if_cas.c revision 1.34 1 /* $NetBSD: if_cas.c,v 1.34 2019/05/23 13:10:52 msaitoh Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.34 2019/05/23 13:10:52 msaitoh Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 #define TRIES 10000
101
102 static bool cas_estintr(struct cas_softc *sc, int);
103 bool cas_shutdown(device_t, int);
104 static bool cas_suspend(device_t, const pmf_qual_t *);
105 static bool cas_resume(device_t, const pmf_qual_t *);
106 static int cas_detach(device_t, int);
107 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109 int cas_match(device_t, cfdata_t, void *);
110 void cas_attach(device_t, device_t, void *);
111
112
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN);
116
117 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119 void cas_config(struct cas_softc *, const uint8_t *);
120 void cas_start(struct ifnet *);
121 void cas_stop(struct ifnet *, int);
122 int cas_ioctl(struct ifnet *, u_long, void *);
123 void cas_tick(void *);
124 void cas_watchdog(struct ifnet *);
125 int cas_init(struct ifnet *);
126 void cas_init_regs(struct cas_softc *);
127 int cas_ringsize(int);
128 int cas_cringsize(int);
129 int cas_meminit(struct cas_softc *);
130 void cas_mifinit(struct cas_softc *);
131 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 uint32_t, uint32_t);
133 void cas_reset(struct cas_softc *);
134 int cas_reset_rx(struct cas_softc *);
135 int cas_reset_tx(struct cas_softc *);
136 int cas_disable_rx(struct cas_softc *);
137 int cas_disable_tx(struct cas_softc *);
138 void cas_rxdrain(struct cas_softc *);
139 int cas_add_rxbuf(struct cas_softc *, int);
140 void cas_iff(struct cas_softc *);
141 int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142
143 /* MII methods & callbacks */
144 int cas_mii_readreg(device_t, int, int, uint16_t*);
145 int cas_mii_writereg(device_t, int, int, uint16_t);
146 void cas_mii_statchg(struct ifnet *);
147 int cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int cas_pcs_writereg(device_t, int, int, uint16_t);
149
150 int cas_mediachange(struct ifnet *);
151 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153 int cas_eint(struct cas_softc *, u_int);
154 int cas_rint(struct cas_softc *);
155 int cas_tint(struct cas_softc *, uint32_t);
156 int cas_pint(struct cas_softc *);
157 int cas_intr(void *);
158
159 #ifdef CAS_DEBUG
160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x
162 #else
163 #define DPRINTF(sc, x) /* nothing */
164 #endif
165
166 int
167 cas_match(device_t parent, cfdata_t cf, void *aux)
168 {
169 struct pci_attach_args *pa = aux;
170
171 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
172 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
173 return 1;
174
175 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
176 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
177 return 1;
178
179 return 0;
180 }
181
182 #define PROMHDR_PTR_DATA 0x18
183 #define PROMDATA_PTR_VPD 0x08
184 #define PROMDATA_DATA2 0x0a
185
186 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
187 static const uint8_t cas_promdat[] = {
188 'P', 'C', 'I', 'R',
189 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
190 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
191 };
192 static const uint8_t cas_promdat_ns[] = {
193 'P', 'C', 'I', 'R',
194 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
195 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
196 };
197
198 static const uint8_t cas_promdat2[] = {
199 0x18, 0x00, /* structure length */
200 0x00, /* structure revision */
201 0x00, /* interface revision */
202 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
203 PCI_CLASS_NETWORK /* class code */
204 };
205
206 #define CAS_LMA_MAXNUM 4
207 int
208 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
209 uint8_t *enaddr)
210 {
211 struct pci_vpd_largeres *res;
212 struct pci_vpd *vpd;
213 bus_space_handle_t romh;
214 bus_space_tag_t romt;
215 bus_size_t romsize = 0;
216 uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
217 uint8_t buf[32], *desc;
218 pcireg_t address;
219 int dataoff, vpdoff, len, lma = 0;
220 int i, rv = -1;
221
222 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
223 &romt, &romh, NULL, &romsize))
224 return (-1);
225
226 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
227 address |= PCI_MAPREG_ROM_ENABLE;
228 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
229
230 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
231 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
232 goto fail;
233
234 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
235 if (dataoff < 0x1c)
236 goto fail;
237
238 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
239 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
240 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
241 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
242 goto fail;
243
244 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
245 if (vpdoff < 0x1c)
246 goto fail;
247
248 next:
249 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
250 if (!PCI_VPDRES_ISLARGE(buf[0]))
251 goto fail;
252
253 res = (struct pci_vpd_largeres *)buf;
254 vpdoff += sizeof(*res);
255
256 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
257 switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
258 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
259 /* Skip identifier string. */
260 vpdoff += len;
261 goto next;
262
263 case PCI_VPDRES_TYPE_VPD:
264 while (len > 0) {
265 bus_space_read_region_1(romt, romh, vpdoff,
266 buf, sizeof(buf));
267
268 vpd = (struct pci_vpd *)buf;
269 vpdoff += sizeof(*vpd) + vpd->vpd_len;
270 len -= sizeof(*vpd) + vpd->vpd_len;
271
272 /*
273 * We're looking for an "Enhanced" VPD...
274 */
275 if (vpd->vpd_key0 != 'Z')
276 continue;
277
278 desc = buf + sizeof(*vpd);
279
280 /*
281 * ...which is an instance property...
282 */
283 if (desc[0] != 'I')
284 continue;
285 desc += 3;
286
287 /*
288 * ...that's a byte array with the proper
289 * length for a MAC address...
290 */
291 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
292 continue;
293 desc += 2;
294
295 /*
296 * ...named "local-mac-address".
297 */
298 if (strcmp(desc, "local-mac-address") != 0)
299 continue;
300 desc += strlen("local-mac-address") + 1;
301
302 memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
303 lma++;
304 rv = 0;
305 if (lma == CAS_LMA_MAXNUM)
306 break;
307 }
308 break;
309
310 default:
311 goto fail;
312 }
313
314 i = 0;
315 /*
316 * Multi port card has bridge chip. The device number is fixed:
317 * e.g.
