if_cas.c revision 1.38 1 /* $NetBSD: if_cas.c,v 1.38 2020/01/30 05:24:53 thorpej Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.38 2020/01/30 05:24:53 thorpej Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 #define TRIES 10000
101
102 static bool cas_estintr(struct cas_softc *sc, int);
103 bool cas_shutdown(device_t, int);
104 static bool cas_suspend(device_t, const pmf_qual_t *);
105 static bool cas_resume(device_t, const pmf_qual_t *);
106 static int cas_detach(device_t, int);
107 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109 int cas_match(device_t, cfdata_t, void *);
110 void cas_attach(device_t, device_t, void *);
111
112
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN);
116
117 int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119 void cas_config(struct cas_softc *, const uint8_t *);
120 void cas_start(struct ifnet *);
121 void cas_stop(struct ifnet *, int);
122 int cas_ioctl(struct ifnet *, u_long, void *);
123 void cas_tick(void *);
124 void cas_watchdog(struct ifnet *);
125 int cas_init(struct ifnet *);
126 void cas_init_regs(struct cas_softc *);
127 int cas_ringsize(int);
128 int cas_cringsize(int);
129 int cas_meminit(struct cas_softc *);
130 void cas_mifinit(struct cas_softc *);
131 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 uint32_t, uint32_t);
133 void cas_reset(struct cas_softc *);
134 int cas_reset_rx(struct cas_softc *);
135 int cas_reset_tx(struct cas_softc *);
136 int cas_disable_rx(struct cas_softc *);
137 int cas_disable_tx(struct cas_softc *);
138 void cas_rxdrain(struct cas_softc *);
139 int cas_add_rxbuf(struct cas_softc *, int);
140 void cas_iff(struct cas_softc *);
141 int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142
143 /* MII methods & callbacks */
144 int cas_mii_readreg(device_t, int, int, uint16_t*);
145 int cas_mii_writereg(device_t, int, int, uint16_t);
146 void cas_mii_statchg(struct ifnet *);
147 int cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int cas_pcs_writereg(device_t, int, int, uint16_t);
149
150 int cas_mediachange(struct ifnet *);
151 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153 int cas_eint(struct cas_softc *, u_int);
154 int cas_rint(struct cas_softc *);
155 int cas_tint(struct cas_softc *, uint32_t);
156 int cas_pint(struct cas_softc *);
157 int cas_intr(void *);
158
159 #ifdef CAS_DEBUG
160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x
162 #else
163 #define DPRINTF(sc, x) /* nothing */
164 #endif
165
166 static const struct cas_pci_dev {
167 uint16_t cpd_vendor;
168 uint16_t cpd_device;
169 int cpd_variant;
170 } cas_pci_devlist[] = {
171 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_CASSINI, CAS_CAS },
172 { PCI_VENDOR_NS, PCI_PRODUCT_NS_SATURN, CAS_SATURN },
173 { 0, 0, 0 }
174 };
175
176 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
177 #define CAS_PHY_INTERFACE "phy-interface"
178 #define CAS_PHY_TYPE "phy-type"
179 #define CAS_PHY_TYPE_PCS "pcs"
180
181 int
182 cas_match(device_t parent, cfdata_t cf, void *aux)
183 {
184 struct pci_attach_args *pa = aux;
185 int i;
186
187 for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
188 if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
189 (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device))
190 return 1;
191 }
192
193 return 0;
194 }
195
196 #define PROMHDR_PTR_DATA 0x18
197 #define PROMDATA_PTR_VPD 0x08
198 #define PROMDATA_DATA2 0x0a
199
200 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
201 static const uint8_t cas_promdat[] = {
202 'P', 'C', 'I', 'R',
203 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
204 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
205 };
206 static const uint8_t cas_promdat_ns[] = {
207 'P', 'C', 'I', 'R',
208 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
209 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
210 };
211
212 static const uint8_t cas_promdat2[] = {
213 0x18, 0x00, /* structure length */
214 0x00, /* structure revision */
215 0x00, /* interface revision */
216 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
217 PCI_CLASS_NETWORK /* class code */
218 };
219
220 #define CAS_LMA_MAXNUM 4
221 int
222 cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
223 uint8_t *enaddr)
224 {
225 struct pci_vpd_largeres *res;
226 struct pci_vpd *vpd;
227 bus_space_handle_t romh;
228 bus_space_tag_t romt;
229 bus_size_t romsize = 0;
230 uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
231 bool pcs[4] = {false, false, false, false};
232 uint8_t buf[32], *desc;
233 pcireg_t address;
234 int dataoff, vpdoff, len, lma = 0, phy = 0;
235 int i, rv = -1;
236
237 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
238 &romt, &romh, NULL, &romsize))
239 return (-1);
240
241 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
242 address |= PCI_MAPREG_ROM_ENABLE;
243 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
244
245 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
246 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
247 goto fail;
248
249 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
250 if (dataoff < 0x1c)
251 goto fail;
252
253 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
254 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
255 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
256 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
257 goto fail;
258
259 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
260 if (vpdoff < 0x1c)
261 goto fail;
262
263 next:
264 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
265 if (!PCI_VPDRES_ISLARGE(buf[0]))
266 goto fail;
267
268 res = (struct pci_vpd_largeres *)buf;
269 vpdoff += sizeof(*res);
270
271 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
272 switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
273 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
274 /* Skip identifier string. */
275 vpdoff += len;
276 goto next;
277
278 case PCI_VPDRES_TYPE_VPD:
279 #ifdef CAS_DEBUG
280 printf("\n");
281 for (i = 0; i < len; i++) {
282 uint8_t byte;
283 if (i % 16 == 0)
284 printf("%04x :", i);
285 byte = bus_space_read_1(romt, romh, vpdoff + i);
286 printf(" %02x", byte);
287 if (i % 16 == 15)
288 printf("\n");
289 }
290 printf("\n");
291 #endif
292
293 while (len > 0) {
294 bus_space_read_region_1(romt, romh, vpdoff,
295 buf, sizeof(buf));
296
297 vpd = (struct pci_vpd *)buf;
298 vpdoff += sizeof(*vpd) + vpd->vpd_len;
299 len -= sizeof(*vpd) + vpd->vpd_len;
300
301 /*
302 * We're looking for an "Enhanced" VPD...
303 */
304 if (vpd->vpd_key0 != 'Z')
305 continue;
306
307 desc = buf + sizeof(*vpd);
308
309 /*
310 * ...which is an instance property...
311 */
312 if (desc[0] != 'I')
313 continue;
314 desc += 3;
315
316 if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
317 /*
318 * ...that's a byte array with the proper
319 * length for a MAC address...
320 */
321 desc += 2;
322
323 /*
324 * ...named "local-mac-address".
