if_cas.c revision 1.41 1 /* $NetBSD: if_cas.c,v 1.41 2020/03/01 05:39:05 thorpej Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.41 2020/03/01 05:39:05 thorpej Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 #define TRIES 10000
101
102 static bool cas_estintr(struct cas_softc *sc, int);
103 bool cas_shutdown(device_t, int);
104 static bool cas_suspend(device_t, const pmf_qual_t *);
105 static bool cas_resume(device_t, const pmf_qual_t *);
106 static int cas_detach(device_t, int);
107 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109 int cas_match(device_t, cfdata_t, void *);
110 void cas_attach(device_t, device_t, void *);
111
112
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN);
116
117 int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119 void cas_config(struct cas_softc *, const uint8_t *);
120 void cas_start(struct ifnet *);
121 void cas_stop(struct ifnet *, int);
122 int cas_ioctl(struct ifnet *, u_long, void *);
123 void cas_tick(void *);
124 void cas_watchdog(struct ifnet *);
125 int cas_init(struct ifnet *);
126 void cas_init_regs(struct cas_softc *);
127 int cas_ringsize(int);
128 int cas_cringsize(int);
129 int cas_meminit(struct cas_softc *);
130 void cas_mifinit(struct cas_softc *);
131 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 uint32_t, uint32_t);
133 void cas_reset(struct cas_softc *);
134 int cas_reset_rx(struct cas_softc *);
135 int cas_reset_tx(struct cas_softc *);
136 int cas_disable_rx(struct cas_softc *);
137 int cas_disable_tx(struct cas_softc *);
138 void cas_rxdrain(struct cas_softc *);
139 int cas_add_rxbuf(struct cas_softc *, int);
140 void cas_iff(struct cas_softc *);
141 int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142
143 /* MII methods & callbacks */
144 int cas_mii_readreg(device_t, int, int, uint16_t*);
145 int cas_mii_writereg(device_t, int, int, uint16_t);
146 void cas_mii_statchg(struct ifnet *);
147 int cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int cas_pcs_writereg(device_t, int, int, uint16_t);
149
150 int cas_mediachange(struct ifnet *);
151 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153 int cas_eint(struct cas_softc *, u_int);
154 int cas_rint(struct cas_softc *);
155 int cas_tint(struct cas_softc *, uint32_t);
156 int cas_pint(struct cas_softc *);
157 int cas_intr(void *);
158
159 #ifdef CAS_DEBUG
160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x
162 #else
163 #define DPRINTF(sc, x) /* nothing */
164 #endif
165
166 static const struct cas_pci_dev {
167 uint16_t cpd_vendor;
168 uint16_t cpd_device;
169 int cpd_variant;
170 } cas_pci_devlist[] = {
171 { PCI_VENDOR_SUN, PCI_PRODUCT_SUN_CASSINI, CAS_CAS },
172 { PCI_VENDOR_NS, PCI_PRODUCT_NS_SATURN, CAS_SATURN },
173 { 0, 0, 0 }
174 };
175
176 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
177 #define CAS_PHY_INTERFACE "phy-interface"
178 #define CAS_PHY_TYPE "phy-type"
179 #define CAS_PHY_TYPE_PCS "pcs"
180
181 int
182 cas_match(device_t parent, cfdata_t cf, void *aux)
183 {
184 struct pci_attach_args *pa = aux;
185 int i;
186
187 for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
188 if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
189 (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device))
190 return 1;
191 }
192
193 return 0;
194 }
195
196 #define PROMHDR_PTR_DATA 0x18
197 #define PROMDATA_PTR_VPD 0x08
198 #define PROMDATA_DATA2 0x0a
199
200 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
201 static const uint8_t cas_promdat[] = {
202 'P', 'C', 'I', 'R',
203 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
204 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
205 };
206 static const uint8_t cas_promdat_ns[] = {
207 'P', 'C', 'I', 'R',
208 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
209 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
210 };
211
212 static const uint8_t cas_promdat2[] = {
213 0x18, 0x00, /* structure length */
214 0x00, /* structure revision */
215 0x00, /* interface revision */
216 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
217 PCI_CLASS_NETWORK /* class code */
218 };
219
220 #define CAS_LMA_MAXNUM 4
221 int
222 cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
223 uint8_t *enaddr)
224 {
225 struct pci_vpd_largeres *res;
226 struct pci_vpd *vpd;
227 bus_space_handle_t romh;
228 bus_space_tag_t romt;
229 bus_size_t romsize = 0;
230 uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
231 bool pcs[4] = {false, false, false, false};
232 uint8_t buf[32], *desc;
233 pcireg_t address;
234 int dataoff, vpdoff, len, lma = 0, phy = 0;
235 int i, rv = -1;
236
237 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
238 &romt, &romh, NULL, &romsize))
239 return (-1);
240
241 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
242 address |= PCI_MAPREG_ROM_ENABLE;
243 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
244
245 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
246 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
247 goto fail;
248
249 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
250 if (dataoff < 0x1c)
251 goto fail;
252
253 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
254 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
255 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
256 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
257 goto fail;
258
259 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
260 if (vpdoff < 0x1c)
261 goto fail;
262
263 next:
264 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
265 if (!PCI_VPDRES_ISLARGE(buf[0]))
266 goto fail;
267
268 res = (struct pci_vpd_largeres *)buf;
269 vpdoff += sizeof(*res);
270
271 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
272 switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
273 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
274 /* Skip identifier string. */
275 vpdoff += len;
276 goto next;
277
278 case PCI_VPDRES_TYPE_VPD:
279 #ifdef CAS_DEBUG
280 printf("\n");
281 for (i = 0; i < len; i++) {
282 uint8_t byte;
283 if (i % 16 == 0)
284 printf("%04x :", i);
285 byte = bus_space_read_1(romt, romh, vpdoff + i);
286 printf(" %02x", byte);
287 if (i % 16 == 15)
288 printf("\n");
289 }
290 printf("\n");
291 #endif
292
293 while (len > 0) {
294 bus_space_read_region_1(romt, romh, vpdoff,
295 buf, sizeof(buf));
296
297 vpd = (struct pci_vpd *)buf;
298 vpdoff += sizeof(*vpd) + vpd->vpd_len;
299 len -= sizeof(*vpd) + vpd->vpd_len;
300
301 /*
302 * We're looking for an "Enhanced" VPD...
303 */
304 if (vpd->vpd_key0 != 'Z')
305 continue;
306
307 desc = buf + sizeof(*vpd);
308
309 /*
310 * ...which is an instance property...
311 */
312 if (desc[0] != 'I')
313 continue;
314 desc += 3;
315
316 if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
317 /*
318 * ...that's a byte array with the proper
319 * length for a MAC address...
320 */
321 desc += 2;
322
323 /*
324 * ...named "local-mac-address".