318 * p0: 005:00:0
319 * p1: 005:01:0
320 * p2: 006:02:0
321 * p3: 006:03:0
322 */
323 if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
324 && (pa->pa_device < lma))
325 i = pa->pa_device;
326 memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
327 fail:
328 if (romsize != 0)
329 bus_space_unmap(romt, romh, romsize);
330
331 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
332 address &= ~PCI_MAPREG_ROM_ENABLE;
333 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
334
335 return (rv);
336 }
337
338 void
339 cas_attach(device_t parent, device_t self, void *aux)
340 {
341 struct pci_attach_args *pa = aux;
342 struct cas_softc *sc = device_private(self);
343 prop_data_t data;
344 uint8_t enaddr[ETHER_ADDR_LEN];
345
346 sc->sc_dev = self;
347 pci_aprint_devinfo(pa, NULL);
348 sc->sc_rev = PCI_REVISION(pa->pa_class);
349 sc->sc_dmatag = pa->pa_dmat;
350
351 #define PCI_CAS_BASEADDR 0x10
352 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
353 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
354 aprint_error_dev(sc->sc_dev,
355 "unable to map device registers\n");
356 return;
357 }
358
359 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
360 "mac-address")) != NULL)
361 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
362 else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
363 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
364 memset(enaddr, 0, sizeof(enaddr));
365 }
366
367 sc->sc_burst = 16; /* XXX */
368
369 sc->sc_att_stage = CAS_ATT_BACKEND_0;
370
371 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
372 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
373 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
374 return;
375 }
376 sc->sc_pc = pa->pa_pc;
377 if (!cas_estintr(sc, CAS_INTR_PCI)) {
378 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
379 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
380 return;
381 }
382
383 sc->sc_att_stage = CAS_ATT_BACKEND_1;
384
385 /*
386 * call the main configure
387 */
388 cas_config(sc, enaddr);
389
390 if (pmf_device_register1(sc->sc_dev,
391 cas_suspend, cas_resume, cas_shutdown))
392 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
393 else
394 aprint_error_dev(sc->sc_dev,
395 "could not establish power handlers\n");
396
397 sc->sc_att_stage = CAS_ATT_FINISHED;
398 /*FALLTHROUGH*/
399 }
400
401 /*
402 * cas_config:
403 *
404 * Attach a Cassini interface to the system.
405 */
406 void
407 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
408 {
409 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
410 struct mii_data *mii = &sc->sc_mii;
411 struct mii_softc *child;
412 int i, error;
413
414 /* Make sure the chip is stopped. */
415 ifp->if_softc = sc;
416 cas_reset(sc);
417
418 /*
419 * Allocate the control data structures, and create and load the
420 * DMA map for it.
421 */
422 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
423 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
424 1, &sc->sc_cdnseg, 0)) != 0) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to allocate control data, error = %d\n",
427 error);
428 cas_partial_detach(sc, CAS_ATT_0);
429 }
430
431 /* XXX should map this in with correct endianness */
432 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
433 sc->sc_cdnseg, sizeof(struct cas_control_data),
434 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
435 aprint_error_dev(sc->sc_dev,
436 "unable to map control data, error = %d\n", error);
437 cas_partial_detach(sc, CAS_ATT_1);
438 }
439
440 if ((error = bus_dmamap_create(sc->sc_dmatag,
441 sizeof(struct cas_control_data), 1,
442 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
443 aprint_error_dev(sc->sc_dev,
444 "unable to create control data DMA map, error = %d\n",
445 error);
446 cas_partial_detach(sc, CAS_ATT_2);
447 }
448
449 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
450 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
451 0)) != 0) {
452 aprint_error_dev(sc->sc_dev,
453 "unable to load control data DMA map, error = %d\n",
454 error);
455 cas_partial_detach(sc, CAS_ATT_3);
456 }
457
458 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
459
460 /*
461 * Create the receive buffer DMA maps.
462 */
463 for (i = 0; i < CAS_NRXDESC; i++) {
464 bus_dma_segment_t seg;
465 char *kva;
466 int rseg;
467
468 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
469 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
470 aprint_error_dev(sc->sc_dev,
471 "unable to alloc rx DMA mem %d, error = %d\n",
472 i, error);
473 cas_partial_detach(sc, CAS_ATT_5);
474 }
475 sc->sc_rxsoft[i].rxs_dmaseg = seg;
476
477 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
478 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
479 aprint_error_dev(sc->sc_dev,
480 "unable to alloc rx DMA mem %d, error = %d\n",
481 i, error);
482 cas_partial_detach(sc, CAS_ATT_5);
483 }
484 sc->sc_rxsoft[i].rxs_kva = kva;
485
486 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
487 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
488 aprint_error_dev(sc->sc_dev,
489 "unable to create rx DMA map %d, error = %d\n",
490 i, error);
491 cas_partial_detach(sc, CAS_ATT_5);
492 }
493
494 if ((error = bus_dmamap_load(sc->sc_dmatag,
495 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
496 BUS_DMA_NOWAIT)) != 0) {
497 aprint_error_dev(sc->sc_dev,
498 "unable to load rx DMA map %d, error = %d\n",
499 i, error);
500 cas_partial_detach(sc, CAS_ATT_5);
501 }
502 }
503
504 /*
505 * Create the transmit buffer DMA maps.
506 */
507 for (i = 0; i < CAS_NTXDESC; i++) {
508 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
509 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
510 &sc->sc_txd[i].sd_map)) != 0) {
511 aprint_error_dev(sc->sc_dev,
512 "unable to create tx DMA map %d, error = %d\n",
513 i, error);
514 cas_partial_detach(sc, CAS_ATT_6);
515 }
516 sc->sc_txd[i].sd_mbuf = NULL;
517 }
518
519 /*
520 * From this point forward, the attachment cannot fail. A failure
521 * before this point releases all resources that may have been
522 * allocated.
523 */
524
525 /* Announce ourselves. */
526 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
527 ether_sprintf(enaddr));
528 aprint_naive(": Ethernet controller\n");
529
530 /* Get RX FIFO size */
531 sc->sc_rxfifosize = 16 * 1024;
532
533 /* Initialize ifnet structure. */
534 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
535 ifp->if_softc = sc;
536 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
537 ifp->if_start = cas_start;
538 ifp->if_ioctl = cas_ioctl;
539 ifp->if_watchdog = cas_watchdog;
540 ifp->if_stop = cas_stop;
541 ifp->if_init = cas_init;
542 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
543 IFQ_SET_READY(&ifp->if_snd);
544
545 /* Initialize ifmedia structures and MII info */
546 mii->mii_ifp = ifp;
547 mii->mii_readreg = cas_mii_readreg;
548 mii->mii_writereg = cas_mii_writereg;
549 mii->mii_statchg = cas_mii_statchg;
550
551 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
552 sc->sc_ethercom.ec_mii = mii;
553
554 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
555
556 cas_mifinit(sc);
557
558 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
559 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
560 bus_space_write_4(sc->sc_memt, sc->sc_memh,
561 CAS_MIF_CONFIG, sc->sc_mif_config);
562 }
563
564 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
565 MII_OFFSET_ANY, 0);
566
567 child = LIST_FIRST(&mii->mii_phys);
568 if (child == NULL &&
569 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
570 /*
571 * Try the external PCS SERDES if we didn't find any
572 * MII devices.
