if_cas.c revision 1.21.2.1 1 /* $NetBSD: if_cas.c,v 1.21.2.1 2014/04/07 03:37:33 tls Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.21.2.1 2014/04/07 03:37:33 tls Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rnd.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 #define TRIES 10000
101
102 static bool cas_estintr(struct cas_softc *sc, int);
103 bool cas_shutdown(device_t, int);
104 static bool cas_suspend(device_t, const pmf_qual_t *);
105 static bool cas_resume(device_t, const pmf_qual_t *);
106 static int cas_detach(device_t, int);
107 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109 int cas_match(device_t, cfdata_t, void *);
110 void cas_attach(device_t, device_t, void *);
111
112
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN);
116
117 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119 void cas_config(struct cas_softc *, const uint8_t *);
120 void cas_start(struct ifnet *);
121 void cas_stop(struct ifnet *, int);
122 int cas_ioctl(struct ifnet *, u_long, void *);
123 void cas_tick(void *);
124 void cas_watchdog(struct ifnet *);
125 int cas_init(struct ifnet *);
126 void cas_init_regs(struct cas_softc *);
127 int cas_ringsize(int);
128 int cas_cringsize(int);
129 int cas_meminit(struct cas_softc *);
130 void cas_mifinit(struct cas_softc *);
131 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 u_int32_t, u_int32_t);
133 void cas_reset(struct cas_softc *);
134 int cas_reset_rx(struct cas_softc *);
135 int cas_reset_tx(struct cas_softc *);
136 int cas_disable_rx(struct cas_softc *);
137 int cas_disable_tx(struct cas_softc *);
138 void cas_rxdrain(struct cas_softc *);
139 int cas_add_rxbuf(struct cas_softc *, int idx);
140 void cas_iff(struct cas_softc *);
141 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
142
143 /* MII methods & callbacks */
144 int cas_mii_readreg(device_t, int, int);
145 void cas_mii_writereg(device_t, int, int, int);
146 void cas_mii_statchg(struct ifnet *);
147 int cas_pcs_readreg(device_t, int, int);
148 void cas_pcs_writereg(device_t, int, int, int);
149
150 int cas_mediachange(struct ifnet *);
151 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153 int cas_eint(struct cas_softc *, u_int);
154 int cas_rint(struct cas_softc *);
155 int cas_tint(struct cas_softc *, u_int32_t);
156 int cas_pint(struct cas_softc *);
157 int cas_intr(void *);
158
159 #ifdef CAS_DEBUG
160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x
162 #else
163 #define DPRINTF(sc, x) /* nothing */
164 #endif
165
166 int
167 cas_match(device_t parent, cfdata_t cf, void *aux)
168 {
169 struct pci_attach_args *pa = aux;
170
171 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
172 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
173 return 1;
174
175 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
176 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
177 return 1;
178
179 return 0;
180 }
181
182 #define PROMHDR_PTR_DATA 0x18
183 #define PROMDATA_PTR_VPD 0x08
184 #define PROMDATA_DATA2 0x0a
185
186 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
187 static const u_int8_t cas_promdat[] = {
188 'P', 'C', 'I', 'R',
189 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
190 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
191 };
192 static const u_int8_t cas_promdat_ns[] = {
193 'P', 'C', 'I', 'R',
194 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
195 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
196 };
197
198 static const u_int8_t cas_promdat2[] = {
199 0x18, 0x00, /* structure length */
200 0x00, /* structure revision */
201 0x00, /* interface revision */
202 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
203 PCI_CLASS_NETWORK /* class code */
204 };
205
206 int
207 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
208 uint8_t *enaddr)
209 {
210 struct pci_vpd_largeres *res;
211 struct pci_vpd *vpd;
212 bus_space_handle_t romh;
213 bus_space_tag_t romt;
214 bus_size_t romsize = 0;
215 u_int8_t buf[32], *desc;
216 pcireg_t address;
217 int dataoff, vpdoff, len;
218 int rv = -1;
219
220 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
221 &romt, &romh, NULL, &romsize))
222 return (-1);
223
224 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
225 address |= PCI_MAPREG_ROM_ENABLE;
226 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
227
228 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
229 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
230 goto fail;
231
232 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
233 if (dataoff < 0x1c)
234 goto fail;
235
236 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
237 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
238 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
239 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
240 goto fail;
241
242 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
243 if (vpdoff < 0x1c)
244 goto fail;
245
246 next:
247 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
248 if (!PCI_VPDRES_ISLARGE(buf[0]))
249 goto fail;
250
251 res = (struct pci_vpd_largeres *)buf;
252 vpdoff += sizeof(*res);
253
254 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
255 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
256 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
257 /* Skip identifier string. */
258 vpdoff += len;
259 goto next;
260
261 case PCI_VPDRES_TYPE_VPD:
262 while (len > 0) {
263 bus_space_read_region_1(romt, romh, vpdoff,
264 buf, sizeof(buf));
265
266 vpd = (struct pci_vpd *)buf;
267 vpdoff += sizeof(*vpd) + vpd->vpd_len;
268 len -= sizeof(*vpd) + vpd->vpd_len;
269
270 /*
271 * We're looking for an "Enhanced" VPD...
272 */
273 if (vpd->vpd_key0 != 'Z')
274 continue;
275
276 desc = buf + sizeof(*vpd);
277
278 /*
279 * ...which is an instance property...
280 */
281 if (desc[0] != 'I')
282 continue;
283 desc += 3;
284
285 /*
286 * ...that's a byte array with the proper
287 * length for a MAC address...
288 */
289 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
290 continue;
291 desc += 2;
292
293 /*
294 * ...named "local-mac-address".
