if_cas.c revision 1.3 1 /* $NetBSD: if_cas.c,v 1.3 2010/01/17 11:57:29 jdc Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.3 2010/01/17 11:57:29 jdc Exp $");
48
49 #include "opt_inet.h"
50 #include "bpfilter.h"
51
52 #include <sys/param.h>
53 #include <sys/systm.h>
54 #include <sys/callout.h>
55 #include <sys/mbuf.h>
56 #include <sys/syslog.h>
57 #include <sys/malloc.h>
58 #include <sys/kernel.h>
59 #include <sys/socket.h>
60 #include <sys/ioctl.h>
61 #include <sys/errno.h>
62 #include <sys/device.h>
63
64 #include <machine/endian.h>
65
66 #include <uvm/uvm_extern.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #if NBPFILTER > 0
83 #include <net/bpf.h>
84 #endif
85
86 #include <sys/bus.h>
87 #include <sys/intr.h>
88
89 #include <dev/mii/mii.h>
90 #include <dev/mii/miivar.h>
91 #include <dev/mii/mii_bitbang.h>
92
93 #include <dev/pci/pcivar.h>
94 #include <dev/pci/pcireg.h>
95 #include <dev/pci/pcidevs.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 /* XXX Should use Properties when that's fleshed out. */
101 #ifdef macppc
102 #include <dev/ofw/openfirm.h>
103 #endif /* macppc */
104 #ifdef __sparc__
105 #include <machine/promlib.h>
106 #endif
107
108 #ifndef CAS_USE_LOCAL_MAC_ADDRESS
109 #if defined (macppc) || defined (__sparc__)
110 #define CAS_USE_LOCAL_MAC_ADDRESS 0 /* use system-wide address */
111 #else
112 #define CAS_USE_LOCAL_MAC_ADDRESS 1
113 #endif
114 #endif
115
116 #define TRIES 10000
117
118 static bool cas_estintr(struct cas_softc *sc, int);
119 bool cas_shutdown(device_t, int);
120 static bool cas_suspend(device_t, pmf_qual_t);
121 static bool cas_resume(device_t, pmf_qual_t);
122 static int cas_detach(device_t, int);
123 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
124
125 int cas_match(device_t, cfdata_t, void *);
126 void cas_attach(device_t, device_t, void *);
127
128
129 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
130 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
131 DVF_DETACH_SHUTDOWN);
132
133 #if CAS_USE_LOCAL_MAC_ADDRESS
134 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
135 #endif
136
137 void cas_config(struct cas_softc *, const uint8_t *);
138 void cas_start(struct ifnet *);
139 void cas_stop(struct ifnet *, int);
140 int cas_ioctl(struct ifnet *, u_long, void *);
141 void cas_tick(void *);
142 void cas_watchdog(struct ifnet *);
143 int cas_init(struct ifnet *);
144 void cas_init_regs(struct cas_softc *);
145 int cas_ringsize(int);
146 int cas_cringsize(int);
147 int cas_meminit(struct cas_softc *);
148 void cas_mifinit(struct cas_softc *);
149 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
150 u_int32_t, u_int32_t);
151 void cas_reset(struct cas_softc *);
152 int cas_reset_rx(struct cas_softc *);
153 int cas_reset_tx(struct cas_softc *);
154 int cas_disable_rx(struct cas_softc *);
155 int cas_disable_tx(struct cas_softc *);
156 void cas_rxdrain(struct cas_softc *);
157 int cas_add_rxbuf(struct cas_softc *, int idx);
158 void cas_iff(struct cas_softc *);
159 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
160
161 /* MII methods & callbacks */
162 int cas_mii_readreg(device_t, int, int);
163 void cas_mii_writereg(device_t, int, int, int);
164 void cas_mii_statchg(device_t);
165 int cas_pcs_readreg(device_t, int, int);
166 void cas_pcs_writereg(device_t, int, int, int);
167
168 int cas_mediachange(struct ifnet *);
169 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
170
171 int cas_eint(struct cas_softc *, u_int);
172 int cas_rint(struct cas_softc *);
173 int cas_tint(struct cas_softc *, u_int32_t);
174 int cas_pint(struct cas_softc *);
175 int cas_intr(void *);
176
177 #ifdef CAS_DEBUG
178 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
179 printf x
180 #else
181 #define DPRINTF(sc, x) /* nothing */
182 #endif
183
184 int
185 cas_match(device_t parent, cfdata_t cf, void *aux)
186 {
187 struct pci_attach_args *pa = aux;
188
189 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
190 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
191 return 1;
192
193 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
194 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
195 return 1;
196
197 return 0;
198 }
199
200 #if CAS_USE_LOCAL_MAC_ADDRESS
201 #define PROMHDR_PTR_DATA 0x18
202 #define PROMDATA_PTR_VPD 0x08
203 #define PROMDATA_DATA2 0x0a
204
205 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
206 static const u_int8_t cas_promdat[] = {
207 'P', 'C', 'I', 'R',
208 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
209 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
210 };
211
212 static const u_int8_t cas_promdat2[] = {
213 0x18, 0x00, /* structure length */
214 0x00, /* structure revision */
215 0x00, /* interface revision */
216 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
217 PCI_CLASS_NETWORK /* class code */
218 };
219
220 int
221 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
222 uint8_t *enaddr)
223 {
224 struct pci_vpd_largeres *res;
225 struct pci_vpd *vpd;
226 bus_space_handle_t romh;
227 bus_space_tag_t romt;
228 bus_size_t romsize = 0;
229 u_int8_t buf[32], *desc;
230 pcireg_t address;
231 int dataoff, vpdoff, len;
232 int rv = -1;
233
234 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
235 &romt, &romh, NULL, &romsize))
236 return (-1);
237
238 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
239 address |= PCI_MAPREG_ROM_ENABLE;
240 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
241
242 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
243 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
244 goto fail;
245
246 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
247 if (dataoff < 0x1c)
248 goto fail;
249
250 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
251 if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
252 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
253 goto fail;
254
255 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
256 if (vpdoff < 0x1c)
257 goto fail;
258
259 next:
260 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
261 if (!PCI_VPDRES_ISLARGE(buf[0]))
262 goto fail;
263
264 res = (struct pci_vpd_largeres *)buf;
265 vpdoff += sizeof(*res);
266
267 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
268 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
269 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
270 /* Skip identifier string. */
271 vpdoff += len;
272 goto next;
273
274 case PCI_VPDRES_TYPE_VPD:
275 while (len > 0) {
276 bus_space_read_region_1(romt, romh, vpdoff,
277 buf, sizeof(buf));
278
279 vpd = (struct pci_vpd *)buf;
280 vpdoff += sizeof(*vpd) + vpd->vpd_len;
281 len -= sizeof(*vpd) + vpd->vpd_len;
282
283 /*
284 * We're looking for an "Enhanced" VPD...
285 */
286 if (vpd->vpd_key0 != 'Z')
287 continue;
288
289 desc = buf + sizeof(*vpd);
290
291 /*
292 * ...which is an instance property...
