if_cas.c revision 1.4 1 1.4 pooka /* $NetBSD: if_cas.c,v 1.4 2010/01/19 22:07:00 pooka Exp $ */
2 1.1 jdc /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3 1.1 jdc
4 1.1 jdc /*
5 1.1 jdc *
6 1.1 jdc * Copyright (C) 2007 Mark Kettenis.
7 1.1 jdc * Copyright (C) 2001 Eduardo Horvath.
8 1.1 jdc * All rights reserved.
9 1.1 jdc *
10 1.1 jdc *
11 1.1 jdc * Redistribution and use in source and binary forms, with or without
12 1.1 jdc * modification, are permitted provided that the following conditions
13 1.1 jdc * are met:
14 1.1 jdc * 1. Redistributions of source code must retain the above copyright
15 1.1 jdc * notice, this list of conditions and the following disclaimer.
16 1.1 jdc * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 jdc * notice, this list of conditions and the following disclaimer in the
18 1.1 jdc * documentation and/or other materials provided with the distribution.
19 1.1 jdc *
20 1.1 jdc * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 1.1 jdc * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 1.1 jdc * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 1.1 jdc * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 1.1 jdc * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 1.1 jdc * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 1.1 jdc * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 1.1 jdc * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 1.1 jdc * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 1.1 jdc * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 1.1 jdc * SUCH DAMAGE.
31 1.1 jdc *
32 1.1 jdc */
33 1.1 jdc
34 1.1 jdc /*
35 1.1 jdc * Driver for Sun Cassini ethernet controllers.
36 1.1 jdc *
37 1.1 jdc * There are basically two variants of this chip: Cassini and
38 1.1 jdc * Cassini+. We can distinguish between the two by revision: 0x10 and
39 1.1 jdc * up are Cassini+. The most important difference is that Cassini+
40 1.1 jdc * has a second RX descriptor ring. Cassini+ will not work without
41 1.1 jdc * configuring that second ring. However, since we don't use it we
42 1.1 jdc * don't actually fill the descriptors, and only hand off the first
43 1.1 jdc * four to the chip.
44 1.1 jdc */
45 1.1 jdc
46 1.1 jdc #include <sys/cdefs.h>
47 1.4 pooka __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.4 2010/01/19 22:07:00 pooka Exp $");
48 1.1 jdc
49 1.1 jdc #include "opt_inet.h"
50 1.1 jdc
51 1.1 jdc #include <sys/param.h>
52 1.1 jdc #include <sys/systm.h>
53 1.1 jdc #include <sys/callout.h>
54 1.1 jdc #include <sys/mbuf.h>
55 1.1 jdc #include <sys/syslog.h>
56 1.1 jdc #include <sys/malloc.h>
57 1.1 jdc #include <sys/kernel.h>
58 1.1 jdc #include <sys/socket.h>
59 1.1 jdc #include <sys/ioctl.h>
60 1.1 jdc #include <sys/errno.h>
61 1.1 jdc #include <sys/device.h>
62 1.1 jdc
63 1.1 jdc #include <machine/endian.h>
64 1.1 jdc
65 1.1 jdc #include <uvm/uvm_extern.h>
66 1.1 jdc
67 1.1 jdc #include <net/if.h>
68 1.1 jdc #include <net/if_dl.h>
69 1.1 jdc #include <net/if_media.h>
70 1.1 jdc #include <net/if_ether.h>
71 1.1 jdc
72 1.1 jdc #ifdef INET
73 1.1 jdc #include <netinet/in.h>
74 1.1 jdc #include <netinet/in_systm.h>
75 1.1 jdc #include <netinet/in_var.h>
76 1.1 jdc #include <netinet/ip.h>
77 1.1 jdc #include <netinet/tcp.h>
78 1.1 jdc #include <netinet/udp.h>
79 1.1 jdc #endif
80 1.1 jdc
81 1.1 jdc #include <net/bpf.h>
82 1.1 jdc
83 1.1 jdc #include <sys/bus.h>
84 1.1 jdc #include <sys/intr.h>
85 1.1 jdc
86 1.1 jdc #include <dev/mii/mii.h>
87 1.1 jdc #include <dev/mii/miivar.h>
88 1.1 jdc #include <dev/mii/mii_bitbang.h>
89 1.1 jdc
90 1.1 jdc #include <dev/pci/pcivar.h>
91 1.1 jdc #include <dev/pci/pcireg.h>
92 1.1 jdc #include <dev/pci/pcidevs.h>
93 1.1 jdc
94 1.1 jdc #include <dev/pci/if_casreg.h>
95 1.1 jdc #include <dev/pci/if_casvar.h>
96 1.1 jdc
97 1.1 jdc /* XXX Should use Properties when that's fleshed out. */
98 1.1 jdc #ifdef macppc
99 1.1 jdc #include <dev/ofw/openfirm.h>
100 1.1 jdc #endif /* macppc */
101 1.1 jdc #ifdef __sparc__
102 1.1 jdc #include <machine/promlib.h>
103 1.1 jdc #endif
104 1.1 jdc
105 1.1 jdc #ifndef CAS_USE_LOCAL_MAC_ADDRESS
106 1.1 jdc #if defined (macppc) || defined (__sparc__)
107 1.1 jdc #define CAS_USE_LOCAL_MAC_ADDRESS 0 /* use system-wide address */
108 1.1 jdc #else
109 1.1 jdc #define CAS_USE_LOCAL_MAC_ADDRESS 1
110 1.1 jdc #endif
111 1.1 jdc #endif
112 1.1 jdc
113 1.1 jdc #define TRIES 10000
114 1.1 jdc
115 1.3 jdc static bool cas_estintr(struct cas_softc *sc, int);
116 1.1 jdc bool cas_shutdown(device_t, int);
117 1.2 martin static bool cas_suspend(device_t, pmf_qual_t);
118 1.2 martin static bool cas_resume(device_t, pmf_qual_t);
119 1.1 jdc static int cas_detach(device_t, int);
120 1.1 jdc static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
121 1.1 jdc
122 1.1 jdc int cas_match(device_t, cfdata_t, void *);
123 1.1 jdc void cas_attach(device_t, device_t, void *);
124 1.1 jdc
125 1.1 jdc
126 1.1 jdc CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
127 1.1 jdc cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
128 1.1 jdc DVF_DETACH_SHUTDOWN);
129 1.1 jdc
130 1.1 jdc #if CAS_USE_LOCAL_MAC_ADDRESS
131 1.1 jdc int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
132 1.1 jdc #endif
133 1.1 jdc
134 1.1 jdc void cas_config(struct cas_softc *, const uint8_t *);
135 1.1 jdc void cas_start(struct ifnet *);
136 1.1 jdc void cas_stop(struct ifnet *, int);
137 1.1 jdc int cas_ioctl(struct ifnet *, u_long, void *);
138 1.1 jdc void cas_tick(void *);
139 1.1 jdc void cas_watchdog(struct ifnet *);
140 1.1 jdc int cas_init(struct ifnet *);
141 1.1 jdc void cas_init_regs(struct cas_softc *);
142 1.1 jdc int cas_ringsize(int);
143 1.1 jdc int cas_cringsize(int);
144 1.1 jdc int cas_meminit(struct cas_softc *);
145 1.1 jdc void cas_mifinit(struct cas_softc *);
146 1.1 jdc int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
147 1.1 jdc u_int32_t, u_int32_t);
148 1.1 jdc void cas_reset(struct cas_softc *);
149 1.1 jdc int cas_reset_rx(struct cas_softc *);
150 1.1 jdc int cas_reset_tx(struct cas_softc *);
151 1.1 jdc int cas_disable_rx(struct cas_softc *);
152 1.1 jdc int cas_disable_tx(struct cas_softc *);
153 1.1 jdc void cas_rxdrain(struct cas_softc *);
154 1.1 jdc int cas_add_rxbuf(struct cas_softc *, int idx);
155 1.1 jdc void cas_iff(struct cas_softc *);
156 1.1 jdc int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
157 1.1 jdc
158 1.1 jdc /* MII methods & callbacks */
159 1.1 jdc int cas_mii_readreg(device_t, int, int);
160 1.1 jdc void cas_mii_writereg(device_t, int, int, int);
161 1.1 jdc void cas_mii_statchg(device_t);
162 1.1 jdc int cas_pcs_readreg(device_t, int, int);
163 1.1 jdc void cas_pcs_writereg(device_t, int, int, int);
164 1.1 jdc
165 1.1 jdc int cas_mediachange(struct ifnet *);
166 1.1 jdc void cas_mediastatus(struct ifnet *, struct ifmediareq *);
167 1.1 jdc
168 1.1 jdc int cas_eint(struct cas_softc *, u_int);
169 1.1 jdc int cas_rint(struct cas_softc *);
170 1.1 jdc int cas_tint(struct cas_softc *, u_int32_t);
171 1.1 jdc int cas_pint(struct cas_softc *);
172 1.1 jdc int cas_intr(void *);
173 1.1 jdc
174 1.1 jdc #ifdef CAS_DEBUG
175 1.1 jdc #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
176 1.1 jdc printf x
177 1.1 jdc #else
178 1.1 jdc #define DPRINTF(sc, x) /* nothing */
179 1.1 jdc #endif
180 1.1 jdc
181 1.1 jdc int
182 1.1 jdc cas_match(device_t parent, cfdata_t cf, void *aux)
183 1.1 jdc {
184 1.1 jdc struct pci_attach_args *pa = aux;
185 1.1 jdc
186 1.1 jdc if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
187 1.1 jdc (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
188 1.1 jdc return 1;
189 1.1 jdc
190 1.1 jdc if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
191 1.1 jdc (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
192 1.1 jdc return 1;
193 1.1 jdc
194 1.1 jdc return 0;
195 1.1 jdc }
196 1.1 jdc
197 1.1 jdc #if CAS_USE_LOCAL_MAC_ADDRESS
198 1.1 jdc #define PROMHDR_PTR_DATA 0x18
199 1.1 jdc #define PROMDATA_PTR_VPD 0x08
200 1.1 jdc #define PROMDATA_DATA2 0x0a
201 1.1 jdc
202 1.1 jdc static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
203 1.1 jdc static const u_int8_t cas_promdat[] = {
204 1.1 jdc 'P', 'C', 'I', 'R',
205 1.1 jdc PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
206 1.1 jdc PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
207 1.1 jdc };
208 1.1 jdc
209 1.1 jdc static const u_int8_t cas_promdat2[] = {
210 1.1 jdc 0x18, 0x00, /* structure length */
211 1.1 jdc 0x00, /* structure revision */
212 1.1 jdc 0x00, /* interface revision */
213 1.1 jdc PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
214 1.1 jdc PCI_CLASS_NETWORK /* class code */
215 1.1 jdc };
216 1.1 jdc
217 1.1 jdc int
218 1.1 jdc cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
219 1.1 jdc uint8_t *enaddr)
220 1.1 jdc {
221 1.1 jdc struct pci_vpd_largeres *res;
222 1.1 jdc struct pci_vpd *vpd;
223 1.1 jdc bus_space_handle_t romh;
224 1.1 jdc bus_space_tag_t romt;
225 1.1 jdc bus_size_t romsize = 0;
226 1.1 jdc u_int8_t buf[32], *desc;
227 1.1 jdc pcireg_t address;
228 1.1 jdc int dataoff, vpdoff, len;
229 1.1 jdc int rv = -1;
230 1.1 jdc
231 1.1 jdc if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
232 1.1 jdc &romt, &romh, NULL, &romsize))
233 1.1 jdc return (-1);
234 1.1 jdc
235 1.1 jdc address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
236 1.1 jdc address |= PCI_MAPREG_ROM_ENABLE;
237 1.1 jdc pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
238 1.1 jdc
239 1.1 jdc bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
240 1.1 jdc if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
241 1.1 jdc goto fail;
242 1.1 jdc
243 1.1 jdc dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
244 1.1 jdc if (dataoff < 0x1c)
245 1.1 jdc goto fail;
246 1.1 jdc
247 1.1 jdc bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
248 1.1 jdc if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
249 1.1 jdc bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
250 1.1 jdc goto fail;
251 1.1 jdc
252 1.1 jdc vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
253 1.1 jdc if (vpdoff < 0x1c)
254 1.1 jdc goto fail;
255 1.1 jdc
256 1.1 jdc next:
257 1.1 jdc bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
258 1.1 jdc if (!PCI_VPDRES_ISLARGE(buf[0]))
259 1.1 jdc goto fail;
260 1.1 jdc
261 1.1 jdc res = (struct pci_vpd_largeres *)buf;
262 1.1 jdc vpdoff += sizeof(*res);
263 1.1 jdc
264 1.1 jdc len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
265 1.1 jdc switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
266 1.1 jdc case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
267 1.1 jdc /* Skip identifier string. */
268 1.1 jdc vpdoff += len;
269 1.1 jdc goto next;
270 1.1 jdc
271 1.1 jdc case PCI_VPDRES_TYPE_VPD:
272 1.1 jdc while (len > 0) {
273 1.1 jdc bus_space_read_region_1(romt, romh, vpdoff,
274 1.1 jdc buf, sizeof(buf));
275 1.1 jdc
276 1.1 jdc vpd = (struct pci_vpd *)buf;
277 1.1 jdc vpdoff += sizeof(*vpd) + vpd->vpd_len;
278 1.1 jdc len -= sizeof(*vpd) + vpd->vpd_len;
279 1.1 jdc
280 1.1 jdc /*
281 1.1 jdc * We're looking for an "Enhanced" VPD...