295 */
296 if (strcmp(desc, "local-mac-address") != 0)
297 continue;
298 desc += strlen("local-mac-address") + 1;
299
300 memcpy(enaddr, desc, ETHER_ADDR_LEN);
301 rv = 0;
302 }
303 break;
304
305 default:
306 goto fail;
307 }
308
309 fail:
310 if (romsize != 0)
311 bus_space_unmap(romt, romh, romsize);
312
313 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
314 address &= ~PCI_MAPREG_ROM_ENABLE;
315 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
316
317 return (rv);
318 }
319
320 void
321 cas_attach(device_t parent, device_t self, void *aux)
322 {
323 struct pci_attach_args *pa = aux;
324 struct cas_softc *sc = device_private(self);
325 prop_data_t data;
326 uint8_t enaddr[ETHER_ADDR_LEN];
327
328 sc->sc_dev = self;
329 pci_aprint_devinfo(pa, NULL);
330 sc->sc_rev = PCI_REVISION(pa->pa_class);
331 sc->sc_dmatag = pa->pa_dmat;
332
333 #define PCI_CAS_BASEADDR 0x10
334 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
335 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
336 aprint_error_dev(sc->sc_dev,
337 "unable to map device registers\n");
338 return;
339 }
340
341 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
342 "mac-address")) != NULL)
343 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
344 else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
345 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
346 memset(enaddr, 0, sizeof(enaddr));
347 }
348
349 sc->sc_burst = 16; /* XXX */
350
351 sc->sc_att_stage = CAS_ATT_BACKEND_0;
352
353 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
354 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
355 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
356 return;
357 }
358 sc->sc_pc = pa->pa_pc;
359 if (!cas_estintr(sc, CAS_INTR_PCI)) {
360 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
361 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
362 return;
363 }
364
365 sc->sc_att_stage = CAS_ATT_BACKEND_1;
366
367 /*
368 * call the main configure
369 */
370 cas_config(sc, enaddr);
371
372 if (pmf_device_register1(sc->sc_dev,
373 cas_suspend, cas_resume, cas_shutdown))
374 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
375 else
376 aprint_error_dev(sc->sc_dev,
377 "could not establish power handlers\n");
378
379 sc->sc_att_stage = CAS_ATT_FINISHED;
380 /*FALLTHROUGH*/
381 }
382
383 /*
384 * cas_config:
385 *
386 * Attach a Cassini interface to the system.
387 */
388 void
389 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
390 {
391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 struct mii_data *mii = &sc->sc_mii;
393 struct mii_softc *child;
394 int i, error;
395
396 /* Make sure the chip is stopped. */
397 ifp->if_softc = sc;
398 cas_reset(sc);
399
400 /*
401 * Allocate the control data structures, and create and load the
402 * DMA map for it.
403 */
404 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
405 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
406 1, &sc->sc_cdnseg, 0)) != 0) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to allocate control data, error = %d\n",
409 error);
410 cas_partial_detach(sc, CAS_ATT_0);
411 }
412
413 /* XXX should map this in with correct endianness */
414 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
415 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
416 BUS_DMA_COHERENT)) != 0) {
417 aprint_error_dev(sc->sc_dev,
418 "unable to map control data, error = %d\n", error);
419 cas_partial_detach(sc, CAS_ATT_1);
420 }
421
422 if ((error = bus_dmamap_create(sc->sc_dmatag,
423 sizeof(struct cas_control_data), 1,
424 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to create control data DMA map, error = %d\n", error);
427 cas_partial_detach(sc, CAS_ATT_2);
428 }
429
430 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
431 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
432 0)) != 0) {
433 aprint_error_dev(sc->sc_dev,
434 "unable to load control data DMA map, error = %d\n",
435 error);
436 cas_partial_detach(sc, CAS_ATT_3);
437 }
438
439 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
440
441 /*
442 * Create the receive buffer DMA maps.
443 */
444 for (i = 0; i < CAS_NRXDESC; i++) {
445 bus_dma_segment_t seg;
446 char *kva;
447 int rseg;
448
449 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
450 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
451 aprint_error_dev(sc->sc_dev,
452 "unable to alloc rx DMA mem %d, error = %d\n",
453 i, error);
454 cas_partial_detach(sc, CAS_ATT_5);
455 }
456 sc->sc_rxsoft[i].rxs_dmaseg = seg;
457
458 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
459 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
460 aprint_error_dev(sc->sc_dev,
461 "unable to alloc rx DMA mem %d, error = %d\n",
462 i, error);
463 cas_partial_detach(sc, CAS_ATT_5);
464 }
465 sc->sc_rxsoft[i].rxs_kva = kva;
466
467 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
468 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
469 aprint_error_dev(sc->sc_dev,
470 "unable to create rx DMA map %d, error = %d\n",
471 i, error);
472 cas_partial_detach(sc, CAS_ATT_5);
473 }
474
475 if ((error = bus_dmamap_load(sc->sc_dmatag,
476 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
477 BUS_DMA_NOWAIT)) != 0) {
478 aprint_error_dev(sc->sc_dev,
479 "unable to load rx DMA map %d, error = %d\n",
480 i, error);
481 cas_partial_detach(sc, CAS_ATT_5);
482 }
483 }
484
485 /*
486 * Create the transmit buffer DMA maps.
487 */
488 for (i = 0; i < CAS_NTXDESC; i++) {
489 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
490 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
491 &sc->sc_txd[i].sd_map)) != 0) {
492 aprint_error_dev(sc->sc_dev,
493 "unable to create tx DMA map %d, error = %d\n",
494 i, error);
495 cas_partial_detach(sc, CAS_ATT_6);
496 }
497 sc->sc_txd[i].sd_mbuf = NULL;
498 }
499
500 /*
501 * From this point forward, the attachment cannot fail. A failure
502 * before this point releases all resources that may have been
503 * allocated.
504 */
505
506 /* Announce ourselves. */
507 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
508 ether_sprintf(enaddr));
509 aprint_naive(": Ethernet controller\n");
510
511 /* Get RX FIFO size */
512 sc->sc_rxfifosize = 16 * 1024;
513
514 /* Initialize ifnet structure. */
515 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516 ifp->if_softc = sc;
517 ifp->if_flags =
518 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
519 ifp->if_start = cas_start;
520 ifp->if_ioctl = cas_ioctl;
521 ifp->if_watchdog = cas_watchdog;
522 ifp->if_stop = cas_stop;
523 ifp->if_init = cas_init;
524 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
525 IFQ_SET_READY(&ifp->if_snd);
526
527 /* Initialize ifmedia structures and MII info */
528 mii->mii_ifp = ifp;
529 mii->mii_readreg = cas_mii_readreg;
530 mii->mii_writereg = cas_mii_writereg;
531 mii->mii_statchg = cas_mii_statchg;
532
533 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
534 sc->sc_ethercom.ec_mii = mii;
535
536 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
537
538 cas_mifinit(sc);
539
540 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
541 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
542 bus_space_write_4(sc->sc_memt, sc->sc_memh,
543 CAS_MIF_CONFIG, sc->sc_mif_config);
544 }
545
546 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
547 MII_OFFSET_ANY, 0);
548
549 child = LIST_FIRST(&mii->mii_phys);
550 if (child == NULL &&
551 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
552 /*
553 * Try the external PCS SERDES if we didn't find any
554 * MII devices.
555 */
556 bus_space_write_4(sc->sc_memt, sc->sc_memh,
557 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
558
559 bus_space_write_4(sc->sc_memt, sc->sc_memh,
560 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
561
562 mii->mii_readreg = cas_pcs_readreg;
563 mii->mii_writereg = cas_pcs_writereg;
564
565 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
566 MII_OFFSET_ANY, MIIF_NOISOLATE);
567 }
568
569 child = LIST_FIRST(&mii->mii_phys);
570 if (child == NULL) {
571 /* No PHY attached */
572 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
573 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
574 } else {
575 /*
576 * Walk along the list of attached MII devices and
577 * establish an `MII instance' to `phy number'
578 * mapping. We'll use this mapping in media change
579 * requests to determine which phy to use to program
580 * the MIF configuration register.