293 */
294 if (desc[0] != 'I')
295 continue;
296 desc += 3;
297
298 /*
299 * ...that's a byte array with the proper
300 * length for a MAC address...
301 */
302 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
303 continue;
304 desc += 2;
305
306 /*
307 * ...named "local-mac-address".
308 */
309 if (strcmp(desc, "local-mac-address") != 0)
310 continue;
311 desc += strlen("local-mac-address") + 1;
312
313 memcpy(enaddr, enp, ETHER_ADDR_LEN);
314 rv = 0;
315 }
316 break;
317
318 default:
319 goto fail;
320 }
321
322 fail:
323 if (romsize != 0)
324 bus_space_unmap(romt, romh, romsize);
325
326 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
327 address &= ~PCI_MAPREG_ROM_ENABLE;
328 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
329
330 return (rv);
331 }
332 #endif /* CAS_USE_LOCAL_MAC_ADDRESS */
333
334 void
335 cas_attach(device_t parent, device_t self, void *aux)
336 {
337 struct pci_attach_args *pa = aux;
338 struct cas_softc *sc = device_private(self);
339 char devinfo[256];
340 uint8_t enaddr[ETHER_ADDR_LEN];
341
342 sc->sc_dev = self;
343 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
344 sc->sc_rev = PCI_REVISION(pa->pa_class);
345 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
346 sc->sc_dmatag = pa->pa_dmat;
347
348 #define PCI_CAS_BASEADDR 0x10
349 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
350 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
351 aprint_error_dev(sc->sc_dev,
352 "unable to map device registers\n");
353 return;
354 }
355
356 #if CAS_USE_LOCAL_MAC_ADDRESS
357 if (cas_pci_enaddr(sc, pa, enaddr) != 0)
358 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
359 #endif
360 #ifdef __sparc64__
361 prom_getether(PCITAG_NODE(pa->pa_tag), enaddr);
362 #else
363 #ifdef macppc
364 {
365 int node;
366
367 node = pcidev_to_ofdev(pa->pa_pc, pa->pa_tag);
368 if (node == 0) {
369 aprint_error_dev(sc->sc_dev, "unable to locate OpenFirmware node\n");
370 return;
371 }
372
373 OF_getprop(node, "local-mac-address", enaddr, sizeof(enaddr));
374 }
375 #endif /* macppc */
376 #endif /* __sparc__ */
377
378 sc->sc_burst = 16; /* XXX */
379
380 sc->sc_att_stage = CAS_ATT_BACKEND_0;
381
382 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
383 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
384 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
385 return;
386 }
387 sc->sc_pc = pa->pa_pc;
388 if (!cas_estintr(sc, CAS_INTR_PCI)) {
389 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
390 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
391 return;
392 }
393
394 sc->sc_att_stage = CAS_ATT_BACKEND_1;
395
396 /*
397 * call the main configure
398 */
399 cas_config(sc, enaddr);
400
401 if (pmf_device_register1(sc->sc_dev,
402 cas_suspend, cas_resume, cas_shutdown))
403 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
404 else
405 aprint_error_dev(sc->sc_dev,
406 "could not establish power handlers\n");
407
408 sc->sc_att_stage = CAS_ATT_FINISHED;
409 /*FALLTHROUGH*/
410 }
411
412 /*
413 * cas_config:
414 *
415 * Attach a Cassini interface to the system.
416 */
417 void
418 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
419 {
420 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
421 struct mii_data *mii = &sc->sc_mii;
422 struct mii_softc *child;
423 int i, error;
424
425 /* Make sure the chip is stopped. */
426 ifp->if_softc = sc;
427 cas_reset(sc);
428
429 /*
430 * Allocate the control data structures, and create and load the
431 * DMA map for it.
432 */
433 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
434 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
435 1, &sc->sc_cdnseg, 0)) != 0) {
436 aprint_error_dev(sc->sc_dev,
437 "unable to allocate control data, error = %d\n",
438 error);
439 cas_partial_detach(sc, CAS_ATT_0);
440 }
441
442 /* XXX should map this in with correct endianness */
443 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
444 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
445 BUS_DMA_COHERENT)) != 0) {
446 aprint_error_dev(sc->sc_dev,
447 "unable to map control data, error = %d\n", error);
448 cas_partial_detach(sc, CAS_ATT_1);
449 }
450
451 if ((error = bus_dmamap_create(sc->sc_dmatag,
452 sizeof(struct cas_control_data), 1,
453 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
454 aprint_error_dev(sc->sc_dev,
455 "unable to create control data DMA map, error = %d\n", error);
456 cas_partial_detach(sc, CAS_ATT_2);
457 }
458
459 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
460 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
461 0)) != 0) {
462 aprint_error_dev(sc->sc_dev,
463 "unable to load control data DMA map, error = %d\n",
464 error);
465 cas_partial_detach(sc, CAS_ATT_3);
466 }
467
468 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
469
470 /*
471 * Create the receive buffer DMA maps.
472 */
473 for (i = 0; i < CAS_NRXDESC; i++) {
474 bus_dma_segment_t seg;
475 char *kva;
476 int rseg;
477
478 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
479 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
480 aprint_error_dev(sc->sc_dev,
481 "unable to alloc rx DMA mem %d, error = %d\n",
482 i, error);
483 cas_partial_detach(sc, CAS_ATT_5);
484 }
485 sc->sc_rxsoft[i].rxs_dmaseg = seg;
486
487 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
488 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
489 aprint_error_dev(sc->sc_dev,
490 "unable to alloc rx DMA mem %d, error = %d\n",
491 i, error);
492 cas_partial_detach(sc, CAS_ATT_5);
493 }
494 sc->sc_rxsoft[i].rxs_kva = kva;
495
496 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
497 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
498 aprint_error_dev(sc->sc_dev,
499 "unable to create rx DMA map %d, error = %d\n",
500 i, error);
501 cas_partial_detach(sc, CAS_ATT_5);
502 }
503
504 if ((error = bus_dmamap_load(sc->sc_dmatag,
505 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
506 BUS_DMA_NOWAIT)) != 0) {
507 aprint_error_dev(sc->sc_dev,
508 "unable to load rx DMA map %d, error = %d\n",
509 i, error);
510 cas_partial_detach(sc, CAS_ATT_5);
511 }
512 }
513
514 /*
515 * Create the transmit buffer DMA maps.
516 */
517 for (i = 0; i < CAS_NTXDESC; i++) {
518 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
519 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
520 &sc->sc_txd[i].sd_map)) != 0) {
521 aprint_error_dev(sc->sc_dev,
522 "unable to create tx DMA map %d, error = %d\n",
523 i, error);
524 cas_partial_detach(sc, CAS_ATT_6);
525 }
526 sc->sc_txd[i].sd_mbuf = NULL;
527 }
528
529 /*
530 * From this point forward, the attachment cannot fail. A failure
531 * before this point releases all resources that may have been
532 * allocated.
