if_cas.c revision 1.37.2.1 1 /* $NetBSD: if_cas.c,v 1.37.2.1 2020/02/29 20:19:10 ad Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.37.2.1 2020/02/29 20:19:10 ad Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 #define TRIES 10000
101
102 static bool cas_estintr(struct cas_softc *sc, int);
103 bool cas_shutdown(device_t, int);
104 static bool cas_suspend(device_t, const pmf_qual_t *);
105 static bool cas_resume(device_t, const pmf_qual_t *);
106 static int cas_detach(device_t, int);
107 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109 int cas_match(device_t, cfdata_t, void *);
110 void cas_attach(device_t, device_t, void *);
111
112
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN);
116
117 int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119 void cas_config(struct cas_softc *, const uint8_t *);
120 void cas_start(struct ifnet *);
121 void cas_stop(struct ifnet *, int);
122 int cas_ioctl(struct ifnet *, u_long, void *);
123 void cas_tick(void *);
124 void cas_watchdog(struct ifnet *);
125 int cas_init(struct ifnet *);
126 void cas_init_regs(struct cas_softc *);
127 int cas_ringsize(int);
128 int cas_cringsize(int);
129 int cas_meminit(struct cas_softc *);
130 void cas_mifinit(struct cas_softc *);
131 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 uint32_t, uint32_t);
133 void cas_reset(struct cas_softc *);
134 int cas_reset_rx(struct cas_softc *);
135 int cas_reset_tx(struct cas_softc *);
136 int cas_disable_rx(struct cas_softc *);
137 int cas_disable_tx(struct cas_softc *);
138 void cas_rxdrain(struct cas_softc *);
139 int cas_add_rxbuf(struct cas_softc *, int);
140 void cas_iff(struct cas_softc *);
141 int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142
143 /* MII methods & callbacks */
144 int cas_mii_readreg(device_t, int, int, uint16_t*);
145 int cas_mii_writereg(device_t, int, int, uint16_t);
146 void cas_mii_statchg(struct ifnet *);
147 int cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int cas_pcs_writereg(device_t, int, int, uint16_t);
149
150 int cas_mediachange(struct ifnet *);
151 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153 int cas_eint(struct cas_softc *, u_int);
154 int cas_rint(struct cas_softc *);
155 int cas_tint(struct cas_softc *, uint32_t);
156 int cas_pint(struct cas_softc *);
157 int cas_intr(void *);
158
159 #ifdef CAS_DEBUG
160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x
162 #else
163 #define DPRINTF(sc, x) /* nothing */
164 #endif
165
166 static const struct cas_pci_dev {
167 uint16_t cpd_vendor;
168 uint16_t cpd_device;
169 int cpd_variant;
170 } cas_pci_devlist[] = {
171 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_CASSINI, CAS_CAS },
172 { PCI_VENDOR_NS, PCI_PRODUCT_NS_SATURN, CAS_SATURN },
173 { 0, 0, 0 }
174 };
175
176 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
177 #define CAS_PHY_INTERFACE "phy-interface"
178 #define CAS_PHY_TYPE "phy-type"
179 #define CAS_PHY_TYPE_PCS "pcs"
180
181 int
182 cas_match(device_t parent, cfdata_t cf, void *aux)
183 {
184 struct pci_attach_args *pa = aux;
185 int i;
186
187 for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
188 if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
189 (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device))
190 return 1;
191 }
192
193 return 0;
194 }
195
196 #define PROMHDR_PTR_DATA 0x18
197 #define PROMDATA_PTR_VPD 0x08
198 #define PROMDATA_DATA2 0x0a
199
200 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
201 static const uint8_t cas_promdat[] = {
202 'P', 'C', 'I', 'R',
203 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
204 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
205 };
206 static const uint8_t cas_promdat_ns[] = {
207 'P', 'C', 'I', 'R',
208 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
209 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
210 };
211
212 static const uint8_t cas_promdat2[] = {
213 0x18, 0x00, /* structure length */
214 0x00, /* structure revision */
215 0x00, /* interface revision */
216 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
217 PCI_CLASS_NETWORK /* class code */
218 };
219
220 #define CAS_LMA_MAXNUM 4
221 int
222 cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
223 uint8_t *enaddr)
224 {
225 struct pci_vpd_largeres *res;
226 struct pci_vpd *vpd;
227 bus_space_handle_t romh;
228 bus_space_tag_t romt;
229 bus_size_t romsize = 0;
230 uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
231 bool pcs[4] = {false, false, false, false};
232 uint8_t buf[32], *desc;
233 pcireg_t address;
234 int dataoff, vpdoff, len, lma = 0, phy = 0;
235 int i, rv = -1;
236
237 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
238 &romt, &romh, NULL, &romsize))
239 return (-1);
240
241 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
242 address |= PCI_MAPREG_ROM_ENABLE;
243 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
244
245 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
246 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
247 goto fail;
248
249 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
250 if (dataoff < 0x1c)
251 goto fail;
252
253 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
254 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
255 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
256 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
257 goto fail;
258
259 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
260 if (vpdoff < 0x1c)
261 goto fail;
262
263 next:
264 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
265 if (!PCI_VPDRES_ISLARGE(buf[0]))
266 goto fail;
267
268 res = (struct pci_vpd_largeres *)buf;
269 vpdoff += sizeof(*res);
270
271 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
272 switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
273 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
274 /* Skip identifier string. */
275 vpdoff += len;
276 goto next;
277
278 case PCI_VPDRES_TYPE_VPD:
279 #ifdef CAS_DEBUG
280 printf("\n");
281 for (i = 0; i < len; i++) {
282 uint8_t byte;
283 if (i % 16 == 0)
284 printf("%04x :", i);
285 byte = bus_space_read_1(romt, romh, vpdoff + i);
286 printf(" %02x", byte);
287 if (i % 16 == 15)
288 printf("\n");
289 }
290 printf("\n");
291 #endif
292
293 while (len > 0) {
294 bus_space_read_region_1(romt, romh, vpdoff,
295 buf, sizeof(buf));
296
297 vpd = (struct pci_vpd *)buf;
298 vpdoff += sizeof(*vpd) + vpd->vpd_len;
299 len -= sizeof(*vpd) + vpd->vpd_len;
300
301 /*
302 * We're looking for an "Enhanced" VPD...
303 */
304 if (vpd->vpd_key0 != 'Z')
305 continue;
306
307 desc = buf + sizeof(*vpd);
308
309 /*
310 * ...which is an instance property...
311 */
312 if (desc[0] != 'I')
313 continue;
314 desc += 3;
315
316 if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
317 /*
318 * ...that's a byte array with the proper
319 * length for a MAC address...
320 */
321 desc += 2;
322
323 /*
324 * ...named "local-mac-address".
