 nospace:
   5259 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5260 maperr:
   5261 	mutex_enter(&sc->tx_pkt_mtx);
   5262 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5263 	mutex_exit(&sc->tx_pkt_mtx);
   5264 
   5265 	return ENOMEM;
   5266 }
   5267 
   5268 /****************************************************************************/
   5269 /* Main transmit routine.                                                   */
   5270 /*                                                                          */
   5271 /* Returns:                                                                 */
   5272 /*   Nothing.                                                               */
   5273 /****************************************************************************/
   5274 void
   5275 bnx_start(struct ifnet *ifp)
   5276 {
   5277 	struct bnx_softc	*sc = ifp->if_softc;
   5278 	struct mbuf		*m_head = NULL;
   5279 	int			count = 0;
   5280 #ifdef BNX_DEBUG
   5281 	uint16_t		tx_chain_prod;
   5282 #endif
   5283 
   5284 	/* If there's no link or the transmit queue is empty then just exit. */
   5285 	if (!sc->bnx_link
   5286 	    ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
   5287 		DBPRINT(sc, BNX_INFO_SEND,
   5288 		    "%s(): output active or device not running.\n", __func__);
   5289 		goto bnx_start_exit;
   5290 	}
   5291 
   5292 	/* prod points to the next free tx_bd. */
   5293 #ifdef BNX_DEBUG
   5294 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5295 #endif
   5296 
   5297 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5298 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5299 	    "used_tx %d max_tx %d\n",
   5300 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5301 	    sc->used_tx_bd, sc->max_tx_bd);
   5302 
   5303 	/*
   5304 	 * Keep adding entries while there is space in the ring.
   5305 	 */
   5306 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5307 		/* Check for any frames to send. */
   5308 		IFQ_POLL(&ifp->if_snd, m_head);
   5309 		if (m_head == NULL)
   5310 			break;
   5311 
   5312 		/*
   5313 		 * Pack the data into the transmit ring. If we
   5314 		 * don't have room, set the OACTIVE flag to wait
   5315 		 * for the NIC to drain the chain.
   5316 		 */
   5317 		if (bnx_tx_encap(sc, m_head)) {
   5318 			ifp->if_flags |= IFF_OACTIVE;
   5319 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5320 			    "business! Total tx_bd used = %d\n",
   5321 			    sc->used_tx_bd);
   5322 			break;
   5323 		}
   5324 
   5325 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5326 		count++;
   5327 
   5328 		/* Send a copy of the frame to any BPF listeners. */
   5329 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5330 	}
   5331 
   5332 	if (count == 0) {
   5333 		/* no packets were dequeued */
   5334 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5335 		    "%s(): No packets were dequeued\n", __func__);
   5336 		goto bnx_start_exit;
   5337 	}
   5338 
   5339 	/* Update the driver's counters. */
   5340 #ifdef BNX_DEBUG
   5341 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5342 #endif
   5343 
   5344 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5345 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5346 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5347 
   5348 	/* Start the transmit. */
   5349 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5350 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5351 
   5352 	/* Set the tx timeout. */
   5353 	ifp->if_timer = BNX_TX_TIMEOUT;
   5354 
   5355 bnx_start_exit:
   5356 	return;
   5357 }
   5358 
   5359 /****************************************************************************/
   5360 /* Handles any IOCTL calls from the operating system.                       */
   5361 /*                                                                          */
   5362 /* Returns:                                                                 */
   5363 /*   0 for success, positive value for failure.                             */
   5364 /****************************************************************************/
   5365 int
   5366 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5367 {
   5368 	struct bnx_softc	*sc = ifp->if_softc;
   5369 	struct ifreq		*ifr = (struct ifreq *) data;
   5370 	struct mii_data		*mii = &sc->bnx_mii;
   5371 	int			s, error = 0;
   5372 
   5373 	s = splnet();
   5374 
   5375 	switch (command) {
   5376 	case SIOCSIFFLAGS:
   5377 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5378 			break;
   5379 		/* XXX set an ifflags callback and let ether_ioctl
   5380 		 * handle all of this.
   5381 		 */
   5382 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5383 			if (ifp->if_flags & IFF_RUNNING)
   5384 				error = ENETRESET;
   5385 			else
   5386 				bnx_init(ifp);
   5387 		} else if (ifp->if_flags & IFF_RUNNING)
   5388 			bnx_stop(ifp, 1);
   5389 		break;
   5390 
   5391 	case SIOCSIFMEDIA:
   5392 		/* Flow control requires full-duplex mode. */
   5393 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5394 		    (ifr->ifr_media & IFM_FDX) == 0)
   5395 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5396 
   5397 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5398 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5399 				/* We can do both TXPAUSE and RXPAUSE. */
   5400 				ifr->ifr_media |=
   5401 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5402 			}
   5403 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5404 		}
   5405 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5406 		    sc->bnx_phy_flags);
   5407 
   5408 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5409 		break;
   5410 
   5411 	default:
   5412 		error = ether_ioctl(ifp, command, data);
   5413 	}
   5414 
   5415 	if (error == ENETRESET) {
   5416 		if (ifp->if_flags & IFF_RUNNING)
   5417 			bnx_iff(sc);
   5418 		error = 0;
   5419 	}
   5420 
   5421 	splx(s);
   5422 	return error;
   5423 }
   5424 
   5425 /****************************************************************************/
   5426 /* Transmit timeout handler.                                                */
   5427 /*                                                                          */
   5428 /* Returns:                                                                 */
   5429 /*   Nothing.                                                               */
   5430 /****************************************************************************/
   5431 void
   5432 bnx_watchdog(struct ifnet *ifp)
   5433 {
   5434 	struct bnx_softc	*sc = ifp->if_softc;
   5435 
   5436 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5437 	    bnx_dump_status_block(sc));
   5438 	/*
   5439 	 * If we are in this routine because of pause frames, then
   5440 	 * don't reset the hardware.