325 */
326 if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
327 continue;
328 desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
329
330 if (lma == CAS_LMA_MAXNUM)
331 continue;
332
333 memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
334 lma++;
335 rv = 0;
336 continue;
337 } else if (desc[0] == 'S') {
338 size_t k;
339
340 /* String */
341 desc += 2;
342 #ifdef CAS_DEBUG
343 /* ...named "pcs". */
344 printf("STR: \"%s\"\n", desc);
345 if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
346 continue;
347 desc += sizeof(CAS_PHY_TYPE_PCS);
348 printf("STR: \"%s\"\n", desc);
349 #endif
350 /* ...named "phy-interface" or "phy-type". */
351 if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
352 k = sizeof(CAS_PHY_INTERFACE);
353 else if (strcmp(desc, CAS_PHY_TYPE) == 0)
354 k = sizeof(CAS_PHY_TYPE);
355 else
356 continue;
357
358 desc += k;
359 #ifdef CAS_DEBUG
360 printf("STR: \"%s\"\n", desc);
361 #endif
362 if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
363 pcs[phy] = true;
364 phy++;
365 continue;
366 }
367 }
368 break;
369
370 default:
371 goto fail;
372 }
373
374 /*
375 * Multi port card has bridge chip. The device number is fixed:
376 * e.g.
377 * p0: 005:00:0
378 * p1: 005:01:0
379 * p2: 006:02:0
380 * p3: 006:03:0
381 */
382 if (enaddr != 0) {
383 i = 0;
384 if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
385 && (pa->pa_device < lma))
386 i = pa->pa_device;
387 memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
388 }
389 if (pcs[pa->pa_device])
390 sc->sc_flags |= CAS_SERDES;
391 fail:
392 if (romsize != 0)
393 bus_space_unmap(romt, romh, romsize);
394
395 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
396 address &= ~PCI_MAPREG_ROM_ENABLE;
397 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
398
399 return (rv);
400 }
401
402 void
403 cas_attach(device_t parent, device_t self, void *aux)
404 {
405 struct pci_attach_args *pa = aux;
406 struct cas_softc *sc = device_private(self);
407 int i;
408 prop_data_t data;
409 uint8_t enaddr[ETHER_ADDR_LEN];
410
411 sc->sc_dev = self;
412 pci_aprint_devinfo(pa, NULL);
413 sc->sc_rev = PCI_REVISION(pa->pa_class);
414 sc->sc_dmatag = pa->pa_dmat;
415
416 sc->sc_variant = CAS_UNKNOWN;
417 for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
418 if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
419 (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device)) {
420 sc->sc_variant = cas_pci_devlist[i].cpd_variant;
421 break;
422 }
423 }
424 aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
425 if (sc->sc_variant == CAS_UNKNOWN) {
426 aprint_error_dev(sc->sc_dev, "unknown adaptor\n");
427 return;
428 }
429
430 #define PCI_CAS_BASEADDR 0x10
431 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
432 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
433 aprint_error_dev(sc->sc_dev,
434 "unable to map device registers\n");
435 return;
436 }
437
438 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
439 "mac-address")) != NULL)
440 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
441 if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
442 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
443 memset(enaddr, 0, sizeof(enaddr));
444 }
445
446 sc->sc_burst = 16; /* XXX */
447
448 sc->sc_att_stage = CAS_ATT_BACKEND_0;
449
450 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
451 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
452 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
453 return;
454 }
455 sc->sc_pc = pa->pa_pc;
456 if (!cas_estintr(sc, CAS_INTR_PCI)) {
457 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
458 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
459 return;
460 }
461
462 sc->sc_att_stage = CAS_ATT_BACKEND_1;
463
464 /*
465 * call the main configure
466 */
467 cas_config(sc, enaddr);
468
469 if (pmf_device_register1(sc->sc_dev,
470 cas_suspend, cas_resume, cas_shutdown))
471 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
472 else
473 aprint_error_dev(sc->sc_dev,
474 "could not establish power handlers\n");
475
476 sc->sc_att_stage = CAS_ATT_FINISHED;
477 /*FALLTHROUGH*/
478 }
479
480 /*
481 * cas_config:
482 *
483 * Attach a Cassini interface to the system.
484 */
485 void
486 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
487 {
488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
489 struct mii_data *mii = &sc->sc_mii;
490 struct mii_softc *child;
491 uint32_t reg;
492 int i, error;
493
494 /* Make sure the chip is stopped. */
495 ifp->if_softc = sc;
496 cas_reset(sc);
497
498 /*
499 * Allocate the control data structures, and create and load the
500 * DMA map for it.
501 */
502 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
503 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
504 1, &sc->sc_cdnseg, 0)) != 0) {
505 aprint_error_dev(sc->sc_dev,
506 "unable to allocate control data, error = %d\n",
507 error);
508 cas_partial_detach(sc, CAS_ATT_0);
509 }
510
511 /* XXX should map this in with correct endianness */
512 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
513 sc->sc_cdnseg, sizeof(struct cas_control_data),
514 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
515 aprint_error_dev(sc->sc_dev,
516 "unable to map control data, error = %d\n", error);
517 cas_partial_detach(sc, CAS_ATT_1);
518 }
519
520 if ((error = bus_dmamap_create(sc->sc_dmatag,
521 sizeof(struct cas_control_data), 1,
522 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
523 aprint_error_dev(sc->sc_dev,
524 "unable to create control data DMA map, error = %d\n",
525 error);
526 cas_partial_detach(sc, CAS_ATT_2);
527 }
528
529 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
530 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
531 0)) != 0) {
532 aprint_error_dev(sc->sc_dev,
533 "unable to load control data DMA map, error = %d\n",
534 error);
535 cas_partial_detach(sc, CAS_ATT_3);
536 }
537
538 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
539
540 /*
541 * Create the receive buffer DMA maps.
542 */
543 for (i = 0; i < CAS_NRXDESC; i++) {
544 bus_dma_segment_t seg;
545 char *kva;
546 int rseg;
547
548 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
549 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
550 aprint_error_dev(sc->sc_dev,
551 "unable to alloc rx DMA mem %d, error = %d\n",
552 i, error);
553 cas_partial_detach(sc, CAS_ATT_5);
554 }
555 sc->sc_rxsoft[i].rxs_dmaseg = seg;
556
557 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
558 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
559 aprint_error_dev(sc->sc_dev,
560 "unable to alloc rx DMA mem %d, error = %d\n",
561 i, error);
562 cas_partial_detach(sc, CAS_ATT_5);
563 }
564 sc->sc_rxsoft[i].rxs_kva = kva;
565
566 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
567 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
568 aprint_error_dev(sc->sc_dev,
569 "unable to create rx DMA map %d, error = %d\n",
570 i, error);
571 cas_partial_detach(sc, CAS_ATT_5);
572 }
573
574 if ((error = bus_dmamap_load(sc->sc_dmatag,
575 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
576 BUS_DMA_NOWAIT)) != 0) {
577 aprint_error_dev(sc->sc_dev,
578 "unable to load rx DMA map %d, error = %d\n",
579 i, error);
580 cas_partial_detach(sc, CAS_ATT_5);
581 }
582 }
583
584 /*
585 * Create the transmit buffer DMA maps.
586 */
587 for (i = 0; i < CAS_NTXDESC; i++) {
588 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
589 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
590 &sc->sc_txd[i].sd_map)) != 0) {
591 aprint_error_dev(sc->sc_dev,
592 "unable to create tx DMA map %d, error = %d\n",
593 i, error);
594 cas_partial_detach(sc, CAS_ATT_6);
595 }
596 sc->sc_txd[i].sd_mbuf = NULL;
597 }
598
599 /*
600 * From this point forward, the attachment cannot fail. A failure
601 * before this point releases all resources that may have been
602 * allocated.
