if_cas.c revision 1.16 1 /* $NetBSD: if_cas.c,v 1.16 2012/02/02 19:43:05 tls Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.16 2012/02/02 19:43:05 tls Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/mii_bitbang.h>
90
91 #include <dev/pci/pcivar.h>
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcidevs.h>
94 #include <prop/proplib.h>
95
96 #include <dev/pci/if_casreg.h>
97 #include <dev/pci/if_casvar.h>
98
99 #define TRIES 10000
100
101 static bool cas_estintr(struct cas_softc *sc, int);
102 bool cas_shutdown(device_t, int);
103 static bool cas_suspend(device_t, const pmf_qual_t *);
104 static bool cas_resume(device_t, const pmf_qual_t *);
105 static int cas_detach(device_t, int);
106 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
107
108 int cas_match(device_t, cfdata_t, void *);
109 void cas_attach(device_t, device_t, void *);
110
111
112 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
113 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
114 DVF_DETACH_SHUTDOWN);
115
116 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
117
118 void cas_config(struct cas_softc *, const uint8_t *);
119 void cas_start(struct ifnet *);
120 void cas_stop(struct ifnet *, int);
121 int cas_ioctl(struct ifnet *, u_long, void *);
122 void cas_tick(void *);
123 void cas_watchdog(struct ifnet *);
124 int cas_init(struct ifnet *);
125 void cas_init_regs(struct cas_softc *);
126 int cas_ringsize(int);
127 int cas_cringsize(int);
128 int cas_meminit(struct cas_softc *);
129 void cas_mifinit(struct cas_softc *);
130 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
131 u_int32_t, u_int32_t);
132 void cas_reset(struct cas_softc *);
133 int cas_reset_rx(struct cas_softc *);
134 int cas_reset_tx(struct cas_softc *);
135 int cas_disable_rx(struct cas_softc *);
136 int cas_disable_tx(struct cas_softc *);
137 void cas_rxdrain(struct cas_softc *);
138 int cas_add_rxbuf(struct cas_softc *, int idx);
139 void cas_iff(struct cas_softc *);
140 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
141
142 /* MII methods & callbacks */
143 int cas_mii_readreg(device_t, int, int);
144 void cas_mii_writereg(device_t, int, int, int);
145 void cas_mii_statchg(device_t);
146 int cas_pcs_readreg(device_t, int, int);
147 void cas_pcs_writereg(device_t, int, int, int);
148
149 int cas_mediachange(struct ifnet *);
150 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
151
152 int cas_eint(struct cas_softc *, u_int);
153 int cas_rint(struct cas_softc *);
154 int cas_tint(struct cas_softc *, u_int32_t);
155 int cas_pint(struct cas_softc *);
156 int cas_intr(void *);
157
158 #ifdef CAS_DEBUG
159 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
160 printf x
161 #else
162 #define DPRINTF(sc, x) /* nothing */
163 #endif
164
165 int
166 cas_match(device_t parent, cfdata_t cf, void *aux)
167 {
168 struct pci_attach_args *pa = aux;
169
170 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
171 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
172 return 1;
173
174 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
175 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
176 return 1;
177
178 return 0;
179 }
180
181 #define PROMHDR_PTR_DATA 0x18
182 #define PROMDATA_PTR_VPD 0x08
183 #define PROMDATA_DATA2 0x0a
184
185 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
186 static const u_int8_t cas_promdat[] = {
187 'P', 'C', 'I', 'R',
188 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
189 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
190 };
191 static const u_int8_t cas_promdat_ns[] = {
192 'P', 'C', 'I', 'R',
193 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
194 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
195 };
196
197 static const u_int8_t cas_promdat2[] = {
198 0x18, 0x00, /* structure length */
199 0x00, /* structure revision */
200 0x00, /* interface revision */
201 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
202 PCI_CLASS_NETWORK /* class code */
203 };
204
205 int
206 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
207 uint8_t *enaddr)
208 {
209 struct pci_vpd_largeres *res;
210 struct pci_vpd *vpd;
211 bus_space_handle_t romh;
212 bus_space_tag_t romt;
213 bus_size_t romsize = 0;
214 u_int8_t buf[32], *desc;
215 pcireg_t address;
216 int dataoff, vpdoff, len;
217 int rv = -1;
218
219 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
220 &romt, &romh, NULL, &romsize))
221 return (-1);
222
223 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
224 address |= PCI_MAPREG_ROM_ENABLE;
225 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
226
227 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
228 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
229 goto fail;
230
231 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
232 if (dataoff < 0x1c)
233 goto fail;
234
235 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
236 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
237 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
238 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
239 goto fail;
240
241 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
242 if (vpdoff < 0x1c)
243 goto fail;
244
245 next:
246 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
247 if (!PCI_VPDRES_ISLARGE(buf[0]))
248 goto fail;
249
250 res = (struct pci_vpd_largeres *)buf;
251 vpdoff += sizeof(*res);
252
253 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
254 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
255 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
256 /* Skip identifier string. */
257 vpdoff += len;
258 goto next;
259
260 case PCI_VPDRES_TYPE_VPD:
261 while (len > 0) {
262 bus_space_read_region_1(romt, romh, vpdoff,
263 buf, sizeof(buf));
264
265 vpd = (struct pci_vpd *)buf;
266 vpdoff += sizeof(*vpd) + vpd->vpd_len;
267 len -= sizeof(*vpd) + vpd->vpd_len;
268
269 /*
270 * We're looking for an "Enhanced" VPD...
271 */
272 if (vpd->vpd_key0 != 'Z')
273 continue;
274
275 desc = buf + sizeof(*vpd);
276
277 /*
278 * ...which is an instance property...
279 */
280 if (desc[0] != 'I')
281 continue;
282 desc += 3;
283
284 /*
285 * ...that's a byte array with the proper
286 * length for a MAC address...
287 */
288 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
289 continue;
290 desc += 2;
291
292 /*
293 * ...named "local-mac-address".