282 1.1 jdc */
283 1.1 jdc if (vpd->vpd_key0 != 'Z')
284 1.1 jdc continue;
285 1.1 jdc
286 1.1 jdc desc = buf + sizeof(*vpd);
287 1.1 jdc
288 1.1 jdc /*
289 1.1 jdc * ...which is an instance property...
290 1.1 jdc */
291 1.1 jdc if (desc[0] != 'I')
292 1.1 jdc continue;
293 1.1 jdc desc += 3;
294 1.1 jdc
295 1.1 jdc /*
296 1.1 jdc * ...that's a byte array with the proper
297 1.1 jdc * length for a MAC address...
298 1.1 jdc */
299 1.1 jdc if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
300 1.1 jdc continue;
301 1.1 jdc desc += 2;
302 1.1 jdc
303 1.1 jdc /*
304 1.1 jdc * ...named "local-mac-address".
305 1.1 jdc */
306 1.1 jdc if (strcmp(desc, "local-mac-address") != 0)
307 1.1 jdc continue;
308 1.1 jdc desc += strlen("local-mac-address") + 1;
309 1.1 jdc
310 1.1 jdc memcpy(enaddr, enp, ETHER_ADDR_LEN);
311 1.1 jdc rv = 0;
312 1.1 jdc }
313 1.1 jdc break;
314 1.1 jdc
315 1.1 jdc default:
316 1.1 jdc goto fail;
317 1.1 jdc }
318 1.1 jdc
319 1.1 jdc fail:
320 1.1 jdc if (romsize != 0)
321 1.1 jdc bus_space_unmap(romt, romh, romsize);
322 1.1 jdc
323 1.1 jdc address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
324 1.1 jdc address &= ~PCI_MAPREG_ROM_ENABLE;
325 1.1 jdc pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
326 1.1 jdc
327 1.1 jdc return (rv);
328 1.1 jdc }
329 1.1 jdc #endif /* CAS_USE_LOCAL_MAC_ADDRESS */
330 1.1 jdc
331 1.1 jdc void
332 1.1 jdc cas_attach(device_t parent, device_t self, void *aux)
333 1.1 jdc {
334 1.1 jdc struct pci_attach_args *pa = aux;
335 1.1 jdc struct cas_softc *sc = device_private(self);
336 1.1 jdc char devinfo[256];
337 1.1 jdc uint8_t enaddr[ETHER_ADDR_LEN];
338 1.1 jdc
339 1.1 jdc sc->sc_dev = self;
340 1.1 jdc pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
341 1.1 jdc sc->sc_rev = PCI_REVISION(pa->pa_class);
342 1.1 jdc aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
343 1.1 jdc sc->sc_dmatag = pa->pa_dmat;
344 1.1 jdc
345 1.1 jdc #define PCI_CAS_BASEADDR 0x10
346 1.1 jdc if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
347 1.1 jdc &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
348 1.1 jdc aprint_error_dev(sc->sc_dev,
349 1.1 jdc "unable to map device registers\n");
350 1.1 jdc return;
351 1.1 jdc }
352 1.1 jdc
353 1.1 jdc #if CAS_USE_LOCAL_MAC_ADDRESS
354 1.1 jdc if (cas_pci_enaddr(sc, pa, enaddr) != 0)
355 1.1 jdc aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
356 1.1 jdc #endif
357 1.1 jdc #ifdef __sparc64__
358 1.1 jdc prom_getether(PCITAG_NODE(pa->pa_tag), enaddr);
359 1.1 jdc #else
360 1.1 jdc #ifdef macppc
361 1.1 jdc {
362 1.1 jdc int node;
363 1.1 jdc
364 1.1 jdc node = pcidev_to_ofdev(pa->pa_pc, pa->pa_tag);
365 1.1 jdc if (node == 0) {
366 1.1 jdc aprint_error_dev(sc->sc_dev, "unable to locate OpenFirmware node\n");
367 1.1 jdc return;
368 1.1 jdc }
369 1.1 jdc
370 1.1 jdc OF_getprop(node, "local-mac-address", enaddr, sizeof(enaddr));
371 1.1 jdc }
372 1.1 jdc #endif /* macppc */
373 1.1 jdc #endif /* __sparc__ */
374 1.1 jdc
375 1.1 jdc sc->sc_burst = 16; /* XXX */
376 1.1 jdc
377 1.1 jdc sc->sc_att_stage = CAS_ATT_BACKEND_0;
378 1.1 jdc
379 1.1 jdc if (pci_intr_map(pa, &sc->sc_handle) != 0) {
380 1.1 jdc aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
381 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
382 1.1 jdc return;
383 1.1 jdc }
384 1.1 jdc sc->sc_pc = pa->pa_pc;
385 1.3 jdc if (!cas_estintr(sc, CAS_INTR_PCI)) {
386 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
387 1.1 jdc aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
388 1.1 jdc return;
389 1.1 jdc }
390 1.1 jdc
391 1.1 jdc sc->sc_att_stage = CAS_ATT_BACKEND_1;
392 1.1 jdc
393 1.1 jdc /*
394 1.1 jdc * call the main configure
395 1.1 jdc */
396 1.1 jdc cas_config(sc, enaddr);
397 1.1 jdc
398 1.1 jdc if (pmf_device_register1(sc->sc_dev,
399 1.1 jdc cas_suspend, cas_resume, cas_shutdown))
400 1.1 jdc pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
401 1.1 jdc else
402 1.1 jdc aprint_error_dev(sc->sc_dev,
403 1.1 jdc "could not establish power handlers\n");
404 1.1 jdc
405 1.1 jdc sc->sc_att_stage = CAS_ATT_FINISHED;
406 1.1 jdc /*FALLTHROUGH*/
407 1.1 jdc }
408 1.1 jdc
409 1.1 jdc /*
410 1.1 jdc * cas_config:
411 1.1 jdc *
412 1.1 jdc * Attach a Cassini interface to the system.
413 1.1 jdc */
414 1.1 jdc void
415 1.1 jdc cas_config(struct cas_softc *sc, const uint8_t *enaddr)
416 1.1 jdc {
417 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
418 1.1 jdc struct mii_data *mii = &sc->sc_mii;
419 1.1 jdc struct mii_softc *child;
420 1.1 jdc int i, error;
421 1.1 jdc
422 1.1 jdc /* Make sure the chip is stopped. */
423 1.1 jdc ifp->if_softc = sc;
424 1.1 jdc cas_reset(sc);
425 1.1 jdc
426 1.1 jdc /*
427 1.1 jdc * Allocate the control data structures, and create and load the
428 1.1 jdc * DMA map for it.
429 1.1 jdc */
430 1.1 jdc if ((error = bus_dmamem_alloc(sc->sc_dmatag,
431 1.1 jdc sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
432 1.1 jdc 1, &sc->sc_cdnseg, 0)) != 0) {
433 1.1 jdc aprint_error_dev(sc->sc_dev,
434 1.1 jdc "unable to allocate control data, error = %d\n",
435 1.1 jdc error);
436 1.1 jdc cas_partial_detach(sc, CAS_ATT_0);
437 1.1 jdc }
438 1.1 jdc
439 1.1 jdc /* XXX should map this in with correct endianness */
440 1.1 jdc if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
441 1.1 jdc sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
442 1.1 jdc BUS_DMA_COHERENT)) != 0) {
443 1.1 jdc aprint_error_dev(sc->sc_dev,
444 1.1 jdc "unable to map control data, error = %d\n", error);
445 1.1 jdc cas_partial_detach(sc, CAS_ATT_1);
446 1.1 jdc }
447 1.1 jdc
448 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag,
449 1.1 jdc sizeof(struct cas_control_data), 1,
450 1.1 jdc sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
451 1.1 jdc aprint_error_dev(sc->sc_dev,
452 1.1 jdc "unable to create control data DMA map, error = %d\n", error);
453 1.1 jdc cas_partial_detach(sc, CAS_ATT_2);
454 1.1 jdc }
455 1.1 jdc
456 1.1 jdc if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
457 1.1 jdc sc->sc_control_data, sizeof(struct cas_control_data), NULL,
458 1.1 jdc 0)) != 0) {
459 1.1 jdc aprint_error_dev(sc->sc_dev,
460 1.1 jdc "unable to load control data DMA map, error = %d\n",
461 1.1 jdc error);
462 1.1 jdc cas_partial_detach(sc, CAS_ATT_3);
463 1.1 jdc }
464 1.1 jdc
465 1.1 jdc memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
466 1.1 jdc
467 1.1 jdc /*
468 1.1 jdc * Create the receive buffer DMA maps.
