if_cas.c revision 1.10 1 1.10 jnemeth /* $NetBSD: if_cas.c,v 1.10 2010/07/14 04:50:28 jnemeth Exp $ */
2 1.1 jdc /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3 1.1 jdc
4 1.1 jdc /*
5 1.1 jdc *
6 1.1 jdc * Copyright (C) 2007 Mark Kettenis.
7 1.1 jdc * Copyright (C) 2001 Eduardo Horvath.
8 1.1 jdc * All rights reserved.
9 1.1 jdc *
10 1.1 jdc *
11 1.1 jdc * Redistribution and use in source and binary forms, with or without
12 1.1 jdc * modification, are permitted provided that the following conditions
13 1.1 jdc * are met:
14 1.1 jdc * 1. Redistributions of source code must retain the above copyright
15 1.1 jdc * notice, this list of conditions and the following disclaimer.
16 1.1 jdc * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jdc * notice, this list of conditions and the following disclaimer in the
18 1.1 jdc * documentation and/or other materials provided with the distribution.
19 1.1 jdc *
20 1.1 jdc * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 1.1 jdc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 jdc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 jdc * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 1.1 jdc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 1.1 jdc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 1.1 jdc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 1.1 jdc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 1.1 jdc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 1.1 jdc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 1.1 jdc * SUCH DAMAGE.
31 1.1 jdc *
32 1.1 jdc */
33 1.1 jdc
34 1.1 jdc /*
35 1.1 jdc * Driver for Sun Cassini ethernet controllers.
36 1.1 jdc *
37 1.1 jdc * There are basically two variants of this chip: Cassini and
38 1.1 jdc * Cassini+. We can distinguish between the two by revision: 0x10 and
39 1.1 jdc * up are Cassini+. The most important difference is that Cassini+
40 1.1 jdc * has a second RX descriptor ring. Cassini+ will not work without
41 1.1 jdc * configuring that second ring. However, since we don't use it we
42 1.1 jdc * don't actually fill the descriptors, and only hand off the first
43 1.1 jdc * four to the chip.
44 1.1 jdc */
45 1.1 jdc
46 1.1 jdc #include <sys/cdefs.h>
47 1.10 jnemeth __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.10 2010/07/14 04:50:28 jnemeth Exp $");
48 1.1 jdc
49 1.1 jdc #include "opt_inet.h"
50 1.1 jdc
51 1.1 jdc #include <sys/param.h>
52 1.1 jdc #include <sys/systm.h>
53 1.1 jdc #include <sys/callout.h>
54 1.1 jdc #include <sys/mbuf.h>
55 1.1 jdc #include <sys/syslog.h>
56 1.1 jdc #include <sys/malloc.h>
57 1.1 jdc #include <sys/kernel.h>
58 1.1 jdc #include <sys/socket.h>
59 1.1 jdc #include <sys/ioctl.h>
60 1.1 jdc #include <sys/errno.h>
61 1.1 jdc #include <sys/device.h>
62 1.1 jdc
63 1.1 jdc #include <machine/endian.h>
64 1.1 jdc
65 1.1 jdc #include <uvm/uvm_extern.h>
66 1.1 jdc
67 1.1 jdc #include <net/if.h>
68 1.1 jdc #include <net/if_dl.h>
69 1.1 jdc #include <net/if_media.h>
70 1.1 jdc #include <net/if_ether.h>
71 1.1 jdc
72 1.1 jdc #ifdef INET
73 1.1 jdc #include <netinet/in.h>
74 1.1 jdc #include <netinet/in_systm.h>
75 1.1 jdc #include <netinet/in_var.h>
76 1.1 jdc #include <netinet/ip.h>
77 1.1 jdc #include <netinet/tcp.h>
78 1.1 jdc #include <netinet/udp.h>
79 1.1 jdc #endif
80 1.1 jdc
81 1.1 jdc #include <net/bpf.h>
82 1.1 jdc
83 1.1 jdc #include <sys/bus.h>
84 1.1 jdc #include <sys/intr.h>
85 1.1 jdc
86 1.1 jdc #include <dev/mii/mii.h>
87 1.1 jdc #include <dev/mii/miivar.h>
88 1.1 jdc #include <dev/mii/mii_bitbang.h>
89 1.1 jdc
90 1.1 jdc #include <dev/pci/pcivar.h>
91 1.1 jdc #include <dev/pci/pcireg.h>
92 1.1 jdc #include <dev/pci/pcidevs.h>
93 1.5 jdc #include <prop/proplib.h>
94 1.1 jdc
95 1.1 jdc #include <dev/pci/if_casreg.h>
96 1.1 jdc #include <dev/pci/if_casvar.h>
97 1.1 jdc
98 1.1 jdc #define TRIES 10000
99 1.1 jdc
100 1.3 jdc static bool cas_estintr(struct cas_softc *sc, int);
101 1.1 jdc bool cas_shutdown(device_t, int);
102 1.6 dyoung static bool cas_suspend(device_t, const pmf_qual_t *);
103 1.6 dyoung static bool cas_resume(device_t, const pmf_qual_t *);
104 1.1 jdc static int cas_detach(device_t, int);
105 1.1 jdc static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106 1.1 jdc
107 1.1 jdc int cas_match(device_t, cfdata_t, void *);
108 1.1 jdc void cas_attach(device_t, device_t, void *);
109 1.1 jdc
110 1.1 jdc
111 1.1 jdc CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112 1.1 jdc cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113 1.1 jdc DVF_DETACH_SHUTDOWN);
114 1.1 jdc
115 1.1 jdc int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116 1.1 jdc
117 1.1 jdc void cas_config(struct cas_softc *, const uint8_t *);
118 1.1 jdc void cas_start(struct ifnet *);
119 1.1 jdc void cas_stop(struct ifnet *, int);
120 1.1 jdc int cas_ioctl(struct ifnet *, u_long, void *);
121 1.1 jdc void cas_tick(void *);
122 1.1 jdc void cas_watchdog(struct ifnet *);
123 1.1 jdc int cas_init(struct ifnet *);
124 1.1 jdc void cas_init_regs(struct cas_softc *);
125 1.1 jdc int cas_ringsize(int);
126 1.1 jdc int cas_cringsize(int);
127 1.1 jdc int cas_meminit(struct cas_softc *);
128 1.1 jdc void cas_mifinit(struct cas_softc *);
129 1.1 jdc int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 1.1 jdc u_int32_t, u_int32_t);
131 1.1 jdc void cas_reset(struct cas_softc *);
132 1.1 jdc int cas_reset_rx(struct cas_softc *);
133 1.1 jdc int cas_reset_tx(struct cas_softc *);
134 1.1 jdc int cas_disable_rx(struct cas_softc *);
135 1.1 jdc int cas_disable_tx(struct cas_softc *);
136 1.1 jdc void cas_rxdrain(struct cas_softc *);
137 1.1 jdc int cas_add_rxbuf(struct cas_softc *, int idx);
138 1.1 jdc void cas_iff(struct cas_softc *);
139 1.1 jdc int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140 1.1 jdc
141 1.1 jdc /* MII methods & callbacks */
142 1.1 jdc int cas_mii_readreg(device_t, int, int);
143 1.1 jdc void cas_mii_writereg(device_t, int, int, int);
144 1.1 jdc void cas_mii_statchg(device_t);
145 1.1 jdc int cas_pcs_readreg(device_t, int, int);
146 1.1 jdc void cas_pcs_writereg(device_t, int, int, int);
147 1.1 jdc
148 1.1 jdc int cas_mediachange(struct ifnet *);
149 1.1 jdc void cas_mediastatus(struct ifnet *, struct ifmediareq *);
150 1.1 jdc
151 1.1 jdc int cas_eint(struct cas_softc *, u_int);
152 1.1 jdc int cas_rint(struct cas_softc *);
153 1.1 jdc int cas_tint(struct cas_softc *, u_int32_t);
154 1.1 jdc int cas_pint(struct cas_softc *);
155 1.1 jdc int cas_intr(void *);
156 1.1 jdc
157 1.1 jdc #ifdef CAS_DEBUG
158 1.1 jdc #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 1.1 jdc printf x
160 1.1 jdc #else
161 1.1 jdc #define DPRINTF(sc, x) /* nothing */
162 1.1 jdc #endif
163 1.1 jdc
164 1.1 jdc int
165 1.1 jdc cas_match(device_t parent, cfdata_t cf, void *aux)
166 1.1 jdc {
167 1.1 jdc struct pci_attach_args *pa = aux;
168 1.1 jdc
169 1.1 jdc if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 1.1 jdc (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 1.1 jdc return 1;
172 1.1 jdc
173 1.1 jdc if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 1.1 jdc (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 1.1 jdc return 1;
176 1.1 jdc
177 1.1 jdc return 0;
178 1.1 jdc }
179 1.1 jdc
180 1.1 jdc #define PROMHDR_PTR_DATA 0x18
181 1.1 jdc #define PROMDATA_PTR_VPD 0x08
182 1.1 jdc #define PROMDATA_DATA2 0x0a
183 1.1 jdc
184 1.1 jdc static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 1.1 jdc static const u_int8_t cas_promdat[] = {
186 1.1 jdc 'P', 'C', 'I', 'R',
187 1.1 jdc PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 1.1 jdc PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 1.1 jdc };
190 1.1 jdc
191 1.1 jdc static const u_int8_t cas_promdat2[] = {
192 1.1 jdc 0x18, 0x00, /* structure length */
193 1.1 jdc 0x00, /* structure revision */
194 1.1 jdc 0x00, /* interface revision */
195 1.1 jdc PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
196 1.1 jdc PCI_CLASS_NETWORK /* class code */
197 1.1 jdc };
198 1.1 jdc
199 1.1 jdc int
200 1.1 jdc cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201 1.1 jdc uint8_t *enaddr)
202 1.1 jdc {
203 1.1 jdc struct pci_vpd_largeres *res;
204 1.1 jdc struct pci_vpd *vpd;
205 1.1 jdc bus_space_handle_t romh;
206 1.1 jdc bus_space_tag_t romt;
207 1.1 jdc bus_size_t romsize = 0;
208 1.1 jdc u_int8_t buf[32], *desc;
209 1.1 jdc pcireg_t address;
210 1.1 jdc int dataoff, vpdoff, len;
211 1.1 jdc int rv = -1;
212 1.1 jdc
213 1.1 jdc if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214 1.1 jdc &romt, &romh, NULL, &romsize))
215 1.1 jdc return (-1);
216 1.1 jdc
217 1.1 jdc address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218 1.1 jdc address |= PCI_MAPREG_ROM_ENABLE;
219 1.1 jdc pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220 1.1 jdc
221 1.1 jdc bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222 1.1 jdc if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223 1.1 jdc goto fail;
224 1.1 jdc
225 1.1 jdc dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226 1.1 jdc if (dataoff < 0x1c)
227 1.1 jdc goto fail;
228 1.1 jdc
229 1.1 jdc bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230 1.1 jdc if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231 1.1 jdc bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232 1.1 jdc goto fail;
233 1.1 jdc
234 1.1 jdc vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235 1.1 jdc if (vpdoff < 0x1c)
236 1.1 jdc goto fail;
237 1.1 jdc
238 1.1 jdc next:
239 1.1 jdc bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240 1.1 jdc if (!PCI_VPDRES_ISLARGE(buf[0]))
241 1.1 jdc goto fail;
242 1.1 jdc
243 1.1 jdc res = (struct pci_vpd_largeres *)buf;
244 1.1 jdc vpdoff += sizeof(*res);
245 1.1 jdc
246 1.1 jdc len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247 1.1 jdc switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248 1.1 jdc case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249 1.1 jdc /* Skip identifier string. */
250 1.1 jdc vpdoff += len;
251 1.1 jdc goto next;
252 1.1 jdc
253 1.1 jdc case PCI_VPDRES_TYPE_VPD:
254 1.1 jdc while (len > 0) {
255 1.1 jdc bus_space_read_region_1(romt, romh, vpdoff,
256 1.1 jdc buf, sizeof(buf));
257 1.1 jdc
258 1.1 jdc vpd = (struct pci_vpd *)buf;
259 1.1 jdc vpdoff += sizeof(*vpd) + vpd->vpd_len;
260 1.1 jdc len -= sizeof(*vpd) + vpd->vpd_len;
261 1.1 jdc
262 1.1 jdc /*
263 1.1 jdc * We're looking for an "Enhanced" VPD...
