if_cas.c revision 1.15 1 1.15 drochner /* $NetBSD: if_cas.c,v 1.15 2012/01/30 19:41:19 drochner Exp $ */
2 1.1 jdc /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3 1.1 jdc
4 1.1 jdc /*
5 1.1 jdc *
6 1.1 jdc * Copyright (C) 2007 Mark Kettenis.
7 1.1 jdc * Copyright (C) 2001 Eduardo Horvath.
8 1.1 jdc * All rights reserved.
9 1.1 jdc *
10 1.1 jdc *
11 1.1 jdc * Redistribution and use in source and binary forms, with or without
12 1.1 jdc * modification, are permitted provided that the following conditions
13 1.1 jdc * are met:
14 1.1 jdc * 1. Redistributions of source code must retain the above copyright
15 1.1 jdc * notice, this list of conditions and the following disclaimer.
16 1.1 jdc * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jdc * notice, this list of conditions and the following disclaimer in the
18 1.1 jdc * documentation and/or other materials provided with the distribution.
19 1.1 jdc *
20 1.1 jdc * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 1.1 jdc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 jdc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 jdc * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 1.1 jdc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 1.1 jdc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 1.1 jdc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 1.1 jdc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 1.1 jdc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 1.1 jdc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 1.1 jdc * SUCH DAMAGE.
31 1.1 jdc *
32 1.1 jdc */
33 1.1 jdc
34 1.1 jdc /*
35 1.1 jdc * Driver for Sun Cassini ethernet controllers.
36 1.1 jdc *
37 1.1 jdc * There are basically two variants of this chip: Cassini and
38 1.1 jdc * Cassini+. We can distinguish between the two by revision: 0x10 and
39 1.1 jdc * up are Cassini+. The most important difference is that Cassini+
40 1.1 jdc * has a second RX descriptor ring. Cassini+ will not work without
41 1.1 jdc * configuring that second ring. However, since we don't use it we
42 1.1 jdc * don't actually fill the descriptors, and only hand off the first
43 1.1 jdc * four to the chip.
44 1.1 jdc */
45 1.1 jdc
46 1.1 jdc #include <sys/cdefs.h>
47 1.15 drochner __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.15 2012/01/30 19:41:19 drochner Exp $");
48 1.1 jdc
49 1.13 jmcneill #ifndef _MODULE
50 1.1 jdc #include "opt_inet.h"
51 1.13 jmcneill #endif
52 1.1 jdc
53 1.1 jdc #include <sys/param.h>
54 1.1 jdc #include <sys/systm.h>
55 1.1 jdc #include <sys/callout.h>
56 1.1 jdc #include <sys/mbuf.h>
57 1.1 jdc #include <sys/syslog.h>
58 1.1 jdc #include <sys/malloc.h>
59 1.1 jdc #include <sys/kernel.h>
60 1.1 jdc #include <sys/socket.h>
61 1.1 jdc #include <sys/ioctl.h>
62 1.1 jdc #include <sys/errno.h>
63 1.1 jdc #include <sys/device.h>
64 1.13 jmcneill #include <sys/module.h>
65 1.1 jdc
66 1.1 jdc #include <machine/endian.h>
67 1.1 jdc
68 1.1 jdc #include <net/if.h>
69 1.1 jdc #include <net/if_dl.h>
70 1.1 jdc #include <net/if_media.h>
71 1.1 jdc #include <net/if_ether.h>
72 1.1 jdc
73 1.1 jdc #ifdef INET
74 1.1 jdc #include <netinet/in.h>
75 1.1 jdc #include <netinet/in_systm.h>
76 1.1 jdc #include <netinet/in_var.h>
77 1.1 jdc #include <netinet/ip.h>
78 1.1 jdc #include <netinet/tcp.h>
79 1.1 jdc #include <netinet/udp.h>
80 1.1 jdc #endif
81 1.1 jdc
82 1.1 jdc #include <net/bpf.h>
83 1.1 jdc
84 1.1 jdc #include <sys/bus.h>
85 1.1 jdc #include <sys/intr.h>
86 1.1 jdc
87 1.1 jdc #include <dev/mii/mii.h>
88 1.1 jdc #include <dev/mii/miivar.h>
89 1.1 jdc #include <dev/mii/mii_bitbang.h>
90 1.1 jdc
91 1.1 jdc #include <dev/pci/pcivar.h>
92 1.1 jdc #include <dev/pci/pcireg.h>
93 1.1 jdc #include <dev/pci/pcidevs.h>
94 1.5 jdc #include <prop/proplib.h>
95 1.1 jdc
96 1.1 jdc #include <dev/pci/if_casreg.h>
97 1.1 jdc #include <dev/pci/if_casvar.h>
98 1.1 jdc
99 1.1 jdc #define TRIES 10000
100 1.1 jdc
101 1.3 jdc static bool cas_estintr(struct cas_softc *sc, int);
102 1.1 jdc bool cas_shutdown(device_t, int);
103 1.6 dyoung static bool cas_suspend(device_t, const pmf_qual_t *);
104 1.6 dyoung static bool cas_resume(device_t, const pmf_qual_t *);
105 1.1 jdc static int cas_detach(device_t, int);
106 1.1 jdc static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
107 1.1 jdc
108 1.1 jdc int cas_match(device_t, cfdata_t, void *);
109 1.1 jdc void cas_attach(device_t, device_t, void *);
110 1.1 jdc
111 1.1 jdc
112 1.1 jdc CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
113 1.1 jdc cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
114 1.1 jdc DVF_DETACH_SHUTDOWN);
115 1.1 jdc
116 1.1 jdc int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
117 1.1 jdc
118 1.1 jdc void cas_config(struct cas_softc *, const uint8_t *);
119 1.1 jdc void cas_start(struct ifnet *);
120 1.1 jdc void cas_stop(struct ifnet *, int);
121 1.1 jdc int cas_ioctl(struct ifnet *, u_long, void *);
122 1.1 jdc void cas_tick(void *);
123 1.1 jdc void cas_watchdog(struct ifnet *);
124 1.1 jdc int cas_init(struct ifnet *);
125 1.1 jdc void cas_init_regs(struct cas_softc *);
126 1.1 jdc int cas_ringsize(int);
127 1.1 jdc int cas_cringsize(int);
128 1.1 jdc int cas_meminit(struct cas_softc *);
129 1.1 jdc void cas_mifinit(struct cas_softc *);
130 1.1 jdc int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
131 1.1 jdc u_int32_t, u_int32_t);
132 1.1 jdc void cas_reset(struct cas_softc *);
133 1.1 jdc int cas_reset_rx(struct cas_softc *);
134 1.1 jdc int cas_reset_tx(struct cas_softc *);
135 1.1 jdc int cas_disable_rx(struct cas_softc *);
136 1.1 jdc int cas_disable_tx(struct cas_softc *);
137 1.1 jdc void cas_rxdrain(struct cas_softc *);
138 1.1 jdc int cas_add_rxbuf(struct cas_softc *, int idx);
139 1.1 jdc void cas_iff(struct cas_softc *);
140 1.1 jdc int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
141 1.1 jdc
142 1.1 jdc /* MII methods & callbacks */
143 1.1 jdc int cas_mii_readreg(device_t, int, int);
144 1.1 jdc void cas_mii_writereg(device_t, int, int, int);
145 1.1 jdc void cas_mii_statchg(device_t);
146 1.1 jdc int cas_pcs_readreg(device_t, int, int);
147 1.1 jdc void cas_pcs_writereg(device_t, int, int, int);
148 1.1 jdc
149 1.1 jdc int cas_mediachange(struct ifnet *);
150 1.1 jdc void cas_mediastatus(struct ifnet *, struct ifmediareq *);
151 1.1 jdc
152 1.1 jdc int cas_eint(struct cas_softc *, u_int);
153 1.1 jdc int cas_rint(struct cas_softc *);
154 1.1 jdc int cas_tint(struct cas_softc *, u_int32_t);
155 1.1 jdc int cas_pint(struct cas_softc *);
156 1.1 jdc int cas_intr(void *);
157 1.1 jdc
158 1.1 jdc #ifdef CAS_DEBUG
159 1.1 jdc #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
160 1.1 jdc printf x
161 1.1 jdc #else
162 1.1 jdc #define DPRINTF(sc, x) /* nothing */
163 1.1 jdc #endif
164 1.1 jdc
165 1.1 jdc int
166 1.1 jdc cas_match(device_t parent, cfdata_t cf, void *aux)
167 1.1 jdc {
168 1.1 jdc struct pci_attach_args *pa = aux;
169 1.1 jdc
170 1.1 jdc if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
171 1.1 jdc (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
172 1.1 jdc return 1;
173 1.1 jdc
174 1.1 jdc if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
175 1.1 jdc (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
176 1.1 jdc return 1;
177 1.1 jdc
178 1.1 jdc return 0;
179 1.1 jdc }
180 1.1 jdc
181 1.1 jdc #define PROMHDR_PTR_DATA 0x18
182 1.1 jdc #define PROMDATA_PTR_VPD 0x08
183 1.1 jdc #define PROMDATA_DATA2 0x0a
184 1.1 jdc
185 1.1 jdc static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
186 1.1 jdc static const u_int8_t cas_promdat[] = {
187 1.1 jdc 'P', 'C', 'I', 'R',
188 1.1 jdc PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
189 1.1 jdc PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
190 1.1 jdc };
191 1.11 jnemeth static const u_int8_t cas_promdat_ns[] = {
192 1.11 jnemeth 'P', 'C', 'I', 'R',
193 1.11 jnemeth PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
194 1.11 jnemeth PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
195 1.11 jnemeth };
196 1.1 jdc
197 1.1 jdc static const u_int8_t cas_promdat2[] = {
198 1.1 jdc 0x18, 0x00, /* structure length */
199 1.1 jdc 0x00, /* structure revision */
200 1.1 jdc 0x00, /* interface revision */
201 1.1 jdc PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
202 1.1 jdc PCI_CLASS_NETWORK /* class code */
203 1.1 jdc };
204 1.1 jdc
205 1.1 jdc int
206 1.1 jdc cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
207 1.1 jdc uint8_t *enaddr)
208 1.1 jdc {
209 1.1 jdc struct pci_vpd_largeres *res;
210 1.1 jdc struct pci_vpd *vpd;
211 1.1 jdc bus_space_handle_t romh;
212 1.1 jdc bus_space_tag_t romt;
213 1.1 jdc bus_size_t romsize = 0;
214 1.1 jdc u_int8_t buf[32], *desc;
215 1.1 jdc pcireg_t address;
216 1.1 jdc int dataoff, vpdoff, len;
217 1.1 jdc int rv = -1;
218 1.1 jdc
219 1.1 jdc if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
220 1.1 jdc &romt, &romh, NULL, &romsize))
221 1.1 jdc return (-1);
222 1.1 jdc
223 1.1 jdc address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
224 1.1 jdc address |= PCI_MAPREG_ROM_ENABLE;
225 1.1 jdc pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
226 1.1 jdc
227 1.1 jdc bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
228 1.1 jdc if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
229 1.1 jdc goto fail;
230 1.1 jdc
231 1.1 jdc dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
232 1.1 jdc if (dataoff < 0x1c)
233 1.1 jdc goto fail;
234 1.1 jdc
235 1.1 jdc bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
236 1.11 jnemeth if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
237 1.11 jnemeth bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
238 1.1 jdc bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
239 1.1 jdc goto fail;
240 1.1 jdc
241 1.1 jdc vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
242 1.1 jdc if (vpdoff < 0x1c)
243 1.1 jdc goto fail;
244 1.1 jdc
245 1.1 jdc next:
246 1.1 jdc bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
247 1.1 jdc if (!PCI_VPDRES_ISLARGE(buf[0]))
248 1.1 jdc goto fail;
249 1.1 jdc
250 1.1 jdc res = (struct pci_vpd_largeres *)buf;
251 1.1 jdc vpdoff += sizeof(*res);
252 1.1 jdc
253 1.1 jdc len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
254 1.1 jdc switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
255 1.1 jdc case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
256 1.1 jdc /* Skip identifier string. */
257 1.1 jdc vpdoff += len;
258 1.1 jdc goto next;
259 1.1 jdc
260 1.1 jdc case PCI_VPDRES_TYPE_VPD:
261 1.1 jdc while (len > 0) {
262 1.1 jdc bus_space_read_region_1(romt, romh, vpdoff,
263 1.1 jdc buf, sizeof(buf));
264 1.1 jdc
265 1.1 jdc vpd = (struct pci_vpd *)buf;
266 1.1 jdc vpdoff += sizeof(*vpd) + vpd->vpd_len;
267 1.1 jdc len -= sizeof(*vpd) + vpd->vpd_len;
268 1.1 jdc
269 1.1 jdc /*
270 1.1 jdc * We're looking for an "Enhanced" VPD...