469 1.1 jdc */
470 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++) {
471 1.1 jdc bus_dma_segment_t seg;
472 1.1 jdc char *kva;
473 1.1 jdc int rseg;
474 1.1 jdc
475 1.1 jdc if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
476 1.1 jdc CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
477 1.1 jdc aprint_error_dev(sc->sc_dev,
478 1.1 jdc "unable to alloc rx DMA mem %d, error = %d\n",
479 1.1 jdc i, error);
480 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
481 1.1 jdc }
482 1.1 jdc sc->sc_rxsoft[i].rxs_dmaseg = seg;
483 1.1 jdc
484 1.1 jdc if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
485 1.1 jdc CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
486 1.1 jdc aprint_error_dev(sc->sc_dev,
487 1.1 jdc "unable to alloc rx DMA mem %d, error = %d\n",
488 1.1 jdc i, error);
489 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
490 1.1 jdc }
491 1.1 jdc sc->sc_rxsoft[i].rxs_kva = kva;
492 1.1 jdc
493 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
494 1.1 jdc CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
495 1.1 jdc aprint_error_dev(sc->sc_dev,
496 1.1 jdc "unable to create rx DMA map %d, error = %d\n",
497 1.1 jdc i, error);
498 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
499 1.1 jdc }
500 1.1 jdc
501 1.1 jdc if ((error = bus_dmamap_load(sc->sc_dmatag,
502 1.1 jdc sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
503 1.1 jdc BUS_DMA_NOWAIT)) != 0) {
504 1.1 jdc aprint_error_dev(sc->sc_dev,
505 1.1 jdc "unable to load rx DMA map %d, error = %d\n",
506 1.1 jdc i, error);
507 1.1 jdc cas_partial_detach(sc, CAS_ATT_5);
508 1.1 jdc }
509 1.1 jdc }
510 1.1 jdc
511 1.1 jdc /*
512 1.1 jdc * Create the transmit buffer DMA maps.
513 1.1 jdc */
514 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
515 1.1 jdc if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
516 1.1 jdc CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
517 1.1 jdc &sc->sc_txd[i].sd_map)) != 0) {
518 1.1 jdc aprint_error_dev(sc->sc_dev,
519 1.1 jdc "unable to create tx DMA map %d, error = %d\n",
520 1.1 jdc i, error);
521 1.1 jdc cas_partial_detach(sc, CAS_ATT_6);
522 1.1 jdc }
523 1.1 jdc sc->sc_txd[i].sd_mbuf = NULL;
524 1.1 jdc }
525 1.1 jdc
526 1.1 jdc /*
527 1.1 jdc * From this point forward, the attachment cannot fail. A failure
528 1.1 jdc * before this point releases all resources that may have been
529 1.1 jdc * allocated.
530 1.1 jdc */
531 1.1 jdc
532 1.1 jdc /* Announce ourselves. */
533 1.1 jdc aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
534 1.1 jdc ether_sprintf(enaddr));
535 1.1 jdc
536 1.1 jdc /* Get RX FIFO size */
537 1.1 jdc sc->sc_rxfifosize = 16 * 1024;
538 1.1 jdc
539 1.1 jdc /* Initialize ifnet structure. */
540 1.1 jdc strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
541 1.1 jdc ifp->if_softc = sc;
542 1.1 jdc ifp->if_flags =
543 1.1 jdc IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
544 1.1 jdc ifp->if_start = cas_start;
545 1.1 jdc ifp->if_ioctl = cas_ioctl;
546 1.1 jdc ifp->if_watchdog = cas_watchdog;
547 1.1 jdc ifp->if_stop = cas_stop;
548 1.1 jdc ifp->if_init = cas_init;
549 1.1 jdc IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
550 1.1 jdc IFQ_SET_READY(&ifp->if_snd);
551 1.1 jdc
552 1.1 jdc /* Initialize ifmedia structures and MII info */
553 1.1 jdc mii->mii_ifp = ifp;
554 1.1 jdc mii->mii_readreg = cas_mii_readreg;
555 1.1 jdc mii->mii_writereg = cas_mii_writereg;
556 1.1 jdc mii->mii_statchg = cas_mii_statchg;
557 1.1 jdc
558 1.1 jdc ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
559 1.1 jdc sc->sc_ethercom.ec_mii = mii;
560 1.1 jdc
561 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
562 1.1 jdc
563 1.1 jdc cas_mifinit(sc);
564 1.1 jdc
565 1.1 jdc if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
566 1.1 jdc sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
567 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
568 1.1 jdc CAS_MIF_CONFIG, sc->sc_mif_config);
569 1.1 jdc }
570 1.1 jdc
571 1.1 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
572 1.1 jdc MII_OFFSET_ANY, 0);
573 1.1 jdc
574 1.1 jdc child = LIST_FIRST(&mii->mii_phys);
575 1.1 jdc if (child == NULL &&
576 1.1 jdc sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
577 1.1 jdc /*
578 1.1 jdc * Try the external PCS SERDES if we didn't find any
579 1.1 jdc * MII devices.
580 1.1 jdc */
581 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
582 1.1 jdc CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
583 1.1 jdc
584 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh,
585 1.1 jdc CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
586 1.1 jdc
587 1.1 jdc mii->mii_readreg = cas_pcs_readreg;
588 1.1 jdc mii->mii_writereg = cas_pcs_writereg;
589 1.1 jdc
590 1.1 jdc mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
591 1.1 jdc MII_OFFSET_ANY, MIIF_NOISOLATE);
592 1.1 jdc }
593 1.1 jdc
594 1.1 jdc child = LIST_FIRST(&mii->mii_phys);
595 1.1 jdc if (child == NULL) {
596 1.1 jdc /* No PHY attached */
597 1.1 jdc ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
598 1.1 jdc ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
599 1.1 jdc } else {
600 1.1 jdc /*
601 1.1 jdc * Walk along the list of attached MII devices and
602 1.1 jdc * establish an `MII instance' to `phy number'
603 1.1 jdc * mapping. We'll use this mapping in media change
604 1.1 jdc * requests to determine which phy to use to program
605 1.1 jdc * the MIF configuration register.
606 1.1 jdc */
607 1.1 jdc for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
608 1.1 jdc /*
609 1.1 jdc * Note: we support just two PHYs: the built-in
610 1.1 jdc * internal device and an external on the MII
611 1.1 jdc * connector.
612 1.1 jdc */
613 1.1 jdc if (child->mii_phy > 1 || child->mii_inst > 1) {
614 1.1 jdc aprint_error_dev(sc->sc_dev,
615 1.1 jdc "cannot accommodate MII device %s"
616 1.1 jdc " at phy %d, instance %d\n",
617 1.1 jdc device_xname(child->mii_dev),
618 1.1 jdc child->mii_phy, child->mii_inst);
619 1.1 jdc continue;
620 1.1 jdc }
621 1.1 jdc
622 1.1 jdc sc->sc_phys[child->mii_inst] = child->mii_phy;
623 1.1 jdc }
624 1.1 jdc
625 1.1 jdc /*
626 1.1 jdc * XXX - we can really do the following ONLY if the
627 1.1 jdc * phy indeed has the auto negotiation capability!!
628 1.1 jdc */
629 1.1 jdc ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
630 1.1 jdc }
631 1.1 jdc
632 1.1 jdc /* claim 802.1q capability */
633 1.1 jdc sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
634 1.1 jdc
635 1.1 jdc /* Attach the interface. */
636 1.1 jdc if_attach(ifp);
637 1.1 jdc ether_ifattach(ifp, enaddr);
638 1.1 jdc
639 1.1 jdc #if NRND > 0
640 1.1 jdc rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
641 1.1 jdc RND_TYPE_NET, 0);
642 1.1 jdc #endif
643 1.1 jdc
644 1.1 jdc evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
645 1.1 jdc NULL, device_xname(sc->sc_dev), "interrupts");
646 1.1 jdc
647 1.1 jdc callout_init(&sc->sc_tick_ch, 0);
648 1.1 jdc
649 1.1 jdc return;
650 1.1 jdc }
651 1.1 jdc
652 1.1 jdc int
653 1.1 jdc cas_detach(device_t self, int flags)
654 1.1 jdc {
655 1.1 jdc int i;
656 1.1 jdc struct cas_softc *sc = device_private(self);
657 1.3 jdc bus_space_tag_t t = sc->sc_memt;
658 1.3 jdc bus_space_handle_t h = sc->sc_memh;
659 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
660 1.1 jdc
661 1.1 jdc /*
662 1.1 jdc * Free any resources we've allocated during the failed attach
663 1.1 jdc * attempt. Do this in reverse order and fall through.
664 1.1 jdc */
665 1.1 jdc switch (sc->sc_att_stage) {
666 1.1 jdc case CAS_ATT_FINISHED:
667 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
668 1.1 jdc pmf_device_deregister(self);
669 1.1 jdc cas_stop(&sc->sc_ethercom.ec_if, 1);
670 1.1 jdc evcnt_detach(&sc->sc_ev_intr);
671 1.1 jdc
672 1.1 jdc #if NRND > 0
673 1.1 jdc rnd_detach_source(&sc->rnd_source);
674 1.1 jdc #endif
675 1.1 jdc
676 1.1 jdc ether_ifdetach(ifp);
677 1.1 jdc if_detach(ifp);
678 1.1 jdc ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
679 1.1 jdc
680 1.1 jdc callout_destroy(&sc->sc_tick_ch);
681 1.1 jdc
682 1.1 jdc mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
683 1.1 jdc
684 1.1 jdc /*FALLTHROUGH*/
685 1.1 jdc case CAS_ATT_MII:
686 1.1 jdc case CAS_ATT_7:
687 1.1 jdc case CAS_ATT_6:
688 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
689 1.1 jdc if (sc->sc_txd[i].sd_map != NULL)
690 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag,
691 1.1 jdc sc->sc_txd[i].sd_map);
692 1.1 jdc }
693 1.1 jdc /*FALLTHROUGH*/
694 1.1 jdc case CAS_ATT_5:
695 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++) {
696 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
697 1.1 jdc bus_dmamap_unload(sc->sc_dmatag,
698 1.3 jdc sc->sc_rxsoft[i].rxs_dmamap);
699 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
700 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag,
701 1.1 jdc sc->sc_rxsoft[i].rxs_dmamap);
702 1.1 jdc if (sc->sc_rxsoft[i].rxs_kva != NULL)
703 1.1 jdc bus_dmamem_unmap(sc->sc_dmatag,
704 1.1 jdc sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
705 1.1 jdc /* XXX need to check that bus_dmamem_alloc suceeded
706 1.1 jdc if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
707 1.1 jdc */
708 1.1 jdc bus_dmamem_free(sc->sc_dmatag,
709 1.1 jdc &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
710 1.1 jdc }
711 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
712 1.1 jdc /*FALLTHROUGH*/
713 1.1 jdc case CAS_ATT_4:
714 1.1 jdc case CAS_ATT_3:
715 1.1 jdc bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
716 1.1 jdc /*FALLTHROUGH*/
717 1.1 jdc case CAS_ATT_2:
718 1.1 jdc bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
719 1.1 jdc sizeof(struct cas_control_data));
720 1.1 jdc /*FALLTHROUGH*/
721 1.1 jdc case CAS_ATT_1:
722 1.1 jdc bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
723 1.1 jdc /*FALLTHROUGH*/
724 1.1 jdc case CAS_ATT_0:
725 1.1 jdc sc->sc_att_stage = CAS_ATT_0;
726 1.1 jdc /*FALLTHROUGH*/
727 1.1 jdc case CAS_ATT_BACKEND_2:
728 1.1 jdc case CAS_ATT_BACKEND_1:
729 1.1 jdc if (sc->sc_ih != NULL) {
730 1.1 jdc pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
731 1.1 jdc sc->sc_ih = NULL;
732 1.1 jdc }
733 1.1 jdc bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
734 1.1 jdc /*FALLTHROUGH*/
735 1.1 jdc case CAS_ATT_BACKEND_0:
736 1.1 jdc break;
737 1.1 jdc }
738 1.1 jdc return 0;
739 1.1 jdc }
740 1.1 jdc
741 1.1 jdc static void
742 1.1 jdc cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
743 1.1 jdc {
744 1.1 jdc cfattach_t ca = device_cfattach(sc->sc_dev);
745 1.1 jdc
746 1.1 jdc sc->sc_att_stage = stage;
747 1.1 jdc (*ca->ca_detach)(sc->sc_dev, 0);
748 1.1 jdc }
749 1.1 jdc
750 1.1 jdc void
751 1.1 jdc cas_tick(void *arg)
752 1.1 jdc {
753 1.1 jdc struct cas_softc *sc = arg;
754 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
755 1.1 jdc bus_space_tag_t t = sc->sc_memt;
756 1.1 jdc bus_space_handle_t mac = sc->sc_memh;
757 1.1 jdc int s;
758 1.1 jdc u_int32_t v;
759 1.1 jdc
760 1.1 jdc /* unload collisions counters */
761 1.1 jdc v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
762 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
763 1.1 jdc ifp->if_collisions += v +
764 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
765 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
766 1.1 jdc ifp->if_oerrors += v;
767 1.1 jdc
768 1.1 jdc /* read error counters */
769 1.1 jdc ifp->if_ierrors +=
770 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
771 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
772 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
773 1.1 jdc bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
774 1.1 jdc
775 1.1 jdc /* clear the hardware counters */
776 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
777 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
778 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
779 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
780 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
781 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
782 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
783 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
784 1.1 jdc
785 1.1 jdc s = splnet();
786 1.1 jdc mii_tick(&sc->sc_mii);
787 1.1 jdc splx(s);
788 1.1 jdc
789 1.1 jdc callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
790 1.1 jdc }
791 1.1 jdc
792 1.1 jdc int
793 1.1 jdc cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
794 1.1 jdc u_int32_t clr, u_int32_t set)
795 1.1 jdc {
796 1.1 jdc int i;
797 1.1 jdc u_int32_t reg;
798 1.1 jdc
799 1.1 jdc for (i = TRIES; i--; DELAY(100)) {
800 1.1 jdc reg = bus_space_read_4(sc->sc_memt, h, r);
801 1.1 jdc if ((reg & clr) == 0 && (reg & set) == set)
802 1.1 jdc return (1);
803 1.1 jdc }
804 1.1 jdc
805 1.1 jdc return (0);
806 1.1 jdc }
807 1.1 jdc
808 1.1 jdc void
809 1.1 jdc cas_reset(struct cas_softc *sc)
810 1.1 jdc {
811 1.1 jdc bus_space_tag_t t = sc->sc_memt;
812 1.1 jdc bus_space_handle_t h = sc->sc_memh;
813 1.1 jdc int s;
814 1.1 jdc
815 1.1 jdc s = splnet();
816 1.1 jdc DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
817 1.1 jdc cas_reset_rx(sc);
818 1.1 jdc cas_reset_tx(sc);
819 1.1 jdc
820 1.1 jdc /* Do a full reset */
821 1.1 jdc bus_space_write_4(t, h, CAS_RESET,
822 1.1 jdc CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
823 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
824 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset device\n");
825 1.1 jdc splx(s);
826 1.1 jdc }
827 1.1 jdc
828 1.1 jdc
829 1.1 jdc /*
830 1.1 jdc * cas_rxdrain:
831 1.1 jdc *
832 1.1 jdc * Drain the receive queue.