533 */
534
535 /* Announce ourselves. */
536 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
537 ether_sprintf(enaddr));
538
539 /* Get RX FIFO size */
540 sc->sc_rxfifosize = 16 * 1024;
541
542 /* Initialize ifnet structure. */
543 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
544 ifp->if_softc = sc;
545 ifp->if_flags =
546 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
547 ifp->if_start = cas_start;
548 ifp->if_ioctl = cas_ioctl;
549 ifp->if_watchdog = cas_watchdog;
550 ifp->if_stop = cas_stop;
551 ifp->if_init = cas_init;
552 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
553 IFQ_SET_READY(&ifp->if_snd);
554
555 /* Initialize ifmedia structures and MII info */
556 mii->mii_ifp = ifp;
557 mii->mii_readreg = cas_mii_readreg;
558 mii->mii_writereg = cas_mii_writereg;
559 mii->mii_statchg = cas_mii_statchg;
560
561 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
562 sc->sc_ethercom.ec_mii = mii;
563
564 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
565
566 cas_mifinit(sc);
567
568 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
569 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
570 bus_space_write_4(sc->sc_memt, sc->sc_memh,
571 CAS_MIF_CONFIG, sc->sc_mif_config);
572 }
573
574 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
575 MII_OFFSET_ANY, 0);
576
577 child = LIST_FIRST(&mii->mii_phys);
578 if (child == NULL &&
579 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
580 /*
581 * Try the external PCS SERDES if we didn't find any
582 * MII devices.
583 */
584 bus_space_write_4(sc->sc_memt, sc->sc_memh,
585 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
586
587 bus_space_write_4(sc->sc_memt, sc->sc_memh,
588 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
589
590 mii->mii_readreg = cas_pcs_readreg;
591 mii->mii_writereg = cas_pcs_writereg;
592
593 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
594 MII_OFFSET_ANY, MIIF_NOISOLATE);
595 }
596
597 child = LIST_FIRST(&mii->mii_phys);
598 if (child == NULL) {
599 /* No PHY attached */
600 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
601 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
602 } else {
603 /*
604 * Walk along the list of attached MII devices and
605 * establish an `MII instance' to `phy number'
606 * mapping. We'll use this mapping in media change
607 * requests to determine which phy to use to program
608 * the MIF configuration register.
609 */
610 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
611 /*
612 * Note: we support just two PHYs: the built-in
613 * internal device and an external on the MII
614 * connector.
615 */
616 if (child->mii_phy > 1 || child->mii_inst > 1) {
617 aprint_error_dev(sc->sc_dev,
618 "cannot accommodate MII device %s"
619 " at phy %d, instance %d\n",
620 device_xname(child->mii_dev),
621 child->mii_phy, child->mii_inst);
622 continue;
623 }
624
625 sc->sc_phys[child->mii_inst] = child->mii_phy;
626 }
627
628 /*
629 * XXX - we can really do the following ONLY if the
630 * phy indeed has the auto negotiation capability!!
631 */
632 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
633 }
634
635 /* claim 802.1q capability */
636 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
637
638 /* Attach the interface. */
639 if_attach(ifp);
640 ether_ifattach(ifp, enaddr);
641
642 #if NRND > 0
643 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
644 RND_TYPE_NET, 0);
645 #endif
646
647 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
648 NULL, device_xname(sc->sc_dev), "interrupts");
649
650 callout_init(&sc->sc_tick_ch, 0);
651
652 return;
653 }
654
655 int
656 cas_detach(device_t self, int flags)
657 {
658 int i;
659 struct cas_softc *sc = device_private(self);
660 bus_space_tag_t t = sc->sc_memt;
661 bus_space_handle_t h = sc->sc_memh;
662 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
663
664 /*
665 * Free any resources we've allocated during the failed attach
666 * attempt. Do this in reverse order and fall through.
667 */
668 switch (sc->sc_att_stage) {
669 case CAS_ATT_FINISHED:
670 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
671 pmf_device_deregister(self);
672 cas_stop(&sc->sc_ethercom.ec_if, 1);
673 evcnt_detach(&sc->sc_ev_intr);
674
675 #if NRND > 0
676 rnd_detach_source(&sc->rnd_source);
677 #endif
678
679 ether_ifdetach(ifp);
680 if_detach(ifp);
681 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
682
683 callout_destroy(&sc->sc_tick_ch);
684
685 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
686
687 /*FALLTHROUGH*/
688 case CAS_ATT_MII:
689 case CAS_ATT_7:
690 case CAS_ATT_6:
691 for (i = 0; i < CAS_NTXDESC; i++) {
692 if (sc->sc_txd[i].sd_map != NULL)
693 bus_dmamap_destroy(sc->sc_dmatag,
694 sc->sc_txd[i].sd_map);
695 }
696 /*FALLTHROUGH*/
697 case CAS_ATT_5:
698 for (i = 0; i < CAS_NRXDESC; i++) {
699 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
700 bus_dmamap_unload(sc->sc_dmatag,
701 sc->sc_rxsoft[i].rxs_dmamap);
702 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
703 bus_dmamap_destroy(sc->sc_dmatag,
704 sc->sc_rxsoft[i].rxs_dmamap);
705 if (sc->sc_rxsoft[i].rxs_kva != NULL)
706 bus_dmamem_unmap(sc->sc_dmatag,
707 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
708 /* XXX need to check that bus_dmamem_alloc suceeded
709 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
710 */
711 bus_dmamem_free(sc->sc_dmatag,
712 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
713 }
714 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
715 /*FALLTHROUGH*/
716 case CAS_ATT_4:
717 case CAS_ATT_3:
718 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
719 /*FALLTHROUGH*/
720 case CAS_ATT_2:
721 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
722 sizeof(struct cas_control_data));
723 /*FALLTHROUGH*/
724 case CAS_ATT_1:
725 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
726 /*FALLTHROUGH*/
727 case CAS_ATT_0:
728 sc->sc_att_stage = CAS_ATT_0;
729 /*FALLTHROUGH*/
730 case CAS_ATT_BACKEND_2:
731 case CAS_ATT_BACKEND_1:
732 if (sc->sc_ih != NULL) {
733 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
734 sc->sc_ih = NULL;
735 }
736 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
737 /*FALLTHROUGH*/
738 case CAS_ATT_BACKEND_0:
739 break;
740 }
741 return 0;
742 }
743
744 static void
745 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
746 {
747 cfattach_t ca = device_cfattach(sc->sc_dev);
748
749 sc->sc_att_stage = stage;
750 (*ca->ca_detach)(sc->sc_dev, 0);
751 }
752
753 void
754 cas_tick(void *arg)
755 {
756 struct cas_softc *sc = arg;
757 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
758 bus_space_tag_t t = sc->sc_memt;
759 bus_space_handle_t mac = sc->sc_memh;
760 int s;
761 u_int32_t v;
762
763 /* unload collisions counters */
764 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
765 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
766 ifp->if_collisions += v +
767 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
768 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
769 ifp->if_oerrors += v;
770
771 /* read error counters */
772 ifp->if_ierrors +=
773 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
774 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
775 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
776 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
777
778 /* clear the hardware counters */
779 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
780 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
781 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
782 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
783 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
784 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
785 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
786 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
787
788 s = splnet();
789 mii_tick(&sc->sc_mii);
790 splx(s);
791
792 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
793 }
794
795 int
796 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
797 u_int32_t clr, u_int32_t set)
798 {
799 int i;
800 u_int32_t reg;
801
802 for (i = TRIES; i--; DELAY(100)) {
803 reg = bus_space_read_4(sc->sc_memt, h, r);
804 if ((reg & clr) == 0 && (reg & set) == set)
805 return (1);
806 }
807
808 return (0);
809 }
810
811 void
812 cas_reset(struct cas_softc *sc)
813 {
814 bus_space_tag_t t = sc->sc_memt;
815 bus_space_handle_t h = sc->sc_memh;
816 int s;
817
818 s = splnet();
819 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
820 cas_reset_rx(sc);
821 cas_reset_tx(sc);
822
823 /* Do a full reset */
824 bus_space_write_4(t, h, CAS_RESET,
825 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
826 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
827 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
828 splx(s);
829 }
830
831
832 /*
833 * cas_rxdrain:
834 *
835 * Drain the receive queue.