325 */
326 if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
327 continue;
328 desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
329
330 if (lma == CAS_LMA_MAXNUM)
331 continue;
332
333 memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
334 lma++;
335 rv = 0;
336 continue;
337 } else if (desc[0] == 'S') {
338 size_t k;
339
340 /* String */
341 desc += 2;
342 #ifdef CAS_DEBUG
343 /* ...named "pcs". */
344 printf("STR: \"%s\"\n", desc);
345 if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
346 continue;
347 desc += sizeof(CAS_PHY_TYPE_PCS);
348 printf("STR: \"%s\"\n", desc);
349 #endif
350 /* ...named "phy-interface" or "phy-type". */
351 if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
352 k = sizeof(CAS_PHY_INTERFACE);
353 else if (strcmp(desc, CAS_PHY_TYPE) == 0)
354 k = sizeof(CAS_PHY_TYPE);
355 else
356 continue;
357
358 desc += k;
359 #ifdef CAS_DEBUG
360 printf("STR: \"%s\"\n", desc);
361 #endif
362 if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
363 pcs[phy] = true;
364 phy++;
365 continue;
366 }
367 }
368 break;
369
370 default:
371 goto fail;
372 }
373
374 /*
375 * Multi port card has bridge chip. The device number is fixed:
376 * e.g.
377 * p0: 005:00:0
378 * p1: 005:01:0
379 * p2: 006:02:0
380 * p3: 006:03:0
381 */
382 if (enaddr != 0) {
383 i = 0;
384 if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
385 && (pa->pa_device < lma))
386 i = pa->pa_device;
387 memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
388 }
389 if (pcs[pa->pa_device])
390 sc->sc_flags |= CAS_SERDES;
391 fail:
392 if (romsize != 0)
393 bus_space_unmap(romt, romh, romsize);
394
395 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
396 address &= ~PCI_MAPREG_ROM_ENABLE;
397 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
398
399 return (rv);
400 }
401
402 void
403 cas_attach(device_t parent, device_t self, void *aux)
404 {
405 struct pci_attach_args *pa = aux;
406 struct cas_softc *sc = device_private(self);
407 int i;
408 prop_data_t data;
409 uint8_t enaddr[ETHER_ADDR_LEN];
410
411 sc->sc_dev = self;
412 pci_aprint_devinfo(pa, NULL);
413 sc->sc_rev = PCI_REVISION(pa->pa_class);
414 sc->sc_dmatag = pa->pa_dmat;
415
416 sc->sc_variant = CAS_UNKNOWN;
417 for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
418 if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
419 (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device)) {
420 sc->sc_variant = cas_pci_devlist[i].cpd_variant;
421 break;
422 }
423 }
424 aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
425 if (sc->sc_variant == CAS_UNKNOWN) {
426 aprint_error_dev(sc->sc_dev, "unknown adaptor\n");
427 return;
428 }
429
430 #define PCI_CAS_BASEADDR 0x10
431 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
432 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
433 aprint_error_dev(sc->sc_dev,
434 "unable to map device registers\n");
435 return;
436 }
437
438 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
439 "mac-address")) != NULL)
440 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
441 if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
442 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
443 memset(enaddr, 0, sizeof(enaddr));
444 }
445
446 sc->sc_burst = 16; /* XXX */
447
448 sc->sc_att_stage = CAS_ATT_BACKEND_0;
449
450 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
451 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
452 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
453 return;
454 }
455 sc->sc_pc = pa->pa_pc;
456 if (!cas_estintr(sc, CAS_INTR_PCI)) {
457 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
458 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
459 return;
460 }
461
462 sc->sc_att_stage = CAS_ATT_BACKEND_1;
463
464 /*
465 * call the main configure
466 */
467 cas_config(sc, enaddr);
468
469 if (pmf_device_register1(sc->sc_dev,
470 cas_suspend, cas_resume, cas_shutdown))
471 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
472 else
473 aprint_error_dev(sc->sc_dev,
474 "could not establish power handlers\n");
475
476 sc->sc_att_stage = CAS_ATT_FINISHED;
477 /*FALLTHROUGH*/
478 }
479
480 /*
481 * cas_config:
482 *
483 * Attach a Cassini interface to the system.
484 */
485 void
486 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
487 {
488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
489 struct mii_data *mii = &sc->sc_mii;
490 struct mii_softc *child;
491 uint32_t reg;
492 int i, error;
493
494 /* Make sure the chip is stopped. */
495 ifp->if_softc = sc;
496 cas_reset(sc);
497
498 /*
499 * Allocate the control data structures, and create and load the
500 * DMA map for it.
501 */
502 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
503 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
504 1, &sc->sc_cdnseg, 0)) != 0) {
505 aprint_error_dev(sc->sc_dev,
506 "unable to allocate control data, error = %d\n",
507 error);
508 cas_partial_detach(sc, CAS_ATT_0);
509 }
510
511 /* XXX should map this in with correct endianness */
512 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
513 sc->sc_cdnseg, sizeof(struct cas_control_data),
514 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
515 aprint_error_dev(sc->sc_dev,
516 "unable to map control data, error = %d\n", error);
517 cas_partial_detach(sc, CAS_ATT_1);
518 }
519
520 if ((error = bus_dmamap_create(sc->sc_dmatag,
521 sizeof(struct cas_control_data), 1,
522 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
523 aprint_error_dev(sc->sc_dev,
524 "unable to create control data DMA map, error = %d\n",
525 error);
526 cas_partial_detach(sc, CAS_ATT_2);
527 }
528
529 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
530 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
531 0)) != 0) {
532 aprint_error_dev(sc->sc_dev,
533 "unable to load control data DMA map, error = %d\n",
534 error);
535 cas_partial_detach(sc, CAS_ATT_3);
536 }
537
538 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
539
540 /*
541 * Create the receive buffer DMA maps.
542 */
543 for (i = 0; i < CAS_NRXDESC; i++) {
544 bus_dma_segment_t seg;
545 char *kva;
546 int rseg;
547
548 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
549 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
550 aprint_error_dev(sc->sc_dev,
551 "unable to alloc rx DMA mem %d, error = %d\n",
552 i, error);
553 cas_partial_detach(sc, CAS_ATT_5);
554 }
555 sc->sc_rxsoft[i].rxs_dmaseg = seg;
556
557 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
558 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
559 aprint_error_dev(sc->sc_dev,
560 "unable to alloc rx DMA mem %d, error = %d\n",
561 i, error);
562 cas_partial_detach(sc, CAS_ATT_5);
563 }
564 sc->sc_rxsoft[i].rxs_kva = kva;
565
566 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
567 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
568 aprint_error_dev(sc->sc_dev,
569 "unable to create rx DMA map %d, error = %d\n",
570 i, error);
571 cas_partial_detach(sc, CAS_ATT_5);
572 }
573
574 if ((error = bus_dmamap_load(sc->sc_dmatag,
575 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
576 BUS_DMA_NOWAIT)) != 0) {
577 aprint_error_dev(sc->sc_dev,
578 "unable to load rx DMA map %d, error = %d\n",
579 i, error);
580 cas_partial_detach(sc, CAS_ATT_5);
581 }
582 }
583
584 /*
585 * Create the transmit buffer DMA maps.
586 */
587 for (i = 0; i < CAS_NTXDESC; i++) {
588 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
589 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
590 &sc->sc_txd[i].sd_map)) != 0) {
591 aprint_error_dev(sc->sc_dev,
592 "unable to create tx DMA map %d, error = %d\n",
593 i, error);
594 cas_partial_detach(sc, CAS_ATT_6);
595 }
596 sc->sc_txd[i].sd_mbuf = NULL;
597 }
598
599 /*
600 * From this point forward, the attachment cannot fail. A failure
601 * before this point releases all resources that may have been
602 * allocated.