833 1.1 jdc */
834 1.1 jdc void
835 1.1 jdc cas_rxdrain(struct cas_softc *sc)
836 1.1 jdc {
837 1.1 jdc /* Nothing to do yet. */
838 1.1 jdc }
839 1.1 jdc
840 1.1 jdc /*
841 1.1 jdc * Reset the whole thing.
842 1.1 jdc */
843 1.1 jdc void
844 1.1 jdc cas_stop(struct ifnet *ifp, int disable)
845 1.1 jdc {
846 1.1 jdc struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
847 1.1 jdc struct cas_sxd *sd;
848 1.1 jdc u_int32_t i;
849 1.1 jdc
850 1.1 jdc DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
851 1.1 jdc
852 1.1 jdc callout_stop(&sc->sc_tick_ch);
853 1.1 jdc
854 1.1 jdc /*
855 1.1 jdc * Mark the interface down and cancel the watchdog timer.
856 1.1 jdc */
857 1.1 jdc ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
858 1.1 jdc ifp->if_timer = 0;
859 1.1 jdc
860 1.1 jdc mii_down(&sc->sc_mii);
861 1.1 jdc
862 1.1 jdc cas_reset_rx(sc);
863 1.1 jdc cas_reset_tx(sc);
864 1.1 jdc
865 1.1 jdc /*
866 1.1 jdc * Release any queued transmit buffers.
867 1.1 jdc */
868 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
869 1.1 jdc sd = &sc->sc_txd[i];
870 1.1 jdc if (sd->sd_mbuf != NULL) {
871 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
872 1.1 jdc sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
873 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
874 1.1 jdc m_freem(sd->sd_mbuf);
875 1.1 jdc sd->sd_mbuf = NULL;
876 1.1 jdc }
877 1.1 jdc }
878 1.1 jdc sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
879 1.1 jdc
880 1.1 jdc if (disable)
881 1.1 jdc cas_rxdrain(sc);
882 1.1 jdc }
883 1.1 jdc
884 1.1 jdc
885 1.1 jdc /*
886 1.1 jdc * Reset the receiver
887 1.1 jdc */
888 1.1 jdc int
889 1.1 jdc cas_reset_rx(struct cas_softc *sc)
890 1.1 jdc {
891 1.1 jdc bus_space_tag_t t = sc->sc_memt;
892 1.1 jdc bus_space_handle_t h = sc->sc_memh;
893 1.1 jdc
894 1.1 jdc /*
895 1.1 jdc * Resetting while DMA is in progress can cause a bus hang, so we
896 1.1 jdc * disable DMA first.
897 1.1 jdc */
898 1.1 jdc cas_disable_rx(sc);
899 1.1 jdc bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
900 1.1 jdc /* Wait till it finishes */
901 1.1 jdc if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
902 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
903 1.1 jdc /* Wait 5ms extra. */
904 1.1 jdc delay(5000);
905 1.1 jdc
906 1.1 jdc /* Finally, reset the ERX */
907 1.1 jdc bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
908 1.1 jdc /* Wait till it finishes */
909 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
910 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
911 1.1 jdc return (1);
912 1.1 jdc }
913 1.1 jdc return (0);
914 1.1 jdc }
915 1.1 jdc
916 1.1 jdc
917 1.1 jdc /*
918 1.1 jdc * Reset the transmitter
919 1.1 jdc */
920 1.1 jdc int
921 1.1 jdc cas_reset_tx(struct cas_softc *sc)
922 1.1 jdc {
923 1.1 jdc bus_space_tag_t t = sc->sc_memt;
924 1.1 jdc bus_space_handle_t h = sc->sc_memh;
925 1.1 jdc
926 1.1 jdc /*
927 1.1 jdc * Resetting while DMA is in progress can cause a bus hang, so we
928 1.1 jdc * disable DMA first.
929 1.1 jdc */
930 1.1 jdc cas_disable_tx(sc);
931 1.1 jdc bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
932 1.1 jdc /* Wait till it finishes */
933 1.1 jdc if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
934 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
935 1.1 jdc /* Wait 5ms extra. */
936 1.1 jdc delay(5000);
937 1.1 jdc
938 1.1 jdc /* Finally, reset the ETX */
939 1.1 jdc bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
940 1.1 jdc /* Wait till it finishes */
941 1.1 jdc if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
942 1.1 jdc aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
943 1.1 jdc return (1);
944 1.1 jdc }
945 1.1 jdc return (0);
946 1.1 jdc }
947 1.1 jdc
948 1.1 jdc /*
949 1.1 jdc * Disable receiver.
950 1.1 jdc */
951 1.1 jdc int
952 1.1 jdc cas_disable_rx(struct cas_softc *sc)
953 1.1 jdc {
954 1.1 jdc bus_space_tag_t t = sc->sc_memt;
955 1.1 jdc bus_space_handle_t h = sc->sc_memh;
956 1.1 jdc u_int32_t cfg;
957 1.1 jdc
958 1.1 jdc /* Flip the enable bit */
959 1.1 jdc cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
960 1.1 jdc cfg &= ~CAS_MAC_RX_ENABLE;
961 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
962 1.1 jdc
963 1.1 jdc /* Wait for it to finish */
964 1.1 jdc return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
965 1.1 jdc }
966 1.1 jdc
967 1.1 jdc /*
968 1.1 jdc * Disable transmitter.
969 1.1 jdc */
970 1.1 jdc int
971 1.1 jdc cas_disable_tx(struct cas_softc *sc)
972 1.1 jdc {
973 1.1 jdc bus_space_tag_t t = sc->sc_memt;
974 1.1 jdc bus_space_handle_t h = sc->sc_memh;
975 1.1 jdc u_int32_t cfg;
976 1.1 jdc
977 1.1 jdc /* Flip the enable bit */
978 1.1 jdc cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
979 1.1 jdc cfg &= ~CAS_MAC_TX_ENABLE;
980 1.1 jdc bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
981 1.1 jdc
982 1.1 jdc /* Wait for it to finish */
983 1.1 jdc return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
984 1.1 jdc }
985 1.1 jdc
986 1.1 jdc /*
987 1.1 jdc * Initialize interface.
988 1.1 jdc */
989 1.1 jdc int
990 1.1 jdc cas_meminit(struct cas_softc *sc)
991 1.1 jdc {
992 1.1 jdc struct cas_rxsoft *rxs;
993 1.1 jdc int i, error;
994 1.1 jdc
995 1.1 jdc rxs = (void *)&error;
996 1.1 jdc
997 1.1 jdc /*
998 1.1 jdc * Initialize the transmit descriptor ring.
999 1.1 jdc */
1000 1.1 jdc for (i = 0; i < CAS_NTXDESC; i++) {
1001 1.1 jdc sc->sc_txdescs[i].cd_flags = 0;
1002 1.1 jdc sc->sc_txdescs[i].cd_addr = 0;
1003 1.1 jdc }
1004 1.1 jdc CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1005 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1006 1.1 jdc
1007 1.1 jdc /*
1008 1.1 jdc * Initialize the receive descriptor and receive job
1009 1.1 jdc * descriptor rings.
1010 1.1 jdc */
1011 1.1 jdc for (i = 0; i < CAS_NRXDESC; i++)
1012 1.1 jdc CAS_INIT_RXDESC(sc, i, i);
1013 1.1 jdc sc->sc_rxdptr = 0;
1014 1.1 jdc sc->sc_rxptr = 0;
1015 1.1 jdc
1016 1.1 jdc /*
1017 1.1 jdc * Initialize the receive completion ring.