573 */
574 bus_space_write_4(sc->sc_memt, sc->sc_memh,
575 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
576
577 bus_space_write_4(sc->sc_memt, sc->sc_memh,
578 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
579
580 mii->mii_readreg = cas_pcs_readreg;
581 mii->mii_writereg = cas_pcs_writereg;
582
583 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
584 MII_OFFSET_ANY, MIIF_NOISOLATE);
585 }
586
587 child = LIST_FIRST(&mii->mii_phys);
588 if (child == NULL) {
589 /* No PHY attached */
590 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
591 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
592 } else {
593 /*
594 * Walk along the list of attached MII devices and
595 * establish an `MII instance' to `phy number'
596 * mapping. We'll use this mapping in media change
597 * requests to determine which phy to use to program
598 * the MIF configuration register.
599 */
600 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
601 /*
602 * Note: we support just two PHYs: the built-in
603 * internal device and an external on the MII
604 * connector.
605 */
606 if (child->mii_phy > 1 || child->mii_inst > 1) {
607 aprint_error_dev(sc->sc_dev,
608 "cannot accommodate MII device %s"
609 " at phy %d, instance %d\n",
610 device_xname(child->mii_dev),
611 child->mii_phy, child->mii_inst);
612 continue;
613 }
614
615 sc->sc_phys[child->mii_inst] = child->mii_phy;
616 }
617
618 /*
619 * XXX - we can really do the following ONLY if the
620 * phy indeed has the auto negotiation capability!!
621 */
622 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
623 }
624
625 /* claim 802.1q capability */
626 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
627
628 /* Attach the interface. */
629 if_attach(ifp);
630 if_deferred_start_init(ifp, NULL);
631 ether_ifattach(ifp, enaddr);
632
633 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
634 RND_TYPE_NET, RND_FLAG_DEFAULT);
635
636 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
637 NULL, device_xname(sc->sc_dev), "interrupts");
638
639 callout_init(&sc->sc_tick_ch, 0);
640
641 return;
642 }
643
644 int
645 cas_detach(device_t self, int flags)
646 {
647 int i;
648 struct cas_softc *sc = device_private(self);
649 bus_space_tag_t t = sc->sc_memt;
650 bus_space_handle_t h = sc->sc_memh;
651 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
652
653 /*
654 * Free any resources we've allocated during the failed attach
655 * attempt. Do this in reverse order and fall through.
656 */
657 switch (sc->sc_att_stage) {
658 case CAS_ATT_FINISHED:
659 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
660 pmf_device_deregister(self);
661 cas_stop(&sc->sc_ethercom.ec_if, 1);
662 evcnt_detach(&sc->sc_ev_intr);
663
664 rnd_detach_source(&sc->rnd_source);
665
666 ether_ifdetach(ifp);
667 if_detach(ifp);
668 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
669
670 callout_destroy(&sc->sc_tick_ch);
671
672 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
673
674 /*FALLTHROUGH*/
675 case CAS_ATT_MII:
676 case CAS_ATT_7:
677 case CAS_ATT_6:
678 for (i = 0; i < CAS_NTXDESC; i++) {
679 if (sc->sc_txd[i].sd_map != NULL)
680 bus_dmamap_destroy(sc->sc_dmatag,
681 sc->sc_txd[i].sd_map);
682 }
683 /*FALLTHROUGH*/
684 case CAS_ATT_5:
685 for (i = 0; i < CAS_NRXDESC; i++) {
686 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
687 bus_dmamap_unload(sc->sc_dmatag,
688 sc->sc_rxsoft[i].rxs_dmamap);
689 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
690 bus_dmamap_destroy(sc->sc_dmatag,
691 sc->sc_rxsoft[i].rxs_dmamap);
692 if (sc->sc_rxsoft[i].rxs_kva != NULL)
693 bus_dmamem_unmap(sc->sc_dmatag,
694 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
695 /* XXX need to check that bus_dmamem_alloc suceeded
696 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
697 */
698 bus_dmamem_free(sc->sc_dmatag,
699 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
700 }
701 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
702 /*FALLTHROUGH*/
703 case CAS_ATT_4:
704 case CAS_ATT_3:
705 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
706 /*FALLTHROUGH*/
707 case CAS_ATT_2:
708 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
709 sizeof(struct cas_control_data));
710 /*FALLTHROUGH*/
711 case CAS_ATT_1:
712 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
713 /*FALLTHROUGH*/
714 case CAS_ATT_0:
715 sc->sc_att_stage = CAS_ATT_0;
716 /*FALLTHROUGH*/
717 case CAS_ATT_BACKEND_2:
718 case CAS_ATT_BACKEND_1:
719 if (sc->sc_ih != NULL) {
720 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
721 sc->sc_ih = NULL;
722 }
723 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
724 /*FALLTHROUGH*/
725 case CAS_ATT_BACKEND_0:
726 break;
727 }
728 return 0;
729 }
730
731 static void
732 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
733 {
734 cfattach_t ca = device_cfattach(sc->sc_dev);
735
736 sc->sc_att_stage = stage;
737 (*ca->ca_detach)(sc->sc_dev, 0);
738 }
739
740 void
741 cas_tick(void *arg)
742 {
743 struct cas_softc *sc = arg;
744 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
745 bus_space_tag_t t = sc->sc_memt;
746 bus_space_handle_t mac = sc->sc_memh;
747 int s;
748 uint32_t v;
749
750 /* unload collisions counters */
751 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
752 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
753 ifp->if_collisions += v +
754 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
755 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
756 ifp->if_oerrors += v;
757
758 /* read error counters */
759 ifp->if_ierrors +=
760 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
761 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
762 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
763 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
764
765 /* clear the hardware counters */
766 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
767 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
768 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
769 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
770 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
771 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
772 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
773 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
774
775 s = splnet();
776 mii_tick(&sc->sc_mii);
777 splx(s);
778
779 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
780 }
781
782 int
783 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
784 uint32_t clr, uint32_t set)
785 {
786 int i;
787 uint32_t reg;
788
789 for (i = TRIES; i--; DELAY(100)) {
790 reg = bus_space_read_4(sc->sc_memt, h, r);
791 if ((reg & clr) == 0 && (reg & set) == set)
792 return (1);
793 }
794
795 return (0);
796 }
797
798 void
799 cas_reset(struct cas_softc *sc)
800 {
801 bus_space_tag_t t = sc->sc_memt;
802 bus_space_handle_t h = sc->sc_memh;
803 int s;
804
805 s = splnet();
806 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
807 cas_reset_rx(sc);
808 cas_reset_tx(sc);
809
810 /* Disable interrupts */
811 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
812
813 /* Do a full reset */
814 bus_space_write_4(t, h, CAS_RESET,
815 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
816 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
817 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
818 splx(s);
819 }
820
821
822 /*
823 * cas_rxdrain:
824 *
825 * Drain the receive queue.
826 */
827 void
828 cas_rxdrain(struct cas_softc *sc)
829 {
830 /* Nothing to do yet. */
831 }
832
833 /*
834 * Reset the whole thing.