271 1.1 jdc */
272 1.1 jdc if (vpd->vpd_key0 != 'Z')
273 1.1 jdc continue;
274 1.1 jdc
275 1.1 jdc desc = buf + sizeof(*vpd);
276 1.1 jdc
277 1.1 jdc /*
278 1.1 jdc * ...which is an instance property...
279 1.1 jdc */
280 1.1 jdc if (desc[0] != 'I')
281 1.1 jdc continue;
282 1.1 jdc desc += 3;
283 1.1 jdc
284 1.1 jdc /*
285 1.1 jdc * ...that's a byte array with the proper
286 1.1 jdc * length for a MAC address...
287 1.1 jdc */
288 1.1 jdc if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
289 1.1 jdc continue;
290 1.1 jdc desc += 2;
291 1.1 jdc
292 1.1 jdc /*
293 1.1 jdc * ...named "local-mac-address".
294 1.1 jdc */
295 1.1 jdc if (strcmp(desc, "local-mac-address") != 0)
296 1.1 jdc continue;
297 1.1 jdc desc += strlen("local-mac-address") + 1;
298 1.1 jdc
299 1.5 jdc memcpy(enaddr, desc, ETHER_ADDR_LEN);
300 1.1 jdc rv = 0;
301 1.1 jdc }
302 1.1 jdc break;
303 1.1 jdc
304 1.1 jdc default:
305 1.1 jdc goto fail;
306 1.1 jdc }
307 1.1 jdc
308 1.1 jdc fail:
309 1.1 jdc if (romsize != 0)
310 1.1 jdc bus_space_unmap(romt, romh, romsize);
311 1.1 jdc
312 1.1 jdc address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
313 1.1 jdc address &= ~PCI_MAPREG_ROM_ENABLE;
314 1.1 jdc pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
315 1.1 jdc
316 1.1 jdc return (rv);
317 1.1 jdc }
318 1.1 jdc
319 1.1 jdc void
320 1.1 jdc cas_attach(device_t parent, device_t self, void *aux)
321 1.1 jdc {
322 1.1 jdc struct pci_attach_args *pa = aux;
323 1.1 jdc struct cas_softc *sc = device_private(self);
324 1.5 jdc prop_data_t data;
325 1.1 jdc uint8_t enaddr[ETHER_ADDR_LEN];
326 1.1 jdc
327 1.1 jdc sc->sc_dev = self;
328 1.15 drochner pci_aprint_devinfo(pa, NULL);
329 1.1 jdc sc->sc_rev = PCI_REVISION(pa->pa_class);
330 1.1 jdc sc->sc_dmatag = pa->pa_dmat;
331 1.1 jdc
332 1.1 jdc #define PCI_CAS_BASEADDR 0x10
333 1.1 jdc if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
334 1.1 jdc &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
335 1.1 jdc aprint_error_dev(sc->sc_dev,
336 1.1 jdc "unable to map device registers\n");
337 1.1 jdc return;
338 1.1 jdc }
339 1.1 jdc
340 1.5 jdc if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
341 1.5 jdc "mac-address")) != NULL)
342 1.5 jdc memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
343 1.10 jnemeth else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
344 1.1 jdc aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
345 1.10 jnemeth memset(enaddr, 0, sizeof(enaddr));
346 1.10 jnemeth }
347 1.1 jdc
348 1.1 jdc sc->sc_burst = 16; /* XXX */
349 1.1 jdc
350 1.1 jdc sc->sc_att_stage = CAS_ATT_BACKEND_0;
351 1.1 jdc
352 1.1 jdc if (pci_intr_map(pa, &sc->sc_handle) != 0) {
353 1.1 jdc aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
354 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
355 1.1 jdc return;
356 1.1 jdc }
357 1.1 jdc sc->sc_pc = pa->pa_pc;
358 1.3 jdc if (!cas_estintr(sc, CAS_INTR_PCI)) {
359 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
360 1.1 jdc aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
361 1.1 jdc return;
362 1.1 jdc }
363 1.1 jdc
364 1.1 jdc sc->sc_att_stage = CAS_ATT_BACKEND_1;
365 1.1 jdc
366 1.1 jdc /*
367 1.1 jdc * call the main configure
368 1.1 jdc */
369 1.1 jdc cas_config(sc, enaddr);
370 1.1 jdc
371 1.1 jdc if (pmf_device_register1(sc->sc_dev,
372 1.1 jdc cas_suspend, cas_resume, cas_shutdown))
373 1.1 jdc pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
374 1.1 jdc else
375 1.1 jdc aprint_error_dev(sc->sc_dev,
376 1.1 jdc "could not establish power handlers\n");
377 1.1 jdc
378 1.1 jdc sc->sc_att_stage = CAS_ATT_FINISHED;
379 1.1 jdc /*FALLTHROUGH*/
380 1.1 jdc }
381 1.1 jdc
382 1.1 jdc /*
383 1.1 jdc * cas_config:
384 1.1 jdc *
385 1.1 jdc * Attach a Cassini interface to the system.
386 1.1 jdc */
387 1.1 jdc void
388 1.1 jdc cas_config(struct cas_softc *sc, const uint8_t *enaddr)
389 1.1 jdc {
390 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
391 1.1 jdc struct mii_data *mii = &sc->sc_mii;
392 1.1 jdc struct mii_softc *child;
393 1.1 jdc int i, error;
394 1.1 jdc
395 1.1 jdc /* Make sure the chip is stopped. */
396 1.1 jdc ifp->if_softc = sc;
397 1.1 jdc cas_reset(sc);
398 1.1 jdc
399 1.1 jdc /*
400 1.1 jdc * Allocate the control data structures, and create and load the
401 1.1 jdc * DMA map for it.
402 1.1 jdc */
403 1.1 jdc if ((error = bus_dmamem_alloc(sc->sc_dmatag,
404 1.1 jdc sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
405 1.1 jdc 1, &sc->sc_cdnseg, 0)) != 0) {
406 1.1 jdc aprint_error_dev(sc->sc_dev,
407 1.1 jdc "unable to allocate control data, error = %d\n",
408 1.1 jdc error);
409 1.1 jdc cas_partial_detach(sc, CAS_ATT_0);
410 1.1 jdc }
411 1.1 jdc
412 1.1 jdc /* XXX should map this in with correct endianness */
413 1.1 jdc if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
414 1.1 jdc sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
415 1.1 jdc BUS_DMA_COHERENT)) != 0) {
416 1.1 jdc aprint_error_dev(sc->sc_dev,
417 1.1 jdc "unable to map control data, error = %d\n", error);
418 1.1 jdc cas_partial_detach(sc, CAS_ATT_1);
419 1.1 jdc }
420 1.1 jdc
421 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag,
422 1.1 jdc sizeof(struct cas_control_data), 1,
423 1.1 jdc sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
424 1.1 jdc aprint_error_dev(sc->sc_dev,
425 1.1 jdc "unable to create control data DMA map, error = %d\n", error);
426 1.1 jdc cas_partial_detach(sc, CAS_ATT_2);
427 1.1 jdc }
428 1.1 jdc
429 1.1 jdc if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
430 1.1 jdc sc->sc_control_data, sizeof(struct cas_control_data), NULL,
431 1.1 jdc 0)) != 0) {
432 1.1 jdc aprint_error_dev(sc->sc_dev,
433 1.1 jdc "unable to load control data DMA map, error = %d\n",
434 1.1 jdc error);
435 1.1 jdc cas_partial_detach(sc, CAS_ATT_3);
436 1.1 jdc }
437 1.1 jdc
438 1.1 jdc memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
439 1.1 jdc
440 1.1 jdc /*
441 1.1 jdc * Create the receive buffer DMA maps.
442 1.1 jdc */
443 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++) {
444 1.1 jdc bus_dma_segment_t seg;
445 1.1 jdc char *kva;
446 1.1 jdc int rseg;
447 1.1 jdc
448 1.1 jdc if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
449 1.1 jdc CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
450 1.1 jdc aprint_error_dev(sc->sc_dev,
451 1.1 jdc "unable to alloc rx DMA mem %d, error = %d\n",
452 1.1 jdc i, error);
453 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
454 1.1 jdc }
455 1.1 jdc sc->sc_rxsoft[i].rxs_dmaseg = seg;
456 1.1 jdc
457 1.1 jdc if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
458 1.1 jdc CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
459 1.1 jdc aprint_error_dev(sc->sc_dev,
460 1.1 jdc "unable to alloc rx DMA mem %d, error = %d\n",
461 1.1 jdc i, error);
462 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
463 1.1 jdc }
464 1.1 jdc sc->sc_rxsoft[i].rxs_kva = kva;
465 1.1 jdc
466 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
467 1.1 jdc CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
468 1.1 jdc aprint_error_dev(sc->sc_dev,
469 1.1 jdc "unable to create rx DMA map %d, error = %d\n",
470 1.1 jdc i, error);
471 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
472 1.1 jdc }
473 1.1 jdc
474 1.1 jdc if ((error = bus_dmamap_load(sc->sc_dmatag,
475 1.1 jdc sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
476 1.1 jdc BUS_DMA_NOWAIT)) != 0) {
477 1.1 jdc aprint_error_dev(sc->sc_dev,
478 1.1 jdc "unable to load rx DMA map %d, error = %d\n",
479 1.1 jdc i, error);
480 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
481 1.1 jdc }
482 1.1 jdc }
483 1.1 jdc
484 1.1 jdc /*
485 1.1 jdc * Create the transmit buffer DMA maps.