1018 1.1 jdc */
1019 1.1 jdc for (i = 0; i < CAS_NRXCOMP; i++) {
1020 1.1 jdc sc->sc_rxcomps[i].cc_word[0] = 0;
1021 1.1 jdc sc->sc_rxcomps[i].cc_word[1] = 0;
1022 1.1 jdc sc->sc_rxcomps[i].cc_word[2] = 0;
1023 1.1 jdc sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1024 1.1 jdc CAS_CDRXCSYNC(sc, i,
1025 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1026 1.1 jdc }
1027 1.1 jdc
1028 1.1 jdc return (0);
1029 1.1 jdc }
1030 1.1 jdc
1031 1.1 jdc int
1032 1.1 jdc cas_ringsize(int sz)
1033 1.1 jdc {
1034 1.1 jdc switch (sz) {
1035 1.1 jdc case 32:
1036 1.1 jdc return CAS_RING_SZ_32;
1037 1.1 jdc case 64:
1038 1.1 jdc return CAS_RING_SZ_64;
1039 1.1 jdc case 128:
1040 1.1 jdc return CAS_RING_SZ_128;
1041 1.1 jdc case 256:
1042 1.1 jdc return CAS_RING_SZ_256;
1043 1.1 jdc case 512:
1044 1.1 jdc return CAS_RING_SZ_512;
1045 1.1 jdc case 1024:
1046 1.1 jdc return CAS_RING_SZ_1024;
1047 1.1 jdc case 2048:
1048 1.1 jdc return CAS_RING_SZ_2048;
1049 1.1 jdc case 4096:
1050 1.1 jdc return CAS_RING_SZ_4096;
1051 1.1 jdc case 8192:
1052 1.1 jdc return CAS_RING_SZ_8192;
1053 1.1 jdc default:
1054 1.1 jdc aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1055 1.1 jdc sz);
1056 1.1 jdc return CAS_RING_SZ_32;
1057 1.1 jdc }
1058 1.1 jdc }
1059 1.1 jdc
1060 1.1 jdc int
1061 1.1 jdc cas_cringsize(int sz)
1062 1.1 jdc {
1063 1.1 jdc int i;
1064 1.1 jdc
1065 1.1 jdc for (i = 0; i < 9; i++)
1066 1.1 jdc if (sz == (128 << i))
1067 1.1 jdc return i;
1068 1.1 jdc
1069 1.1 jdc aprint_error("cas: invalid completion ring size %d\n", sz);
1070 1.1 jdc return 128;
1071 1.1 jdc }
1072 1.1 jdc
1073 1.1 jdc /*
1074 1.1 jdc * Initialization of interface; set up initialization block
1075 1.1 jdc * and transmit/receive descriptor rings.
1076 1.1 jdc */
1077 1.1 jdc int
1078 1.1 jdc cas_init(struct ifnet *ifp)
1079 1.1 jdc {
1080 1.1 jdc struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1081 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1082 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1083 1.1 jdc int s;
1084 1.1 jdc u_int max_frame_size;
1085 1.1 jdc u_int32_t v;
1086 1.1 jdc
1087 1.1 jdc s = splnet();
1088 1.1 jdc
1089 1.1 jdc DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1090 1.1 jdc /*
1091 1.1 jdc * Initialization sequence. The numbered steps below correspond
1092 1.1 jdc * to the sequence outlined in section 6.3.5.1 in the Ethernet
1093 1.1 jdc * Channel Engine manual (part of the PCIO manual).
1094 1.1 jdc * See also the STP2002-STQ document from Sun Microsystems.
1095 1.1 jdc */
1096 1.1 jdc
1097 1.1 jdc /* step 1 & 2. Reset the Ethernet Channel */
1098 1.1 jdc cas_stop(ifp, 0);
1099 1.1 jdc cas_reset(sc);
1100 1.1 jdc DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1101 1.1 jdc
1102 1.1 jdc /* Re-initialize the MIF */
1103 1.1 jdc cas_mifinit(sc);
1104 1.1 jdc
1105 1.1 jdc /* step 3. Setup data structures in host memory */
1106 1.1 jdc cas_meminit(sc);
1107 1.1 jdc
1108 1.1 jdc /* step 4. TX MAC registers & counters */
1109 1.1 jdc cas_init_regs(sc);
1110 1.1 jdc max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1111 1.1 jdc v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1112 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1113 1.1 jdc
1114 1.1 jdc /* step 5. RX MAC registers & counters */
1115 1.1 jdc cas_iff(sc);
1116 1.1 jdc
1117 1.1 jdc /* step 6 & 7. Program Descriptor Ring Base Addresses */
1118 1.1 jdc KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1119 1.1 jdc bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1120 1.1 jdc (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1121 1.1 jdc bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1122 1.1 jdc
1123 1.1 jdc KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1124 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1125 1.1 jdc (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1126 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1127 1.1 jdc
1128 1.1 jdc KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1129 1.1 jdc bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1130 1.1 jdc (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1131 1.1 jdc bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1132 1.1 jdc
1133 1.1 jdc if (CAS_PLUS(sc)) {
1134 1.1 jdc KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1135 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1136 1.1 jdc (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1137 1.1 jdc bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1138 1.1 jdc CAS_CDRXADDR2(sc, 0));
1139 1.1 jdc }
1140 1.1 jdc
1141 1.1 jdc /* step 8. Global Configuration & Interrupt Mask */
1142 1.3 jdc cas_estintr(sc, CAS_INTR_REG);
1143 1.1 jdc
1144 1.1 jdc /* step 9. ETX Configuration: use mostly default values */
1145 1.1 jdc
1146 1.1 jdc /* Enable DMA */
1147 1.1 jdc v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1148 1.1 jdc bus_space_write_4(t, h, CAS_TX_CONFIG,
1149 1.1 jdc v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1150 1.1 jdc bus_space_write_4(t, h, CAS_TX_KICK, 0);
1151 1.1 jdc
1152 1.1 jdc /* step 10. ERX Configuration */
1153 1.1 jdc
1154 1.1 jdc /* Encode Receive Descriptor ring size */
1155 1.1 jdc v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1156 1.1 jdc if (CAS_PLUS(sc))
1157 1.1 jdc v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1158 1.1 jdc
1159 1.1 jdc /* Encode Receive Completion ring size */
1160 1.1 jdc v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1161 1.1 jdc
1162 1.1 jdc /* Enable DMA */
1163 1.1 jdc bus_space_write_4(t, h, CAS_RX_CONFIG,
1164 1.1 jdc v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1165 1.1 jdc
1166 1.1 jdc /*
1167 1.1 jdc * The following value is for an OFF Threshold of about 3/4 full
1168 1.1 jdc * and an ON Threshold of 1/4 full.
1169 1.1 jdc */
1170 1.1 jdc bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1171 1.1 jdc (3 * sc->sc_rxfifosize / 256) |
1172 1.1 jdc ((sc->sc_rxfifosize / 256) << 12));
1173 1.1 jdc bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1174 1.1 jdc
1175 1.1 jdc /* step 11. Configure Media */
1176 1.1 jdc mii_ifmedia_change(&sc->sc_mii);
1177 1.1 jdc
1178 1.1 jdc /* step 12. RX_MAC Configuration Register */
1179 1.1 jdc v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1180 1.1 jdc v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1181 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1182 1.1 jdc
1183 1.1 jdc /* step 14. Issue Transmit Pending command */
1184 1.1 jdc
1185 1.1 jdc /* step 15. Give the receiver a swift kick */
1186 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1187 1.1 jdc if (CAS_PLUS(sc))
1188 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1189 1.1 jdc
1190 1.1 jdc /* Start the one second timer. */
1191 1.1 jdc callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1192 1.1 jdc
1193 1.1 jdc ifp->if_flags |= IFF_RUNNING;
1194 1.1 jdc ifp->if_flags &= ~IFF_OACTIVE;
1195 1.1 jdc ifp->if_timer = 0;
1196 1.1 jdc splx(s);
1197 1.1 jdc
1198 1.1 jdc return (0);
1199 1.1 jdc }
1200 1.1 jdc
1201 1.1 jdc void
1202 1.1 jdc cas_init_regs(struct cas_softc *sc)
1203 1.1 jdc {
1204 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1205 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1206 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1207 1.1 jdc const u_char *laddr = CLLADDR(ifp->if_sadl);
1208 1.1 jdc u_int32_t v, r;
1209 1.1 jdc
1210 1.1 jdc /* These regs are not cleared on reset */
1211 1.1 jdc sc->sc_inited = 0;
1212 1.1 jdc if (!sc->sc_inited) {
1213 1.1 jdc /* Load recommended values */
1214 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1215 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1216 1.1 jdc bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1217 1.1 jdc
1218 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1219 1.1 jdc /* Max frame and max burst size */
1220 1.1 jdc v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1221 1.1 jdc bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1222 1.1 jdc
1223 1.1 jdc bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1224 1.1 jdc bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1225 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1226 1.1 jdc bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1227 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1228 1.1 jdc ((laddr[5]<<8)|laddr[4])&0x3ff);
1229 1.1 jdc
1230 1.1 jdc /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1231 1.1 jdc for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1232 1.3 jdc bus_space_write_4(t, h, r, 0);
1233 1.1 jdc
1234 1.1 jdc /* MAC control addr set to 0:1:c2:0:1:80 */
1235 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1236 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1237 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1238 1.1 jdc
1239 1.1 jdc /* MAC filter addr set to 0:0:0:0:0:0 */
1240 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1241 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1242 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1243 1.1 jdc
1244 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1245 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1246 1.1 jdc
1247 1.1 jdc /* Hash table initialized to 0 */
1248 1.1 jdc for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1249 1.1 jdc bus_space_write_4(t, h, r, 0);
1250 1.1 jdc
1251 1.1 jdc sc->sc_inited = 1;
1252 1.1 jdc }
1253 1.1 jdc
1254 1.1 jdc /* Counters need to be zeroed */
1255 1.1 jdc bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1256 1.1 jdc bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1257 1.1 jdc bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1258 1.1 jdc bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1259 1.1 jdc bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1260 1.1 jdc bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1261 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1262 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1263 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1264 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1265 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1266 1.1 jdc
1267 1.1 jdc /* Un-pause stuff */
1268 1.1 jdc bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1269 1.1 jdc
1270 1.1 jdc /*
1271 1.1 jdc * Set the station address.
1272 1.1 jdc */
1273 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1274 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1275 1.1 jdc bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1276 1.1 jdc }
1277 1.1 jdc
1278 1.1 jdc /*
1279 1.1 jdc * Receive interrupt.
1280 1.1 jdc */
1281 1.1 jdc int
1282 1.1 jdc cas_rint(struct cas_softc *sc)
1283 1.1 jdc {
1284 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1285 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1286 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1287 1.1 jdc struct cas_rxsoft *rxs;
1288 1.1 jdc struct mbuf *m;
1289 1.1 jdc u_int64_t word[4];
1290 1.1 jdc int len, off, idx;
1291 1.1 jdc int i, skip;
1292 1.1 jdc void *cp;
1293 1.1 jdc
1294 1.1 jdc for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1295 1.1 jdc CAS_CDRXCSYNC(sc, i,
1296 1.1 jdc BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1297 1.1 jdc
1298 1.1 jdc word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1299 1.1 jdc word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1300 1.1 jdc word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1301 1.1 jdc word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1302 1.1 jdc
1303 1.1 jdc /* Stop if the hardware still owns the descriptor. */
1304 1.1 jdc if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1305 1.1 jdc break;
1306 1.1 jdc
1307 1.1 jdc len = CAS_RC1_HDR_LEN(word[1]);
1308 1.1 jdc if (len > 0) {
1309 1.1 jdc off = CAS_RC1_HDR_OFF(word[1]);
1310 1.1 jdc idx = CAS_RC1_HDR_IDX(word[1]);
1311 1.1 jdc rxs = &sc->sc_rxsoft[idx];
1312 1.1 jdc
1313 1.1 jdc DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1314 1.1 jdc idx, off, len));
1315 1.1 jdc
1316 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1317 1.1 jdc rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1318 1.1 jdc
1319 1.1 jdc cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1320 1.1 jdc m = m_devget(cp, len, 0, ifp, NULL);
1321 1.1 jdc
1322 1.1 jdc if (word[0] & CAS_RC0_RELEASE_HDR)
1323 1.1 jdc cas_add_rxbuf(sc, idx);
1324 1.1 jdc
1325 1.1 jdc if (m != NULL) {
1326 1.1 jdc
1327 1.1 jdc /*
1328 1.1 jdc * Pass this up to any BPF listeners, but only
1329 1.1 jdc * pass it up the stack if its for us.