581 */
582 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
583 /*
584 * Note: we support just two PHYs: the built-in
585 * internal device and an external on the MII
586 * connector.
587 */
588 if (child->mii_phy > 1 || child->mii_inst > 1) {
589 aprint_error_dev(sc->sc_dev,
590 "cannot accommodate MII device %s"
591 " at phy %d, instance %d\n",
592 device_xname(child->mii_dev),
593 child->mii_phy, child->mii_inst);
594 continue;
595 }
596
597 sc->sc_phys[child->mii_inst] = child->mii_phy;
598 }
599
600 /*
601 * XXX - we can really do the following ONLY if the
602 * phy indeed has the auto negotiation capability!!
603 */
604 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
605 }
606
607 /* claim 802.1q capability */
608 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
609
610 /* Attach the interface. */
611 if_attach(ifp);
612 ether_ifattach(ifp, enaddr);
613
614 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
615 RND_TYPE_NET, RND_FLAG_DEFAULT);
616
617 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
618 NULL, device_xname(sc->sc_dev), "interrupts");
619
620 callout_init(&sc->sc_tick_ch, 0);
621
622 return;
623 }
624
625 int
626 cas_detach(device_t self, int flags)
627 {
628 int i;
629 struct cas_softc *sc = device_private(self);
630 bus_space_tag_t t = sc->sc_memt;
631 bus_space_handle_t h = sc->sc_memh;
632 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
633
634 /*
635 * Free any resources we've allocated during the failed attach
636 * attempt. Do this in reverse order and fall through.
637 */
638 switch (sc->sc_att_stage) {
639 case CAS_ATT_FINISHED:
640 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
641 pmf_device_deregister(self);
642 cas_stop(&sc->sc_ethercom.ec_if, 1);
643 evcnt_detach(&sc->sc_ev_intr);
644
645 rnd_detach_source(&sc->rnd_source);
646
647 ether_ifdetach(ifp);
648 if_detach(ifp);
649 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
650
651 callout_destroy(&sc->sc_tick_ch);
652
653 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
654
655 /*FALLTHROUGH*/
656 case CAS_ATT_MII:
657 case CAS_ATT_7:
658 case CAS_ATT_6:
659 for (i = 0; i < CAS_NTXDESC; i++) {
660 if (sc->sc_txd[i].sd_map != NULL)
661 bus_dmamap_destroy(sc->sc_dmatag,
662 sc->sc_txd[i].sd_map);
663 }
664 /*FALLTHROUGH*/
665 case CAS_ATT_5:
666 for (i = 0; i < CAS_NRXDESC; i++) {
667 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
668 bus_dmamap_unload(sc->sc_dmatag,
669 sc->sc_rxsoft[i].rxs_dmamap);
670 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
671 bus_dmamap_destroy(sc->sc_dmatag,
672 sc->sc_rxsoft[i].rxs_dmamap);
673 if (sc->sc_rxsoft[i].rxs_kva != NULL)
674 bus_dmamem_unmap(sc->sc_dmatag,
675 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
676 /* XXX need to check that bus_dmamem_alloc suceeded
677 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
678 */
679 bus_dmamem_free(sc->sc_dmatag,
680 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
681 }
682 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
683 /*FALLTHROUGH*/
684 case CAS_ATT_4:
685 case CAS_ATT_3:
686 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
687 /*FALLTHROUGH*/
688 case CAS_ATT_2:
689 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
690 sizeof(struct cas_control_data));
691 /*FALLTHROUGH*/
692 case CAS_ATT_1:
693 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
694 /*FALLTHROUGH*/
695 case CAS_ATT_0:
696 sc->sc_att_stage = CAS_ATT_0;
697 /*FALLTHROUGH*/
698 case CAS_ATT_BACKEND_2:
699 case CAS_ATT_BACKEND_1:
700 if (sc->sc_ih != NULL) {
701 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
702 sc->sc_ih = NULL;
703 }
704 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
705 /*FALLTHROUGH*/
706 case CAS_ATT_BACKEND_0:
707 break;
708 }
709 return 0;
710 }
711
712 static void
713 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
714 {
715 cfattach_t ca = device_cfattach(sc->sc_dev);
716
717 sc->sc_att_stage = stage;
718 (*ca->ca_detach)(sc->sc_dev, 0);
719 }
720
721 void
722 cas_tick(void *arg)
723 {
724 struct cas_softc *sc = arg;
725 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
726 bus_space_tag_t t = sc->sc_memt;
727 bus_space_handle_t mac = sc->sc_memh;
728 int s;
729 u_int32_t v;
730
731 /* unload collisions counters */
732 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
733 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
734 ifp->if_collisions += v +
735 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
736 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
737 ifp->if_oerrors += v;
738
739 /* read error counters */
740 ifp->if_ierrors +=
741 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
742 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
743 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
744 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
745
746 /* clear the hardware counters */
747 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
748 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
749 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
750 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
751 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
752 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
753 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
754 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
755
756 s = splnet();
757 mii_tick(&sc->sc_mii);
758 splx(s);
759
760 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
761 }
762
763 int
764 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
765 u_int32_t clr, u_int32_t set)
766 {
767 int i;
768 u_int32_t reg;
769
770 for (i = TRIES; i--; DELAY(100)) {
771 reg = bus_space_read_4(sc->sc_memt, h, r);
772 if ((reg & clr) == 0 && (reg & set) == set)
773 return (1);
774 }
775
776 return (0);
777 }
778
779 void
780 cas_reset(struct cas_softc *sc)
781 {
782 bus_space_tag_t t = sc->sc_memt;
783 bus_space_handle_t h = sc->sc_memh;
784 int s;
785
786 s = splnet();
787 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
788 cas_reset_rx(sc);
789 cas_reset_tx(sc);
790
791 /* Disable interrupts */
792 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
793
794 /* Do a full reset */
795 bus_space_write_4(t, h, CAS_RESET,
796 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
797 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
798 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
799 splx(s);
800 }
801
802
803 /*
804 * cas_rxdrain:
805 *
806 * Drain the receive queue.
807 */
808 void
809 cas_rxdrain(struct cas_softc *sc)
810 {
811 /* Nothing to do yet. */
812 }
813
814 /*
815 * Reset the whole thing.
816 */
817 void
818 cas_stop(struct ifnet *ifp, int disable)
819 {
820 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
821 struct cas_sxd *sd;
822 u_int32_t i;
823
824 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
825
826 callout_stop(&sc->sc_tick_ch);
827
828 /*
829 * Mark the interface down and cancel the watchdog timer.