486 1.1 jdc */
487 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
488 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
489 1.1 jdc CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
490 1.1 jdc &sc->sc_txd[i].sd_map)) != 0) {
491 1.1 jdc aprint_error_dev(sc->sc_dev,
492 1.1 jdc "unable to create tx DMA map %d, error = %d\n",
493 1.1 jdc i, error);
494 1.1 jdc cas_partial_detach(sc, CAS_ATT_6);
495 1.1 jdc }
496 1.1 jdc sc->sc_txd[i].sd_mbuf = NULL;
497 1.1 jdc }
498 1.1 jdc
499 1.1 jdc /*
500 1.1 jdc * From this point forward, the attachment cannot fail. A failure
501 1.1 jdc * before this point releases all resources that may have been
502 1.1 jdc * allocated.
503 1.1 jdc */
504 1.1 jdc
505 1.1 jdc /* Announce ourselves. */
506 1.1 jdc aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
507 1.1 jdc ether_sprintf(enaddr));
508 1.7 mrg aprint_naive(": Ethernet controller\n");
509 1.1 jdc
510 1.1 jdc /* Get RX FIFO size */
511 1.1 jdc sc->sc_rxfifosize = 16 * 1024;
512 1.1 jdc
513 1.1 jdc /* Initialize ifnet structure. */
514 1.1 jdc strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
515 1.1 jdc ifp->if_softc = sc;
516 1.1 jdc ifp->if_flags =
517 1.1 jdc IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
518 1.1 jdc ifp->if_start = cas_start;
519 1.1 jdc ifp->if_ioctl = cas_ioctl;
520 1.1 jdc ifp->if_watchdog = cas_watchdog;
521 1.1 jdc ifp->if_stop = cas_stop;
522 1.1 jdc ifp->if_init = cas_init;
523 1.1 jdc IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
524 1.1 jdc IFQ_SET_READY(&ifp->if_snd);
525 1.1 jdc
526 1.1 jdc /* Initialize ifmedia structures and MII info */
527 1.1 jdc mii->mii_ifp = ifp;
528 1.1 jdc mii->mii_readreg = cas_mii_readreg;
529 1.1 jdc mii->mii_writereg = cas_mii_writereg;
530 1.1 jdc mii->mii_statchg = cas_mii_statchg;
531 1.1 jdc
532 1.1 jdc ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
533 1.1 jdc sc->sc_ethercom.ec_mii = mii;
534 1.1 jdc
535 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
536 1.1 jdc
537 1.1 jdc cas_mifinit(sc);
538 1.1 jdc
539 1.1 jdc if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
540 1.1 jdc sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
541 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
542 1.1 jdc CAS_MIF_CONFIG, sc->sc_mif_config);
543 1.1 jdc }
544 1.1 jdc
545 1.1 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
546 1.1 jdc MII_OFFSET_ANY, 0);
547 1.1 jdc
548 1.1 jdc child = LIST_FIRST(&mii->mii_phys);
549 1.1 jdc if (child == NULL &&
550 1.1 jdc sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
551 1.1 jdc /*
552 1.1 jdc * Try the external PCS SERDES if we didn't find any
553 1.1 jdc * MII devices.
554 1.1 jdc */
555 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
556 1.1 jdc CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
557 1.1 jdc
558 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
559 1.1 jdc CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
560 1.1 jdc
561 1.1 jdc mii->mii_readreg = cas_pcs_readreg;
562 1.1 jdc mii->mii_writereg = cas_pcs_writereg;
563 1.1 jdc
564 1.1 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
565 1.1 jdc MII_OFFSET_ANY, MIIF_NOISOLATE);
566 1.1 jdc }
567 1.1 jdc
568 1.1 jdc child = LIST_FIRST(&mii->mii_phys);
569 1.1 jdc if (child == NULL) {
570 1.1 jdc /* No PHY attached */
571 1.1 jdc ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
572 1.1 jdc ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
573 1.1 jdc } else {
574 1.1 jdc /*
575 1.1 jdc * Walk along the list of attached MII devices and
576 1.1 jdc * establish an `MII instance' to `phy number'
577 1.1 jdc * mapping. We'll use this mapping in media change
578 1.1 jdc * requests to determine which phy to use to program
579 1.1 jdc * the MIF configuration register.
580 1.1 jdc */
581 1.1 jdc for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
582 1.1 jdc /*
583 1.1 jdc * Note: we support just two PHYs: the built-in
584 1.1 jdc * internal device and an external on the MII
585 1.1 jdc * connector.
586 1.1 jdc */
587 1.1 jdc if (child->mii_phy > 1 || child->mii_inst > 1) {
588 1.1 jdc aprint_error_dev(sc->sc_dev,
589 1.1 jdc "cannot accommodate MII device %s"
590 1.1 jdc " at phy %d, instance %d\n",
591 1.1 jdc device_xname(child->mii_dev),
592 1.1 jdc child->mii_phy, child->mii_inst);
593 1.1 jdc continue;
594 1.1 jdc }
595 1.1 jdc
596 1.1 jdc sc->sc_phys[child->mii_inst] = child->mii_phy;
597 1.1 jdc }
598 1.1 jdc
599 1.1 jdc /*
600 1.1 jdc * XXX - we can really do the following ONLY if the
601 1.1 jdc * phy indeed has the auto negotiation capability!!
602 1.1 jdc */
603 1.1 jdc ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
604 1.1 jdc }
605 1.1 jdc
606 1.1 jdc /* claim 802.1q capability */
607 1.1 jdc sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
608 1.1 jdc
609 1.1 jdc /* Attach the interface. */
610 1.1 jdc if_attach(ifp);
611 1.1 jdc ether_ifattach(ifp, enaddr);
612 1.1 jdc
613 1.1 jdc #if NRND > 0
614 1.1 jdc rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
615 1.1 jdc RND_TYPE_NET, 0);
616 1.1 jdc #endif
617 1.1 jdc
618 1.1 jdc evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
619 1.1 jdc NULL, device_xname(sc->sc_dev), "interrupts");
620 1.1 jdc
621 1.1 jdc callout_init(&sc->sc_tick_ch, 0);
622 1.1 jdc
623 1.1 jdc return;
624 1.1 jdc }
625 1.1 jdc
626 1.1 jdc int
627 1.1 jdc cas_detach(device_t self, int flags)
628 1.1 jdc {
629 1.1 jdc int i;
630 1.1 jdc struct cas_softc *sc = device_private(self);
631 1.3 jdc bus_space_tag_t t = sc->sc_memt;
632 1.3 jdc bus_space_handle_t h = sc->sc_memh;
633 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
634 1.1 jdc
635 1.1 jdc /*
636 1.1 jdc * Free any resources we've allocated during the failed attach
637 1.1 jdc * attempt. Do this in reverse order and fall through.
638 1.1 jdc */
639 1.1 jdc switch (sc->sc_att_stage) {
640 1.1 jdc case CAS_ATT_FINISHED:
641 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
642 1.1 jdc pmf_device_deregister(self);
643 1.1 jdc cas_stop(&sc->sc_ethercom.ec_if, 1);
644 1.1 jdc evcnt_detach(&sc->sc_ev_intr);
645 1.1 jdc
646 1.1 jdc #if NRND > 0
647 1.1 jdc rnd_detach_source(&sc->rnd_source);
648 1.1 jdc #endif
649 1.1 jdc
650 1.1 jdc ether_ifdetach(ifp);
651 1.1 jdc if_detach(ifp);
652 1.1 jdc ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
653 1.1 jdc
654 1.1 jdc callout_destroy(&sc->sc_tick_ch);
655 1.1 jdc
656 1.1 jdc mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
657 1.1 jdc
658 1.1 jdc /*FALLTHROUGH*/
659 1.1 jdc case CAS_ATT_MII:
660 1.1 jdc case CAS_ATT_7:
661 1.1 jdc case CAS_ATT_6:
662 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
663 1.1 jdc if (sc->sc_txd[i].sd_map != NULL)
664 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag,
665 1.1 jdc sc->sc_txd[i].sd_map);
666 1.1 jdc }
667 1.1 jdc /*FALLTHROUGH*/
668 1.1 jdc case CAS_ATT_5:
669 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++) {
670 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
671 1.1 jdc bus_dmamap_unload(sc->sc_dmatag,
672 1.3 jdc sc->sc_rxsoft[i].rxs_dmamap);
673 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
674 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag,
675 1.1 jdc sc->sc_rxsoft[i].rxs_dmamap);
676 1.1 jdc if (sc->sc_rxsoft[i].rxs_kva != NULL)
677 1.1 jdc bus_dmamem_unmap(sc->sc_dmatag,
678 1.1 jdc sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
679 1.1 jdc /* XXX need to check that bus_dmamem_alloc suceeded
680 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
681 1.1 jdc */
682 1.1 jdc bus_dmamem_free(sc->sc_dmatag,
683 1.1 jdc &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
684 1.1 jdc }
685 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
686 1.1 jdc /*FALLTHROUGH*/
687 1.1 jdc case CAS_ATT_4:
688 1.1 jdc case CAS_ATT_3:
689 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
690 1.1 jdc /*FALLTHROUGH*/
691 1.1 jdc case CAS_ATT_2:
692 1.1 jdc bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
693 1.1 jdc sizeof(struct cas_control_data));
694 1.1 jdc /*FALLTHROUGH*/
695 1.1 jdc case CAS_ATT_1:
696 1.1 jdc bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
697 1.1 jdc /*FALLTHROUGH*/
698 1.1 jdc case CAS_ATT_0:
699 1.1 jdc sc->sc_att_stage = CAS_ATT_0;
700 1.1 jdc /*FALLTHROUGH*/
701 1.1 jdc case CAS_ATT_BACKEND_2:
702 1.1 jdc case CAS_ATT_BACKEND_1:
703 1.1 jdc if (sc->sc_ih != NULL) {
704 1.1 jdc pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
705 1.1 jdc sc->sc_ih = NULL;
706 1.1 jdc }
707 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
708 1.1 jdc /*FALLTHROUGH*/
709 1.1 jdc case CAS_ATT_BACKEND_0:
710 1.1 jdc break;
711 1.1 jdc }
712 1.1 jdc return 0;
713 1.1 jdc }
714 1.1 jdc
715 1.1 jdc static void
716 1.1 jdc cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
717 1.1 jdc {
718 1.1 jdc cfattach_t ca = device_cfattach(sc->sc_dev);
719 1.1 jdc
720 1.1 jdc sc->sc_att_stage = stage;
721 1.1 jdc (*ca->ca_detach)(sc->sc_dev, 0);
722 1.1 jdc }
723 1.1 jdc
724 1.1 jdc void
725 1.1 jdc cas_tick(void *arg)
726 1.1 jdc {
727 1.1 jdc struct cas_softc *sc = arg;
728 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
729 1.1 jdc bus_space_tag_t t = sc->sc_memt;
730 1.1 jdc bus_space_handle_t mac = sc->sc_memh;
731 1.1 jdc int s;
732 1.1 jdc u_int32_t v;
733 1.1 jdc
734 1.1 jdc /* unload collisions counters */
735 1.1 jdc v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
736 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
737 1.1 jdc ifp->if_collisions += v +
738 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
739 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
740 1.1 jdc ifp->if_oerrors += v;
741 1.1 jdc
742 1.1 jdc /* read error counters */
743 1.1 jdc ifp->if_ierrors +=
744 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
745 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
746 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
747 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
748 1.1 jdc
749 1.1 jdc /* clear the hardware counters */
750 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
751 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
752 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
753 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
754 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
755 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
756 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
757 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
758 1.1 jdc
759 1.1 jdc s = splnet();
760 1.1 jdc mii_tick(&sc->sc_mii);
761 1.1 jdc splx(s);
762 1.1 jdc
763 1.1 jdc callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
764 1.1 jdc }
765 1.1 jdc
766 1.1 jdc int
767 1.1 jdc cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
768 1.1 jdc u_int32_t clr, u_int32_t set)
769 1.1 jdc {
770 1.1 jdc int i;
771 1.1 jdc u_int32_t reg;
772 1.1 jdc
773 1.1 jdc for (i = TRIES; i--; DELAY(100)) {
774 1.1 jdc reg = bus_space_read_4(sc->sc_memt, h, r);
775 1.1 jdc if ((reg & clr) == 0 && (reg & set) == set)
776 1.1 jdc return (1);
777 1.1 jdc }
778 1.1 jdc
779 1.1 jdc return (0);
780 1.1 jdc }
781 1.1 jdc
782 1.1 jdc void
783 1.1 jdc cas_reset(struct cas_softc *sc)
784 1.1 jdc {
785 1.1 jdc bus_space_tag_t t = sc->sc_memt;
786 1.1 jdc bus_space_handle_t h = sc->sc_memh;
787 1.1 jdc int s;
788 1.1 jdc
789 1.1 jdc s = splnet();
790 1.1 jdc DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
791 1.1 jdc cas_reset_rx(sc);
792 1.1 jdc cas_reset_tx(sc);
793 1.1 jdc
794 1.9 mrg /* Disable interrupts */
795 1.9 mrg bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
796 1.9 mrg
797 1.1 jdc /* Do a full reset */
798 1.1 jdc bus_space_write_4(t, h, CAS_RESET,
799 1.1 jdc CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
800 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
801 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset device\n");
802 1.1 jdc splx(s);
803 1.1 jdc }
804 1.1 jdc
805 1.1 jdc
806 1.1 jdc /*
807 1.1 jdc * cas_rxdrain:
808 1.1 jdc *
809 1.1 jdc * Drain the receive queue.