264 1.1 jdc */
265 1.1 jdc if (vpd->vpd_key0 != 'Z')
266 1.1 jdc continue;
267 1.1 jdc
268 1.1 jdc desc = buf + sizeof(*vpd);
269 1.1 jdc
270 1.1 jdc /*
271 1.1 jdc * ...which is an instance property...
272 1.1 jdc */
273 1.1 jdc if (desc[0] != 'I')
274 1.1 jdc continue;
275 1.1 jdc desc += 3;
276 1.1 jdc
277 1.1 jdc /*
278 1.1 jdc * ...that's a byte array with the proper
279 1.1 jdc * length for a MAC address...
280 1.1 jdc */
281 1.1 jdc if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282 1.1 jdc continue;
283 1.1 jdc desc += 2;
284 1.1 jdc
285 1.1 jdc /*
286 1.1 jdc * ...named "local-mac-address".
287 1.1 jdc */
288 1.1 jdc if (strcmp(desc, "local-mac-address") != 0)
289 1.1 jdc continue;
290 1.1 jdc desc += strlen("local-mac-address") + 1;
291 1.1 jdc
292 1.5 jdc memcpy(enaddr, desc, ETHER_ADDR_LEN);
293 1.1 jdc rv = 0;
294 1.1 jdc }
295 1.1 jdc break;
296 1.1 jdc
297 1.1 jdc default:
298 1.1 jdc goto fail;
299 1.1 jdc }
300 1.1 jdc
301 1.1 jdc fail:
302 1.1 jdc if (romsize != 0)
303 1.1 jdc bus_space_unmap(romt, romh, romsize);
304 1.1 jdc
305 1.1 jdc address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306 1.1 jdc address &= ~PCI_MAPREG_ROM_ENABLE;
307 1.1 jdc pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308 1.1 jdc
309 1.1 jdc return (rv);
310 1.1 jdc }
311 1.1 jdc
312 1.1 jdc void
313 1.1 jdc cas_attach(device_t parent, device_t self, void *aux)
314 1.1 jdc {
315 1.1 jdc struct pci_attach_args *pa = aux;
316 1.1 jdc struct cas_softc *sc = device_private(self);
317 1.1 jdc char devinfo[256];
318 1.5 jdc prop_data_t data;
319 1.1 jdc uint8_t enaddr[ETHER_ADDR_LEN];
320 1.1 jdc
321 1.1 jdc sc->sc_dev = self;
322 1.1 jdc pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323 1.1 jdc sc->sc_rev = PCI_REVISION(pa->pa_class);
324 1.1 jdc aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325 1.1 jdc sc->sc_dmatag = pa->pa_dmat;
326 1.1 jdc
327 1.1 jdc #define PCI_CAS_BASEADDR 0x10
328 1.1 jdc if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329 1.1 jdc &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330 1.1 jdc aprint_error_dev(sc->sc_dev,
331 1.1 jdc "unable to map device registers\n");
332 1.1 jdc return;
333 1.1 jdc }
334 1.1 jdc
335 1.5 jdc if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336 1.5 jdc "mac-address")) != NULL)
337 1.5 jdc memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338 1.10 jnemeth else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
339 1.1 jdc aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340 1.10 jnemeth memset(enaddr, 0, sizeof(enaddr));
341 1.10 jnemeth }
342 1.1 jdc
343 1.1 jdc sc->sc_burst = 16; /* XXX */
344 1.1 jdc
345 1.1 jdc sc->sc_att_stage = CAS_ATT_BACKEND_0;
346 1.1 jdc
347 1.1 jdc if (pci_intr_map(pa, &sc->sc_handle) != 0) {
348 1.1 jdc aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
349 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
350 1.1 jdc return;
351 1.1 jdc }
352 1.1 jdc sc->sc_pc = pa->pa_pc;
353 1.3 jdc if (!cas_estintr(sc, CAS_INTR_PCI)) {
354 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
355 1.1 jdc aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
356 1.1 jdc return;
357 1.1 jdc }
358 1.1 jdc
359 1.1 jdc sc->sc_att_stage = CAS_ATT_BACKEND_1;
360 1.1 jdc
361 1.1 jdc /*
362 1.1 jdc * call the main configure
363 1.1 jdc */
364 1.1 jdc cas_config(sc, enaddr);
365 1.1 jdc
366 1.1 jdc if (pmf_device_register1(sc->sc_dev,
367 1.1 jdc cas_suspend, cas_resume, cas_shutdown))
368 1.1 jdc pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
369 1.1 jdc else
370 1.1 jdc aprint_error_dev(sc->sc_dev,
371 1.1 jdc "could not establish power handlers\n");
372 1.1 jdc
373 1.1 jdc sc->sc_att_stage = CAS_ATT_FINISHED;
374 1.1 jdc /*FALLTHROUGH*/
375 1.1 jdc }
376 1.1 jdc
377 1.1 jdc /*
378 1.1 jdc * cas_config:
379 1.1 jdc *
380 1.1 jdc * Attach a Cassini interface to the system.
381 1.1 jdc */
382 1.1 jdc void
383 1.1 jdc cas_config(struct cas_softc *sc, const uint8_t *enaddr)
384 1.1 jdc {
385 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
386 1.1 jdc struct mii_data *mii = &sc->sc_mii;
387 1.1 jdc struct mii_softc *child;
388 1.1 jdc int i, error;
389 1.1 jdc
390 1.1 jdc /* Make sure the chip is stopped. */
391 1.1 jdc ifp->if_softc = sc;
392 1.1 jdc cas_reset(sc);
393 1.1 jdc
394 1.1 jdc /*
395 1.1 jdc * Allocate the control data structures, and create and load the
396 1.1 jdc * DMA map for it.
397 1.1 jdc */
398 1.1 jdc if ((error = bus_dmamem_alloc(sc->sc_dmatag,
399 1.1 jdc sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
400 1.1 jdc 1, &sc->sc_cdnseg, 0)) != 0) {
401 1.1 jdc aprint_error_dev(sc->sc_dev,
402 1.1 jdc "unable to allocate control data, error = %d\n",
403 1.1 jdc error);
404 1.1 jdc cas_partial_detach(sc, CAS_ATT_0);
405 1.1 jdc }
406 1.1 jdc
407 1.1 jdc /* XXX should map this in with correct endianness */
408 1.1 jdc if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
409 1.1 jdc sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
410 1.1 jdc BUS_DMA_COHERENT)) != 0) {
411 1.1 jdc aprint_error_dev(sc->sc_dev,
412 1.1 jdc "unable to map control data, error = %d\n", error);
413 1.1 jdc cas_partial_detach(sc, CAS_ATT_1);
414 1.1 jdc }
415 1.1 jdc
416 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag,
417 1.1 jdc sizeof(struct cas_control_data), 1,
418 1.1 jdc sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
419 1.1 jdc aprint_error_dev(sc->sc_dev,
420 1.1 jdc "unable to create control data DMA map, error = %d\n", error);
421 1.1 jdc cas_partial_detach(sc, CAS_ATT_2);
422 1.1 jdc }
423 1.1 jdc
424 1.1 jdc if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
425 1.1 jdc sc->sc_control_data, sizeof(struct cas_control_data), NULL,
426 1.1 jdc 0)) != 0) {
427 1.1 jdc aprint_error_dev(sc->sc_dev,
428 1.1 jdc "unable to load control data DMA map, error = %d\n",
429 1.1 jdc error);
430 1.1 jdc cas_partial_detach(sc, CAS_ATT_3);
431 1.1 jdc }
432 1.1 jdc
433 1.1 jdc memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
434 1.1 jdc
435 1.1 jdc /*
436 1.1 jdc * Create the receive buffer DMA maps.
437 1.1 jdc */
438 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++) {
439 1.1 jdc bus_dma_segment_t seg;
440 1.1 jdc char *kva;
441 1.1 jdc int rseg;
442 1.1 jdc
443 1.1 jdc if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
444 1.1 jdc CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
445 1.1 jdc aprint_error_dev(sc->sc_dev,
446 1.1 jdc "unable to alloc rx DMA mem %d, error = %d\n",
447 1.1 jdc i, error);
448 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
449 1.1 jdc }
450 1.1 jdc sc->sc_rxsoft[i].rxs_dmaseg = seg;
451 1.1 jdc
452 1.1 jdc if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
453 1.1 jdc CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
454 1.1 jdc aprint_error_dev(sc->sc_dev,
455 1.1 jdc "unable to alloc rx DMA mem %d, error = %d\n",
456 1.1 jdc i, error);
457 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
458 1.1 jdc }
459 1.1 jdc sc->sc_rxsoft[i].rxs_kva = kva;
460 1.1 jdc
461 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
462 1.1 jdc CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
463 1.1 jdc aprint_error_dev(sc->sc_dev,
464 1.1 jdc "unable to create rx DMA map %d, error = %d\n",
465 1.1 jdc i, error);
466 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
467 1.1 jdc }
468 1.1 jdc
469 1.1 jdc if ((error = bus_dmamap_load(sc->sc_dmatag,
470 1.1 jdc sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
471 1.1 jdc BUS_DMA_NOWAIT)) != 0) {
472 1.1 jdc aprint_error_dev(sc->sc_dev,
473 1.1 jdc "unable to load rx DMA map %d, error = %d\n",
474 1.1 jdc i, error);
475 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
476 1.1 jdc }
477 1.1 jdc }
478 1.1 jdc
479 1.1 jdc /*
480 1.1 jdc * Create the transmit buffer DMA maps.
