if_cas.c revision 1.31 1 /* $NetBSD: if_cas.c,v 1.31 2019/02/05 06:17:03 msaitoh Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.31 2019/02/05 06:17:03 msaitoh Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 #define TRIES 10000
101
102 static bool cas_estintr(struct cas_softc *sc, int);
103 bool cas_shutdown(device_t, int);
104 static bool cas_suspend(device_t, const pmf_qual_t *);
105 static bool cas_resume(device_t, const pmf_qual_t *);
106 static int cas_detach(device_t, int);
107 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109 int cas_match(device_t, cfdata_t, void *);
110 void cas_attach(device_t, device_t, void *);
111
112
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN);
116
117 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119 void cas_config(struct cas_softc *, const uint8_t *);
120 void cas_start(struct ifnet *);
121 void cas_stop(struct ifnet *, int);
122 int cas_ioctl(struct ifnet *, u_long, void *);
123 void cas_tick(void *);
124 void cas_watchdog(struct ifnet *);
125 int cas_init(struct ifnet *);
126 void cas_init_regs(struct cas_softc *);
127 int cas_ringsize(int);
128 int cas_cringsize(int);
129 int cas_meminit(struct cas_softc *);
130 void cas_mifinit(struct cas_softc *);
131 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 u_int32_t, u_int32_t);
133 void cas_reset(struct cas_softc *);
134 int cas_reset_rx(struct cas_softc *);
135 int cas_reset_tx(struct cas_softc *);
136 int cas_disable_rx(struct cas_softc *);
137 int cas_disable_tx(struct cas_softc *);
138 void cas_rxdrain(struct cas_softc *);
139 int cas_add_rxbuf(struct cas_softc *, int idx);
140 void cas_iff(struct cas_softc *);
141 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
142
143 /* MII methods & callbacks */
144 int cas_mii_readreg(device_t, int, int, uint16_t*);
145 int cas_mii_writereg(device_t, int, int, uint16_t);
146 void cas_mii_statchg(struct ifnet *);
147 int cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int cas_pcs_writereg(device_t, int, int, uint16_t);
149
150 int cas_mediachange(struct ifnet *);
151 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153 int cas_eint(struct cas_softc *, u_int);
154 int cas_rint(struct cas_softc *);
155 int cas_tint(struct cas_softc *, u_int32_t);
156 int cas_pint(struct cas_softc *);
157 int cas_intr(void *);
158
159 #ifdef CAS_DEBUG
160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x
162 #else
163 #define DPRINTF(sc, x) /* nothing */
164 #endif
165
166 int
167 cas_match(device_t parent, cfdata_t cf, void *aux)
168 {
169 struct pci_attach_args *pa = aux;
170
171 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
172 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
173 return 1;
174
175 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
176 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
177 return 1;
178
179 return 0;
180 }
181
182 #define PROMHDR_PTR_DATA 0x18
183 #define PROMDATA_PTR_VPD 0x08
184 #define PROMDATA_DATA2 0x0a
185
186 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
187 static const u_int8_t cas_promdat[] = {
188 'P', 'C', 'I', 'R',
189 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
190 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
191 };
192 static const u_int8_t cas_promdat_ns[] = {
193 'P', 'C', 'I', 'R',
194 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
195 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
196 };
197
198 static const u_int8_t cas_promdat2[] = {
199 0x18, 0x00, /* structure length */
200 0x00, /* structure revision */
201 0x00, /* interface revision */
202 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
203 PCI_CLASS_NETWORK /* class code */
204 };
205
206 int
207 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
208 uint8_t *enaddr)
209 {
210 struct pci_vpd_largeres *res;
211 struct pci_vpd *vpd;
212 bus_space_handle_t romh;
213 bus_space_tag_t romt;
214 bus_size_t romsize = 0;
215 u_int8_t buf[32], *desc;
216 pcireg_t address;
217 int dataoff, vpdoff, len;
218 int rv = -1;
219
220 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
221 &romt, &romh, NULL, &romsize))
222 return (-1);
223
224 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
225 address |= PCI_MAPREG_ROM_ENABLE;
226 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
227
228 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
229 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
230 goto fail;
231
232 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
233 if (dataoff < 0x1c)
234 goto fail;
235
236 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
237 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
238 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
239 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
240 goto fail;
241
242 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
243 if (vpdoff < 0x1c)
244 goto fail;
245
246 next:
247 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
248 if (!PCI_VPDRES_ISLARGE(buf[0]))
249 goto fail;
250
251 res = (struct pci_vpd_largeres *)buf;
252 vpdoff += sizeof(*res);
253
254 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
255 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
256 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
257 /* Skip identifier string. */
258 vpdoff += len;
259 goto next;
260
261 case PCI_VPDRES_TYPE_VPD:
262 while (len > 0) {
263 bus_space_read_region_1(romt, romh, vpdoff,
264 buf, sizeof(buf));
265
266 vpd = (struct pci_vpd *)buf;
267 vpdoff += sizeof(*vpd) + vpd->vpd_len;
268 len -= sizeof(*vpd) + vpd->vpd_len;
269
270 /*
271 * We're looking for an "Enhanced" VPD...
272 */
273 if (vpd->vpd_key0 != 'Z')
274 continue;
275
276 desc = buf + sizeof(*vpd);
277
278 /*
279 * ...which is an instance property...
280 */
281 if (desc[0] != 'I')
282 continue;
283 desc += 3;
284
285 /*
286 * ...that's a byte array with the proper
287 * length for a MAC address...
288 */
289 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
290 continue;
291 desc += 2;
292
293 /*
294 * ...named "local-mac-address".