836 */
837 void
838 cas_rxdrain(struct cas_softc *sc)
839 {
840 /* Nothing to do yet. */
841 }
842
843 /*
844 * Reset the whole thing.
845 */
846 void
847 cas_stop(struct ifnet *ifp, int disable)
848 {
849 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
850 struct cas_sxd *sd;
851 u_int32_t i;
852
853 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
854
855 callout_stop(&sc->sc_tick_ch);
856
857 /*
858 * Mark the interface down and cancel the watchdog timer.
859 */
860 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
861 ifp->if_timer = 0;
862
863 mii_down(&sc->sc_mii);
864
865 cas_reset_rx(sc);
866 cas_reset_tx(sc);
867
868 /*
869 * Release any queued transmit buffers.
870 */
871 for (i = 0; i < CAS_NTXDESC; i++) {
872 sd = &sc->sc_txd[i];
873 if (sd->sd_mbuf != NULL) {
874 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
875 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
876 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
877 m_freem(sd->sd_mbuf);
878 sd->sd_mbuf = NULL;
879 }
880 }
881 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
882
883 if (disable)
884 cas_rxdrain(sc);
885 }
886
887
888 /*
889 * Reset the receiver
890 */
891 int
892 cas_reset_rx(struct cas_softc *sc)
893 {
894 bus_space_tag_t t = sc->sc_memt;
895 bus_space_handle_t h = sc->sc_memh;
896
897 /*
898 * Resetting while DMA is in progress can cause a bus hang, so we
899 * disable DMA first.
900 */
901 cas_disable_rx(sc);
902 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
903 /* Wait till it finishes */
904 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
905 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
906 /* Wait 5ms extra. */
907 delay(5000);
908
909 /* Finally, reset the ERX */
910 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
911 /* Wait till it finishes */
912 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
913 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
914 return (1);
915 }
916 return (0);
917 }
918
919
920 /*
921 * Reset the transmitter
922 */
923 int
924 cas_reset_tx(struct cas_softc *sc)
925 {
926 bus_space_tag_t t = sc->sc_memt;
927 bus_space_handle_t h = sc->sc_memh;
928
929 /*
930 * Resetting while DMA is in progress can cause a bus hang, so we
931 * disable DMA first.
932 */
933 cas_disable_tx(sc);
934 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
935 /* Wait till it finishes */
936 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
937 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
938 /* Wait 5ms extra. */
939 delay(5000);
940
941 /* Finally, reset the ETX */
942 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
943 /* Wait till it finishes */
944 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
945 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
946 return (1);
947 }
948 return (0);
949 }
950
951 /*
952 * Disable receiver.
953 */
954 int
955 cas_disable_rx(struct cas_softc *sc)
956 {
957 bus_space_tag_t t = sc->sc_memt;
958 bus_space_handle_t h = sc->sc_memh;
959 u_int32_t cfg;
960
961 /* Flip the enable bit */
962 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
963 cfg &= ~CAS_MAC_RX_ENABLE;
964 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
965
966 /* Wait for it to finish */
967 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
968 }
969
970 /*
971 * Disable transmitter.
972 */
973 int
974 cas_disable_tx(struct cas_softc *sc)
975 {
976 bus_space_tag_t t = sc->sc_memt;
977 bus_space_handle_t h = sc->sc_memh;
978 u_int32_t cfg;
979
980 /* Flip the enable bit */
981 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
982 cfg &= ~CAS_MAC_TX_ENABLE;
983 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
984
985 /* Wait for it to finish */
986 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
987 }
988
989 /*
990 * Initialize interface.
991 */
992 int
993 cas_meminit(struct cas_softc *sc)
994 {
995 struct cas_rxsoft *rxs;
996 int i, error;
997
998 rxs = (void *)&error;
999
1000 /*
1001 * Initialize the transmit descriptor ring.
1002 */
1003 for (i = 0; i < CAS_NTXDESC; i++) {
1004 sc->sc_txdescs[i].cd_flags = 0;
1005 sc->sc_txdescs[i].cd_addr = 0;
1006 }
1007 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1008 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1009
1010 /*
1011 * Initialize the receive descriptor and receive job
1012 * descriptor rings.
1013 */
1014 for (i = 0; i < CAS_NRXDESC; i++)
1015 CAS_INIT_RXDESC(sc, i, i);
1016 sc->sc_rxdptr = 0;
1017 sc->sc_rxptr = 0;
1018
1019 /*
1020 * Initialize the receive completion ring.
1021 */
1022 for (i = 0; i < CAS_NRXCOMP; i++) {
1023 sc->sc_rxcomps[i].cc_word[0] = 0;
1024 sc->sc_rxcomps[i].cc_word[1] = 0;
1025 sc->sc_rxcomps[i].cc_word[2] = 0;
1026 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1027 CAS_CDRXCSYNC(sc, i,
1028 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1029 }
1030
1031 return (0);
1032 }
1033
1034 int
1035 cas_ringsize(int sz)
1036 {
1037 switch (sz) {
1038 case 32:
1039 return CAS_RING_SZ_32;
1040 case 64:
1041 return CAS_RING_SZ_64;
1042 case 128:
1043 return CAS_RING_SZ_128;
1044 case 256:
1045 return CAS_RING_SZ_256;
1046 case 512:
1047 return CAS_RING_SZ_512;
1048 case 1024:
1049 return CAS_RING_SZ_1024;
1050 case 2048:
1051 return CAS_RING_SZ_2048;
1052 case 4096:
1053 return CAS_RING_SZ_4096;
1054 case 8192:
1055 return CAS_RING_SZ_8192;
1056 default:
1057 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1058 sz);
1059 return CAS_RING_SZ_32;
1060 }
1061 }
1062
1063 int
1064 cas_cringsize(int sz)
1065 {
1066 int i;
1067
1068 for (i = 0; i < 9; i++)
1069 if (sz == (128 << i))
1070 return i;
1071
1072 aprint_error("cas: invalid completion ring size %d\n", sz);
1073 return 128;
1074 }
1075
1076 /*
1077 * Initialization of interface; set up initialization block
1078 * and transmit/receive descriptor rings.