   5441 	 */
   5442 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5443 		return;
   5444 
   5445 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5446 
   5447 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5448 
   5449 	bnx_init(ifp);
   5450 
   5451 	if_statinc(ifp, if_oerrors);
   5452 }
   5453 
   5454 /*
   5455  * Interrupt handler.
   5456  */
   5457 /****************************************************************************/
   5458 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5459 /* interrupt and then calls a separate routine for handle the various       */
   5460 /* interrupt causes (PHY, TX, RX).                                          */
   5461 /*                                                                          */
   5462 /* Returns:                                                                 */
   5463 /*   0 for success, positive value for failure.                             */
   5464 /****************************************************************************/
   5465 int
   5466 bnx_intr(void *xsc)
   5467 {
   5468 	struct bnx_softc	*sc = xsc;
   5469 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5470 	uint32_t		status_attn_bits;
   5471 	uint16_t		status_idx;
   5472 	const struct status_block *sblk;
   5473 	int			rv = 0;
   5474 
   5475 	if (!device_is_active(sc->bnx_dev) ||
   5476 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5477 		return 0;
   5478 
   5479 	DBRUNIF(1, sc->interrupts_generated++);
   5480 
   5481 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5482 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5483 
   5484 	sblk = sc->status_block;
   5485 	/*
   5486 	 * If the hardware status block index
   5487 	 * matches the last value read by the
   5488 	 * driver and we haven't asserted our
   5489 	 * interrupt then there's nothing to do.
   5490 	 */
   5491 	status_idx = sblk->status_idx;
   5492 	if ((status_idx != sc->last_status_idx) ||
   5493 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5494 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5495 		rv = 1;
   5496 
   5497 		/* Ack the interrupt */
   5498 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5499 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5500 
   5501 		status_attn_bits = sblk->status_attn_bits;
   5502 
   5503 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5504 		    aprint_debug("Simulating unexpected status attention bit set.");
   5505 		    status_attn_bits = status_attn_bits |
   5506 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5507 
   5508 		/* Was it a link change interrupt? */
   5509 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5510 		    (sblk->status_attn_bits_ack &
   5511 		    STATUS_ATTN_BITS_LINK_STATE))
   5512 			bnx_phy_intr(sc);
   5513 
   5514 		/* If any other attention is asserted then the chip is toast. */
   5515 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5516 		    (sblk->status_attn_bits_ack &
   5517 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5518 			DBRUN(sc->unexpected_attentions++);
   5519 
   5520 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5521 			    sblk->status_attn_bits);
   5522 
   5523 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5524 				    bnx_breakpoint(sc));
   5525 
   5526 			bnx_init(ifp);
   5527 			goto out;
   5528 		}
   5529 
   5530 		/* Check for any completed RX frames. */
   5531 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5532 			bnx_rx_intr(sc);
   5533 
   5534 		/* Check for any completed TX frames. */
   5535 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5536 			bnx_tx_intr(sc);
   5537 
   5538 		/*
   5539 		 * Save the status block index value for use during the
   5540 		 * next interrupt.
   5541 		 */
   5542 		sc->last_status_idx = status_idx;
   5543 
   5544 		/* Start moving packets again */
   5545 		if (ifp->if_flags & IFF_RUNNING)
   5546 			if_schedule_deferred_start(ifp);
   5547 	}
   5548 
   5549 out:
   5550 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5551 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5552 
   5553 	return rv;
   5554 }
   5555 
   5556 /****************************************************************************/
   5557 /* Programs the various packet receive modes (broadcast and multicast).     */
   5558 /*                                                                          */
   5559 /* Returns:                                                                 */
   5560 /*   Nothing.                                                               */
   5561 /****************************************************************************/
   5562 void
   5563 bnx_iff(struct bnx_softc *sc)
   5564 {
   5565 	struct ethercom		*ec = &sc->bnx_ec;
   5566 	struct ifnet		*ifp = &ec->ec_if;
   5567 	struct ether_multi	*enm;
   5568 	struct ether_multistep	step;
   5569 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5570 	uint32_t		rx_mode, sort_mode;
   5571 	int			h, i;
   5572 
   5573 	/* Initialize receive mode default settings. */
   5574 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5575 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5576 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5577 	ifp->if_flags &= ~IFF_ALLMULTI;
   5578 
   5579 	/*
   5580 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5581 	 * be enbled.
   5582 	 */
   5583 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5584 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5585 
   5586 	/*
   5587 	 * Check for promiscuous, all multicast, or selected
   5588 	 * multicast address filtering.