295 */
296 if (strcmp(desc, "local-mac-address") != 0)
297 continue;
298 desc += strlen("local-mac-address") + 1;
299
300 memcpy(enaddr, desc, ETHER_ADDR_LEN);
301 rv = 0;
302 }
303 break;
304
305 default:
306 goto fail;
307 }
308
309 fail:
310 if (romsize != 0)
311 bus_space_unmap(romt, romh, romsize);
312
313 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
314 address &= ~PCI_MAPREG_ROM_ENABLE;
315 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
316
317 return (rv);
318 }
319
320 void
321 cas_attach(device_t parent, device_t self, void *aux)
322 {
323 struct pci_attach_args *pa = aux;
324 struct cas_softc *sc = device_private(self);
325 prop_data_t data;
326 uint8_t enaddr[ETHER_ADDR_LEN];
327
328 sc->sc_dev = self;
329 pci_aprint_devinfo(pa, NULL);
330 sc->sc_rev = PCI_REVISION(pa->pa_class);
331 sc->sc_dmatag = pa->pa_dmat;
332
333 #define PCI_CAS_BASEADDR 0x10
334 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
335 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
336 aprint_error_dev(sc->sc_dev,
337 "unable to map device registers\n");
338 return;
339 }
340
341 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
342 "mac-address")) != NULL)
343 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
344 else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
345 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
346 memset(enaddr, 0, sizeof(enaddr));
347 }
348
349 sc->sc_burst = 16; /* XXX */
350
351 sc->sc_att_stage = CAS_ATT_BACKEND_0;
352
353 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
354 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
355 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
356 return;
357 }
358 sc->sc_pc = pa->pa_pc;
359 if (!cas_estintr(sc, CAS_INTR_PCI)) {
360 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
361 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
362 return;
363 }
364
365 sc->sc_att_stage = CAS_ATT_BACKEND_1;
366
367 /*
368 * call the main configure
369 */
370 cas_config(sc, enaddr);
371
372 if (pmf_device_register1(sc->sc_dev,
373 cas_suspend, cas_resume, cas_shutdown))
374 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
375 else
376 aprint_error_dev(sc->sc_dev,
377 "could not establish power handlers\n");
378
379 sc->sc_att_stage = CAS_ATT_FINISHED;
380 /*FALLTHROUGH*/
381 }
382
383 /*
384 * cas_config:
385 *
386 * Attach a Cassini interface to the system.
387 */
388 void
389 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
390 {
391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 struct mii_data *mii = &sc->sc_mii;
393 struct mii_softc *child;
394 int i, error;
395
396 /* Make sure the chip is stopped. */
397 ifp->if_softc = sc;
398 cas_reset(sc);
399
400 /*
401 * Allocate the control data structures, and create and load the
402 * DMA map for it.
403 */
404 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
405 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
406 1, &sc->sc_cdnseg, 0)) != 0) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to allocate control data, error = %d\n",
409 error);
410 cas_partial_detach(sc, CAS_ATT_0);
411 }
412
413 /* XXX should map this in with correct endianness */
414 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
415 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
416 BUS_DMA_COHERENT)) != 0) {
417 aprint_error_dev(sc->sc_dev,
418 "unable to map control data, error = %d\n", error);
419 cas_partial_detach(sc, CAS_ATT_1);
420 }
421
422 if ((error = bus_dmamap_create(sc->sc_dmatag,
423 sizeof(struct cas_control_data), 1,
424 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to create control data DMA map, error = %d\n", error);
427 cas_partial_detach(sc, CAS_ATT_2);
428 }
429
430 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
431 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
432 0)) != 0) {
433 aprint_error_dev(sc->sc_dev,
434 "unable to load control data DMA map, error = %d\n",
435 error);
436 cas_partial_detach(sc, CAS_ATT_3);
437 }
438
439 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
440
441 /*
442 * Create the receive buffer DMA maps.
443 */
444 for (i = 0; i < CAS_NRXDESC; i++) {
445 bus_dma_segment_t seg;
446 char *kva;
447 int rseg;
448
449 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
450 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
451 aprint_error_dev(sc->sc_dev,
452 "unable to alloc rx DMA mem %d, error = %d\n",
453 i, error);
454 cas_partial_detach(sc, CAS_ATT_5);
455 }
456 sc->sc_rxsoft[i].rxs_dmaseg = seg;
457
458 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
459 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
460 aprint_error_dev(sc->sc_dev,
461 "unable to alloc rx DMA mem %d, error = %d\n",
462 i, error);
463 cas_partial_detach(sc, CAS_ATT_5);
464 }
465 sc->sc_rxsoft[i].rxs_kva = kva;
466
467 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
468 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
469 aprint_error_dev(sc->sc_dev,
470 "unable to create rx DMA map %d, error = %d\n",
471 i, error);
472 cas_partial_detach(sc, CAS_ATT_5);
473 }
474
475 if ((error = bus_dmamap_load(sc->sc_dmatag,
476 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
477 BUS_DMA_NOWAIT)) != 0) {
478 aprint_error_dev(sc->sc_dev,
479 "unable to load rx DMA map %d, error = %d\n",
480 i, error);
481 cas_partial_detach(sc, CAS_ATT_5);
482 }
483 }
484
485 /*
486 * Create the transmit buffer DMA maps.
487 */
488 for (i = 0; i < CAS_NTXDESC; i++) {
489 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
490 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
491 &sc->sc_txd[i].sd_map)) != 0) {
492 aprint_error_dev(sc->sc_dev,
493 "unable to create tx DMA map %d, error = %d\n",
494 i, error);
495 cas_partial_detach(sc, CAS_ATT_6);
496 }
497 sc->sc_txd[i].sd_mbuf = NULL;
498 }
499
500 /*
501 * From this point forward, the attachment cannot fail. A failure
502 * before this point releases all resources that may have been
503 * allocated.
504 */
505
506 /* Announce ourselves. */
507 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
508 ether_sprintf(enaddr));
509 aprint_naive(": Ethernet controller\n");
510
511 /* Get RX FIFO size */
512 sc->sc_rxfifosize = 16 * 1024;
513
514 /* Initialize ifnet structure. */
515 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516 ifp->if_softc = sc;
517 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
518 ifp->if_start = cas_start;
519 ifp->if_ioctl = cas_ioctl;
520 ifp->if_watchdog = cas_watchdog;
521 ifp->if_stop = cas_stop;
522 ifp->if_init = cas_init;
523 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
524 IFQ_SET_READY(&ifp->if_snd);
525
526 /* Initialize ifmedia structures and MII info */
527 mii->mii_ifp = ifp;
528 mii->mii_readreg = cas_mii_readreg;
529 mii->mii_writereg = cas_mii_writereg;
530 mii->mii_statchg = cas_mii_statchg;
531
532 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
533 sc->sc_ethercom.ec_mii = mii;
534
535 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
536
537 cas_mifinit(sc);
538
539 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
540 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
541 bus_space_write_4(sc->sc_memt, sc->sc_memh,
542 CAS_MIF_CONFIG, sc->sc_mif_config);
543 }
544
545 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
546 MII_OFFSET_ANY, 0);
547
548 child = LIST_FIRST(&mii->mii_phys);
549 if (child == NULL &&
550 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
551 /*
552 * Try the external PCS SERDES if we didn't find any
553 * MII devices.
554 */
555 bus_space_write_4(sc->sc_memt, sc->sc_memh,
556 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
557
558 bus_space_write_4(sc->sc_memt, sc->sc_memh,
559 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
560
561 mii->mii_readreg = cas_pcs_readreg;
562 mii->mii_writereg = cas_pcs_writereg;
563
564 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
565 MII_OFFSET_ANY, MIIF_NOISOLATE);
566 }
567
568 child = LIST_FIRST(&mii->mii_phys);
569 if (child == NULL) {
570 /* No PHY attached */
571 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
572 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
573 } else {
574 /*
575 * Walk along the list of attached MII devices and
576 * establish an `MII instance' to `phy number'
577 * mapping. We'll use this mapping in media change
578 * requests to determine which phy to use to program
579 * the MIF configuration register.