1079 */
1080 int
1081 cas_init(struct ifnet *ifp)
1082 {
1083 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1084 bus_space_tag_t t = sc->sc_memt;
1085 bus_space_handle_t h = sc->sc_memh;
1086 int s;
1087 u_int max_frame_size;
1088 u_int32_t v;
1089
1090 s = splnet();
1091
1092 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1093 /*
1094 * Initialization sequence. The numbered steps below correspond
1095 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1096 * Channel Engine manual (part of the PCIO manual).
1097 * See also the STP2002-STQ document from Sun Microsystems.
1098 */
1099
1100 /* step 1 & 2. Reset the Ethernet Channel */
1101 cas_stop(ifp, 0);
1102 cas_reset(sc);
1103 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1104
1105 /* Re-initialize the MIF */
1106 cas_mifinit(sc);
1107
1108 /* step 3. Setup data structures in host memory */
1109 cas_meminit(sc);
1110
1111 /* step 4. TX MAC registers & counters */
1112 cas_init_regs(sc);
1113 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1114 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1115 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1116
1117 /* step 5. RX MAC registers & counters */
1118 cas_iff(sc);
1119
1120 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1121 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1122 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1123 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1124 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1125
1126 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1127 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1128 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1129 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1130
1131 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1132 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1133 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1134 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1135
1136 if (CAS_PLUS(sc)) {
1137 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1138 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1139 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1140 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1141 CAS_CDRXADDR2(sc, 0));
1142 }
1143
1144 /* step 8. Global Configuration & Interrupt Mask */
1145 cas_estintr(sc, CAS_INTR_REG);
1146
1147 /* step 9. ETX Configuration: use mostly default values */
1148
1149 /* Enable DMA */
1150 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1151 bus_space_write_4(t, h, CAS_TX_CONFIG,
1152 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1153 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1154
1155 /* step 10. ERX Configuration */
1156
1157 /* Encode Receive Descriptor ring size */
1158 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1159 if (CAS_PLUS(sc))
1160 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1161
1162 /* Encode Receive Completion ring size */
1163 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1164
1165 /* Enable DMA */
1166 bus_space_write_4(t, h, CAS_RX_CONFIG,
1167 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1168
1169 /*
1170 * The following value is for an OFF Threshold of about 3/4 full
1171 * and an ON Threshold of 1/4 full.
1172 */
1173 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1174 (3 * sc->sc_rxfifosize / 256) |
1175 ((sc->sc_rxfifosize / 256) << 12));
1176 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1177
1178 /* step 11. Configure Media */
1179 mii_ifmedia_change(&sc->sc_mii);
1180
1181 /* step 12. RX_MAC Configuration Register */
1182 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1183 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1184 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1185
1186 /* step 14. Issue Transmit Pending command */
1187
1188 /* step 15. Give the receiver a swift kick */
1189 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1190 if (CAS_PLUS(sc))
1191 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1192
1193 /* Start the one second timer. */
1194 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1195
1196 ifp->if_flags |= IFF_RUNNING;
1197 ifp->if_flags &= ~IFF_OACTIVE;
1198 ifp->if_timer = 0;
1199 splx(s);
1200
1201 return (0);
1202 }
1203
1204 void
1205 cas_init_regs(struct cas_softc *sc)
1206 {
1207 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1208 bus_space_tag_t t = sc->sc_memt;
1209 bus_space_handle_t h = sc->sc_memh;
1210 const u_char *laddr = CLLADDR(ifp->if_sadl);
1211 u_int32_t v, r;
1212
1213 /* These regs are not cleared on reset */
1214 sc->sc_inited = 0;
1215 if (!sc->sc_inited) {
1216 /* Load recommended values */
1217 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1218 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1219 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1220
1221 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1222 /* Max frame and max burst size */
1223 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1224 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1225
1226 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1227 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1228 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1229 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1230 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1231 ((laddr[5]<<8)|laddr[4])&0x3ff);
1232
1233 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1234 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1235 bus_space_write_4(t, h, r, 0);
1236
1237 /* MAC control addr set to 0:1:c2:0:1:80 */
1238 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1239 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1240 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1241
1242 /* MAC filter addr set to 0:0:0:0:0:0 */
1243 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1244 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1245 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1246
1247 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1248 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1249
1250 /* Hash table initialized to 0 */
1251 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1252 bus_space_write_4(t, h, r, 0);
1253
1254 sc->sc_inited = 1;
1255 }
1256
1257 /* Counters need to be zeroed */
1258 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1259 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1260 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1261 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1262 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1263 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1264 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1265 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1266 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1267 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1268 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1269
1270 /* Un-pause stuff */
1271 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1272
1273 /*
1274 * Set the station address.
1275 */
1276 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1277 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1278 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1279 }
1280
1281 /*
1282 * Receive interrupt.
1283 */
1284 int
1285 cas_rint(struct cas_softc *sc)
1286 {
1287 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1288 bus_space_tag_t t = sc->sc_memt;
1289 bus_space_handle_t h = sc->sc_memh;
1290 struct cas_rxsoft *rxs;
1291 struct mbuf *m;
1292 u_int64_t word[4];
1293 int len, off, idx;
1294 int i, skip;
1295 void *cp;
1296
1297 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1298 CAS_CDRXCSYNC(sc, i,
1299 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1300
1301 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1302 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1303 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1304 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1305
1306 /* Stop if the hardware still owns the descriptor. */
1307 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1308 break;
1309
1310 len = CAS_RC1_HDR_LEN(word[1]);
1311 if (len > 0) {
1312 off = CAS_RC1_HDR_OFF(word[1]);
1313 idx = CAS_RC1_HDR_IDX(word[1]);
1314 rxs = &sc->sc_rxsoft[idx];
1315
1316 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1317 idx, off, len));
1318
1319 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1320 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1321
1322 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1323 m = m_devget(cp, len, 0, ifp, NULL);
1324
1325 if (word[0] & CAS_RC0_RELEASE_HDR)
1326 cas_add_rxbuf(sc, idx);
1327
1328 if (m != NULL) {
1329
1330 #if NBPFILTER > 0
1331 /*
1332 * Pass this up to any BPF listeners, but only
1333 * pass it up the stack if its for us.