835 */
836 void
837 cas_stop(struct ifnet *ifp, int disable)
838 {
839 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
840 struct cas_sxd *sd;
841 uint32_t i;
842
843 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
844
845 callout_stop(&sc->sc_tick_ch);
846
847 /*
848 * Mark the interface down and cancel the watchdog timer.
849 */
850 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
851 ifp->if_timer = 0;
852
853 mii_down(&sc->sc_mii);
854
855 cas_reset_rx(sc);
856 cas_reset_tx(sc);
857
858 /*
859 * Release any queued transmit buffers.
860 */
861 for (i = 0; i < CAS_NTXDESC; i++) {
862 sd = &sc->sc_txd[i];
863 if (sd->sd_mbuf != NULL) {
864 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
865 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
866 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
867 m_freem(sd->sd_mbuf);
868 sd->sd_mbuf = NULL;
869 }
870 }
871 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
872
873 if (disable)
874 cas_rxdrain(sc);
875 }
876
877
878 /*
879 * Reset the receiver
880 */
881 int
882 cas_reset_rx(struct cas_softc *sc)
883 {
884 bus_space_tag_t t = sc->sc_memt;
885 bus_space_handle_t h = sc->sc_memh;
886
887 /*
888 * Resetting while DMA is in progress can cause a bus hang, so we
889 * disable DMA first.
890 */
891 cas_disable_rx(sc);
892 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
893 /* Wait till it finishes */
894 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
895 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
896 /* Wait 5ms extra. */
897 delay(5000);
898
899 /* Finally, reset the ERX */
900 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
901 /* Wait till it finishes */
902 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
903 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
904 return (1);
905 }
906 return (0);
907 }
908
909
910 /*
911 * Reset the transmitter
912 */
913 int
914 cas_reset_tx(struct cas_softc *sc)
915 {
916 bus_space_tag_t t = sc->sc_memt;
917 bus_space_handle_t h = sc->sc_memh;
918
919 /*
920 * Resetting while DMA is in progress can cause a bus hang, so we
921 * disable DMA first.
922 */
923 cas_disable_tx(sc);
924 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
925 /* Wait till it finishes */
926 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
927 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
928 /* Wait 5ms extra. */
929 delay(5000);
930
931 /* Finally, reset the ETX */
932 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
933 /* Wait till it finishes */
934 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
935 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
936 return (1);
937 }
938 return (0);
939 }
940
941 /*
942 * Disable receiver.
943 */
944 int
945 cas_disable_rx(struct cas_softc *sc)
946 {
947 bus_space_tag_t t = sc->sc_memt;
948 bus_space_handle_t h = sc->sc_memh;
949 uint32_t cfg;
950
951 /* Flip the enable bit */
952 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
953 cfg &= ~CAS_MAC_RX_ENABLE;
954 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
955
956 /* Wait for it to finish */
957 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
958 }
959
960 /*
961 * Disable transmitter.
962 */
963 int
964 cas_disable_tx(struct cas_softc *sc)
965 {
966 bus_space_tag_t t = sc->sc_memt;
967 bus_space_handle_t h = sc->sc_memh;
968 uint32_t cfg;
969
970 /* Flip the enable bit */
971 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
972 cfg &= ~CAS_MAC_TX_ENABLE;
973 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
974
975 /* Wait for it to finish */
976 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
977 }
978
979 /*
980 * Initialize interface.
981 */
982 int
983 cas_meminit(struct cas_softc *sc)
984 {
985 int i;
986
987 /*
988 * Initialize the transmit descriptor ring.
989 */
990 for (i = 0; i < CAS_NTXDESC; i++) {
991 sc->sc_txdescs[i].cd_flags = 0;
992 sc->sc_txdescs[i].cd_addr = 0;
993 }
994 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
995 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
996
997 /*
998 * Initialize the receive descriptor and receive job
999 * descriptor rings.
1000 */
1001 for (i = 0; i < CAS_NRXDESC; i++)
1002 CAS_INIT_RXDESC(sc, i, i);
1003 sc->sc_rxdptr = 0;
1004 sc->sc_rxptr = 0;
1005
1006 /*
1007 * Initialize the receive completion ring.
1008 */
1009 for (i = 0; i < CAS_NRXCOMP; i++) {
1010 sc->sc_rxcomps[i].cc_word[0] = 0;
1011 sc->sc_rxcomps[i].cc_word[1] = 0;
1012 sc->sc_rxcomps[i].cc_word[2] = 0;
1013 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1014 CAS_CDRXCSYNC(sc, i,
1015 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1016 }
1017
1018 return (0);
1019 }
1020
1021 int
1022 cas_ringsize(int sz)
1023 {
1024 switch (sz) {
1025 case 32:
1026 return CAS_RING_SZ_32;
1027 case 64:
1028 return CAS_RING_SZ_64;
1029 case 128:
1030 return CAS_RING_SZ_128;
1031 case 256:
1032 return CAS_RING_SZ_256;
1033 case 512:
1034 return CAS_RING_SZ_512;
1035 case 1024:
1036 return CAS_RING_SZ_1024;
1037 case 2048:
1038 return CAS_RING_SZ_2048;
1039 case 4096:
1040 return CAS_RING_SZ_4096;
1041 case 8192:
1042 return CAS_RING_SZ_8192;
1043 default:
1044 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1045 sz);
1046 return CAS_RING_SZ_32;
1047 }
1048 }
1049
1050 int
1051 cas_cringsize(int sz)
1052 {
1053 int i;
1054
1055 for (i = 0; i < 9; i++)
1056 if (sz == (128 << i))
1057 return i;
1058
1059 aprint_error("cas: invalid completion ring size %d\n", sz);
1060 return 128;
1061 }
1062
1063 /*
1064 * Initialization of interface; set up initialization block
1065 * and transmit/receive descriptor rings.
1066 */
1067 int
1068 cas_init(struct ifnet *ifp)
1069 {
1070 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1071 bus_space_tag_t t = sc->sc_memt;
1072 bus_space_handle_t h = sc->sc_memh;
1073 int s;
1074 u_int max_frame_size;
1075 uint32_t v;
1076
1077 s = splnet();
1078
1079 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1080 /*
1081 * Initialization sequence. The numbered steps below correspond
1082 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1083 * Channel Engine manual (part of the PCIO manual).
1084 * See also the STP2002-STQ document from Sun Microsystems.