325 */
326 if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
327 continue;
328 desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
329
330 if (lma == CAS_LMA_MAXNUM)
331 continue;
332
333 memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
334 lma++;
335 rv = 0;
336 continue;
337 } else if (desc[0] == 'S') {
338 size_t k;
339
340 /* String */
341 desc += 2;
342 #ifdef CAS_DEBUG
343 /* ...named "pcs". */
344 printf("STR: \"%s\"\n", desc);
345 if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
346 continue;
347 desc += sizeof(CAS_PHY_TYPE_PCS);
348 printf("STR: \"%s\"\n", desc);
349 #endif
350 /* ...named "phy-interface" or "phy-type". */
351 if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
352 k = sizeof(CAS_PHY_INTERFACE);
353 else if (strcmp(desc, CAS_PHY_TYPE) == 0)
354 k = sizeof(CAS_PHY_TYPE);
355 else
356 continue;
357
358 desc += k;
359 #ifdef CAS_DEBUG
360 printf("STR: \"%s\"\n", desc);
361 #endif
362 if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
363 pcs[phy] = true;
364 phy++;
365 continue;
366 }
367 }
368 break;
369
370 default:
371 goto fail;
372 }
373
374 /*
375 * Multi port card has bridge chip. The device number is fixed:
376 * e.g.
377 * p0: 005:00:0
378 * p1: 005:01:0
379 * p2: 006:02:0
380 * p3: 006:03:0
381 */
382 if (enaddr != 0) {
383 i = 0;
384 if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
385 && (pa->pa_device < lma))
386 i = pa->pa_device;
387 memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
388 }
389 if (pcs[pa->pa_device])
390 sc->sc_flags |= CAS_SERDES;
391 fail:
392 if (romsize != 0)
393 bus_space_unmap(romt, romh, romsize);
394
395 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
396 address &= ~PCI_MAPREG_ROM_ENABLE;
397 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
398
399 return (rv);
400 }
401
402 void
403 cas_attach(device_t parent, device_t self, void *aux)
404 {
405 struct pci_attach_args *pa = aux;
406 struct cas_softc *sc = device_private(self);
407 int i;
408 prop_data_t data;
409 uint8_t enaddr[ETHER_ADDR_LEN];
410
411 sc->sc_dev = self;
412 pci_aprint_devinfo(pa, NULL);
413 sc->sc_rev = PCI_REVISION(pa->pa_class);
414
415 if (pci_dma64_available(pa))
416 sc->sc_dmatag = pa->pa_dmat64;
417 else
418 sc->sc_dmatag = pa->pa_dmat;
419
420 sc->sc_variant = CAS_UNKNOWN;
421 for (i = 0; cas_pci_devlist[i].cpd_vendor != 0; i++) {
422 if ((PCI_VENDOR(pa->pa_id) == cas_pci_devlist[i].cpd_vendor) &&
423 (PCI_PRODUCT(pa->pa_id) == cas_pci_devlist[i].cpd_device)) {
424 sc->sc_variant = cas_pci_devlist[i].cpd_variant;
425 break;
426 }
427 }
428 aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
429 if (sc->sc_variant == CAS_UNKNOWN) {
430 aprint_error_dev(sc->sc_dev, "unknown adaptor\n");
431 return;
432 }
433
434 #define PCI_CAS_BASEADDR 0x10
435 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
436 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
437 aprint_error_dev(sc->sc_dev,
438 "unable to map device registers\n");
439 return;
440 }
441
442 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
443 "mac-address")) != NULL)
444 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
445 if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
446 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
447 memset(enaddr, 0, sizeof(enaddr));
448 }
449
450 sc->sc_burst = 16; /* XXX */
451
452 sc->sc_att_stage = CAS_ATT_BACKEND_0;
453
454 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
455 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
456 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
457 return;
458 }
459 sc->sc_pc = pa->pa_pc;
460 if (!cas_estintr(sc, CAS_INTR_PCI)) {
461 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
462 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
463 return;
464 }
465
466 sc->sc_att_stage = CAS_ATT_BACKEND_1;
467
468 /*
469 * call the main configure
470 */
471 cas_config(sc, enaddr);
472
473 if (pmf_device_register1(sc->sc_dev,
474 cas_suspend, cas_resume, cas_shutdown))
475 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
476 else
477 aprint_error_dev(sc->sc_dev,
478 "could not establish power handlers\n");
479
480 sc->sc_att_stage = CAS_ATT_FINISHED;
481 /*FALLTHROUGH*/
482 }
483
484 /*
485 * cas_config:
486 *
487 * Attach a Cassini interface to the system.
488 */
489 void
490 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
491 {
492 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
493 struct mii_data *mii = &sc->sc_mii;
494 struct mii_softc *child;
495 uint32_t reg;
496 int i, error;
497
498 /* Make sure the chip is stopped. */
499 ifp->if_softc = sc;
500 cas_reset(sc);
501
502 /*
503 * Allocate the control data structures, and create and load the
504 * DMA map for it.
505 */
506 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
507 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
508 1, &sc->sc_cdnseg, 0)) != 0) {
509 aprint_error_dev(sc->sc_dev,
510 "unable to allocate control data, error = %d\n",
511 error);
512 cas_partial_detach(sc, CAS_ATT_0);
513 }
514
515 /* XXX should map this in with correct endianness */
516 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
517 sc->sc_cdnseg, sizeof(struct cas_control_data),
518 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
519 aprint_error_dev(sc->sc_dev,
520 "unable to map control data, error = %d\n", error);
521 cas_partial_detach(sc, CAS_ATT_1);
522 }
523
524 if ((error = bus_dmamap_create(sc->sc_dmatag,
525 sizeof(struct cas_control_data), 1,
526 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
527 aprint_error_dev(sc->sc_dev,
528 "unable to create control data DMA map, error = %d\n",
529 error);
530 cas_partial_detach(sc, CAS_ATT_2);
531 }
532
533 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
534 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
535 0)) != 0) {
536 aprint_error_dev(sc->sc_dev,
537 "unable to load control data DMA map, error = %d\n",
538 error);
539 cas_partial_detach(sc, CAS_ATT_3);
540 }
541
542 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
543
544 /*
545 * Create the receive buffer DMA maps.
546 */
547 for (i = 0; i < CAS_NRXDESC; i++) {
548 bus_dma_segment_t seg;
549 char *kva;
550 int rseg;
551
552 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
553 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
554 aprint_error_dev(sc->sc_dev,
555 "unable to alloc rx DMA mem %d, error = %d\n",
556 i, error);
557 cas_partial_detach(sc, CAS_ATT_5);
558 }
559 sc->sc_rxsoft[i].rxs_dmaseg = seg;
560
561 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
562 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
563 aprint_error_dev(sc->sc_dev,
564 "unable to alloc rx DMA mem %d, error = %d\n",
565 i, error);
566 cas_partial_detach(sc, CAS_ATT_5);
567 }
568 sc->sc_rxsoft[i].rxs_kva = kva;
569
570 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
571 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
572 aprint_error_dev(sc->sc_dev,
573 "unable to create rx DMA map %d, error = %d\n",
574 i, error);
575 cas_partial_detach(sc, CAS_ATT_5);
576 }
577
578 if ((error = bus_dmamap_load(sc->sc_dmatag,
579 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
580 BUS_DMA_NOWAIT)) != 0) {
581 aprint_error_dev(sc->sc_dev,
582 "unable to load rx DMA map %d, error = %d\n",
583 i, error);
584 cas_partial_detach(sc, CAS_ATT_5);
585 }
586 }
587
588 /*
589 * Create the transmit buffer DMA maps.
590 */
591 for (i = 0; i < CAS_NTXDESC; i++) {
592 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
593 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
594 &sc->sc_txd[i].sd_map)) != 0) {
595 aprint_error_dev(sc->sc_dev,
596 "unable to create tx DMA map %d, error = %d\n",
597 i, error);
598 cas_partial_detach(sc, CAS_ATT_6);
599 }
600 sc->sc_txd[i].sd_mbuf = NULL;
601 }
602
603 /*
604 * From this point forward, the attachment cannot fail. A failure
605 * before this point releases all resources that may have been
606 * allocated.