810 1.1 jdc */
811 1.1 jdc void
812 1.1 jdc cas_rxdrain(struct cas_softc *sc)
813 1.1 jdc {
814 1.1 jdc /* Nothing to do yet. */
815 1.1 jdc }
816 1.1 jdc
817 1.1 jdc /*
818 1.1 jdc * Reset the whole thing.
819 1.1 jdc */
820 1.1 jdc void
821 1.1 jdc cas_stop(struct ifnet *ifp, int disable)
822 1.1 jdc {
823 1.1 jdc struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
824 1.1 jdc struct cas_sxd *sd;
825 1.1 jdc u_int32_t i;
826 1.1 jdc
827 1.1 jdc DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
828 1.1 jdc
829 1.1 jdc callout_stop(&sc->sc_tick_ch);
830 1.1 jdc
831 1.1 jdc /*
832 1.1 jdc * Mark the interface down and cancel the watchdog timer.
833 1.1 jdc */
834 1.1 jdc ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
835 1.1 jdc ifp->if_timer = 0;
836 1.1 jdc
837 1.1 jdc mii_down(&sc->sc_mii);
838 1.1 jdc
839 1.1 jdc cas_reset_rx(sc);
840 1.1 jdc cas_reset_tx(sc);
841 1.1 jdc
842 1.1 jdc /*
843 1.1 jdc * Release any queued transmit buffers.
844 1.1 jdc */
845 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
846 1.1 jdc sd = &sc->sc_txd[i];
847 1.1 jdc if (sd->sd_mbuf != NULL) {
848 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
849 1.1 jdc sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
850 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
851 1.1 jdc m_freem(sd->sd_mbuf);
852 1.1 jdc sd->sd_mbuf = NULL;
853 1.1 jdc }
854 1.1 jdc }
855 1.1 jdc sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
856 1.1 jdc
857 1.1 jdc if (disable)
858 1.1 jdc cas_rxdrain(sc);
859 1.1 jdc }
860 1.1 jdc
861 1.1 jdc
862 1.1 jdc /*
863 1.1 jdc * Reset the receiver
864 1.1 jdc */
865 1.1 jdc int
866 1.1 jdc cas_reset_rx(struct cas_softc *sc)
867 1.1 jdc {
868 1.1 jdc bus_space_tag_t t = sc->sc_memt;
869 1.1 jdc bus_space_handle_t h = sc->sc_memh;
870 1.1 jdc
871 1.1 jdc /*
872 1.1 jdc * Resetting while DMA is in progress can cause a bus hang, so we
873 1.1 jdc * disable DMA first.
874 1.1 jdc */
875 1.1 jdc cas_disable_rx(sc);
876 1.1 jdc bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
877 1.1 jdc /* Wait till it finishes */
878 1.1 jdc if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
879 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
880 1.1 jdc /* Wait 5ms extra. */
881 1.1 jdc delay(5000);
882 1.1 jdc
883 1.1 jdc /* Finally, reset the ERX */
884 1.1 jdc bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
885 1.1 jdc /* Wait till it finishes */
886 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
887 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
888 1.1 jdc return (1);
889 1.1 jdc }
890 1.1 jdc return (0);
891 1.1 jdc }
892 1.1 jdc
893 1.1 jdc
894 1.1 jdc /*
895 1.1 jdc * Reset the transmitter
896 1.1 jdc */
897 1.1 jdc int
898 1.1 jdc cas_reset_tx(struct cas_softc *sc)
899 1.1 jdc {
900 1.1 jdc bus_space_tag_t t = sc->sc_memt;
901 1.1 jdc bus_space_handle_t h = sc->sc_memh;
902 1.1 jdc
903 1.1 jdc /*
904 1.1 jdc * Resetting while DMA is in progress can cause a bus hang, so we
905 1.1 jdc * disable DMA first.
906 1.1 jdc */
907 1.1 jdc cas_disable_tx(sc);
908 1.1 jdc bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
909 1.1 jdc /* Wait till it finishes */
910 1.1 jdc if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
911 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
912 1.1 jdc /* Wait 5ms extra. */
913 1.1 jdc delay(5000);
914 1.1 jdc
915 1.1 jdc /* Finally, reset the ETX */
916 1.1 jdc bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
917 1.1 jdc /* Wait till it finishes */
918 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
919 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
920 1.1 jdc return (1);
921 1.1 jdc }
922 1.1 jdc return (0);
923 1.1 jdc }
924 1.1 jdc
925 1.1 jdc /*
926 1.1 jdc * Disable receiver.
927 1.1 jdc */
928 1.1 jdc int
929 1.1 jdc cas_disable_rx(struct cas_softc *sc)
930 1.1 jdc {
931 1.1 jdc bus_space_tag_t t = sc->sc_memt;
932 1.1 jdc bus_space_handle_t h = sc->sc_memh;
933 1.1 jdc u_int32_t cfg;
934 1.1 jdc
935 1.1 jdc /* Flip the enable bit */
936 1.1 jdc cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
937 1.1 jdc cfg &= ~CAS_MAC_RX_ENABLE;
938 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
939 1.1 jdc
940 1.1 jdc /* Wait for it to finish */
941 1.1 jdc return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
942 1.1 jdc }
943 1.1 jdc
944 1.1 jdc /*
945 1.1 jdc * Disable transmitter.
946 1.1 jdc */
947 1.1 jdc int
948 1.1 jdc cas_disable_tx(struct cas_softc *sc)
949 1.1 jdc {
950 1.1 jdc bus_space_tag_t t = sc->sc_memt;
951 1.1 jdc bus_space_handle_t h = sc->sc_memh;
952 1.1 jdc u_int32_t cfg;
953 1.1 jdc
954 1.1 jdc /* Flip the enable bit */
955 1.1 jdc cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
956 1.1 jdc cfg &= ~CAS_MAC_TX_ENABLE;
957 1.1 jdc bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
958 1.1 jdc
959 1.1 jdc /* Wait for it to finish */
960 1.1 jdc return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
961 1.1 jdc }
962 1.1 jdc
963 1.1 jdc /*
964 1.1 jdc * Initialize interface.
965 1.1 jdc */
966 1.1 jdc int
967 1.1 jdc cas_meminit(struct cas_softc *sc)
968 1.1 jdc {
969 1.1 jdc struct cas_rxsoft *rxs;
970 1.1 jdc int i, error;
971 1.1 jdc
972 1.1 jdc rxs = (void *)&error;
973 1.1 jdc
974 1.1 jdc /*
975 1.1 jdc * Initialize the transmit descriptor ring.
976 1.1 jdc */
977 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
978 1.1 jdc sc->sc_txdescs[i].cd_flags = 0;
979 1.1 jdc sc->sc_txdescs[i].cd_addr = 0;
980 1.1 jdc }
981 1.1 jdc CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
982 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
983 1.1 jdc
984 1.1 jdc /*
985 1.1 jdc * Initialize the receive descriptor and receive job
986 1.1 jdc * descriptor rings.
987 1.1 jdc */
988 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++)
989 1.1 jdc CAS_INIT_RXDESC(sc, i, i);
990 1.1 jdc sc->sc_rxdptr = 0;
991 1.1 jdc sc->sc_rxptr = 0;
992 1.1 jdc
993 1.1 jdc /*
994 1.1 jdc * Initialize the receive completion ring.
995 1.1 jdc */
996 1.1 jdc for (i = 0; i < CAS_NRXCOMP; i++) {
997 1.1 jdc sc->sc_rxcomps[i].cc_word[0] = 0;
998 1.1 jdc sc->sc_rxcomps[i].cc_word[1] = 0;
999 1.1 jdc sc->sc_rxcomps[i].cc_word[2] = 0;
1000 1.1 jdc sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1001 1.1 jdc CAS_CDRXCSYNC(sc, i,
1002 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1003 1.1 jdc }
1004 1.1 jdc
1005 1.1 jdc return (0);
1006 1.1 jdc }
1007 1.1 jdc
1008 1.1 jdc int
1009 1.1 jdc cas_ringsize(int sz)
1010 1.1 jdc {
1011 1.1 jdc switch (sz) {
1012 1.1 jdc case 32:
1013 1.1 jdc return CAS_RING_SZ_32;
1014 1.1 jdc case 64:
1015 1.1 jdc return CAS_RING_SZ_64;
1016 1.1 jdc case 128:
1017 1.1 jdc return CAS_RING_SZ_128;
1018 1.1 jdc case 256:
1019 1.1 jdc return CAS_RING_SZ_256;
1020 1.1 jdc case 512:
1021 1.1 jdc return CAS_RING_SZ_512;
1022 1.1 jdc case 1024:
1023 1.1 jdc return CAS_RING_SZ_1024;
1024 1.1 jdc case 2048:
1025 1.1 jdc return CAS_RING_SZ_2048;
1026 1.1 jdc case 4096:
1027 1.1 jdc return CAS_RING_SZ_4096;
1028 1.1 jdc case 8192:
1029 1.1 jdc return CAS_RING_SZ_8192;
1030 1.1 jdc default:
1031 1.1 jdc aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1032 1.1 jdc sz);
1033 1.1 jdc return CAS_RING_SZ_32;
1034 1.1 jdc }
1035 1.1 jdc }
1036 1.1 jdc
1037 1.1 jdc int
1038 1.1 jdc cas_cringsize(int sz)
1039 1.1 jdc {
1040 1.1 jdc int i;
1041 1.1 jdc
1042 1.1 jdc for (i = 0; i < 9; i++)
1043 1.1 jdc if (sz == (128 << i))
1044 1.1 jdc return i;
1045 1.1 jdc
1046 1.1 jdc aprint_error("cas: invalid completion ring size %d\n", sz);
1047 1.1 jdc return 128;
1048 1.1 jdc }
1049 1.1 jdc
1050 1.1 jdc /*
1051 1.1 jdc * Initialization of interface; set up initialization block
1052 1.1 jdc * and transmit/receive descriptor rings.