294 */
295 if (strcmp(desc, "local-mac-address") != 0)
296 continue;
297 desc += strlen("local-mac-address") + 1;
298
299 memcpy(enaddr, desc, ETHER_ADDR_LEN);
300 rv = 0;
301 }
302 break;
303
304 default:
305 goto fail;
306 }
307
308 fail:
309 if (romsize != 0)
310 bus_space_unmap(romt, romh, romsize);
311
312 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
313 address &= ~PCI_MAPREG_ROM_ENABLE;
314 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
315
316 return (rv);
317 }
318
319 void
320 cas_attach(device_t parent, device_t self, void *aux)
321 {
322 struct pci_attach_args *pa = aux;
323 struct cas_softc *sc = device_private(self);
324 prop_data_t data;
325 uint8_t enaddr[ETHER_ADDR_LEN];
326
327 sc->sc_dev = self;
328 pci_aprint_devinfo(pa, NULL);
329 sc->sc_rev = PCI_REVISION(pa->pa_class);
330 sc->sc_dmatag = pa->pa_dmat;
331
332 #define PCI_CAS_BASEADDR 0x10
333 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
334 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
335 aprint_error_dev(sc->sc_dev,
336 "unable to map device registers\n");
337 return;
338 }
339
340 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
341 "mac-address")) != NULL)
342 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
343 else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
344 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
345 memset(enaddr, 0, sizeof(enaddr));
346 }
347
348 sc->sc_burst = 16; /* XXX */
349
350 sc->sc_att_stage = CAS_ATT_BACKEND_0;
351
352 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
353 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
354 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
355 return;
356 }
357 sc->sc_pc = pa->pa_pc;
358 if (!cas_estintr(sc, CAS_INTR_PCI)) {
359 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
360 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
361 return;
362 }
363
364 sc->sc_att_stage = CAS_ATT_BACKEND_1;
365
366 /*
367 * call the main configure
368 */
369 cas_config(sc, enaddr);
370
371 if (pmf_device_register1(sc->sc_dev,
372 cas_suspend, cas_resume, cas_shutdown))
373 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
374 else
375 aprint_error_dev(sc->sc_dev,
376 "could not establish power handlers\n");
377
378 sc->sc_att_stage = CAS_ATT_FINISHED;
379 /*FALLTHROUGH*/
380 }
381
382 /*
383 * cas_config:
384 *
385 * Attach a Cassini interface to the system.
386 */
387 void
388 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
389 {
390 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
391 struct mii_data *mii = &sc->sc_mii;
392 struct mii_softc *child;
393 int i, error;
394
395 /* Make sure the chip is stopped. */
396 ifp->if_softc = sc;
397 cas_reset(sc);
398
399 /*
400 * Allocate the control data structures, and create and load the
401 * DMA map for it.
402 */
403 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
404 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
405 1, &sc->sc_cdnseg, 0)) != 0) {
406 aprint_error_dev(sc->sc_dev,
407 "unable to allocate control data, error = %d\n",
408 error);
409 cas_partial_detach(sc, CAS_ATT_0);
410 }
411
412 /* XXX should map this in with correct endianness */
413 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
414 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
415 BUS_DMA_COHERENT)) != 0) {
416 aprint_error_dev(sc->sc_dev,
417 "unable to map control data, error = %d\n", error);
418 cas_partial_detach(sc, CAS_ATT_1);
419 }
420
421 if ((error = bus_dmamap_create(sc->sc_dmatag,
422 sizeof(struct cas_control_data), 1,
423 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
424 aprint_error_dev(sc->sc_dev,
425 "unable to create control data DMA map, error = %d\n", error);
426 cas_partial_detach(sc, CAS_ATT_2);
427 }
428
429 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
430 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
431 0)) != 0) {
432 aprint_error_dev(sc->sc_dev,
433 "unable to load control data DMA map, error = %d\n",
434 error);
435 cas_partial_detach(sc, CAS_ATT_3);
436 }
437
438 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
439
440 /*
441 * Create the receive buffer DMA maps.
442 */
443 for (i = 0; i < CAS_NRXDESC; i++) {
444 bus_dma_segment_t seg;
445 char *kva;
446 int rseg;
447
448 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
449 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
450 aprint_error_dev(sc->sc_dev,
451 "unable to alloc rx DMA mem %d, error = %d\n",
452 i, error);
453 cas_partial_detach(sc, CAS_ATT_5);
454 }
455 sc->sc_rxsoft[i].rxs_dmaseg = seg;
456
457 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
458 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
459 aprint_error_dev(sc->sc_dev,
460 "unable to alloc rx DMA mem %d, error = %d\n",
461 i, error);
462 cas_partial_detach(sc, CAS_ATT_5);
463 }
464 sc->sc_rxsoft[i].rxs_kva = kva;
465
466 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
467 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
468 aprint_error_dev(sc->sc_dev,
469 "unable to create rx DMA map %d, error = %d\n",
470 i, error);
471 cas_partial_detach(sc, CAS_ATT_5);
472 }
473
474 if ((error = bus_dmamap_load(sc->sc_dmatag,
475 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
476 BUS_DMA_NOWAIT)) != 0) {
477 aprint_error_dev(sc->sc_dev,
478 "unable to load rx DMA map %d, error = %d\n",
479 i, error);
480 cas_partial_detach(sc, CAS_ATT_5);
481 }
482 }
483
484 /*
485 * Create the transmit buffer DMA maps.
486 */
487 for (i = 0; i < CAS_NTXDESC; i++) {
488 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
489 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
490 &sc->sc_txd[i].sd_map)) != 0) {
491 aprint_error_dev(sc->sc_dev,
492 "unable to create tx DMA map %d, error = %d\n",
493 i, error);
494 cas_partial_detach(sc, CAS_ATT_6);
495 }
496 sc->sc_txd[i].sd_mbuf = NULL;
497 }
498
499 /*
500 * From this point forward, the attachment cannot fail. A failure
501 * before this point releases all resources that may have been
502 * allocated.
503 */
504
505 /* Announce ourselves. */
506 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
507 ether_sprintf(enaddr));
508 aprint_naive(": Ethernet controller\n");
509
510 /* Get RX FIFO size */
511 sc->sc_rxfifosize = 16 * 1024;
512
513 /* Initialize ifnet structure. */
514 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
515 ifp->if_softc = sc;
516 ifp->if_flags =
517 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
518 ifp->if_start = cas_start;
519 ifp->if_ioctl = cas_ioctl;
520 ifp->if_watchdog = cas_watchdog;
521 ifp->if_stop = cas_stop;
522 ifp->if_init = cas_init;
523 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
524 IFQ_SET_READY(&ifp->if_snd);
525
526 /* Initialize ifmedia structures and MII info */
527 mii->mii_ifp = ifp;
528 mii->mii_readreg = cas_mii_readreg;
529 mii->mii_writereg = cas_mii_writereg;
530 mii->mii_statchg = cas_mii_statchg;
531
532 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
533 sc->sc_ethercom.ec_mii = mii;
534
535 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
536
537 cas_mifinit(sc);
538
539 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
540 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
541 bus_space_write_4(sc->sc_memt, sc->sc_memh,
542 CAS_MIF_CONFIG, sc->sc_mif_config);
543 }
544
545 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
546 MII_OFFSET_ANY, 0);
547
548 child = LIST_FIRST(&mii->mii_phys);
549 if (child == NULL &&
550 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
551 /*
552 * Try the external PCS SERDES if we didn't find any
553 * MII devices.