607 */
608
609 /* Announce ourselves. */
610 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
611 ether_sprintf(enaddr));
612 aprint_naive(": Ethernet controller\n");
613
614 /* Get RX FIFO size */
615 sc->sc_rxfifosize = 16 * 1024;
616
617 /* Initialize ifnet structure. */
618 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
619 ifp->if_softc = sc;
620 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
621 ifp->if_start = cas_start;
622 ifp->if_ioctl = cas_ioctl;
623 ifp->if_watchdog = cas_watchdog;
624 ifp->if_stop = cas_stop;
625 ifp->if_init = cas_init;
626 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
627 IFQ_SET_READY(&ifp->if_snd);
628
629 /* Initialize ifmedia structures and MII info */
630 mii->mii_ifp = ifp;
631 mii->mii_readreg = cas_mii_readreg;
632 mii->mii_writereg = cas_mii_writereg;
633 mii->mii_statchg = cas_mii_statchg;
634
635 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
636 sc->sc_ethercom.ec_mii = mii;
637
638 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
639
640 cas_mifinit(sc);
641
642 if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
643 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
644 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
645 bus_space_write_4(sc->sc_memt, sc->sc_memh,
646 CAS_MIF_CONFIG, sc->sc_mif_config);
647 }
648 /* Enable/unfreeze the GMII pins of Saturn. */
649 if (sc->sc_variant == CAS_SATURN) {
650 reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
651 CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
652 if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
653 reg |= CAS_SATURN_PCFG_FSI;
654 bus_space_write_4(sc->sc_memt, sc->sc_memh,
655 CAS_SATURN_PCFG, reg);
656 /* Read to flush */
657 bus_space_read_4(sc->sc_memt, sc->sc_memh,
658 CAS_SATURN_PCFG);
659 DELAY(10000);
660 }
661 }
662
663 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
664 MII_OFFSET_ANY, 0);
665
666 child = LIST_FIRST(&mii->mii_phys);
667 if (child == NULL &&
668 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
669 /*
670 * Try the external PCS SERDES if we didn't find any
671 * MII devices.
672 */
673 bus_space_write_4(sc->sc_memt, sc->sc_memh,
674 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
675
676 bus_space_write_4(sc->sc_memt, sc->sc_memh,
677 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
678
679 mii->mii_readreg = cas_pcs_readreg;
680 mii->mii_writereg = cas_pcs_writereg;
681
682 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
683 MII_OFFSET_ANY, MIIF_NOISOLATE);
684 }
685
686 child = LIST_FIRST(&mii->mii_phys);
687 if (child == NULL) {
688 /* No PHY attached */
689 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
690 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
691 } else {
692 /*
693 * Walk along the list of attached MII devices and
694 * establish an `MII instance' to `phy number'
695 * mapping. We'll use this mapping in media change
696 * requests to determine which phy to use to program
697 * the MIF configuration register.
698 */
699 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
700 /*
701 * Note: we support just two PHYs: the built-in
702 * internal device and an external on the MII
703 * connector.
704 */
705 if (child->mii_phy > 1 || child->mii_inst > 1) {
706 aprint_error_dev(sc->sc_dev,
707 "cannot accommodate MII device %s"
708 " at phy %d, instance %d\n",
709 device_xname(child->mii_dev),
710 child->mii_phy, child->mii_inst);
711 continue;
712 }
713
714 sc->sc_phys[child->mii_inst] = child->mii_phy;
715 }
716
717 /*
718 * XXX - we can really do the following ONLY if the
719 * phy indeed has the auto negotiation capability!!
720 */
721 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
722 }
723
724 /* claim 802.1q capability */
725 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
726
727 /* Attach the interface. */
728 if_attach(ifp);
729 if_deferred_start_init(ifp, NULL);
730 ether_ifattach(ifp, enaddr);
731
732 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
733 RND_TYPE_NET, RND_FLAG_DEFAULT);
734
735 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
736 NULL, device_xname(sc->sc_dev), "interrupts");
737
738 callout_init(&sc->sc_tick_ch, 0);
739 callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
740
741 return;
742 }
743
744 int
745 cas_detach(device_t self, int flags)
746 {
747 int i;
748 struct cas_softc *sc = device_private(self);
749 bus_space_tag_t t = sc->sc_memt;
750 bus_space_handle_t h = sc->sc_memh;
751 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
752
753 /*
754 * Free any resources we've allocated during the failed attach
755 * attempt. Do this in reverse order and fall through.
756 */
757 switch (sc->sc_att_stage) {
758 case CAS_ATT_FINISHED:
759 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
760 pmf_device_deregister(self);
761 cas_stop(&sc->sc_ethercom.ec_if, 1);
762 evcnt_detach(&sc->sc_ev_intr);
763
764 rnd_detach_source(&sc->rnd_source);
765
766 ether_ifdetach(ifp);
767 if_detach(ifp);
768 ifmedia_fini(&sc->sc_mii.mii_media);
769
770 callout_destroy(&sc->sc_tick_ch);
771
772 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
773
774 /*FALLTHROUGH*/
775 case CAS_ATT_MII:
776 case CAS_ATT_7:
777 case CAS_ATT_6:
778 for (i = 0; i < CAS_NTXDESC; i++) {
779 if (sc->sc_txd[i].sd_map != NULL)
780 bus_dmamap_destroy(sc->sc_dmatag,
781 sc->sc_txd[i].sd_map);
782 }
783 /*FALLTHROUGH*/
784 case CAS_ATT_5:
785 for (i = 0; i < CAS_NRXDESC; i++) {
786 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
787 bus_dmamap_unload(sc->sc_dmatag,
788 sc->sc_rxsoft[i].rxs_dmamap);
789 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
790 bus_dmamap_destroy(sc->sc_dmatag,
791 sc->sc_rxsoft[i].rxs_dmamap);
792 if (sc->sc_rxsoft[i].rxs_kva != NULL)
793 bus_dmamem_unmap(sc->sc_dmatag,
794 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
795 /* XXX need to check that bus_dmamem_alloc suceeded
796 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
797 */
798 bus_dmamem_free(sc->sc_dmatag,
799 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
800 }
801 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
802 /*FALLTHROUGH*/
803 case CAS_ATT_4:
804 case CAS_ATT_3:
805 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
806 /*FALLTHROUGH*/
807 case CAS_ATT_2:
808 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
809 sizeof(struct cas_control_data));
810 /*FALLTHROUGH*/
811 case CAS_ATT_1:
812 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
813 /*FALLTHROUGH*/
814 case CAS_ATT_0:
815 sc->sc_att_stage = CAS_ATT_0;
816 /*FALLTHROUGH*/
817 case CAS_ATT_BACKEND_2:
818 case CAS_ATT_BACKEND_1:
819 if (sc->sc_ih != NULL) {
820 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
821 sc->sc_ih = NULL;
822 }
823 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
824 /*FALLTHROUGH*/
825 case CAS_ATT_BACKEND_0:
826 break;
827 }
828 return 0;
829 }
830
831 static void
832 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
833 {
834 cfattach_t ca = device_cfattach(sc->sc_dev);
835
836 sc->sc_att_stage = stage;
837 (*ca->ca_detach)(sc->sc_dev, 0);
838 }
839
840 void
841 cas_tick(void *arg)
842 {
843 struct cas_softc *sc = arg;
844 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
845 bus_space_tag_t t = sc->sc_memt;
846 bus_space_handle_t mac = sc->sc_memh;
847 int s;
848 uint32_t v;
849
850 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
851
852 /* unload collisions counters */
853 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
854 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
855 if_statadd_ref(nsr, if_collisions, v +
856 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
857 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
858 if_statadd_ref(nsr, if_oerrors, v);
859
860 /* read error counters */
861 if_statadd_ref(nsr, if_ierrors,
862 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
863 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
864 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
865 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
866
867 IF_STAT_PUTREF(ifp);
868
869 /* clear the hardware counters */
870 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
871 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
872 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
873 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
874 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
875 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
876 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
877 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
878
879 s = splnet();
880 mii_tick(&sc->sc_mii);
881 splx(s);
882
883 callout_schedule(&sc->sc_tick_ch, hz);
884 }
885
886 int
887 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
888 uint32_t clr, uint32_t set)
889 {
890 int i;
891 uint32_t reg;
892
893 for (i = TRIES; i--; DELAY(100)) {
894 reg = bus_space_read_4(sc->sc_memt, h, r);
895 if ((reg & clr) == 0 && (reg & set) == set)
896 return (1);
897 }
898
899 return (0);
900 }
901
902 void
903 cas_reset(struct cas_softc *sc)
904 {
905 bus_space_tag_t t = sc->sc_memt;
906 bus_space_handle_t h = sc->sc_memh;
907 int s;
908
909 s = splnet();
910 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
911 cas_reset_rx(sc);
912 cas_reset_tx(sc);
913
914 /* Disable interrupts */
915 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
916
917 /* Do a full reset */
918 bus_space_write_4(t, h, CAS_RESET,
919 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
920 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
921 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
922 splx(s);
923 }
924
925
926 /*
927 * cas_rxdrain:
928 *
929 * Drain the receive queue.