481 1.1 jdc */
482 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
483 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
484 1.1 jdc CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
485 1.1 jdc &sc->sc_txd[i].sd_map)) != 0) {
486 1.1 jdc aprint_error_dev(sc->sc_dev,
487 1.1 jdc "unable to create tx DMA map %d, error = %d\n",
488 1.1 jdc i, error);
489 1.1 jdc cas_partial_detach(sc, CAS_ATT_6);
490 1.1 jdc }
491 1.1 jdc sc->sc_txd[i].sd_mbuf = NULL;
492 1.1 jdc }
493 1.1 jdc
494 1.1 jdc /*
495 1.1 jdc * From this point forward, the attachment cannot fail. A failure
496 1.1 jdc * before this point releases all resources that may have been
497 1.1 jdc * allocated.
498 1.1 jdc */
499 1.1 jdc
500 1.1 jdc /* Announce ourselves. */
501 1.1 jdc aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
502 1.1 jdc ether_sprintf(enaddr));
503 1.7 mrg aprint_naive(": Ethernet controller\n");
504 1.1 jdc
505 1.1 jdc /* Get RX FIFO size */
506 1.1 jdc sc->sc_rxfifosize = 16 * 1024;
507 1.1 jdc
508 1.1 jdc /* Initialize ifnet structure. */
509 1.1 jdc strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
510 1.1 jdc ifp->if_softc = sc;
511 1.1 jdc ifp->if_flags =
512 1.1 jdc IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
513 1.1 jdc ifp->if_start = cas_start;
514 1.1 jdc ifp->if_ioctl = cas_ioctl;
515 1.1 jdc ifp->if_watchdog = cas_watchdog;
516 1.1 jdc ifp->if_stop = cas_stop;
517 1.1 jdc ifp->if_init = cas_init;
518 1.1 jdc IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
519 1.1 jdc IFQ_SET_READY(&ifp->if_snd);
520 1.1 jdc
521 1.1 jdc /* Initialize ifmedia structures and MII info */
522 1.1 jdc mii->mii_ifp = ifp;
523 1.1 jdc mii->mii_readreg = cas_mii_readreg;
524 1.1 jdc mii->mii_writereg = cas_mii_writereg;
525 1.1 jdc mii->mii_statchg = cas_mii_statchg;
526 1.1 jdc
527 1.1 jdc ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
528 1.1 jdc sc->sc_ethercom.ec_mii = mii;
529 1.1 jdc
530 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
531 1.1 jdc
532 1.1 jdc cas_mifinit(sc);
533 1.1 jdc
534 1.1 jdc if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
535 1.1 jdc sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
536 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
537 1.1 jdc CAS_MIF_CONFIG, sc->sc_mif_config);
538 1.1 jdc }
539 1.1 jdc
540 1.1 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
541 1.1 jdc MII_OFFSET_ANY, 0);
542 1.1 jdc
543 1.1 jdc child = LIST_FIRST(&mii->mii_phys);
544 1.1 jdc if (child == NULL &&
545 1.1 jdc sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
546 1.1 jdc /*
547 1.1 jdc * Try the external PCS SERDES if we didn't find any
548 1.1 jdc * MII devices.
549 1.1 jdc */
550 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
551 1.1 jdc CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
552 1.1 jdc
553 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
554 1.1 jdc CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
555 1.1 jdc
556 1.1 jdc mii->mii_readreg = cas_pcs_readreg;
557 1.1 jdc mii->mii_writereg = cas_pcs_writereg;
558 1.1 jdc
559 1.1 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
560 1.1 jdc MII_OFFSET_ANY, MIIF_NOISOLATE);
561 1.1 jdc }
562 1.1 jdc
563 1.1 jdc child = LIST_FIRST(&mii->mii_phys);
564 1.1 jdc if (child == NULL) {
565 1.1 jdc /* No PHY attached */
566 1.1 jdc ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
567 1.1 jdc ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
568 1.1 jdc } else {
569 1.1 jdc /*
570 1.1 jdc * Walk along the list of attached MII devices and
571 1.1 jdc * establish an `MII instance' to `phy number'
572 1.1 jdc * mapping. We'll use this mapping in media change
573 1.1 jdc * requests to determine which phy to use to program
574 1.1 jdc * the MIF configuration register.
575 1.1 jdc */
576 1.1 jdc for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
577 1.1 jdc /*
578 1.1 jdc * Note: we support just two PHYs: the built-in
579 1.1 jdc * internal device and an external on the MII
580 1.1 jdc * connector.
581 1.1 jdc */
582 1.1 jdc if (child->mii_phy > 1 || child->mii_inst > 1) {
583 1.1 jdc aprint_error_dev(sc->sc_dev,
584 1.1 jdc "cannot accommodate MII device %s"
585 1.1 jdc " at phy %d, instance %d\n",
586 1.1 jdc device_xname(child->mii_dev),
587 1.1 jdc child->mii_phy, child->mii_inst);
588 1.1 jdc continue;
589 1.1 jdc }
590 1.1 jdc
591 1.1 jdc sc->sc_phys[child->mii_inst] = child->mii_phy;
592 1.1 jdc }
593 1.1 jdc
594 1.1 jdc /*
595 1.1 jdc * XXX - we can really do the following ONLY if the
596 1.1 jdc * phy indeed has the auto negotiation capability!!
597 1.1 jdc */
598 1.1 jdc ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
599 1.1 jdc }
600 1.1 jdc
601 1.1 jdc /* claim 802.1q capability */
602 1.1 jdc sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
603 1.1 jdc
604 1.1 jdc /* Attach the interface. */
605 1.1 jdc if_attach(ifp);
606 1.1 jdc ether_ifattach(ifp, enaddr);
607 1.1 jdc
608 1.1 jdc #if NRND > 0
609 1.1 jdc rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
610 1.1 jdc RND_TYPE_NET, 0);
611 1.1 jdc #endif
612 1.1 jdc
613 1.1 jdc evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
614 1.1 jdc NULL, device_xname(sc->sc_dev), "interrupts");
615 1.1 jdc
616 1.1 jdc callout_init(&sc->sc_tick_ch, 0);
617 1.1 jdc
618 1.1 jdc return;
619 1.1 jdc }
620 1.1 jdc
621 1.1 jdc int
622 1.1 jdc cas_detach(device_t self, int flags)
623 1.1 jdc {
624 1.1 jdc int i;
625 1.1 jdc struct cas_softc *sc = device_private(self);
626 1.3 jdc bus_space_tag_t t = sc->sc_memt;
627 1.3 jdc bus_space_handle_t h = sc->sc_memh;
628 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
629 1.1 jdc
630 1.1 jdc /*
631 1.1 jdc * Free any resources we've allocated during the failed attach
632 1.1 jdc * attempt. Do this in reverse order and fall through.
633 1.1 jdc */
634 1.1 jdc switch (sc->sc_att_stage) {
635 1.1 jdc case CAS_ATT_FINISHED:
636 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
637 1.1 jdc pmf_device_deregister(self);
638 1.1 jdc cas_stop(&sc->sc_ethercom.ec_if, 1);
639 1.1 jdc evcnt_detach(&sc->sc_ev_intr);
640 1.1 jdc
641 1.1 jdc #if NRND > 0
642 1.1 jdc rnd_detach_source(&sc->rnd_source);
643 1.1 jdc #endif
644 1.1 jdc
645 1.1 jdc ether_ifdetach(ifp);
646 1.1 jdc if_detach(ifp);
647 1.1 jdc ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
648 1.1 jdc
649 1.1 jdc callout_destroy(&sc->sc_tick_ch);
650 1.1 jdc
651 1.1 jdc mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
652 1.1 jdc
653 1.1 jdc /*FALLTHROUGH*/
654 1.1 jdc case CAS_ATT_MII:
655 1.1 jdc case CAS_ATT_7:
656 1.1 jdc case CAS_ATT_6:
657 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
658 1.1 jdc if (sc->sc_txd[i].sd_map != NULL)
659 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag,
660 1.1 jdc sc->sc_txd[i].sd_map);
661 1.1 jdc }
662 1.1 jdc /*FALLTHROUGH*/
663 1.1 jdc case CAS_ATT_5:
664 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++) {
665 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
666 1.1 jdc bus_dmamap_unload(sc->sc_dmatag,
667 1.3 jdc sc->sc_rxsoft[i].rxs_dmamap);
668 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
669 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag,
670 1.1 jdc sc->sc_rxsoft[i].rxs_dmamap);
671 1.1 jdc if (sc->sc_rxsoft[i].rxs_kva != NULL)
672 1.1 jdc bus_dmamem_unmap(sc->sc_dmatag,
673 1.1 jdc sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
674 1.1 jdc /* XXX need to check that bus_dmamem_alloc suceeded
675 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
676 1.1 jdc */
677 1.1 jdc bus_dmamem_free(sc->sc_dmatag,
678 1.1 jdc &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
679 1.1 jdc }
680 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
681 1.1 jdc /*FALLTHROUGH*/
682 1.1 jdc case CAS_ATT_4:
683 1.1 jdc case CAS_ATT_3:
684 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
685 1.1 jdc /*FALLTHROUGH*/
686 1.1 jdc case CAS_ATT_2:
687 1.1 jdc bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
688 1.1 jdc sizeof(struct cas_control_data));
689 1.1 jdc /*FALLTHROUGH*/
690 1.1 jdc case CAS_ATT_1:
691 1.1 jdc bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
692 1.1 jdc /*FALLTHROUGH*/
693 1.1 jdc case CAS_ATT_0:
694 1.1 jdc sc->sc_att_stage = CAS_ATT_0;
695 1.1 jdc /*FALLTHROUGH*/
696 1.1 jdc case CAS_ATT_BACKEND_2:
697 1.1 jdc case CAS_ATT_BACKEND_1:
698 1.1 jdc if (sc->sc_ih != NULL) {
699 1.1 jdc pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
700 1.1 jdc sc->sc_ih = NULL;
701 1.1 jdc }
702 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
703 1.1 jdc /*FALLTHROUGH*/
704 1.1 jdc case CAS_ATT_BACKEND_0:
705 1.1 jdc break;
706 1.1 jdc }
707 1.1 jdc return 0;
708 1.1 jdc }
709 1.1 jdc
710 1.1 jdc static void
711 1.1 jdc cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
712 1.1 jdc {
713 1.1 jdc cfattach_t ca = device_cfattach(sc->sc_dev);
714 1.1 jdc
715 1.1 jdc sc->sc_att_stage = stage;
716 1.1 jdc (*ca->ca_detach)(sc->sc_dev, 0);
717 1.1 jdc }
718 1.1 jdc
719 1.1 jdc void
720 1.1 jdc cas_tick(void *arg)
721 1.1 jdc {
722 1.1 jdc struct cas_softc *sc = arg;
723 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
724 1.1 jdc bus_space_tag_t t = sc->sc_memt;
725 1.1 jdc bus_space_handle_t mac = sc->sc_memh;
726 1.1 jdc int s;
727 1.1 jdc u_int32_t v;
728 1.1 jdc
729 1.1 jdc /* unload collisions counters */
730 1.1 jdc v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
731 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
732 1.1 jdc ifp->if_collisions += v +
733 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
734 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
735 1.1 jdc ifp->if_oerrors += v;
736 1.1 jdc
737 1.1 jdc /* read error counters */
738 1.1 jdc ifp->if_ierrors +=
739 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
740 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
741 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
742 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
743 1.1 jdc
744 1.1 jdc /* clear the hardware counters */
745 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
746 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
747 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
748 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
749 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
750 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
751 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
752 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
753 1.1 jdc
754 1.1 jdc s = splnet();
755 1.1 jdc mii_tick(&sc->sc_mii);
756 1.1 jdc splx(s);
757 1.1 jdc
758 1.1 jdc callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
759 1.1 jdc }
760 1.1 jdc
761 1.1 jdc int
762 1.1 jdc cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
763 1.1 jdc u_int32_t clr, u_int32_t set)
764 1.1 jdc {
765 1.1 jdc int i;
766 1.1 jdc u_int32_t reg;
767 1.1 jdc
768 1.1 jdc for (i = TRIES; i--; DELAY(100)) {
769 1.1 jdc reg = bus_space_read_4(sc->sc_memt, h, r);
770 1.1 jdc if ((reg & clr) == 0 && (reg & set) == set)
771 1.1 jdc return (1);
772 1.1 jdc }
773 1.1 jdc
774 1.1 jdc return (0);
775 1.1 jdc }
776 1.1 jdc
777 1.1 jdc void
778 1.1 jdc cas_reset(struct cas_softc *sc)
779 1.1 jdc {
780 1.1 jdc bus_space_tag_t t = sc->sc_memt;
781 1.1 jdc bus_space_handle_t h = sc->sc_memh;
782 1.1 jdc int s;
783 1.1 jdc
784 1.1 jdc s = splnet();
785 1.1 jdc DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
786 1.1 jdc cas_reset_rx(sc);
787 1.1 jdc cas_reset_tx(sc);
788 1.1 jdc
789 1.9 mrg /* Disable interrupts */
790 1.9 mrg bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
791 1.9 mrg
792 1.1 jdc /* Do a full reset */
793 1.1 jdc bus_space_write_4(t, h, CAS_RESET,
794 1.1 jdc CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
795 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
796 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset device\n");
797 1.1 jdc splx(s);
798 1.1 jdc }
799 1.1 jdc
800 1.1 jdc
801 1.1 jdc /*
802 1.1 jdc * cas_rxdrain:
803 1.1 jdc *
804 1.1 jdc * Drain the receive queue.