554 */
555 bus_space_write_4(sc->sc_memt, sc->sc_memh,
556 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
557
558 bus_space_write_4(sc->sc_memt, sc->sc_memh,
559 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
560
561 mii->mii_readreg = cas_pcs_readreg;
562 mii->mii_writereg = cas_pcs_writereg;
563
564 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
565 MII_OFFSET_ANY, MIIF_NOISOLATE);
566 }
567
568 child = LIST_FIRST(&mii->mii_phys);
569 if (child == NULL) {
570 /* No PHY attached */
571 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
572 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
573 } else {
574 /*
575 * Walk along the list of attached MII devices and
576 * establish an `MII instance' to `phy number'
577 * mapping. We'll use this mapping in media change
578 * requests to determine which phy to use to program
579 * the MIF configuration register.
580 */
581 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
582 /*
583 * Note: we support just two PHYs: the built-in
584 * internal device and an external on the MII
585 * connector.
586 */
587 if (child->mii_phy > 1 || child->mii_inst > 1) {
588 aprint_error_dev(sc->sc_dev,
589 "cannot accommodate MII device %s"
590 " at phy %d, instance %d\n",
591 device_xname(child->mii_dev),
592 child->mii_phy, child->mii_inst);
593 continue;
594 }
595
596 sc->sc_phys[child->mii_inst] = child->mii_phy;
597 }
598
599 /*
600 * XXX - we can really do the following ONLY if the
601 * phy indeed has the auto negotiation capability!!
602 */
603 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
604 }
605
606 /* claim 802.1q capability */
607 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
608
609 /* Attach the interface. */
610 if_attach(ifp);
611 ether_ifattach(ifp, enaddr);
612
613 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
614 RND_TYPE_NET, 0);
615
616 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
617 NULL, device_xname(sc->sc_dev), "interrupts");
618
619 callout_init(&sc->sc_tick_ch, 0);
620
621 return;
622 }
623
624 int
625 cas_detach(device_t self, int flags)
626 {
627 int i;
628 struct cas_softc *sc = device_private(self);
629 bus_space_tag_t t = sc->sc_memt;
630 bus_space_handle_t h = sc->sc_memh;
631 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
632
633 /*
634 * Free any resources we've allocated during the failed attach
635 * attempt. Do this in reverse order and fall through.
636 */
637 switch (sc->sc_att_stage) {
638 case CAS_ATT_FINISHED:
639 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
640 pmf_device_deregister(self);
641 cas_stop(&sc->sc_ethercom.ec_if, 1);
642 evcnt_detach(&sc->sc_ev_intr);
643
644 rnd_detach_source(&sc->rnd_source);
645
646 ether_ifdetach(ifp);
647 if_detach(ifp);
648 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
649
650 callout_destroy(&sc->sc_tick_ch);
651
652 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
653
654 /*FALLTHROUGH*/
655 case CAS_ATT_MII:
656 case CAS_ATT_7:
657 case CAS_ATT_6:
658 for (i = 0; i < CAS_NTXDESC; i++) {
659 if (sc->sc_txd[i].sd_map != NULL)
660 bus_dmamap_destroy(sc->sc_dmatag,
661 sc->sc_txd[i].sd_map);
662 }
663 /*FALLTHROUGH*/
664 case CAS_ATT_5:
665 for (i = 0; i < CAS_NRXDESC; i++) {
666 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
667 bus_dmamap_unload(sc->sc_dmatag,
668 sc->sc_rxsoft[i].rxs_dmamap);
669 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
670 bus_dmamap_destroy(sc->sc_dmatag,
671 sc->sc_rxsoft[i].rxs_dmamap);
672 if (sc->sc_rxsoft[i].rxs_kva != NULL)
673 bus_dmamem_unmap(sc->sc_dmatag,
674 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
675 /* XXX need to check that bus_dmamem_alloc suceeded
676 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
677 */
678 bus_dmamem_free(sc->sc_dmatag,
679 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
680 }
681 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
682 /*FALLTHROUGH*/
683 case CAS_ATT_4:
684 case CAS_ATT_3:
685 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
686 /*FALLTHROUGH*/
687 case CAS_ATT_2:
688 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
689 sizeof(struct cas_control_data));
690 /*FALLTHROUGH*/
691 case CAS_ATT_1:
692 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
693 /*FALLTHROUGH*/
694 case CAS_ATT_0:
695 sc->sc_att_stage = CAS_ATT_0;
696 /*FALLTHROUGH*/
697 case CAS_ATT_BACKEND_2:
698 case CAS_ATT_BACKEND_1:
699 if (sc->sc_ih != NULL) {
700 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
701 sc->sc_ih = NULL;
702 }
703 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
704 /*FALLTHROUGH*/
705 case CAS_ATT_BACKEND_0:
706 break;
707 }
708 return 0;
709 }
710
711 static void
712 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
713 {
714 cfattach_t ca = device_cfattach(sc->sc_dev);
715
716 sc->sc_att_stage = stage;
717 (*ca->ca_detach)(sc->sc_dev, 0);
718 }
719
720 void
721 cas_tick(void *arg)
722 {
723 struct cas_softc *sc = arg;
724 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
725 bus_space_tag_t t = sc->sc_memt;
726 bus_space_handle_t mac = sc->sc_memh;
727 int s;
728 u_int32_t v;
729
730 /* unload collisions counters */
731 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
732 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
733 ifp->if_collisions += v +
734 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
735 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
736 ifp->if_oerrors += v;
737
738 /* read error counters */
739 ifp->if_ierrors +=
740 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
741 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
742 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
743 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
744
745 /* clear the hardware counters */
746 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
747 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
748 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
749 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
750 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
751 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
752 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
753 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
754
755 s = splnet();
756 mii_tick(&sc->sc_mii);
757 splx(s);
758
759 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
760 }
761
762 int
763 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
764 u_int32_t clr, u_int32_t set)
765 {
766 int i;
767 u_int32_t reg;
768
769 for (i = TRIES; i--; DELAY(100)) {
770 reg = bus_space_read_4(sc->sc_memt, h, r);
771 if ((reg & clr) == 0 && (reg & set) == set)
772 return (1);
773 }
774
775 return (0);
776 }
777
778 void
779 cas_reset(struct cas_softc *sc)
780 {
781 bus_space_tag_t t = sc->sc_memt;
782 bus_space_handle_t h = sc->sc_memh;
783 int s;
784
785 s = splnet();
786 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
787 cas_reset_rx(sc);
788 cas_reset_tx(sc);
789
790 /* Disable interrupts */
791 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
792
793 /* Do a full reset */
794 bus_space_write_4(t, h, CAS_RESET,
795 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
796 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
797 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
798 splx(s);
799 }
800
801
802 /*
803 * cas_rxdrain:
804 *
805 * Drain the receive queue.
806 */
807 void
808 cas_rxdrain(struct cas_softc *sc)
809 {
810 /* Nothing to do yet. */
811 }
812
813 /*
814 * Reset the whole thing.