603 */
604
605 /* Announce ourselves. */
606 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
607 ether_sprintf(enaddr));
608 aprint_naive(": Ethernet controller\n");
609
610 /* Get RX FIFO size */
611 sc->sc_rxfifosize = 16 * 1024;
612
613 /* Initialize ifnet structure. */
614 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
615 ifp->if_softc = sc;
616 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
617 ifp->if_start = cas_start;
618 ifp->if_ioctl = cas_ioctl;
619 ifp->if_watchdog = cas_watchdog;
620 ifp->if_stop = cas_stop;
621 ifp->if_init = cas_init;
622 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
623 IFQ_SET_READY(&ifp->if_snd);
624
625 /* Initialize ifmedia structures and MII info */
626 mii->mii_ifp = ifp;
627 mii->mii_readreg = cas_mii_readreg;
628 mii->mii_writereg = cas_mii_writereg;
629 mii->mii_statchg = cas_mii_statchg;
630
631 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
632 sc->sc_ethercom.ec_mii = mii;
633
634 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
635
636 cas_mifinit(sc);
637
638 if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
639 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
640 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
641 bus_space_write_4(sc->sc_memt, sc->sc_memh,
642 CAS_MIF_CONFIG, sc->sc_mif_config);
643 }
644 /* Enable/unfreeze the GMII pins of Saturn. */
645 if (sc->sc_variant == CAS_SATURN) {
646 reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
647 CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
648 if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
649 reg |= CAS_SATURN_PCFG_FSI;
650 bus_space_write_4(sc->sc_memt, sc->sc_memh,
651 CAS_SATURN_PCFG, reg);
652 /* Read to flush */
653 bus_space_read_4(sc->sc_memt, sc->sc_memh,
654 CAS_SATURN_PCFG);
655 DELAY(10000);
656 }
657 }
658
659 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
660 MII_OFFSET_ANY, 0);
661
662 child = LIST_FIRST(&mii->mii_phys);
663 if (child == NULL &&
664 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
665 /*
666 * Try the external PCS SERDES if we didn't find any
667 * MII devices.
668 */
669 bus_space_write_4(sc->sc_memt, sc->sc_memh,
670 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
671
672 bus_space_write_4(sc->sc_memt, sc->sc_memh,
673 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
674
675 mii->mii_readreg = cas_pcs_readreg;
676 mii->mii_writereg = cas_pcs_writereg;
677
678 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
679 MII_OFFSET_ANY, MIIF_NOISOLATE);
680 }
681
682 child = LIST_FIRST(&mii->mii_phys);
683 if (child == NULL) {
684 /* No PHY attached */
685 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
686 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
687 } else {
688 /*
689 * Walk along the list of attached MII devices and
690 * establish an `MII instance' to `phy number'
691 * mapping. We'll use this mapping in media change
692 * requests to determine which phy to use to program
693 * the MIF configuration register.
694 */
695 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
696 /*
697 * Note: we support just two PHYs: the built-in
698 * internal device and an external on the MII
699 * connector.
700 */
701 if (child->mii_phy > 1 || child->mii_inst > 1) {
702 aprint_error_dev(sc->sc_dev,
703 "cannot accommodate MII device %s"
704 " at phy %d, instance %d\n",
705 device_xname(child->mii_dev),
706 child->mii_phy, child->mii_inst);
707 continue;
708 }
709
710 sc->sc_phys[child->mii_inst] = child->mii_phy;
711 }
712
713 /*
714 * XXX - we can really do the following ONLY if the
715 * phy indeed has the auto negotiation capability!!
716 */
717 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
718 }
719
720 /* claim 802.1q capability */
721 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
722
723 /* Attach the interface. */
724 if_attach(ifp);
725 if_deferred_start_init(ifp, NULL);
726 ether_ifattach(ifp, enaddr);
727
728 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
729 RND_TYPE_NET, RND_FLAG_DEFAULT);
730
731 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
732 NULL, device_xname(sc->sc_dev), "interrupts");
733
734 callout_init(&sc->sc_tick_ch, 0);
735
736 return;
737 }
738
739 int
740 cas_detach(device_t self, int flags)
741 {
742 int i;
743 struct cas_softc *sc = device_private(self);
744 bus_space_tag_t t = sc->sc_memt;
745 bus_space_handle_t h = sc->sc_memh;
746 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
747
748 /*
749 * Free any resources we've allocated during the failed attach
750 * attempt. Do this in reverse order and fall through.
751 */
752 switch (sc->sc_att_stage) {
753 case CAS_ATT_FINISHED:
754 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
755 pmf_device_deregister(self);
756 cas_stop(&sc->sc_ethercom.ec_if, 1);
757 evcnt_detach(&sc->sc_ev_intr);
758
759 rnd_detach_source(&sc->rnd_source);
760
761 ether_ifdetach(ifp);
762 if_detach(ifp);
763 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
764
765 callout_destroy(&sc->sc_tick_ch);
766
767 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
768
769 /*FALLTHROUGH*/
770 case CAS_ATT_MII:
771 case CAS_ATT_7:
772 case CAS_ATT_6:
773 for (i = 0; i < CAS_NTXDESC; i++) {
774 if (sc->sc_txd[i].sd_map != NULL)
775 bus_dmamap_destroy(sc->sc_dmatag,
776 sc->sc_txd[i].sd_map);
777 }
778 /*FALLTHROUGH*/
779 case CAS_ATT_5:
780 for (i = 0; i < CAS_NRXDESC; i++) {
781 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
782 bus_dmamap_unload(sc->sc_dmatag,
783 sc->sc_rxsoft[i].rxs_dmamap);
784 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
785 bus_dmamap_destroy(sc->sc_dmatag,
786 sc->sc_rxsoft[i].rxs_dmamap);
787 if (sc->sc_rxsoft[i].rxs_kva != NULL)
788 bus_dmamem_unmap(sc->sc_dmatag,
789 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
790 /* XXX need to check that bus_dmamem_alloc suceeded
791 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
792 */
793 bus_dmamem_free(sc->sc_dmatag,
794 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
795 }
796 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
797 /*FALLTHROUGH*/
798 case CAS_ATT_4:
799 case CAS_ATT_3:
800 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
801 /*FALLTHROUGH*/
802 case CAS_ATT_2:
803 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
804 sizeof(struct cas_control_data));
805 /*FALLTHROUGH*/
806 case CAS_ATT_1:
807 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
808 /*FALLTHROUGH*/
809 case CAS_ATT_0:
810 sc->sc_att_stage = CAS_ATT_0;
811 /*FALLTHROUGH*/
812 case CAS_ATT_BACKEND_2:
813 case CAS_ATT_BACKEND_1:
814 if (sc->sc_ih != NULL) {
815 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
816 sc->sc_ih = NULL;
817 }
818 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
819 /*FALLTHROUGH*/
820 case CAS_ATT_BACKEND_0:
821 break;
822 }
823 return 0;
824 }
825
826 static void
827 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
828 {
829 cfattach_t ca = device_cfattach(sc->sc_dev);
830
831 sc->sc_att_stage = stage;
832 (*ca->ca_detach)(sc->sc_dev, 0);
833 }
834
835 void
836 cas_tick(void *arg)
837 {
838 struct cas_softc *sc = arg;
839 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
840 bus_space_tag_t t = sc->sc_memt;
841 bus_space_handle_t mac = sc->sc_memh;
842 int s;
843 uint32_t v;
844
845 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
846
847 /* unload collisions counters */
848 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
849 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
850 if_statadd_ref(nsr, if_collisions, v +
851 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
852 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
853 if_statadd_ref(nsr, if_oerrors, v);
854
855 /* read error counters */
856 if_statadd_ref(nsr, if_ierrors,
857 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
858 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
859 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
860 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
861
862 IF_STAT_PUTREF(ifp);
863
864 /* clear the hardware counters */
865 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
866 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
867 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
868 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
869 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
870 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
871 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
872 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
873
874 s = splnet();
875 mii_tick(&sc->sc_mii);
876 splx(s);
877
878 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
879 }
880
881 int
882 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
883 uint32_t clr, uint32_t set)
884 {
885 int i;
886 uint32_t reg;
887
888 for (i = TRIES; i--; DELAY(100)) {
889 reg = bus_space_read_4(sc->sc_memt, h, r);
890 if ((reg & clr) == 0 && (reg & set) == set)
891 return (1);
892 }
893
894 return (0);
895 }
896
897 void
898 cas_reset(struct cas_softc *sc)
899 {
900 bus_space_tag_t t = sc->sc_memt;
901 bus_space_handle_t h = sc->sc_memh;
902 int s;
903
904 s = splnet();
905 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
906 cas_reset_rx(sc);
907 cas_reset_tx(sc);
908
909 /* Disable interrupts */
910 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
911
912 /* Do a full reset */
913 bus_space_write_4(t, h, CAS_RESET,
914 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
915 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
916 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
917 splx(s);
918 }
919
920
921 /*
922 * cas_rxdrain:
923 *
924 * Drain the receive queue.