805 1.1 jdc */
806 1.1 jdc void
807 1.1 jdc cas_rxdrain(struct cas_softc *sc)
808 1.1 jdc {
809 1.1 jdc /* Nothing to do yet. */
810 1.1 jdc }
811 1.1 jdc
812 1.1 jdc /*
813 1.1 jdc * Reset the whole thing.
814 1.1 jdc */
815 1.1 jdc void
816 1.1 jdc cas_stop(struct ifnet *ifp, int disable)
817 1.1 jdc {
818 1.1 jdc struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
819 1.1 jdc struct cas_sxd *sd;
820 1.1 jdc u_int32_t i;
821 1.1 jdc
822 1.1 jdc DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
823 1.1 jdc
824 1.1 jdc callout_stop(&sc->sc_tick_ch);
825 1.1 jdc
826 1.1 jdc /*
827 1.1 jdc * Mark the interface down and cancel the watchdog timer.
828 1.1 jdc */
829 1.1 jdc ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
830 1.1 jdc ifp->if_timer = 0;
831 1.1 jdc
832 1.1 jdc mii_down(&sc->sc_mii);
833 1.1 jdc
834 1.1 jdc cas_reset_rx(sc);
835 1.1 jdc cas_reset_tx(sc);
836 1.1 jdc
837 1.1 jdc /*
838 1.1 jdc * Release any queued transmit buffers.
839 1.1 jdc */
840 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
841 1.1 jdc sd = &sc->sc_txd[i];
842 1.1 jdc if (sd->sd_mbuf != NULL) {
843 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
844 1.1 jdc sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
845 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
846 1.1 jdc m_freem(sd->sd_mbuf);
847 1.1 jdc sd->sd_mbuf = NULL;
848 1.1 jdc }
849 1.1 jdc }
850 1.1 jdc sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
851 1.1 jdc
852 1.1 jdc if (disable)
853 1.1 jdc cas_rxdrain(sc);
854 1.1 jdc }
855 1.1 jdc
856 1.1 jdc
857 1.1 jdc /*
858 1.1 jdc * Reset the receiver
859 1.1 jdc */
860 1.1 jdc int
861 1.1 jdc cas_reset_rx(struct cas_softc *sc)
862 1.1 jdc {
863 1.1 jdc bus_space_tag_t t = sc->sc_memt;
864 1.1 jdc bus_space_handle_t h = sc->sc_memh;
865 1.1 jdc
866 1.1 jdc /*
867 1.1 jdc * Resetting while DMA is in progress can cause a bus hang, so we
868 1.1 jdc * disable DMA first.
869 1.1 jdc */
870 1.1 jdc cas_disable_rx(sc);
871 1.1 jdc bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
872 1.1 jdc /* Wait till it finishes */
873 1.1 jdc if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
874 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
875 1.1 jdc /* Wait 5ms extra. */
876 1.1 jdc delay(5000);
877 1.1 jdc
878 1.1 jdc /* Finally, reset the ERX */
879 1.1 jdc bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
880 1.1 jdc /* Wait till it finishes */
881 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
882 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
883 1.1 jdc return (1);
884 1.1 jdc }
885 1.1 jdc return (0);
886 1.1 jdc }
887 1.1 jdc
888 1.1 jdc
889 1.1 jdc /*
890 1.1 jdc * Reset the transmitter
891 1.1 jdc */
892 1.1 jdc int
893 1.1 jdc cas_reset_tx(struct cas_softc *sc)
894 1.1 jdc {
895 1.1 jdc bus_space_tag_t t = sc->sc_memt;
896 1.1 jdc bus_space_handle_t h = sc->sc_memh;
897 1.1 jdc
898 1.1 jdc /*
899 1.1 jdc * Resetting while DMA is in progress can cause a bus hang, so we
900 1.1 jdc * disable DMA first.
901 1.1 jdc */
902 1.1 jdc cas_disable_tx(sc);
903 1.1 jdc bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
904 1.1 jdc /* Wait till it finishes */
905 1.1 jdc if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
906 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
907 1.1 jdc /* Wait 5ms extra. */
908 1.1 jdc delay(5000);
909 1.1 jdc
910 1.1 jdc /* Finally, reset the ETX */
911 1.1 jdc bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
912 1.1 jdc /* Wait till it finishes */
913 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
914 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
915 1.1 jdc return (1);
916 1.1 jdc }
917 1.1 jdc return (0);
918 1.1 jdc }
919 1.1 jdc
920 1.1 jdc /*
921 1.1 jdc * Disable receiver.
922 1.1 jdc */
923 1.1 jdc int
924 1.1 jdc cas_disable_rx(struct cas_softc *sc)
925 1.1 jdc {
926 1.1 jdc bus_space_tag_t t = sc->sc_memt;
927 1.1 jdc bus_space_handle_t h = sc->sc_memh;
928 1.1 jdc u_int32_t cfg;
929 1.1 jdc
930 1.1 jdc /* Flip the enable bit */
931 1.1 jdc cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
932 1.1 jdc cfg &= ~CAS_MAC_RX_ENABLE;
933 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
934 1.1 jdc
935 1.1 jdc /* Wait for it to finish */
936 1.1 jdc return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
937 1.1 jdc }
938 1.1 jdc
939 1.1 jdc /*
940 1.1 jdc * Disable transmitter.
941 1.1 jdc */
942 1.1 jdc int
943 1.1 jdc cas_disable_tx(struct cas_softc *sc)
944 1.1 jdc {
945 1.1 jdc bus_space_tag_t t = sc->sc_memt;
946 1.1 jdc bus_space_handle_t h = sc->sc_memh;
947 1.1 jdc u_int32_t cfg;
948 1.1 jdc
949 1.1 jdc /* Flip the enable bit */
950 1.1 jdc cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
951 1.1 jdc cfg &= ~CAS_MAC_TX_ENABLE;
952 1.1 jdc bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
953 1.1 jdc
954 1.1 jdc /* Wait for it to finish */
955 1.1 jdc return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
956 1.1 jdc }
957 1.1 jdc
958 1.1 jdc /*
959 1.1 jdc * Initialize interface.
960 1.1 jdc */
961 1.1 jdc int
962 1.1 jdc cas_meminit(struct cas_softc *sc)
963 1.1 jdc {
964 1.1 jdc struct cas_rxsoft *rxs;
965 1.1 jdc int i, error;
966 1.1 jdc
967 1.1 jdc rxs = (void *)&error;
968 1.1 jdc
969 1.1 jdc /*
970 1.1 jdc * Initialize the transmit descriptor ring.
971 1.1 jdc */
972 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
973 1.1 jdc sc->sc_txdescs[i].cd_flags = 0;
974 1.1 jdc sc->sc_txdescs[i].cd_addr = 0;
975 1.1 jdc }
976 1.1 jdc CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
977 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
978 1.1 jdc
979 1.1 jdc /*
980 1.1 jdc * Initialize the receive descriptor and receive job
981 1.1 jdc * descriptor rings.
982 1.1 jdc */
983 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++)
984 1.1 jdc CAS_INIT_RXDESC(sc, i, i);
985 1.1 jdc sc->sc_rxdptr = 0;
986 1.1 jdc sc->sc_rxptr = 0;
987 1.1 jdc
988 1.1 jdc /*
989 1.1 jdc * Initialize the receive completion ring.
990 1.1 jdc */
991 1.1 jdc for (i = 0; i < CAS_NRXCOMP; i++) {
992 1.1 jdc sc->sc_rxcomps[i].cc_word[0] = 0;
993 1.1 jdc sc->sc_rxcomps[i].cc_word[1] = 0;
994 1.1 jdc sc->sc_rxcomps[i].cc_word[2] = 0;
995 1.1 jdc sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
996 1.1 jdc CAS_CDRXCSYNC(sc, i,
997 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
998 1.1 jdc }
999 1.1 jdc
1000 1.1 jdc return (0);
1001 1.1 jdc }
1002 1.1 jdc
1003 1.1 jdc int
1004 1.1 jdc cas_ringsize(int sz)
1005 1.1 jdc {
1006 1.1 jdc switch (sz) {
1007 1.1 jdc case 32:
1008 1.1 jdc return CAS_RING_SZ_32;
1009 1.1 jdc case 64:
1010 1.1 jdc return CAS_RING_SZ_64;
1011 1.1 jdc case 128:
1012 1.1 jdc return CAS_RING_SZ_128;
1013 1.1 jdc case 256:
1014 1.1 jdc return CAS_RING_SZ_256;
1015 1.1 jdc case 512:
1016 1.1 jdc return CAS_RING_SZ_512;
1017 1.1 jdc case 1024:
1018 1.1 jdc return CAS_RING_SZ_1024;
1019 1.1 jdc case 2048:
1020 1.1 jdc return CAS_RING_SZ_2048;
1021 1.1 jdc case 4096:
1022 1.1 jdc return CAS_RING_SZ_4096;
1023 1.1 jdc case 8192:
1024 1.1 jdc return CAS_RING_SZ_8192;
1025 1.1 jdc default:
1026 1.1 jdc aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1027 1.1 jdc sz);
1028 1.1 jdc return CAS_RING_SZ_32;
1029 1.1 jdc }
1030 1.1 jdc }
1031 1.1 jdc
1032 1.1 jdc int
1033 1.1 jdc cas_cringsize(int sz)
1034 1.1 jdc {
1035 1.1 jdc int i;
1036 1.1 jdc
1037 1.1 jdc for (i = 0; i < 9; i++)
1038 1.1 jdc if (sz == (128 << i))
1039 1.1 jdc return i;
1040 1.1 jdc
1041 1.1 jdc aprint_error("cas: invalid completion ring size %d\n", sz);
1042 1.1 jdc return 128;
1043 1.1 jdc }
1044 1.1 jdc
1045 1.1 jdc /*
1046 1.1 jdc * Initialization of interface; set up initialization block
1047 1.1 jdc * and transmit/receive descriptor rings.