   5589 	 */
   5590 	if (ifp->if_flags & IFF_PROMISC) {
   5591 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5592 
   5593 		ifp->if_flags |= IFF_ALLMULTI;
   5594 		/* Enable promiscuous mode. */
   5595 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5596 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5597 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5598 allmulti:
   5599 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5600 
   5601 		ifp->if_flags |= IFF_ALLMULTI;
   5602 		/* Enable all multicast addresses. */
   5603 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5604 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5605 			    0xffffffff);
   5606 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5607 	} else {
   5608 		/* Accept one or more multicast(s). */
   5609 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5610 
   5611 		ETHER_LOCK(ec);
   5612 		ETHER_FIRST_MULTI(step, ec, enm);
   5613 		while (enm != NULL) {
   5614 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5615 			    ETHER_ADDR_LEN)) {
   5616 				ETHER_UNLOCK(ec);
   5617 				goto allmulti;
   5618 			}
   5619 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5620 			    0xFF;
   5621 			hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
   5622 			ETHER_NEXT_MULTI(step, enm);
   5623 		}
   5624 		ETHER_UNLOCK(ec);
   5625 
   5626 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5627 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5628 			    hashes[i]);
   5629 
   5630 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5631 	}
   5632 
   5633 	/* Only make changes if the receive mode has actually changed. */
   5634 	if (rx_mode != sc->rx_mode) {
   5635 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5636 		    rx_mode);
   5637 
   5638 		sc->rx_mode = rx_mode;
   5639 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5640 	}
   5641 
   5642 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5643 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5644 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5645 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5646 }
   5647 
   5648 /****************************************************************************/
   5649 /* Called periodically to updates statistics from the controllers           */
   5650 /* statistics block.                                                        */
   5651 /*                                                                          */
   5652 /* Returns:                                                                 */
   5653 /*   Nothing.                                                               */
   5654 /****************************************************************************/
   5655 void
   5656 bnx_stats_update(struct bnx_softc *sc)
   5657 {
   5658 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5659 	struct statistics_block	*stats;
   5660 
   5661 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5662 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5663 	    BUS_DMASYNC_POSTREAD);
   5664 
   5665 	stats = (struct statistics_block *)sc->stats_block;
   5666 
   5667 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   5668 	uint64_t value;
   5669 
   5670 	/*
   5671 	 * Update the interface statistics from the
   5672 	 * hardware statistics.
   5673 	 */
   5674 	value = (u_long)stats->stat_EtherStatsCollisions;
   5675 	if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
   5676 	sc->if_stat_collisions = value;
   5677 
   5678 	value = (u_long)stats->stat_EtherStatsUndersizePkts +
   5679 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5680 	    (u_long)stats->stat_IfInMBUFDiscards +
   5681 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5682 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5683 	if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
   5684 	sc->if_stat_ierrors = value;
   5685 
   5686 	value = (u_long)
   5687 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5688 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5689 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5690 	if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
   5691 	sc->if_stat_oerrors = value;
   5692 
   5693 	/*
   5694 	 * Certain controllers don't report
   5695 	 * carrier sense errors correctly.
   5696 	 * See errata E11_5708CA0_1165.
   5697 	 */
   5698 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5699 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
   5700 		if_statadd_ref(nsr, if_oerrors,
   5701 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
   5702 	}
   5703 
   5704 	IF_STAT_PUTREF(ifp);
   5705 
   5706 	/*
   5707 	 * Update the sysctl statistics from the
   5708 	 * hardware statistics.
   5709 	 */
   5710 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5711 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5712 
   5713 	sc->stat_IfHCInBadOctets =
   5714 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5715 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5716 
   5717 	sc->stat_IfHCOutOctets =
   5718 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5719 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5720 
   5721 	sc->stat_IfHCOutBadOctets =
   5722 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5723 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5724 
   5725 	sc->stat_IfHCInUcastPkts =
   5726 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5727 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5728 
   5729 	sc->stat_IfHCInMulticastPkts =
   5730 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5731 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5732 
   5733 	sc->stat_IfHCInBroadcastPkts =
   5734 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5735 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5736 
   5737 	sc->stat_IfHCOutUcastPkts =
   5738 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5739 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5740 
   5741 	sc->stat_IfHCOutMulticastPkts =
   5742 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5743 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5744 
   5745 	sc->stat_IfHCOutBroadcastPkts =
   5746 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5747 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5748 
   5749 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5750 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5751 
   5752 	sc->stat_Dot3StatsCarrierSenseErrors =
   5753 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5754 
   5755 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5756 
   5757 	sc->stat_Dot3StatsAlignmentErrors =
   5758 	    stats->stat_Dot3StatsAlignmentErrors;
   5759 
   5760 	sc->stat_Dot3StatsSingleCollisionFrames =
   5761 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5762 
   5763 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5764 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5765 
   5766 	sc->stat_Dot3StatsDeferredTransmissions =
   5767 	    stats->stat_Dot3StatsDeferredTransmissions;
   5768 
   5769 	sc->stat_Dot3StatsExcessiveCollisions =
   5770 	    stats->stat_Dot3StatsExcessiveCollisions;
   5771 
   5772 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5773 
   5774 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5775 
   5776 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5777 
   5778 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5779 
   5780 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5781 