1085 */
1086
1087 /* step 1 & 2. Reset the Ethernet Channel */
1088 cas_stop(ifp, 0);
1089 cas_reset(sc);
1090 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1091
1092 /* Re-initialize the MIF */
1093 cas_mifinit(sc);
1094
1095 /* step 3. Setup data structures in host memory */
1096 cas_meminit(sc);
1097
1098 /* step 4. TX MAC registers & counters */
1099 cas_init_regs(sc);
1100 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1101 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1102 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1103
1104 /* step 5. RX MAC registers & counters */
1105 cas_iff(sc);
1106
1107 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1108 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1109 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1110 (((uint64_t)CAS_CDTXADDR(sc, 0)) >> 32));
1111 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1112
1113 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1114 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1115 (((uint64_t)CAS_CDRXADDR(sc, 0)) >> 32));
1116 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1117
1118 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1119 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1120 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1121 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1122
1123 if (CAS_PLUS(sc)) {
1124 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1125 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1126 (((uint64_t)CAS_CDRXADDR2(sc, 0)) >> 32));
1127 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1128 CAS_CDRXADDR2(sc, 0));
1129 }
1130
1131 /* step 8. Global Configuration & Interrupt Mask */
1132 cas_estintr(sc, CAS_INTR_REG);
1133
1134 /* step 9. ETX Configuration: use mostly default values */
1135
1136 /* Enable DMA */
1137 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1138 bus_space_write_4(t, h, CAS_TX_CONFIG,
1139 v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1140 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1141
1142 /* step 10. ERX Configuration */
1143
1144 /* Encode Receive Descriptor ring size */
1145 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1146 if (CAS_PLUS(sc))
1147 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1148
1149 /* Encode Receive Completion ring size */
1150 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1151
1152 /* Enable DMA */
1153 bus_space_write_4(t, h, CAS_RX_CONFIG,
1154 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1155
1156 /*
1157 * The following value is for an OFF Threshold of about 3/4 full
1158 * and an ON Threshold of 1/4 full.
1159 */
1160 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1161 (3 * sc->sc_rxfifosize / 256) |
1162 ((sc->sc_rxfifosize / 256) << 12));
1163 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1164
1165 /* step 11. Configure Media */
1166 mii_ifmedia_change(&sc->sc_mii);
1167
1168 /* step 12. RX_MAC Configuration Register */
1169 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1170 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1171 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1172
1173 /* step 14. Issue Transmit Pending command */
1174
1175 /* step 15. Give the receiver a swift kick */
1176 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1177 if (CAS_PLUS(sc))
1178 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1179
1180 /* Start the one second timer. */
1181 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1182
1183 ifp->if_flags |= IFF_RUNNING;
1184 ifp->if_flags &= ~IFF_OACTIVE;
1185 ifp->if_timer = 0;
1186 splx(s);
1187
1188 return (0);
1189 }
1190
1191 void
1192 cas_init_regs(struct cas_softc *sc)
1193 {
1194 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1195 bus_space_tag_t t = sc->sc_memt;
1196 bus_space_handle_t h = sc->sc_memh;
1197 const u_char *laddr = CLLADDR(ifp->if_sadl);
1198 uint32_t v, r;
1199
1200 /* These regs are not cleared on reset */
1201 sc->sc_inited = 0;
1202 if (!sc->sc_inited) {
1203 /* Load recommended values */
1204 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1205 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1206 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1207
1208 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1209 /* Max frame and max burst size */
1210 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1211 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1212
1213 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1214 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1215 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1216 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1217 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1218 ((laddr[5]<<8)|laddr[4])&0x3ff);
1219
1220 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1221 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1222 bus_space_write_4(t, h, r, 0);
1223
1224 /* MAC control addr set to 0:1:c2:0:1:80 */
1225 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1226 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1227 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1228
1229 /* MAC filter addr set to 0:0:0:0:0:0 */
1230 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1231 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1232 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1233
1234 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1235 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1236
1237 /* Hash table initialized to 0 */
1238 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1239 bus_space_write_4(t, h, r, 0);
1240
1241 sc->sc_inited = 1;
1242 }
1243
1244 /* Counters need to be zeroed */
1245 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1246 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1247 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1248 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1249 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1250 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1251 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1252 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1253 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1254 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1255 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1256
1257 /* Un-pause stuff */
1258 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1259
1260 /*
1261 * Set the station address.
1262 */
1263 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1264 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1265 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1266 }
1267
1268 /*
1269 * Receive interrupt.
1270 */
1271 int
1272 cas_rint(struct cas_softc *sc)
1273 {
1274 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1275 bus_space_tag_t t = sc->sc_memt;
1276 bus_space_handle_t h = sc->sc_memh;
1277 struct cas_rxsoft *rxs;
1278 struct mbuf *m;
1279 uint64_t word[4];
1280 int len, off, idx;
1281 int i, skip;
1282 void *cp;
1283
1284 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1285 CAS_CDRXCSYNC(sc, i,
1286 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1287
1288 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1289 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1290 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1291 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1292
1293 /* Stop if the hardware still owns the descriptor. */
1294 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1295 break;
1296
1297 len = CAS_RC1_HDR_LEN(word[1]);
1298 if (len > 0) {
1299 off = CAS_RC1_HDR_OFF(word[1]);
1300 idx = CAS_RC1_HDR_IDX(word[1]);
1301 rxs = &sc->sc_rxsoft[idx];
1302
1303 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1304 idx, off, len));
1305
1306 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1307 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1308
1309 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1310 m = m_devget(cp, len, 0, ifp);
1311
1312 if (word[0] & CAS_RC0_RELEASE_HDR)
1313 cas_add_rxbuf(sc, idx);
1314
1315 if (m != NULL) {
1316
1317 /*
1318 * Pass this up to any BPF listeners, but only
1319 * pass it up the stack if its for us.
1320 */
1321 m->m_pkthdr.csum_flags = 0;
1322 if_percpuq_enqueue(ifp->if_percpuq, m);
1323 } else
1324 ifp->if_ierrors++;
1325 }
1326
1327 len = CAS_RC0_DATA_LEN(word[0]);
1328 if (len > 0) {
1329 off = CAS_RC0_DATA_OFF(word[0]);
1330 idx = CAS_RC0_DATA_IDX(word[0]);
1331 rxs = &sc->sc_rxsoft[idx];
1332
1333 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1334 idx, off, len));
1335
1336 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1337 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1338
1339 /* XXX We should not be copying the packet here. */
1340 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1341 m = m_devget(cp, len, 0, ifp);
1342
1343 if (word[0] & CAS_RC0_RELEASE_DATA)
1344 cas_add_rxbuf(sc, idx);
1345
1346 if (m != NULL) {
1347 /*
1348 * Pass this up to any BPF listeners, but only
1349 * pass it up the stack if its for us.
1350 */
1351 m->m_pkthdr.csum_flags = 0;
1352 if_percpuq_enqueue(ifp->if_percpuq, m);
1353 } else
1354 ifp->if_ierrors++;
1355 }
1356
1357 if (word[0] & CAS_RC0_SPLIT)
1358 aprint_error_dev(sc->sc_dev, "split packet\n");
1359
1360 skip = CAS_RC0_SKIP(word[0]);
1361 }
1362
1363 while (sc->sc_rxptr != i) {
1364 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1365 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1366 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1367 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1368 CAS_DMA_WRITE(CAS_RC3_OWN);
1369 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1370 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1371
1372 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1373 }
1374
1375 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1376
1377 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1378 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1379
1380 return (1);
1381 }
1382
1383 /*
1384 * cas_add_rxbuf:
1385 *
1386 * Add a receive buffer to the indicated descriptor.