603 */
604
605 /* Announce ourselves. */
606 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
607 ether_sprintf(enaddr));
608 aprint_naive(": Ethernet controller\n");
609
610 /* Get RX FIFO size */
611 sc->sc_rxfifosize = 16 * 1024;
612
613 /* Initialize ifnet structure. */
614 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
615 ifp->if_softc = sc;
616 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
617 ifp->if_start = cas_start;
618 ifp->if_ioctl = cas_ioctl;
619 ifp->if_watchdog = cas_watchdog;
620 ifp->if_stop = cas_stop;
621 ifp->if_init = cas_init;
622 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
623 IFQ_SET_READY(&ifp->if_snd);
624
625 /* Initialize ifmedia structures and MII info */
626 mii->mii_ifp = ifp;
627 mii->mii_readreg = cas_mii_readreg;
628 mii->mii_writereg = cas_mii_writereg;
629 mii->mii_statchg = cas_mii_statchg;
630
631 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
632 sc->sc_ethercom.ec_mii = mii;
633
634 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
635
636 cas_mifinit(sc);
637
638 if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
639 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
640 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
641 bus_space_write_4(sc->sc_memt, sc->sc_memh,
642 CAS_MIF_CONFIG, sc->sc_mif_config);
643 }
644 /* Enable/unfreeze the GMII pins of Saturn. */
645 if (sc->sc_variant == CAS_SATURN) {
646 reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
647 CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
648 if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
649 reg |= CAS_SATURN_PCFG_FSI;
650 bus_space_write_4(sc->sc_memt, sc->sc_memh,
651 CAS_SATURN_PCFG, reg);
652 /* Read to flush */
653 bus_space_read_4(sc->sc_memt, sc->sc_memh,
654 CAS_SATURN_PCFG);
655 DELAY(10000);
656 }
657 }
658
659 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
660 MII_OFFSET_ANY, 0);
661
662 child = LIST_FIRST(&mii->mii_phys);
663 if (child == NULL &&
664 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
665 /*
666 * Try the external PCS SERDES if we didn't find any
667 * MII devices.
668 */
669 bus_space_write_4(sc->sc_memt, sc->sc_memh,
670 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
671
672 bus_space_write_4(sc->sc_memt, sc->sc_memh,
673 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
674
675 mii->mii_readreg = cas_pcs_readreg;
676 mii->mii_writereg = cas_pcs_writereg;
677
678 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
679 MII_OFFSET_ANY, MIIF_NOISOLATE);
680 }
681
682 child = LIST_FIRST(&mii->mii_phys);
683 if (child == NULL) {
684 /* No PHY attached */
685 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
686 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
687 } else {
688 /*
689 * Walk along the list of attached MII devices and
690 * establish an `MII instance' to `phy number'
691 * mapping. We'll use this mapping in media change
692 * requests to determine which phy to use to program
693 * the MIF configuration register.
694 */
695 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
696 /*
697 * Note: we support just two PHYs: the built-in
698 * internal device and an external on the MII
699 * connector.
700 */
701 if (child->mii_phy > 1 || child->mii_inst > 1) {
702 aprint_error_dev(sc->sc_dev,
703 "cannot accommodate MII device %s"
704 " at phy %d, instance %d\n",
705 device_xname(child->mii_dev),
706 child->mii_phy, child->mii_inst);
707 continue;
708 }
709
710 sc->sc_phys[child->mii_inst] = child->mii_phy;
711 }
712
713 /*
714 * XXX - we can really do the following ONLY if the
715 * phy indeed has the auto negotiation capability!!
716 */
717 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
718 }
719
720 /* claim 802.1q capability */
721 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
722
723 /* Attach the interface. */
724 if_attach(ifp);
725 if_deferred_start_init(ifp, NULL);
726 ether_ifattach(ifp, enaddr);
727
728 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
729 RND_TYPE_NET, RND_FLAG_DEFAULT);
730
731 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
732 NULL, device_xname(sc->sc_dev), "interrupts");
733
734 callout_init(&sc->sc_tick_ch, 0);
735 callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
736
737 return;
738 }
739
740 int
741 cas_detach(device_t self, int flags)
742 {
743 int i;
744 struct cas_softc *sc = device_private(self);
745 bus_space_tag_t t = sc->sc_memt;
746 bus_space_handle_t h = sc->sc_memh;
747 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
748
749 /*
750 * Free any resources we've allocated during the failed attach
751 * attempt. Do this in reverse order and fall through.
752 */
753 switch (sc->sc_att_stage) {
754 case CAS_ATT_FINISHED:
755 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
756 pmf_device_deregister(self);
757 cas_stop(&sc->sc_ethercom.ec_if, 1);
758 evcnt_detach(&sc->sc_ev_intr);
759
760 rnd_detach_source(&sc->rnd_source);
761
762 ether_ifdetach(ifp);
763 if_detach(ifp);
764 ifmedia_fini(&sc->sc_mii.mii_media);
765
766 callout_destroy(&sc->sc_tick_ch);
767
768 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
769
770 /*FALLTHROUGH*/
771 case CAS_ATT_MII:
772 case CAS_ATT_7:
773 case CAS_ATT_6:
774 for (i = 0; i < CAS_NTXDESC; i++) {
775 if (sc->sc_txd[i].sd_map != NULL)
776 bus_dmamap_destroy(sc->sc_dmatag,
777 sc->sc_txd[i].sd_map);
778 }
779 /*FALLTHROUGH*/
780 case CAS_ATT_5:
781 for (i = 0; i < CAS_NRXDESC; i++) {
782 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
783 bus_dmamap_unload(sc->sc_dmatag,
784 sc->sc_rxsoft[i].rxs_dmamap);
785 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
786 bus_dmamap_destroy(sc->sc_dmatag,
787 sc->sc_rxsoft[i].rxs_dmamap);
788 if (sc->sc_rxsoft[i].rxs_kva != NULL)
789 bus_dmamem_unmap(sc->sc_dmatag,
790 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
791 /* XXX need to check that bus_dmamem_alloc suceeded
792 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
793 */
794 bus_dmamem_free(sc->sc_dmatag,
795 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
796 }
797 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
798 /*FALLTHROUGH*/
799 case CAS_ATT_4:
800 case CAS_ATT_3:
801 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
802 /*FALLTHROUGH*/
803 case CAS_ATT_2:
804 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
805 sizeof(struct cas_control_data));
806 /*FALLTHROUGH*/
807 case CAS_ATT_1:
808 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
809 /*FALLTHROUGH*/
810 case CAS_ATT_0:
811 sc->sc_att_stage = CAS_ATT_0;
812 /*FALLTHROUGH*/
813 case CAS_ATT_BACKEND_2:
814 case CAS_ATT_BACKEND_1:
815 if (sc->sc_ih != NULL) {
816 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
817 sc->sc_ih = NULL;
818 }
819 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
820 /*FALLTHROUGH*/
821 case CAS_ATT_BACKEND_0:
822 break;
823 }
824 return 0;
825 }
826
827 static void
828 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
829 {
830 cfattach_t ca = device_cfattach(sc->sc_dev);
831
832 sc->sc_att_stage = stage;
833 (*ca->ca_detach)(sc->sc_dev, 0);
834 }
835
836 void
837 cas_tick(void *arg)
838 {
839 struct cas_softc *sc = arg;
840 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
841 bus_space_tag_t t = sc->sc_memt;
842 bus_space_handle_t mac = sc->sc_memh;
843 int s;
844 uint32_t v;
845
846 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
847
848 /* unload collisions counters */
849 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
850 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
851 if_statadd_ref(nsr, if_collisions, v +
852 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
853 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
854 if_statadd_ref(nsr, if_oerrors, v);
855
856 /* read error counters */
857 if_statadd_ref(nsr, if_ierrors,
858 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
859 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
860 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
861 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
862
863 IF_STAT_PUTREF(ifp);
864
865 /* clear the hardware counters */
866 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
867 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
868 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
869 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
870 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
871 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
872 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
873 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
874
875 s = splnet();
876 mii_tick(&sc->sc_mii);
877 splx(s);
878
879 callout_schedule(&sc->sc_tick_ch, hz);
880 }
881
882 int
883 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
884 uint32_t clr, uint32_t set)
885 {
886 int i;
887 uint32_t reg;
888
889 for (i = TRIES; i--; DELAY(100)) {
890 reg = bus_space_read_4(sc->sc_memt, h, r);
891 if ((reg & clr) == 0 && (reg & set) == set)
892 return (1);
893 }
894
895 return (0);
896 }
897
898 void
899 cas_reset(struct cas_softc *sc)
900 {
901 bus_space_tag_t t = sc->sc_memt;
902 bus_space_handle_t h = sc->sc_memh;
903 int s;
904
905 s = splnet();
906 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
907 cas_reset_rx(sc);
908 cas_reset_tx(sc);
909
910 /* Disable interrupts */
911 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
912
913 /* Do a full reset */
914 bus_space_write_4(t, h, CAS_RESET,
915 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
916 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
917 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
918 splx(s);
919 }
920
921
922 /*
923 * cas_rxdrain:
924 *
925 * Drain the receive queue.