   5782 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5783 
   5784 	sc->stat_EtherStatsPktsRx64Octets =
   5785 	    stats->stat_EtherStatsPktsRx64Octets;
   5786 
   5787 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5788 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5789 
   5790 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5791 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5792 
   5793 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5794 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5795 
   5796 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5797 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5798 
   5799 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5800 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5801 
   5802 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5803 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5804 
   5805 	sc->stat_EtherStatsPktsTx64Octets =
   5806 	    stats->stat_EtherStatsPktsTx64Octets;
   5807 
   5808 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5809 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5810 
   5811 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5812 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5813 
   5814 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5815 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5816 
   5817 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5818 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5819 
   5820 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5821 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5822 
   5823 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5824 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5825 
   5826 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5827 
   5828 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5829 
   5830 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5831 
   5832 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5833 
   5834 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5835 
   5836 	sc->stat_MacControlFramesReceived =
   5837 	    stats->stat_MacControlFramesReceived;
   5838 
   5839 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5840 
   5841 	sc->stat_IfInFramesL2FilterDiscards =
   5842 	    stats->stat_IfInFramesL2FilterDiscards;
   5843 
   5844 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5845 
   5846 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5847 
   5848 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5849 
   5850 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5851 
   5852 	sc->stat_CatchupInRuleCheckerDiscards =
   5853 	    stats->stat_CatchupInRuleCheckerDiscards;
   5854 
   5855 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5856 
   5857 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5858 
   5859 	sc->stat_CatchupInRuleCheckerP4Hit =
   5860 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5861 
   5862 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5863 }
   5864 
   5865 void
   5866 bnx_tick(void *xsc)
   5867 {
   5868 	struct bnx_softc	*sc = xsc;
   5869 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5870 	struct mii_data		*mii;
   5871 	uint32_t		msg;
   5872 	uint16_t		prod, chain_prod;
   5873 	uint32_t		prod_bseq;
   5874 	int s = splnet();
   5875 
   5876 	/* Tell the firmware that the driver is still running. */
   5877 #ifdef BNX_DEBUG
   5878 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5879 #else
   5880 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5881 #endif
   5882 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5883 
   5884 	/* Update the statistics from the hardware statistics block. */
   5885 	bnx_stats_update(sc);
   5886 
   5887 	/* Schedule the next tick. */
   5888 	if (!sc->bnx_detaching)
   5889 		callout_schedule(&sc->bnx_timeout, hz);
   5890 
   5891 	if (sc->bnx_link)
   5892 		goto bnx_tick_exit;
   5893 
   5894 	mii = &sc->bnx_mii;
   5895 	mii_tick(mii);
   5896 
   5897 	/* Check if the link has come up. */
   5898 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5899 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5900 		sc->bnx_link++;
   5901 		/* Now that link is up, handle any outstanding TX traffic. */
   5902 		if_schedule_deferred_start(ifp);
   5903 	}
   5904 
   5905 bnx_tick_exit:
   5906 	/* try to get more RX buffers, just in case */
   5907 	prod = sc->rx_prod;
   5908 	prod_bseq = sc->rx_prod_bseq;
   5909 	chain_prod = RX_CHAIN_IDX(prod);
   5910 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5911 	sc->rx_prod = prod;
   5912 	sc->rx_prod_bseq = prod_bseq;
   5913 
   5914 	splx(s);
   5915 	return;
   5916 }
   5917 
   5918 /****************************************************************************/
   5919 /* BNX Debug Routines                                                       */
   5920 /****************************************************************************/
   5921 #ifdef BNX_DEBUG
   5922 
   5923 /****************************************************************************/
   5924 /* Prints out information about an mbuf.                                    */
   5925 /*                                                                          */
   5926 /* Returns:                                                                 */
   5927 /*   Nothing.                                                               */
   5928 /****************************************************************************/
   5929 void
   5930 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5931 {
   5932 	struct mbuf		*mp = m;
   5933 
   5934 	if (m == NULL) {
   5935 		/* Index out of range. */
   5936 		aprint_error("mbuf ptr is null!\n");
   5937 		return;
   5938 	}
   5939 
   5940 	while (mp) {
   5941 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5942 		    mp, mp->m_len);
   5943 
   5944 		if (mp->m_flags & M_EXT)
   5945 			aprint_debug("M_EXT ");
   5946 		if (mp->m_flags & M_PKTHDR)
   5947 			aprint_debug("M_PKTHDR ");
   5948 		aprint_debug("\n");
   5949 
   5950 		if (mp->m_flags & M_EXT)
   5951 			aprint_debug("- m_ext: vaddr = %p, "
   5952 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5953 
   5954 		mp = mp->m_next;
   5955 	}
   5956 }
   5957 
   5958 /****************************************************************************/
   5959 /* Prints out the mbufs in the TX mbuf chain.                               */
   5960 /*                                                                          */
   5961 /* Returns:                                                                 */
   5962 /*   Nothing.                                                               */
   5963 /****************************************************************************/
   5964 void
   5965 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5966 {
   5967 #if 0
   5968 	struct mbuf		*m;
   5969 	int			i;
   5970 
   5971 	aprint_debug_dev(sc->bnx_dev,
   5972 	    "----------------------------"
   5973 	    "  tx mbuf data  "
   5974 	    "----------------------------\n");
   5975 
   5976 	for (i = 0; i < count; i++) {
   5977 		m = sc->tx_mbuf_ptr[chain_prod];
   5978 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5979 		bnx_dump_mbuf(sc, m);
   5980 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5981 	}
   5982 
   5983 	aprint_debug_dev(sc->bnx_dev,
   5984 	    "--------------------------------------------"
   5985 	    "----------------------------\n");
   5986 #endif
   5987 }
   5988 
   5989 /*
   5990  * This routine prints the RX mbuf chain.