580 */
581 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
582 /*
583 * Note: we support just two PHYs: the built-in
584 * internal device and an external on the MII
585 * connector.
586 */
587 if (child->mii_phy > 1 || child->mii_inst > 1) {
588 aprint_error_dev(sc->sc_dev,
589 "cannot accommodate MII device %s"
590 " at phy %d, instance %d\n",
591 device_xname(child->mii_dev),
592 child->mii_phy, child->mii_inst);
593 continue;
594 }
595
596 sc->sc_phys[child->mii_inst] = child->mii_phy;
597 }
598
599 /*
600 * XXX - we can really do the following ONLY if the
601 * phy indeed has the auto negotiation capability!!
602 */
603 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
604 }
605
606 /* claim 802.1q capability */
607 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
608
609 /* Attach the interface. */
610 if_attach(ifp);
611 if_deferred_start_init(ifp, NULL);
612 ether_ifattach(ifp, enaddr);
613
614 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
615 RND_TYPE_NET, RND_FLAG_DEFAULT);
616
617 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
618 NULL, device_xname(sc->sc_dev), "interrupts");
619
620 callout_init(&sc->sc_tick_ch, 0);
621
622 return;
623 }
624
625 int
626 cas_detach(device_t self, int flags)
627 {
628 int i;
629 struct cas_softc *sc = device_private(self);
630 bus_space_tag_t t = sc->sc_memt;
631 bus_space_handle_t h = sc->sc_memh;
632 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
633
634 /*
635 * Free any resources we've allocated during the failed attach
636 * attempt. Do this in reverse order and fall through.
637 */
638 switch (sc->sc_att_stage) {
639 case CAS_ATT_FINISHED:
640 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
641 pmf_device_deregister(self);
642 cas_stop(&sc->sc_ethercom.ec_if, 1);
643 evcnt_detach(&sc->sc_ev_intr);
644
645 rnd_detach_source(&sc->rnd_source);
646
647 ether_ifdetach(ifp);
648 if_detach(ifp);
649 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
650
651 callout_destroy(&sc->sc_tick_ch);
652
653 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
654
655 /*FALLTHROUGH*/
656 case CAS_ATT_MII:
657 case CAS_ATT_7:
658 case CAS_ATT_6:
659 for (i = 0; i < CAS_NTXDESC; i++) {
660 if (sc->sc_txd[i].sd_map != NULL)
661 bus_dmamap_destroy(sc->sc_dmatag,
662 sc->sc_txd[i].sd_map);
663 }
664 /*FALLTHROUGH*/
665 case CAS_ATT_5:
666 for (i = 0; i < CAS_NRXDESC; i++) {
667 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
668 bus_dmamap_unload(sc->sc_dmatag,
669 sc->sc_rxsoft[i].rxs_dmamap);
670 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
671 bus_dmamap_destroy(sc->sc_dmatag,
672 sc->sc_rxsoft[i].rxs_dmamap);
673 if (sc->sc_rxsoft[i].rxs_kva != NULL)
674 bus_dmamem_unmap(sc->sc_dmatag,
675 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
676 /* XXX need to check that bus_dmamem_alloc suceeded
677 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
678 */
679 bus_dmamem_free(sc->sc_dmatag,
680 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
681 }
682 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
683 /*FALLTHROUGH*/
684 case CAS_ATT_4:
685 case CAS_ATT_3:
686 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
687 /*FALLTHROUGH*/
688 case CAS_ATT_2:
689 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
690 sizeof(struct cas_control_data));
691 /*FALLTHROUGH*/
692 case CAS_ATT_1:
693 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
694 /*FALLTHROUGH*/
695 case CAS_ATT_0:
696 sc->sc_att_stage = CAS_ATT_0;
697 /*FALLTHROUGH*/
698 case CAS_ATT_BACKEND_2:
699 case CAS_ATT_BACKEND_1:
700 if (sc->sc_ih != NULL) {
701 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
702 sc->sc_ih = NULL;
703 }
704 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
705 /*FALLTHROUGH*/
706 case CAS_ATT_BACKEND_0:
707 break;
708 }
709 return 0;
710 }
711
712 static void
713 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
714 {
715 cfattach_t ca = device_cfattach(sc->sc_dev);
716
717 sc->sc_att_stage = stage;
718 (*ca->ca_detach)(sc->sc_dev, 0);
719 }
720
721 void
722 cas_tick(void *arg)
723 {
724 struct cas_softc *sc = arg;
725 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
726 bus_space_tag_t t = sc->sc_memt;
727 bus_space_handle_t mac = sc->sc_memh;
728 int s;
729 u_int32_t v;
730
731 /* unload collisions counters */
732 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
733 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
734 ifp->if_collisions += v +
735 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
736 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
737 ifp->if_oerrors += v;
738
739 /* read error counters */
740 ifp->if_ierrors +=
741 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
742 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
743 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
744 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
745
746 /* clear the hardware counters */
747 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
748 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
749 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
750 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
751 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
752 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
753 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
754 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
755
756 s = splnet();
757 mii_tick(&sc->sc_mii);
758 splx(s);
759
760 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
761 }
762
763 int
764 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
765 u_int32_t clr, u_int32_t set)
766 {
767 int i;
768 u_int32_t reg;
769
770 for (i = TRIES; i--; DELAY(100)) {
771 reg = bus_space_read_4(sc->sc_memt, h, r);
772 if ((reg & clr) == 0 && (reg & set) == set)
773 return (1);
774 }
775
776 return (0);
777 }
778
779 void
780 cas_reset(struct cas_softc *sc)
781 {
782 bus_space_tag_t t = sc->sc_memt;
783 bus_space_handle_t h = sc->sc_memh;
784 int s;
785
786 s = splnet();
787 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
788 cas_reset_rx(sc);
789 cas_reset_tx(sc);
790
791 /* Disable interrupts */
792 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
793
794 /* Do a full reset */
795 bus_space_write_4(t, h, CAS_RESET,
796 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
797 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
798 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
799 splx(s);
800 }
801
802
803 /*
804 * cas_rxdrain:
805 *
806 * Drain the receive queue.
807 */
808 void
809 cas_rxdrain(struct cas_softc *sc)
810 {
811 /* Nothing to do yet. */
812 }
813
814 /*
815 * Reset the whole thing.
816 */
817 void
818 cas_stop(struct ifnet *ifp, int disable)
819 {
820 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
821 struct cas_sxd *sd;
822 u_int32_t i;
823
824 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
825
826 callout_stop(&sc->sc_tick_ch);
827
828 /*
829 * Mark the interface down and cancel the watchdog timer.