926 */
927 void
928 cas_rxdrain(struct cas_softc *sc)
929 {
930 /* Nothing to do yet. */
931 }
932
933 /*
934 * Reset the whole thing.
935 */
936 void
937 cas_stop(struct ifnet *ifp, int disable)
938 {
939 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
940 struct cas_sxd *sd;
941 uint32_t i;
942
943 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
944
945 callout_stop(&sc->sc_tick_ch);
946
947 /*
948 * Mark the interface down and cancel the watchdog timer.
949 */
950 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
951 ifp->if_timer = 0;
952
953 mii_down(&sc->sc_mii);
954
955 cas_reset_rx(sc);
956 cas_reset_tx(sc);
957
958 /*
959 * Release any queued transmit buffers.
960 */
961 for (i = 0; i < CAS_NTXDESC; i++) {
962 sd = &sc->sc_txd[i];
963 if (sd->sd_mbuf != NULL) {
964 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
965 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
966 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
967 m_freem(sd->sd_mbuf);
968 sd->sd_mbuf = NULL;
969 }
970 }
971 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
972
973 if (disable)
974 cas_rxdrain(sc);
975 }
976
977
978 /*
979 * Reset the receiver
980 */
981 int
982 cas_reset_rx(struct cas_softc *sc)
983 {
984 bus_space_tag_t t = sc->sc_memt;
985 bus_space_handle_t h = sc->sc_memh;
986
987 /*
988 * Resetting while DMA is in progress can cause a bus hang, so we
989 * disable DMA first.
990 */
991 cas_disable_rx(sc);
992 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
993 /* Wait till it finishes */
994 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
995 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
996 /* Wait 5ms extra. */
997 delay(5000);
998
999 /* Finally, reset the ERX */
1000 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
1001 /* Wait till it finishes */
1002 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
1003 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
1004 return (1);
1005 }
1006 return (0);
1007 }
1008
1009
1010 /*
1011 * Reset the transmitter
1012 */
1013 int
1014 cas_reset_tx(struct cas_softc *sc)
1015 {
1016 bus_space_tag_t t = sc->sc_memt;
1017 bus_space_handle_t h = sc->sc_memh;
1018
1019 /*
1020 * Resetting while DMA is in progress can cause a bus hang, so we
1021 * disable DMA first.
1022 */
1023 cas_disable_tx(sc);
1024 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1025 /* Wait till it finishes */
1026 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1027 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1028 /* Wait 5ms extra. */
1029 delay(5000);
1030
1031 /* Finally, reset the ETX */
1032 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1033 /* Wait till it finishes */
1034 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1035 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1036 return (1);
1037 }
1038 return (0);
1039 }
1040
1041 /*
1042 * Disable receiver.
1043 */
1044 int
1045 cas_disable_rx(struct cas_softc *sc)
1046 {
1047 bus_space_tag_t t = sc->sc_memt;
1048 bus_space_handle_t h = sc->sc_memh;
1049 uint32_t cfg;
1050
1051 /* Flip the enable bit */
1052 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1053 cfg &= ~CAS_MAC_RX_ENABLE;
1054 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1055
1056 /* Wait for it to finish */
1057 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1058 }
1059
1060 /*
1061 * Disable transmitter.
1062 */
1063 int
1064 cas_disable_tx(struct cas_softc *sc)
1065 {
1066 bus_space_tag_t t = sc->sc_memt;
1067 bus_space_handle_t h = sc->sc_memh;
1068 uint32_t cfg;
1069
1070 /* Flip the enable bit */
1071 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1072 cfg &= ~CAS_MAC_TX_ENABLE;
1073 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1074
1075 /* Wait for it to finish */
1076 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1077 }
1078
1079 /*
1080 * Initialize interface.
1081 */
1082 int
1083 cas_meminit(struct cas_softc *sc)
1084 {
1085 int i;
1086
1087 /*
1088 * Initialize the transmit descriptor ring.
1089 */
1090 for (i = 0; i < CAS_NTXDESC; i++) {
1091 sc->sc_txdescs[i].cd_flags = 0;
1092 sc->sc_txdescs[i].cd_addr = 0;
1093 }
1094 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1095 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1096
1097 /*
1098 * Initialize the receive descriptor and receive job
1099 * descriptor rings.
1100 */
1101 for (i = 0; i < CAS_NRXDESC; i++)
1102 CAS_INIT_RXDESC(sc, i, i);
1103 sc->sc_rxdptr = 0;
1104 sc->sc_rxptr = 0;
1105
1106 /*
1107 * Initialize the receive completion ring.
1108 */
1109 for (i = 0; i < CAS_NRXCOMP; i++) {
1110 sc->sc_rxcomps[i].cc_word[0] = 0;
1111 sc->sc_rxcomps[i].cc_word[1] = 0;
1112 sc->sc_rxcomps[i].cc_word[2] = 0;
1113 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1114 CAS_CDRXCSYNC(sc, i,
1115 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1116 }
1117
1118 return (0);
1119 }
1120
1121 int
1122 cas_ringsize(int sz)
1123 {
1124 switch (sz) {
1125 case 32:
1126 return CAS_RING_SZ_32;
1127 case 64:
1128 return CAS_RING_SZ_64;
1129 case 128:
1130 return CAS_RING_SZ_128;
1131 case 256:
1132 return CAS_RING_SZ_256;
1133 case 512:
1134 return CAS_RING_SZ_512;
1135 case 1024:
1136 return CAS_RING_SZ_1024;
1137 case 2048:
1138 return CAS_RING_SZ_2048;
1139 case 4096:
1140 return CAS_RING_SZ_4096;
1141 case 8192:
1142 return CAS_RING_SZ_8192;
1143 default:
1144 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1145 sz);
1146 return CAS_RING_SZ_32;
1147 }
1148 }
1149
1150 int
1151 cas_cringsize(int sz)
1152 {
1153 int i;
1154
1155 for (i = 0; i < 9; i++)
1156 if (sz == (128 << i))
1157 return i;
1158
1159 aprint_error("cas: invalid completion ring size %d\n", sz);
1160 return 128;
1161 }
1162
1163 /*
1164 * Initialization of interface; set up initialization block
1165 * and transmit/receive descriptor rings.