   5991  */
   5992 void
   5993 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5994 {
   5995 	struct mbuf		*m;
   5996 	int			i;
   5997 
   5998 	aprint_debug_dev(sc->bnx_dev,
   5999 	    "----------------------------"
   6000 	    "  rx mbuf data  "
   6001 	    "----------------------------\n");
   6002 
   6003 	for (i = 0; i < count; i++) {
   6004 		m = sc->rx_mbuf_ptr[chain_prod];
   6005 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   6006 		bnx_dump_mbuf(sc, m);
   6007 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   6008 	}
   6009 
   6010 
   6011 	aprint_debug_dev(sc->bnx_dev,
   6012 	    "--------------------------------------------"
   6013 	    "----------------------------\n");
   6014 }
   6015 
   6016 void
   6017 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   6018 {
   6019 	if (idx > MAX_TX_BD)
   6020 		/* Index out of range. */
   6021 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   6022 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   6023 		/* TX Chain page pointer. */
   6024 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   6025 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   6026 		    txbd->tx_bd_haddr_lo);
   6027 	else
   6028 		/* Normal tx_bd entry. */
   6029 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6030 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   6031 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   6032 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   6033 		    txbd->tx_bd_flags);
   6034 }
   6035 
   6036 void
   6037 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   6038 {
   6039 	if (idx > MAX_RX_BD)
   6040 		/* Index out of range. */
   6041 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   6042 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   6043 		/* TX Chain page pointer. */
   6044 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   6045 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   6046 		    rxbd->rx_bd_haddr_lo);
   6047 	else
   6048 		/* Normal tx_bd entry. */
   6049 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6050 		    "0x%08X, flags = 0x%08X\n", idx,
   6051 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   6052 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   6053 }
   6054 
   6055 void
   6056 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   6057 {
   6058 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   6059 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   6060 	    "tcp_udp_xsum = 0x%04X\n", idx,
   6061 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   6062 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   6063 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   6064 }
   6065 
   6066 /*
   6067  * This routine prints the TX chain.
   6068  */
   6069 void
   6070 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   6071 {
   6072 	struct tx_bd		*txbd;
   6073 	int			i;
   6074 
   6075 	/* First some info about the tx_bd chain structure. */
   6076 	aprint_debug_dev(sc->bnx_dev,
   6077 	    "----------------------------"
   6078 	    "  tx_bd  chain  "
   6079 	    "----------------------------\n");
   6080 
   6081 	BNX_PRINTF(sc,
   6082 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   6083 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6084 
   6085 	BNX_PRINTF(sc,
   6086 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6087 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6088 
   6089 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6090 
   6091 	aprint_error_dev(sc->bnx_dev, ""
   6092 	    "-----------------------------"
   6093 	    "   tx_bd data   "
   6094 	    "-----------------------------\n");
   6095 
   6096 	/* Now print out the tx_bd's themselves. */
   6097 	for (i = 0; i < count; i++) {
   6098 		txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6099 		bnx_dump_txbd(sc, tx_prod, txbd);
   6100 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6101 	}
   6102 
   6103 	aprint_debug_dev(sc->bnx_dev,
   6104 	    "-----------------------------"
   6105 	    "--------------"
   6106 	    "-----------------------------\n");
   6107 }
   6108 
   6109 /*
   6110  * This routine prints the RX chain.
   6111  */
   6112 void
   6113 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6114 {
   6115 	struct rx_bd		*rxbd;
   6116 	int			i;
   6117 
   6118 	/* First some info about the tx_bd chain structure. */
   6119 	aprint_debug_dev(sc->bnx_dev,
   6120 	    "----------------------------"
   6121 	    "  rx_bd  chain  "
   6122 	    "----------------------------\n");
   6123 
   6124 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6125 
   6126 	BNX_PRINTF(sc,
   6127 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6128 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6129 
   6130 	BNX_PRINTF(sc,
   6131 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6132 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6133 
   6134 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6135 
   6136 	aprint_error_dev(sc->bnx_dev,
   6137 	    "----------------------------"
   6138 	    "   rx_bd data   "
   6139 	    "----------------------------\n");
   6140 
   6141 	/* Now print out the rx_bd's themselves. */
   6142 	for (i = 0; i < count; i++) {
   6143 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6144 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6145 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6146 	}
   6147 
   6148 	aprint_debug_dev(sc->bnx_dev,
   6149 	    "----------------------------"
   6150 	    "--------------"
   6151 	    "----------------------------\n");
   6152 }
   6153 
   6154 /*
   6155  * This routine prints the status block.