830 */
831 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
832 ifp->if_timer = 0;
833
834 mii_down(&sc->sc_mii);
835
836 cas_reset_rx(sc);
837 cas_reset_tx(sc);
838
839 /*
840 * Release any queued transmit buffers.
841 */
842 for (i = 0; i < CAS_NTXDESC; i++) {
843 sd = &sc->sc_txd[i];
844 if (sd->sd_mbuf != NULL) {
845 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
846 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
847 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
848 m_freem(sd->sd_mbuf);
849 sd->sd_mbuf = NULL;
850 }
851 }
852 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
853
854 if (disable)
855 cas_rxdrain(sc);
856 }
857
858
859 /*
860 * Reset the receiver
861 */
862 int
863 cas_reset_rx(struct cas_softc *sc)
864 {
865 bus_space_tag_t t = sc->sc_memt;
866 bus_space_handle_t h = sc->sc_memh;
867
868 /*
869 * Resetting while DMA is in progress can cause a bus hang, so we
870 * disable DMA first.
871 */
872 cas_disable_rx(sc);
873 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
874 /* Wait till it finishes */
875 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
876 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
877 /* Wait 5ms extra. */
878 delay(5000);
879
880 /* Finally, reset the ERX */
881 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
882 /* Wait till it finishes */
883 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
884 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
885 return (1);
886 }
887 return (0);
888 }
889
890
891 /*
892 * Reset the transmitter
893 */
894 int
895 cas_reset_tx(struct cas_softc *sc)
896 {
897 bus_space_tag_t t = sc->sc_memt;
898 bus_space_handle_t h = sc->sc_memh;
899
900 /*
901 * Resetting while DMA is in progress can cause a bus hang, so we
902 * disable DMA first.
903 */
904 cas_disable_tx(sc);
905 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
906 /* Wait till it finishes */
907 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
908 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
909 /* Wait 5ms extra. */
910 delay(5000);
911
912 /* Finally, reset the ETX */
913 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
914 /* Wait till it finishes */
915 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
916 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
917 return (1);
918 }
919 return (0);
920 }
921
922 /*
923 * Disable receiver.
924 */
925 int
926 cas_disable_rx(struct cas_softc *sc)
927 {
928 bus_space_tag_t t = sc->sc_memt;
929 bus_space_handle_t h = sc->sc_memh;
930 u_int32_t cfg;
931
932 /* Flip the enable bit */
933 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
934 cfg &= ~CAS_MAC_RX_ENABLE;
935 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
936
937 /* Wait for it to finish */
938 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
939 }
940
941 /*
942 * Disable transmitter.
943 */
944 int
945 cas_disable_tx(struct cas_softc *sc)
946 {
947 bus_space_tag_t t = sc->sc_memt;
948 bus_space_handle_t h = sc->sc_memh;
949 u_int32_t cfg;
950
951 /* Flip the enable bit */
952 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
953 cfg &= ~CAS_MAC_TX_ENABLE;
954 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
955
956 /* Wait for it to finish */
957 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
958 }
959
960 /*
961 * Initialize interface.
962 */
963 int
964 cas_meminit(struct cas_softc *sc)
965 {
966 int i;
967
968 /*
969 * Initialize the transmit descriptor ring.
970 */
971 for (i = 0; i < CAS_NTXDESC; i++) {
972 sc->sc_txdescs[i].cd_flags = 0;
973 sc->sc_txdescs[i].cd_addr = 0;
974 }
975 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
976 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
977
978 /*
979 * Initialize the receive descriptor and receive job
980 * descriptor rings.
981 */
982 for (i = 0; i < CAS_NRXDESC; i++)
983 CAS_INIT_RXDESC(sc, i, i);
984 sc->sc_rxdptr = 0;
985 sc->sc_rxptr = 0;
986
987 /*
988 * Initialize the receive completion ring.
989 */
990 for (i = 0; i < CAS_NRXCOMP; i++) {
991 sc->sc_rxcomps[i].cc_word[0] = 0;
992 sc->sc_rxcomps[i].cc_word[1] = 0;
993 sc->sc_rxcomps[i].cc_word[2] = 0;
994 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
995 CAS_CDRXCSYNC(sc, i,
996 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
997 }
998
999 return (0);
1000 }
1001
1002 int
1003 cas_ringsize(int sz)
1004 {
1005 switch (sz) {
1006 case 32:
1007 return CAS_RING_SZ_32;
1008 case 64:
1009 return CAS_RING_SZ_64;
1010 case 128:
1011 return CAS_RING_SZ_128;
1012 case 256:
1013 return CAS_RING_SZ_256;
1014 case 512:
1015 return CAS_RING_SZ_512;
1016 case 1024:
1017 return CAS_RING_SZ_1024;
1018 case 2048:
1019 return CAS_RING_SZ_2048;
1020 case 4096:
1021 return CAS_RING_SZ_4096;
1022 case 8192:
1023 return CAS_RING_SZ_8192;
1024 default:
1025 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1026 sz);
1027 return CAS_RING_SZ_32;
1028 }
1029 }
1030
1031 int
1032 cas_cringsize(int sz)
1033 {
1034 int i;
1035
1036 for (i = 0; i < 9; i++)
1037 if (sz == (128 << i))
1038 return i;
1039
1040 aprint_error("cas: invalid completion ring size %d\n", sz);
1041 return 128;
1042 }
1043
1044 /*
1045 * Initialization of interface; set up initialization block
1046 * and transmit/receive descriptor rings.
1047 */
1048 int
1049 cas_init(struct ifnet *ifp)
1050 {
1051 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1052 bus_space_tag_t t = sc->sc_memt;
1053 bus_space_handle_t h = sc->sc_memh;
1054 int s;
1055 u_int max_frame_size;
1056 u_int32_t v;
1057
1058 s = splnet();
1059
1060 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1061 /*
1062 * Initialization sequence. The numbered steps below correspond
1063 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1064 * Channel Engine manual (part of the PCIO manual).
1065 * See also the STP2002-STQ document from Sun Microsystems.