1048 1.1 jdc */
1049 1.1 jdc int
1050 1.1 jdc cas_init(struct ifnet *ifp)
1051 1.1 jdc {
1052 1.1 jdc struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1053 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1054 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1055 1.1 jdc int s;
1056 1.1 jdc u_int max_frame_size;
1057 1.1 jdc u_int32_t v;
1058 1.1 jdc
1059 1.1 jdc s = splnet();
1060 1.1 jdc
1061 1.1 jdc DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1062 1.1 jdc /*
1063 1.1 jdc * Initialization sequence. The numbered steps below correspond
1064 1.1 jdc * to the sequence outlined in section 6.3.5.1 in the Ethernet
1065 1.1 jdc * Channel Engine manual (part of the PCIO manual).
1066 1.1 jdc * See also the STP2002-STQ document from Sun Microsystems.
1067 1.1 jdc */
1068 1.1 jdc
1069 1.1 jdc /* step 1 & 2. Reset the Ethernet Channel */
1070 1.1 jdc cas_stop(ifp, 0);
1071 1.1 jdc cas_reset(sc);
1072 1.1 jdc DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1073 1.1 jdc
1074 1.1 jdc /* Re-initialize the MIF */
1075 1.1 jdc cas_mifinit(sc);
1076 1.1 jdc
1077 1.1 jdc /* step 3. Setup data structures in host memory */
1078 1.1 jdc cas_meminit(sc);
1079 1.1 jdc
1080 1.1 jdc /* step 4. TX MAC registers & counters */
1081 1.1 jdc cas_init_regs(sc);
1082 1.1 jdc max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1083 1.1 jdc v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1084 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1085 1.1 jdc
1086 1.1 jdc /* step 5. RX MAC registers & counters */
1087 1.1 jdc cas_iff(sc);
1088 1.1 jdc
1089 1.1 jdc /* step 6 & 7. Program Descriptor Ring Base Addresses */
1090 1.1 jdc KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1091 1.1 jdc bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1092 1.1 jdc (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1093 1.1 jdc bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1094 1.1 jdc
1095 1.1 jdc KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1096 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1097 1.1 jdc (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1098 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1099 1.1 jdc
1100 1.1 jdc KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1101 1.1 jdc bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1102 1.1 jdc (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1103 1.1 jdc bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1104 1.1 jdc
1105 1.1 jdc if (CAS_PLUS(sc)) {
1106 1.1 jdc KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1107 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1108 1.1 jdc (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1109 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1110 1.1 jdc CAS_CDRXADDR2(sc, 0));
1111 1.1 jdc }
1112 1.1 jdc
1113 1.1 jdc /* step 8. Global Configuration & Interrupt Mask */
1114 1.3 jdc cas_estintr(sc, CAS_INTR_REG);
1115 1.1 jdc
1116 1.1 jdc /* step 9. ETX Configuration: use mostly default values */
1117 1.1 jdc
1118 1.1 jdc /* Enable DMA */
1119 1.1 jdc v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1120 1.1 jdc bus_space_write_4(t, h, CAS_TX_CONFIG,
1121 1.1 jdc v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1122 1.1 jdc bus_space_write_4(t, h, CAS_TX_KICK, 0);
1123 1.1 jdc
1124 1.1 jdc /* step 10. ERX Configuration */
1125 1.1 jdc
1126 1.1 jdc /* Encode Receive Descriptor ring size */
1127 1.1 jdc v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1128 1.1 jdc if (CAS_PLUS(sc))
1129 1.1 jdc v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1130 1.1 jdc
1131 1.1 jdc /* Encode Receive Completion ring size */
1132 1.1 jdc v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1133 1.1 jdc
1134 1.1 jdc /* Enable DMA */
1135 1.1 jdc bus_space_write_4(t, h, CAS_RX_CONFIG,
1136 1.1 jdc v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1137 1.1 jdc
1138 1.1 jdc /*
1139 1.1 jdc * The following value is for an OFF Threshold of about 3/4 full
1140 1.1 jdc * and an ON Threshold of 1/4 full.
1141 1.1 jdc */
1142 1.1 jdc bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1143 1.1 jdc (3 * sc->sc_rxfifosize / 256) |
1144 1.1 jdc ((sc->sc_rxfifosize / 256) << 12));
1145 1.1 jdc bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1146 1.1 jdc
1147 1.1 jdc /* step 11. Configure Media */
1148 1.1 jdc mii_ifmedia_change(&sc->sc_mii);
1149 1.1 jdc
1150 1.1 jdc /* step 12. RX_MAC Configuration Register */
1151 1.1 jdc v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1152 1.1 jdc v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1153 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1154 1.1 jdc
1155 1.1 jdc /* step 14. Issue Transmit Pending command */
1156 1.1 jdc
1157 1.1 jdc /* step 15. Give the receiver a swift kick */
1158 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1159 1.1 jdc if (CAS_PLUS(sc))
1160 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1161 1.1 jdc
1162 1.1 jdc /* Start the one second timer. */
1163 1.1 jdc callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1164 1.1 jdc
1165 1.1 jdc ifp->if_flags |= IFF_RUNNING;
1166 1.1 jdc ifp->if_flags &= ~IFF_OACTIVE;
1167 1.1 jdc ifp->if_timer = 0;
1168 1.1 jdc splx(s);
1169 1.1 jdc
1170 1.1 jdc return (0);
1171 1.1 jdc }
1172 1.1 jdc
1173 1.1 jdc void
1174 1.1 jdc cas_init_regs(struct cas_softc *sc)
1175 1.1 jdc {
1176 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1177 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1178 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1179 1.1 jdc const u_char *laddr = CLLADDR(ifp->if_sadl);
1180 1.1 jdc u_int32_t v, r;
1181 1.1 jdc
1182 1.1 jdc /* These regs are not cleared on reset */
1183 1.1 jdc sc->sc_inited = 0;
1184 1.1 jdc if (!sc->sc_inited) {
1185 1.1 jdc /* Load recommended values */
1186 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1187 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1188 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1189 1.1 jdc
1190 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1191 1.1 jdc /* Max frame and max burst size */
1192 1.1 jdc v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1193 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1194 1.1 jdc
1195 1.1 jdc bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1196 1.1 jdc bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1197 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1198 1.1 jdc bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1199 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1200 1.1 jdc ((laddr[5]<<8)|laddr[4])&0x3ff);
1201 1.1 jdc
1202 1.1 jdc /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1203 1.1 jdc for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1204 1.3 jdc bus_space_write_4(t, h, r, 0);
1205 1.1 jdc
1206 1.1 jdc /* MAC control addr set to 0:1:c2:0:1:80 */
1207 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1208 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1209 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1210 1.1 jdc
1211 1.1 jdc /* MAC filter addr set to 0:0:0:0:0:0 */
1212 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1213 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1214 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1215 1.1 jdc
1216 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1217 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1218 1.1 jdc
1219 1.1 jdc /* Hash table initialized to 0 */
1220 1.1 jdc for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1221 1.1 jdc bus_space_write_4(t, h, r, 0);
1222 1.1 jdc
1223 1.1 jdc sc->sc_inited = 1;
1224 1.1 jdc }
1225 1.1 jdc
1226 1.1 jdc /* Counters need to be zeroed */
1227 1.1 jdc bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1228 1.1 jdc bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1229 1.1 jdc bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1230 1.1 jdc bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1231 1.1 jdc bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1232 1.1 jdc bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1233 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1234 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1235 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1236 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1237 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1238 1.1 jdc
1239 1.1 jdc /* Un-pause stuff */
1240 1.1 jdc bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1241 1.1 jdc
1242 1.1 jdc /*
1243 1.1 jdc * Set the station address.
1244 1.1 jdc */
1245 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1246 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1247 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1248 1.1 jdc }
1249 1.1 jdc
1250 1.1 jdc /*
1251 1.1 jdc * Receive interrupt.
1252 1.1 jdc */
1253 1.1 jdc int
1254 1.1 jdc cas_rint(struct cas_softc *sc)
1255 1.1 jdc {
1256 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1257 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1258 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1259 1.1 jdc struct cas_rxsoft *rxs;
1260 1.1 jdc struct mbuf *m;
1261 1.1 jdc u_int64_t word[4];
1262 1.1 jdc int len, off, idx;
1263 1.1 jdc int i, skip;
1264 1.1 jdc void *cp;
1265 1.1 jdc
1266 1.1 jdc for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1267 1.1 jdc CAS_CDRXCSYNC(sc, i,
1268 1.1 jdc BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1269 1.1 jdc
1270 1.1 jdc word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1271 1.1 jdc word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1272 1.1 jdc word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1273 1.1 jdc word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1274 1.1 jdc
1275 1.1 jdc /* Stop if the hardware still owns the descriptor. */
1276 1.1 jdc if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1277 1.1 jdc break;
1278 1.1 jdc
1279 1.1 jdc len = CAS_RC1_HDR_LEN(word[1]);
1280 1.1 jdc if (len > 0) {
1281 1.1 jdc off = CAS_RC1_HDR_OFF(word[1]);
1282 1.1 jdc idx = CAS_RC1_HDR_IDX(word[1]);
1283 1.1 jdc rxs = &sc->sc_rxsoft[idx];
1284 1.1 jdc
1285 1.1 jdc DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1286 1.1 jdc idx, off, len));
1287 1.1 jdc
1288 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1289 1.1 jdc rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1290 1.1 jdc
1291 1.1 jdc cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1292 1.1 jdc m = m_devget(cp, len, 0, ifp, NULL);
1293 1.1 jdc
1294 1.1 jdc if (word[0] & CAS_RC0_RELEASE_HDR)
1295 1.1 jdc cas_add_rxbuf(sc, idx);
1296 1.1 jdc
1297 1.1 jdc if (m != NULL) {
1298 1.1 jdc
1299 1.1 jdc /*
1300 1.1 jdc * Pass this up to any BPF listeners, but only
1301 1.1 jdc * pass it up the stack if its for us.