1166 */
1167 int
1168 cas_init(struct ifnet *ifp)
1169 {
1170 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1171 bus_space_tag_t t = sc->sc_memt;
1172 bus_space_handle_t h = sc->sc_memh;
1173 int s;
1174 u_int max_frame_size;
1175 uint32_t v;
1176
1177 s = splnet();
1178
1179 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1180 /*
1181 * Initialization sequence. The numbered steps below correspond
1182 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1183 * Channel Engine manual (part of the PCIO manual).
1184 * See also the STP2002-STQ document from Sun Microsystems.
1185 */
1186
1187 /* step 1 & 2. Reset the Ethernet Channel */
1188 cas_stop(ifp, 0);
1189 cas_reset(sc);
1190 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1191
1192 /* Re-initialize the MIF */
1193 cas_mifinit(sc);
1194
1195 /* step 3. Setup data structures in host memory */
1196 cas_meminit(sc);
1197
1198 /* step 4. TX MAC registers & counters */
1199 cas_init_regs(sc);
1200 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1201 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1202 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1203
1204 /* step 5. RX MAC registers & counters */
1205 cas_iff(sc);
1206
1207 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1208 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1209 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1210 (((uint64_t)CAS_CDTXADDR(sc, 0)) >> 32));
1211 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1212
1213 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1214 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1215 (((uint64_t)CAS_CDRXADDR(sc, 0)) >> 32));
1216 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1217
1218 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1219 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1220 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1221 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1222
1223 if (CAS_PLUS(sc)) {
1224 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1225 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1226 (((uint64_t)CAS_CDRXADDR2(sc, 0)) >> 32));
1227 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1228 CAS_CDRXADDR2(sc, 0));
1229 }
1230
1231 /* step 8. Global Configuration & Interrupt Mask */
1232 cas_estintr(sc, CAS_INTR_REG);
1233
1234 /* step 9. ETX Configuration: use mostly default values */
1235
1236 /* Enable DMA */
1237 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1238 bus_space_write_4(t, h, CAS_TX_CONFIG,
1239 v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1240 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1241
1242 /* step 10. ERX Configuration */
1243
1244 /* Encode Receive Descriptor ring size */
1245 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1246 if (CAS_PLUS(sc))
1247 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1248
1249 /* Encode Receive Completion ring size */
1250 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1251
1252 /* Enable DMA */
1253 bus_space_write_4(t, h, CAS_RX_CONFIG,
1254 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1255
1256 /*
1257 * The following value is for an OFF Threshold of about 3/4 full
1258 * and an ON Threshold of 1/4 full.
1259 */
1260 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1261 (3 * sc->sc_rxfifosize / 256) |
1262 ((sc->sc_rxfifosize / 256) << 12));
1263 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1264
1265 /* step 11. Configure Media */
1266 mii_ifmedia_change(&sc->sc_mii);
1267
1268 /* step 12. RX_MAC Configuration Register */
1269 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1270 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1271 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1272
1273 /* step 14. Issue Transmit Pending command */
1274
1275 /* step 15. Give the receiver a swift kick */
1276 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1277 if (CAS_PLUS(sc))
1278 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1279
1280 /* Start the one second timer. */
1281 callout_schedule(&sc->sc_tick_ch, hz);
1282
1283 ifp->if_flags |= IFF_RUNNING;
1284 ifp->if_flags &= ~IFF_OACTIVE;
1285 ifp->if_timer = 0;
1286 splx(s);
1287
1288 return (0);
1289 }
1290
1291 void
1292 cas_init_regs(struct cas_softc *sc)
1293 {
1294 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1295 bus_space_tag_t t = sc->sc_memt;
1296 bus_space_handle_t h = sc->sc_memh;
1297 const u_char *laddr = CLLADDR(ifp->if_sadl);
1298 uint32_t v, r;
1299
1300 /* These regs are not cleared on reset */
1301 sc->sc_inited = 0;
1302 if (!sc->sc_inited) {
1303 /* Load recommended values */
1304 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1305 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1306 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1307
1308 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1309 /* Max frame and max burst size */
1310 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1311 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1312
1313 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1314 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1315 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1316 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1317 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1318 ((laddr[5]<<8)|laddr[4])&0x3ff);
1319
1320 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1321 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1322 bus_space_write_4(t, h, r, 0);
1323
1324 /* MAC control addr set to 0:1:c2:0:1:80 */
1325 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1326 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1327 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1328
1329 /* MAC filter addr set to 0:0:0:0:0:0 */
1330 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1331 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1332 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1333
1334 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1335 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1336
1337 /* Hash table initialized to 0 */
1338 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1339 bus_space_write_4(t, h, r, 0);
1340
1341 sc->sc_inited = 1;
1342 }
1343
1344 /* Counters need to be zeroed */
1345 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1346 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1347 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1348 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1349 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1350 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1351 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1352 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1353 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1354 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1355 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1356
1357 /* Un-pause stuff */
1358 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1359
1360 /*
1361 * Set the station address.
1362 */
1363 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1364 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1365 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1366 }
1367
1368 /*
1369 * Receive interrupt.
1370 */
1371 int
1372 cas_rint(struct cas_softc *sc)
1373 {
1374 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1375 bus_space_tag_t t = sc->sc_memt;
1376 bus_space_handle_t h = sc->sc_memh;
1377 struct cas_rxsoft *rxs;
1378 struct mbuf *m;
1379 uint64_t word[4];
1380 int len, off, idx;
1381 int i, skip;
1382 void *cp;
1383
1384 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1385 CAS_CDRXCSYNC(sc, i,
1386 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1387
1388 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1389 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1390 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1391 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1392
1393 /* Stop if the hardware still owns the descriptor. */
1394 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1395 break;
1396
1397 len = CAS_RC1_HDR_LEN(word[1]);
1398 if (len > 0) {
1399 off = CAS_RC1_HDR_OFF(word[1]);
1400 idx = CAS_RC1_HDR_IDX(word[1]);
1401 rxs = &sc->sc_rxsoft[idx];
1402
1403 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1404 idx, off, len));
1405
1406 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1407 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1408
1409 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1410 m = m_devget(cp, len, 0, ifp);
1411
1412 if (word[0] & CAS_RC0_RELEASE_HDR)
1413 cas_add_rxbuf(sc, idx);
1414
1415 if (m != NULL) {
1416
1417 /*
1418 * Pass this up to any BPF listeners, but only
1419 * pass it up the stack if its for us.
1420 */
1421 m->m_pkthdr.csum_flags = 0;
1422 if_percpuq_enqueue(ifp->if_percpuq, m);
1423 } else
1424 if_statinc(ifp, if_ierrors);
1425 }
1426
1427 len = CAS_RC0_DATA_LEN(word[0]);
1428 if (len > 0) {
1429 off = CAS_RC0_DATA_OFF(word[0]);
1430 idx = CAS_RC0_DATA_IDX(word[0]);
1431 rxs = &sc->sc_rxsoft[idx];
1432
1433 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1434 idx, off, len));
1435
1436 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1437 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1438
1439 /* XXX We should not be copying the packet here. */
1440 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1441 m = m_devget(cp, len, 0, ifp);
1442
1443 if (word[0] & CAS_RC0_RELEASE_DATA)
1444 cas_add_rxbuf(sc, idx);
1445
1446 if (m != NULL) {
1447 /*
1448 * Pass this up to any BPF listeners, but only
1449 * pass it up the stack if its for us.