1330 1.1 jdc */
1331 1.1 jdc if (ifp->if_bpf)
1332 1.4 pooka bpf_ops->bpf_mtap(ifp->if_bpf, m);
1333 1.1 jdc
1334 1.1 jdc ifp->if_ipackets++;
1335 1.1 jdc m->m_pkthdr.csum_flags = 0;
1336 1.1 jdc (*ifp->if_input)(ifp, m);
1337 1.1 jdc } else
1338 1.1 jdc ifp->if_ierrors++;
1339 1.1 jdc }
1340 1.1 jdc
1341 1.1 jdc len = CAS_RC0_DATA_LEN(word[0]);
1342 1.1 jdc if (len > 0) {
1343 1.1 jdc off = CAS_RC0_DATA_OFF(word[0]);
1344 1.1 jdc idx = CAS_RC0_DATA_IDX(word[0]);
1345 1.1 jdc rxs = &sc->sc_rxsoft[idx];
1346 1.1 jdc
1347 1.1 jdc DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1348 1.1 jdc idx, off, len));
1349 1.1 jdc
1350 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1351 1.1 jdc rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1352 1.1 jdc
1353 1.1 jdc /* XXX We should not be copying the packet here. */
1354 1.1 jdc cp = rxs->rxs_kva + off + ETHER_ALIGN;
1355 1.1 jdc m = m_devget(cp, len, 0, ifp, NULL);
1356 1.1 jdc
1357 1.1 jdc if (word[0] & CAS_RC0_RELEASE_DATA)
1358 1.1 jdc cas_add_rxbuf(sc, idx);
1359 1.1 jdc
1360 1.1 jdc if (m != NULL) {
1361 1.1 jdc /*
1362 1.1 jdc * Pass this up to any BPF listeners, but only
1363 1.1 jdc * pass it up the stack if its for us.
1364 1.1 jdc */
1365 1.1 jdc if (ifp->if_bpf)
1366 1.4 pooka bpf_ops->bpf_mtap(ifp->if_bpf, m);
1367 1.1 jdc
1368 1.1 jdc ifp->if_ipackets++;
1369 1.1 jdc m->m_pkthdr.csum_flags = 0;
1370 1.1 jdc (*ifp->if_input)(ifp, m);
1371 1.1 jdc } else
1372 1.1 jdc ifp->if_ierrors++;
1373 1.1 jdc }
1374 1.1 jdc
1375 1.1 jdc if (word[0] & CAS_RC0_SPLIT)
1376 1.1 jdc aprint_error_dev(sc->sc_dev, "split packet\n");
1377 1.1 jdc
1378 1.1 jdc skip = CAS_RC0_SKIP(word[0]);
1379 1.1 jdc }
1380 1.1 jdc
1381 1.1 jdc while (sc->sc_rxptr != i) {
1382 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1383 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1384 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1385 1.1 jdc sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1386 1.1 jdc CAS_DMA_WRITE(CAS_RC3_OWN);
1387 1.1 jdc CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1388 1.1 jdc BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1389 1.1 jdc
1390 1.1 jdc sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1391 1.1 jdc }
1392 1.1 jdc
1393 1.1 jdc bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1394 1.1 jdc
1395 1.1 jdc DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1396 1.1 jdc sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1397 1.1 jdc
1398 1.1 jdc return (1);
1399 1.1 jdc }
1400 1.1 jdc
1401 1.1 jdc /*
1402 1.1 jdc * cas_add_rxbuf:
1403 1.1 jdc *
1404 1.1 jdc * Add a receive buffer to the indicated descriptor.
1405 1.1 jdc */
1406 1.1 jdc int
1407 1.1 jdc cas_add_rxbuf(struct cas_softc *sc, int idx)
1408 1.1 jdc {
1409 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1410 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1411 1.1 jdc
1412 1.1 jdc CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1413 1.1 jdc
1414 1.1 jdc if ((sc->sc_rxdptr % 4) == 0)
1415 1.1 jdc bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1416 1.1 jdc
1417 1.1 jdc if (++sc->sc_rxdptr == CAS_NRXDESC)
1418 1.1 jdc sc->sc_rxdptr = 0;
1419 1.1 jdc
1420 1.1 jdc return (0);
1421 1.1 jdc }
1422 1.1 jdc
1423 1.1 jdc int
1424 1.1 jdc cas_eint(struct cas_softc *sc, u_int status)
1425 1.1 jdc {
1426 1.1 jdc char bits[128];
1427 1.1 jdc if ((status & CAS_INTR_MIF) != 0) {
1428 1.1 jdc DPRINTF(sc, ("%s: link status changed\n",
1429 1.1 jdc device_xname(sc->sc_dev)));
1430 1.1 jdc return (1);
1431 1.1 jdc }
1432 1.1 jdc
1433 1.1 jdc snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1434 1.1 jdc printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1435 1.1 jdc return (1);
1436 1.1 jdc }
1437 1.1 jdc
1438 1.1 jdc int
1439 1.1 jdc cas_pint(struct cas_softc *sc)
1440 1.1 jdc {
1441 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1442 1.1 jdc bus_space_handle_t seb = sc->sc_memh;
1443 1.1 jdc u_int32_t status;
1444 1.1 jdc
1445 1.1 jdc status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1446 1.1 jdc status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1447 1.1 jdc #ifdef CAS_DEBUG
1448 1.1 jdc if (status)
1449 1.1 jdc printf("%s: link status changed\n", device_xname(sc->sc_dev));
1450 1.1 jdc #endif
1451 1.1 jdc return (1);
1452 1.1 jdc }
1453 1.1 jdc
1454 1.1 jdc int
1455 1.1 jdc cas_intr(void *v)
1456 1.1 jdc {
1457 1.1 jdc struct cas_softc *sc = (struct cas_softc *)v;
1458 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1459 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1460 1.1 jdc bus_space_handle_t seb = sc->sc_memh;
1461 1.1 jdc u_int32_t status;
1462 1.1 jdc int r = 0;
1463 1.1 jdc #ifdef CAS_DEBUG
1464 1.1 jdc char bits[128];
1465 1.1 jdc #endif
1466 1.1 jdc
1467 1.1 jdc sc->sc_ev_intr.ev_count++;
1468 1.1 jdc
1469 1.1 jdc status = bus_space_read_4(t, seb, CAS_STATUS);
1470 1.1 jdc #ifdef CAS_DEBUG
1471 1.1 jdc snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1472 1.1 jdc #endif
1473 1.1 jdc DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1474 1.1 jdc device_xname(sc->sc_dev), (status>>19), bits));
1475 1.1 jdc
1476 1.1 jdc if ((status & CAS_INTR_PCS) != 0)
1477 1.1 jdc r |= cas_pint(sc);
1478 1.1 jdc
1479 1.1 jdc if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1480 1.1 jdc CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1481 1.1 jdc r |= cas_eint(sc, status);
1482 1.1 jdc
1483 1.1 jdc if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1484 1.1 jdc r |= cas_tint(sc, status);
1485 1.1 jdc
1486 1.1 jdc if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1487 1.1 jdc r |= cas_rint(sc);
1488 1.1 jdc
1489 1.1 jdc /* We should eventually do more than just print out error stats. */
1490 1.1 jdc if (status & CAS_INTR_TX_MAC) {
1491 1.1 jdc int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1492 1.1 jdc #ifdef CAS_DEBUG
1493 1.1 jdc if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1494 1.1 jdc printf("%s: MAC tx fault, status %x\n",
1495 1.1 jdc device_xname(sc->sc_dev), txstat);
1496 1.1 jdc #endif
1497 1.1 jdc if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1498 1.1 jdc cas_init(ifp);
1499 1.1 jdc }
1500 1.1 jdc if (status & CAS_INTR_RX_MAC) {
1501 1.1 jdc int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1502 1.1 jdc #ifdef CAS_DEBUG
1503 1.3 jdc if (rxstat & ~CAS_MAC_RX_DONE)
1504 1.3 jdc printf("%s: MAC rx fault, status %x\n",
1505 1.3 jdc device_xname(sc->sc_dev), rxstat);
1506 1.1 jdc #endif
1507 1.1 jdc /*
1508 1.1 jdc * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1509 1.1 jdc * due to a silicon bug so handle them silently.
1510 1.1 jdc */
1511 1.1 jdc if (rxstat & CAS_MAC_RX_OVERFLOW) {
1512 1.1 jdc ifp->if_ierrors++;
1513 1.1 jdc cas_init(ifp);
1514 1.1 jdc }
1515 1.1 jdc #ifdef CAS_DEBUG
1516 1.1 jdc else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1517 1.1 jdc printf("%s: MAC rx fault, status %x\n",
1518 1.1 jdc device_xname(sc->sc_dev), rxstat);
1519 1.1 jdc #endif
1520 1.1 jdc }
1521 1.1 jdc #if NRND > 0
1522 1.1 jdc rnd_add_uint32(&sc->rnd_source, status);
1523 1.1 jdc #endif
1524 1.1 jdc return (r);
1525 1.1 jdc }
1526 1.1 jdc
1527 1.1 jdc
1528 1.1 jdc void
1529 1.1 jdc cas_watchdog(struct ifnet *ifp)
1530 1.1 jdc {
1531 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1532 1.1 jdc
1533 1.1 jdc DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1534 1.1 jdc "CAS_MAC_RX_CONFIG %x\n",
1535 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1536 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1537 1.1 jdc bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1538 1.1 jdc
1539 1.1 jdc log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1540 1.1 jdc ++ifp->if_oerrors;
1541 1.1 jdc
1542 1.1 jdc /* Try to get more packets going. */
1543 1.1 jdc cas_init(ifp);
1544 1.1 jdc }
1545 1.1 jdc
1546 1.1 jdc /*
1547 1.1 jdc * Initialize the MII Management Interface
1548 1.1 jdc */
1549 1.1 jdc void
1550 1.1 jdc cas_mifinit(struct cas_softc *sc)
1551 1.1 jdc {
1552 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1553 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1554 1.1 jdc
1555 1.1 jdc /* Configure the MIF in frame mode */
1556 1.1 jdc sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1557 1.1 jdc sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1558 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1559 1.1 jdc }
1560 1.1 jdc
1561 1.1 jdc /*
1562 1.1 jdc * MII interface
1563 1.1 jdc *
1564 1.1 jdc * The Cassini MII interface supports at least three different operating modes:
1565 1.1 jdc *
1566 1.1 jdc * Bitbang mode is implemented using data, clock and output enable registers.
1567 1.1 jdc *
1568 1.1 jdc * Frame mode is implemented by loading a complete frame into the frame
1569 1.1 jdc * register and polling the valid bit for completion.
1570 1.1 jdc *
1571 1.1 jdc * Polling mode uses the frame register but completion is indicated by
1572 1.1 jdc * an interrupt.