925 */
926 void
927 cas_rxdrain(struct cas_softc *sc)
928 {
929 /* Nothing to do yet. */
930 }
931
932 /*
933 * Reset the whole thing.
934 */
935 void
936 cas_stop(struct ifnet *ifp, int disable)
937 {
938 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
939 struct cas_sxd *sd;
940 uint32_t i;
941
942 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
943
944 callout_stop(&sc->sc_tick_ch);
945
946 /*
947 * Mark the interface down and cancel the watchdog timer.
948 */
949 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
950 ifp->if_timer = 0;
951
952 mii_down(&sc->sc_mii);
953
954 cas_reset_rx(sc);
955 cas_reset_tx(sc);
956
957 /*
958 * Release any queued transmit buffers.
959 */
960 for (i = 0; i < CAS_NTXDESC; i++) {
961 sd = &sc->sc_txd[i];
962 if (sd->sd_mbuf != NULL) {
963 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
964 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
965 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
966 m_freem(sd->sd_mbuf);
967 sd->sd_mbuf = NULL;
968 }
969 }
970 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
971
972 if (disable)
973 cas_rxdrain(sc);
974 }
975
976
977 /*
978 * Reset the receiver
979 */
980 int
981 cas_reset_rx(struct cas_softc *sc)
982 {
983 bus_space_tag_t t = sc->sc_memt;
984 bus_space_handle_t h = sc->sc_memh;
985
986 /*
987 * Resetting while DMA is in progress can cause a bus hang, so we
988 * disable DMA first.
989 */
990 cas_disable_rx(sc);
991 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
992 /* Wait till it finishes */
993 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
994 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
995 /* Wait 5ms extra. */
996 delay(5000);
997
998 /* Finally, reset the ERX */
999 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
1000 /* Wait till it finishes */
1001 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
1002 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
1003 return (1);
1004 }
1005 return (0);
1006 }
1007
1008
1009 /*
1010 * Reset the transmitter
1011 */
1012 int
1013 cas_reset_tx(struct cas_softc *sc)
1014 {
1015 bus_space_tag_t t = sc->sc_memt;
1016 bus_space_handle_t h = sc->sc_memh;
1017
1018 /*
1019 * Resetting while DMA is in progress can cause a bus hang, so we
1020 * disable DMA first.
1021 */
1022 cas_disable_tx(sc);
1023 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1024 /* Wait till it finishes */
1025 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1026 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1027 /* Wait 5ms extra. */
1028 delay(5000);
1029
1030 /* Finally, reset the ETX */
1031 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1032 /* Wait till it finishes */
1033 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1034 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1035 return (1);
1036 }
1037 return (0);
1038 }
1039
1040 /*
1041 * Disable receiver.
1042 */
1043 int
1044 cas_disable_rx(struct cas_softc *sc)
1045 {
1046 bus_space_tag_t t = sc->sc_memt;
1047 bus_space_handle_t h = sc->sc_memh;
1048 uint32_t cfg;
1049
1050 /* Flip the enable bit */
1051 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1052 cfg &= ~CAS_MAC_RX_ENABLE;
1053 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1054
1055 /* Wait for it to finish */
1056 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1057 }
1058
1059 /*
1060 * Disable transmitter.
1061 */
1062 int
1063 cas_disable_tx(struct cas_softc *sc)
1064 {
1065 bus_space_tag_t t = sc->sc_memt;
1066 bus_space_handle_t h = sc->sc_memh;
1067 uint32_t cfg;
1068
1069 /* Flip the enable bit */
1070 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1071 cfg &= ~CAS_MAC_TX_ENABLE;
1072 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1073
1074 /* Wait for it to finish */
1075 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1076 }
1077
1078 /*
1079 * Initialize interface.
1080 */
1081 int
1082 cas_meminit(struct cas_softc *sc)
1083 {
1084 int i;
1085
1086 /*
1087 * Initialize the transmit descriptor ring.
1088 */
1089 for (i = 0; i < CAS_NTXDESC; i++) {
1090 sc->sc_txdescs[i].cd_flags = 0;
1091 sc->sc_txdescs[i].cd_addr = 0;
1092 }
1093 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1094 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1095
1096 /*
1097 * Initialize the receive descriptor and receive job
1098 * descriptor rings.
1099 */
1100 for (i = 0; i < CAS_NRXDESC; i++)
1101 CAS_INIT_RXDESC(sc, i, i);
1102 sc->sc_rxdptr = 0;
1103 sc->sc_rxptr = 0;
1104
1105 /*
1106 * Initialize the receive completion ring.
1107 */
1108 for (i = 0; i < CAS_NRXCOMP; i++) {
1109 sc->sc_rxcomps[i].cc_word[0] = 0;
1110 sc->sc_rxcomps[i].cc_word[1] = 0;
1111 sc->sc_rxcomps[i].cc_word[2] = 0;
1112 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1113 CAS_CDRXCSYNC(sc, i,
1114 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1115 }
1116
1117 return (0);
1118 }
1119
1120 int
1121 cas_ringsize(int sz)
1122 {
1123 switch (sz) {
1124 case 32:
1125 return CAS_RING_SZ_32;
1126 case 64:
1127 return CAS_RING_SZ_64;
1128 case 128:
1129 return CAS_RING_SZ_128;
1130 case 256:
1131 return CAS_RING_SZ_256;
1132 case 512:
1133 return CAS_RING_SZ_512;
1134 case 1024:
1135 return CAS_RING_SZ_1024;
1136 case 2048:
1137 return CAS_RING_SZ_2048;
1138 case 4096:
1139 return CAS_RING_SZ_4096;
1140 case 8192:
1141 return CAS_RING_SZ_8192;
1142 default:
1143 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1144 sz);
1145 return CAS_RING_SZ_32;
1146 }
1147 }
1148
1149 int
1150 cas_cringsize(int sz)
1151 {
1152 int i;
1153
1154 for (i = 0; i < 9; i++)
1155 if (sz == (128 << i))
1156 return i;
1157
1158 aprint_error("cas: invalid completion ring size %d\n", sz);
1159 return 128;
1160 }
1161
1162 /*
1163 * Initialization of interface; set up initialization block
1164 * and transmit/receive descriptor rings.