830 */
831 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
832 ifp->if_timer = 0;
833
834 mii_down(&sc->sc_mii);
835
836 cas_reset_rx(sc);
837 cas_reset_tx(sc);
838
839 /*
840 * Release any queued transmit buffers.
841 */
842 for (i = 0; i < CAS_NTXDESC; i++) {
843 sd = &sc->sc_txd[i];
844 if (sd->sd_mbuf != NULL) {
845 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
846 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
847 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
848 m_freem(sd->sd_mbuf);
849 sd->sd_mbuf = NULL;
850 }
851 }
852 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
853
854 if (disable)
855 cas_rxdrain(sc);
856 }
857
858
859 /*
860 * Reset the receiver
861 */
862 int
863 cas_reset_rx(struct cas_softc *sc)
864 {
865 bus_space_tag_t t = sc->sc_memt;
866 bus_space_handle_t h = sc->sc_memh;
867
868 /*
869 * Resetting while DMA is in progress can cause a bus hang, so we
870 * disable DMA first.
871 */
872 cas_disable_rx(sc);
873 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
874 /* Wait till it finishes */
875 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
876 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
877 /* Wait 5ms extra. */
878 delay(5000);
879
880 /* Finally, reset the ERX */
881 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
882 /* Wait till it finishes */
883 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
884 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
885 return (1);
886 }
887 return (0);
888 }
889
890
891 /*
892 * Reset the transmitter
893 */
894 int
895 cas_reset_tx(struct cas_softc *sc)
896 {
897 bus_space_tag_t t = sc->sc_memt;
898 bus_space_handle_t h = sc->sc_memh;
899
900 /*
901 * Resetting while DMA is in progress can cause a bus hang, so we
902 * disable DMA first.
903 */
904 cas_disable_tx(sc);
905 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
906 /* Wait till it finishes */
907 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
908 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
909 /* Wait 5ms extra. */
910 delay(5000);
911
912 /* Finally, reset the ETX */
913 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
914 /* Wait till it finishes */
915 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
916 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
917 return (1);
918 }
919 return (0);
920 }
921
922 /*
923 * Disable receiver.
924 */
925 int
926 cas_disable_rx(struct cas_softc *sc)
927 {
928 bus_space_tag_t t = sc->sc_memt;
929 bus_space_handle_t h = sc->sc_memh;
930 u_int32_t cfg;
931
932 /* Flip the enable bit */
933 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
934 cfg &= ~CAS_MAC_RX_ENABLE;
935 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
936
937 /* Wait for it to finish */
938 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
939 }
940
941 /*
942 * Disable transmitter.
943 */
944 int
945 cas_disable_tx(struct cas_softc *sc)
946 {
947 bus_space_tag_t t = sc->sc_memt;
948 bus_space_handle_t h = sc->sc_memh;
949 u_int32_t cfg;
950
951 /* Flip the enable bit */
952 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
953 cfg &= ~CAS_MAC_TX_ENABLE;
954 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
955
956 /* Wait for it to finish */
957 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
958 }
959
960 /*
961 * Initialize interface.
962 */
963 int
964 cas_meminit(struct cas_softc *sc)
965 {
966 int i;
967
968 /*
969 * Initialize the transmit descriptor ring.
970 */
971 for (i = 0; i < CAS_NTXDESC; i++) {
972 sc->sc_txdescs[i].cd_flags = 0;
973 sc->sc_txdescs[i].cd_addr = 0;
974 }
975 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
976 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
977
978 /*
979 * Initialize the receive descriptor and receive job
980 * descriptor rings.
981 */
982 for (i = 0; i < CAS_NRXDESC; i++)
983 CAS_INIT_RXDESC(sc, i, i);
984 sc->sc_rxdptr = 0;
985 sc->sc_rxptr = 0;
986
987 /*
988 * Initialize the receive completion ring.
989 */
990 for (i = 0; i < CAS_NRXCOMP; i++) {
991 sc->sc_rxcomps[i].cc_word[0] = 0;
992 sc->sc_rxcomps[i].cc_word[1] = 0;
993 sc->sc_rxcomps[i].cc_word[2] = 0;
994 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
995 CAS_CDRXCSYNC(sc, i,
996 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
997 }
998
999 return (0);
1000 }
1001
1002 int
1003 cas_ringsize(int sz)
1004 {
1005 switch (sz) {
1006 case 32:
1007 return CAS_RING_SZ_32;
1008 case 64:
1009 return CAS_RING_SZ_64;
1010 case 128:
1011 return CAS_RING_SZ_128;
1012 case 256:
1013 return CAS_RING_SZ_256;
1014 case 512:
1015 return CAS_RING_SZ_512;
1016 case 1024:
1017 return CAS_RING_SZ_1024;
1018 case 2048:
1019 return CAS_RING_SZ_2048;
1020 case 4096:
1021 return CAS_RING_SZ_4096;
1022 case 8192:
1023 return CAS_RING_SZ_8192;
1024 default:
1025 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1026 sz);
1027 return CAS_RING_SZ_32;
1028 }
1029 }
1030
1031 int
1032 cas_cringsize(int sz)
1033 {
1034 int i;
1035
1036 for (i = 0; i < 9; i++)
1037 if (sz == (128 << i))
1038 return i;
1039
1040 aprint_error("cas: invalid completion ring size %d\n", sz);
1041 return 128;
1042 }
1043
1044 /*
1045 * Initialization of interface; set up initialization block
1046 * and transmit/receive descriptor rings.
1047 */
1048 int
1049 cas_init(struct ifnet *ifp)
1050 {
1051 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1052 bus_space_tag_t t = sc->sc_memt;
1053 bus_space_handle_t h = sc->sc_memh;
1054 int s;
1055 u_int max_frame_size;
1056 u_int32_t v;
1057
1058 s = splnet();
1059
1060 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1061 /*
1062 * Initialization sequence. The numbered steps below correspond
1063 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1064 * Channel Engine manual (part of the PCIO manual).
1065 * See also the STP2002-STQ document from Sun Microsystems.