815 */
816 void
817 cas_stop(struct ifnet *ifp, int disable)
818 {
819 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
820 struct cas_sxd *sd;
821 u_int32_t i;
822
823 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
824
825 callout_stop(&sc->sc_tick_ch);
826
827 /*
828 * Mark the interface down and cancel the watchdog timer.
829 */
830 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
831 ifp->if_timer = 0;
832
833 mii_down(&sc->sc_mii);
834
835 cas_reset_rx(sc);
836 cas_reset_tx(sc);
837
838 /*
839 * Release any queued transmit buffers.
840 */
841 for (i = 0; i < CAS_NTXDESC; i++) {
842 sd = &sc->sc_txd[i];
843 if (sd->sd_mbuf != NULL) {
844 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
845 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
846 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
847 m_freem(sd->sd_mbuf);
848 sd->sd_mbuf = NULL;
849 }
850 }
851 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
852
853 if (disable)
854 cas_rxdrain(sc);
855 }
856
857
858 /*
859 * Reset the receiver
860 */
861 int
862 cas_reset_rx(struct cas_softc *sc)
863 {
864 bus_space_tag_t t = sc->sc_memt;
865 bus_space_handle_t h = sc->sc_memh;
866
867 /*
868 * Resetting while DMA is in progress can cause a bus hang, so we
869 * disable DMA first.
870 */
871 cas_disable_rx(sc);
872 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
873 /* Wait till it finishes */
874 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
875 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
876 /* Wait 5ms extra. */
877 delay(5000);
878
879 /* Finally, reset the ERX */
880 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
881 /* Wait till it finishes */
882 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
883 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
884 return (1);
885 }
886 return (0);
887 }
888
889
890 /*
891 * Reset the transmitter
892 */
893 int
894 cas_reset_tx(struct cas_softc *sc)
895 {
896 bus_space_tag_t t = sc->sc_memt;
897 bus_space_handle_t h = sc->sc_memh;
898
899 /*
900 * Resetting while DMA is in progress can cause a bus hang, so we
901 * disable DMA first.
902 */
903 cas_disable_tx(sc);
904 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
905 /* Wait till it finishes */
906 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
907 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
908 /* Wait 5ms extra. */
909 delay(5000);
910
911 /* Finally, reset the ETX */
912 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
913 /* Wait till it finishes */
914 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
915 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
916 return (1);
917 }
918 return (0);
919 }
920
921 /*
922 * Disable receiver.
923 */
924 int
925 cas_disable_rx(struct cas_softc *sc)
926 {
927 bus_space_tag_t t = sc->sc_memt;
928 bus_space_handle_t h = sc->sc_memh;
929 u_int32_t cfg;
930
931 /* Flip the enable bit */
932 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
933 cfg &= ~CAS_MAC_RX_ENABLE;
934 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
935
936 /* Wait for it to finish */
937 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
938 }
939
940 /*
941 * Disable transmitter.
942 */
943 int
944 cas_disable_tx(struct cas_softc *sc)
945 {
946 bus_space_tag_t t = sc->sc_memt;
947 bus_space_handle_t h = sc->sc_memh;
948 u_int32_t cfg;
949
950 /* Flip the enable bit */
951 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
952 cfg &= ~CAS_MAC_TX_ENABLE;
953 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
954
955 /* Wait for it to finish */
956 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
957 }
958
959 /*
960 * Initialize interface.
961 */
962 int
963 cas_meminit(struct cas_softc *sc)
964 {
965 struct cas_rxsoft *rxs;
966 int i, error;
967
968 rxs = (void *)&error;
969
970 /*
971 * Initialize the transmit descriptor ring.
972 */
973 for (i = 0; i < CAS_NTXDESC; i++) {
974 sc->sc_txdescs[i].cd_flags = 0;
975 sc->sc_txdescs[i].cd_addr = 0;
976 }
977 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
978 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
979
980 /*
981 * Initialize the receive descriptor and receive job
982 * descriptor rings.
983 */
984 for (i = 0; i < CAS_NRXDESC; i++)
985 CAS_INIT_RXDESC(sc, i, i);
986 sc->sc_rxdptr = 0;
987 sc->sc_rxptr = 0;
988
989 /*
990 * Initialize the receive completion ring.
991 */
992 for (i = 0; i < CAS_NRXCOMP; i++) {
993 sc->sc_rxcomps[i].cc_word[0] = 0;
994 sc->sc_rxcomps[i].cc_word[1] = 0;
995 sc->sc_rxcomps[i].cc_word[2] = 0;
996 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
997 CAS_CDRXCSYNC(sc, i,
998 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
999 }
1000
1001 return (0);
1002 }
1003
1004 int
1005 cas_ringsize(int sz)
1006 {
1007 switch (sz) {
1008 case 32:
1009 return CAS_RING_SZ_32;
1010 case 64:
1011 return CAS_RING_SZ_64;
1012 case 128:
1013 return CAS_RING_SZ_128;
1014 case 256:
1015 return CAS_RING_SZ_256;
1016 case 512:
1017 return CAS_RING_SZ_512;
1018 case 1024:
1019 return CAS_RING_SZ_1024;
1020 case 2048:
1021 return CAS_RING_SZ_2048;
1022 case 4096:
1023 return CAS_RING_SZ_4096;
1024 case 8192:
1025 return CAS_RING_SZ_8192;
1026 default:
1027 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1028 sz);
1029 return CAS_RING_SZ_32;
1030 }
1031 }
1032
1033 int
1034 cas_cringsize(int sz)
1035 {
1036 int i;
1037
1038 for (i = 0; i < 9; i++)
1039 if (sz == (128 << i))
1040 return i;
1041
1042 aprint_error("cas: invalid completion ring size %d\n", sz);
1043 return 128;
1044 }
1045
1046 /*
1047 * Initialization of interface; set up initialization block
1048 * and transmit/receive descriptor rings.
1049 */
1050 int
1051 cas_init(struct ifnet *ifp)
1052 {
1053 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1054 bus_space_tag_t t = sc->sc_memt;
1055 bus_space_handle_t h = sc->sc_memh;
1056 int s;
1057 u_int max_frame_size;
1058 u_int32_t v;
1059
1060 s = splnet();
1061
1062 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1063 /*
1064 * Initialization sequence. The numbered steps below correspond
1065 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1066 * Channel Engine manual (part of the PCIO manual).
1067 * See also the STP2002-STQ document from Sun Microsystems.