   6156  */
   6157 void
   6158 bnx_dump_status_block(struct bnx_softc *sc)
   6159 {
   6160 	struct status_block	*sblk;
   6161 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6162 	    BUS_DMASYNC_POSTREAD);
   6163 
   6164 	sblk = sc->status_block;
   6165 
   6166 	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6167 	    "Status Block -----------------------------\n");
   6168 
   6169 	BNX_PRINTF(sc,
   6170 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6171 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6172 	    sblk->status_idx);
   6173 
   6174 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6175 	    sblk->status_rx_quick_consumer_index0,
   6176 	    sblk->status_tx_quick_consumer_index0);
   6177 
   6178 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6179 
   6180 	/* Theses indices are not used for normal L2 drivers. */
   6181 	if (sblk->status_rx_quick_consumer_index1 ||
   6182 		sblk->status_tx_quick_consumer_index1)
   6183 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6184 		    sblk->status_rx_quick_consumer_index1,
   6185 		    sblk->status_tx_quick_consumer_index1);
   6186 
   6187 	if (sblk->status_rx_quick_consumer_index2 ||
   6188 		sblk->status_tx_quick_consumer_index2)
   6189 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6190 		    sblk->status_rx_quick_consumer_index2,
   6191 		    sblk->status_tx_quick_consumer_index2);
   6192 
   6193 	if (sblk->status_rx_quick_consumer_index3 ||
   6194 		sblk->status_tx_quick_consumer_index3)
   6195 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6196 		    sblk->status_rx_quick_consumer_index3,
   6197 		    sblk->status_tx_quick_consumer_index3);
   6198 
   6199 	if (sblk->status_rx_quick_consumer_index4 ||
   6200 		sblk->status_rx_quick_consumer_index5)
   6201 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6202 		    sblk->status_rx_quick_consumer_index4,
   6203 		    sblk->status_rx_quick_consumer_index5);
   6204 
   6205 	if (sblk->status_rx_quick_consumer_index6 ||
   6206 		sblk->status_rx_quick_consumer_index7)
   6207 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6208 		    sblk->status_rx_quick_consumer_index6,
   6209 		    sblk->status_rx_quick_consumer_index7);
   6210 
   6211 	if (sblk->status_rx_quick_consumer_index8 ||
   6212 		sblk->status_rx_quick_consumer_index9)
   6213 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6214 		    sblk->status_rx_quick_consumer_index8,
   6215 		    sblk->status_rx_quick_consumer_index9);
   6216 
   6217 	if (sblk->status_rx_quick_consumer_index10 ||
   6218 		sblk->status_rx_quick_consumer_index11)
   6219 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6220 		    sblk->status_rx_quick_consumer_index10,
   6221 		    sblk->status_rx_quick_consumer_index11);
   6222 
   6223 	if (sblk->status_rx_quick_consumer_index12 ||
   6224 		sblk->status_rx_quick_consumer_index13)
   6225 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6226 		    sblk->status_rx_quick_consumer_index12,
   6227 		    sblk->status_rx_quick_consumer_index13);
   6228 
   6229 	if (sblk->status_rx_quick_consumer_index14 ||
   6230 		sblk->status_rx_quick_consumer_index15)
   6231 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6232 		    sblk->status_rx_quick_consumer_index14,
   6233 		    sblk->status_rx_quick_consumer_index15);
   6234 
   6235 	if (sblk->status_completion_producer_index ||
   6236 		sblk->status_cmd_consumer_index)
   6237 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6238 		    sblk->status_completion_producer_index,
   6239 		    sblk->status_cmd_consumer_index);
   6240 
   6241 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6242 	    "-----------------------------\n");
   6243 }
   6244 
   6245 /*
   6246  * This routine prints the statistics block.