1450 */
1451 m->m_pkthdr.csum_flags = 0;
1452 if_percpuq_enqueue(ifp->if_percpuq, m);
1453 } else
1454 if_statinc(ifp, if_ierrors);
1455 }
1456
1457 if (word[0] & CAS_RC0_SPLIT)
1458 aprint_error_dev(sc->sc_dev, "split packet\n");
1459
1460 skip = CAS_RC0_SKIP(word[0]);
1461 }
1462
1463 while (sc->sc_rxptr != i) {
1464 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1465 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1466 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1467 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1468 CAS_DMA_WRITE(CAS_RC3_OWN);
1469 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1470 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1471
1472 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1473 }
1474
1475 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1476
1477 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1478 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1479
1480 return (1);
1481 }
1482
1483 /*
1484 * cas_add_rxbuf:
1485 *
1486 * Add a receive buffer to the indicated descriptor.
1487 */
1488 int
1489 cas_add_rxbuf(struct cas_softc *sc, int idx)
1490 {
1491 bus_space_tag_t t = sc->sc_memt;
1492 bus_space_handle_t h = sc->sc_memh;
1493
1494 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1495
1496 if ((sc->sc_rxdptr % 4) == 0)
1497 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1498
1499 if (++sc->sc_rxdptr == CAS_NRXDESC)
1500 sc->sc_rxdptr = 0;
1501
1502 return (0);
1503 }
1504
1505 int
1506 cas_eint(struct cas_softc *sc, u_int status)
1507 {
1508 char bits[128];
1509 if ((status & CAS_INTR_MIF) != 0) {
1510 DPRINTF(sc, ("%s: link status changed\n",
1511 device_xname(sc->sc_dev)));
1512 return (1);
1513 }
1514
1515 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1516 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1517 return (1);
1518 }
1519
1520 int
1521 cas_pint(struct cas_softc *sc)
1522 {
1523 bus_space_tag_t t = sc->sc_memt;
1524 bus_space_handle_t seb = sc->sc_memh;
1525 uint32_t status;
1526
1527 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1528 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1529 #ifdef CAS_DEBUG
1530 if (status)
1531 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1532 #endif
1533 return (1);
1534 }
1535
1536 int
1537 cas_intr(void *v)
1538 {
1539 struct cas_softc *sc = (struct cas_softc *)v;
1540 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1541 bus_space_tag_t t = sc->sc_memt;
1542 bus_space_handle_t seb = sc->sc_memh;
1543 uint32_t status;
1544 int r = 0;
1545 #ifdef CAS_DEBUG
1546 char bits[128];
1547 #endif
1548
1549 sc->sc_ev_intr.ev_count++;
1550
1551 status = bus_space_read_4(t, seb, CAS_STATUS);
1552 #ifdef CAS_DEBUG
1553 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1554 #endif
1555 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1556 device_xname(sc->sc_dev), (status>>19), bits));
1557
1558 if ((status & CAS_INTR_PCS) != 0)
1559 r |= cas_pint(sc);
1560
1561 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1562 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1563 r |= cas_eint(sc, status);
1564
1565 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1566 r |= cas_tint(sc, status);
1567
1568 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1569 r |= cas_rint(sc);
1570
1571 /* We should eventually do more than just print out error stats. */
1572 if (status & CAS_INTR_TX_MAC) {
1573 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1574 #ifdef CAS_DEBUG
1575 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1576 printf("%s: MAC tx fault, status %x\n",
1577 device_xname(sc->sc_dev), txstat);
1578 #endif
1579 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1580 cas_init(ifp);
1581 }
1582 if (status & CAS_INTR_RX_MAC) {
1583 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1584 #ifdef CAS_DEBUG
1585 if (rxstat & ~CAS_MAC_RX_DONE)
1586 printf("%s: MAC rx fault, status %x\n",
1587 device_xname(sc->sc_dev), rxstat);
1588 #endif
1589 /*
1590 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1591 * due to a silicon bug so handle them silently.
1592 */
1593 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1594 if_statinc(ifp, if_ierrors);
1595 cas_init(ifp);
1596 }
1597 #ifdef CAS_DEBUG
1598 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1599 printf("%s: MAC rx fault, status %x\n",
1600 device_xname(sc->sc_dev), rxstat);
1601 #endif
1602 }
1603 rnd_add_uint32(&sc->rnd_source, status);
1604 return (r);
1605 }
1606
1607
1608 void
1609 cas_watchdog(struct ifnet *ifp)
1610 {
1611 struct cas_softc *sc = ifp->if_softc;
1612
1613 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1614 "CAS_MAC_RX_CONFIG %x\n",
1615 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1616 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1617 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1618
1619 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1620 if_statinc(ifp, if_oerrors);
1621
1622 /* Try to get more packets going. */
1623 cas_init(ifp);
1624 }
1625
1626 /*
1627 * Initialize the MII Management Interface
1628 */
1629 void
1630 cas_mifinit(struct cas_softc *sc)
1631 {
1632 bus_space_tag_t t = sc->sc_memt;
1633 bus_space_handle_t mif = sc->sc_memh;
1634
1635 /* Configure the MIF in frame mode */
1636 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1637 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1638 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1639 }
1640
1641 /*
1642 * MII interface
1643 *
1644 * The Cassini MII interface supports at least three different operating modes:
1645 *
1646 * Bitbang mode is implemented using data, clock and output enable registers.
1647 *
1648 * Frame mode is implemented by loading a complete frame into the frame
1649 * register and polling the valid bit for completion.
1650 *
1651 * Polling mode uses the frame register but completion is indicated by
1652 * an interrupt.