1066 */
1067
1068 /* step 1 & 2. Reset the Ethernet Channel */
1069 cas_stop(ifp, 0);
1070 cas_reset(sc);
1071 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1072
1073 /* Re-initialize the MIF */
1074 cas_mifinit(sc);
1075
1076 /* step 3. Setup data structures in host memory */
1077 cas_meminit(sc);
1078
1079 /* step 4. TX MAC registers & counters */
1080 cas_init_regs(sc);
1081 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1082 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1083 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1084
1085 /* step 5. RX MAC registers & counters */
1086 cas_iff(sc);
1087
1088 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1089 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1090 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1091 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1092 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1093
1094 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1095 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1096 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1097 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1098
1099 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1100 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1101 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1102 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1103
1104 if (CAS_PLUS(sc)) {
1105 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1106 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1107 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1108 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1109 CAS_CDRXADDR2(sc, 0));
1110 }
1111
1112 /* step 8. Global Configuration & Interrupt Mask */
1113 cas_estintr(sc, CAS_INTR_REG);
1114
1115 /* step 9. ETX Configuration: use mostly default values */
1116
1117 /* Enable DMA */
1118 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1119 bus_space_write_4(t, h, CAS_TX_CONFIG,
1120 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1121 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1122
1123 /* step 10. ERX Configuration */
1124
1125 /* Encode Receive Descriptor ring size */
1126 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1127 if (CAS_PLUS(sc))
1128 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1129
1130 /* Encode Receive Completion ring size */
1131 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1132
1133 /* Enable DMA */
1134 bus_space_write_4(t, h, CAS_RX_CONFIG,
1135 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1136
1137 /*
1138 * The following value is for an OFF Threshold of about 3/4 full
1139 * and an ON Threshold of 1/4 full.
1140 */
1141 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1142 (3 * sc->sc_rxfifosize / 256) |
1143 ((sc->sc_rxfifosize / 256) << 12));
1144 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1145
1146 /* step 11. Configure Media */
1147 mii_ifmedia_change(&sc->sc_mii);
1148
1149 /* step 12. RX_MAC Configuration Register */
1150 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1151 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1152 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1153
1154 /* step 14. Issue Transmit Pending command */
1155
1156 /* step 15. Give the receiver a swift kick */
1157 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1158 if (CAS_PLUS(sc))
1159 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1160
1161 /* Start the one second timer. */
1162 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1163
1164 ifp->if_flags |= IFF_RUNNING;
1165 ifp->if_flags &= ~IFF_OACTIVE;
1166 ifp->if_timer = 0;
1167 splx(s);
1168
1169 return (0);
1170 }
1171
1172 void
1173 cas_init_regs(struct cas_softc *sc)
1174 {
1175 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1176 bus_space_tag_t t = sc->sc_memt;
1177 bus_space_handle_t h = sc->sc_memh;
1178 const u_char *laddr = CLLADDR(ifp->if_sadl);
1179 u_int32_t v, r;
1180
1181 /* These regs are not cleared on reset */
1182 sc->sc_inited = 0;
1183 if (!sc->sc_inited) {
1184 /* Load recommended values */
1185 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1186 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1187 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1188
1189 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1190 /* Max frame and max burst size */
1191 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1192 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1193
1194 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1195 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1196 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1197 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1198 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1199 ((laddr[5]<<8)|laddr[4])&0x3ff);
1200
1201 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1202 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1203 bus_space_write_4(t, h, r, 0);
1204
1205 /* MAC control addr set to 0:1:c2:0:1:80 */
1206 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1207 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1208 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1209
1210 /* MAC filter addr set to 0:0:0:0:0:0 */
1211 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1212 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1213 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1214
1215 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1216 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1217
1218 /* Hash table initialized to 0 */
1219 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1220 bus_space_write_4(t, h, r, 0);
1221
1222 sc->sc_inited = 1;
1223 }
1224
1225 /* Counters need to be zeroed */
1226 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1227 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1228 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1229 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1230 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1231 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1232 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1233 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1234 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1235 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1236 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1237
1238 /* Un-pause stuff */
1239 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1240
1241 /*
1242 * Set the station address.
1243 */
1244 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1245 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1246 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1247 }
1248
1249 /*
1250 * Receive interrupt.
1251 */
1252 int
1253 cas_rint(struct cas_softc *sc)
1254 {
1255 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1256 bus_space_tag_t t = sc->sc_memt;
1257 bus_space_handle_t h = sc->sc_memh;
1258 struct cas_rxsoft *rxs;
1259 struct mbuf *m;
1260 u_int64_t word[4];
1261 int len, off, idx;
1262 int i, skip;
1263 void *cp;
1264
1265 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1266 CAS_CDRXCSYNC(sc, i,
1267 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1268
1269 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1270 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1271 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1272 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1273
1274 /* Stop if the hardware still owns the descriptor. */
1275 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1276 break;
1277
1278 len = CAS_RC1_HDR_LEN(word[1]);
1279 if (len > 0) {
1280 off = CAS_RC1_HDR_OFF(word[1]);
1281 idx = CAS_RC1_HDR_IDX(word[1]);
1282 rxs = &sc->sc_rxsoft[idx];
1283
1284 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1285 idx, off, len));
1286
1287 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1288 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1289
1290 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1291 m = m_devget(cp, len, 0, ifp);
1292
1293 if (word[0] & CAS_RC0_RELEASE_HDR)
1294 cas_add_rxbuf(sc, idx);
1295
1296 if (m != NULL) {
1297
1298 /*
1299 * Pass this up to any BPF listeners, but only
1300 * pass it up the stack if its for us.
1301 */
1302 m->m_pkthdr.csum_flags = 0;
1303 if_percpuq_enqueue(ifp->if_percpuq, m);
1304 } else
1305 ifp->if_ierrors++;
1306 }
1307
1308 len = CAS_RC0_DATA_LEN(word[0]);
1309 if (len > 0) {
1310 off = CAS_RC0_DATA_OFF(word[0]);
1311 idx = CAS_RC0_DATA_IDX(word[0]);
1312 rxs = &sc->sc_rxsoft[idx];
1313
1314 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1315 idx, off, len));
1316
1317 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1318 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1319
1320 /* XXX We should not be copying the packet here. */
1321 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1322 m = m_devget(cp, len, 0, ifp);
1323
1324 if (word[0] & CAS_RC0_RELEASE_DATA)
1325 cas_add_rxbuf(sc, idx);
1326
1327 if (m != NULL) {
1328 /*
1329 * Pass this up to any BPF listeners, but only
1330 * pass it up the stack if its for us.
1331 */
1332 m->m_pkthdr.csum_flags = 0;
1333 if_percpuq_enqueue(ifp->if_percpuq, m);
1334 } else
1335 ifp->if_ierrors++;
1336 }
1337
1338 if (word[0] & CAS_RC0_SPLIT)
1339 aprint_error_dev(sc->sc_dev, "split packet\n");
1340
1341 skip = CAS_RC0_SKIP(word[0]);
1342 }
1343
1344 while (sc->sc_rxptr != i) {
1345 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1346 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1347 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1348 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1349 CAS_DMA_WRITE(CAS_RC3_OWN);
1350 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1351 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1352
1353 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1354 }
1355
1356 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1357
1358 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1359 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1360
1361 return (1);
1362 }
1363
1364 /*
1365 * cas_add_rxbuf:
1366 *
1367 * Add a receive buffer to the indicated descriptor.