1387 */
1388 int
1389 cas_add_rxbuf(struct cas_softc *sc, int idx)
1390 {
1391 bus_space_tag_t t = sc->sc_memt;
1392 bus_space_handle_t h = sc->sc_memh;
1393
1394 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1395
1396 if ((sc->sc_rxdptr % 4) == 0)
1397 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1398
1399 if (++sc->sc_rxdptr == CAS_NRXDESC)
1400 sc->sc_rxdptr = 0;
1401
1402 return (0);
1403 }
1404
1405 int
1406 cas_eint(struct cas_softc *sc, u_int status)
1407 {
1408 char bits[128];
1409 if ((status & CAS_INTR_MIF) != 0) {
1410 DPRINTF(sc, ("%s: link status changed\n",
1411 device_xname(sc->sc_dev)));
1412 return (1);
1413 }
1414
1415 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1416 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1417 return (1);
1418 }
1419
1420 int
1421 cas_pint(struct cas_softc *sc)
1422 {
1423 bus_space_tag_t t = sc->sc_memt;
1424 bus_space_handle_t seb = sc->sc_memh;
1425 uint32_t status;
1426
1427 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1428 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1429 #ifdef CAS_DEBUG
1430 if (status)
1431 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1432 #endif
1433 return (1);
1434 }
1435
1436 int
1437 cas_intr(void *v)
1438 {
1439 struct cas_softc *sc = (struct cas_softc *)v;
1440 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1441 bus_space_tag_t t = sc->sc_memt;
1442 bus_space_handle_t seb = sc->sc_memh;
1443 uint32_t status;
1444 int r = 0;
1445 #ifdef CAS_DEBUG
1446 char bits[128];
1447 #endif
1448
1449 sc->sc_ev_intr.ev_count++;
1450
1451 status = bus_space_read_4(t, seb, CAS_STATUS);
1452 #ifdef CAS_DEBUG
1453 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1454 #endif
1455 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1456 device_xname(sc->sc_dev), (status>>19), bits));
1457
1458 if ((status & CAS_INTR_PCS) != 0)
1459 r |= cas_pint(sc);
1460
1461 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1462 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1463 r |= cas_eint(sc, status);
1464
1465 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1466 r |= cas_tint(sc, status);
1467
1468 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1469 r |= cas_rint(sc);
1470
1471 /* We should eventually do more than just print out error stats. */
1472 if (status & CAS_INTR_TX_MAC) {
1473 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1474 #ifdef CAS_DEBUG
1475 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1476 printf("%s: MAC tx fault, status %x\n",
1477 device_xname(sc->sc_dev), txstat);
1478 #endif
1479 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1480 cas_init(ifp);
1481 }
1482 if (status & CAS_INTR_RX_MAC) {
1483 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1484 #ifdef CAS_DEBUG
1485 if (rxstat & ~CAS_MAC_RX_DONE)
1486 printf("%s: MAC rx fault, status %x\n",
1487 device_xname(sc->sc_dev), rxstat);
1488 #endif
1489 /*
1490 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1491 * due to a silicon bug so handle them silently.
1492 */
1493 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1494 ifp->if_ierrors++;
1495 cas_init(ifp);
1496 }
1497 #ifdef CAS_DEBUG
1498 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1499 printf("%s: MAC rx fault, status %x\n",
1500 device_xname(sc->sc_dev), rxstat);
1501 #endif
1502 }
1503 rnd_add_uint32(&sc->rnd_source, status);
1504 return (r);
1505 }
1506
1507
1508 void
1509 cas_watchdog(struct ifnet *ifp)
1510 {
1511 struct cas_softc *sc = ifp->if_softc;
1512
1513 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1514 "CAS_MAC_RX_CONFIG %x\n",
1515 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1516 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1517 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1518
1519 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1520 ++ifp->if_oerrors;
1521
1522 /* Try to get more packets going. */
1523 cas_init(ifp);
1524 }
1525
1526 /*
1527 * Initialize the MII Management Interface
1528 */
1529 void
1530 cas_mifinit(struct cas_softc *sc)
1531 {
1532 bus_space_tag_t t = sc->sc_memt;
1533 bus_space_handle_t mif = sc->sc_memh;
1534
1535 /* Configure the MIF in frame mode */
1536 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1537 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1538 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1539 }
1540
1541 /*
1542 * MII interface
1543 *
1544 * The Cassini MII interface supports at least three different operating modes:
1545 *
1546 * Bitbang mode is implemented using data, clock and output enable registers.
1547 *
1548 * Frame mode is implemented by loading a complete frame into the frame
1549 * register and polling the valid bit for completion.
1550 *
1551 * Polling mode uses the frame register but completion is indicated by
1552 * an interrupt.