1053 1.1 jdc */
1054 1.1 jdc int
1055 1.1 jdc cas_init(struct ifnet *ifp)
1056 1.1 jdc {
1057 1.1 jdc struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1058 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1059 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1060 1.1 jdc int s;
1061 1.1 jdc u_int max_frame_size;
1062 1.1 jdc u_int32_t v;
1063 1.1 jdc
1064 1.1 jdc s = splnet();
1065 1.1 jdc
1066 1.1 jdc DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1067 1.1 jdc /*
1068 1.1 jdc * Initialization sequence. The numbered steps below correspond
1069 1.1 jdc * to the sequence outlined in section 6.3.5.1 in the Ethernet
1070 1.1 jdc * Channel Engine manual (part of the PCIO manual).
1071 1.1 jdc * See also the STP2002-STQ document from Sun Microsystems.
1072 1.1 jdc */
1073 1.1 jdc
1074 1.1 jdc /* step 1 & 2. Reset the Ethernet Channel */
1075 1.1 jdc cas_stop(ifp, 0);
1076 1.1 jdc cas_reset(sc);
1077 1.1 jdc DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1078 1.1 jdc
1079 1.1 jdc /* Re-initialize the MIF */
1080 1.1 jdc cas_mifinit(sc);
1081 1.1 jdc
1082 1.1 jdc /* step 3. Setup data structures in host memory */
1083 1.1 jdc cas_meminit(sc);
1084 1.1 jdc
1085 1.1 jdc /* step 4. TX MAC registers & counters */
1086 1.1 jdc cas_init_regs(sc);
1087 1.1 jdc max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1088 1.1 jdc v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1089 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1090 1.1 jdc
1091 1.1 jdc /* step 5. RX MAC registers & counters */
1092 1.1 jdc cas_iff(sc);
1093 1.1 jdc
1094 1.1 jdc /* step 6 & 7. Program Descriptor Ring Base Addresses */
1095 1.1 jdc KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1096 1.1 jdc bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1097 1.1 jdc (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1098 1.1 jdc bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1099 1.1 jdc
1100 1.1 jdc KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1101 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1102 1.1 jdc (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1103 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1104 1.1 jdc
1105 1.1 jdc KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1106 1.1 jdc bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1107 1.1 jdc (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1108 1.1 jdc bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1109 1.1 jdc
1110 1.1 jdc if (CAS_PLUS(sc)) {
1111 1.1 jdc KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1112 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1113 1.1 jdc (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1114 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1115 1.1 jdc CAS_CDRXADDR2(sc, 0));
1116 1.1 jdc }
1117 1.1 jdc
1118 1.1 jdc /* step 8. Global Configuration & Interrupt Mask */
1119 1.3 jdc cas_estintr(sc, CAS_INTR_REG);
1120 1.1 jdc
1121 1.1 jdc /* step 9. ETX Configuration: use mostly default values */
1122 1.1 jdc
1123 1.1 jdc /* Enable DMA */
1124 1.1 jdc v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1125 1.1 jdc bus_space_write_4(t, h, CAS_TX_CONFIG,
1126 1.1 jdc v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1127 1.1 jdc bus_space_write_4(t, h, CAS_TX_KICK, 0);
1128 1.1 jdc
1129 1.1 jdc /* step 10. ERX Configuration */
1130 1.1 jdc
1131 1.1 jdc /* Encode Receive Descriptor ring size */
1132 1.1 jdc v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1133 1.1 jdc if (CAS_PLUS(sc))
1134 1.1 jdc v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1135 1.1 jdc
1136 1.1 jdc /* Encode Receive Completion ring size */
1137 1.1 jdc v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1138 1.1 jdc
1139 1.1 jdc /* Enable DMA */
1140 1.1 jdc bus_space_write_4(t, h, CAS_RX_CONFIG,
1141 1.1 jdc v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1142 1.1 jdc
1143 1.1 jdc /*
1144 1.1 jdc * The following value is for an OFF Threshold of about 3/4 full
1145 1.1 jdc * and an ON Threshold of 1/4 full.
1146 1.1 jdc */
1147 1.1 jdc bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1148 1.1 jdc (3 * sc->sc_rxfifosize / 256) |
1149 1.1 jdc ((sc->sc_rxfifosize / 256) << 12));
1150 1.1 jdc bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1151 1.1 jdc
1152 1.1 jdc /* step 11. Configure Media */
1153 1.1 jdc mii_ifmedia_change(&sc->sc_mii);
1154 1.1 jdc
1155 1.1 jdc /* step 12. RX_MAC Configuration Register */
1156 1.1 jdc v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1157 1.1 jdc v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1158 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1159 1.1 jdc
1160 1.1 jdc /* step 14. Issue Transmit Pending command */
1161 1.1 jdc
1162 1.1 jdc /* step 15. Give the receiver a swift kick */
1163 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1164 1.1 jdc if (CAS_PLUS(sc))
1165 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1166 1.1 jdc
1167 1.1 jdc /* Start the one second timer. */
1168 1.1 jdc callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1169 1.1 jdc
1170 1.1 jdc ifp->if_flags |= IFF_RUNNING;
1171 1.1 jdc ifp->if_flags &= ~IFF_OACTIVE;
1172 1.1 jdc ifp->if_timer = 0;
1173 1.1 jdc splx(s);
1174 1.1 jdc
1175 1.1 jdc return (0);
1176 1.1 jdc }
1177 1.1 jdc
1178 1.1 jdc void
1179 1.1 jdc cas_init_regs(struct cas_softc *sc)
1180 1.1 jdc {
1181 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1182 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1183 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1184 1.1 jdc const u_char *laddr = CLLADDR(ifp->if_sadl);
1185 1.1 jdc u_int32_t v, r;
1186 1.1 jdc
1187 1.1 jdc /* These regs are not cleared on reset */
1188 1.1 jdc sc->sc_inited = 0;
1189 1.1 jdc if (!sc->sc_inited) {
1190 1.1 jdc /* Load recommended values */
1191 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1192 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1193 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1194 1.1 jdc
1195 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1196 1.1 jdc /* Max frame and max burst size */
1197 1.1 jdc v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1198 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1199 1.1 jdc
1200 1.1 jdc bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1201 1.1 jdc bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1202 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1203 1.1 jdc bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1204 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1205 1.1 jdc ((laddr[5]<<8)|laddr[4])&0x3ff);
1206 1.1 jdc
1207 1.1 jdc /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1208 1.1 jdc for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1209 1.3 jdc bus_space_write_4(t, h, r, 0);
1210 1.1 jdc
1211 1.1 jdc /* MAC control addr set to 0:1:c2:0:1:80 */
1212 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1213 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1214 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1215 1.1 jdc
1216 1.1 jdc /* MAC filter addr set to 0:0:0:0:0:0 */
1217 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1218 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1219 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1220 1.1 jdc
1221 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1222 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1223 1.1 jdc
1224 1.1 jdc /* Hash table initialized to 0 */
1225 1.1 jdc for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1226 1.1 jdc bus_space_write_4(t, h, r, 0);
1227 1.1 jdc
1228 1.1 jdc sc->sc_inited = 1;
1229 1.1 jdc }
1230 1.1 jdc
1231 1.1 jdc /* Counters need to be zeroed */
1232 1.1 jdc bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1233 1.1 jdc bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1234 1.1 jdc bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1235 1.1 jdc bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1236 1.1 jdc bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1237 1.1 jdc bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1238 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1239 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1240 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1241 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1242 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1243 1.1 jdc
1244 1.1 jdc /* Un-pause stuff */
1245 1.1 jdc bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1246 1.1 jdc
1247 1.1 jdc /*
1248 1.1 jdc * Set the station address.
1249 1.1 jdc */
1250 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1251 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1252 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1253 1.1 jdc }
1254 1.1 jdc
1255 1.1 jdc /*
1256 1.1 jdc * Receive interrupt.
1257 1.1 jdc */
1258 1.1 jdc int
1259 1.1 jdc cas_rint(struct cas_softc *sc)
1260 1.1 jdc {
1261 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1262 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1263 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1264 1.1 jdc struct cas_rxsoft *rxs;
1265 1.1 jdc struct mbuf *m;
1266 1.1 jdc u_int64_t word[4];
1267 1.1 jdc int len, off, idx;
1268 1.1 jdc int i, skip;
1269 1.1 jdc void *cp;
1270 1.1 jdc
1271 1.1 jdc for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1272 1.1 jdc CAS_CDRXCSYNC(sc, i,
1273 1.1 jdc BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1274 1.1 jdc
1275 1.1 jdc word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1276 1.1 jdc word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1277 1.1 jdc word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1278 1.1 jdc word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1279 1.1 jdc
1280 1.1 jdc /* Stop if the hardware still owns the descriptor. */
1281 1.1 jdc if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1282 1.1 jdc break;
1283 1.1 jdc
1284 1.1 jdc len = CAS_RC1_HDR_LEN(word[1]);
1285 1.1 jdc if (len > 0) {
1286 1.1 jdc off = CAS_RC1_HDR_OFF(word[1]);
1287 1.1 jdc idx = CAS_RC1_HDR_IDX(word[1]);
1288 1.1 jdc rxs = &sc->sc_rxsoft[idx];
1289 1.1 jdc
1290 1.1 jdc DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1291 1.1 jdc idx, off, len));
1292 1.1 jdc
1293 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1294 1.1 jdc rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1295 1.1 jdc
1296 1.1 jdc cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1297 1.1 jdc m = m_devget(cp, len, 0, ifp, NULL);
1298 1.1 jdc
1299 1.1 jdc if (word[0] & CAS_RC0_RELEASE_HDR)
1300 1.1 jdc cas_add_rxbuf(sc, idx);
1301 1.1 jdc
1302 1.1 jdc if (m != NULL) {
1303 1.1 jdc
1304 1.1 jdc /*
1305 1.1 jdc * Pass this up to any BPF listeners, but only
1306 1.1 jdc * pass it up the stack if its for us.
1307 1.1 jdc */
1308 1.8 joerg bpf_mtap(ifp, m);
1309 1.1 jdc
1310 1.1 jdc ifp->if_ipackets++;
1311 1.1 jdc m->m_pkthdr.csum_flags = 0;
1312 1.1 jdc (*ifp->if_input)(ifp, m);
1313 1.1 jdc } else
1314 1.1 jdc ifp->if_ierrors++;
1315 1.1 jdc }
1316 1.1 jdc
1317 1.1 jdc len = CAS_RC0_DATA_LEN(word[0]);
1318 1.1 jdc if (len > 0) {
1319 1.1 jdc off = CAS_RC0_DATA_OFF(word[0]);
1320 1.1 jdc idx = CAS_RC0_DATA_IDX(word[0]);
1321 1.1 jdc rxs = &sc->sc_rxsoft[idx];
1322 1.1 jdc
1323 1.1 jdc DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1324 1.1 jdc idx, off, len));
1325 1.1 jdc
1326 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1327 1.1 jdc rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1328 1.1 jdc
1329 1.1 jdc /* XXX We should not be copying the packet here. */
1330 1.1 jdc cp = rxs->rxs_kva + off + ETHER_ALIGN;
1331 1.1 jdc m = m_devget(cp, len, 0, ifp, NULL);
1332 1.1 jdc
1333 1.1 jdc if (word[0] & CAS_RC0_RELEASE_DATA)
1334 1.1 jdc cas_add_rxbuf(sc, idx);
1335 1.1 jdc
1336 1.1 jdc if (m != NULL) {
1337 1.1 jdc /*
1338 1.1 jdc * Pass this up to any BPF listeners, but only
1339 1.1 jdc * pass it up the stack if its for us.