1066 */
1067
1068 /* step 1 & 2. Reset the Ethernet Channel */
1069 cas_stop(ifp, 0);
1070 cas_reset(sc);
1071 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1072
1073 /* Re-initialize the MIF */
1074 cas_mifinit(sc);
1075
1076 /* step 3. Setup data structures in host memory */
1077 cas_meminit(sc);
1078
1079 /* step 4. TX MAC registers & counters */
1080 cas_init_regs(sc);
1081 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1082 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1083 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1084
1085 /* step 5. RX MAC registers & counters */
1086 cas_iff(sc);
1087
1088 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1089 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1090 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1091 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1092 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1093
1094 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1095 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1096 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1097 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1098
1099 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1100 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1101 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1102 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1103
1104 if (CAS_PLUS(sc)) {
1105 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1106 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1107 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1108 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1109 CAS_CDRXADDR2(sc, 0));
1110 }
1111
1112 /* step 8. Global Configuration & Interrupt Mask */
1113 cas_estintr(sc, CAS_INTR_REG);
1114
1115 /* step 9. ETX Configuration: use mostly default values */
1116
1117 /* Enable DMA */
1118 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1119 bus_space_write_4(t, h, CAS_TX_CONFIG,
1120 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1121 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1122
1123 /* step 10. ERX Configuration */
1124
1125 /* Encode Receive Descriptor ring size */
1126 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1127 if (CAS_PLUS(sc))
1128 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1129
1130 /* Encode Receive Completion ring size */
1131 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1132
1133 /* Enable DMA */
1134 bus_space_write_4(t, h, CAS_RX_CONFIG,
1135 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1136
1137 /*
1138 * The following value is for an OFF Threshold of about 3/4 full
1139 * and an ON Threshold of 1/4 full.
1140 */
1141 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1142 (3 * sc->sc_rxfifosize / 256) |
1143 ((sc->sc_rxfifosize / 256) << 12));
1144 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1145
1146 /* step 11. Configure Media */
1147 mii_ifmedia_change(&sc->sc_mii);
1148
1149 /* step 12. RX_MAC Configuration Register */
1150 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1151 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1152 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1153
1154 /* step 14. Issue Transmit Pending command */
1155
1156 /* step 15. Give the receiver a swift kick */
1157 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1158 if (CAS_PLUS(sc))
1159 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1160
1161 /* Start the one second timer. */
1162 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1163
1164 ifp->if_flags |= IFF_RUNNING;
1165 ifp->if_flags &= ~IFF_OACTIVE;
1166 ifp->if_timer = 0;
1167 splx(s);
1168
1169 return (0);
1170 }
1171
1172 void
1173 cas_init_regs(struct cas_softc *sc)
1174 {
1175 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1176 bus_space_tag_t t = sc->sc_memt;
1177 bus_space_handle_t h = sc->sc_memh;
1178 const u_char *laddr = CLLADDR(ifp->if_sadl);
1179 u_int32_t v, r;
1180
1181 /* These regs are not cleared on reset */
1182 sc->sc_inited = 0;
1183 if (!sc->sc_inited) {
1184 /* Load recommended values */
1185 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1186 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1187 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1188
1189 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1190 /* Max frame and max burst size */
1191 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1192 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1193
1194 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1195 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1196 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1197 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1198 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1199 ((laddr[5]<<8)|laddr[4])&0x3ff);
1200
1201 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1202 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1203 bus_space_write_4(t, h, r, 0);
1204
1205 /* MAC control addr set to 0:1:c2:0:1:80 */
1206 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1207 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1208 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1209
1210 /* MAC filter addr set to 0:0:0:0:0:0 */
1211 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1212 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1213 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1214
1215 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1216 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1217
1218 /* Hash table initialized to 0 */
1219 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1220 bus_space_write_4(t, h, r, 0);
1221
1222 sc->sc_inited = 1;
1223 }
1224
1225 /* Counters need to be zeroed */
1226 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1227 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1228 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1229 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1230 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1231 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1232 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1233 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1234 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1235 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1236 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1237
1238 /* Un-pause stuff */
1239 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1240
1241 /*
1242 * Set the station address.
1243 */
1244 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1245 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1246 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1247 }
1248
1249 /*
1250 * Receive interrupt.
1251 */
1252 int
1253 cas_rint(struct cas_softc *sc)
1254 {
1255 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1256 bus_space_tag_t t = sc->sc_memt;
1257 bus_space_handle_t h = sc->sc_memh;
1258 struct cas_rxsoft *rxs;
1259 struct mbuf *m;
1260 u_int64_t word[4];
1261 int len, off, idx;
1262 int i, skip;
1263 void *cp;
1264
1265 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1266 CAS_CDRXCSYNC(sc, i,
1267 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1268
1269 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1270 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1271 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1272 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1273
1274 /* Stop if the hardware still owns the descriptor. */
1275 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1276 break;
1277
1278 len = CAS_RC1_HDR_LEN(word[1]);
1279 if (len > 0) {
1280 off = CAS_RC1_HDR_OFF(word[1]);
1281 idx = CAS_RC1_HDR_IDX(word[1]);
1282 rxs = &sc->sc_rxsoft[idx];
1283
1284 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1285 idx, off, len));
1286
1287 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1288 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1289
1290 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1291 m = m_devget(cp, len, 0, ifp, NULL);
1292
1293 if (word[0] & CAS_RC0_RELEASE_HDR)
1294 cas_add_rxbuf(sc, idx);
1295
1296 if (m != NULL) {
1297
1298 /*
1299 * Pass this up to any BPF listeners, but only
1300 * pass it up the stack if its for us.
1301 */
1302 bpf_mtap(ifp, m);
1303
1304 ifp->if_ipackets++;
1305 m->m_pkthdr.csum_flags = 0;
1306 (*ifp->if_input)(ifp, m);
1307 } else
1308 ifp->if_ierrors++;
1309 }
1310
1311 len = CAS_RC0_DATA_LEN(word[0]);
1312 if (len > 0) {
1313 off = CAS_RC0_DATA_OFF(word[0]);
1314 idx = CAS_RC0_DATA_IDX(word[0]);
1315 rxs = &sc->sc_rxsoft[idx];
1316
1317 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1318 idx, off, len));
1319
1320 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1321 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1322
1323 /* XXX We should not be copying the packet here. */
1324 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1325 m = m_devget(cp, len, 0, ifp, NULL);
1326
1327 if (word[0] & CAS_RC0_RELEASE_DATA)
1328 cas_add_rxbuf(sc, idx);
1329
1330 if (m != NULL) {
1331 /*
1332 * Pass this up to any BPF listeners, but only
1333 * pass it up the stack if its for us.
1334 */
1335 bpf_mtap(ifp, m);
1336
1337 ifp->if_ipackets++;
1338 m->m_pkthdr.csum_flags = 0;
1339 (*ifp->if_input)(ifp, m);
1340 } else
1341 ifp->if_ierrors++;
1342 }
1343
1344 if (word[0] & CAS_RC0_SPLIT)
1345 aprint_error_dev(sc->sc_dev, "split packet\n");
1346
1347 skip = CAS_RC0_SKIP(word[0]);
1348 }
1349
1350 while (sc->sc_rxptr != i) {
1351 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1352 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1353 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1354 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1355 CAS_DMA_WRITE(CAS_RC3_OWN);
1356 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1357 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1358
1359 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1360 }
1361
1362 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1363
1364 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1365 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1366
1367 return (1);
1368 }
1369
1370 /*
1371 * cas_add_rxbuf:
1372 *
1373 * Add a receive buffer to the indicated descriptor.