1334 */
1335 if (ifp->if_bpf)
1336 bpf_mtap(ifp->if_bpf, m);
1337 #endif /* NBPFILTER > 0 */
1338
1339 ifp->if_ipackets++;
1340 m->m_pkthdr.csum_flags = 0;
1341 (*ifp->if_input)(ifp, m);
1342 } else
1343 ifp->if_ierrors++;
1344 }
1345
1346 len = CAS_RC0_DATA_LEN(word[0]);
1347 if (len > 0) {
1348 off = CAS_RC0_DATA_OFF(word[0]);
1349 idx = CAS_RC0_DATA_IDX(word[0]);
1350 rxs = &sc->sc_rxsoft[idx];
1351
1352 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1353 idx, off, len));
1354
1355 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1356 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1357
1358 /* XXX We should not be copying the packet here. */
1359 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1360 m = m_devget(cp, len, 0, ifp, NULL);
1361
1362 if (word[0] & CAS_RC0_RELEASE_DATA)
1363 cas_add_rxbuf(sc, idx);
1364
1365 if (m != NULL) {
1366 #if NBPFILTER > 0
1367 /*
1368 * Pass this up to any BPF listeners, but only
1369 * pass it up the stack if its for us.
1370 */
1371 if (ifp->if_bpf)
1372 bpf_mtap(ifp->if_bpf, m);
1373 #endif /* NBPFILTER > 0 */
1374
1375 ifp->if_ipackets++;
1376 m->m_pkthdr.csum_flags = 0;
1377 (*ifp->if_input)(ifp, m);
1378 } else
1379 ifp->if_ierrors++;
1380 }
1381
1382 if (word[0] & CAS_RC0_SPLIT)
1383 aprint_error_dev(sc->sc_dev, "split packet\n");
1384
1385 skip = CAS_RC0_SKIP(word[0]);
1386 }
1387
1388 while (sc->sc_rxptr != i) {
1389 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1390 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1391 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1392 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1393 CAS_DMA_WRITE(CAS_RC3_OWN);
1394 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1395 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1396
1397 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1398 }
1399
1400 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1401
1402 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1403 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1404
1405 return (1);
1406 }
1407
1408 /*
1409 * cas_add_rxbuf:
1410 *
1411 * Add a receive buffer to the indicated descriptor.
1412 */
1413 int
1414 cas_add_rxbuf(struct cas_softc *sc, int idx)
1415 {
1416 bus_space_tag_t t = sc->sc_memt;
1417 bus_space_handle_t h = sc->sc_memh;
1418
1419 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1420
1421 if ((sc->sc_rxdptr % 4) == 0)
1422 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1423
1424 if (++sc->sc_rxdptr == CAS_NRXDESC)
1425 sc->sc_rxdptr = 0;
1426
1427 return (0);
1428 }
1429
1430 int
1431 cas_eint(struct cas_softc *sc, u_int status)
1432 {
1433 char bits[128];
1434 if ((status & CAS_INTR_MIF) != 0) {
1435 DPRINTF(sc, ("%s: link status changed\n",
1436 device_xname(sc->sc_dev)));
1437 return (1);
1438 }
1439
1440 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1441 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1442 return (1);
1443 }
1444
1445 int
1446 cas_pint(struct cas_softc *sc)
1447 {
1448 bus_space_tag_t t = sc->sc_memt;
1449 bus_space_handle_t seb = sc->sc_memh;
1450 u_int32_t status;
1451
1452 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1453 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1454 #ifdef CAS_DEBUG
1455 if (status)
1456 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1457 #endif
1458 return (1);
1459 }
1460
1461 int
1462 cas_intr(void *v)
1463 {
1464 struct cas_softc *sc = (struct cas_softc *)v;
1465 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1466 bus_space_tag_t t = sc->sc_memt;
1467 bus_space_handle_t seb = sc->sc_memh;
1468 u_int32_t status;
1469 int r = 0;
1470 #ifdef CAS_DEBUG
1471 char bits[128];
1472 #endif
1473
1474 sc->sc_ev_intr.ev_count++;
1475
1476 status = bus_space_read_4(t, seb, CAS_STATUS);
1477 #ifdef CAS_DEBUG
1478 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1479 #endif
1480 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1481 device_xname(sc->sc_dev), (status>>19), bits));
1482
1483 if ((status & CAS_INTR_PCS) != 0)
1484 r |= cas_pint(sc);
1485
1486 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1487 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1488 r |= cas_eint(sc, status);
1489
1490 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1491 r |= cas_tint(sc, status);
1492
1493 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1494 r |= cas_rint(sc);
1495
1496 /* We should eventually do more than just print out error stats. */
1497 if (status & CAS_INTR_TX_MAC) {
1498 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1499 #ifdef CAS_DEBUG
1500 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1501 printf("%s: MAC tx fault, status %x\n",
1502 device_xname(sc->sc_dev), txstat);
1503 #endif
1504 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1505 cas_init(ifp);
1506 }
1507 if (status & CAS_INTR_RX_MAC) {
1508 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1509 #ifdef CAS_DEBUG
1510 if (rxstat & ~CAS_MAC_RX_DONE)
1511 printf("%s: MAC rx fault, status %x\n",
1512 device_xname(sc->sc_dev), rxstat);
1513 #endif
1514 /*
1515 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1516 * due to a silicon bug so handle them silently.
1517 */
1518 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1519 ifp->if_ierrors++;
1520 cas_init(ifp);
1521 }
1522 #ifdef CAS_DEBUG
1523 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1524 printf("%s: MAC rx fault, status %x\n",
1525 device_xname(sc->sc_dev), rxstat);
1526 #endif
1527 }
1528 #if NRND > 0
1529 rnd_add_uint32(&sc->rnd_source, status);
1530 #endif
1531 return (r);
1532 }
1533
1534
1535 void
1536 cas_watchdog(struct ifnet *ifp)
1537 {
1538 struct cas_softc *sc = ifp->if_softc;
1539
1540 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1541 "CAS_MAC_RX_CONFIG %x\n",
1542 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1543 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1544 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1545
1546 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1547 ++ifp->if_oerrors;
1548
1549 /* Try to get more packets going. */
1550 cas_init(ifp);
1551 }
1552
1553 /*
1554 * Initialize the MII Management Interface
1555 */
1556 void
1557 cas_mifinit(struct cas_softc *sc)
1558 {
1559 bus_space_tag_t t = sc->sc_memt;
1560 bus_space_handle_t mif = sc->sc_memh;
1561
1562 /* Configure the MIF in frame mode */
1563 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1564 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1565 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1566 }
1567
1568 /*
1569 * MII interface
1570 *
1571 * The Cassini MII interface supports at least three different operating modes:
1572 *
1573 * Bitbang mode is implemented using data, clock and output enable registers.
1574 *
1575 * Frame mode is implemented by loading a complete frame into the frame
1576 * register and polling the valid bit for completion.
1577 *
1578 * Polling mode uses the frame register but completion is indicated by
1579 * an interrupt.