930 */
931 void
932 cas_rxdrain(struct cas_softc *sc)
933 {
934 /* Nothing to do yet. */
935 }
936
937 /*
938 * Reset the whole thing.
939 */
940 void
941 cas_stop(struct ifnet *ifp, int disable)
942 {
943 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
944 struct cas_sxd *sd;
945 uint32_t i;
946
947 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
948
949 callout_stop(&sc->sc_tick_ch);
950
951 /*
952 * Mark the interface down and cancel the watchdog timer.
953 */
954 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
955 ifp->if_timer = 0;
956
957 mii_down(&sc->sc_mii);
958
959 cas_reset_rx(sc);
960 cas_reset_tx(sc);
961
962 /*
963 * Release any queued transmit buffers.
964 */
965 for (i = 0; i < CAS_NTXDESC; i++) {
966 sd = &sc->sc_txd[i];
967 if (sd->sd_mbuf != NULL) {
968 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
969 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
970 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
971 m_freem(sd->sd_mbuf);
972 sd->sd_mbuf = NULL;
973 }
974 }
975 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
976
977 if (disable)
978 cas_rxdrain(sc);
979 }
980
981
982 /*
983 * Reset the receiver
984 */
985 int
986 cas_reset_rx(struct cas_softc *sc)
987 {
988 bus_space_tag_t t = sc->sc_memt;
989 bus_space_handle_t h = sc->sc_memh;
990
991 /*
992 * Resetting while DMA is in progress can cause a bus hang, so we
993 * disable DMA first.
994 */
995 cas_disable_rx(sc);
996 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
997 /* Wait till it finishes */
998 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
999 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
1000 /* Wait 5ms extra. */
1001 delay(5000);
1002
1003 /* Finally, reset the ERX */
1004 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
1005 /* Wait till it finishes */
1006 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
1007 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
1008 return (1);
1009 }
1010 return (0);
1011 }
1012
1013
1014 /*
1015 * Reset the transmitter
1016 */
1017 int
1018 cas_reset_tx(struct cas_softc *sc)
1019 {
1020 bus_space_tag_t t = sc->sc_memt;
1021 bus_space_handle_t h = sc->sc_memh;
1022
1023 /*
1024 * Resetting while DMA is in progress can cause a bus hang, so we
1025 * disable DMA first.
1026 */
1027 cas_disable_tx(sc);
1028 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1029 /* Wait till it finishes */
1030 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1031 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1032 /* Wait 5ms extra. */
1033 delay(5000);
1034
1035 /* Finally, reset the ETX */
1036 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1037 /* Wait till it finishes */
1038 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1039 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1040 return (1);
1041 }
1042 return (0);
1043 }
1044
1045 /*
1046 * Disable receiver.
1047 */
1048 int
1049 cas_disable_rx(struct cas_softc *sc)
1050 {
1051 bus_space_tag_t t = sc->sc_memt;
1052 bus_space_handle_t h = sc->sc_memh;
1053 uint32_t cfg;
1054
1055 /* Flip the enable bit */
1056 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1057 cfg &= ~CAS_MAC_RX_ENABLE;
1058 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1059
1060 /* Wait for it to finish */
1061 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1062 }
1063
1064 /*
1065 * Disable transmitter.
1066 */
1067 int
1068 cas_disable_tx(struct cas_softc *sc)
1069 {
1070 bus_space_tag_t t = sc->sc_memt;
1071 bus_space_handle_t h = sc->sc_memh;
1072 uint32_t cfg;
1073
1074 /* Flip the enable bit */
1075 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1076 cfg &= ~CAS_MAC_TX_ENABLE;
1077 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1078
1079 /* Wait for it to finish */
1080 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1081 }
1082
1083 /*
1084 * Initialize interface.
1085 */
1086 int
1087 cas_meminit(struct cas_softc *sc)
1088 {
1089 int i;
1090
1091 /*
1092 * Initialize the transmit descriptor ring.
1093 */
1094 for (i = 0; i < CAS_NTXDESC; i++) {
1095 sc->sc_txdescs[i].cd_flags = 0;
1096 sc->sc_txdescs[i].cd_addr = 0;
1097 }
1098 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1099 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1100
1101 /*
1102 * Initialize the receive descriptor and receive job
1103 * descriptor rings.
1104 */
1105 for (i = 0; i < CAS_NRXDESC; i++)
1106 CAS_INIT_RXDESC(sc, i, i);
1107 sc->sc_rxdptr = 0;
1108 sc->sc_rxptr = 0;
1109
1110 /*
1111 * Initialize the receive completion ring.
1112 */
1113 for (i = 0; i < CAS_NRXCOMP; i++) {
1114 sc->sc_rxcomps[i].cc_word[0] = 0;
1115 sc->sc_rxcomps[i].cc_word[1] = 0;
1116 sc->sc_rxcomps[i].cc_word[2] = 0;
1117 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1118 CAS_CDRXCSYNC(sc, i,
1119 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1120 }
1121
1122 return (0);
1123 }
1124
1125 int
1126 cas_ringsize(int sz)
1127 {
1128 switch (sz) {
1129 case 32:
1130 return CAS_RING_SZ_32;
1131 case 64:
1132 return CAS_RING_SZ_64;
1133 case 128:
1134 return CAS_RING_SZ_128;
1135 case 256:
1136 return CAS_RING_SZ_256;
1137 case 512:
1138 return CAS_RING_SZ_512;
1139 case 1024:
1140 return CAS_RING_SZ_1024;
1141 case 2048:
1142 return CAS_RING_SZ_2048;
1143 case 4096:
1144 return CAS_RING_SZ_4096;
1145 case 8192:
1146 return CAS_RING_SZ_8192;
1147 default:
1148 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1149 sz);
1150 return CAS_RING_SZ_32;
1151 }
1152 }
1153
1154 int
1155 cas_cringsize(int sz)
1156 {
1157 int i;
1158
1159 for (i = 0; i < 9; i++)
1160 if (sz == (128 << i))
1161 return i;
1162
1163 aprint_error("cas: invalid completion ring size %d\n", sz);
1164 return 128;
1165 }
1166
1167 /*
1168 * Initialization of interface; set up initialization block
1169 * and transmit/receive descriptor rings.