1553 *
1554 */
1555 int
1556 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1557 {
1558 struct cas_softc *sc = device_private(self);
1559 bus_space_tag_t t = sc->sc_memt;
1560 bus_space_handle_t mif = sc->sc_memh;
1561 int n;
1562 uint32_t v;
1563
1564 #ifdef CAS_DEBUG
1565 if (sc->sc_debug)
1566 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1567 #endif
1568
1569 /* Construct the frame command */
1570 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1571 CAS_MIF_FRAME_READ;
1572
1573 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1574 for (n = 0; n < 100; n++) {
1575 DELAY(1);
1576 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1577 if (v & CAS_MIF_FRAME_TA0) {
1578 *val = v & CAS_MIF_FRAME_DATA;
1579 return 0;
1580 }
1581 }
1582
1583 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1584 return ETIMEDOUT;
1585 }
1586
1587 int
1588 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1589 {
1590 struct cas_softc *sc = device_private(self);
1591 bus_space_tag_t t = sc->sc_memt;
1592 bus_space_handle_t mif = sc->sc_memh;
1593 int n;
1594 uint32_t v;
1595
1596 #ifdef CAS_DEBUG
1597 if (sc->sc_debug)
1598 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1599 phy, reg, val);
1600 #endif
1601
1602 /* Construct the frame command */
1603 v = CAS_MIF_FRAME_WRITE |
1604 (phy << CAS_MIF_PHY_SHIFT) |
1605 (reg << CAS_MIF_REG_SHIFT) |
1606 (val & CAS_MIF_FRAME_DATA);
1607
1608 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1609 for (n = 0; n < 100; n++) {
1610 DELAY(1);
1611 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1612 if (v & CAS_MIF_FRAME_TA0)
1613 return 0;
1614 }
1615
1616 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1617 return ETIMEDOUT;
1618 }
1619
1620 void
1621 cas_mii_statchg(struct ifnet *ifp)
1622 {
1623 struct cas_softc *sc = ifp->if_softc;
1624 #ifdef CAS_DEBUG
1625 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1626 #endif
1627 bus_space_tag_t t = sc->sc_memt;
1628 bus_space_handle_t mac = sc->sc_memh;
1629 uint32_t v;
1630
1631 #ifdef CAS_DEBUG
1632 if (sc->sc_debug)
1633 printf("cas_mii_statchg: status change: phy = %d\n",
1634 sc->sc_phys[instance]);
1635 #endif
1636
1637 /* Set tx full duplex options */
1638 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1639 delay(10000); /* reg must be cleared and delay before changing. */
1640 v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1641 CAS_MAC_TX_ENABLE;
1642 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1643 v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1644 }
1645 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1646
1647 /* XIF Configuration */
1648 v = CAS_MAC_XIF_TX_MII_ENA;
1649 v |= CAS_MAC_XIF_LINK_LED;
1650
1651 /* MII needs echo disable if half duplex. */
1652 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1653 /* turn on full duplex LED */
1654 v |= CAS_MAC_XIF_FDPLX_LED;
1655 else
1656 /* half duplex -- disable echo */
1657 v |= CAS_MAC_XIF_ECHO_DISABL;
1658
1659 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1660 case IFM_1000_T: /* Gigabit using GMII interface */
1661 case IFM_1000_SX:
1662 v |= CAS_MAC_XIF_GMII_MODE;
1663 break;
1664 default:
1665 v &= ~CAS_MAC_XIF_GMII_MODE;
1666 }
1667 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1668 }
1669
1670 int
1671 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1672 {
1673 struct cas_softc *sc = device_private(self);
1674 bus_space_tag_t t = sc->sc_memt;
1675 bus_space_handle_t pcs = sc->sc_memh;
1676
1677 #ifdef CAS_DEBUG
1678 if (sc->sc_debug)
1679 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1680 #endif
1681
1682 if (phy != CAS_PHYAD_EXTERNAL)
1683 return -1;
1684
1685 switch (reg) {
1686 case MII_BMCR:
1687 reg = CAS_MII_CONTROL;
1688 break;
1689 case MII_BMSR:
1690 reg = CAS_MII_STATUS;
1691 break;
1692 case MII_ANAR:
1693 reg = CAS_MII_ANAR;
1694 break;
1695 case MII_ANLPAR:
1696 reg = CAS_MII_ANLPAR;
1697 break;
1698 case MII_EXTSR:
1699 *val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1700 return 0;
1701 default:
1702 return (0);
1703 }
1704
1705 *val = bus_space_read_4(t, pcs, reg) & 0xffff;
1706 return 0;
1707 }
1708
1709 int
1710 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1711 {
1712 struct cas_softc *sc = device_private(self);
1713 bus_space_tag_t t = sc->sc_memt;
1714 bus_space_handle_t pcs = sc->sc_memh;
1715 int reset = 0;
1716
1717 #ifdef CAS_DEBUG
1718 if (sc->sc_debug)
1719 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1720 phy, reg, val);
1721 #endif
1722
1723 if (phy != CAS_PHYAD_EXTERNAL)
1724 return -1;
1725
1726 if (reg == MII_ANAR)
1727 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1728
1729 switch (reg) {
1730 case MII_BMCR:
1731 reset = (val & CAS_MII_CONTROL_RESET);
1732 reg = CAS_MII_CONTROL;
1733 break;
1734 case MII_BMSR:
1735 reg = CAS_MII_STATUS;
1736 break;
1737 case MII_ANAR:
1738 reg = CAS_MII_ANAR;
1739 break;
1740 case MII_ANLPAR:
1741 reg = CAS_MII_ANLPAR;
1742 break;
1743 default:
1744 return 0;
1745 }
1746
1747 bus_space_write_4(t, pcs, reg, val);
1748
1749 if (reset)
1750 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1751
1752 if (reg == CAS_MII_ANAR || reset)
1753 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1754 CAS_MII_CONFIG_ENABLE);
1755
1756 return 0;
1757 }
1758
1759 int
1760 cas_mediachange(struct ifnet *ifp)
1761 {
1762 struct cas_softc *sc = ifp->if_softc;
1763 struct mii_data *mii = &sc->sc_mii;
1764
1765 if (mii->mii_instance) {
1766 struct mii_softc *miisc;
1767 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1768 mii_phy_reset(miisc);
1769 }
1770
1771 return (mii_mediachg(&sc->sc_mii));
1772 }
1773
1774 void
1775 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1776 {
1777 struct cas_softc *sc = ifp->if_softc;
1778
1779 mii_pollstat(&sc->sc_mii);
1780 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1781 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1782 }
1783
1784 /*
1785 * Process an ioctl request.
1786 */
1787 int
1788 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1789 {
1790 struct cas_softc *sc = ifp->if_softc;
1791 int s, error = 0;
1792
1793 s = splnet();
1794
1795 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1796 error = 0;
1797 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1798 ;
1799 else if (ifp->if_flags & IFF_RUNNING) {
1800 /*
1801 * Multicast list has changed; set the hardware filter
1802 * accordingly.
1803 */
1804 cas_iff(sc);
1805 }
1806 }
1807
1808 splx(s);
1809 return (error);
1810 }
1811
1812 static bool
1813 cas_suspend(device_t self, const pmf_qual_t *qual)
1814 {
1815 struct cas_softc *sc = device_private(self);
1816 bus_space_tag_t t = sc->sc_memt;
1817 bus_space_handle_t h = sc->sc_memh;
1818
1819 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1820 if (sc->sc_ih != NULL) {
1821 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1822 sc->sc_ih = NULL;
1823 }
1824
1825 return true;
1826 }
1827
1828 static bool
1829 cas_resume(device_t self, const pmf_qual_t *qual)
1830 {
1831 struct cas_softc *sc = device_private(self);
1832
1833 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1834 }
1835
1836 static bool
1837 cas_estintr(struct cas_softc *sc, int what)
1838 {
1839 bus_space_tag_t t = sc->sc_memt;
1840 bus_space_handle_t h = sc->sc_memh;
1841 const char *intrstr = NULL;
1842 char intrbuf[PCI_INTRSTR_LEN];
1843
1844 /* PCI interrupts */
1845 if (what & CAS_INTR_PCI) {
1846 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1847 sizeof(intrbuf));
1848 sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1849 IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1850 if (sc->sc_ih == NULL) {
1851 aprint_error_dev(sc->sc_dev,
1852 "unable to establish interrupt");
1853 if (intrstr != NULL)
1854 aprint_error(" at %s", intrstr);
1855 aprint_error("\n");
1856 return false;
1857 }
1858
1859 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1860 }
1861
1862 /* Interrupt register */
1863 if (what & CAS_INTR_REG) {
1864 bus_space_write_4(t, h, CAS_INTMASK,
1865 ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1866 CAS_INTR_TX_TAG_ERR |
1867 CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1868 CAS_INTR_RX_TAG_ERR |
1869 CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1870 CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1871 CAS_INTR_BERR));
1872 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1873 CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1874 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1875 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1876 }
1877 return true;
1878 }
1879
1880 bool
1881 cas_shutdown(device_t self, int howto)
1882 {
1883 struct cas_softc *sc = device_private(self);
1884 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1885
1886 cas_stop(ifp, 1);
1887
1888 return true;
1889 }
1890
1891 void
1892 cas_iff(struct cas_softc *sc)
1893 {
1894 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1895 struct ethercom *ec = &sc->sc_ethercom;
1896 struct ether_multi *enm;
1897 struct ether_multistep step;
1898 bus_space_tag_t t = sc->sc_memt;
1899 bus_space_handle_t h = sc->sc_memh;
1900 uint32_t crc, hash[16], rxcfg;
1901 int i;
1902
1903 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1904 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1905 CAS_MAC_RX_PROMISC_GRP);
1906 ifp->if_flags &= ~IFF_ALLMULTI;
1907
1908 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1909 ifp->if_flags |= IFF_ALLMULTI;
1910 if (ifp->if_flags & IFF_PROMISC)
1911 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1912 else
1913 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1914 } else {
1915 /*
1916 * Set up multicast address filter by passing all multicast
1917 * addresses through a crc generator, and then using the
1918 * high order 8 bits as an index into the 256 bit logical
1919 * address filter. The high order 4 bits selects the word,
1920 * while the other 4 bits select the bit within the word
1921 * (where bit 0 is the MSB).