1302 1.1 jdc */
1303 1.8 joerg bpf_mtap(ifp, m);
1304 1.1 jdc
1305 1.1 jdc ifp->if_ipackets++;
1306 1.1 jdc m->m_pkthdr.csum_flags = 0;
1307 1.1 jdc (*ifp->if_input)(ifp, m);
1308 1.1 jdc } else
1309 1.1 jdc ifp->if_ierrors++;
1310 1.1 jdc }
1311 1.1 jdc
1312 1.1 jdc len = CAS_RC0_DATA_LEN(word[0]);
1313 1.1 jdc if (len > 0) {
1314 1.1 jdc off = CAS_RC0_DATA_OFF(word[0]);
1315 1.1 jdc idx = CAS_RC0_DATA_IDX(word[0]);
1316 1.1 jdc rxs = &sc->sc_rxsoft[idx];
1317 1.1 jdc
1318 1.1 jdc DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1319 1.1 jdc idx, off, len));
1320 1.1 jdc
1321 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1322 1.1 jdc rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1323 1.1 jdc
1324 1.1 jdc /* XXX We should not be copying the packet here. */
1325 1.1 jdc cp = rxs->rxs_kva + off + ETHER_ALIGN;
1326 1.1 jdc m = m_devget(cp, len, 0, ifp, NULL);
1327 1.1 jdc
1328 1.1 jdc if (word[0] & CAS_RC0_RELEASE_DATA)
1329 1.1 jdc cas_add_rxbuf(sc, idx);
1330 1.1 jdc
1331 1.1 jdc if (m != NULL) {
1332 1.1 jdc /*
1333 1.1 jdc * Pass this up to any BPF listeners, but only
1334 1.1 jdc * pass it up the stack if its for us.
1335 1.1 jdc */
1336 1.8 joerg bpf_mtap(ifp, m);
1337 1.1 jdc
1338 1.1 jdc ifp->if_ipackets++;
1339 1.1 jdc m->m_pkthdr.csum_flags = 0;
1340 1.1 jdc (*ifp->if_input)(ifp, m);
1341 1.1 jdc } else
1342 1.1 jdc ifp->if_ierrors++;
1343 1.1 jdc }
1344 1.1 jdc
1345 1.1 jdc if (word[0] & CAS_RC0_SPLIT)
1346 1.1 jdc aprint_error_dev(sc->sc_dev, "split packet\n");
1347 1.1 jdc
1348 1.1 jdc skip = CAS_RC0_SKIP(word[0]);
1349 1.1 jdc }
1350 1.1 jdc
1351 1.1 jdc while (sc->sc_rxptr != i) {
1352 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1353 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1354 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1355 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1356 1.1 jdc CAS_DMA_WRITE(CAS_RC3_OWN);
1357 1.1 jdc CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1358 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1359 1.1 jdc
1360 1.1 jdc sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1361 1.1 jdc }
1362 1.1 jdc
1363 1.1 jdc bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1364 1.1 jdc
1365 1.1 jdc DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1366 1.1 jdc sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1367 1.1 jdc
1368 1.1 jdc return (1);
1369 1.1 jdc }
1370 1.1 jdc
1371 1.1 jdc /*
1372 1.1 jdc * cas_add_rxbuf:
1373 1.1 jdc *
1374 1.1 jdc * Add a receive buffer to the indicated descriptor.
1375 1.1 jdc */
1376 1.1 jdc int
1377 1.1 jdc cas_add_rxbuf(struct cas_softc *sc, int idx)
1378 1.1 jdc {
1379 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1380 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1381 1.1 jdc
1382 1.1 jdc CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1383 1.1 jdc
1384 1.1 jdc if ((sc->sc_rxdptr % 4) == 0)
1385 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1386 1.1 jdc
1387 1.1 jdc if (++sc->sc_rxdptr == CAS_NRXDESC)
1388 1.1 jdc sc->sc_rxdptr = 0;
1389 1.1 jdc
1390 1.1 jdc return (0);
1391 1.1 jdc }
1392 1.1 jdc
1393 1.1 jdc int
1394 1.1 jdc cas_eint(struct cas_softc *sc, u_int status)
1395 1.1 jdc {
1396 1.1 jdc char bits[128];
1397 1.1 jdc if ((status & CAS_INTR_MIF) != 0) {
1398 1.1 jdc DPRINTF(sc, ("%s: link status changed\n",
1399 1.1 jdc device_xname(sc->sc_dev)));
1400 1.1 jdc return (1);
1401 1.1 jdc }
1402 1.1 jdc
1403 1.1 jdc snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1404 1.1 jdc printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1405 1.1 jdc return (1);
1406 1.1 jdc }
1407 1.1 jdc
1408 1.1 jdc int
1409 1.1 jdc cas_pint(struct cas_softc *sc)
1410 1.1 jdc {
1411 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1412 1.1 jdc bus_space_handle_t seb = sc->sc_memh;
1413 1.1 jdc u_int32_t status;
1414 1.1 jdc
1415 1.1 jdc status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1416 1.1 jdc status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1417 1.1 jdc #ifdef CAS_DEBUG
1418 1.1 jdc if (status)
1419 1.1 jdc printf("%s: link status changed\n", device_xname(sc->sc_dev));
1420 1.1 jdc #endif
1421 1.1 jdc return (1);
1422 1.1 jdc }
1423 1.1 jdc
1424 1.1 jdc int
1425 1.1 jdc cas_intr(void *v)
1426 1.1 jdc {
1427 1.1 jdc struct cas_softc *sc = (struct cas_softc *)v;
1428 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1429 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1430 1.1 jdc bus_space_handle_t seb = sc->sc_memh;
1431 1.1 jdc u_int32_t status;
1432 1.1 jdc int r = 0;
1433 1.1 jdc #ifdef CAS_DEBUG
1434 1.1 jdc char bits[128];
1435 1.1 jdc #endif
1436 1.1 jdc
1437 1.1 jdc sc->sc_ev_intr.ev_count++;
1438 1.1 jdc
1439 1.1 jdc status = bus_space_read_4(t, seb, CAS_STATUS);
1440 1.1 jdc #ifdef CAS_DEBUG
1441 1.1 jdc snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1442 1.1 jdc #endif
1443 1.1 jdc DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1444 1.1 jdc device_xname(sc->sc_dev), (status>>19), bits));
1445 1.1 jdc
1446 1.1 jdc if ((status & CAS_INTR_PCS) != 0)
1447 1.1 jdc r |= cas_pint(sc);
1448 1.1 jdc
1449 1.1 jdc if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1450 1.1 jdc CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1451 1.1 jdc r |= cas_eint(sc, status);
1452 1.1 jdc
1453 1.1 jdc if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1454 1.1 jdc r |= cas_tint(sc, status);
1455 1.1 jdc
1456 1.1 jdc if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1457 1.1 jdc r |= cas_rint(sc);
1458 1.1 jdc
1459 1.1 jdc /* We should eventually do more than just print out error stats. */
1460 1.1 jdc if (status & CAS_INTR_TX_MAC) {
1461 1.1 jdc int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1462 1.1 jdc #ifdef CAS_DEBUG
1463 1.1 jdc if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1464 1.1 jdc printf("%s: MAC tx fault, status %x\n",
1465 1.1 jdc device_xname(sc->sc_dev), txstat);
1466 1.1 jdc #endif
1467 1.1 jdc if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1468 1.1 jdc cas_init(ifp);
1469 1.1 jdc }
1470 1.1 jdc if (status & CAS_INTR_RX_MAC) {
1471 1.1 jdc int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1472 1.1 jdc #ifdef CAS_DEBUG
1473 1.3 jdc if (rxstat & ~CAS_MAC_RX_DONE)
1474 1.3 jdc printf("%s: MAC rx fault, status %x\n",
1475 1.3 jdc device_xname(sc->sc_dev), rxstat);
1476 1.1 jdc #endif
1477 1.1 jdc /*
1478 1.1 jdc * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1479 1.1 jdc * due to a silicon bug so handle them silently.
1480 1.1 jdc */
1481 1.1 jdc if (rxstat & CAS_MAC_RX_OVERFLOW) {
1482 1.1 jdc ifp->if_ierrors++;
1483 1.1 jdc cas_init(ifp);
1484 1.1 jdc }
1485 1.1 jdc #ifdef CAS_DEBUG
1486 1.1 jdc else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1487 1.1 jdc printf("%s: MAC rx fault, status %x\n",
1488 1.1 jdc device_xname(sc->sc_dev), rxstat);
1489 1.1 jdc #endif
1490 1.1 jdc }
1491 1.1 jdc #if NRND > 0
1492 1.1 jdc rnd_add_uint32(&sc->rnd_source, status);
1493 1.1 jdc #endif
1494 1.1 jdc return (r);
1495 1.1 jdc }
1496 1.1 jdc
1497 1.1 jdc
1498 1.1 jdc void
1499 1.1 jdc cas_watchdog(struct ifnet *ifp)
1500 1.1 jdc {
1501 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1502 1.1 jdc
1503 1.1 jdc DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1504 1.1 jdc "CAS_MAC_RX_CONFIG %x\n",
1505 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1506 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1507 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1508 1.1 jdc
1509 1.1 jdc log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1510 1.1 jdc ++ifp->if_oerrors;
1511 1.1 jdc
1512 1.1 jdc /* Try to get more packets going. */
1513 1.1 jdc cas_init(ifp);
1514 1.1 jdc }
1515 1.1 jdc
1516 1.1 jdc /*
1517 1.1 jdc * Initialize the MII Management Interface
1518 1.1 jdc */
1519 1.1 jdc void
1520 1.1 jdc cas_mifinit(struct cas_softc *sc)
1521 1.1 jdc {
1522 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1523 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1524 1.1 jdc
1525 1.1 jdc /* Configure the MIF in frame mode */
1526 1.1 jdc sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1527 1.1 jdc sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1528 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1529 1.1 jdc }
1530 1.1 jdc
1531 1.1 jdc /*
1532 1.1 jdc * MII interface
1533 1.1 jdc *
1534 1.1 jdc * The Cassini MII interface supports at least three different operating modes:
1535 1.1 jdc *
1536 1.1 jdc * Bitbang mode is implemented using data, clock and output enable registers.
1537 1.1 jdc *
1538 1.1 jdc * Frame mode is implemented by loading a complete frame into the frame
1539 1.1 jdc * register and polling the valid bit for completion.
1540 1.1 jdc *
1541 1.1 jdc * Polling mode uses the frame register but completion is indicated by
1542 1.1 jdc * an interrupt.