1374 */
1375 int
1376 cas_add_rxbuf(struct cas_softc *sc, int idx)
1377 {
1378 bus_space_tag_t t = sc->sc_memt;
1379 bus_space_handle_t h = sc->sc_memh;
1380
1381 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1382
1383 if ((sc->sc_rxdptr % 4) == 0)
1384 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1385
1386 if (++sc->sc_rxdptr == CAS_NRXDESC)
1387 sc->sc_rxdptr = 0;
1388
1389 return (0);
1390 }
1391
1392 int
1393 cas_eint(struct cas_softc *sc, u_int status)
1394 {
1395 char bits[128];
1396 if ((status & CAS_INTR_MIF) != 0) {
1397 DPRINTF(sc, ("%s: link status changed\n",
1398 device_xname(sc->sc_dev)));
1399 return (1);
1400 }
1401
1402 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1403 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1404 return (1);
1405 }
1406
1407 int
1408 cas_pint(struct cas_softc *sc)
1409 {
1410 bus_space_tag_t t = sc->sc_memt;
1411 bus_space_handle_t seb = sc->sc_memh;
1412 u_int32_t status;
1413
1414 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1415 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1416 #ifdef CAS_DEBUG
1417 if (status)
1418 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1419 #endif
1420 return (1);
1421 }
1422
1423 int
1424 cas_intr(void *v)
1425 {
1426 struct cas_softc *sc = (struct cas_softc *)v;
1427 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1428 bus_space_tag_t t = sc->sc_memt;
1429 bus_space_handle_t seb = sc->sc_memh;
1430 u_int32_t status;
1431 int r = 0;
1432 #ifdef CAS_DEBUG
1433 char bits[128];
1434 #endif
1435
1436 sc->sc_ev_intr.ev_count++;
1437
1438 status = bus_space_read_4(t, seb, CAS_STATUS);
1439 #ifdef CAS_DEBUG
1440 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1441 #endif
1442 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1443 device_xname(sc->sc_dev), (status>>19), bits));
1444
1445 if ((status & CAS_INTR_PCS) != 0)
1446 r |= cas_pint(sc);
1447
1448 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1449 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1450 r |= cas_eint(sc, status);
1451
1452 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1453 r |= cas_tint(sc, status);
1454
1455 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1456 r |= cas_rint(sc);
1457
1458 /* We should eventually do more than just print out error stats. */
1459 if (status & CAS_INTR_TX_MAC) {
1460 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1461 #ifdef CAS_DEBUG
1462 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1463 printf("%s: MAC tx fault, status %x\n",
1464 device_xname(sc->sc_dev), txstat);
1465 #endif
1466 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1467 cas_init(ifp);
1468 }
1469 if (status & CAS_INTR_RX_MAC) {
1470 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1471 #ifdef CAS_DEBUG
1472 if (rxstat & ~CAS_MAC_RX_DONE)
1473 printf("%s: MAC rx fault, status %x\n",
1474 device_xname(sc->sc_dev), rxstat);
1475 #endif
1476 /*
1477 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1478 * due to a silicon bug so handle them silently.
1479 */
1480 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1481 ifp->if_ierrors++;
1482 cas_init(ifp);
1483 }
1484 #ifdef CAS_DEBUG
1485 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1486 printf("%s: MAC rx fault, status %x\n",
1487 device_xname(sc->sc_dev), rxstat);
1488 #endif
1489 }
1490 rnd_add_uint32(&sc->rnd_source, status);
1491 return (r);
1492 }
1493
1494
1495 void
1496 cas_watchdog(struct ifnet *ifp)
1497 {
1498 struct cas_softc *sc = ifp->if_softc;
1499
1500 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1501 "CAS_MAC_RX_CONFIG %x\n",
1502 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1503 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1504 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1505
1506 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1507 ++ifp->if_oerrors;
1508
1509 /* Try to get more packets going. */
1510 cas_init(ifp);
1511 }
1512
1513 /*
1514 * Initialize the MII Management Interface
1515 */
1516 void
1517 cas_mifinit(struct cas_softc *sc)
1518 {
1519 bus_space_tag_t t = sc->sc_memt;
1520 bus_space_handle_t mif = sc->sc_memh;
1521
1522 /* Configure the MIF in frame mode */
1523 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1524 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1525 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1526 }
1527
1528 /*
1529 * MII interface
1530 *
1531 * The Cassini MII interface supports at least three different operating modes:
1532 *
1533 * Bitbang mode is implemented using data, clock and output enable registers.
1534 *
1535 * Frame mode is implemented by loading a complete frame into the frame
1536 * register and polling the valid bit for completion.
1537 *
1538 * Polling mode uses the frame register but completion is indicated by
1539 * an interrupt.