1170 */
1171 int
1172 cas_init(struct ifnet *ifp)
1173 {
1174 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1175 bus_space_tag_t t = sc->sc_memt;
1176 bus_space_handle_t h = sc->sc_memh;
1177 int s;
1178 u_int max_frame_size;
1179 uint32_t v;
1180
1181 s = splnet();
1182
1183 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1184 /*
1185 * Initialization sequence. The numbered steps below correspond
1186 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1187 * Channel Engine manual (part of the PCIO manual).
1188 * See also the STP2002-STQ document from Sun Microsystems.
1189 */
1190
1191 /* step 1 & 2. Reset the Ethernet Channel */
1192 cas_stop(ifp, 0);
1193 cas_reset(sc);
1194 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1195
1196 /* Re-initialize the MIF */
1197 cas_mifinit(sc);
1198
1199 /* step 3. Setup data structures in host memory */
1200 cas_meminit(sc);
1201
1202 /* step 4. TX MAC registers & counters */
1203 cas_init_regs(sc);
1204 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1205 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1206 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1207
1208 /* step 5. RX MAC registers & counters */
1209 cas_iff(sc);
1210
1211 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1212 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1213 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1214 (((uint64_t)CAS_CDTXADDR(sc, 0)) >> 32));
1215 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1216
1217 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1218 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1219 (((uint64_t)CAS_CDRXADDR(sc, 0)) >> 32));
1220 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1221
1222 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1223 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1224 (((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1225 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1226
1227 if (CAS_PLUS(sc)) {
1228 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1229 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1230 (((uint64_t)CAS_CDRXADDR2(sc, 0)) >> 32));
1231 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1232 CAS_CDRXADDR2(sc, 0));
1233 }
1234
1235 /* step 8. Global Configuration & Interrupt Mask */
1236 cas_estintr(sc, CAS_INTR_REG);
1237
1238 /* step 9. ETX Configuration: use mostly default values */
1239
1240 /* Enable DMA */
1241 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1242 bus_space_write_4(t, h, CAS_TX_CONFIG,
1243 v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1244 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1245
1246 /* step 10. ERX Configuration */
1247
1248 /* Encode Receive Descriptor ring size */
1249 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1250 if (CAS_PLUS(sc))
1251 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1252
1253 /* Encode Receive Completion ring size */
1254 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1255
1256 /* Enable DMA */
1257 bus_space_write_4(t, h, CAS_RX_CONFIG,
1258 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1259
1260 /*
1261 * The following value is for an OFF Threshold of about 3/4 full
1262 * and an ON Threshold of 1/4 full.
1263 */
1264 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1265 (3 * sc->sc_rxfifosize / 256) |
1266 ((sc->sc_rxfifosize / 256) << 12));
1267 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1268
1269 /* step 11. Configure Media */
1270 mii_ifmedia_change(&sc->sc_mii);
1271
1272 /* step 12. RX_MAC Configuration Register */
1273 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1274 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1275 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1276
1277 /* step 14. Issue Transmit Pending command */
1278
1279 /* step 15. Give the receiver a swift kick */
1280 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1281 if (CAS_PLUS(sc))
1282 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1283
1284 /* Start the one second timer. */
1285 callout_schedule(&sc->sc_tick_ch, hz);
1286
1287 ifp->if_flags |= IFF_RUNNING;
1288 ifp->if_flags &= ~IFF_OACTIVE;
1289 ifp->if_timer = 0;
1290 splx(s);
1291
1292 return (0);
1293 }
1294
1295 void
1296 cas_init_regs(struct cas_softc *sc)
1297 {
1298 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1299 bus_space_tag_t t = sc->sc_memt;
1300 bus_space_handle_t h = sc->sc_memh;
1301 const u_char *laddr = CLLADDR(ifp->if_sadl);
1302 uint32_t v, r;
1303
1304 /* These regs are not cleared on reset */
1305 sc->sc_inited = 0;
1306 if (!sc->sc_inited) {
1307 /* Load recommended values */
1308 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1309 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1310 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1311
1312 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1313 /* Max frame and max burst size */
1314 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1315 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1316
1317 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1318 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1319 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1320 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1321 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1322 ((laddr[5]<<8)|laddr[4])&0x3ff);
1323
1324 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1325 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1326 bus_space_write_4(t, h, r, 0);
1327
1328 /* MAC control addr set to 0:1:c2:0:1:80 */
1329 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1330 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1331 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1332
1333 /* MAC filter addr set to 0:0:0:0:0:0 */
1334 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1335 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1336 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1337
1338 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1339 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1340
1341 /* Hash table initialized to 0 */
1342 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1343 bus_space_write_4(t, h, r, 0);
1344
1345 sc->sc_inited = 1;
1346 }
1347
1348 /* Counters need to be zeroed */
1349 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1350 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1351 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1352 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1353 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1354 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1355 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1356 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1357 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1358 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1359 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1360
1361 /* Un-pause stuff */
1362 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1363
1364 /*
1365 * Set the station address.
1366 */
1367 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1368 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1369 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1370 }
1371
1372 /*
1373 * Receive interrupt.
1374 */
1375 int
1376 cas_rint(struct cas_softc *sc)
1377 {
1378 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1379 bus_space_tag_t t = sc->sc_memt;
1380 bus_space_handle_t h = sc->sc_memh;
1381 struct cas_rxsoft *rxs;
1382 struct mbuf *m;
1383 uint64_t word[4];
1384 int len, off, idx;
1385 int i, skip;
1386 void *cp;
1387
1388 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1389 CAS_CDRXCSYNC(sc, i,
1390 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1391
1392 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1393 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1394 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1395 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1396
1397 /* Stop if the hardware still owns the descriptor. */
1398 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1399 break;
1400
1401 len = CAS_RC1_HDR_LEN(word[1]);
1402 if (len > 0) {
1403 off = CAS_RC1_HDR_OFF(word[1]);
1404 idx = CAS_RC1_HDR_IDX(word[1]);
1405 rxs = &sc->sc_rxsoft[idx];
1406
1407 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1408 idx, off, len));
1409
1410 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1411 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1412
1413 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1414 m = m_devget(cp, len, 0, ifp);
1415
1416 if (word[0] & CAS_RC0_RELEASE_HDR)
1417 cas_add_rxbuf(sc, idx);
1418
1419 if (m != NULL) {
1420
1421 /*
1422 * Pass this up to any BPF listeners, but only
1423 * pass it up the stack if its for us.