1653 *
1654 */
1655 int
1656 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1657 {
1658 struct cas_softc *sc = device_private(self);
1659 bus_space_tag_t t = sc->sc_memt;
1660 bus_space_handle_t mif = sc->sc_memh;
1661 int n;
1662 uint32_t v;
1663
1664 #ifdef CAS_DEBUG
1665 if (sc->sc_debug)
1666 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1667 #endif
1668
1669 /* Construct the frame command */
1670 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1671 CAS_MIF_FRAME_READ;
1672
1673 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1674 for (n = 0; n < 100; n++) {
1675 DELAY(1);
1676 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1677 if (v & CAS_MIF_FRAME_TA0) {
1678 *val = v & CAS_MIF_FRAME_DATA;
1679 return 0;
1680 }
1681 }
1682
1683 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1684 return ETIMEDOUT;
1685 }
1686
1687 int
1688 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1689 {
1690 struct cas_softc *sc = device_private(self);
1691 bus_space_tag_t t = sc->sc_memt;
1692 bus_space_handle_t mif = sc->sc_memh;
1693 int n;
1694 uint32_t v;
1695
1696 #ifdef CAS_DEBUG
1697 if (sc->sc_debug)
1698 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1699 phy, reg, val);
1700 #endif
1701
1702 /* Construct the frame command */
1703 v = CAS_MIF_FRAME_WRITE |
1704 (phy << CAS_MIF_PHY_SHIFT) |
1705 (reg << CAS_MIF_REG_SHIFT) |
1706 (val & CAS_MIF_FRAME_DATA);
1707
1708 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1709 for (n = 0; n < 100; n++) {
1710 DELAY(1);
1711 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1712 if (v & CAS_MIF_FRAME_TA0)
1713 return 0;
1714 }
1715
1716 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1717 return ETIMEDOUT;
1718 }
1719
1720 void
1721 cas_mii_statchg(struct ifnet *ifp)
1722 {
1723 struct cas_softc *sc = ifp->if_softc;
1724 #ifdef CAS_DEBUG
1725 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1726 #endif
1727 bus_space_tag_t t = sc->sc_memt;
1728 bus_space_handle_t mac = sc->sc_memh;
1729 uint32_t v;
1730
1731 #ifdef CAS_DEBUG
1732 if (sc->sc_debug)
1733 printf("cas_mii_statchg: status change: phy = %d\n",
1734 sc->sc_phys[instance]);
1735 #endif
1736
1737 /* Set tx full duplex options */
1738 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1739 delay(10000); /* reg must be cleared and delay before changing. */
1740 v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1741 CAS_MAC_TX_ENABLE;
1742 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1743 v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1744 }
1745 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1746
1747 /* XIF Configuration */
1748 v = CAS_MAC_XIF_TX_MII_ENA;
1749 v |= CAS_MAC_XIF_LINK_LED;
1750
1751 /* MII needs echo disable if half duplex. */
1752 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1753 /* turn on full duplex LED */
1754 v |= CAS_MAC_XIF_FDPLX_LED;
1755 else
1756 /* half duplex -- disable echo */
1757 v |= CAS_MAC_XIF_ECHO_DISABL;
1758
1759 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1760 case IFM_1000_T: /* Gigabit using GMII interface */
1761 case IFM_1000_SX:
1762 v |= CAS_MAC_XIF_GMII_MODE;
1763 break;
1764 default:
1765 v &= ~CAS_MAC_XIF_GMII_MODE;
1766 }
1767 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1768 }
1769
1770 int
1771 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1772 {
1773 struct cas_softc *sc = device_private(self);
1774 bus_space_tag_t t = sc->sc_memt;
1775 bus_space_handle_t pcs = sc->sc_memh;
1776
1777 #ifdef CAS_DEBUG
1778 if (sc->sc_debug)
1779 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1780 #endif
1781
1782 if (phy != CAS_PHYAD_EXTERNAL)
1783 return -1;
1784
1785 switch (reg) {
1786 case MII_BMCR:
1787 reg = CAS_MII_CONTROL;
1788 break;
1789 case MII_BMSR:
1790 reg = CAS_MII_STATUS;
1791 break;
1792 case MII_ANAR:
1793 reg = CAS_MII_ANAR;
1794 break;
1795 case MII_ANLPAR:
1796 reg = CAS_MII_ANLPAR;
1797 break;
1798 case MII_EXTSR:
1799 *val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1800 return 0;
1801 default:
1802 return (0);
1803 }
1804
1805 *val = bus_space_read_4(t, pcs, reg) & 0xffff;
1806 return 0;
1807 }
1808
1809 int
1810 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1811 {
1812 struct cas_softc *sc = device_private(self);
1813 bus_space_tag_t t = sc->sc_memt;
1814 bus_space_handle_t pcs = sc->sc_memh;
1815 int reset = 0;
1816
1817 #ifdef CAS_DEBUG
1818 if (sc->sc_debug)
1819 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1820 phy, reg, val);
1821 #endif
1822
1823 if (phy != CAS_PHYAD_EXTERNAL)
1824 return -1;
1825
1826 if (reg == MII_ANAR)
1827 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1828
1829 switch (reg) {
1830 case MII_BMCR:
1831 reset = (val & CAS_MII_CONTROL_RESET);
1832 reg = CAS_MII_CONTROL;
1833 break;
1834 case MII_BMSR:
1835 reg = CAS_MII_STATUS;
1836 break;
1837 case MII_ANAR:
1838 reg = CAS_MII_ANAR;
1839 break;
1840 case MII_ANLPAR:
1841 reg = CAS_MII_ANLPAR;
1842 break;
1843 default:
1844 return 0;
1845 }
1846
1847 bus_space_write_4(t, pcs, reg, val);
1848
1849 if (reset)
1850 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1851
1852 if (reg == CAS_MII_ANAR || reset)
1853 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1854 CAS_MII_CONFIG_ENABLE);
1855
1856 return 0;
1857 }
1858
1859 int
1860 cas_mediachange(struct ifnet *ifp)
1861 {
1862 struct cas_softc *sc = ifp->if_softc;
1863 struct mii_data *mii = &sc->sc_mii;
1864
1865 if (mii->mii_instance) {
1866 struct mii_softc *miisc;
1867 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1868 mii_phy_reset(miisc);
1869 }
1870
1871 return (mii_mediachg(&sc->sc_mii));
1872 }
1873
1874 void
1875 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1876 {
1877 struct cas_softc *sc = ifp->if_softc;
1878
1879 mii_pollstat(&sc->sc_mii);
1880 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1881 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1882 }
1883
1884 /*
1885 * Process an ioctl request.
1886 */
1887 int
1888 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1889 {
1890 struct cas_softc *sc = ifp->if_softc;
1891 int s, error = 0;
1892
1893 s = splnet();
1894
1895 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1896 error = 0;
1897 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1898 ;
1899 else if (ifp->if_flags & IFF_RUNNING) {
1900 /*
1901 * Multicast list has changed; set the hardware filter
1902 * accordingly.
1903 */
1904 cas_iff(sc);
1905 }
1906 }
1907
1908 splx(s);
1909 return (error);
1910 }
1911
1912 static bool
1913 cas_suspend(device_t self, const pmf_qual_t *qual)
1914 {
1915 struct cas_softc *sc = device_private(self);
1916 bus_space_tag_t t = sc->sc_memt;
1917 bus_space_handle_t h = sc->sc_memh;
1918
1919 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1920 if (sc->sc_ih != NULL) {
1921 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1922 sc->sc_ih = NULL;
1923 }
1924
1925 return true;
1926 }
1927
1928 static bool
1929 cas_resume(device_t self, const pmf_qual_t *qual)
1930 {
1931 struct cas_softc *sc = device_private(self);
1932
1933 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1934 }
1935
1936 static bool
1937 cas_estintr(struct cas_softc *sc, int what)
1938 {
1939 bus_space_tag_t t = sc->sc_memt;
1940 bus_space_handle_t h = sc->sc_memh;
1941 const char *intrstr = NULL;
1942 char intrbuf[PCI_INTRSTR_LEN];
1943
1944 /* PCI interrupts */
1945 if (what & CAS_INTR_PCI) {
1946 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1947 sizeof(intrbuf));
1948 sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1949 IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1950 if (sc->sc_ih == NULL) {
1951 aprint_error_dev(sc->sc_dev,
1952 "unable to establish interrupt");
1953 if (intrstr != NULL)
1954 aprint_error(" at %s", intrstr);
1955 aprint_error("\n");
1956 return false;
1957 }
1958
1959 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1960 }
1961
1962 /* Interrupt register */
1963 if (what & CAS_INTR_REG) {
1964 bus_space_write_4(t, h, CAS_INTMASK,
1965 ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1966 CAS_INTR_TX_TAG_ERR |
1967 CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1968 CAS_INTR_RX_TAG_ERR |
1969 CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1970 CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1971 CAS_INTR_BERR));
1972 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1973 CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1974 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1975 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1976 }
1977 return true;
1978 }
1979
1980 bool
1981 cas_shutdown(device_t self, int howto)
1982 {
1983 struct cas_softc *sc = device_private(self);
1984 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1985
1986 cas_stop(ifp, 1);
1987
1988 return true;
1989 }
1990
1991 void
1992 cas_iff(struct cas_softc *sc)
1993 {
1994 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1995 struct ethercom *ec = &sc->sc_ethercom;
1996 struct ether_multi *enm;
1997 struct ether_multistep step;
1998 bus_space_tag_t t = sc->sc_memt;
1999 bus_space_handle_t h = sc->sc_memh;
2000 uint32_t crc, hash[16], rxcfg;
2001 int i;
2002
2003 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
2004 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
2005 CAS_MAC_RX_PROMISC_GRP);
2006 ifp->if_flags &= ~IFF_ALLMULTI;
2007
2008 if ((ifp->if_flags & IFF_PROMISC) != 0)
2009 goto update;
2010
2011 /*
2012 * Set up multicast address filter by passing all multicast
2013 * addresses through a crc generator, and then using the
2014 * high order 8 bits as an index into the 256 bit logical
2015 * address filter. The high order 4 bits selects the word,
2016 * while the other 4 bits select the bit within the word
2017 * (where bit 0 is the MSB).
