if_cas.c revision 1.44.6.2 1 /* $NetBSD: if_cas.c,v 1.44.6.2 2021/06/17 04:46:29 thorpej Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.44.6.2 2021/06/17 04:46:29 thorpej Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86 #include <sys/rndsource.h>
87
88 #include <dev/mii/mii.h>
89 #include <dev/mii/miivar.h>
90 #include <dev/mii/mii_bitbang.h>
91
92 #include <dev/pci/pcivar.h>
93 #include <dev/pci/pcireg.h>
94 #include <dev/pci/pcidevs.h>
95 #include <prop/proplib.h>
96
97 #include <dev/pci/if_casreg.h>
98 #include <dev/pci/if_casvar.h>
99
100 #define TRIES 10000
101
102 static bool cas_estintr(struct cas_softc *sc, int);
103 bool cas_shutdown(device_t, int);
104 static bool cas_suspend(device_t, const pmf_qual_t *);
105 static bool cas_resume(device_t, const pmf_qual_t *);
106 static int cas_detach(device_t, int);
107 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
108
109 int cas_match(device_t, cfdata_t, void *);
110 void cas_attach(device_t, device_t, void *);
111
112
113 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
114 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
115 DVF_DETACH_SHUTDOWN);
116
117 int cas_pci_readvpd(struct cas_softc *, struct pci_attach_args *, uint8_t *);
118
119 void cas_config(struct cas_softc *, const uint8_t *);
120 void cas_start(struct ifnet *);
121 void cas_stop(struct ifnet *, int);
122 int cas_ioctl(struct ifnet *, u_long, void *);
123 void cas_tick(void *);
124 void cas_watchdog(struct ifnet *);
125 int cas_init(struct ifnet *);
126 void cas_init_regs(struct cas_softc *);
127 int cas_ringsize(int);
128 int cas_cringsize(int);
129 int cas_meminit(struct cas_softc *);
130 void cas_mifinit(struct cas_softc *);
131 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
132 uint32_t, uint32_t);
133 void cas_reset(struct cas_softc *);
134 int cas_reset_rx(struct cas_softc *);
135 int cas_reset_tx(struct cas_softc *);
136 int cas_disable_rx(struct cas_softc *);
137 int cas_disable_tx(struct cas_softc *);
138 void cas_rxdrain(struct cas_softc *);
139 int cas_add_rxbuf(struct cas_softc *, int);
140 void cas_iff(struct cas_softc *);
141 int cas_encap(struct cas_softc *, struct mbuf *, uint32_t *);
142
143 /* MII methods & callbacks */
144 int cas_mii_readreg(device_t, int, int, uint16_t*);
145 int cas_mii_writereg(device_t, int, int, uint16_t);
146 void cas_mii_statchg(struct ifnet *);
147 int cas_pcs_readreg(device_t, int, int, uint16_t *);
148 int cas_pcs_writereg(device_t, int, int, uint16_t);
149
150 int cas_mediachange(struct ifnet *);
151 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
152
153 int cas_eint(struct cas_softc *, u_int);
154 int cas_rint(struct cas_softc *);
155 int cas_tint(struct cas_softc *, uint32_t);
156 int cas_pint(struct cas_softc *);
157 int cas_intr(void *);
158
159 #ifdef CAS_DEBUG
160 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
161 printf x
162 #else
163 #define DPRINTF(sc, x) /* nothing */
164 #endif
165
166 static const struct device_compatible_entry compat_data[] = {
167 { .id = PCI_ID_CODE(PCI_VENDOR_SUN,
168 PCI_PRODUCT_SUN_CASSINI),
169 .value = CAS_CAS },
170
171 { .id = PCI_ID_CODE(PCI_VENDOR_NS,
172 PCI_PRODUCT_NS_SATURN),
173 .value = CAS_SATURN },
174
175 PCI_COMPAT_EOL
176 };
177
178 #define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
179 #define CAS_PHY_INTERFACE "phy-interface"
180 #define CAS_PHY_TYPE "phy-type"
181 #define CAS_PHY_TYPE_PCS "pcs"
182
183 int
184 cas_match(device_t parent, cfdata_t cf, void *aux)
185 {
186 struct pci_attach_args *pa = aux;
187
188 return pci_compatible_match(pa, compat_data);
189 }
190
191 #define PROMHDR_PTR_DATA 0x18
192 #define PROMDATA_PTR_VPD 0x08
193 #define PROMDATA_DATA2 0x0a
194
195 static const uint8_t cas_promhdr[] = { 0x55, 0xaa };
196 static const uint8_t cas_promdat[] = {
197 'P', 'C', 'I', 'R',
198 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
199 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
200 };
201 static const uint8_t cas_promdat_ns[] = {
202 'P', 'C', 'I', 'R',
203 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
204 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
205 };
206
207 static const uint8_t cas_promdat2[] = {
208 0x18, 0x00, /* structure length */
209 0x00, /* structure revision */
210 0x00, /* interface revision */
211 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
212 PCI_CLASS_NETWORK /* class code */
213 };
214
215 #define CAS_LMA_MAXNUM 4
216 int
217 cas_pci_readvpd(struct cas_softc *sc, struct pci_attach_args *pa,
218 uint8_t *enaddr)
219 {
220 struct pci_vpd_largeres *res;
221 struct pci_vpd *vpd;
222 bus_space_handle_t romh;
223 bus_space_tag_t romt;
224 bus_size_t romsize = 0;
225 uint8_t enaddrs[CAS_LMA_MAXNUM][ETHER_ADDR_LEN];
226 bool pcs[4] = {false, false, false, false};
227 uint8_t buf[32], *desc;
228 pcireg_t address;
229 int dataoff, vpdoff, len, lma = 0, phy = 0;
230 int i, rv = -1;
231
232 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
233 &romt, &romh, NULL, &romsize))
234 return (-1);
235
236 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
237 address |= PCI_MAPREG_ROM_ENABLE;
238 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
239
240 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
241 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
242 goto fail;
243
244 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
245 if (dataoff < 0x1c)
246 goto fail;
247
248 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
249 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
250 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
251 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
252 goto fail;
253
254 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
255 if (vpdoff < 0x1c)
256 goto fail;
257
258 next:
259 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
260 if (!PCI_VPDRES_ISLARGE(buf[0]))
261 goto fail;
262
263 res = (struct pci_vpd_largeres *)buf;
264 vpdoff += sizeof(*res);
265
266 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
267 switch (PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
268 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
269 /* Skip identifier string. */
270 vpdoff += len;
271 goto next;
272
273 case PCI_VPDRES_TYPE_VPD:
274 #ifdef CAS_DEBUG
275 printf("\n");
276 for (i = 0; i < len; i++) {
277 uint8_t byte;
278 if (i % 16 == 0)
279 printf("%04x :", i);
280 byte = bus_space_read_1(romt, romh, vpdoff + i);
281 printf(" %02x", byte);
282 if (i % 16 == 15)
283 printf("\n");
284 }
285 printf("\n");
286 #endif
287
288 while (len > 0) {
289 bus_space_read_region_1(romt, romh, vpdoff,
290 buf, sizeof(buf));
291
292 vpd = (struct pci_vpd *)buf;
293 vpdoff += sizeof(*vpd) + vpd->vpd_len;
294 len -= sizeof(*vpd) + vpd->vpd_len;
295
296 /*
297 * We're looking for an "Enhanced" VPD...