1368 */
1369 int
1370 cas_add_rxbuf(struct cas_softc *sc, int idx)
1371 {
1372 bus_space_tag_t t = sc->sc_memt;
1373 bus_space_handle_t h = sc->sc_memh;
1374
1375 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1376
1377 if ((sc->sc_rxdptr % 4) == 0)
1378 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1379
1380 if (++sc->sc_rxdptr == CAS_NRXDESC)
1381 sc->sc_rxdptr = 0;
1382
1383 return (0);
1384 }
1385
1386 int
1387 cas_eint(struct cas_softc *sc, u_int status)
1388 {
1389 char bits[128];
1390 if ((status & CAS_INTR_MIF) != 0) {
1391 DPRINTF(sc, ("%s: link status changed\n",
1392 device_xname(sc->sc_dev)));
1393 return (1);
1394 }
1395
1396 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1397 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1398 return (1);
1399 }
1400
1401 int
1402 cas_pint(struct cas_softc *sc)
1403 {
1404 bus_space_tag_t t = sc->sc_memt;
1405 bus_space_handle_t seb = sc->sc_memh;
1406 u_int32_t status;
1407
1408 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1409 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1410 #ifdef CAS_DEBUG
1411 if (status)
1412 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1413 #endif
1414 return (1);
1415 }
1416
1417 int
1418 cas_intr(void *v)
1419 {
1420 struct cas_softc *sc = (struct cas_softc *)v;
1421 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1422 bus_space_tag_t t = sc->sc_memt;
1423 bus_space_handle_t seb = sc->sc_memh;
1424 u_int32_t status;
1425 int r = 0;
1426 #ifdef CAS_DEBUG
1427 char bits[128];
1428 #endif
1429
1430 sc->sc_ev_intr.ev_count++;
1431
1432 status = bus_space_read_4(t, seb, CAS_STATUS);
1433 #ifdef CAS_DEBUG
1434 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1435 #endif
1436 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1437 device_xname(sc->sc_dev), (status>>19), bits));
1438
1439 if ((status & CAS_INTR_PCS) != 0)
1440 r |= cas_pint(sc);
1441
1442 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1443 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1444 r |= cas_eint(sc, status);
1445
1446 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1447 r |= cas_tint(sc, status);
1448
1449 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1450 r |= cas_rint(sc);
1451
1452 /* We should eventually do more than just print out error stats. */
1453 if (status & CAS_INTR_TX_MAC) {
1454 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1455 #ifdef CAS_DEBUG
1456 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1457 printf("%s: MAC tx fault, status %x\n",
1458 device_xname(sc->sc_dev), txstat);
1459 #endif
1460 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1461 cas_init(ifp);
1462 }
1463 if (status & CAS_INTR_RX_MAC) {
1464 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1465 #ifdef CAS_DEBUG
1466 if (rxstat & ~CAS_MAC_RX_DONE)
1467 printf("%s: MAC rx fault, status %x\n",
1468 device_xname(sc->sc_dev), rxstat);
1469 #endif
1470 /*
1471 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1472 * due to a silicon bug so handle them silently.
1473 */
1474 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1475 ifp->if_ierrors++;
1476 cas_init(ifp);
1477 }
1478 #ifdef CAS_DEBUG
1479 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1480 printf("%s: MAC rx fault, status %x\n",
1481 device_xname(sc->sc_dev), rxstat);
1482 #endif
1483 }
1484 rnd_add_uint32(&sc->rnd_source, status);
1485 return (r);
1486 }
1487
1488
1489 void
1490 cas_watchdog(struct ifnet *ifp)
1491 {
1492 struct cas_softc *sc = ifp->if_softc;
1493
1494 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1495 "CAS_MAC_RX_CONFIG %x\n",
1496 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1497 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1498 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1499
1500 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1501 ++ifp->if_oerrors;
1502
1503 /* Try to get more packets going. */
1504 cas_init(ifp);
1505 }
1506
1507 /*
1508 * Initialize the MII Management Interface
1509 */
1510 void
1511 cas_mifinit(struct cas_softc *sc)
1512 {
1513 bus_space_tag_t t = sc->sc_memt;
1514 bus_space_handle_t mif = sc->sc_memh;
1515
1516 /* Configure the MIF in frame mode */
1517 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1518 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1519 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1520 }
1521
1522 /*
1523 * MII interface
1524 *
1525 * The Cassini MII interface supports at least three different operating modes:
1526 *
1527 * Bitbang mode is implemented using data, clock and output enable registers.
1528 *
1529 * Frame mode is implemented by loading a complete frame into the frame
1530 * register and polling the valid bit for completion.
1531 *
1532 * Polling mode uses the frame register but completion is indicated by
1533 * an interrupt.
1534 *
1535 */
1536 int
1537 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1538 {
1539 struct cas_softc *sc = device_private(self);
1540 bus_space_tag_t t = sc->sc_memt;
1541 bus_space_handle_t mif = sc->sc_memh;
1542 int n;
1543 u_int32_t v;
1544
1545 #ifdef CAS_DEBUG
1546 if (sc->sc_debug)
1547 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1548 #endif
1549
1550 /* Construct the frame command */
1551 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1552 CAS_MIF_FRAME_READ;
1553
1554 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1555 for (n = 0; n < 100; n++) {
1556 DELAY(1);
1557 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1558 if (v & CAS_MIF_FRAME_TA0) {
1559 *val = v & CAS_MIF_FRAME_DATA;
1560 return 0;
1561 }
1562 }
1563
1564 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1565 return ETIMEDOUT;
1566 }
1567
1568 int
1569 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1570 {
1571 struct cas_softc *sc = device_private(self);
1572 bus_space_tag_t t = sc->sc_memt;
1573 bus_space_handle_t mif = sc->sc_memh;
1574 int n;
1575 u_int32_t v;
1576
1577 #ifdef CAS_DEBUG
1578 if (sc->sc_debug)
1579 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1580 phy, reg, val);
1581 #endif
1582
1583 /* Construct the frame command */
1584 v = CAS_MIF_FRAME_WRITE |
1585 (phy << CAS_MIF_PHY_SHIFT) |
1586 (reg << CAS_MIF_REG_SHIFT) |
1587 (val & CAS_MIF_FRAME_DATA);
1588
1589 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1590 for (n = 0; n < 100; n++) {
1591 DELAY(1);
1592 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1593 if (v & CAS_MIF_FRAME_TA0)
1594 return 0;
1595 }
1596
1597 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1598 return ETIMEDOUT;
1599 }
1600
1601 void
1602 cas_mii_statchg(struct ifnet *ifp)
1603 {
1604 struct cas_softc *sc = ifp->if_softc;
1605 #ifdef CAS_DEBUG
1606 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1607 #endif
1608 bus_space_tag_t t = sc->sc_memt;
1609 bus_space_handle_t mac = sc->sc_memh;
1610 u_int32_t v;
1611
1612 #ifdef CAS_DEBUG
1613 if (sc->sc_debug)
1614 printf("cas_mii_statchg: status change: phy = %d\n",
1615 sc->sc_phys[instance]);
1616 #endif
1617
1618 /* Set tx full duplex options */
1619 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1620 delay(10000); /* reg must be cleared and delay before changing. */
1621 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1622 CAS_MAC_TX_ENABLE;
1623 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1624 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1625 }