1165 */
1166 int
1167 cas_init(struct ifnet *ifp)
1168 {
1169 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1170 bus_space_tag_t t = sc->sc_memt;
1171 bus_space_handle_t h = sc->sc_memh;
1172 int s;
1173 u_int max_frame_size;
1174 uint32_t v;
1175
1176 s = splnet();
1177
1178 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1179 /*
1180 * Initialization sequence. The numbered steps below correspond
1181 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1182 * Channel Engine manual (part of the PCIO manual).
1183 * See also the STP2002-STQ document from Sun Microsystems.
1184 */
1185
1186 /* step 1 & 2. Reset the Ethernet Channel */
1187 cas_stop(ifp, 0);
1188 cas_reset(sc);
1189 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1190
1191 /* Re-initialize the MIF */
1192 cas_mifinit(sc);
1193
1194 /* step 3. Setup data structures in host memory */
1195 cas_meminit(sc);
1196
1197 /* step 4. TX MAC registers & counters */
1198 cas_init_regs(sc);
1199 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1200 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1201 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1202
1203 /* step 5. RX MAC registers & counters */
1204 cas_iff(sc);
1205
1206 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1207 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1208 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1209 (((uint64_t)CAS_CDTXADDR(sc, 0)) >> 32));
1210 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1211
1212 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1213 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1214 (((uint64_t)CAS_CDRXADDR(sc, 0)) >> 32));
1215 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1216
1217 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1218 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1219 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1220 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1221
1222 if (CAS_PLUS(sc)) {
1223 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1224 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1225 (((uint64_t)CAS_CDRXADDR2(sc, 0)) >> 32));
1226 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1227 CAS_CDRXADDR2(sc, 0));
1228 }
1229
1230 /* step 8. Global Configuration & Interrupt Mask */
1231 cas_estintr(sc, CAS_INTR_REG);
1232
1233 /* step 9. ETX Configuration: use mostly default values */
1234
1235 /* Enable DMA */
1236 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1237 bus_space_write_4(t, h, CAS_TX_CONFIG,
1238 v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1239 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1240
1241 /* step 10. ERX Configuration */
1242
1243 /* Encode Receive Descriptor ring size */
1244 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1245 if (CAS_PLUS(sc))
1246 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1247
1248 /* Encode Receive Completion ring size */
1249 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1250
1251 /* Enable DMA */
1252 bus_space_write_4(t, h, CAS_RX_CONFIG,
1253 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1254
1255 /*
1256 * The following value is for an OFF Threshold of about 3/4 full
1257 * and an ON Threshold of 1/4 full.
1258 */
1259 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1260 (3 * sc->sc_rxfifosize / 256) |
1261 ((sc->sc_rxfifosize / 256) << 12));
1262 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1263
1264 /* step 11. Configure Media */
1265 mii_ifmedia_change(&sc->sc_mii);
1266
1267 /* step 12. RX_MAC Configuration Register */
1268 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1269 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1270 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1271
1272 /* step 14. Issue Transmit Pending command */
1273
1274 /* step 15. Give the receiver a swift kick */
1275 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1276 if (CAS_PLUS(sc))
1277 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1278
1279 /* Start the one second timer. */
1280 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1281
1282 ifp->if_flags |= IFF_RUNNING;
1283 ifp->if_flags &= ~IFF_OACTIVE;
1284 ifp->if_timer = 0;
1285 splx(s);
1286
1287 return (0);
1288 }
1289
1290 void
1291 cas_init_regs(struct cas_softc *sc)
1292 {
1293 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1294 bus_space_tag_t t = sc->sc_memt;
1295 bus_space_handle_t h = sc->sc_memh;
1296 const u_char *laddr = CLLADDR(ifp->if_sadl);
1297 uint32_t v, r;
1298
1299 /* These regs are not cleared on reset */
1300 sc->sc_inited = 0;
1301 if (!sc->sc_inited) {
1302 /* Load recommended values */
1303 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1304 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1305 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1306
1307 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1308 /* Max frame and max burst size */
1309 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1310 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1311
1312 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1313 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1314 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1315 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1316 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1317 ((laddr[5]<<8)|laddr[4])&0x3ff);
1318
1319 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1320 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1321 bus_space_write_4(t, h, r, 0);
1322
1323 /* MAC control addr set to 0:1:c2:0:1:80 */
1324 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1325 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1326 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1327
1328 /* MAC filter addr set to 0:0:0:0:0:0 */
1329 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1330 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1331 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1332
1333 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1334 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1335
1336 /* Hash table initialized to 0 */
1337 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1338 bus_space_write_4(t, h, r, 0);
1339
1340 sc->sc_inited = 1;
1341 }
1342
1343 /* Counters need to be zeroed */
1344 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1345 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1346 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1347 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1348 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1349 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1350 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1351 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1352 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1353 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1354 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1355
1356 /* Un-pause stuff */
1357 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1358
1359 /*
1360 * Set the station address.
1361 */
1362 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1363 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1364 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1365 }
1366
1367 /*
1368 * Receive interrupt.
1369 */
1370 int
1371 cas_rint(struct cas_softc *sc)
1372 {
1373 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1374 bus_space_tag_t t = sc->sc_memt;
1375 bus_space_handle_t h = sc->sc_memh;
1376 struct cas_rxsoft *rxs;
1377 struct mbuf *m;
1378 uint64_t word[4];
1379 int len, off, idx;
1380 int i, skip;
1381 void *cp;
1382
1383 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1384 CAS_CDRXCSYNC(sc, i,
1385 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1386
1387 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1388 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1389 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1390 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1391
1392 /* Stop if the hardware still owns the descriptor. */
1393 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1394 break;
1395
1396 len = CAS_RC1_HDR_LEN(word[1]);
1397 if (len > 0) {
1398 off = CAS_RC1_HDR_OFF(word[1]);
1399 idx = CAS_RC1_HDR_IDX(word[1]);
1400 rxs = &sc->sc_rxsoft[idx];
1401
1402 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1403 idx, off, len));
1404
1405 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1406 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1407
1408 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1409 m = m_devget(cp, len, 0, ifp);
1410
1411 if (word[0] & CAS_RC0_RELEASE_HDR)
1412 cas_add_rxbuf(sc, idx);
1413
1414 if (m != NULL) {
1415
1416 /*
1417 * Pass this up to any BPF listeners, but only
1418 * pass it up the stack if its for us.
1419 */
1420 m->m_pkthdr.csum_flags = 0;
1421 if_percpuq_enqueue(ifp->if_percpuq, m);
1422 } else
1423 if_statinc(ifp, if_ierrors);
1424 }
1425
1426 len = CAS_RC0_DATA_LEN(word[0]);
1427 if (len > 0) {
1428 off = CAS_RC0_DATA_OFF(word[0]);
1429 idx = CAS_RC0_DATA_IDX(word[0]);
1430 rxs = &sc->sc_rxsoft[idx];
1431
1432 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1433 idx, off, len));
1434
1435 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1436 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1437
1438 /* XXX We should not be copying the packet here. */
1439 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1440 m = m_devget(cp, len, 0, ifp);
1441
1442 if (word[0] & CAS_RC0_RELEASE_DATA)
1443 cas_add_rxbuf(sc, idx);
1444
1445 if (m != NULL) {
1446 /*
1447 * Pass this up to any BPF listeners, but only
1448 * pass it up the stack if its for us.