2018 */
2019
2020 /* Clear hash table */
2021 for (i = 0; i < 16; i++)
2022 hash[i] = 0;
2023
2024 ETHER_LOCK(ec);
2025 ETHER_FIRST_MULTI(step, ec, enm);
2026 while (enm != NULL) {
2027 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2028 /* XXX Use ETHER_F_ALLMULTI in future. */
2029 ifp->if_flags |= IFF_ALLMULTI;
2030 ETHER_UNLOCK(ec);
2031 goto update;
2032 }
2033
2034 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2035
2036 /* Just want the 8 most significant bits. */
2037 crc >>= 24;
2038
2039 /* Set the corresponding bit in the filter. */
2040 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2041
2042 ETHER_NEXT_MULTI(step, enm);
2043 }
2044 ETHER_UNLOCK(ec);
2045
2046 rxcfg |= CAS_MAC_RX_HASH_FILTER;
2047
2048 /* Now load the hash table into the chip (if we are using it) */
2049 for (i = 0; i < 16; i++) {
2050 bus_space_write_4(t, h,
2051 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2052 hash[i]);
2053 }
2054
2055 update:
2056 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2057 if (ifp->if_flags & IFF_PROMISC) {
2058 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2059 /* XXX Use ETHER_F_ALLMULTI in future. */
2060 ifp->if_flags |= IFF_ALLMULTI;
2061 } else
2062 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2063 }
2064 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2065 }
2066
2067 int
2068 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2069 {
2070 uint64_t flags;
2071 uint32_t cur, frag, i;
2072 bus_dmamap_t map;
2073
2074 cur = frag = *bixp;
2075 map = sc->sc_txd[cur].sd_map;
2076
2077 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2078 BUS_DMA_NOWAIT) != 0) {
2079 return (ENOBUFS);
2080 }
2081
2082 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2083 bus_dmamap_unload(sc->sc_dmatag, map);
2084 return (ENOBUFS);
2085 }
2086
2087 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2088 BUS_DMASYNC_PREWRITE);
2089
2090 for (i = 0; i < map->dm_nsegs; i++) {
2091 sc->sc_txdescs[frag].cd_addr =
2092 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2093 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2094 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2095 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2096 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2097 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2098 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2099 BUS_DMASYNC_PREWRITE);
2100 cur = frag;
2101 if (++frag == CAS_NTXDESC)
2102 frag = 0;
2103 }
2104
2105 sc->sc_tx_cnt += map->dm_nsegs;
2106 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2107 sc->sc_txd[cur].sd_map = map;
2108 sc->sc_txd[cur].sd_mbuf = mhead;
2109
2110 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2111
2112 *bixp = frag;
2113
2114 /* sync descriptors */
2115
2116 return (0);
2117 }
2118
2119 /*
2120 * Transmit interrupt.
2121 */
2122 int
2123 cas_tint(struct cas_softc *sc, uint32_t status)
2124 {
2125 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2126 struct cas_sxd *sd;
2127 uint32_t cons, comp;
2128
2129 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2130 cons = sc->sc_tx_cons;
2131 while (cons != comp) {
2132 sd = &sc->sc_txd[cons];
2133 if (sd->sd_mbuf != NULL) {
2134 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2135 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2136 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2137 m_freem(sd->sd_mbuf);
2138 sd->sd_mbuf = NULL;
2139 if_statinc(ifp, if_opackets);
2140 }
2141 sc->sc_tx_cnt--;
2142 if (++cons == CAS_NTXDESC)
2143 cons = 0;
2144 }
2145 sc->sc_tx_cons = cons;
2146
2147 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2148 ifp->if_flags &= ~IFF_OACTIVE;
2149 if (sc->sc_tx_cnt == 0)
2150 ifp->if_timer = 0;
2151
2152 if_schedule_deferred_start(ifp);
2153
2154 return (1);
2155 }
2156
2157 void
2158 cas_start(struct ifnet *ifp)
2159 {
2160 struct cas_softc *sc = ifp->if_softc;
2161 struct mbuf *m;
2162 uint32_t bix;
2163
2164 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2165 return;
2166
2167 bix = sc->sc_tx_prod;
2168 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2169 IFQ_POLL(&ifp->if_snd, m);
2170 if (m == NULL)
2171 break;
2172
2173 /*
2174 * If BPF is listening on this interface, let it see the
2175 * packet before we commit it to the wire.
2176 */
2177 bpf_mtap(ifp, m, BPF_D_OUT);
2178
2179 /*
2180 * Encapsulate this packet and start it going...
2181 * or fail...
2182 */
2183 if (cas_encap(sc, m, &bix)) {
2184 ifp->if_flags |= IFF_OACTIVE;
2185 break;
2186 }
2187
2188 IFQ_DEQUEUE(&ifp->if_snd, m);
2189 ifp->if_timer = 5;
2190 }
2191
2192 sc->sc_tx_prod = bix;
2193 }
2194
2195 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2196
2197 #ifdef _MODULE
2198 #include "ioconf.c"
2199 #endif
2200
2201 static int
2202 if_cas_modcmd(modcmd_t cmd, void *opaque)
2203 {
2204 int error = 0;
2205
2206 switch (cmd) {
2207 case MODULE_CMD_INIT:
2208 #ifdef _MODULE
2209 error = config_init_component(cfdriver_ioconf_cas,
2210 cfattach_ioconf_cas, cfdata_ioconf_cas);
2211 #endif
2212 return error;
2213 case MODULE_CMD_FINI:
2214 #ifdef _MODULE
2215 error = config_fini_component(cfdriver_ioconf_cas,
2216 cfattach_ioconf_cas, cfdata_ioconf_cas);
2217 #endif
2218 return error;
2219 default:
2220 return ENOTTY;
2221 }
2222 }
2223