1424 */
1425 m->m_pkthdr.csum_flags = 0;
1426 if_percpuq_enqueue(ifp->if_percpuq, m);
1427 } else
1428 if_statinc(ifp, if_ierrors);
1429 }
1430
1431 len = CAS_RC0_DATA_LEN(word[0]);
1432 if (len > 0) {
1433 off = CAS_RC0_DATA_OFF(word[0]);
1434 idx = CAS_RC0_DATA_IDX(word[0]);
1435 rxs = &sc->sc_rxsoft[idx];
1436
1437 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1438 idx, off, len));
1439
1440 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1441 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1442
1443 /* XXX We should not be copying the packet here. */
1444 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1445 m = m_devget(cp, len, 0, ifp);
1446
1447 if (word[0] & CAS_RC0_RELEASE_DATA)
1448 cas_add_rxbuf(sc, idx);
1449
1450 if (m != NULL) {
1451 /*
1452 * Pass this up to any BPF listeners, but only
1453 * pass it up the stack if its for us.
1454 */
1455 m->m_pkthdr.csum_flags = 0;
1456 if_percpuq_enqueue(ifp->if_percpuq, m);
1457 } else
1458 if_statinc(ifp, if_ierrors);
1459 }
1460
1461 if (word[0] & CAS_RC0_SPLIT)
1462 aprint_error_dev(sc->sc_dev, "split packet\n");
1463
1464 skip = CAS_RC0_SKIP(word[0]);
1465 }
1466
1467 while (sc->sc_rxptr != i) {
1468 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1469 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1470 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1471 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1472 CAS_DMA_WRITE(CAS_RC3_OWN);
1473 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1474 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1475
1476 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1477 }
1478
1479 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1480
1481 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1482 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1483
1484 return (1);
1485 }
1486
1487 /*
1488 * cas_add_rxbuf:
1489 *
1490 * Add a receive buffer to the indicated descriptor.
1491 */
1492 int
1493 cas_add_rxbuf(struct cas_softc *sc, int idx)
1494 {
1495 bus_space_tag_t t = sc->sc_memt;
1496 bus_space_handle_t h = sc->sc_memh;
1497
1498 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1499
1500 if ((sc->sc_rxdptr % 4) == 0)
1501 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1502
1503 if (++sc->sc_rxdptr == CAS_NRXDESC)
1504 sc->sc_rxdptr = 0;
1505
1506 return (0);
1507 }
1508
1509 int
1510 cas_eint(struct cas_softc *sc, u_int status)
1511 {
1512 char bits[128];
1513 if ((status & CAS_INTR_MIF) != 0) {
1514 DPRINTF(sc, ("%s: link status changed\n",
1515 device_xname(sc->sc_dev)));
1516 return (1);
1517 }
1518
1519 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1520 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1521 return (1);
1522 }
1523
1524 int
1525 cas_pint(struct cas_softc *sc)
1526 {
1527 bus_space_tag_t t = sc->sc_memt;
1528 bus_space_handle_t seb = sc->sc_memh;
1529 uint32_t status;
1530
1531 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1532 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1533 #ifdef CAS_DEBUG
1534 if (status)
1535 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1536 #endif
1537 return (1);
1538 }
1539
1540 int
1541 cas_intr(void *v)
1542 {
1543 struct cas_softc *sc = (struct cas_softc *)v;
1544 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1545 bus_space_tag_t t = sc->sc_memt;
1546 bus_space_handle_t seb = sc->sc_memh;
1547 uint32_t status;
1548 int r = 0;
1549 #ifdef CAS_DEBUG
1550 char bits[128];
1551 #endif
1552
1553 sc->sc_ev_intr.ev_count++;
1554
1555 status = bus_space_read_4(t, seb, CAS_STATUS);
1556 #ifdef CAS_DEBUG
1557 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1558 #endif
1559 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1560 device_xname(sc->sc_dev), (status>>19), bits));
1561
1562 if ((status & CAS_INTR_PCS) != 0)
1563 r |= cas_pint(sc);
1564
1565 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1566 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1567 r |= cas_eint(sc, status);
1568
1569 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1570 r |= cas_tint(sc, status);
1571
1572 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1573 r |= cas_rint(sc);
1574
1575 /* We should eventually do more than just print out error stats. */
1576 if (status & CAS_INTR_TX_MAC) {
1577 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1578 #ifdef CAS_DEBUG
1579 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1580 printf("%s: MAC tx fault, status %x\n",
1581 device_xname(sc->sc_dev), txstat);
1582 #endif
1583 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1584 cas_init(ifp);
1585 }
1586 if (status & CAS_INTR_RX_MAC) {
1587 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1588 #ifdef CAS_DEBUG
1589 if (rxstat & ~CAS_MAC_RX_DONE)
1590 printf("%s: MAC rx fault, status %x\n",
1591 device_xname(sc->sc_dev), rxstat);
1592 #endif
1593 /*
1594 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1595 * due to a silicon bug so handle them silently.
1596 */
1597 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1598 if_statinc(ifp, if_ierrors);
1599 cas_init(ifp);
1600 }
1601 #ifdef CAS_DEBUG
1602 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1603 printf("%s: MAC rx fault, status %x\n",
1604 device_xname(sc->sc_dev), rxstat);
1605 #endif
1606 }
1607 rnd_add_uint32(&sc->rnd_source, status);
1608 return (r);
1609 }
1610
1611
1612 void
1613 cas_watchdog(struct ifnet *ifp)
1614 {
1615 struct cas_softc *sc = ifp->if_softc;
1616
1617 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1618 "CAS_MAC_RX_CONFIG %x\n",
1619 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1620 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1621 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1622
1623 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1624 if_statinc(ifp, if_oerrors);
1625
1626 /* Try to get more packets going. */
1627 cas_init(ifp);
1628 }
1629
1630 /*
1631 * Initialize the MII Management Interface
1632 */
1633 void
1634 cas_mifinit(struct cas_softc *sc)
1635 {
1636 bus_space_tag_t t = sc->sc_memt;
1637 bus_space_handle_t mif = sc->sc_memh;
1638
1639 /* Configure the MIF in frame mode */
1640 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1641 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1642 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1643 }
1644
1645 /*
1646 * MII interface
1647 *
1648 * The Cassini MII interface supports at least three different operating modes:
1649 *
1650 * Bitbang mode is implemented using data, clock and output enable registers.
1651 *
1652 * Frame mode is implemented by loading a complete frame into the frame
1653 * register and polling the valid bit for completion.
1654 *
1655 * Polling mode uses the frame register but completion is indicated by
1656 * an interrupt.