   6247  */
   6248 void
   6249 bnx_dump_stats_block(struct bnx_softc *sc)
   6250 {
   6251 	struct statistics_block	*sblk;
   6252 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6253 	    BUS_DMASYNC_POSTREAD);
   6254 
   6255 	sblk = sc->stats_block;
   6256 
   6257 	aprint_debug_dev(sc->bnx_dev, ""
   6258 	    "-----------------------------"
   6259 	    " Stats  Block "
   6260 	    "-----------------------------\n");
   6261 
   6262 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6263 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6264 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6265 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6266 
   6267 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6268 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6269 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6270 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6271 
   6272 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6273 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6274 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6275 	    sblk->stat_IfHCInMulticastPkts_hi,
   6276 	    sblk->stat_IfHCInMulticastPkts_lo);
   6277 
   6278 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6279 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6280 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6281 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6282 	    sblk->stat_IfHCOutUcastPkts_hi,
   6283 	    sblk->stat_IfHCOutUcastPkts_lo);
   6284 
   6285 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6286 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6287 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6288 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6289 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6290 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6291 
   6292 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6293 		BNX_PRINTF(sc, "0x%08X : "
   6294 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6295 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6296 
   6297 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6298 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6299 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6300 
   6301 	if (sblk->stat_Dot3StatsFCSErrors)
   6302 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6303 		    sblk->stat_Dot3StatsFCSErrors);
   6304 
   6305 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6306 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6307 		    sblk->stat_Dot3StatsAlignmentErrors);
   6308 
   6309 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6310 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6311 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6312 
   6313 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6314 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6315 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6316 
   6317 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6318 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6319 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6320 
   6321 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6322 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6323 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6324 
   6325 	if (sblk->stat_Dot3StatsLateCollisions)
   6326 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6327 		    sblk->stat_Dot3StatsLateCollisions);
   6328 
   6329 	if (sblk->stat_EtherStatsCollisions)
   6330 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6331 		    sblk->stat_EtherStatsCollisions);
   6332 
   6333 	if (sblk->stat_EtherStatsFragments)
   6334 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6335 		    sblk->stat_EtherStatsFragments);
   6336 
   6337 	if (sblk->stat_EtherStatsJabbers)
   6338 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6339 		    sblk->stat_EtherStatsJabbers);
   6340 
   6341 	if (sblk->stat_EtherStatsUndersizePkts)
   6342 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6343 		    sblk->stat_EtherStatsUndersizePkts);
   6344 
   6345 	if (sblk->stat_EtherStatsOverrsizePkts)
   6346 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6347 		    sblk->stat_EtherStatsOverrsizePkts);
   6348 
   6349 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6350 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6351 		    sblk->stat_EtherStatsPktsRx64Octets);
   6352 
   6353 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6354 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6355 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6356 
   6357 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6358 		BNX_PRINTF(sc, "0x%08X : "
   6359 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6360 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6361 
   6362 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6363 		BNX_PRINTF(sc, "0x%08X : "
   6364 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6365 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6366 
   6367 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6368 		BNX_PRINTF(sc, "0x%08X : "
   6369 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6370 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6371 
   6372 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6373 		BNX_PRINTF(sc, "0x%08X : "
   6374 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6375 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6376 
   6377 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6378 		BNX_PRINTF(sc, "0x%08X : "
   6379 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6380 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6381 
   6382 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6383 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6384 		    sblk->stat_EtherStatsPktsTx64Octets);
   6385 
   6386 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6387 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6388 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6389 
   6390 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6391 		BNX_PRINTF(sc, "0x%08X : "
   6392 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6393 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6394 
   6395 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6396 		BNX_PRINTF(sc, "0x%08X : "
   6397 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6398 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6399 
   6400 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6401 		BNX_PRINTF(sc, "0x%08X : "
   6402 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6403 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6404 
   6405 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6406 		BNX_PRINTF(sc, "0x%08X : "
   6407 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6408 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6409 
   6410 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6411 		BNX_PRINTF(sc, "0x%08X : "
   6412 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6413 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6414 
   6415 	if (sblk->stat_XonPauseFramesReceived)
   6416 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6417 		    sblk->stat_XonPauseFramesReceived);
   6418 
   6419 	if (sblk->stat_XoffPauseFramesReceived)
   6420 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6421 		    sblk->stat_XoffPauseFramesReceived);
   6422 
   6423 	if (sblk->stat_OutXonSent)
   6424 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6425 		    sblk->stat_OutXonSent);
   6426 
   6427 	if (sblk->stat_OutXoffSent)
   6428 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6429 		    sblk->stat_OutXoffSent);
   6430 
   6431 	if (sblk->stat_FlowControlDone)
   6432 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6433 		    sblk->stat_FlowControlDone);
   6434 
   6435 	if (sblk->stat_MacControlFramesReceived)
   6436 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6437 		    sblk->stat_MacControlFramesReceived);
   6438 
   6439 	if (sblk->stat_XoffStateEntered)
   6440 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6441 		    sblk->stat_XoffStateEntered);