1580 *
1581 */
1582 int
1583 cas_mii_readreg(device_t self, int phy, int reg)
1584 {
1585 struct cas_softc *sc = device_private(self);
1586 bus_space_tag_t t = sc->sc_memt;
1587 bus_space_handle_t mif = sc->sc_memh;
1588 int n;
1589 u_int32_t v;
1590
1591 #ifdef CAS_DEBUG
1592 if (sc->sc_debug)
1593 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1594 #endif
1595
1596 /* Construct the frame command */
1597 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1598 CAS_MIF_FRAME_READ;
1599
1600 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1601 for (n = 0; n < 100; n++) {
1602 DELAY(1);
1603 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1604 if (v & CAS_MIF_FRAME_TA0)
1605 return (v & CAS_MIF_FRAME_DATA);
1606 }
1607
1608 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1609 return (0);
1610 }
1611
1612 void
1613 cas_mii_writereg(device_t self, int phy, int reg, int val)
1614 {
1615 struct cas_softc *sc = device_private(self);
1616 bus_space_tag_t t = sc->sc_memt;
1617 bus_space_handle_t mif = sc->sc_memh;
1618 int n;
1619 u_int32_t v;
1620
1621 #ifdef CAS_DEBUG
1622 if (sc->sc_debug)
1623 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1624 phy, reg, val);
1625 #endif
1626
1627 /* Construct the frame command */
1628 v = CAS_MIF_FRAME_WRITE |
1629 (phy << CAS_MIF_PHY_SHIFT) |
1630 (reg << CAS_MIF_REG_SHIFT) |
1631 (val & CAS_MIF_FRAME_DATA);
1632
1633 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1634 for (n = 0; n < 100; n++) {
1635 DELAY(1);
1636 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1637 if (v & CAS_MIF_FRAME_TA0)
1638 return;
1639 }
1640
1641 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1642 }
1643
1644 void
1645 cas_mii_statchg(device_t self)
1646 {
1647 struct cas_softc *sc = device_private(self);
1648 #ifdef CAS_DEBUG
1649 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1650 #endif
1651 bus_space_tag_t t = sc->sc_memt;
1652 bus_space_handle_t mac = sc->sc_memh;
1653 u_int32_t v;
1654
1655 #ifdef CAS_DEBUG
1656 if (sc->sc_debug)
1657 printf("cas_mii_statchg: status change: phy = %d\n",
1658 sc->sc_phys[instance]);
1659 #endif
1660
1661 /* Set tx full duplex options */
1662 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1663 delay(10000); /* reg must be cleared and delay before changing. */
1664 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1665 CAS_MAC_TX_ENABLE;
1666 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1667 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1668 }
1669 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1670
1671 /* XIF Configuration */
1672 v = CAS_MAC_XIF_TX_MII_ENA;
1673 v |= CAS_MAC_XIF_LINK_LED;
1674
1675 /* MII needs echo disable if half duplex. */
1676 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1677 /* turn on full duplex LED */
1678 v |= CAS_MAC_XIF_FDPLX_LED;
1679 else
1680 /* half duplex -- disable echo */
1681 v |= CAS_MAC_XIF_ECHO_DISABL;
1682
1683 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1684 case IFM_1000_T: /* Gigabit using GMII interface */
1685 case IFM_1000_SX:
1686 v |= CAS_MAC_XIF_GMII_MODE;
1687 break;
1688 default:
1689 v &= ~CAS_MAC_XIF_GMII_MODE;
1690 }
1691 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1692 }
1693
1694 int
1695 cas_pcs_readreg(device_t self, int phy, int reg)
1696 {
1697 struct cas_softc *sc = device_private(self);
1698 bus_space_tag_t t = sc->sc_memt;
1699 bus_space_handle_t pcs = sc->sc_memh;
1700
1701 #ifdef CAS_DEBUG
1702 if (sc->sc_debug)
1703 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1704 #endif
1705
1706 if (phy != CAS_PHYAD_EXTERNAL)
1707 return (0);
1708
1709 switch (reg) {
1710 case MII_BMCR:
1711 reg = CAS_MII_CONTROL;
1712 break;
1713 case MII_BMSR:
1714 reg = CAS_MII_STATUS;
1715 break;
1716 case MII_ANAR:
1717 reg = CAS_MII_ANAR;
1718 break;
1719 case MII_ANLPAR:
1720 reg = CAS_MII_ANLPAR;
1721 break;
1722 case MII_EXTSR:
1723 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1724 default:
1725 return (0);
1726 }
1727
1728 return bus_space_read_4(t, pcs, reg);
1729 }
1730
1731 void
1732 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1733 {
1734 struct cas_softc *sc = device_private(self);
1735 bus_space_tag_t t = sc->sc_memt;
1736 bus_space_handle_t pcs = sc->sc_memh;
1737 int reset = 0;
1738
1739 #ifdef CAS_DEBUG
1740 if (sc->sc_debug)
1741 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1742 phy, reg, val);
1743 #endif
1744
1745 if (phy != CAS_PHYAD_EXTERNAL)
1746 return;
1747
1748 if (reg == MII_ANAR)
1749 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1750
1751 switch (reg) {
1752 case MII_BMCR:
1753 reset = (val & CAS_MII_CONTROL_RESET);
1754 reg = CAS_MII_CONTROL;
1755 break;
1756 case MII_BMSR:
1757 reg = CAS_MII_STATUS;
1758 break;
1759 case MII_ANAR:
1760 reg = CAS_MII_ANAR;
1761 break;
1762 case MII_ANLPAR:
1763 reg = CAS_MII_ANLPAR;
1764 break;
1765 default:
1766 return;
1767 }
1768
1769 bus_space_write_4(t, pcs, reg, val);
1770
1771 if (reset)
1772 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1773
1774 if (reg == CAS_MII_ANAR || reset)
1775 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1776 CAS_MII_CONFIG_ENABLE);
1777 }
1778
1779 int
1780 cas_mediachange(struct ifnet *ifp)
1781 {
1782 struct cas_softc *sc = ifp->if_softc;
1783 struct mii_data *mii = &sc->sc_mii;
1784
1785 if (mii->mii_instance) {
1786 struct mii_softc *miisc;
1787 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1788 mii_phy_reset(miisc);
1789 }
1790
1791 return (mii_mediachg(&sc->sc_mii));
1792 }
1793
1794 void
1795 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1796 {
1797 struct cas_softc *sc = ifp->if_softc;
1798
1799 mii_pollstat(&sc->sc_mii);
1800 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1801 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1802 }
1803
1804 /*
1805 * Process an ioctl request.
1806 */
1807 int
1808 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1809 {
1810 struct cas_softc *sc = ifp->if_softc;
1811 int s, error = 0;
1812
1813 s = splnet();
1814
1815 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1816 error = 0;
1817 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1818 ;
1819 else if (ifp->if_flags & IFF_RUNNING) {
1820 /*
1821 * Multicast list has changed; set the hardware filter
1822 * accordingly.