1573 1.1 jdc *
1574 1.1 jdc */
1575 1.1 jdc int
1576 1.1 jdc cas_mii_readreg(device_t self, int phy, int reg)
1577 1.1 jdc {
1578 1.1 jdc struct cas_softc *sc = device_private(self);
1579 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1580 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1581 1.1 jdc int n;
1582 1.1 jdc u_int32_t v;
1583 1.1 jdc
1584 1.1 jdc #ifdef CAS_DEBUG
1585 1.1 jdc if (sc->sc_debug)
1586 1.1 jdc printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1587 1.1 jdc #endif
1588 1.1 jdc
1589 1.1 jdc /* Construct the frame command */
1590 1.1 jdc v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1591 1.1 jdc CAS_MIF_FRAME_READ;
1592 1.1 jdc
1593 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1594 1.1 jdc for (n = 0; n < 100; n++) {
1595 1.1 jdc DELAY(1);
1596 1.1 jdc v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1597 1.1 jdc if (v & CAS_MIF_FRAME_TA0)
1598 1.1 jdc return (v & CAS_MIF_FRAME_DATA);
1599 1.1 jdc }
1600 1.1 jdc
1601 1.1 jdc printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1602 1.1 jdc return (0);
1603 1.1 jdc }
1604 1.1 jdc
1605 1.1 jdc void
1606 1.1 jdc cas_mii_writereg(device_t self, int phy, int reg, int val)
1607 1.1 jdc {
1608 1.1 jdc struct cas_softc *sc = device_private(self);
1609 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1610 1.1 jdc bus_space_handle_t mif = sc->sc_memh;
1611 1.1 jdc int n;
1612 1.1 jdc u_int32_t v;
1613 1.1 jdc
1614 1.1 jdc #ifdef CAS_DEBUG
1615 1.1 jdc if (sc->sc_debug)
1616 1.1 jdc printf("cas_mii_writereg: phy %d reg %d val %x\n",
1617 1.1 jdc phy, reg, val);
1618 1.1 jdc #endif
1619 1.1 jdc
1620 1.1 jdc /* Construct the frame command */
1621 1.1 jdc v = CAS_MIF_FRAME_WRITE |
1622 1.1 jdc (phy << CAS_MIF_PHY_SHIFT) |
1623 1.1 jdc (reg << CAS_MIF_REG_SHIFT) |
1624 1.1 jdc (val & CAS_MIF_FRAME_DATA);
1625 1.1 jdc
1626 1.1 jdc bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1627 1.1 jdc for (n = 0; n < 100; n++) {
1628 1.1 jdc DELAY(1);
1629 1.1 jdc v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1630 1.1 jdc if (v & CAS_MIF_FRAME_TA0)
1631 1.1 jdc return;
1632 1.1 jdc }
1633 1.1 jdc
1634 1.1 jdc printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1635 1.1 jdc }
1636 1.1 jdc
1637 1.1 jdc void
1638 1.1 jdc cas_mii_statchg(device_t self)
1639 1.1 jdc {
1640 1.1 jdc struct cas_softc *sc = device_private(self);
1641 1.1 jdc #ifdef CAS_DEBUG
1642 1.1 jdc int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1643 1.1 jdc #endif
1644 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1645 1.1 jdc bus_space_handle_t mac = sc->sc_memh;
1646 1.1 jdc u_int32_t v;
1647 1.1 jdc
1648 1.1 jdc #ifdef CAS_DEBUG
1649 1.1 jdc if (sc->sc_debug)
1650 1.1 jdc printf("cas_mii_statchg: status change: phy = %d\n",
1651 1.1 jdc sc->sc_phys[instance]);
1652 1.1 jdc #endif
1653 1.1 jdc
1654 1.1 jdc /* Set tx full duplex options */
1655 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1656 1.1 jdc delay(10000); /* reg must be cleared and delay before changing. */
1657 1.1 jdc v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1658 1.1 jdc CAS_MAC_TX_ENABLE;
1659 1.1 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1660 1.1 jdc v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1661 1.1 jdc }
1662 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1663 1.1 jdc
1664 1.1 jdc /* XIF Configuration */
1665 1.1 jdc v = CAS_MAC_XIF_TX_MII_ENA;
1666 1.1 jdc v |= CAS_MAC_XIF_LINK_LED;
1667 1.1 jdc
1668 1.1 jdc /* MII needs echo disable if half duplex. */
1669 1.1 jdc if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1670 1.1 jdc /* turn on full duplex LED */
1671 1.1 jdc v |= CAS_MAC_XIF_FDPLX_LED;
1672 1.1 jdc else
1673 1.1 jdc /* half duplex -- disable echo */
1674 1.1 jdc v |= CAS_MAC_XIF_ECHO_DISABL;
1675 1.1 jdc
1676 1.1 jdc switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1677 1.1 jdc case IFM_1000_T: /* Gigabit using GMII interface */
1678 1.1 jdc case IFM_1000_SX:
1679 1.1 jdc v |= CAS_MAC_XIF_GMII_MODE;
1680 1.1 jdc break;
1681 1.1 jdc default:
1682 1.1 jdc v &= ~CAS_MAC_XIF_GMII_MODE;
1683 1.1 jdc }
1684 1.1 jdc bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1685 1.1 jdc }
1686 1.1 jdc
1687 1.1 jdc int
1688 1.1 jdc cas_pcs_readreg(device_t self, int phy, int reg)
1689 1.1 jdc {
1690 1.1 jdc struct cas_softc *sc = device_private(self);
1691 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1692 1.1 jdc bus_space_handle_t pcs = sc->sc_memh;
1693 1.1 jdc
1694 1.1 jdc #ifdef CAS_DEBUG
1695 1.1 jdc if (sc->sc_debug)
1696 1.1 jdc printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1697 1.1 jdc #endif
1698 1.1 jdc
1699 1.1 jdc if (phy != CAS_PHYAD_EXTERNAL)
1700 1.1 jdc return (0);
1701 1.1 jdc
1702 1.1 jdc switch (reg) {
1703 1.1 jdc case MII_BMCR:
1704 1.1 jdc reg = CAS_MII_CONTROL;
1705 1.1 jdc break;
1706 1.1 jdc case MII_BMSR:
1707 1.1 jdc reg = CAS_MII_STATUS;
1708 1.1 jdc break;
1709 1.1 jdc case MII_ANAR:
1710 1.1 jdc reg = CAS_MII_ANAR;
1711 1.1 jdc break;
1712 1.1 jdc case MII_ANLPAR:
1713 1.1 jdc reg = CAS_MII_ANLPAR;
1714 1.1 jdc break;
1715 1.1 jdc case MII_EXTSR:
1716 1.1 jdc return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1717 1.1 jdc default:
1718 1.1 jdc return (0);
1719 1.1 jdc }
1720 1.1 jdc
1721 1.1 jdc return bus_space_read_4(t, pcs, reg);
1722 1.1 jdc }
1723 1.1 jdc
1724 1.1 jdc void
1725 1.1 jdc cas_pcs_writereg(device_t self, int phy, int reg, int val)
1726 1.1 jdc {
1727 1.1 jdc struct cas_softc *sc = device_private(self);
1728 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1729 1.1 jdc bus_space_handle_t pcs = sc->sc_memh;
1730 1.1 jdc int reset = 0;
1731 1.1 jdc
1732 1.1 jdc #ifdef CAS_DEBUG
1733 1.1 jdc if (sc->sc_debug)
1734 1.1 jdc printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1735 1.1 jdc phy, reg, val);
1736 1.1 jdc #endif
1737 1.1 jdc
1738 1.1 jdc if (phy != CAS_PHYAD_EXTERNAL)
1739 1.1 jdc return;
1740 1.1 jdc
1741 1.1 jdc if (reg == MII_ANAR)
1742 1.1 jdc bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1743 1.1 jdc
1744 1.1 jdc switch (reg) {
1745 1.1 jdc case MII_BMCR:
1746 1.1 jdc reset = (val & CAS_MII_CONTROL_RESET);
1747 1.1 jdc reg = CAS_MII_CONTROL;
1748 1.1 jdc break;
1749 1.1 jdc case MII_BMSR:
1750 1.1 jdc reg = CAS_MII_STATUS;
1751 1.1 jdc break;
1752 1.1 jdc case MII_ANAR:
1753 1.1 jdc reg = CAS_MII_ANAR;
1754 1.1 jdc break;
1755 1.1 jdc case MII_ANLPAR:
1756 1.1 jdc reg = CAS_MII_ANLPAR;
1757 1.1 jdc break;
1758 1.1 jdc default:
1759 1.1 jdc return;
1760 1.1 jdc }
1761 1.1 jdc
1762 1.1 jdc bus_space_write_4(t, pcs, reg, val);
1763 1.1 jdc
1764 1.1 jdc if (reset)
1765 1.1 jdc cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1766 1.1 jdc
1767 1.1 jdc if (reg == CAS_MII_ANAR || reset)
1768 1.1 jdc bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1769 1.1 jdc CAS_MII_CONFIG_ENABLE);
1770 1.1 jdc }
1771 1.1 jdc
1772 1.1 jdc int
1773 1.1 jdc cas_mediachange(struct ifnet *ifp)
1774 1.1 jdc {
1775 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1776 1.1 jdc struct mii_data *mii = &sc->sc_mii;
1777 1.1 jdc
1778 1.1 jdc if (mii->mii_instance) {
1779 1.1 jdc struct mii_softc *miisc;
1780 1.1 jdc LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1781 1.1 jdc mii_phy_reset(miisc);
1782 1.1 jdc }
1783 1.1 jdc
1784 1.1 jdc return (mii_mediachg(&sc->sc_mii));
1785 1.1 jdc }
1786 1.1 jdc
1787 1.1 jdc void
1788 1.1 jdc cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1789 1.1 jdc {
1790 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1791 1.1 jdc
1792 1.1 jdc mii_pollstat(&sc->sc_mii);
1793 1.1 jdc ifmr->ifm_active = sc->sc_mii.mii_media_active;
1794 1.1 jdc ifmr->ifm_status = sc->sc_mii.mii_media_status;
1795 1.1 jdc }
1796 1.1 jdc
1797 1.1 jdc /*
1798 1.1 jdc * Process an ioctl request.
1799 1.1 jdc */
1800 1.1 jdc int
1801 1.1 jdc cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1802 1.1 jdc {
1803 1.1 jdc struct cas_softc *sc = ifp->if_softc;
1804 1.1 jdc int s, error = 0;
1805 1.1 jdc
1806 1.1 jdc s = splnet();
1807 1.1 jdc
1808 1.1 jdc if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1809 1.1 jdc error = 0;
1810 1.1 jdc if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1811 1.1 jdc ;
1812 1.1 jdc else if (ifp->if_flags & IFF_RUNNING) {
1813 1.1 jdc /*
1814 1.1 jdc * Multicast list has changed; set the hardware filter
1815 1.1 jdc * accordingly.