1340 1.1 jdc */
1341 1.8 joerg bpf_mtap(ifp, m);
1342 1.1 jdc
1343 1.1 jdc ifp->if_ipackets++;
1344 1.1 jdc m->m_pkthdr.csum_flags = 0;
1345 1.1 jdc (*ifp->if_input)(ifp, m);
1346 1.1 jdc } else
1347 1.1 jdc ifp->if_ierrors++;
1348 1.1 jdc }
1349 1.1 jdc
1350 1.1 jdc if (word[0] & CAS_RC0_SPLIT)
1351 1.1 jdc aprint_error_dev(sc->sc_dev, "split packet\n");
1352 1.1 jdc
1353 1.1 jdc skip = CAS_RC0_SKIP(word[0]);
1354 1.1 jdc }
1355 1.1 jdc
1356 1.1 jdc while (sc->sc_rxptr != i) {
1357 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1358 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1359 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1360 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1361 1.1 jdc CAS_DMA_WRITE(CAS_RC3_OWN);
1362 1.1 jdc CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1363 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1364 1.1 jdc
1365 1.1 jdc sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1366 1.1 jdc }
1367 1.1 jdc
1368 1.1 jdc bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1369 1.1 jdc
1370 1.1 jdc DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1371 1.1 jdc sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1372 1.1 jdc
1373 1.1 jdc return (1);
1374 1.1 jdc }
1375 1.1 jdc
1376 1.1 jdc /*
1377 1.1 jdc * cas_add_rxbuf:
1378 1.1 jdc *
1379 1.1 jdc * Add a receive buffer to the indicated descriptor.
1380 1.1 jdc */
1381 1.1 jdc int
1382 1.1 jdc cas_add_rxbuf(struct cas_softc *sc, int idx)
1383 1.1 jdc {
1384 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1385 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1386 1.1 jdc
1387 1.1 jdc CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1388 1.1 jdc
1389 1.1 jdc if ((sc->sc_rxdptr % 4) == 0)
1390 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1391 1.1 jdc
1392 1.1 jdc if (++sc->sc_rxdptr == CAS_NRXDESC)
1393 1.1 jdc sc->sc_rxdptr = 0;
1394 1.1 jdc
1395 1.1 jdc return (0);
1396 1.1 jdc }
1397 1.1 jdc
1398 1.1 jdc int
1399 1.1 jdc cas_eint(struct cas_softc *sc, u_int status)
1400 1.1 jdc {
1401 1.1 jdc char bits[128];
1402 1.1 jdc if ((status & CAS_INTR_MIF) != 0) {
1403 1.1 jdc DPRINTF(sc, ("%s: link status changed\n",
1404 1.1 jdc device_xname(sc->sc_dev)));
1405 1.1 jdc return (1);
1406 1.1 jdc }
1407 1.1 jdc
1408 1.1 jdc snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1409 1.1 jdc printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1410 1.1 jdc return (1);
1411 1.1 jdc }
1412 1.1 jdc
1413 1.1 jdc int
1414 1.1 jdc cas_pint(struct cas_softc *sc)
1415 1.1 jdc {
1416 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1417 1.1 jdc bus_space_handle_t seb = sc->sc_memh;
1418 1.1 jdc u_int32_t status;
1419 1.1 jdc
1420 1.1 jdc status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1421 1.1 jdc status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1422 1.1 jdc #ifdef CAS_DEBUG
1423 1.1 jdc if (status)
1424 1.1 jdc printf("%s: link status changed\n", device_xname(sc->sc_dev));
1425 1.1 jdc #endif
1426 1.1 jdc return (1);
1427 1.1 jdc }
1428 1.1 jdc
1429 1.1 jdc int
1430 1.1 jdc cas_intr(void *v)
1431 1.1 jdc {
1432 1.1 jdc struct cas_softc *sc = (struct cas_softc *)v;
1433 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1434 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1435 1.1 jdc bus_space_handle_t seb = sc->sc_memh;
1436 1.1 jdc u_int32_t status;
1437 1.1 jdc int r = 0;
1438 1.1 jdc #ifdef CAS_DEBUG
1439 1.1 jdc char bits[128];
1440 1.1 jdc #endif
1441 1.1 jdc
1442 1.1 jdc sc->sc_ev_intr.ev_count++;
1443 1.1 jdc
1444 1.1 jdc status = bus_space_read_4(t, seb, CAS_STATUS);
1445 1.1 jdc #ifdef CAS_DEBUG
1446 1.1 jdc snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1447 1.1 jdc #endif
1448 1.1 jdc DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1449 1.1 jdc device_xname(sc->sc_dev), (status>>19), bits));
1450 1.1 jdc
1451 1.1 jdc if ((status & CAS_INTR_PCS) != 0)
1452 1.1 jdc r |= cas_pint(sc);
1453 1.1 jdc
1454 1.1 jdc if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1455 1.1 jdc CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1456 1.1 jdc r |= cas_eint(sc, status);
1457 1.1 jdc
1458 1.1 jdc if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1459 1.1 jdc r |= cas_tint(sc, status);
1460 1.1 jdc
1461 1.1 jdc if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1462 1.1 jdc r |= cas_rint(sc);
1463 1.1 jdc
1464 1.1 jdc /* We should eventually do more than just print out error stats. */
1465 1.1 jdc if (status & CAS_INTR_TX_MAC) {
1466 1.1 jdc int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1467 1.1 jdc #ifdef CAS_DEBUG
1468 1.1 jdc if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1469 1.1 jdc printf("%s: MAC tx fault, status %x\n",
1470 1.1 jdc device_xname(sc->sc_dev), txstat);
1471 1.1 jdc #endif
1472 1.1 jdc if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1473 1.1 jdc cas_init(ifp);
1474 1.1 jdc }
1475 1.1 jdc if (status & CAS_INTR_RX_MAC) {
1476 1.1 jdc int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1477 1.1 jdc #ifdef CAS_DEBUG
1478 1.3 jdc if (rxstat & ~CAS_MAC_RX_DONE)
1479 1.3 jdc printf("%s: MAC rx fault, status %x\n",
1480 1.3 jdc device_xname(sc->sc_dev), rxstat);
1481 1.1 jdc #endif
1482 1.1 jdc /*
1483 1.1 jdc * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1484 1.1 jdc * due to a silicon bug so handle them silently.
1485 1.1 jdc */
1486 1.1 jdc if (rxstat & CAS_MAC_RX_OVERFLOW) {
1487 1.1 jdc ifp->if_ierrors++;
1488 1.1 jdc cas_init(ifp);
1489 1.1 jdc }
1490 1.1 jdc #ifdef CAS_DEBUG
1491 1.1 jdc else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1492 1.1 jdc printf("%s: MAC rx fault, status %x\n",
1493 1.1 jdc device_xname(sc->sc_dev), rxstat);
1494 1.1 jdc #endif
1495 1.1 jdc }
1496 1.1 jdc #if NRND > 0
1497 1.1 jdc rnd_add_uint32(&sc->rnd_source, status);
1498 1.1 jdc #endif
1499 1.1 jdc return (r);
1500 1.1 jdc }
1501 1.1 jdc
1502 1.1 jdc
1503 1.1 jdc void
1504 1.1 jdc cas_watchdog(struct ifnet *ifp)
1505 1.1 jdc {
1506 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1507 1.1 jdc
1508 1.1 jdc DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1509 1.1 jdc "CAS_MAC_RX_CONFIG %x\n",
1510 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1511 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1512 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1513 1.1 jdc
1514 1.1 jdc log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1515 1.1 jdc ++ifp->if_oerrors;
1516 1.1 jdc
1517 1.1 jdc /* Try to get more packets going. */
1518 1.1 jdc cas_init(ifp);
1519 1.1 jdc }
1520 1.1 jdc
1521 1.1 jdc /*
1522 1.1 jdc * Initialize the MII Management Interface
1523 1.1 jdc */
1524 1.1 jdc void
1525 1.1 jdc cas_mifinit(struct cas_softc *sc)
1526 1.1 jdc {
1527 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1528 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1529 1.1 jdc
1530 1.1 jdc /* Configure the MIF in frame mode */
1531 1.1 jdc sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1532 1.1 jdc sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1533 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1534 1.1 jdc }
1535 1.1 jdc
1536 1.1 jdc /*
1537 1.1 jdc * MII interface
1538 1.1 jdc *
1539 1.1 jdc * The Cassini MII interface supports at least three different operating modes:
1540 1.1 jdc *
1541 1.1 jdc * Bitbang mode is implemented using data, clock and output enable registers.
1542 1.1 jdc *
1543 1.1 jdc * Frame mode is implemented by loading a complete frame into the frame
1544 1.1 jdc * register and polling the valid bit for completion.
1545 1.1 jdc *
1546 1.1 jdc * Polling mode uses the frame register but completion is indicated by
1547 1.1 jdc * an interrupt.