1823 */
1824 cas_iff(sc);
1825 }
1826 }
1827
1828 splx(s);
1829 return (error);
1830 }
1831
1832 static bool
1833 cas_suspend(device_t self, pmf_qual_t qual)
1834 {
1835 struct cas_softc *sc = device_private(self);
1836 bus_space_tag_t t = sc->sc_memt;
1837 bus_space_handle_t h = sc->sc_memh;
1838
1839 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1840 if (sc->sc_ih != NULL) {
1841 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1842 sc->sc_ih = NULL;
1843 }
1844
1845 return true;
1846 }
1847
1848 static bool
1849 cas_resume(device_t self, pmf_qual_t qual)
1850 {
1851 struct cas_softc *sc = device_private(self);
1852
1853 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1854 }
1855
1856 static bool
1857 cas_estintr(struct cas_softc *sc, int what)
1858 {
1859 bus_space_tag_t t = sc->sc_memt;
1860 bus_space_handle_t h = sc->sc_memh;
1861 const char *intrstr = NULL;
1862
1863 /* PCI interrupts */
1864 if (what & CAS_INTR_PCI) {
1865 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1866 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1867 IPL_NET, cas_intr, sc);
1868 if (sc->sc_ih == NULL) {
1869 aprint_error_dev(sc->sc_dev,
1870 "unable to establish interrupt");
1871 if (intrstr != NULL)
1872 aprint_error(" at %s", intrstr);
1873 aprint_error("\n");
1874 return false;
1875 }
1876
1877 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1878 }
1879
1880 /* Interrupt register */
1881 if (what & CAS_INTR_REG) {
1882 bus_space_write_4(t, h, CAS_INTMASK,
1883 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1884 CAS_INTR_TX_TAG_ERR|
1885 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1886 CAS_INTR_RX_TAG_ERR|
1887 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1888 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1889 CAS_INTR_BERR));
1890 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1891 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1892 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1893 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1894 }
1895 return true;
1896 }
1897
1898 bool
1899 cas_shutdown(device_t self, int howto)
1900 {
1901 struct cas_softc *sc = device_private(self);
1902 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1903
1904 cas_stop(ifp, 1);
1905
1906 return true;
1907 }
1908
1909 void
1910 cas_iff(struct cas_softc *sc)
1911 {
1912 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1913 struct ethercom *ec = &sc->sc_ethercom;
1914 struct ether_multi *enm;
1915 struct ether_multistep step;
1916 bus_space_tag_t t = sc->sc_memt;
1917 bus_space_handle_t h = sc->sc_memh;
1918 u_int32_t crc, hash[16], rxcfg;
1919 int i;
1920
1921 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1922 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1923 CAS_MAC_RX_PROMISC_GRP);
1924 ifp->if_flags &= ~IFF_ALLMULTI;
1925
1926 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1927 ifp->if_flags |= IFF_ALLMULTI;
1928 if (ifp->if_flags & IFF_PROMISC)
1929 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1930 else
1931 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1932 } else {
1933 /*
1934 * Set up multicast address filter by passing all multicast
1935 * addresses through a crc generator, and then using the
1936 * high order 8 bits as an index into the 256 bit logical
1937 * address filter. The high order 4 bits selects the word,
1938 * while the other 4 bits select the bit within the word
1939 * (where bit 0 is the MSB).
1940 */
1941
1942 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1943
1944 /* Clear hash table */
1945 for (i = 0; i < 16; i++)
1946 hash[i] = 0;
1947
1948 ETHER_FIRST_MULTI(step, ec, enm);
1949 while (enm != NULL) {
1950 crc = ether_crc32_le(enm->enm_addrlo,
1951 ETHER_ADDR_LEN);
1952
1953 /* Just want the 8 most significant bits. */
1954 crc >>= 24;
1955
1956 /* Set the corresponding bit in the filter. */
1957 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1958
1959 ETHER_NEXT_MULTI(step, enm);
1960 }
1961
1962 /* Now load the hash table into the chip (if we are using it) */
1963 for (i = 0; i < 16; i++) {
1964 bus_space_write_4(t, h,
1965 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1966 hash[i]);
1967 }
1968 }
1969
1970 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1971 }
1972
1973 int
1974 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1975 {
1976 u_int64_t flags;
1977 u_int32_t cur, frag, i;
1978 bus_dmamap_t map;
1979
1980 cur = frag = *bixp;
1981 map = sc->sc_txd[cur].sd_map;
1982
1983 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1984 BUS_DMA_NOWAIT) != 0) {
1985 return (ENOBUFS);
1986 }
1987
1988 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1989 bus_dmamap_unload(sc->sc_dmatag, map);
1990 return (ENOBUFS);
1991 }
1992
1993 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1994 BUS_DMASYNC_PREWRITE);
1995
1996 for (i = 0; i < map->dm_nsegs; i++) {
1997 sc->sc_txdescs[frag].cd_addr =
1998 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1999 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2000 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2001 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2002 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2003 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2004 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2005 BUS_DMASYNC_PREWRITE);
2006 cur = frag;
2007 if (++frag == CAS_NTXDESC)
2008 frag = 0;
2009 }
2010
2011 sc->sc_tx_cnt += map->dm_nsegs;
2012 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2013 sc->sc_txd[cur].sd_map = map;
2014 sc->sc_txd[cur].sd_mbuf = mhead;
2015
2016 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2017
2018 *bixp = frag;
2019
2020 /* sync descriptors */
2021
2022 return (0);
2023 }
2024
2025 /*
2026 * Transmit interrupt.
2027 */
2028 int
2029 cas_tint(struct cas_softc *sc, u_int32_t status)
2030 {
2031 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2032 struct cas_sxd *sd;
2033 u_int32_t cons, comp;
2034
2035 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2036 cons = sc->sc_tx_cons;
2037 while (cons != comp) {
2038 sd = &sc->sc_txd[cons];
2039 if (sd->sd_mbuf != NULL) {
2040 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2041 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2042 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2043 m_freem(sd->sd_mbuf);
2044 sd->sd_mbuf = NULL;
2045 ifp->if_opackets++;
2046 }
2047 sc->sc_tx_cnt--;
2048 if (++cons == CAS_NTXDESC)
2049 cons = 0;
2050 }
2051 sc->sc_tx_cons = cons;
2052
2053 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2054 ifp->if_flags &= ~IFF_OACTIVE;
2055 if (sc->sc_tx_cnt == 0)
2056 ifp->if_timer = 0;
2057
2058 cas_start(ifp);
2059
2060 return (1);
2061 }
2062
2063 void
2064 cas_start(struct ifnet *ifp)
2065 {
2066 struct cas_softc *sc = ifp->if_softc;
2067 struct mbuf *m;
2068 u_int32_t bix;
2069
2070 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2071 return;
2072
2073 bix = sc->sc_tx_prod;
2074 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2075 IFQ_POLL(&ifp->if_snd, m);
2076 if (m == NULL)
2077 break;
2078
2079 #if NBPFILTER > 0
2080 /*
2081 * If BPF is listening on this interface, let it see the
2082 * packet before we commit it to the wire.
2083 */
2084 if (ifp->if_bpf)
2085 bpf_mtap(ifp->if_bpf, m);
2086 #endif
2087
2088 /*
2089 * Encapsulate this packet and start it going...
2090 * or fail...
2091 */
2092 if (cas_encap(sc, m, &bix)) {
2093 ifp->if_flags |= IFF_OACTIVE;
2094 break;
2095 }
2096
2097 IFQ_DEQUEUE(&ifp->if_snd, m);
2098 ifp->if_timer = 5;
2099 }
2100
2101 sc->sc_tx_prod = bix;
2102 }
2103