1540 *
1541 */
1542 int
1543 cas_mii_readreg(device_t self, int phy, int reg)
1544 {
1545 struct cas_softc *sc = device_private(self);
1546 bus_space_tag_t t = sc->sc_memt;
1547 bus_space_handle_t mif = sc->sc_memh;
1548 int n;
1549 u_int32_t v;
1550
1551 #ifdef CAS_DEBUG
1552 if (sc->sc_debug)
1553 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1554 #endif
1555
1556 /* Construct the frame command */
1557 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1558 CAS_MIF_FRAME_READ;
1559
1560 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1561 for (n = 0; n < 100; n++) {
1562 DELAY(1);
1563 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1564 if (v & CAS_MIF_FRAME_TA0)
1565 return (v & CAS_MIF_FRAME_DATA);
1566 }
1567
1568 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1569 return (0);
1570 }
1571
1572 void
1573 cas_mii_writereg(device_t self, int phy, int reg, int val)
1574 {
1575 struct cas_softc *sc = device_private(self);
1576 bus_space_tag_t t = sc->sc_memt;
1577 bus_space_handle_t mif = sc->sc_memh;
1578 int n;
1579 u_int32_t v;
1580
1581 #ifdef CAS_DEBUG
1582 if (sc->sc_debug)
1583 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1584 phy, reg, val);
1585 #endif
1586
1587 /* Construct the frame command */
1588 v = CAS_MIF_FRAME_WRITE |
1589 (phy << CAS_MIF_PHY_SHIFT) |
1590 (reg << CAS_MIF_REG_SHIFT) |
1591 (val & CAS_MIF_FRAME_DATA);
1592
1593 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1594 for (n = 0; n < 100; n++) {
1595 DELAY(1);
1596 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1597 if (v & CAS_MIF_FRAME_TA0)
1598 return;
1599 }
1600
1601 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1602 }
1603
1604 void
1605 cas_mii_statchg(struct ifnet *ifp)
1606 {
1607 struct cas_softc *sc = ifp->if_softc;
1608 #ifdef CAS_DEBUG
1609 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1610 #endif
1611 bus_space_tag_t t = sc->sc_memt;
1612 bus_space_handle_t mac = sc->sc_memh;
1613 u_int32_t v;
1614
1615 #ifdef CAS_DEBUG
1616 if (sc->sc_debug)
1617 printf("cas_mii_statchg: status change: phy = %d\n",
1618 sc->sc_phys[instance]);
1619 #endif
1620
1621 /* Set tx full duplex options */
1622 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1623 delay(10000); /* reg must be cleared and delay before changing. */
1624 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1625 CAS_MAC_TX_ENABLE;
1626 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1627 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1628 }
1629 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1630
1631 /* XIF Configuration */
1632 v = CAS_MAC_XIF_TX_MII_ENA;
1633 v |= CAS_MAC_XIF_LINK_LED;
1634
1635 /* MII needs echo disable if half duplex. */
1636 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1637 /* turn on full duplex LED */
1638 v |= CAS_MAC_XIF_FDPLX_LED;
1639 else
1640 /* half duplex -- disable echo */
1641 v |= CAS_MAC_XIF_ECHO_DISABL;
1642
1643 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1644 case IFM_1000_T: /* Gigabit using GMII interface */
1645 case IFM_1000_SX:
1646 v |= CAS_MAC_XIF_GMII_MODE;
1647 break;
1648 default:
1649 v &= ~CAS_MAC_XIF_GMII_MODE;
1650 }
1651 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1652 }
1653
1654 int
1655 cas_pcs_readreg(device_t self, int phy, int reg)
1656 {
1657 struct cas_softc *sc = device_private(self);
1658 bus_space_tag_t t = sc->sc_memt;
1659 bus_space_handle_t pcs = sc->sc_memh;
1660
1661 #ifdef CAS_DEBUG
1662 if (sc->sc_debug)
1663 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1664 #endif
1665
1666 if (phy != CAS_PHYAD_EXTERNAL)
1667 return (0);
1668
1669 switch (reg) {
1670 case MII_BMCR:
1671 reg = CAS_MII_CONTROL;
1672 break;
1673 case MII_BMSR:
1674 reg = CAS_MII_STATUS;
1675 break;
1676 case MII_ANAR:
1677 reg = CAS_MII_ANAR;
1678 break;
1679 case MII_ANLPAR:
1680 reg = CAS_MII_ANLPAR;
1681 break;
1682 case MII_EXTSR:
1683 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1684 default:
1685 return (0);
1686 }
1687
1688 return bus_space_read_4(t, pcs, reg);
1689 }
1690
1691 void
1692 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1693 {
1694 struct cas_softc *sc = device_private(self);
1695 bus_space_tag_t t = sc->sc_memt;
1696 bus_space_handle_t pcs = sc->sc_memh;
1697 int reset = 0;
1698
1699 #ifdef CAS_DEBUG
1700 if (sc->sc_debug)
1701 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1702 phy, reg, val);
1703 #endif
1704
1705 if (phy != CAS_PHYAD_EXTERNAL)
1706 return;
1707
1708 if (reg == MII_ANAR)
1709 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1710
1711 switch (reg) {
1712 case MII_BMCR:
1713 reset = (val & CAS_MII_CONTROL_RESET);
1714 reg = CAS_MII_CONTROL;
1715 break;
1716 case MII_BMSR:
1717 reg = CAS_MII_STATUS;
1718 break;
1719 case MII_ANAR:
1720 reg = CAS_MII_ANAR;
1721 break;
1722 case MII_ANLPAR:
1723 reg = CAS_MII_ANLPAR;
1724 break;
1725 default:
1726 return;
1727 }
1728
1729 bus_space_write_4(t, pcs, reg, val);
1730
1731 if (reset)
1732 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1733
1734 if (reg == CAS_MII_ANAR || reset)
1735 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1736 CAS_MII_CONFIG_ENABLE);
1737 }
1738
1739 int
1740 cas_mediachange(struct ifnet *ifp)
1741 {
1742 struct cas_softc *sc = ifp->if_softc;
1743 struct mii_data *mii = &sc->sc_mii;
1744
1745 if (mii->mii_instance) {
1746 struct mii_softc *miisc;
1747 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1748 mii_phy_reset(miisc);
1749 }
1750
1751 return (mii_mediachg(&sc->sc_mii));
1752 }
1753
1754 void
1755 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1756 {
1757 struct cas_softc *sc = ifp->if_softc;
1758
1759 mii_pollstat(&sc->sc_mii);
1760 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1761 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1762 }
1763
1764 /*
1765 * Process an ioctl request.
1766 */
1767 int
1768 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1769 {
1770 struct cas_softc *sc = ifp->if_softc;
1771 int s, error = 0;
1772
1773 s = splnet();
1774
1775 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1776 error = 0;
1777 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1778 ;
1779 else if (ifp->if_flags & IFF_RUNNING) {
1780 /*
1781 * Multicast list has changed; set the hardware filter
1782 * accordingly.
1783 */
1784 cas_iff(sc);
1785 }
1786 }
1787
1788 splx(s);
1789 return (error);
1790 }
1791
1792 static bool
1793 cas_suspend(device_t self, const pmf_qual_t *qual)
1794 {
1795 struct cas_softc *sc = device_private(self);
1796 bus_space_tag_t t = sc->sc_memt;
1797 bus_space_handle_t h = sc->sc_memh;
1798
1799 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1800 if (sc->sc_ih != NULL) {
1801 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1802 sc->sc_ih = NULL;
1803 }
1804
1805 return true;
1806 }
1807
1808 static bool
1809 cas_resume(device_t self, const pmf_qual_t *qual)
1810 {
1811 struct cas_softc *sc = device_private(self);
1812
1813 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1814 }
1815
1816 static bool
1817 cas_estintr(struct cas_softc *sc, int what)
1818 {
1819 bus_space_tag_t t = sc->sc_memt;
1820 bus_space_handle_t h = sc->sc_memh;
1821 const char *intrstr = NULL;
1822 char intrbuf[PCI_INTRSTR_LEN];
1823
1824 /* PCI interrupts */
1825 if (what & CAS_INTR_PCI) {
1826 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf, sizeof(intrbuf));
1827 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1828 IPL_NET, cas_intr, sc);
1829 if (sc->sc_ih == NULL) {
1830 aprint_error_dev(sc->sc_dev,
1831 "unable to establish interrupt");
1832 if (intrstr != NULL)
1833 aprint_error(" at %s", intrstr);
1834 aprint_error("\n");
1835 return false;
1836 }
1837
1838 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1839 }
1840
1841 /* Interrupt register */
1842 if (what & CAS_INTR_REG) {
1843 bus_space_write_4(t, h, CAS_INTMASK,
1844 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1845 CAS_INTR_TX_TAG_ERR|
1846 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1847 CAS_INTR_RX_TAG_ERR|
1848 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1849 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1850 CAS_INTR_BERR));
1851 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1852 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1853 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1854 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1855 }
1856 return true;
1857 }
1858
1859 bool
1860 cas_shutdown(device_t self, int howto)
1861 {
1862 struct cas_softc *sc = device_private(self);
1863 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1864
1865 cas_stop(ifp, 1);
1866
1867 return true;
1868 }
1869
1870 void
1871 cas_iff(struct cas_softc *sc)
1872 {
1873 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1874 struct ethercom *ec = &sc->sc_ethercom;
1875 struct ether_multi *enm;
1876 struct ether_multistep step;
1877 bus_space_tag_t t = sc->sc_memt;
1878 bus_space_handle_t h = sc->sc_memh;
1879 u_int32_t crc, hash[16], rxcfg;
1880 int i;
1881
1882 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1883 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1884 CAS_MAC_RX_PROMISC_GRP);
1885 ifp->if_flags &= ~IFF_ALLMULTI;
1886
1887 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1888 ifp->if_flags |= IFF_ALLMULTI;
1889 if (ifp->if_flags & IFF_PROMISC)
1890 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1891 else
1892 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1893 } else {
1894 /*
1895 * Set up multicast address filter by passing all multicast
1896 * addresses through a crc generator, and then using the
1897 * high order 8 bits as an index into the 256 bit logical
1898 * address filter. The high order 4 bits selects the word,
1899 * while the other 4 bits select the bit within the word
1900 * (where bit 0 is the MSB).