1449 */
1450 m->m_pkthdr.csum_flags = 0;
1451 if_percpuq_enqueue(ifp->if_percpuq, m);
1452 } else
1453 if_statinc(ifp, if_ierrors);
1454 }
1455
1456 if (word[0] & CAS_RC0_SPLIT)
1457 aprint_error_dev(sc->sc_dev, "split packet\n");
1458
1459 skip = CAS_RC0_SKIP(word[0]);
1460 }
1461
1462 while (sc->sc_rxptr != i) {
1463 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1464 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1465 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1466 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1467 CAS_DMA_WRITE(CAS_RC3_OWN);
1468 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1469 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1470
1471 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1472 }
1473
1474 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1475
1476 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1477 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1478
1479 return (1);
1480 }
1481
1482 /*
1483 * cas_add_rxbuf:
1484 *
1485 * Add a receive buffer to the indicated descriptor.
1486 */
1487 int
1488 cas_add_rxbuf(struct cas_softc *sc, int idx)
1489 {
1490 bus_space_tag_t t = sc->sc_memt;
1491 bus_space_handle_t h = sc->sc_memh;
1492
1493 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1494
1495 if ((sc->sc_rxdptr % 4) == 0)
1496 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1497
1498 if (++sc->sc_rxdptr == CAS_NRXDESC)
1499 sc->sc_rxdptr = 0;
1500
1501 return (0);
1502 }
1503
1504 int
1505 cas_eint(struct cas_softc *sc, u_int status)
1506 {
1507 char bits[128];
1508 if ((status & CAS_INTR_MIF) != 0) {
1509 DPRINTF(sc, ("%s: link status changed\n",
1510 device_xname(sc->sc_dev)));
1511 return (1);
1512 }
1513
1514 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1515 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1516 return (1);
1517 }
1518
1519 int
1520 cas_pint(struct cas_softc *sc)
1521 {
1522 bus_space_tag_t t = sc->sc_memt;
1523 bus_space_handle_t seb = sc->sc_memh;
1524 uint32_t status;
1525
1526 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1527 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1528 #ifdef CAS_DEBUG
1529 if (status)
1530 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1531 #endif
1532 return (1);
1533 }
1534
1535 int
1536 cas_intr(void *v)
1537 {
1538 struct cas_softc *sc = (struct cas_softc *)v;
1539 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1540 bus_space_tag_t t = sc->sc_memt;
1541 bus_space_handle_t seb = sc->sc_memh;
1542 uint32_t status;
1543 int r = 0;
1544 #ifdef CAS_DEBUG
1545 char bits[128];
1546 #endif
1547
1548 sc->sc_ev_intr.ev_count++;
1549
1550 status = bus_space_read_4(t, seb, CAS_STATUS);
1551 #ifdef CAS_DEBUG
1552 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1553 #endif
1554 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1555 device_xname(sc->sc_dev), (status>>19), bits));
1556
1557 if ((status & CAS_INTR_PCS) != 0)
1558 r |= cas_pint(sc);
1559
1560 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1561 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1562 r |= cas_eint(sc, status);
1563
1564 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1565 r |= cas_tint(sc, status);
1566
1567 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1568 r |= cas_rint(sc);
1569
1570 /* We should eventually do more than just print out error stats. */
1571 if (status & CAS_INTR_TX_MAC) {
1572 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1573 #ifdef CAS_DEBUG
1574 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1575 printf("%s: MAC tx fault, status %x\n",
1576 device_xname(sc->sc_dev), txstat);
1577 #endif
1578 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1579 cas_init(ifp);
1580 }
1581 if (status & CAS_INTR_RX_MAC) {
1582 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1583 #ifdef CAS_DEBUG
1584 if (rxstat & ~CAS_MAC_RX_DONE)
1585 printf("%s: MAC rx fault, status %x\n",
1586 device_xname(sc->sc_dev), rxstat);
1587 #endif
1588 /*
1589 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1590 * due to a silicon bug so handle them silently.
1591 */
1592 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1593 if_statinc(ifp, if_ierrors);
1594 cas_init(ifp);
1595 }
1596 #ifdef CAS_DEBUG
1597 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1598 printf("%s: MAC rx fault, status %x\n",
1599 device_xname(sc->sc_dev), rxstat);
1600 #endif
1601 }
1602 rnd_add_uint32(&sc->rnd_source, status);
1603 return (r);
1604 }
1605
1606
1607 void
1608 cas_watchdog(struct ifnet *ifp)
1609 {
1610 struct cas_softc *sc = ifp->if_softc;
1611
1612 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1613 "CAS_MAC_RX_CONFIG %x\n",
1614 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1615 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1616 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1617
1618 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1619 if_statinc(ifp, if_oerrors);
1620
1621 /* Try to get more packets going. */
1622 cas_init(ifp);
1623 }
1624
1625 /*
1626 * Initialize the MII Management Interface
1627 */
1628 void
1629 cas_mifinit(struct cas_softc *sc)
1630 {
1631 bus_space_tag_t t = sc->sc_memt;
1632 bus_space_handle_t mif = sc->sc_memh;
1633
1634 /* Configure the MIF in frame mode */
1635 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1636 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1637 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1638 }
1639
1640 /*
1641 * MII interface
1642 *
1643 * The Cassini MII interface supports at least three different operating modes:
1644 *
1645 * Bitbang mode is implemented using data, clock and output enable registers.
1646 *
1647 * Frame mode is implemented by loading a complete frame into the frame
1648 * register and polling the valid bit for completion.
1649 *
1650 * Polling mode uses the frame register but completion is indicated by
1651 * an interrupt.