1543 1.1 jdc *
1544 1.1 jdc */
1545 1.1 jdc int
1546 1.1 jdc cas_mii_readreg(device_t self, int phy, int reg)
1547 1.1 jdc {
1548 1.1 jdc struct cas_softc *sc = device_private(self);
1549 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1550 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1551 1.1 jdc int n;
1552 1.1 jdc u_int32_t v;
1553 1.1 jdc
1554 1.1 jdc #ifdef CAS_DEBUG
1555 1.1 jdc if (sc->sc_debug)
1556 1.1 jdc printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1557 1.1 jdc #endif
1558 1.1 jdc
1559 1.1 jdc /* Construct the frame command */
1560 1.1 jdc v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1561 1.1 jdc CAS_MIF_FRAME_READ;
1562 1.1 jdc
1563 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1564 1.1 jdc for (n = 0; n < 100; n++) {
1565 1.1 jdc DELAY(1);
1566 1.1 jdc v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1567 1.1 jdc if (v & CAS_MIF_FRAME_TA0)
1568 1.1 jdc return (v & CAS_MIF_FRAME_DATA);
1569 1.1 jdc }
1570 1.1 jdc
1571 1.1 jdc printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1572 1.1 jdc return (0);
1573 1.1 jdc }
1574 1.1 jdc
1575 1.1 jdc void
1576 1.1 jdc cas_mii_writereg(device_t self, int phy, int reg, int val)
1577 1.1 jdc {
1578 1.1 jdc struct cas_softc *sc = device_private(self);
1579 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1580 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1581 1.1 jdc int n;
1582 1.1 jdc u_int32_t v;
1583 1.1 jdc
1584 1.1 jdc #ifdef CAS_DEBUG
1585 1.1 jdc if (sc->sc_debug)
1586 1.1 jdc printf("cas_mii_writereg: phy %d reg %d val %x\n",
1587 1.1 jdc phy, reg, val);
1588 1.1 jdc #endif
1589 1.1 jdc
1590 1.1 jdc /* Construct the frame command */
1591 1.1 jdc v = CAS_MIF_FRAME_WRITE |
1592 1.1 jdc (phy << CAS_MIF_PHY_SHIFT) |
1593 1.1 jdc (reg << CAS_MIF_REG_SHIFT) |
1594 1.1 jdc (val & CAS_MIF_FRAME_DATA);
1595 1.1 jdc
1596 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1597 1.1 jdc for (n = 0; n < 100; n++) {
1598 1.1 jdc DELAY(1);
1599 1.1 jdc v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1600 1.1 jdc if (v & CAS_MIF_FRAME_TA0)
1601 1.1 jdc return;
1602 1.1 jdc }
1603 1.1 jdc
1604 1.1 jdc printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1605 1.1 jdc }
1606 1.1 jdc
1607 1.1 jdc void
1608 1.1 jdc cas_mii_statchg(device_t self)
1609 1.1 jdc {
1610 1.1 jdc struct cas_softc *sc = device_private(self);
1611 1.1 jdc #ifdef CAS_DEBUG
1612 1.1 jdc int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1613 1.1 jdc #endif
1614 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1615 1.1 jdc bus_space_handle_t mac = sc->sc_memh;
1616 1.1 jdc u_int32_t v;
1617 1.1 jdc
1618 1.1 jdc #ifdef CAS_DEBUG
1619 1.1 jdc if (sc->sc_debug)
1620 1.1 jdc printf("cas_mii_statchg: status change: phy = %d\n",
1621 1.1 jdc sc->sc_phys[instance]);
1622 1.1 jdc #endif
1623 1.1 jdc
1624 1.1 jdc /* Set tx full duplex options */
1625 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1626 1.1 jdc delay(10000); /* reg must be cleared and delay before changing. */
1627 1.1 jdc v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1628 1.1 jdc CAS_MAC_TX_ENABLE;
1629 1.1 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1630 1.1 jdc v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1631 1.1 jdc }
1632 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1633 1.1 jdc
1634 1.1 jdc /* XIF Configuration */
1635 1.1 jdc v = CAS_MAC_XIF_TX_MII_ENA;
1636 1.1 jdc v |= CAS_MAC_XIF_LINK_LED;
1637 1.1 jdc
1638 1.1 jdc /* MII needs echo disable if half duplex. */
1639 1.1 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1640 1.1 jdc /* turn on full duplex LED */
1641 1.1 jdc v |= CAS_MAC_XIF_FDPLX_LED;
1642 1.1 jdc else
1643 1.1 jdc /* half duplex -- disable echo */
1644 1.1 jdc v |= CAS_MAC_XIF_ECHO_DISABL;
1645 1.1 jdc
1646 1.1 jdc switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1647 1.1 jdc case IFM_1000_T: /* Gigabit using GMII interface */
1648 1.1 jdc case IFM_1000_SX:
1649 1.1 jdc v |= CAS_MAC_XIF_GMII_MODE;
1650 1.1 jdc break;
1651 1.1 jdc default:
1652 1.1 jdc v &= ~CAS_MAC_XIF_GMII_MODE;
1653 1.1 jdc }
1654 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1655 1.1 jdc }
1656 1.1 jdc
1657 1.1 jdc int
1658 1.1 jdc cas_pcs_readreg(device_t self, int phy, int reg)
1659 1.1 jdc {
1660 1.1 jdc struct cas_softc *sc = device_private(self);
1661 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1662 1.1 jdc bus_space_handle_t pcs = sc->sc_memh;
1663 1.1 jdc
1664 1.1 jdc #ifdef CAS_DEBUG
1665 1.1 jdc if (sc->sc_debug)
1666 1.1 jdc printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1667 1.1 jdc #endif
1668 1.1 jdc
1669 1.1 jdc if (phy != CAS_PHYAD_EXTERNAL)
1670 1.1 jdc return (0);
1671 1.1 jdc
1672 1.1 jdc switch (reg) {
1673 1.1 jdc case MII_BMCR:
1674 1.1 jdc reg = CAS_MII_CONTROL;
1675 1.1 jdc break;
1676 1.1 jdc case MII_BMSR:
1677 1.1 jdc reg = CAS_MII_STATUS;
1678 1.1 jdc break;
1679 1.1 jdc case MII_ANAR:
1680 1.1 jdc reg = CAS_MII_ANAR;
1681 1.1 jdc break;
1682 1.1 jdc case MII_ANLPAR:
1683 1.1 jdc reg = CAS_MII_ANLPAR;
1684 1.1 jdc break;
1685 1.1 jdc case MII_EXTSR:
1686 1.1 jdc return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1687 1.1 jdc default:
1688 1.1 jdc return (0);
1689 1.1 jdc }
1690 1.1 jdc
1691 1.1 jdc return bus_space_read_4(t, pcs, reg);
1692 1.1 jdc }
1693 1.1 jdc
1694 1.1 jdc void
1695 1.1 jdc cas_pcs_writereg(device_t self, int phy, int reg, int val)
1696 1.1 jdc {
1697 1.1 jdc struct cas_softc *sc = device_private(self);
1698 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1699 1.1 jdc bus_space_handle_t pcs = sc->sc_memh;
1700 1.1 jdc int reset = 0;
1701 1.1 jdc
1702 1.1 jdc #ifdef CAS_DEBUG
1703 1.1 jdc if (sc->sc_debug)
1704 1.1 jdc printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1705 1.1 jdc phy, reg, val);
1706 1.1 jdc #endif
1707 1.1 jdc
1708 1.1 jdc if (phy != CAS_PHYAD_EXTERNAL)
1709 1.1 jdc return;
1710 1.1 jdc
1711 1.1 jdc if (reg == MII_ANAR)
1712 1.1 jdc bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1713 1.1 jdc
1714 1.1 jdc switch (reg) {
1715 1.1 jdc case MII_BMCR:
1716 1.1 jdc reset = (val & CAS_MII_CONTROL_RESET);
1717 1.1 jdc reg = CAS_MII_CONTROL;
1718 1.1 jdc break;
1719 1.1 jdc case MII_BMSR:
1720 1.1 jdc reg = CAS_MII_STATUS;
1721 1.1 jdc break;
1722 1.1 jdc case MII_ANAR:
1723 1.1 jdc reg = CAS_MII_ANAR;
1724 1.1 jdc break;
1725 1.1 jdc case MII_ANLPAR:
1726 1.1 jdc reg = CAS_MII_ANLPAR;
1727 1.1 jdc break;
1728 1.1 jdc default:
1729 1.1 jdc return;
1730 1.1 jdc }
1731 1.1 jdc
1732 1.1 jdc bus_space_write_4(t, pcs, reg, val);
1733 1.1 jdc
1734 1.1 jdc if (reset)
1735 1.1 jdc cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1736 1.1 jdc
1737 1.1 jdc if (reg == CAS_MII_ANAR || reset)
1738 1.1 jdc bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1739 1.1 jdc CAS_MII_CONFIG_ENABLE);
1740 1.1 jdc }
1741 1.1 jdc
1742 1.1 jdc int
1743 1.1 jdc cas_mediachange(struct ifnet *ifp)
1744 1.1 jdc {
1745 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1746 1.1 jdc struct mii_data *mii = &sc->sc_mii;
1747 1.1 jdc
1748 1.1 jdc if (mii->mii_instance) {
1749 1.1 jdc struct mii_softc *miisc;
1750 1.1 jdc LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1751 1.1 jdc mii_phy_reset(miisc);
1752 1.1 jdc }
1753 1.1 jdc
1754 1.1 jdc return (mii_mediachg(&sc->sc_mii));
1755 1.1 jdc }
1756 1.1 jdc
1757 1.1 jdc void
1758 1.1 jdc cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1759 1.1 jdc {
1760 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1761 1.1 jdc
1762 1.1 jdc mii_pollstat(&sc->sc_mii);
1763 1.1 jdc ifmr->ifm_active = sc->sc_mii.mii_media_active;
1764 1.1 jdc ifmr->ifm_status = sc->sc_mii.mii_media_status;
1765 1.1 jdc }
1766 1.1 jdc
1767 1.1 jdc /*
1768 1.1 jdc * Process an ioctl request.
1769 1.1 jdc */
1770 1.1 jdc int
1771 1.1 jdc cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1772 1.1 jdc {
1773 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1774 1.1 jdc int s, error = 0;
1775 1.1 jdc
1776 1.1 jdc s = splnet();
1777 1.1 jdc
1778 1.1 jdc if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1779 1.1 jdc error = 0;
1780 1.1 jdc if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1781 1.1 jdc ;
1782 1.1 jdc else if (ifp->if_flags & IFF_RUNNING) {
1783 1.1 jdc /*
1784 1.1 jdc * Multicast list has changed; set the hardware filter
1785 1.1 jdc * accordingly.