1548 1.1 jdc *
1549 1.1 jdc */
1550 1.1 jdc int
1551 1.1 jdc cas_mii_readreg(device_t self, int phy, int reg)
1552 1.1 jdc {
1553 1.1 jdc struct cas_softc *sc = device_private(self);
1554 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1555 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1556 1.1 jdc int n;
1557 1.1 jdc u_int32_t v;
1558 1.1 jdc
1559 1.1 jdc #ifdef CAS_DEBUG
1560 1.1 jdc if (sc->sc_debug)
1561 1.1 jdc printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1562 1.1 jdc #endif
1563 1.1 jdc
1564 1.1 jdc /* Construct the frame command */
1565 1.1 jdc v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1566 1.1 jdc CAS_MIF_FRAME_READ;
1567 1.1 jdc
1568 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1569 1.1 jdc for (n = 0; n < 100; n++) {
1570 1.1 jdc DELAY(1);
1571 1.1 jdc v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1572 1.1 jdc if (v & CAS_MIF_FRAME_TA0)
1573 1.1 jdc return (v & CAS_MIF_FRAME_DATA);
1574 1.1 jdc }
1575 1.1 jdc
1576 1.1 jdc printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1577 1.1 jdc return (0);
1578 1.1 jdc }
1579 1.1 jdc
1580 1.1 jdc void
1581 1.1 jdc cas_mii_writereg(device_t self, int phy, int reg, int val)
1582 1.1 jdc {
1583 1.1 jdc struct cas_softc *sc = device_private(self);
1584 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1585 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1586 1.1 jdc int n;
1587 1.1 jdc u_int32_t v;
1588 1.1 jdc
1589 1.1 jdc #ifdef CAS_DEBUG
1590 1.1 jdc if (sc->sc_debug)
1591 1.1 jdc printf("cas_mii_writereg: phy %d reg %d val %x\n",
1592 1.1 jdc phy, reg, val);
1593 1.1 jdc #endif
1594 1.1 jdc
1595 1.1 jdc /* Construct the frame command */
1596 1.1 jdc v = CAS_MIF_FRAME_WRITE |
1597 1.1 jdc (phy << CAS_MIF_PHY_SHIFT) |
1598 1.1 jdc (reg << CAS_MIF_REG_SHIFT) |
1599 1.1 jdc (val & CAS_MIF_FRAME_DATA);
1600 1.1 jdc
1601 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1602 1.1 jdc for (n = 0; n < 100; n++) {
1603 1.1 jdc DELAY(1);
1604 1.1 jdc v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1605 1.1 jdc if (v & CAS_MIF_FRAME_TA0)
1606 1.1 jdc return;
1607 1.1 jdc }
1608 1.1 jdc
1609 1.1 jdc printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1610 1.1 jdc }
1611 1.1 jdc
1612 1.1 jdc void
1613 1.1 jdc cas_mii_statchg(device_t self)
1614 1.1 jdc {
1615 1.1 jdc struct cas_softc *sc = device_private(self);
1616 1.1 jdc #ifdef CAS_DEBUG
1617 1.1 jdc int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1618 1.1 jdc #endif
1619 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1620 1.1 jdc bus_space_handle_t mac = sc->sc_memh;
1621 1.1 jdc u_int32_t v;
1622 1.1 jdc
1623 1.1 jdc #ifdef CAS_DEBUG
1624 1.1 jdc if (sc->sc_debug)
1625 1.1 jdc printf("cas_mii_statchg: status change: phy = %d\n",
1626 1.1 jdc sc->sc_phys[instance]);
1627 1.1 jdc #endif
1628 1.1 jdc
1629 1.1 jdc /* Set tx full duplex options */
1630 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1631 1.1 jdc delay(10000); /* reg must be cleared and delay before changing. */
1632 1.1 jdc v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1633 1.1 jdc CAS_MAC_TX_ENABLE;
1634 1.1 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1635 1.1 jdc v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1636 1.1 jdc }
1637 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1638 1.1 jdc
1639 1.1 jdc /* XIF Configuration */
1640 1.1 jdc v = CAS_MAC_XIF_TX_MII_ENA;
1641 1.1 jdc v |= CAS_MAC_XIF_LINK_LED;
1642 1.1 jdc
1643 1.1 jdc /* MII needs echo disable if half duplex. */
1644 1.1 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1645 1.1 jdc /* turn on full duplex LED */
1646 1.1 jdc v |= CAS_MAC_XIF_FDPLX_LED;
1647 1.1 jdc else
1648 1.1 jdc /* half duplex -- disable echo */
1649 1.1 jdc v |= CAS_MAC_XIF_ECHO_DISABL;
1650 1.1 jdc
1651 1.1 jdc switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1652 1.1 jdc case IFM_1000_T: /* Gigabit using GMII interface */
1653 1.1 jdc case IFM_1000_SX:
1654 1.1 jdc v |= CAS_MAC_XIF_GMII_MODE;
1655 1.1 jdc break;
1656 1.1 jdc default:
1657 1.1 jdc v &= ~CAS_MAC_XIF_GMII_MODE;
1658 1.1 jdc }
1659 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1660 1.1 jdc }
1661 1.1 jdc
1662 1.1 jdc int
1663 1.1 jdc cas_pcs_readreg(device_t self, int phy, int reg)
1664 1.1 jdc {
1665 1.1 jdc struct cas_softc *sc = device_private(self);
1666 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1667 1.1 jdc bus_space_handle_t pcs = sc->sc_memh;
1668 1.1 jdc
1669 1.1 jdc #ifdef CAS_DEBUG
1670 1.1 jdc if (sc->sc_debug)
1671 1.1 jdc printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1672 1.1 jdc #endif
1673 1.1 jdc
1674 1.1 jdc if (phy != CAS_PHYAD_EXTERNAL)
1675 1.1 jdc return (0);
1676 1.1 jdc
1677 1.1 jdc switch (reg) {
1678 1.1 jdc case MII_BMCR:
1679 1.1 jdc reg = CAS_MII_CONTROL;
1680 1.1 jdc break;
1681 1.1 jdc case MII_BMSR:
1682 1.1 jdc reg = CAS_MII_STATUS;
1683 1.1 jdc break;
1684 1.1 jdc case MII_ANAR:
1685 1.1 jdc reg = CAS_MII_ANAR;
1686 1.1 jdc break;
1687 1.1 jdc case MII_ANLPAR:
1688 1.1 jdc reg = CAS_MII_ANLPAR;
1689 1.1 jdc break;
1690 1.1 jdc case MII_EXTSR:
1691 1.1 jdc return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1692 1.1 jdc default:
1693 1.1 jdc return (0);
1694 1.1 jdc }
1695 1.1 jdc
1696 1.1 jdc return bus_space_read_4(t, pcs, reg);
1697 1.1 jdc }
1698 1.1 jdc
1699 1.1 jdc void
1700 1.1 jdc cas_pcs_writereg(device_t self, int phy, int reg, int val)
1701 1.1 jdc {
1702 1.1 jdc struct cas_softc *sc = device_private(self);
1703 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1704 1.1 jdc bus_space_handle_t pcs = sc->sc_memh;
1705 1.1 jdc int reset = 0;
1706 1.1 jdc
1707 1.1 jdc #ifdef CAS_DEBUG
1708 1.1 jdc if (sc->sc_debug)
1709 1.1 jdc printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1710 1.1 jdc phy, reg, val);
1711 1.1 jdc #endif
1712 1.1 jdc
1713 1.1 jdc if (phy != CAS_PHYAD_EXTERNAL)
1714 1.1 jdc return;
1715 1.1 jdc
1716 1.1 jdc if (reg == MII_ANAR)
1717 1.1 jdc bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1718 1.1 jdc
1719 1.1 jdc switch (reg) {
1720 1.1 jdc case MII_BMCR:
1721 1.1 jdc reset = (val & CAS_MII_CONTROL_RESET);
1722 1.1 jdc reg = CAS_MII_CONTROL;
1723 1.1 jdc break;
1724 1.1 jdc case MII_BMSR:
1725 1.1 jdc reg = CAS_MII_STATUS;
1726 1.1 jdc break;
1727 1.1 jdc case MII_ANAR:
1728 1.1 jdc reg = CAS_MII_ANAR;
1729 1.1 jdc break;
1730 1.1 jdc case MII_ANLPAR:
1731 1.1 jdc reg = CAS_MII_ANLPAR;
1732 1.1 jdc break;
1733 1.1 jdc default:
1734 1.1 jdc return;
1735 1.1 jdc }
1736 1.1 jdc
1737 1.1 jdc bus_space_write_4(t, pcs, reg, val);
1738 1.1 jdc
1739 1.1 jdc if (reset)
1740 1.1 jdc cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1741 1.1 jdc
1742 1.1 jdc if (reg == CAS_MII_ANAR || reset)
1743 1.1 jdc bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1744 1.1 jdc CAS_MII_CONFIG_ENABLE);
1745 1.1 jdc }
1746 1.1 jdc
1747 1.1 jdc int
1748 1.1 jdc cas_mediachange(struct ifnet *ifp)
1749 1.1 jdc {
1750 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1751 1.1 jdc struct mii_data *mii = &sc->sc_mii;
1752 1.1 jdc
1753 1.1 jdc if (mii->mii_instance) {
1754 1.1 jdc struct mii_softc *miisc;
1755 1.1 jdc LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1756 1.1 jdc mii_phy_reset(miisc);
1757 1.1 jdc }
1758 1.1 jdc
1759 1.1 jdc return (mii_mediachg(&sc->sc_mii));
1760 1.1 jdc }
1761 1.1 jdc
1762 1.1 jdc void
1763 1.1 jdc cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1764 1.1 jdc {
1765 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1766 1.1 jdc
1767 1.1 jdc mii_pollstat(&sc->sc_mii);
1768 1.1 jdc ifmr->ifm_active = sc->sc_mii.mii_media_active;
1769 1.1 jdc ifmr->ifm_status = sc->sc_mii.mii_media_status;
1770 1.1 jdc }
1771 1.1 jdc
1772 1.1 jdc /*
1773 1.1 jdc * Process an ioctl request.
1774 1.1 jdc */
1775 1.1 jdc int
1776 1.1 jdc cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1777 1.1 jdc {
1778 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1779 1.1 jdc int s, error = 0;
1780 1.1 jdc
1781 1.1 jdc s = splnet();
1782 1.1 jdc
1783 1.1 jdc if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1784 1.1 jdc error = 0;
1785 1.1 jdc if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1786 1.1 jdc ;
1787 1.1 jdc else if (ifp->if_flags & IFF_RUNNING) {
1788 1.1 jdc /*
1789 1.1 jdc * Multicast list has changed; set the hardware filter
1790 1.1 jdc * accordingly.