   6442 
   6443 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6444 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6445 		    sblk->stat_IfInFramesL2FilterDiscards);
   6446 
   6447 	if (sblk->stat_IfInRuleCheckerDiscards)
   6448 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6449 		    sblk->stat_IfInRuleCheckerDiscards);
   6450 
   6451 	if (sblk->stat_IfInFTQDiscards)
   6452 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6453 		    sblk->stat_IfInFTQDiscards);
   6454 
   6455 	if (sblk->stat_IfInMBUFDiscards)
   6456 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6457 		    sblk->stat_IfInMBUFDiscards);
   6458 
   6459 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6460 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6461 		    sblk->stat_IfInRuleCheckerP4Hit);
   6462 
   6463 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6464 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6465 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6466 
   6467 	if (sblk->stat_CatchupInFTQDiscards)
   6468 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6469 		    sblk->stat_CatchupInFTQDiscards);
   6470 
   6471 	if (sblk->stat_CatchupInMBUFDiscards)
   6472 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6473 		    sblk->stat_CatchupInMBUFDiscards);
   6474 
   6475 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6476 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6477 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6478 
   6479 	aprint_debug_dev(sc->bnx_dev,
   6480 	    "-----------------------------"
   6481 	    "--------------"
   6482 	    "-----------------------------\n");
   6483 }
   6484 
   6485 void
   6486 bnx_dump_driver_state(struct bnx_softc *sc)
   6487 {
   6488 	aprint_debug_dev(sc->bnx_dev,
   6489 	    "-----------------------------"
   6490 	    " Driver State "
   6491 	    "-----------------------------\n");
   6492 
   6493 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6494 	    "address\n", sc);
   6495 
   6496 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6497 	    sc->status_block);
   6498 
   6499 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6500 	    "address\n", sc->stats_block);
   6501 
   6502 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6503 	    "address\n", sc->tx_bd_chain);
   6504 
   6505 #if 0
   6506 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6507 	    sc->rx_bd_chain);
   6508 
   6509 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6510 	    sc->tx_mbuf_ptr);
   6511 #endif
   6512 
   6513 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6514 	    sc->rx_mbuf_ptr);
   6515 
   6516 	BNX_PRINTF(sc,
   6517 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6518 	    sc->interrupts_generated);
   6519 
   6520 	BNX_PRINTF(sc,
   6521 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6522 	    sc->rx_interrupts);
   6523 
   6524 	BNX_PRINTF(sc,
   6525 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6526 	    sc->tx_interrupts);
   6527 
   6528 	BNX_PRINTF(sc,
   6529 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6530 	    sc->last_status_idx);
   6531 
   6532 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6533 	    sc->tx_prod);
   6534 
   6535 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6536 	    sc->tx_cons);
   6537 
   6538 	BNX_PRINTF(sc,
   6539 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6540 	    sc->tx_prod_bseq);
   6541 	BNX_PRINTF(sc,
   6542 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6543 	    sc->tx_mbuf_alloc);
   6544 
   6545 	BNX_PRINTF(sc,
   6546 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6547 	    sc->used_tx_bd);
   6548 
   6549 	BNX_PRINTF(sc,
   6550 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6551 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6552 
   6553 
   6554 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6555 	    sc->rx_prod);
   6556 
   6557 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6558 	    sc->rx_cons);
   6559 
   6560 	BNX_PRINTF(sc,
   6561 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6562 	    sc->rx_prod_bseq);
   6563 
   6564 	BNX_PRINTF(sc,
   6565 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6566 	    sc->rx_mbuf_alloc);
   6567 
   6568 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6569 	    sc->free_rx_bd);
   6570 
   6571 	BNX_PRINTF(sc,
   6572 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6573 	    sc->rx_low_watermark, sc->max_rx_bd);
   6574 
   6575 	BNX_PRINTF(sc,
   6576 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6577 	    "mbuf alloc failures\n",
   6578 	    sc->mbuf_alloc_failed);
   6579 
   6580 	BNX_PRINTF(sc,
   6581 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6582 	    "simulated mbuf alloc failures\n",
   6583 	    sc->mbuf_sim_alloc_failed);
   6584 
   6585 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6586 	    "-----------------------------\n");
   6587 }
   6588 
   6589 void
   6590 bnx_dump_hw_state(struct bnx_softc *sc)
   6591 {
   6592 	uint32_t		val1;
   6593 	int			i;
   6594 
   6595 	aprint_debug_dev(sc->bnx_dev,
   6596 	    "----------------------------"
   6597 	    " Hardware State "
   6598 	    "----------------------------\n");
   6599 
   6600 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
   6601 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
   6602 
   6603 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6604 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6605 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6606 
   6607 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6608 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6609 
   6610 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6611 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6612 
   6613 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6614 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6615 	    BNX_EMAC_STATUS);
   6616 
   6617 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6618 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6619 
   6620 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6621 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6622 	    BNX_TBDR_STATUS);
   6623 
   6624 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6625 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6626 	    BNX_TDMA_STATUS);
   6627 
   6628 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6629 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6630 
   6631 	aprint_debug_dev(sc->bnx_dev,
   6632 	    "----------------------------"
   6633 	    "----------------"
   6634 	    "----------------------------\n");
   6635 
   6636 	aprint_debug_dev(sc->bnx_dev,
   6637 	    "----------------------------"
   6638 	    " Register  Dump "
   6639 	    "----------------------------\n");
   6640 
   6641 	for (i = 0x400; i < 0x8000; i += 0x10)
   6642 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6643 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6644 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6645 
   6646 	aprint_debug_dev(sc->bnx_dev,
   6647 	    "----------------------------"
   6648 	    "----------------"
   6649 	    "----------------------------\n");
   6650 }
   6651 
   6652 void
   6653 bnx_breakpoint(struct bnx_softc *sc)
   6654 {
   6655 	/* Unreachable code to shut the compiler up about unused functions. */
   6656 	if (0) {
   6657 		bnx_dump_txbd(sc, 0, NULL);
   6658 		bnx_dump_rxbd(sc, 0, NULL);
   6659 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6660 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6661 		bnx_dump_l2fhdr(sc, 0, NULL);
   6662 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6663 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6664 		bnx_dump_status_block(sc);
   6665 		bnx_dump_stats_block(sc);
   6666 		bnx_dump_driver_state(sc);
   6667 		bnx_dump_hw_state(sc);
   6668 	}
   6669 
   6670 	bnx_dump_driver_state(sc);
   6671 	/* Print the important status block fields. */
   6672 	bnx_dump_status_block(sc);
   6673 
   6674 #if 0
   6675 	/* Call the debugger. */
   6676 	breakpoint();
   6677 #endif
   6678 
   6679 	return;
   6680 }
   6681 #endif
   6682