1068 */
1069
1070 /* step 1 & 2. Reset the Ethernet Channel */
1071 cas_stop(ifp, 0);
1072 cas_reset(sc);
1073 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1074
1075 /* Re-initialize the MIF */
1076 cas_mifinit(sc);
1077
1078 /* step 3. Setup data structures in host memory */
1079 cas_meminit(sc);
1080
1081 /* step 4. TX MAC registers & counters */
1082 cas_init_regs(sc);
1083 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1084 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1085 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1086
1087 /* step 5. RX MAC registers & counters */
1088 cas_iff(sc);
1089
1090 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1091 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1092 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1093 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1094 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1095
1096 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1097 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1098 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1099 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1100
1101 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1102 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1103 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1104 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1105
1106 if (CAS_PLUS(sc)) {
1107 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1108 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1109 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1110 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1111 CAS_CDRXADDR2(sc, 0));
1112 }
1113
1114 /* step 8. Global Configuration & Interrupt Mask */
1115 cas_estintr(sc, CAS_INTR_REG);
1116
1117 /* step 9. ETX Configuration: use mostly default values */
1118
1119 /* Enable DMA */
1120 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1121 bus_space_write_4(t, h, CAS_TX_CONFIG,
1122 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1123 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1124
1125 /* step 10. ERX Configuration */
1126
1127 /* Encode Receive Descriptor ring size */
1128 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1129 if (CAS_PLUS(sc))
1130 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1131
1132 /* Encode Receive Completion ring size */
1133 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1134
1135 /* Enable DMA */
1136 bus_space_write_4(t, h, CAS_RX_CONFIG,
1137 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1138
1139 /*
1140 * The following value is for an OFF Threshold of about 3/4 full
1141 * and an ON Threshold of 1/4 full.
1142 */
1143 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1144 (3 * sc->sc_rxfifosize / 256) |
1145 ((sc->sc_rxfifosize / 256) << 12));
1146 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1147
1148 /* step 11. Configure Media */
1149 mii_ifmedia_change(&sc->sc_mii);
1150
1151 /* step 12. RX_MAC Configuration Register */
1152 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1153 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1154 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1155
1156 /* step 14. Issue Transmit Pending command */
1157
1158 /* step 15. Give the receiver a swift kick */
1159 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1160 if (CAS_PLUS(sc))
1161 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1162
1163 /* Start the one second timer. */
1164 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1165
1166 ifp->if_flags |= IFF_RUNNING;
1167 ifp->if_flags &= ~IFF_OACTIVE;
1168 ifp->if_timer = 0;
1169 splx(s);
1170
1171 return (0);
1172 }
1173
1174 void
1175 cas_init_regs(struct cas_softc *sc)
1176 {
1177 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1178 bus_space_tag_t t = sc->sc_memt;
1179 bus_space_handle_t h = sc->sc_memh;
1180 const u_char *laddr = CLLADDR(ifp->if_sadl);
1181 u_int32_t v, r;
1182
1183 /* These regs are not cleared on reset */
1184 sc->sc_inited = 0;
1185 if (!sc->sc_inited) {
1186 /* Load recommended values */
1187 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1188 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1189 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1190
1191 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1192 /* Max frame and max burst size */
1193 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1194 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1195
1196 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1197 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1198 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1199 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1200 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1201 ((laddr[5]<<8)|laddr[4])&0x3ff);
1202
1203 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1204 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1205 bus_space_write_4(t, h, r, 0);
1206
1207 /* MAC control addr set to 0:1:c2:0:1:80 */
1208 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1209 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1210 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1211
1212 /* MAC filter addr set to 0:0:0:0:0:0 */
1213 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1214 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1215 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1216
1217 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1218 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1219
1220 /* Hash table initialized to 0 */
1221 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1222 bus_space_write_4(t, h, r, 0);
1223
1224 sc->sc_inited = 1;
1225 }
1226
1227 /* Counters need to be zeroed */
1228 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1229 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1230 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1231 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1232 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1233 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1234 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1235 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1236 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1237 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1238 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1239
1240 /* Un-pause stuff */
1241 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1242
1243 /*
1244 * Set the station address.
1245 */
1246 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1247 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1248 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1249 }
1250
1251 /*
1252 * Receive interrupt.
1253 */
1254 int
1255 cas_rint(struct cas_softc *sc)
1256 {
1257 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1258 bus_space_tag_t t = sc->sc_memt;
1259 bus_space_handle_t h = sc->sc_memh;
1260 struct cas_rxsoft *rxs;
1261 struct mbuf *m;
1262 u_int64_t word[4];
1263 int len, off, idx;
1264 int i, skip;
1265 void *cp;
1266
1267 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1268 CAS_CDRXCSYNC(sc, i,
1269 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1270
1271 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1272 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1273 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1274 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1275
1276 /* Stop if the hardware still owns the descriptor. */
1277 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1278 break;
1279
1280 len = CAS_RC1_HDR_LEN(word[1]);
1281 if (len > 0) {
1282 off = CAS_RC1_HDR_OFF(word[1]);
1283 idx = CAS_RC1_HDR_IDX(word[1]);
1284 rxs = &sc->sc_rxsoft[idx];
1285
1286 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1287 idx, off, len));
1288
1289 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1290 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1291
1292 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1293 m = m_devget(cp, len, 0, ifp, NULL);
1294
1295 if (word[0] & CAS_RC0_RELEASE_HDR)
1296 cas_add_rxbuf(sc, idx);
1297
1298 if (m != NULL) {
1299
1300 /*
1301 * Pass this up to any BPF listeners, but only
1302 * pass it up the stack if its for us.
1303 */
1304 bpf_mtap(ifp, m);
1305
1306 ifp->if_ipackets++;
1307 m->m_pkthdr.csum_flags = 0;
1308 (*ifp->if_input)(ifp, m);
1309 } else
1310 ifp->if_ierrors++;
1311 }
1312
1313 len = CAS_RC0_DATA_LEN(word[0]);
1314 if (len > 0) {
1315 off = CAS_RC0_DATA_OFF(word[0]);
1316 idx = CAS_RC0_DATA_IDX(word[0]);
1317 rxs = &sc->sc_rxsoft[idx];
1318
1319 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1320 idx, off, len));
1321
1322 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1323 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1324
1325 /* XXX We should not be copying the packet here. */
1326 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1327 m = m_devget(cp, len, 0, ifp, NULL);
1328
1329 if (word[0] & CAS_RC0_RELEASE_DATA)
1330 cas_add_rxbuf(sc, idx);
1331
1332 if (m != NULL) {
1333 /*
1334 * Pass this up to any BPF listeners, but only
1335 * pass it up the stack if its for us.
1336 */
1337 bpf_mtap(ifp, m);
1338
1339 ifp->if_ipackets++;
1340 m->m_pkthdr.csum_flags = 0;
1341 (*ifp->if_input)(ifp, m);
1342 } else
1343 ifp->if_ierrors++;
1344 }
1345
1346 if (word[0] & CAS_RC0_SPLIT)
1347 aprint_error_dev(sc->sc_dev, "split packet\n");
1348
1349 skip = CAS_RC0_SKIP(word[0]);
1350 }
1351
1352 while (sc->sc_rxptr != i) {
1353 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1354 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1355 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1356 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1357 CAS_DMA_WRITE(CAS_RC3_OWN);
1358 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1359 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1360
1361 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1362 }
1363
1364 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1365
1366 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1367 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1368
1369 return (1);
1370 }
1371
1372 /*
1373 * cas_add_rxbuf:
1374 *
1375 * Add a receive buffer to the indicated descriptor.