1791 1.1 jdc */
1792 1.1 jdc cas_iff(sc);
1793 1.1 jdc }
1794 1.1 jdc }
1795 1.1 jdc
1796 1.1 jdc splx(s);
1797 1.1 jdc return (error);
1798 1.1 jdc }
1799 1.1 jdc
1800 1.1 jdc static bool
1801 1.6 dyoung cas_suspend(device_t self, const pmf_qual_t *qual)
1802 1.1 jdc {
1803 1.1 jdc struct cas_softc *sc = device_private(self);
1804 1.3 jdc bus_space_tag_t t = sc->sc_memt;
1805 1.3 jdc bus_space_handle_t h = sc->sc_memh;
1806 1.1 jdc
1807 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1808 1.1 jdc if (sc->sc_ih != NULL) {
1809 1.1 jdc pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1810 1.1 jdc sc->sc_ih = NULL;
1811 1.1 jdc }
1812 1.1 jdc
1813 1.1 jdc return true;
1814 1.1 jdc }
1815 1.1 jdc
1816 1.1 jdc static bool
1817 1.6 dyoung cas_resume(device_t self, const pmf_qual_t *qual)
1818 1.1 jdc {
1819 1.1 jdc struct cas_softc *sc = device_private(self);
1820 1.1 jdc
1821 1.3 jdc return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1822 1.1 jdc }
1823 1.1 jdc
1824 1.1 jdc static bool
1825 1.3 jdc cas_estintr(struct cas_softc *sc, int what)
1826 1.1 jdc {
1827 1.3 jdc bus_space_tag_t t = sc->sc_memt;
1828 1.3 jdc bus_space_handle_t h = sc->sc_memh;
1829 1.1 jdc const char *intrstr = NULL;
1830 1.1 jdc
1831 1.3 jdc /* PCI interrupts */
1832 1.3 jdc if (what & CAS_INTR_PCI) {
1833 1.3 jdc intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1834 1.3 jdc sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1835 1.3 jdc IPL_NET, cas_intr, sc);
1836 1.3 jdc if (sc->sc_ih == NULL) {
1837 1.3 jdc aprint_error_dev(sc->sc_dev,
1838 1.3 jdc "unable to establish interrupt");
1839 1.3 jdc if (intrstr != NULL)
1840 1.3 jdc aprint_error(" at %s", intrstr);
1841 1.3 jdc aprint_error("\n");
1842 1.3 jdc return false;
1843 1.3 jdc }
1844 1.3 jdc
1845 1.3 jdc aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1846 1.1 jdc }
1847 1.1 jdc
1848 1.3 jdc /* Interrupt register */
1849 1.3 jdc if (what & CAS_INTR_REG) {
1850 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK,
1851 1.3 jdc ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1852 1.3 jdc CAS_INTR_TX_TAG_ERR|
1853 1.3 jdc CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1854 1.3 jdc CAS_INTR_RX_TAG_ERR|
1855 1.3 jdc CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1856 1.3 jdc CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1857 1.3 jdc CAS_INTR_BERR));
1858 1.3 jdc bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1859 1.3 jdc CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1860 1.3 jdc bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1861 1.3 jdc bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1862 1.3 jdc }
1863 1.1 jdc return true;
1864 1.1 jdc }
1865 1.1 jdc
1866 1.1 jdc bool
1867 1.1 jdc cas_shutdown(device_t self, int howto)
1868 1.1 jdc {
1869 1.1 jdc struct cas_softc *sc = device_private(self);
1870 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1871 1.1 jdc
1872 1.1 jdc cas_stop(ifp, 1);
1873 1.1 jdc
1874 1.1 jdc return true;
1875 1.1 jdc }
1876 1.1 jdc
1877 1.1 jdc void
1878 1.1 jdc cas_iff(struct cas_softc *sc)
1879 1.1 jdc {
1880 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1881 1.1 jdc struct ethercom *ec = &sc->sc_ethercom;
1882 1.1 jdc struct ether_multi *enm;
1883 1.1 jdc struct ether_multistep step;
1884 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1885 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1886 1.1 jdc u_int32_t crc, hash[16], rxcfg;
1887 1.1 jdc int i;
1888 1.1 jdc
1889 1.1 jdc rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1890 1.1 jdc rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1891 1.1 jdc CAS_MAC_RX_PROMISC_GRP);
1892 1.1 jdc ifp->if_flags &= ~IFF_ALLMULTI;
1893 1.1 jdc
1894 1.1 jdc if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1895 1.1 jdc ifp->if_flags |= IFF_ALLMULTI;
1896 1.1 jdc if (ifp->if_flags & IFF_PROMISC)
1897 1.1 jdc rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1898 1.1 jdc else
1899 1.1 jdc rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1900 1.1 jdc } else {
1901 1.1 jdc /*
1902 1.1 jdc * Set up multicast address filter by passing all multicast
1903 1.1 jdc * addresses through a crc generator, and then using the
1904 1.1 jdc * high order 8 bits as an index into the 256 bit logical
1905 1.1 jdc * address filter. The high order 4 bits selects the word,
1906 1.1 jdc * while the other 4 bits select the bit within the word
1907 1.1 jdc * (where bit 0 is the MSB).
1908 1.1 jdc */
1909 1.1 jdc
1910 1.1 jdc rxcfg |= CAS_MAC_RX_HASH_FILTER;
1911 1.1 jdc
1912 1.1 jdc /* Clear hash table */
1913 1.1 jdc for (i = 0; i < 16; i++)
1914 1.1 jdc hash[i] = 0;
1915 1.1 jdc
1916 1.1 jdc ETHER_FIRST_MULTI(step, ec, enm);
1917 1.1 jdc while (enm != NULL) {
1918 1.1 jdc crc = ether_crc32_le(enm->enm_addrlo,
1919 1.1 jdc ETHER_ADDR_LEN);
1920 1.1 jdc
1921 1.1 jdc /* Just want the 8 most significant bits. */
1922 1.1 jdc crc >>= 24;
1923 1.1 jdc
1924 1.1 jdc /* Set the corresponding bit in the filter. */
1925 1.1 jdc hash[crc >> 4] |= 1 << (15 - (crc & 15));
1926 1.1 jdc
1927 1.1 jdc ETHER_NEXT_MULTI(step, enm);
1928 1.1 jdc }
1929 1.1 jdc
1930 1.1 jdc /* Now load the hash table into the chip (if we are using it) */
1931 1.1 jdc for (i = 0; i < 16; i++) {
1932 1.1 jdc bus_space_write_4(t, h,
1933 1.1 jdc CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1934 1.1 jdc hash[i]);
1935 1.1 jdc }
1936 1.1 jdc }
1937 1.1 jdc
1938 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1939 1.1 jdc }
1940 1.1 jdc
1941 1.1 jdc int
1942 1.1 jdc cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1943 1.1 jdc {
1944 1.1 jdc u_int64_t flags;
1945 1.1 jdc u_int32_t cur, frag, i;
1946 1.1 jdc bus_dmamap_t map;
1947 1.1 jdc
1948 1.1 jdc cur = frag = *bixp;
1949 1.1 jdc map = sc->sc_txd[cur].sd_map;
1950 1.1 jdc
1951 1.1 jdc if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1952 1.1 jdc BUS_DMA_NOWAIT) != 0) {
1953 1.1 jdc return (ENOBUFS);
1954 1.1 jdc }
1955 1.1 jdc
1956 1.1 jdc if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1957 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, map);
1958 1.1 jdc return (ENOBUFS);
1959 1.1 jdc }
1960 1.1 jdc
1961 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1962 1.1 jdc BUS_DMASYNC_PREWRITE);
1963 1.1 jdc
1964 1.1 jdc for (i = 0; i < map->dm_nsegs; i++) {
1965 1.1 jdc sc->sc_txdescs[frag].cd_addr =
1966 1.1 jdc CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1967 1.1 jdc flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1968 1.1 jdc (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1969 1.1 jdc ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1970 1.1 jdc sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1971 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1972 1.1 jdc CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1973 1.1 jdc BUS_DMASYNC_PREWRITE);
1974 1.1 jdc cur = frag;
1975 1.1 jdc if (++frag == CAS_NTXDESC)
1976 1.1 jdc frag = 0;
1977 1.1 jdc }
1978 1.1 jdc
1979 1.1 jdc sc->sc_tx_cnt += map->dm_nsegs;
1980 1.1 jdc sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1981 1.1 jdc sc->sc_txd[cur].sd_map = map;
1982 1.1 jdc sc->sc_txd[cur].sd_mbuf = mhead;
1983 1.1 jdc
1984 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1985 1.1 jdc
1986 1.1 jdc *bixp = frag;
1987 1.1 jdc
1988 1.1 jdc /* sync descriptors */
1989 1.1 jdc
1990 1.1 jdc return (0);
1991 1.1 jdc }
1992 1.1 jdc
1993 1.1 jdc /*
1994 1.1 jdc * Transmit interrupt.
1995 1.1 jdc */
1996 1.1 jdc int
1997 1.1 jdc cas_tint(struct cas_softc *sc, u_int32_t status)
1998 1.1 jdc {
1999 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2000 1.1 jdc struct cas_sxd *sd;
2001 1.1 jdc u_int32_t cons, comp;
2002 1.1 jdc
2003 1.1 jdc comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2004 1.1 jdc cons = sc->sc_tx_cons;
2005 1.1 jdc while (cons != comp) {
2006 1.1 jdc sd = &sc->sc_txd[cons];
2007 1.1 jdc if (sd->sd_mbuf != NULL) {
2008 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2009 1.1 jdc sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2010 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2011 1.1 jdc m_freem(sd->sd_mbuf);
2012 1.1 jdc sd->sd_mbuf = NULL;
2013 1.1 jdc ifp->if_opackets++;
2014 1.1 jdc }
2015 1.1 jdc sc->sc_tx_cnt--;
2016 1.1 jdc if (++cons == CAS_NTXDESC)
2017 1.1 jdc cons = 0;
2018 1.1 jdc }
2019 1.1 jdc sc->sc_tx_cons = cons;
2020 1.1 jdc
2021 1.1 jdc if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2022 1.1 jdc ifp->if_flags &= ~IFF_OACTIVE;
2023 1.1 jdc if (sc->sc_tx_cnt == 0)
2024 1.1 jdc ifp->if_timer = 0;
2025 1.1 jdc
2026 1.1 jdc cas_start(ifp);
2027 1.1 jdc
2028 1.1 jdc return (1);
2029 1.1 jdc }
2030 1.1 jdc
2031 1.1 jdc void
2032 1.1 jdc cas_start(struct ifnet *ifp)
2033 1.1 jdc {
2034 1.1 jdc struct cas_softc *sc = ifp->if_softc;
2035 1.1 jdc struct mbuf *m;
2036 1.1 jdc u_int32_t bix;
2037 1.1 jdc
2038 1.1 jdc if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2039 1.1 jdc return;
2040 1.1 jdc
2041 1.1 jdc bix = sc->sc_tx_prod;
2042 1.1 jdc while (sc->sc_txd[bix].sd_mbuf == NULL) {
2043 1.1 jdc IFQ_POLL(&ifp->if_snd, m);
2044 1.1 jdc if (m == NULL)
2045 1.1 jdc break;
2046 1.1 jdc
2047 1.1 jdc /*
2048 1.1 jdc * If BPF is listening on this interface, let it see the
2049 1.1 jdc * packet before we commit it to the wire.
2050 1.1 jdc */
2051 1.8 joerg bpf_mtap(ifp, m);
2052 1.1 jdc
2053 1.1 jdc /*
2054 1.1 jdc * Encapsulate this packet and start it going...
2055 1.1 jdc * or fail...
2056 1.1 jdc */
2057 1.1 jdc if (cas_encap(sc, m, &bix)) {
2058 1.1 jdc ifp->if_flags |= IFF_OACTIVE;
2059 1.1 jdc break;
2060 1.1 jdc }
2061 1.1 jdc
2062 1.1 jdc IFQ_DEQUEUE(&ifp->if_snd, m);
2063 1.1 jdc ifp->if_timer = 5;
2064 1.1 jdc }
2065 1.1 jdc
2066 1.1 jdc sc->sc_tx_prod = bix;
2067 1.1 jdc }
2068 1.13 jmcneill
2069 1.14 jmcneill MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2070 1.13 jmcneill
2071 1.13 jmcneill #ifdef _MODULE
2072 1.13 jmcneill #include "ioconf.c"
2073 1.13 jmcneill #endif
2074 1.13 jmcneill
2075 1.13 jmcneill static int
2076 1.13 jmcneill if_cas_modcmd(modcmd_t cmd, void *opaque)
2077 1.13 jmcneill {
2078 1.13 jmcneill int error = 0;
2079 1.13 jmcneill
2080 1.13 jmcneill switch (cmd) {
2081 1.13 jmcneill case MODULE_CMD_INIT:
2082 1.13 jmcneill #ifdef _MODULE
2083 1.13 jmcneill error = config_init_component(cfdriver_ioconf_cas,
2084 1.13 jmcneill cfattach_ioconf_cas, cfdata_ioconf_cas);
2085 1.13 jmcneill #endif
2086 1.13 jmcneill return error;
2087 1.13 jmcneill case MODULE_CMD_FINI:
2088 1.13 jmcneill #ifdef _MODULE
2089 1.13 jmcneill error = config_fini_component(cfdriver_ioconf_cas,
2090 1.13 jmcneill cfattach_ioconf_cas, cfdata_ioconf_cas);
2091 1.13 jmcneill #endif
2092 1.13 jmcneill return error;
2093 1.13 jmcneill default:
2094 1.13 jmcneill return ENOTTY;
2095 1.13 jmcneill }
2096 1.13 jmcneill }
2097