1657 *
1658 */
1659 int
1660 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1661 {
1662 struct cas_softc *sc = device_private(self);
1663 bus_space_tag_t t = sc->sc_memt;
1664 bus_space_handle_t mif = sc->sc_memh;
1665 int n;
1666 uint32_t v;
1667
1668 #ifdef CAS_DEBUG
1669 if (sc->sc_debug)
1670 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1671 #endif
1672
1673 /* Construct the frame command */
1674 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1675 CAS_MIF_FRAME_READ;
1676
1677 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1678 for (n = 0; n < 100; n++) {
1679 DELAY(1);
1680 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1681 if (v & CAS_MIF_FRAME_TA0) {
1682 *val = v & CAS_MIF_FRAME_DATA;
1683 return 0;
1684 }
1685 }
1686
1687 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1688 return ETIMEDOUT;
1689 }
1690
1691 int
1692 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1693 {
1694 struct cas_softc *sc = device_private(self);
1695 bus_space_tag_t t = sc->sc_memt;
1696 bus_space_handle_t mif = sc->sc_memh;
1697 int n;
1698 uint32_t v;
1699
1700 #ifdef CAS_DEBUG
1701 if (sc->sc_debug)
1702 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1703 phy, reg, val);
1704 #endif
1705
1706 /* Construct the frame command */
1707 v = CAS_MIF_FRAME_WRITE |
1708 (phy << CAS_MIF_PHY_SHIFT) |
1709 (reg << CAS_MIF_REG_SHIFT) |
1710 (val & CAS_MIF_FRAME_DATA);
1711
1712 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1713 for (n = 0; n < 100; n++) {
1714 DELAY(1);
1715 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1716 if (v & CAS_MIF_FRAME_TA0)
1717 return 0;
1718 }
1719
1720 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1721 return ETIMEDOUT;
1722 }
1723
1724 void
1725 cas_mii_statchg(struct ifnet *ifp)
1726 {
1727 struct cas_softc *sc = ifp->if_softc;
1728 #ifdef CAS_DEBUG
1729 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1730 #endif
1731 bus_space_tag_t t = sc->sc_memt;
1732 bus_space_handle_t mac = sc->sc_memh;
1733 uint32_t v;
1734
1735 #ifdef CAS_DEBUG
1736 if (sc->sc_debug)
1737 printf("cas_mii_statchg: status change: phy = %d\n",
1738 sc->sc_phys[instance]);
1739 #endif
1740
1741 /* Set tx full duplex options */
1742 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1743 delay(10000); /* reg must be cleared and delay before changing. */
1744 v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1745 CAS_MAC_TX_ENABLE;
1746 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1747 v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1748 }
1749 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1750
1751 /* XIF Configuration */
1752 v = CAS_MAC_XIF_TX_MII_ENA;
1753 v |= CAS_MAC_XIF_LINK_LED;
1754
1755 /* MII needs echo disable if half duplex. */
1756 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1757 /* turn on full duplex LED */
1758 v |= CAS_MAC_XIF_FDPLX_LED;
1759 else
1760 /* half duplex -- disable echo */
1761 v |= CAS_MAC_XIF_ECHO_DISABL;
1762
1763 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1764 case IFM_1000_T: /* Gigabit using GMII interface */
1765 case IFM_1000_SX:
1766 v |= CAS_MAC_XIF_GMII_MODE;
1767 break;
1768 default:
1769 v &= ~CAS_MAC_XIF_GMII_MODE;
1770 }
1771 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1772 }
1773
1774 int
1775 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1776 {
1777 struct cas_softc *sc = device_private(self);
1778 bus_space_tag_t t = sc->sc_memt;
1779 bus_space_handle_t pcs = sc->sc_memh;
1780
1781 #ifdef CAS_DEBUG
1782 if (sc->sc_debug)
1783 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1784 #endif
1785
1786 if (phy != CAS_PHYAD_EXTERNAL)
1787 return -1;
1788
1789 switch (reg) {
1790 case MII_BMCR:
1791 reg = CAS_MII_CONTROL;
1792 break;
1793 case MII_BMSR:
1794 reg = CAS_MII_STATUS;
1795 break;
1796 case MII_ANAR:
1797 reg = CAS_MII_ANAR;
1798 break;
1799 case MII_ANLPAR:
1800 reg = CAS_MII_ANLPAR;
1801 break;
1802 case MII_EXTSR:
1803 *val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1804 return 0;
1805 default:
1806 return (0);
1807 }
1808
1809 *val = bus_space_read_4(t, pcs, reg) & 0xffff;
1810 return 0;
1811 }
1812
1813 int
1814 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1815 {
1816 struct cas_softc *sc = device_private(self);
1817 bus_space_tag_t t = sc->sc_memt;
1818 bus_space_handle_t pcs = sc->sc_memh;
1819 int reset = 0;
1820
1821 #ifdef CAS_DEBUG
1822 if (sc->sc_debug)
1823 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1824 phy, reg, val);
1825 #endif
1826
1827 if (phy != CAS_PHYAD_EXTERNAL)
1828 return -1;
1829
1830 if (reg == MII_ANAR)
1831 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1832
1833 switch (reg) {
1834 case MII_BMCR:
1835 reset = (val & CAS_MII_CONTROL_RESET);
1836 reg = CAS_MII_CONTROL;
1837 break;
1838 case MII_BMSR:
1839 reg = CAS_MII_STATUS;
1840 break;
1841 case MII_ANAR:
1842 reg = CAS_MII_ANAR;
1843 break;
1844 case MII_ANLPAR:
1845 reg = CAS_MII_ANLPAR;
1846 break;
1847 default:
1848 return 0;
1849 }
1850
1851 bus_space_write_4(t, pcs, reg, val);
1852
1853 if (reset)
1854 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1855
1856 if (reg == CAS_MII_ANAR || reset)
1857 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1858 CAS_MII_CONFIG_ENABLE);
1859
1860 return 0;
1861 }
1862
1863 int
1864 cas_mediachange(struct ifnet *ifp)
1865 {
1866 struct cas_softc *sc = ifp->if_softc;
1867 struct mii_data *mii = &sc->sc_mii;
1868
1869 if (mii->mii_instance) {
1870 struct mii_softc *miisc;
1871 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1872 mii_phy_reset(miisc);
1873 }
1874
1875 return (mii_mediachg(&sc->sc_mii));
1876 }
1877
1878 void
1879 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1880 {
1881 struct cas_softc *sc = ifp->if_softc;
1882
1883 mii_pollstat(&sc->sc_mii);
1884 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1885 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1886 }
1887
1888 /*
1889 * Process an ioctl request.
1890 */
1891 int
1892 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1893 {
1894 struct cas_softc *sc = ifp->if_softc;
1895 int s, error = 0;
1896
1897 s = splnet();
1898
1899 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1900 error = 0;
1901 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1902 ;
1903 else if (ifp->if_flags & IFF_RUNNING) {
1904 /*
1905 * Multicast list has changed; set the hardware filter
1906 * accordingly.