1376 */
1377 int
1378 cas_add_rxbuf(struct cas_softc *sc, int idx)
1379 {
1380 bus_space_tag_t t = sc->sc_memt;
1381 bus_space_handle_t h = sc->sc_memh;
1382
1383 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1384
1385 if ((sc->sc_rxdptr % 4) == 0)
1386 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1387
1388 if (++sc->sc_rxdptr == CAS_NRXDESC)
1389 sc->sc_rxdptr = 0;
1390
1391 return (0);
1392 }
1393
1394 int
1395 cas_eint(struct cas_softc *sc, u_int status)
1396 {
1397 char bits[128];
1398 if ((status & CAS_INTR_MIF) != 0) {
1399 DPRINTF(sc, ("%s: link status changed\n",
1400 device_xname(sc->sc_dev)));
1401 return (1);
1402 }
1403
1404 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1405 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1406 return (1);
1407 }
1408
1409 int
1410 cas_pint(struct cas_softc *sc)
1411 {
1412 bus_space_tag_t t = sc->sc_memt;
1413 bus_space_handle_t seb = sc->sc_memh;
1414 u_int32_t status;
1415
1416 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1417 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1418 #ifdef CAS_DEBUG
1419 if (status)
1420 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1421 #endif
1422 return (1);
1423 }
1424
1425 int
1426 cas_intr(void *v)
1427 {
1428 struct cas_softc *sc = (struct cas_softc *)v;
1429 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1430 bus_space_tag_t t = sc->sc_memt;
1431 bus_space_handle_t seb = sc->sc_memh;
1432 u_int32_t status;
1433 int r = 0;
1434 #ifdef CAS_DEBUG
1435 char bits[128];
1436 #endif
1437
1438 sc->sc_ev_intr.ev_count++;
1439
1440 status = bus_space_read_4(t, seb, CAS_STATUS);
1441 #ifdef CAS_DEBUG
1442 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1443 #endif
1444 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1445 device_xname(sc->sc_dev), (status>>19), bits));
1446
1447 if ((status & CAS_INTR_PCS) != 0)
1448 r |= cas_pint(sc);
1449
1450 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1451 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1452 r |= cas_eint(sc, status);
1453
1454 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1455 r |= cas_tint(sc, status);
1456
1457 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1458 r |= cas_rint(sc);
1459
1460 /* We should eventually do more than just print out error stats. */
1461 if (status & CAS_INTR_TX_MAC) {
1462 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1463 #ifdef CAS_DEBUG
1464 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1465 printf("%s: MAC tx fault, status %x\n",
1466 device_xname(sc->sc_dev), txstat);
1467 #endif
1468 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1469 cas_init(ifp);
1470 }
1471 if (status & CAS_INTR_RX_MAC) {
1472 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1473 #ifdef CAS_DEBUG
1474 if (rxstat & ~CAS_MAC_RX_DONE)
1475 printf("%s: MAC rx fault, status %x\n",
1476 device_xname(sc->sc_dev), rxstat);
1477 #endif
1478 /*
1479 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1480 * due to a silicon bug so handle them silently.
1481 */
1482 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1483 ifp->if_ierrors++;
1484 cas_init(ifp);
1485 }
1486 #ifdef CAS_DEBUG
1487 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1488 printf("%s: MAC rx fault, status %x\n",
1489 device_xname(sc->sc_dev), rxstat);
1490 #endif
1491 }
1492 rnd_add_uint32(&sc->rnd_source, status);
1493 return (r);
1494 }
1495
1496
1497 void
1498 cas_watchdog(struct ifnet *ifp)
1499 {
1500 struct cas_softc *sc = ifp->if_softc;
1501
1502 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1503 "CAS_MAC_RX_CONFIG %x\n",
1504 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1505 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1506 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1507
1508 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1509 ++ifp->if_oerrors;
1510
1511 /* Try to get more packets going. */
1512 cas_init(ifp);
1513 }
1514
1515 /*
1516 * Initialize the MII Management Interface
1517 */
1518 void
1519 cas_mifinit(struct cas_softc *sc)
1520 {
1521 bus_space_tag_t t = sc->sc_memt;
1522 bus_space_handle_t mif = sc->sc_memh;
1523
1524 /* Configure the MIF in frame mode */
1525 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1526 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1527 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1528 }
1529
1530 /*
1531 * MII interface
1532 *
1533 * The Cassini MII interface supports at least three different operating modes:
1534 *
1535 * Bitbang mode is implemented using data, clock and output enable registers.
1536 *
1537 * Frame mode is implemented by loading a complete frame into the frame
1538 * register and polling the valid bit for completion.
1539 *
1540 * Polling mode uses the frame register but completion is indicated by
1541 * an interrupt.