1786 1.1 jdc */
1787 1.1 jdc cas_iff(sc);
1788 1.1 jdc }
1789 1.1 jdc }
1790 1.1 jdc
1791 1.1 jdc splx(s);
1792 1.1 jdc return (error);
1793 1.1 jdc }
1794 1.1 jdc
1795 1.1 jdc static bool
1796 1.6 dyoung cas_suspend(device_t self, const pmf_qual_t *qual)
1797 1.1 jdc {
1798 1.1 jdc struct cas_softc *sc = device_private(self);
1799 1.3 jdc bus_space_tag_t t = sc->sc_memt;
1800 1.3 jdc bus_space_handle_t h = sc->sc_memh;
1801 1.1 jdc
1802 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1803 1.1 jdc if (sc->sc_ih != NULL) {
1804 1.1 jdc pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1805 1.1 jdc sc->sc_ih = NULL;
1806 1.1 jdc }
1807 1.1 jdc
1808 1.1 jdc return true;
1809 1.1 jdc }
1810 1.1 jdc
1811 1.1 jdc static bool
1812 1.6 dyoung cas_resume(device_t self, const pmf_qual_t *qual)
1813 1.1 jdc {
1814 1.1 jdc struct cas_softc *sc = device_private(self);
1815 1.1 jdc
1816 1.3 jdc return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1817 1.1 jdc }
1818 1.1 jdc
1819 1.1 jdc static bool
1820 1.3 jdc cas_estintr(struct cas_softc *sc, int what)
1821 1.1 jdc {
1822 1.3 jdc bus_space_tag_t t = sc->sc_memt;
1823 1.3 jdc bus_space_handle_t h = sc->sc_memh;
1824 1.1 jdc const char *intrstr = NULL;
1825 1.1 jdc
1826 1.3 jdc /* PCI interrupts */
1827 1.3 jdc if (what & CAS_INTR_PCI) {
1828 1.3 jdc intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1829 1.3 jdc sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1830 1.3 jdc IPL_NET, cas_intr, sc);
1831 1.3 jdc if (sc->sc_ih == NULL) {
1832 1.3 jdc aprint_error_dev(sc->sc_dev,
1833 1.3 jdc "unable to establish interrupt");
1834 1.3 jdc if (intrstr != NULL)
1835 1.3 jdc aprint_error(" at %s", intrstr);
1836 1.3 jdc aprint_error("\n");
1837 1.3 jdc return false;
1838 1.3 jdc }
1839 1.3 jdc
1840 1.3 jdc aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1841 1.1 jdc }
1842 1.1 jdc
1843 1.3 jdc /* Interrupt register */
1844 1.3 jdc if (what & CAS_INTR_REG) {
1845 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK,
1846 1.3 jdc ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1847 1.3 jdc CAS_INTR_TX_TAG_ERR|
1848 1.3 jdc CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1849 1.3 jdc CAS_INTR_RX_TAG_ERR|
1850 1.3 jdc CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1851 1.3 jdc CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1852 1.3 jdc CAS_INTR_BERR));
1853 1.3 jdc bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1854 1.3 jdc CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1855 1.3 jdc bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1856 1.3 jdc bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1857 1.3 jdc }
1858 1.1 jdc return true;
1859 1.1 jdc }
1860 1.1 jdc
1861 1.1 jdc bool
1862 1.1 jdc cas_shutdown(device_t self, int howto)
1863 1.1 jdc {
1864 1.1 jdc struct cas_softc *sc = device_private(self);
1865 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1866 1.1 jdc
1867 1.1 jdc cas_stop(ifp, 1);
1868 1.1 jdc
1869 1.1 jdc return true;
1870 1.1 jdc }
1871 1.1 jdc
1872 1.1 jdc void
1873 1.1 jdc cas_iff(struct cas_softc *sc)
1874 1.1 jdc {
1875 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1876 1.1 jdc struct ethercom *ec = &sc->sc_ethercom;
1877 1.1 jdc struct ether_multi *enm;
1878 1.1 jdc struct ether_multistep step;
1879 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1880 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1881 1.1 jdc u_int32_t crc, hash[16], rxcfg;
1882 1.1 jdc int i;
1883 1.1 jdc
1884 1.1 jdc rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1885 1.1 jdc rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1886 1.1 jdc CAS_MAC_RX_PROMISC_GRP);
1887 1.1 jdc ifp->if_flags &= ~IFF_ALLMULTI;
1888 1.1 jdc
1889 1.1 jdc if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1890 1.1 jdc ifp->if_flags |= IFF_ALLMULTI;
1891 1.1 jdc if (ifp->if_flags & IFF_PROMISC)
1892 1.1 jdc rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1893 1.1 jdc else
1894 1.1 jdc rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1895 1.1 jdc } else {
1896 1.1 jdc /*
1897 1.1 jdc * Set up multicast address filter by passing all multicast
1898 1.1 jdc * addresses through a crc generator, and then using the
1899 1.1 jdc * high order 8 bits as an index into the 256 bit logical
1900 1.1 jdc * address filter. The high order 4 bits selects the word,
1901 1.1 jdc * while the other 4 bits select the bit within the word
1902 1.1 jdc * (where bit 0 is the MSB).
1903 1.1 jdc */
1904 1.1 jdc
1905 1.1 jdc rxcfg |= CAS_MAC_RX_HASH_FILTER;
1906 1.1 jdc
1907 1.1 jdc /* Clear hash table */
1908 1.1 jdc for (i = 0; i < 16; i++)
1909 1.1 jdc hash[i] = 0;
1910 1.1 jdc
1911 1.1 jdc ETHER_FIRST_MULTI(step, ec, enm);
1912 1.1 jdc while (enm != NULL) {
1913 1.1 jdc crc = ether_crc32_le(enm->enm_addrlo,
1914 1.1 jdc ETHER_ADDR_LEN);
1915 1.1 jdc
1916 1.1 jdc /* Just want the 8 most significant bits. */
1917 1.1 jdc crc >>= 24;
1918 1.1 jdc
1919 1.1 jdc /* Set the corresponding bit in the filter. */
1920 1.1 jdc hash[crc >> 4] |= 1 << (15 - (crc & 15));
1921 1.1 jdc
1922 1.1 jdc ETHER_NEXT_MULTI(step, enm);
1923 1.1 jdc }
1924 1.1 jdc
1925 1.1 jdc /* Now load the hash table into the chip (if we are using it) */
1926 1.1 jdc for (i = 0; i < 16; i++) {
1927 1.1 jdc bus_space_write_4(t, h,
1928 1.1 jdc CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1929 1.1 jdc hash[i]);
1930 1.1 jdc }
1931 1.1 jdc }
1932 1.1 jdc
1933 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1934 1.1 jdc }
1935 1.1 jdc
1936 1.1 jdc int
1937 1.1 jdc cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1938 1.1 jdc {
1939 1.1 jdc u_int64_t flags;
1940 1.1 jdc u_int32_t cur, frag, i;
1941 1.1 jdc bus_dmamap_t map;
1942 1.1 jdc
1943 1.1 jdc cur = frag = *bixp;
1944 1.1 jdc map = sc->sc_txd[cur].sd_map;
1945 1.1 jdc
1946 1.1 jdc if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1947 1.1 jdc BUS_DMA_NOWAIT) != 0) {
1948 1.1 jdc return (ENOBUFS);
1949 1.1 jdc }
1950 1.1 jdc
1951 1.1 jdc if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1952 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, map);
1953 1.1 jdc return (ENOBUFS);
1954 1.1 jdc }
1955 1.1 jdc
1956 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1957 1.1 jdc BUS_DMASYNC_PREWRITE);
1958 1.1 jdc
1959 1.1 jdc for (i = 0; i < map->dm_nsegs; i++) {
1960 1.1 jdc sc->sc_txdescs[frag].cd_addr =
1961 1.1 jdc CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1962 1.1 jdc flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1963 1.1 jdc (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1964 1.1 jdc ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1965 1.1 jdc sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1966 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1967 1.1 jdc CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1968 1.1 jdc BUS_DMASYNC_PREWRITE);
1969 1.1 jdc cur = frag;
1970 1.1 jdc if (++frag == CAS_NTXDESC)
1971 1.1 jdc frag = 0;
1972 1.1 jdc }
1973 1.1 jdc
1974 1.1 jdc sc->sc_tx_cnt += map->dm_nsegs;
1975 1.1 jdc sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1976 1.1 jdc sc->sc_txd[cur].sd_map = map;
1977 1.1 jdc sc->sc_txd[cur].sd_mbuf = mhead;
1978 1.1 jdc
1979 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1980 1.1 jdc
1981 1.1 jdc *bixp = frag;
1982 1.1 jdc
1983 1.1 jdc /* sync descriptors */
1984 1.1 jdc
1985 1.1 jdc return (0);
1986 1.1 jdc }
1987 1.1 jdc
1988 1.1 jdc /*
1989 1.1 jdc * Transmit interrupt.
1990 1.1 jdc */
1991 1.1 jdc int
1992 1.1 jdc cas_tint(struct cas_softc *sc, u_int32_t status)
1993 1.1 jdc {
1994 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1995 1.1 jdc struct cas_sxd *sd;
1996 1.1 jdc u_int32_t cons, comp;
1997 1.1 jdc
1998 1.1 jdc comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1999 1.1 jdc cons = sc->sc_tx_cons;
2000 1.1 jdc while (cons != comp) {
2001 1.1 jdc sd = &sc->sc_txd[cons];
2002 1.1 jdc if (sd->sd_mbuf != NULL) {
2003 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2004 1.1 jdc sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2005 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2006 1.1 jdc m_freem(sd->sd_mbuf);
2007 1.1 jdc sd->sd_mbuf = NULL;
2008 1.1 jdc ifp->if_opackets++;
2009 1.1 jdc }
2010 1.1 jdc sc->sc_tx_cnt--;
2011 1.1 jdc if (++cons == CAS_NTXDESC)
2012 1.1 jdc cons = 0;
2013 1.1 jdc }
2014 1.1 jdc sc->sc_tx_cons = cons;
2015 1.1 jdc
2016 1.1 jdc if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2017 1.1 jdc ifp->if_flags &= ~IFF_OACTIVE;
2018 1.1 jdc if (sc->sc_tx_cnt == 0)
2019 1.1 jdc ifp->if_timer = 0;
2020 1.1 jdc
2021 1.1 jdc cas_start(ifp);
2022 1.1 jdc
2023 1.1 jdc return (1);
2024 1.1 jdc }
2025 1.1 jdc
2026 1.1 jdc void
2027 1.1 jdc cas_start(struct ifnet *ifp)
2028 1.1 jdc {
2029 1.1 jdc struct cas_softc *sc = ifp->if_softc;
2030 1.1 jdc struct mbuf *m;
2031 1.1 jdc u_int32_t bix;
2032 1.1 jdc
2033 1.1 jdc if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2034 1.1 jdc return;
2035 1.1 jdc
2036 1.1 jdc bix = sc->sc_tx_prod;
2037 1.1 jdc while (sc->sc_txd[bix].sd_mbuf == NULL) {
2038 1.1 jdc IFQ_POLL(&ifp->if_snd, m);
2039 1.1 jdc if (m == NULL)
2040 1.1 jdc break;
2041 1.1 jdc
2042 1.1 jdc /*
2043 1.1 jdc * If BPF is listening on this interface, let it see the
2044 1.1 jdc * packet before we commit it to the wire.
2045 1.1 jdc */
2046 1.8 joerg bpf_mtap(ifp, m);
2047 1.1 jdc
2048 1.1 jdc /*
2049 1.1 jdc * Encapsulate this packet and start it going...
2050 1.1 jdc * or fail...
2051 1.1 jdc */
2052 1.1 jdc if (cas_encap(sc, m, &bix)) {
2053 1.1 jdc ifp->if_flags |= IFF_OACTIVE;
2054 1.1 jdc break;
2055 1.1 jdc }
2056 1.1 jdc
2057 1.1 jdc IFQ_DEQUEUE(&ifp->if_snd, m);
2058 1.1 jdc ifp->if_timer = 5;
2059 1.1 jdc }
2060 1.1 jdc
2061 1.1 jdc sc->sc_tx_prod = bix;
2062 1.1 jdc }
2063