1901 */
1902
1903 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1904
1905 /* Clear hash table */
1906 for (i = 0; i < 16; i++)
1907 hash[i] = 0;
1908
1909 ETHER_FIRST_MULTI(step, ec, enm);
1910 while (enm != NULL) {
1911 crc = ether_crc32_le(enm->enm_addrlo,
1912 ETHER_ADDR_LEN);
1913
1914 /* Just want the 8 most significant bits. */
1915 crc >>= 24;
1916
1917 /* Set the corresponding bit in the filter. */
1918 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1919
1920 ETHER_NEXT_MULTI(step, enm);
1921 }
1922
1923 /* Now load the hash table into the chip (if we are using it) */
1924 for (i = 0; i < 16; i++) {
1925 bus_space_write_4(t, h,
1926 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1927 hash[i]);
1928 }
1929 }
1930
1931 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1932 }
1933
1934 int
1935 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1936 {
1937 u_int64_t flags;
1938 u_int32_t cur, frag, i;
1939 bus_dmamap_t map;
1940
1941 cur = frag = *bixp;
1942 map = sc->sc_txd[cur].sd_map;
1943
1944 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1945 BUS_DMA_NOWAIT) != 0) {
1946 return (ENOBUFS);
1947 }
1948
1949 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1950 bus_dmamap_unload(sc->sc_dmatag, map);
1951 return (ENOBUFS);
1952 }
1953
1954 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1955 BUS_DMASYNC_PREWRITE);
1956
1957 for (i = 0; i < map->dm_nsegs; i++) {
1958 sc->sc_txdescs[frag].cd_addr =
1959 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1960 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1961 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1962 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1963 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1964 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1965 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1966 BUS_DMASYNC_PREWRITE);
1967 cur = frag;
1968 if (++frag == CAS_NTXDESC)
1969 frag = 0;
1970 }
1971
1972 sc->sc_tx_cnt += map->dm_nsegs;
1973 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1974 sc->sc_txd[cur].sd_map = map;
1975 sc->sc_txd[cur].sd_mbuf = mhead;
1976
1977 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1978
1979 *bixp = frag;
1980
1981 /* sync descriptors */
1982
1983 return (0);
1984 }
1985
1986 /*
1987 * Transmit interrupt.
1988 */
1989 int
1990 cas_tint(struct cas_softc *sc, u_int32_t status)
1991 {
1992 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1993 struct cas_sxd *sd;
1994 u_int32_t cons, comp;
1995
1996 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1997 cons = sc->sc_tx_cons;
1998 while (cons != comp) {
1999 sd = &sc->sc_txd[cons];
2000 if (sd->sd_mbuf != NULL) {
2001 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2002 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2003 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2004 m_freem(sd->sd_mbuf);
2005 sd->sd_mbuf = NULL;
2006 ifp->if_opackets++;
2007 }
2008 sc->sc_tx_cnt--;
2009 if (++cons == CAS_NTXDESC)
2010 cons = 0;
2011 }
2012 sc->sc_tx_cons = cons;
2013
2014 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2015 ifp->if_flags &= ~IFF_OACTIVE;
2016 if (sc->sc_tx_cnt == 0)
2017 ifp->if_timer = 0;
2018
2019 cas_start(ifp);
2020
2021 return (1);
2022 }
2023
2024 void
2025 cas_start(struct ifnet *ifp)
2026 {
2027 struct cas_softc *sc = ifp->if_softc;
2028 struct mbuf *m;
2029 u_int32_t bix;
2030
2031 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2032 return;
2033
2034 bix = sc->sc_tx_prod;
2035 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2036 IFQ_POLL(&ifp->if_snd, m);
2037 if (m == NULL)
2038 break;
2039
2040 /*
2041 * If BPF is listening on this interface, let it see the
2042 * packet before we commit it to the wire.
2043 */
2044 bpf_mtap(ifp, m);
2045
2046 /*
2047 * Encapsulate this packet and start it going...
2048 * or fail...
2049 */
2050 if (cas_encap(sc, m, &bix)) {
2051 ifp->if_flags |= IFF_OACTIVE;
2052 break;
2053 }
2054
2055 IFQ_DEQUEUE(&ifp->if_snd, m);
2056 ifp->if_timer = 5;
2057 }
2058
2059 sc->sc_tx_prod = bix;
2060 }
2061
2062 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2063
2064 #ifdef _MODULE
2065 #include "ioconf.c"
2066 #endif
2067
2068 static int
2069 if_cas_modcmd(modcmd_t cmd, void *opaque)
2070 {
2071 int error = 0;
2072
2073 switch (cmd) {
2074 case MODULE_CMD_INIT:
2075 #ifdef _MODULE
2076 error = config_init_component(cfdriver_ioconf_cas,
2077 cfattach_ioconf_cas, cfdata_ioconf_cas);
2078 #endif
2079 return error;
2080 case MODULE_CMD_FINI:
2081 #ifdef _MODULE
2082 error = config_fini_component(cfdriver_ioconf_cas,
2083 cfattach_ioconf_cas, cfdata_ioconf_cas);
2084 #endif
2085 return error;
2086 default:
2087 return ENOTTY;
2088 }
2089 }
2090