1542 *
1543 */
1544 int
1545 cas_mii_readreg(device_t self, int phy, int reg)
1546 {
1547 struct cas_softc *sc = device_private(self);
1548 bus_space_tag_t t = sc->sc_memt;
1549 bus_space_handle_t mif = sc->sc_memh;
1550 int n;
1551 u_int32_t v;
1552
1553 #ifdef CAS_DEBUG
1554 if (sc->sc_debug)
1555 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1556 #endif
1557
1558 /* Construct the frame command */
1559 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1560 CAS_MIF_FRAME_READ;
1561
1562 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1563 for (n = 0; n < 100; n++) {
1564 DELAY(1);
1565 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1566 if (v & CAS_MIF_FRAME_TA0)
1567 return (v & CAS_MIF_FRAME_DATA);
1568 }
1569
1570 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1571 return (0);
1572 }
1573
1574 void
1575 cas_mii_writereg(device_t self, int phy, int reg, int val)
1576 {
1577 struct cas_softc *sc = device_private(self);
1578 bus_space_tag_t t = sc->sc_memt;
1579 bus_space_handle_t mif = sc->sc_memh;
1580 int n;
1581 u_int32_t v;
1582
1583 #ifdef CAS_DEBUG
1584 if (sc->sc_debug)
1585 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1586 phy, reg, val);
1587 #endif
1588
1589 /* Construct the frame command */
1590 v = CAS_MIF_FRAME_WRITE |
1591 (phy << CAS_MIF_PHY_SHIFT) |
1592 (reg << CAS_MIF_REG_SHIFT) |
1593 (val & CAS_MIF_FRAME_DATA);
1594
1595 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1596 for (n = 0; n < 100; n++) {
1597 DELAY(1);
1598 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1599 if (v & CAS_MIF_FRAME_TA0)
1600 return;
1601 }
1602
1603 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1604 }
1605
1606 void
1607 cas_mii_statchg(device_t self)
1608 {
1609 struct cas_softc *sc = device_private(self);
1610 #ifdef CAS_DEBUG
1611 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1612 #endif
1613 bus_space_tag_t t = sc->sc_memt;
1614 bus_space_handle_t mac = sc->sc_memh;
1615 u_int32_t v;
1616
1617 #ifdef CAS_DEBUG
1618 if (sc->sc_debug)
1619 printf("cas_mii_statchg: status change: phy = %d\n",
1620 sc->sc_phys[instance]);
1621 #endif
1622
1623 /* Set tx full duplex options */
1624 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1625 delay(10000); /* reg must be cleared and delay before changing. */
1626 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1627 CAS_MAC_TX_ENABLE;
1628 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1629 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1630 }
1631 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1632
1633 /* XIF Configuration */
1634 v = CAS_MAC_XIF_TX_MII_ENA;
1635 v |= CAS_MAC_XIF_LINK_LED;
1636
1637 /* MII needs echo disable if half duplex. */
1638 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1639 /* turn on full duplex LED */
1640 v |= CAS_MAC_XIF_FDPLX_LED;
1641 else
1642 /* half duplex -- disable echo */
1643 v |= CAS_MAC_XIF_ECHO_DISABL;
1644
1645 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1646 case IFM_1000_T: /* Gigabit using GMII interface */
1647 case IFM_1000_SX:
1648 v |= CAS_MAC_XIF_GMII_MODE;
1649 break;
1650 default:
1651 v &= ~CAS_MAC_XIF_GMII_MODE;
1652 }
1653 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1654 }
1655
1656 int
1657 cas_pcs_readreg(device_t self, int phy, int reg)
1658 {
1659 struct cas_softc *sc = device_private(self);
1660 bus_space_tag_t t = sc->sc_memt;
1661 bus_space_handle_t pcs = sc->sc_memh;
1662
1663 #ifdef CAS_DEBUG
1664 if (sc->sc_debug)
1665 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1666 #endif
1667
1668 if (phy != CAS_PHYAD_EXTERNAL)
1669 return (0);
1670
1671 switch (reg) {
1672 case MII_BMCR:
1673 reg = CAS_MII_CONTROL;
1674 break;
1675 case MII_BMSR:
1676 reg = CAS_MII_STATUS;
1677 break;
1678 case MII_ANAR:
1679 reg = CAS_MII_ANAR;
1680 break;
1681 case MII_ANLPAR:
1682 reg = CAS_MII_ANLPAR;
1683 break;
1684 case MII_EXTSR:
1685 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1686 default:
1687 return (0);
1688 }
1689
1690 return bus_space_read_4(t, pcs, reg);
1691 }
1692
1693 void
1694 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1695 {
1696 struct cas_softc *sc = device_private(self);
1697 bus_space_tag_t t = sc->sc_memt;
1698 bus_space_handle_t pcs = sc->sc_memh;
1699 int reset = 0;
1700
1701 #ifdef CAS_DEBUG
1702 if (sc->sc_debug)
1703 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1704 phy, reg, val);
1705 #endif
1706
1707 if (phy != CAS_PHYAD_EXTERNAL)
1708 return;
1709
1710 if (reg == MII_ANAR)
1711 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1712
1713 switch (reg) {
1714 case MII_BMCR:
1715 reset = (val & CAS_MII_CONTROL_RESET);
1716 reg = CAS_MII_CONTROL;
1717 break;
1718 case MII_BMSR:
1719 reg = CAS_MII_STATUS;
1720 break;
1721 case MII_ANAR:
1722 reg = CAS_MII_ANAR;
1723 break;
1724 case MII_ANLPAR:
1725 reg = CAS_MII_ANLPAR;
1726 break;
1727 default:
1728 return;
1729 }
1730
1731 bus_space_write_4(t, pcs, reg, val);
1732
1733 if (reset)
1734 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1735
1736 if (reg == CAS_MII_ANAR || reset)
1737 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1738 CAS_MII_CONFIG_ENABLE);
1739 }
1740
1741 int
1742 cas_mediachange(struct ifnet *ifp)
1743 {
1744 struct cas_softc *sc = ifp->if_softc;
1745 struct mii_data *mii = &sc->sc_mii;
1746
1747 if (mii->mii_instance) {
1748 struct mii_softc *miisc;
1749 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1750 mii_phy_reset(miisc);
1751 }
1752
1753 return (mii_mediachg(&sc->sc_mii));
1754 }
1755
1756 void
1757 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1758 {
1759 struct cas_softc *sc = ifp->if_softc;
1760
1761 mii_pollstat(&sc->sc_mii);
1762 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1763 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1764 }
1765
1766 /*
1767 * Process an ioctl request.
1768 */
1769 int
1770 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1771 {
1772 struct cas_softc *sc = ifp->if_softc;
1773 int s, error = 0;
1774
1775 s = splnet();
1776
1777 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1778 error = 0;
1779 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1780 ;
1781 else if (ifp->if_flags & IFF_RUNNING) {
1782 /*
1783 * Multicast list has changed; set the hardware filter
1784 * accordingly.