1626 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1627
1628 /* XIF Configuration */
1629 v = CAS_MAC_XIF_TX_MII_ENA;
1630 v |= CAS_MAC_XIF_LINK_LED;
1631
1632 /* MII needs echo disable if half duplex. */
1633 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1634 /* turn on full duplex LED */
1635 v |= CAS_MAC_XIF_FDPLX_LED;
1636 else
1637 /* half duplex -- disable echo */
1638 v |= CAS_MAC_XIF_ECHO_DISABL;
1639
1640 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1641 case IFM_1000_T: /* Gigabit using GMII interface */
1642 case IFM_1000_SX:
1643 v |= CAS_MAC_XIF_GMII_MODE;
1644 break;
1645 default:
1646 v &= ~CAS_MAC_XIF_GMII_MODE;
1647 }
1648 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1649 }
1650
1651 int
1652 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1653 {
1654 struct cas_softc *sc = device_private(self);
1655 bus_space_tag_t t = sc->sc_memt;
1656 bus_space_handle_t pcs = sc->sc_memh;
1657
1658 #ifdef CAS_DEBUG
1659 if (sc->sc_debug)
1660 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1661 #endif
1662
1663 if (phy != CAS_PHYAD_EXTERNAL)
1664 return -1;
1665
1666 switch (reg) {
1667 case MII_BMCR:
1668 reg = CAS_MII_CONTROL;
1669 break;
1670 case MII_BMSR:
1671 reg = CAS_MII_STATUS;
1672 break;
1673 case MII_ANAR:
1674 reg = CAS_MII_ANAR;
1675 break;
1676 case MII_ANLPAR:
1677 reg = CAS_MII_ANLPAR;
1678 break;
1679 case MII_EXTSR:
1680 *val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1681 return 0;
1682 default:
1683 return (0);
1684 }
1685
1686 *val = bus_space_read_4(t, pcs, reg) & 0xffff;
1687 return 0;
1688 }
1689
1690 int
1691 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1692 {
1693 struct cas_softc *sc = device_private(self);
1694 bus_space_tag_t t = sc->sc_memt;
1695 bus_space_handle_t pcs = sc->sc_memh;
1696 int reset = 0;
1697
1698 #ifdef CAS_DEBUG
1699 if (sc->sc_debug)
1700 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1701 phy, reg, val);
1702 #endif
1703
1704 if (phy != CAS_PHYAD_EXTERNAL)
1705 return -1;
1706
1707 if (reg == MII_ANAR)
1708 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1709
1710 switch (reg) {
1711 case MII_BMCR:
1712 reset = (val & CAS_MII_CONTROL_RESET);
1713 reg = CAS_MII_CONTROL;
1714 break;
1715 case MII_BMSR:
1716 reg = CAS_MII_STATUS;
1717 break;
1718 case MII_ANAR:
1719 reg = CAS_MII_ANAR;
1720 break;
1721 case MII_ANLPAR:
1722 reg = CAS_MII_ANLPAR;
1723 break;
1724 default:
1725 return 0;
1726 }
1727
1728 bus_space_write_4(t, pcs, reg, val);
1729
1730 if (reset)
1731 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1732
1733 if (reg == CAS_MII_ANAR || reset)
1734 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1735 CAS_MII_CONFIG_ENABLE);
1736
1737 return 0;
1738 }
1739
1740 int
1741 cas_mediachange(struct ifnet *ifp)
1742 {
1743 struct cas_softc *sc = ifp->if_softc;
1744 struct mii_data *mii = &sc->sc_mii;
1745
1746 if (mii->mii_instance) {
1747 struct mii_softc *miisc;
1748 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1749 mii_phy_reset(miisc);
1750 }
1751
1752 return (mii_mediachg(&sc->sc_mii));
1753 }
1754
1755 void
1756 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1757 {
1758 struct cas_softc *sc = ifp->if_softc;
1759
1760 mii_pollstat(&sc->sc_mii);
1761 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1762 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1763 }
1764
1765 /*
1766 * Process an ioctl request.
1767 */
1768 int
1769 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1770 {
1771 struct cas_softc *sc = ifp->if_softc;
1772 int s, error = 0;
1773
1774 s = splnet();
1775
1776 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1777 error = 0;
1778 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1779 ;
1780 else if (ifp->if_flags & IFF_RUNNING) {
1781 /*
1782 * Multicast list has changed; set the hardware filter
1783 * accordingly.
1784 */
1785 cas_iff(sc);
1786 }
1787 }
1788
1789 splx(s);
1790 return (error);
1791 }
1792
1793 static bool
1794 cas_suspend(device_t self, const pmf_qual_t *qual)
1795 {
1796 struct cas_softc *sc = device_private(self);
1797 bus_space_tag_t t = sc->sc_memt;
1798 bus_space_handle_t h = sc->sc_memh;
1799
1800 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1801 if (sc->sc_ih != NULL) {
1802 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1803 sc->sc_ih = NULL;
1804 }
1805
1806 return true;
1807 }
1808
1809 static bool
1810 cas_resume(device_t self, const pmf_qual_t *qual)
1811 {
1812 struct cas_softc *sc = device_private(self);
1813
1814 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1815 }
1816
1817 static bool
1818 cas_estintr(struct cas_softc *sc, int what)
1819 {
1820 bus_space_tag_t t = sc->sc_memt;
1821 bus_space_handle_t h = sc->sc_memh;
1822 const char *intrstr = NULL;
1823 char intrbuf[PCI_INTRSTR_LEN];
1824
1825 /* PCI interrupts */
1826 if (what & CAS_INTR_PCI) {
1827 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf, sizeof(intrbuf));
1828 sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1829 IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1830 if (sc->sc_ih == NULL) {
1831 aprint_error_dev(sc->sc_dev,
1832 "unable to establish interrupt");
1833 if (intrstr != NULL)
1834 aprint_error(" at %s", intrstr);
1835 aprint_error("\n");
1836 return false;
1837 }
1838
1839 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1840 }
1841
1842 /* Interrupt register */
1843 if (what & CAS_INTR_REG) {
1844 bus_space_write_4(t, h, CAS_INTMASK,
1845 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1846 CAS_INTR_TX_TAG_ERR|
1847 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1848 CAS_INTR_RX_TAG_ERR|
1849 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1850 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1851 CAS_INTR_BERR));
1852 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1853 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1854 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1855 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1856 }
1857 return true;
1858 }
1859
1860 bool
1861 cas_shutdown(device_t self, int howto)
1862 {
1863 struct cas_softc *sc = device_private(self);
1864 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1865
1866 cas_stop(ifp, 1);
1867
1868 return true;
1869 }
1870
1871 void
1872 cas_iff(struct cas_softc *sc)
1873 {
1874 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1875 struct ethercom *ec = &sc->sc_ethercom;
1876 struct ether_multi *enm;
1877 struct ether_multistep step;
1878 bus_space_tag_t t = sc->sc_memt;
1879 bus_space_handle_t h = sc->sc_memh;
1880 u_int32_t crc, hash[16], rxcfg;
1881 int i;
1882
1883 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1884 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1885 CAS_MAC_RX_PROMISC_GRP);
1886 ifp->if_flags &= ~IFF_ALLMULTI;
1887
1888 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1889 ifp->if_flags |= IFF_ALLMULTI;
1890 if (ifp->if_flags & IFF_PROMISC)
1891 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1892 else
1893 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1894 } else {
1895 /*
1896 * Set up multicast address filter by passing all multicast
1897 * addresses through a crc generator, and then using the
1898 * high order 8 bits as an index into the 256 bit logical
1899 * address filter. The high order 4 bits selects the word,
1900 * while the other 4 bits select the bit within the word
1901 * (where bit 0 is the MSB).