1922 */
1923
1924 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1925
1926 /* Clear hash table */
1927 for (i = 0; i < 16; i++)
1928 hash[i] = 0;
1929
1930 ETHER_FIRST_MULTI(step, ec, enm);
1931 while (enm != NULL) {
1932 crc = ether_crc32_le(enm->enm_addrlo,
1933 ETHER_ADDR_LEN);
1934
1935 /* Just want the 8 most significant bits. */
1936 crc >>= 24;
1937
1938 /* Set the corresponding bit in the filter. */
1939 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1940
1941 ETHER_NEXT_MULTI(step, enm);
1942 }
1943
1944 /* Now load the hash table into the chip (if we are using it) */
1945 for (i = 0; i < 16; i++) {
1946 bus_space_write_4(t, h,
1947 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1948 hash[i]);
1949 }
1950 }
1951
1952 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1953 }
1954
1955 int
1956 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
1957 {
1958 uint64_t flags;
1959 uint32_t cur, frag, i;
1960 bus_dmamap_t map;
1961
1962 cur = frag = *bixp;
1963 map = sc->sc_txd[cur].sd_map;
1964
1965 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1966 BUS_DMA_NOWAIT) != 0) {
1967 return (ENOBUFS);
1968 }
1969
1970 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1971 bus_dmamap_unload(sc->sc_dmatag, map);
1972 return (ENOBUFS);
1973 }
1974
1975 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1976 BUS_DMASYNC_PREWRITE);
1977
1978 for (i = 0; i < map->dm_nsegs; i++) {
1979 sc->sc_txdescs[frag].cd_addr =
1980 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1981 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1982 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1983 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1984 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1985 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1986 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1987 BUS_DMASYNC_PREWRITE);
1988 cur = frag;
1989 if (++frag == CAS_NTXDESC)
1990 frag = 0;
1991 }
1992
1993 sc->sc_tx_cnt += map->dm_nsegs;
1994 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1995 sc->sc_txd[cur].sd_map = map;
1996 sc->sc_txd[cur].sd_mbuf = mhead;
1997
1998 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1999
2000 *bixp = frag;
2001
2002 /* sync descriptors */
2003
2004 return (0);
2005 }
2006
2007 /*
2008 * Transmit interrupt.
2009 */
2010 int
2011 cas_tint(struct cas_softc *sc, uint32_t status)
2012 {
2013 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2014 struct cas_sxd *sd;
2015 uint32_t cons, comp;
2016
2017 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2018 cons = sc->sc_tx_cons;
2019 while (cons != comp) {
2020 sd = &sc->sc_txd[cons];
2021 if (sd->sd_mbuf != NULL) {
2022 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2023 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2024 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2025 m_freem(sd->sd_mbuf);
2026 sd->sd_mbuf = NULL;
2027 ifp->if_opackets++;
2028 }
2029 sc->sc_tx_cnt--;
2030 if (++cons == CAS_NTXDESC)
2031 cons = 0;
2032 }
2033 sc->sc_tx_cons = cons;
2034
2035 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2036 ifp->if_flags &= ~IFF_OACTIVE;
2037 if (sc->sc_tx_cnt == 0)
2038 ifp->if_timer = 0;
2039
2040 if_schedule_deferred_start(ifp);
2041
2042 return (1);
2043 }
2044
2045 void
2046 cas_start(struct ifnet *ifp)
2047 {
2048 struct cas_softc *sc = ifp->if_softc;
2049 struct mbuf *m;
2050 uint32_t bix;
2051
2052 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2053 return;
2054
2055 bix = sc->sc_tx_prod;
2056 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2057 IFQ_POLL(&ifp->if_snd, m);
2058 if (m == NULL)
2059 break;
2060
2061 /*
2062 * If BPF is listening on this interface, let it see the
2063 * packet before we commit it to the wire.
2064 */
2065 bpf_mtap(ifp, m, BPF_D_OUT);
2066
2067 /*
2068 * Encapsulate this packet and start it going...
2069 * or fail...
2070 */
2071 if (cas_encap(sc, m, &bix)) {
2072 ifp->if_flags |= IFF_OACTIVE;
2073 break;
2074 }
2075
2076 IFQ_DEQUEUE(&ifp->if_snd, m);
2077 ifp->if_timer = 5;
2078 }
2079
2080 sc->sc_tx_prod = bix;
2081 }
2082
2083 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2084
2085 #ifdef _MODULE
2086 #include "ioconf.c"
2087 #endif
2088
2089 static int
2090 if_cas_modcmd(modcmd_t cmd, void *opaque)
2091 {
2092 int error = 0;
2093
2094 switch (cmd) {
2095 case MODULE_CMD_INIT:
2096 #ifdef _MODULE
2097 error = config_init_component(cfdriver_ioconf_cas,
2098 cfattach_ioconf_cas, cfdata_ioconf_cas);
2099 #endif
2100 return error;
2101 case MODULE_CMD_FINI:
2102 #ifdef _MODULE
2103 error = config_fini_component(cfdriver_ioconf_cas,
2104 cfattach_ioconf_cas, cfdata_ioconf_cas);
2105 #endif
2106 return error;
2107 default:
2108 return ENOTTY;
2109 }
2110 }
2111