1785 */
1786 cas_iff(sc);
1787 }
1788 }
1789
1790 splx(s);
1791 return (error);
1792 }
1793
1794 static bool
1795 cas_suspend(device_t self, const pmf_qual_t *qual)
1796 {
1797 struct cas_softc *sc = device_private(self);
1798 bus_space_tag_t t = sc->sc_memt;
1799 bus_space_handle_t h = sc->sc_memh;
1800
1801 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1802 if (sc->sc_ih != NULL) {
1803 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1804 sc->sc_ih = NULL;
1805 }
1806
1807 return true;
1808 }
1809
1810 static bool
1811 cas_resume(device_t self, const pmf_qual_t *qual)
1812 {
1813 struct cas_softc *sc = device_private(self);
1814
1815 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1816 }
1817
1818 static bool
1819 cas_estintr(struct cas_softc *sc, int what)
1820 {
1821 bus_space_tag_t t = sc->sc_memt;
1822 bus_space_handle_t h = sc->sc_memh;
1823 const char *intrstr = NULL;
1824
1825 /* PCI interrupts */
1826 if (what & CAS_INTR_PCI) {
1827 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1828 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1829 IPL_NET, cas_intr, sc);
1830 if (sc->sc_ih == NULL) {
1831 aprint_error_dev(sc->sc_dev,
1832 "unable to establish interrupt");
1833 if (intrstr != NULL)
1834 aprint_error(" at %s", intrstr);
1835 aprint_error("\n");
1836 return false;
1837 }
1838
1839 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1840 }
1841
1842 /* Interrupt register */
1843 if (what & CAS_INTR_REG) {
1844 bus_space_write_4(t, h, CAS_INTMASK,
1845 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1846 CAS_INTR_TX_TAG_ERR|
1847 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1848 CAS_INTR_RX_TAG_ERR|
1849 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1850 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1851 CAS_INTR_BERR));
1852 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1853 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1854 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1855 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1856 }
1857 return true;
1858 }
1859
1860 bool
1861 cas_shutdown(device_t self, int howto)
1862 {
1863 struct cas_softc *sc = device_private(self);
1864 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1865
1866 cas_stop(ifp, 1);
1867
1868 return true;
1869 }
1870
1871 void
1872 cas_iff(struct cas_softc *sc)
1873 {
1874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1875 struct ethercom *ec = &sc->sc_ethercom;
1876 struct ether_multi *enm;
1877 struct ether_multistep step;
1878 bus_space_tag_t t = sc->sc_memt;
1879 bus_space_handle_t h = sc->sc_memh;
1880 u_int32_t crc, hash[16], rxcfg;
1881 int i;
1882
1883 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1884 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1885 CAS_MAC_RX_PROMISC_GRP);
1886 ifp->if_flags &= ~IFF_ALLMULTI;
1887
1888 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1889 ifp->if_flags |= IFF_ALLMULTI;
1890 if (ifp->if_flags & IFF_PROMISC)
1891 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1892 else
1893 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1894 } else {
1895 /*
1896 * Set up multicast address filter by passing all multicast
1897 * addresses through a crc generator, and then using the
1898 * high order 8 bits as an index into the 256 bit logical
1899 * address filter. The high order 4 bits selects the word,
1900 * while the other 4 bits select the bit within the word
1901 * (where bit 0 is the MSB).
1902 */
1903
1904 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1905
1906 /* Clear hash table */
1907 for (i = 0; i < 16; i++)
1908 hash[i] = 0;
1909
1910 ETHER_FIRST_MULTI(step, ec, enm);
1911 while (enm != NULL) {
1912 crc = ether_crc32_le(enm->enm_addrlo,
1913 ETHER_ADDR_LEN);
1914
1915 /* Just want the 8 most significant bits. */
1916 crc >>= 24;
1917
1918 /* Set the corresponding bit in the filter. */
1919 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1920
1921 ETHER_NEXT_MULTI(step, enm);
1922 }
1923
1924 /* Now load the hash table into the chip (if we are using it) */
1925 for (i = 0; i < 16; i++) {
1926 bus_space_write_4(t, h,
1927 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1928 hash[i]);
1929 }
1930 }
1931
1932 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1933 }
1934
1935 int
1936 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1937 {
1938 u_int64_t flags;
1939 u_int32_t cur, frag, i;
1940 bus_dmamap_t map;
1941
1942 cur = frag = *bixp;
1943 map = sc->sc_txd[cur].sd_map;
1944
1945 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1946 BUS_DMA_NOWAIT) != 0) {
1947 return (ENOBUFS);
1948 }
1949
1950 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1951 bus_dmamap_unload(sc->sc_dmatag, map);
1952 return (ENOBUFS);
1953 }
1954
1955 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1956 BUS_DMASYNC_PREWRITE);
1957
1958 for (i = 0; i < map->dm_nsegs; i++) {
1959 sc->sc_txdescs[frag].cd_addr =
1960 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1961 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1962 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1963 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1964 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1965 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1966 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1967 BUS_DMASYNC_PREWRITE);
1968 cur = frag;
1969 if (++frag == CAS_NTXDESC)
1970 frag = 0;
1971 }
1972
1973 sc->sc_tx_cnt += map->dm_nsegs;
1974 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1975 sc->sc_txd[cur].sd_map = map;
1976 sc->sc_txd[cur].sd_mbuf = mhead;
1977
1978 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1979
1980 *bixp = frag;
1981
1982 /* sync descriptors */
1983
1984 return (0);
1985 }
1986
1987 /*
1988 * Transmit interrupt.
1989 */
1990 int
1991 cas_tint(struct cas_softc *sc, u_int32_t status)
1992 {
1993 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1994 struct cas_sxd *sd;
1995 u_int32_t cons, comp;
1996
1997 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1998 cons = sc->sc_tx_cons;
1999 while (cons != comp) {
2000 sd = &sc->sc_txd[cons];
2001 if (sd->sd_mbuf != NULL) {
2002 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2003 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2004 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2005 m_freem(sd->sd_mbuf);
2006 sd->sd_mbuf = NULL;
2007 ifp->if_opackets++;
2008 }
2009 sc->sc_tx_cnt--;
2010 if (++cons == CAS_NTXDESC)
2011 cons = 0;
2012 }
2013 sc->sc_tx_cons = cons;
2014
2015 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2016 ifp->if_flags &= ~IFF_OACTIVE;
2017 if (sc->sc_tx_cnt == 0)
2018 ifp->if_timer = 0;
2019
2020 cas_start(ifp);
2021
2022 return (1);
2023 }
2024
2025 void
2026 cas_start(struct ifnet *ifp)
2027 {
2028 struct cas_softc *sc = ifp->if_softc;
2029 struct mbuf *m;
2030 u_int32_t bix;
2031
2032 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2033 return;
2034
2035 bix = sc->sc_tx_prod;
2036 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2037 IFQ_POLL(&ifp->if_snd, m);
2038 if (m == NULL)
2039 break;
2040
2041 /*
2042 * If BPF is listening on this interface, let it see the
2043 * packet before we commit it to the wire.
2044 */
2045 bpf_mtap(ifp, m);
2046
2047 /*
2048 * Encapsulate this packet and start it going...
2049 * or fail...
2050 */
2051 if (cas_encap(sc, m, &bix)) {
2052 ifp->if_flags |= IFF_OACTIVE;
2053 break;
2054 }
2055
2056 IFQ_DEQUEUE(&ifp->if_snd, m);
2057 ifp->if_timer = 5;
2058 }
2059
2060 sc->sc_tx_prod = bix;
2061 }
2062
2063 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2064
2065 #ifdef _MODULE
2066 #include "ioconf.c"
2067 #endif
2068
2069 static int
2070 if_cas_modcmd(modcmd_t cmd, void *opaque)
2071 {
2072 int error = 0;
2073
2074 switch (cmd) {
2075 case MODULE_CMD_INIT:
2076 #ifdef _MODULE
2077 error = config_init_component(cfdriver_ioconf_cas,
2078 cfattach_ioconf_cas, cfdata_ioconf_cas);
2079 #endif
2080 return error;
2081 case MODULE_CMD_FINI:
2082 #ifdef _MODULE
2083 error = config_fini_component(cfdriver_ioconf_cas,
2084 cfattach_ioconf_cas, cfdata_ioconf_cas);
2085 #endif
2086 return error;
2087 default:
2088 return ENOTTY;
2089 }
2090 }
2091