1816 1.1 jdc */
1817 1.1 jdc cas_iff(sc);
1818 1.1 jdc }
1819 1.1 jdc }
1820 1.1 jdc
1821 1.1 jdc splx(s);
1822 1.1 jdc return (error);
1823 1.1 jdc }
1824 1.1 jdc
1825 1.1 jdc static bool
1826 1.2 martin cas_suspend(device_t self, pmf_qual_t qual)
1827 1.1 jdc {
1828 1.1 jdc struct cas_softc *sc = device_private(self);
1829 1.3 jdc bus_space_tag_t t = sc->sc_memt;
1830 1.3 jdc bus_space_handle_t h = sc->sc_memh;
1831 1.1 jdc
1832 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1833 1.1 jdc if (sc->sc_ih != NULL) {
1834 1.1 jdc pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1835 1.1 jdc sc->sc_ih = NULL;
1836 1.1 jdc }
1837 1.1 jdc
1838 1.1 jdc return true;
1839 1.1 jdc }
1840 1.1 jdc
1841 1.1 jdc static bool
1842 1.2 martin cas_resume(device_t self, pmf_qual_t qual)
1843 1.1 jdc {
1844 1.1 jdc struct cas_softc *sc = device_private(self);
1845 1.1 jdc
1846 1.3 jdc return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1847 1.1 jdc }
1848 1.1 jdc
1849 1.1 jdc static bool
1850 1.3 jdc cas_estintr(struct cas_softc *sc, int what)
1851 1.1 jdc {
1852 1.3 jdc bus_space_tag_t t = sc->sc_memt;
1853 1.3 jdc bus_space_handle_t h = sc->sc_memh;
1854 1.1 jdc const char *intrstr = NULL;
1855 1.1 jdc
1856 1.3 jdc /* PCI interrupts */
1857 1.3 jdc if (what & CAS_INTR_PCI) {
1858 1.3 jdc intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1859 1.3 jdc sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1860 1.3 jdc IPL_NET, cas_intr, sc);
1861 1.3 jdc if (sc->sc_ih == NULL) {
1862 1.3 jdc aprint_error_dev(sc->sc_dev,
1863 1.3 jdc "unable to establish interrupt");
1864 1.3 jdc if (intrstr != NULL)
1865 1.3 jdc aprint_error(" at %s", intrstr);
1866 1.3 jdc aprint_error("\n");
1867 1.3 jdc return false;
1868 1.3 jdc }
1869 1.3 jdc
1870 1.3 jdc aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1871 1.1 jdc }
1872 1.1 jdc
1873 1.3 jdc /* Interrupt register */
1874 1.3 jdc if (what & CAS_INTR_REG) {
1875 1.3 jdc bus_space_write_4(t, h, CAS_INTMASK,
1876 1.3 jdc ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1877 1.3 jdc CAS_INTR_TX_TAG_ERR|
1878 1.3 jdc CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1879 1.3 jdc CAS_INTR_RX_TAG_ERR|
1880 1.3 jdc CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1881 1.3 jdc CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1882 1.3 jdc CAS_INTR_BERR));
1883 1.3 jdc bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1884 1.3 jdc CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1885 1.3 jdc bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1886 1.3 jdc bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1887 1.3 jdc }
1888 1.1 jdc return true;
1889 1.1 jdc }
1890 1.1 jdc
1891 1.1 jdc bool
1892 1.1 jdc cas_shutdown(device_t self, int howto)
1893 1.1 jdc {
1894 1.1 jdc struct cas_softc *sc = device_private(self);
1895 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1896 1.1 jdc
1897 1.1 jdc cas_stop(ifp, 1);
1898 1.1 jdc
1899 1.1 jdc return true;
1900 1.1 jdc }
1901 1.1 jdc
1902 1.1 jdc void
1903 1.1 jdc cas_iff(struct cas_softc *sc)
1904 1.1 jdc {
1905 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1906 1.1 jdc struct ethercom *ec = &sc->sc_ethercom;
1907 1.1 jdc struct ether_multi *enm;
1908 1.1 jdc struct ether_multistep step;
1909 1.1 jdc bus_space_tag_t t = sc->sc_memt;
1910 1.1 jdc bus_space_handle_t h = sc->sc_memh;
1911 1.1 jdc u_int32_t crc, hash[16], rxcfg;
1912 1.1 jdc int i;
1913 1.1 jdc
1914 1.1 jdc rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1915 1.1 jdc rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1916 1.1 jdc CAS_MAC_RX_PROMISC_GRP);
1917 1.1 jdc ifp->if_flags &= ~IFF_ALLMULTI;
1918 1.1 jdc
1919 1.1 jdc if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1920 1.1 jdc ifp->if_flags |= IFF_ALLMULTI;
1921 1.1 jdc if (ifp->if_flags & IFF_PROMISC)
1922 1.1 jdc rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1923 1.1 jdc else
1924 1.1 jdc rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1925 1.1 jdc } else {
1926 1.1 jdc /*
1927 1.1 jdc * Set up multicast address filter by passing all multicast
1928 1.1 jdc * addresses through a crc generator, and then using the
1929 1.1 jdc * high order 8 bits as an index into the 256 bit logical
1930 1.1 jdc * address filter. The high order 4 bits selects the word,
1931 1.1 jdc * while the other 4 bits select the bit within the word
1932 1.1 jdc * (where bit 0 is the MSB).
1933 1.1 jdc */
1934 1.1 jdc
1935 1.1 jdc rxcfg |= CAS_MAC_RX_HASH_FILTER;
1936 1.1 jdc
1937 1.1 jdc /* Clear hash table */
1938 1.1 jdc for (i = 0; i < 16; i++)
1939 1.1 jdc hash[i] = 0;
1940 1.1 jdc
1941 1.1 jdc ETHER_FIRST_MULTI(step, ec, enm);
1942 1.1 jdc while (enm != NULL) {
1943 1.1 jdc crc = ether_crc32_le(enm->enm_addrlo,
1944 1.1 jdc ETHER_ADDR_LEN);
1945 1.1 jdc
1946 1.1 jdc /* Just want the 8 most significant bits. */
1947 1.1 jdc crc >>= 24;
1948 1.1 jdc
1949 1.1 jdc /* Set the corresponding bit in the filter. */
1950 1.1 jdc hash[crc >> 4] |= 1 << (15 - (crc & 15));
1951 1.1 jdc
1952 1.1 jdc ETHER_NEXT_MULTI(step, enm);
1953 1.1 jdc }
1954 1.1 jdc
1955 1.1 jdc /* Now load the hash table into the chip (if we are using it) */
1956 1.1 jdc for (i = 0; i < 16; i++) {
1957 1.1 jdc bus_space_write_4(t, h,
1958 1.1 jdc CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1959 1.1 jdc hash[i]);
1960 1.1 jdc }
1961 1.1 jdc }
1962 1.1 jdc
1963 1.1 jdc bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1964 1.1 jdc }
1965 1.1 jdc
1966 1.1 jdc int
1967 1.1 jdc cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1968 1.1 jdc {
1969 1.1 jdc u_int64_t flags;
1970 1.1 jdc u_int32_t cur, frag, i;
1971 1.1 jdc bus_dmamap_t map;
1972 1.1 jdc
1973 1.1 jdc cur = frag = *bixp;
1974 1.1 jdc map = sc->sc_txd[cur].sd_map;
1975 1.1 jdc
1976 1.1 jdc if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1977 1.1 jdc BUS_DMA_NOWAIT) != 0) {
1978 1.1 jdc return (ENOBUFS);
1979 1.1 jdc }
1980 1.1 jdc
1981 1.1 jdc if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1982 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, map);
1983 1.1 jdc return (ENOBUFS);
1984 1.1 jdc }
1985 1.1 jdc
1986 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1987 1.1 jdc BUS_DMASYNC_PREWRITE);
1988 1.1 jdc
1989 1.1 jdc for (i = 0; i < map->dm_nsegs; i++) {
1990 1.1 jdc sc->sc_txdescs[frag].cd_addr =
1991 1.1 jdc CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1992 1.1 jdc flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1993 1.1 jdc (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1994 1.1 jdc ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1995 1.1 jdc sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1996 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1997 1.1 jdc CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1998 1.1 jdc BUS_DMASYNC_PREWRITE);
1999 1.1 jdc cur = frag;
2000 1.1 jdc if (++frag == CAS_NTXDESC)
2001 1.1 jdc frag = 0;
2002 1.1 jdc }
2003 1.1 jdc
2004 1.1 jdc sc->sc_tx_cnt += map->dm_nsegs;
2005 1.1 jdc sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2006 1.1 jdc sc->sc_txd[cur].sd_map = map;
2007 1.1 jdc sc->sc_txd[cur].sd_mbuf = mhead;
2008 1.1 jdc
2009 1.1 jdc bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2010 1.1 jdc
2011 1.1 jdc *bixp = frag;
2012 1.1 jdc
2013 1.1 jdc /* sync descriptors */
2014 1.1 jdc
2015 1.1 jdc return (0);
2016 1.1 jdc }
2017 1.1 jdc
2018 1.1 jdc /*
2019 1.1 jdc * Transmit interrupt.
2020 1.1 jdc */
2021 1.1 jdc int
2022 1.1 jdc cas_tint(struct cas_softc *sc, u_int32_t status)
2023 1.1 jdc {
2024 1.1 jdc struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2025 1.1 jdc struct cas_sxd *sd;
2026 1.1 jdc u_int32_t cons, comp;
2027 1.1 jdc
2028 1.1 jdc comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2029 1.1 jdc cons = sc->sc_tx_cons;
2030 1.1 jdc while (cons != comp) {
2031 1.1 jdc sd = &sc->sc_txd[cons];
2032 1.1 jdc if (sd->sd_mbuf != NULL) {
2033 1.1 jdc bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2034 1.1 jdc sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2035 1.1 jdc bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2036 1.1 jdc m_freem(sd->sd_mbuf);
2037 1.1 jdc sd->sd_mbuf = NULL;
2038 1.1 jdc ifp->if_opackets++;
2039 1.1 jdc }
2040 1.1 jdc sc->sc_tx_cnt--;
2041 1.1 jdc if (++cons == CAS_NTXDESC)
2042 1.1 jdc cons = 0;
2043 1.1 jdc }
2044 1.1 jdc sc->sc_tx_cons = cons;
2045 1.1 jdc
2046 1.1 jdc if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2047 1.1 jdc ifp->if_flags &= ~IFF_OACTIVE;
2048 1.1 jdc if (sc->sc_tx_cnt == 0)
2049 1.1 jdc ifp->if_timer = 0;
2050 1.1 jdc
2051 1.1 jdc cas_start(ifp);
2052 1.1 jdc
2053 1.1 jdc return (1);
2054 1.1 jdc }
2055 1.1 jdc
2056 1.1 jdc void
2057 1.1 jdc cas_start(struct ifnet *ifp)
2058 1.1 jdc {
2059 1.1 jdc struct cas_softc *sc = ifp->if_softc;
2060 1.1 jdc struct mbuf *m;
2061 1.1 jdc u_int32_t bix;
2062 1.1 jdc
2063 1.1 jdc if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2064 1.1 jdc return;
2065 1.1 jdc
2066 1.1 jdc bix = sc->sc_tx_prod;
2067 1.1 jdc while (sc->sc_txd[bix].sd_mbuf == NULL) {
2068 1.1 jdc IFQ_POLL(&ifp->if_snd, m);
2069 1.1 jdc if (m == NULL)
2070 1.1 jdc break;
2071 1.1 jdc
2072 1.1 jdc /*
2073 1.1 jdc * If BPF is listening on this interface, let it see the
2074 1.1 jdc * packet before we commit it to the wire.
2075 1.1 jdc */
2076 1.1 jdc if (ifp->if_bpf)
2077 1.4 pooka bpf_ops->bpf_mtap(ifp->if_bpf, m);
2078 1.1 jdc
2079 1.1 jdc /*
2080 1.1 jdc * Encapsulate this packet and start it going...
2081 1.1 jdc * or fail...
2082 1.1 jdc */
2083 1.1 jdc if (cas_encap(sc, m, &bix)) {
2084 1.1 jdc ifp->if_flags |= IFF_OACTIVE;
2085 1.1 jdc break;
2086 1.1 jdc }
2087 1.1 jdc
2088 1.1 jdc IFQ_DEQUEUE(&ifp->if_snd, m);
2089 1.1 jdc ifp->if_timer = 5;
2090 1.1 jdc }
2091 1.1 jdc
2092 1.1 jdc sc->sc_tx_prod = bix;
2093 1.1 jdc }
2094