1902 */
1903
1904 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1905
1906 /* Clear hash table */
1907 for (i = 0; i < 16; i++)
1908 hash[i] = 0;
1909
1910 ETHER_FIRST_MULTI(step, ec, enm);
1911 while (enm != NULL) {
1912 crc = ether_crc32_le(enm->enm_addrlo,
1913 ETHER_ADDR_LEN);
1914
1915 /* Just want the 8 most significant bits. */
1916 crc >>= 24;
1917
1918 /* Set the corresponding bit in the filter. */
1919 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1920
1921 ETHER_NEXT_MULTI(step, enm);
1922 }
1923
1924 /* Now load the hash table into the chip (if we are using it) */
1925 for (i = 0; i < 16; i++) {
1926 bus_space_write_4(t, h,
1927 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1928 hash[i]);
1929 }
1930 }
1931
1932 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1933 }
1934
1935 int
1936 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1937 {
1938 u_int64_t flags;
1939 u_int32_t cur, frag, i;
1940 bus_dmamap_t map;
1941
1942 cur = frag = *bixp;
1943 map = sc->sc_txd[cur].sd_map;
1944
1945 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1946 BUS_DMA_NOWAIT) != 0) {
1947 return (ENOBUFS);
1948 }
1949
1950 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1951 bus_dmamap_unload(sc->sc_dmatag, map);
1952 return (ENOBUFS);
1953 }
1954
1955 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1956 BUS_DMASYNC_PREWRITE);
1957
1958 for (i = 0; i < map->dm_nsegs; i++) {
1959 sc->sc_txdescs[frag].cd_addr =
1960 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1961 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1962 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1963 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1964 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1965 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1966 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1967 BUS_DMASYNC_PREWRITE);
1968 cur = frag;
1969 if (++frag == CAS_NTXDESC)
1970 frag = 0;
1971 }
1972
1973 sc->sc_tx_cnt += map->dm_nsegs;
1974 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1975 sc->sc_txd[cur].sd_map = map;
1976 sc->sc_txd[cur].sd_mbuf = mhead;
1977
1978 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1979
1980 *bixp = frag;
1981
1982 /* sync descriptors */
1983
1984 return (0);
1985 }
1986
1987 /*
1988 * Transmit interrupt.
1989 */
1990 int
1991 cas_tint(struct cas_softc *sc, u_int32_t status)
1992 {
1993 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1994 struct cas_sxd *sd;
1995 u_int32_t cons, comp;
1996
1997 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1998 cons = sc->sc_tx_cons;
1999 while (cons != comp) {
2000 sd = &sc->sc_txd[cons];
2001 if (sd->sd_mbuf != NULL) {
2002 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2003 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2004 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2005 m_freem(sd->sd_mbuf);
2006 sd->sd_mbuf = NULL;
2007 ifp->if_opackets++;
2008 }
2009 sc->sc_tx_cnt--;
2010 if (++cons == CAS_NTXDESC)
2011 cons = 0;
2012 }
2013 sc->sc_tx_cons = cons;
2014
2015 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2016 ifp->if_flags &= ~IFF_OACTIVE;
2017 if (sc->sc_tx_cnt == 0)
2018 ifp->if_timer = 0;
2019
2020 if_schedule_deferred_start(ifp);
2021
2022 return (1);
2023 }
2024
2025 void
2026 cas_start(struct ifnet *ifp)
2027 {
2028 struct cas_softc *sc = ifp->if_softc;
2029 struct mbuf *m;
2030 u_int32_t bix;
2031
2032 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2033 return;
2034
2035 bix = sc->sc_tx_prod;
2036 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2037 IFQ_POLL(&ifp->if_snd, m);
2038 if (m == NULL)
2039 break;
2040
2041 /*
2042 * If BPF is listening on this interface, let it see the
2043 * packet before we commit it to the wire.
2044 */
2045 bpf_mtap(ifp, m, BPF_D_OUT);
2046
2047 /*
2048 * Encapsulate this packet and start it going...
2049 * or fail...
2050 */
2051 if (cas_encap(sc, m, &bix)) {
2052 ifp->if_flags |= IFF_OACTIVE;
2053 break;
2054 }
2055
2056 IFQ_DEQUEUE(&ifp->if_snd, m);
2057 ifp->if_timer = 5;
2058 }
2059
2060 sc->sc_tx_prod = bix;
2061 }
2062
2063 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2064
2065 #ifdef _MODULE
2066 #include "ioconf.c"
2067 #endif
2068
2069 static int
2070 if_cas_modcmd(modcmd_t cmd, void *opaque)
2071 {
2072 int error = 0;
2073
2074 switch (cmd) {
2075 case MODULE_CMD_INIT:
2076 #ifdef _MODULE
2077 error = config_init_component(cfdriver_ioconf_cas,
2078 cfattach_ioconf_cas, cfdata_ioconf_cas);
2079 #endif
2080 return error;
2081 case MODULE_CMD_FINI:
2082 #ifdef _MODULE
2083 error = config_fini_component(cfdriver_ioconf_cas,
2084 cfattach_ioconf_cas, cfdata_ioconf_cas);
2085 #endif
2086 return error;
2087 default:
2088 return ENOTTY;
2089 }
2090 }
2091