1907 */
1908 cas_iff(sc);
1909 }
1910 }
1911
1912 splx(s);
1913 return (error);
1914 }
1915
1916 static bool
1917 cas_suspend(device_t self, const pmf_qual_t *qual)
1918 {
1919 struct cas_softc *sc = device_private(self);
1920 bus_space_tag_t t = sc->sc_memt;
1921 bus_space_handle_t h = sc->sc_memh;
1922
1923 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1924 if (sc->sc_ih != NULL) {
1925 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1926 sc->sc_ih = NULL;
1927 }
1928
1929 return true;
1930 }
1931
1932 static bool
1933 cas_resume(device_t self, const pmf_qual_t *qual)
1934 {
1935 struct cas_softc *sc = device_private(self);
1936
1937 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1938 }
1939
1940 static bool
1941 cas_estintr(struct cas_softc *sc, int what)
1942 {
1943 bus_space_tag_t t = sc->sc_memt;
1944 bus_space_handle_t h = sc->sc_memh;
1945 const char *intrstr = NULL;
1946 char intrbuf[PCI_INTRSTR_LEN];
1947
1948 /* PCI interrupts */
1949 if (what & CAS_INTR_PCI) {
1950 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1951 sizeof(intrbuf));
1952 sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1953 IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1954 if (sc->sc_ih == NULL) {
1955 aprint_error_dev(sc->sc_dev,
1956 "unable to establish interrupt");
1957 if (intrstr != NULL)
1958 aprint_error(" at %s", intrstr);
1959 aprint_error("\n");
1960 return false;
1961 }
1962
1963 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1964 }
1965
1966 /* Interrupt register */
1967 if (what & CAS_INTR_REG) {
1968 bus_space_write_4(t, h, CAS_INTMASK,
1969 ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1970 CAS_INTR_TX_TAG_ERR |
1971 CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1972 CAS_INTR_RX_TAG_ERR |
1973 CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1974 CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1975 CAS_INTR_BERR));
1976 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1977 CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1978 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1979 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1980 }
1981 return true;
1982 }
1983
1984 bool
1985 cas_shutdown(device_t self, int howto)
1986 {
1987 struct cas_softc *sc = device_private(self);
1988 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1989
1990 cas_stop(ifp, 1);
1991
1992 return true;
1993 }
1994
1995 void
1996 cas_iff(struct cas_softc *sc)
1997 {
1998 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1999 struct ethercom *ec = &sc->sc_ethercom;
2000 struct ether_multi *enm;
2001 struct ether_multistep step;
2002 bus_space_tag_t t = sc->sc_memt;
2003 bus_space_handle_t h = sc->sc_memh;
2004 uint32_t crc, hash[16], rxcfg;
2005 int i;
2006
2007 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
2008 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
2009 CAS_MAC_RX_PROMISC_GRP);
2010 ifp->if_flags &= ~IFF_ALLMULTI;
2011
2012 if ((ifp->if_flags & IFF_PROMISC) != 0)
2013 goto update;
2014
2015 /*
2016 * Set up multicast address filter by passing all multicast
2017 * addresses through a crc generator, and then using the
2018 * high order 8 bits as an index into the 256 bit logical
2019 * address filter. The high order 4 bits selects the word,
2020 * while the other 4 bits select the bit within the word
2021 * (where bit 0 is the MSB).
2022 */
2023
2024 /* Clear hash table */
2025 for (i = 0; i < 16; i++)
2026 hash[i] = 0;
2027
2028 ETHER_LOCK(ec);
2029 ETHER_FIRST_MULTI(step, ec, enm);
2030 while (enm != NULL) {
2031 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2032 /* XXX Use ETHER_F_ALLMULTI in future. */
2033 ifp->if_flags |= IFF_ALLMULTI;
2034 ETHER_UNLOCK(ec);
2035 goto update;
2036 }
2037
2038 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2039
2040 /* Just want the 8 most significant bits. */
2041 crc >>= 24;
2042
2043 /* Set the corresponding bit in the filter. */
2044 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2045
2046 ETHER_NEXT_MULTI(step, enm);
2047 }
2048 ETHER_UNLOCK(ec);
2049
2050 rxcfg |= CAS_MAC_RX_HASH_FILTER;
2051
2052 /* Now load the hash table into the chip (if we are using it) */
2053 for (i = 0; i < 16; i++) {
2054 bus_space_write_4(t, h,
2055 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2056 hash[i]);
2057 }
2058
2059 update:
2060 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2061 if (ifp->if_flags & IFF_PROMISC) {
2062 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2063 /* XXX Use ETHER_F_ALLMULTI in future. */
2064 ifp->if_flags |= IFF_ALLMULTI;
2065 } else
2066 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2067 }
2068 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2069 }
2070
2071 int
2072 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2073 {
2074 uint64_t flags;
2075 uint32_t cur, frag, i;
2076 bus_dmamap_t map;
2077
2078 cur = frag = *bixp;
2079 map = sc->sc_txd[cur].sd_map;
2080
2081 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2082 BUS_DMA_NOWAIT) != 0) {
2083 return (ENOBUFS);
2084 }
2085
2086 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2087 bus_dmamap_unload(sc->sc_dmatag, map);
2088 return (ENOBUFS);
2089 }
2090
2091 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2092 BUS_DMASYNC_PREWRITE);
2093
2094 for (i = 0; i < map->dm_nsegs; i++) {
2095 sc->sc_txdescs[frag].cd_addr =
2096 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2097 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2098 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2099 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2100 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2101 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2102 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2103 BUS_DMASYNC_PREWRITE);
2104 cur = frag;
2105 if (++frag == CAS_NTXDESC)
2106 frag = 0;
2107 }
2108
2109 sc->sc_tx_cnt += map->dm_nsegs;
2110 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2111 sc->sc_txd[cur].sd_map = map;
2112 sc->sc_txd[cur].sd_mbuf = mhead;
2113
2114 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2115
2116 *bixp = frag;
2117
2118 /* sync descriptors */
2119
2120 return (0);
2121 }
2122
2123 /*
2124 * Transmit interrupt.
2125 */
2126 int
2127 cas_tint(struct cas_softc *sc, uint32_t status)
2128 {
2129 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2130 struct cas_sxd *sd;
2131 uint32_t cons, comp;
2132
2133 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2134 cons = sc->sc_tx_cons;
2135 while (cons != comp) {
2136 sd = &sc->sc_txd[cons];
2137 if (sd->sd_mbuf != NULL) {
2138 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2139 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2140 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2141 m_freem(sd->sd_mbuf);
2142 sd->sd_mbuf = NULL;
2143 if_statinc(ifp, if_opackets);
2144 }
2145 sc->sc_tx_cnt--;
2146 if (++cons == CAS_NTXDESC)
2147 cons = 0;
2148 }
2149 sc->sc_tx_cons = cons;
2150
2151 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2152 ifp->if_flags &= ~IFF_OACTIVE;
2153 if (sc->sc_tx_cnt == 0)
2154 ifp->if_timer = 0;
2155
2156 if_schedule_deferred_start(ifp);
2157
2158 return (1);
2159 }
2160
2161 void
2162 cas_start(struct ifnet *ifp)
2163 {
2164 struct cas_softc *sc = ifp->if_softc;
2165 struct mbuf *m;
2166 uint32_t bix;
2167
2168 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2169 return;
2170
2171 bix = sc->sc_tx_prod;
2172 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2173 IFQ_POLL(&ifp->if_snd, m);
2174 if (m == NULL)
2175 break;
2176
2177 /*
2178 * If BPF is listening on this interface, let it see the
2179 * packet before we commit it to the wire.
2180 */
2181 bpf_mtap(ifp, m, BPF_D_OUT);
2182
2183 /*
2184 * Encapsulate this packet and start it going...
2185 * or fail...
2186 */
2187 if (cas_encap(sc, m, &bix)) {
2188 ifp->if_flags |= IFF_OACTIVE;
2189 break;
2190 }
2191
2192 IFQ_DEQUEUE(&ifp->if_snd, m);
2193 ifp->if_timer = 5;
2194 }
2195
2196 sc->sc_tx_prod = bix;
2197 }
2198
2199 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2200
2201 #ifdef _MODULE
2202 #include "ioconf.c"
2203 #endif
2204
2205 static int
2206 if_cas_modcmd(modcmd_t cmd, void *opaque)
2207 {
2208 int error = 0;
2209
2210 switch (cmd) {
2211 case MODULE_CMD_INIT:
2212 #ifdef _MODULE
2213 error = config_init_component(cfdriver_ioconf_cas,
2214 cfattach_ioconf_cas, cfdata_ioconf_cas);
2215 #endif
2216 return error;
2217 case MODULE_CMD_FINI:
2218 #ifdef _MODULE
2219 error = config_fini_component(cfdriver_ioconf_cas,
2220 cfattach_ioconf_cas, cfdata_ioconf_cas);
2221 #endif
2222 return error;
2223 default:
2224 return ENOTTY;
2225 }
2226 }
2227