1652 *
1653 */
1654 int
1655 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1656 {
1657 struct cas_softc *sc = device_private(self);
1658 bus_space_tag_t t = sc->sc_memt;
1659 bus_space_handle_t mif = sc->sc_memh;
1660 int n;
1661 uint32_t v;
1662
1663 #ifdef CAS_DEBUG
1664 if (sc->sc_debug)
1665 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1666 #endif
1667
1668 /* Construct the frame command */
1669 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1670 CAS_MIF_FRAME_READ;
1671
1672 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1673 for (n = 0; n < 100; n++) {
1674 DELAY(1);
1675 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1676 if (v & CAS_MIF_FRAME_TA0) {
1677 *val = v & CAS_MIF_FRAME_DATA;
1678 return 0;
1679 }
1680 }
1681
1682 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1683 return ETIMEDOUT;
1684 }
1685
1686 int
1687 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1688 {
1689 struct cas_softc *sc = device_private(self);
1690 bus_space_tag_t t = sc->sc_memt;
1691 bus_space_handle_t mif = sc->sc_memh;
1692 int n;
1693 uint32_t v;
1694
1695 #ifdef CAS_DEBUG
1696 if (sc->sc_debug)
1697 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1698 phy, reg, val);
1699 #endif
1700
1701 /* Construct the frame command */
1702 v = CAS_MIF_FRAME_WRITE |
1703 (phy << CAS_MIF_PHY_SHIFT) |
1704 (reg << CAS_MIF_REG_SHIFT) |
1705 (val & CAS_MIF_FRAME_DATA);
1706
1707 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1708 for (n = 0; n < 100; n++) {
1709 DELAY(1);
1710 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1711 if (v & CAS_MIF_FRAME_TA0)
1712 return 0;
1713 }
1714
1715 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1716 return ETIMEDOUT;
1717 }
1718
1719 void
1720 cas_mii_statchg(struct ifnet *ifp)
1721 {
1722 struct cas_softc *sc = ifp->if_softc;
1723 #ifdef CAS_DEBUG
1724 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1725 #endif
1726 bus_space_tag_t t = sc->sc_memt;
1727 bus_space_handle_t mac = sc->sc_memh;
1728 uint32_t v;
1729
1730 #ifdef CAS_DEBUG
1731 if (sc->sc_debug)
1732 printf("cas_mii_statchg: status change: phy = %d\n",
1733 sc->sc_phys[instance]);
1734 #endif
1735
1736 /* Set tx full duplex options */
1737 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1738 delay(10000); /* reg must be cleared and delay before changing. */
1739 v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1740 CAS_MAC_TX_ENABLE;
1741 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1742 v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1743 }
1744 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1745
1746 /* XIF Configuration */
1747 v = CAS_MAC_XIF_TX_MII_ENA;
1748 v |= CAS_MAC_XIF_LINK_LED;
1749
1750 /* MII needs echo disable if half duplex. */
1751 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1752 /* turn on full duplex LED */
1753 v |= CAS_MAC_XIF_FDPLX_LED;
1754 else
1755 /* half duplex -- disable echo */
1756 v |= CAS_MAC_XIF_ECHO_DISABL;
1757
1758 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1759 case IFM_1000_T: /* Gigabit using GMII interface */
1760 case IFM_1000_SX:
1761 v |= CAS_MAC_XIF_GMII_MODE;
1762 break;
1763 default:
1764 v &= ~CAS_MAC_XIF_GMII_MODE;
1765 }
1766 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1767 }
1768
1769 int
1770 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1771 {
1772 struct cas_softc *sc = device_private(self);
1773 bus_space_tag_t t = sc->sc_memt;
1774 bus_space_handle_t pcs = sc->sc_memh;
1775
1776 #ifdef CAS_DEBUG
1777 if (sc->sc_debug)
1778 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1779 #endif
1780
1781 if (phy != CAS_PHYAD_EXTERNAL)
1782 return -1;
1783
1784 switch (reg) {
1785 case MII_BMCR:
1786 reg = CAS_MII_CONTROL;
1787 break;
1788 case MII_BMSR:
1789 reg = CAS_MII_STATUS;
1790 break;
1791 case MII_ANAR:
1792 reg = CAS_MII_ANAR;
1793 break;
1794 case MII_ANLPAR:
1795 reg = CAS_MII_ANLPAR;
1796 break;
1797 case MII_EXTSR:
1798 *val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1799 return 0;
1800 default:
1801 return (0);
1802 }
1803
1804 *val = bus_space_read_4(t, pcs, reg) & 0xffff;
1805 return 0;
1806 }
1807
1808 int
1809 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1810 {
1811 struct cas_softc *sc = device_private(self);
1812 bus_space_tag_t t = sc->sc_memt;
1813 bus_space_handle_t pcs = sc->sc_memh;
1814 int reset = 0;
1815
1816 #ifdef CAS_DEBUG
1817 if (sc->sc_debug)
1818 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1819 phy, reg, val);
1820 #endif
1821
1822 if (phy != CAS_PHYAD_EXTERNAL)
1823 return -1;
1824
1825 if (reg == MII_ANAR)
1826 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1827
1828 switch (reg) {
1829 case MII_BMCR:
1830 reset = (val & CAS_MII_CONTROL_RESET);
1831 reg = CAS_MII_CONTROL;
1832 break;
1833 case MII_BMSR:
1834 reg = CAS_MII_STATUS;
1835 break;
1836 case MII_ANAR:
1837 reg = CAS_MII_ANAR;
1838 break;
1839 case MII_ANLPAR:
1840 reg = CAS_MII_ANLPAR;
1841 break;
1842 default:
1843 return 0;
1844 }
1845
1846 bus_space_write_4(t, pcs, reg, val);
1847
1848 if (reset)
1849 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1850
1851 if (reg == CAS_MII_ANAR || reset)
1852 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1853 CAS_MII_CONFIG_ENABLE);
1854
1855 return 0;
1856 }
1857
1858 int
1859 cas_mediachange(struct ifnet *ifp)
1860 {
1861 struct cas_softc *sc = ifp->if_softc;
1862 struct mii_data *mii = &sc->sc_mii;
1863
1864 if (mii->mii_instance) {
1865 struct mii_softc *miisc;
1866 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1867 mii_phy_reset(miisc);
1868 }
1869
1870 return (mii_mediachg(&sc->sc_mii));
1871 }
1872
1873 void
1874 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1875 {
1876 struct cas_softc *sc = ifp->if_softc;
1877
1878 mii_pollstat(&sc->sc_mii);
1879 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1880 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1881 }
1882
1883 /*
1884 * Process an ioctl request.
1885 */
1886 int
1887 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1888 {
1889 struct cas_softc *sc = ifp->if_softc;
1890 int s, error = 0;
1891
1892 s = splnet();
1893
1894 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1895 error = 0;
1896 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1897 ;
1898 else if (ifp->if_flags & IFF_RUNNING) {
1899 /*
1900 * Multicast list has changed; set the hardware filter
1901 * accordingly.
1902 */
1903 cas_iff(sc);
1904 }
1905 }
1906
1907 splx(s);
1908 return (error);
1909 }
1910
1911 static bool
1912 cas_suspend(device_t self, const pmf_qual_t *qual)
1913 {
1914 struct cas_softc *sc = device_private(self);
1915 bus_space_tag_t t = sc->sc_memt;
1916 bus_space_handle_t h = sc->sc_memh;
1917
1918 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1919 if (sc->sc_ih != NULL) {
1920 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1921 sc->sc_ih = NULL;
1922 }
1923
1924 return true;
1925 }
1926
1927 static bool
1928 cas_resume(device_t self, const pmf_qual_t *qual)
1929 {
1930 struct cas_softc *sc = device_private(self);
1931
1932 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1933 }
1934
1935 static bool
1936 cas_estintr(struct cas_softc *sc, int what)
1937 {
1938 bus_space_tag_t t = sc->sc_memt;
1939 bus_space_handle_t h = sc->sc_memh;
1940 const char *intrstr = NULL;
1941 char intrbuf[PCI_INTRSTR_LEN];
1942
1943 /* PCI interrupts */
1944 if (what & CAS_INTR_PCI) {
1945 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1946 sizeof(intrbuf));
1947 sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1948 IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1949 if (sc->sc_ih == NULL) {
1950 aprint_error_dev(sc->sc_dev,
1951 "unable to establish interrupt");
1952 if (intrstr != NULL)
1953 aprint_error(" at %s", intrstr);
1954 aprint_error("\n");
1955 return false;
1956 }
1957
1958 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1959 }
1960
1961 /* Interrupt register */
1962 if (what & CAS_INTR_REG) {
1963 bus_space_write_4(t, h, CAS_INTMASK,
1964 ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1965 CAS_INTR_TX_TAG_ERR |
1966 CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1967 CAS_INTR_RX_TAG_ERR |
1968 CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1969 CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1970 CAS_INTR_BERR));
1971 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1972 CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1973 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1974 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1975 }
1976 return true;
1977 }
1978
1979 bool
1980 cas_shutdown(device_t self, int howto)
1981 {
1982 struct cas_softc *sc = device_private(self);
1983 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1984
1985 cas_stop(ifp, 1);
1986
1987 return true;
1988 }
1989
1990 void
1991 cas_iff(struct cas_softc *sc)
1992 {
1993 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1994 struct ethercom *ec = &sc->sc_ethercom;
1995 struct ether_multi *enm;
1996 struct ether_multistep step;
1997 bus_space_tag_t t = sc->sc_memt;
1998 bus_space_handle_t h = sc->sc_memh;
1999 uint32_t crc, hash[16], rxcfg;
2000 int i;
2001
2002 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
2003 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
2004 CAS_MAC_RX_PROMISC_GRP);
2005 ifp->if_flags &= ~IFF_ALLMULTI;
2006
2007 if ((ifp->if_flags & IFF_PROMISC) != 0)
2008 goto update;
2009
2010 /*
2011 * Set up multicast address filter by passing all multicast
2012 * addresses through a crc generator, and then using the
2013 * high order 8 bits as an index into the 256 bit logical
2014 * address filter. The high order 4 bits selects the word,
2015 * while the other 4 bits select the bit within the word
2016 * (where bit 0 is the MSB).
2017 */
2018
2019 /* Clear hash table */
2020 for (i = 0; i < 16; i++)
2021 hash[i] = 0;
2022
2023 ETHER_LOCK(ec);
2024 ETHER_FIRST_MULTI(step, ec, enm);
2025 while (enm != NULL) {
2026 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2027 /* XXX Use ETHER_F_ALLMULTI in future. */
2028 ifp->if_flags |= IFF_ALLMULTI;
2029 ETHER_UNLOCK(ec);
2030 goto update;
2031 }
2032
2033 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2034
2035 /* Just want the 8 most significant bits. */
2036 crc >>= 24;
2037
2038 /* Set the corresponding bit in the filter. */
2039 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2040
2041 ETHER_NEXT_MULTI(step, enm);
2042 }
2043 ETHER_UNLOCK(ec);
2044
2045 rxcfg |= CAS_MAC_RX_HASH_FILTER;
2046
2047 /* Now load the hash table into the chip (if we are using it) */
2048 for (i = 0; i < 16; i++) {
2049 bus_space_write_4(t, h,
2050 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2051 hash[i]);
2052 }
2053
2054 update:
2055 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2056 if (ifp->if_flags & IFF_PROMISC) {
2057 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2058 /* XXX Use ETHER_F_ALLMULTI in future. */
2059 ifp->if_flags |= IFF_ALLMULTI;
2060 } else
2061 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2062 }
2063 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2064 }
2065
2066 int
2067 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2068 {
2069 uint64_t flags;
2070 uint32_t cur, frag, i;
2071 bus_dmamap_t map;
2072
2073 cur = frag = *bixp;
2074 map = sc->sc_txd[cur].sd_map;
2075
2076 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2077 BUS_DMA_NOWAIT) != 0) {
2078 return (ENOBUFS);
2079 }
2080
2081 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2082 bus_dmamap_unload(sc->sc_dmatag, map);
2083 return (ENOBUFS);
2084 }
2085
2086 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2087 BUS_DMASYNC_PREWRITE);
2088
2089 for (i = 0; i < map->dm_nsegs; i++) {
2090 sc->sc_txdescs[frag].cd_addr =
2091 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2092 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2093 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2094 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2095 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2096 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2097 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2098 BUS_DMASYNC_PREWRITE);
2099 cur = frag;
2100 if (++frag == CAS_NTXDESC)
2101 frag = 0;
2102 }
2103
2104 sc->sc_tx_cnt += map->dm_nsegs;
2105 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2106 sc->sc_txd[cur].sd_map = map;
2107 sc->sc_txd[cur].sd_mbuf = mhead;
2108
2109 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2110
2111 *bixp = frag;
2112
2113 /* sync descriptors */
2114
2115 return (0);
2116 }
2117
2118 /*
2119 * Transmit interrupt.
2120 */
2121 int
2122 cas_tint(struct cas_softc *sc, uint32_t status)
2123 {
2124 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2125 struct cas_sxd *sd;
2126 uint32_t cons, comp;
2127
2128 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2129 cons = sc->sc_tx_cons;
2130 while (cons != comp) {
2131 sd = &sc->sc_txd[cons];
2132 if (sd->sd_mbuf != NULL) {
2133 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2134 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2135 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2136 m_freem(sd->sd_mbuf);
2137 sd->sd_mbuf = NULL;
2138 if_statinc(ifp, if_opackets);
2139 }
2140 sc->sc_tx_cnt--;
2141 if (++cons == CAS_NTXDESC)
2142 cons = 0;
2143 }
2144 sc->sc_tx_cons = cons;
2145
2146 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2147 ifp->if_flags &= ~IFF_OACTIVE;
2148 if (sc->sc_tx_cnt == 0)
2149 ifp->if_timer = 0;
2150
2151 if_schedule_deferred_start(ifp);
2152
2153 return (1);
2154 }
2155
2156 void
2157 cas_start(struct ifnet *ifp)
2158 {
2159 struct cas_softc *sc = ifp->if_softc;
2160 struct mbuf *m;
2161 uint32_t bix;
2162
2163 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2164 return;
2165
2166 bix = sc->sc_tx_prod;
2167 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2168 IFQ_POLL(&ifp->if_snd, m);
2169 if (m == NULL)
2170 break;
2171
2172 /*
2173 * If BPF is listening on this interface, let it see the
2174 * packet before we commit it to the wire.
2175 */
2176 bpf_mtap(ifp, m, BPF_D_OUT);
2177
2178 /*
2179 * Encapsulate this packet and start it going...
2180 * or fail...
2181 */
2182 if (cas_encap(sc, m, &bix)) {
2183 ifp->if_flags |= IFF_OACTIVE;
2184 break;
2185 }
2186
2187 IFQ_DEQUEUE(&ifp->if_snd, m);
2188 ifp->if_timer = 5;
2189 }
2190
2191 sc->sc_tx_prod = bix;
2192 }
2193
2194 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2195
2196 #ifdef _MODULE
2197 #include "ioconf.c"
2198 #endif
2199
2200 static int
2201 if_cas_modcmd(modcmd_t cmd, void *opaque)
2202 {
2203 int error = 0;
2204
2205 switch (cmd) {
2206 case MODULE_CMD_INIT:
2207 #ifdef _MODULE
2208 error = config_init_component(cfdriver_ioconf_cas,
2209 cfattach_ioconf_cas, cfdata_ioconf_cas);
2210 #endif
2211 return error;
2212 case MODULE_CMD_FINI:
2213 #ifdef _MODULE
2214 error = config_fini_component(cfdriver_ioconf_cas,
2215 cfattach_ioconf_cas, cfdata_ioconf_cas);
2216 #endif
2217 return error;
2218 default:
2219 return ENOTTY;
2220 }
2221 }
2222