298 */
299 if (vpd->vpd_key0 != 'Z')
300 continue;
301
302 desc = buf + sizeof(*vpd);
303
304 /*
305 * ...which is an instance property...
306 */
307 if (desc[0] != 'I')
308 continue;
309 desc += 3;
310
311 if (desc[0] == 'B' || desc[1] == ETHER_ADDR_LEN) {
312 /*
313 * ...that's a byte array with the proper
314 * length for a MAC address...
315 */
316 desc += 2;
317
318 /*
319 * ...named "local-mac-address".
320 */
321 if (strcmp(desc, CAS_LOCAL_MAC_ADDRESS) != 0)
322 continue;
323 desc += sizeof(CAS_LOCAL_MAC_ADDRESS);
324
325 if (lma == CAS_LMA_MAXNUM)
326 continue;
327
328 memcpy(enaddrs[lma], desc, ETHER_ADDR_LEN);
329 lma++;
330 rv = 0;
331 continue;
332 } else if (desc[0] == 'S') {
333 size_t k;
334
335 /* String */
336 desc += 2;
337 #ifdef CAS_DEBUG
338 /* ...named "pcs". */
339 printf("STR: \"%s\"\n", desc);
340 if (strcmp(desc, CAS_PHY_TYPE_PCS) != 0)
341 continue;
342 desc += sizeof(CAS_PHY_TYPE_PCS);
343 printf("STR: \"%s\"\n", desc);
344 #endif
345 /* ...named "phy-interface" or "phy-type". */
346 if (strcmp(desc, CAS_PHY_INTERFACE) == 0)
347 k = sizeof(CAS_PHY_INTERFACE);
348 else if (strcmp(desc, CAS_PHY_TYPE) == 0)
349 k = sizeof(CAS_PHY_TYPE);
350 else
351 continue;
352
353 desc += k;
354 #ifdef CAS_DEBUG
355 printf("STR: \"%s\"\n", desc);
356 #endif
357 if (strcmp(desc, CAS_PHY_TYPE_PCS) == 0)
358 pcs[phy] = true;
359 phy++;
360 continue;
361 }
362 }
363 break;
364
365 default:
366 goto fail;
367 }
368
369 /*
370 * Multi port card has bridge chip. The device number is fixed:
371 * e.g.
372 * p0: 005:00:0
373 * p1: 005:01:0
374 * p2: 006:02:0
375 * p3: 006:03:0
376 */
377 if (enaddr != 0) {
378 i = 0;
379 if ((lma > 1) && (pa->pa_device < CAS_LMA_MAXNUM)
380 && (pa->pa_device < lma))
381 i = pa->pa_device;
382 memcpy(enaddr, enaddrs[i], ETHER_ADDR_LEN);
383 }
384 if (pcs[pa->pa_device])
385 sc->sc_flags |= CAS_SERDES;
386 fail:
387 if (romsize != 0)
388 bus_space_unmap(romt, romh, romsize);
389
390 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
391 address &= ~PCI_MAPREG_ROM_ENABLE;
392 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
393
394 return (rv);
395 }
396
397 void
398 cas_attach(device_t parent, device_t self, void *aux)
399 {
400 struct pci_attach_args *pa = aux;
401 const struct device_compatible_entry *dce;
402 struct cas_softc *sc = device_private(self);
403 prop_data_t data;
404 uint8_t enaddr[ETHER_ADDR_LEN];
405
406 sc->sc_dev = self;
407 pci_aprint_devinfo(pa, NULL);
408 sc->sc_rev = PCI_REVISION(pa->pa_class);
409
410 if (pci_dma64_available(pa))
411 sc->sc_dmatag = pa->pa_dmat64;
412 else
413 sc->sc_dmatag = pa->pa_dmat;
414
415 dce = pci_compatible_lookup(pa, compat_data);
416 KASSERT(dce != NULL);
417 sc->sc_variant = (u_int)dce->value;
418
419 aprint_debug_dev(sc->sc_dev, "variant = %d\n", sc->sc_variant);
420
421 #define PCI_CAS_BASEADDR 0x10
422 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
423 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
424 aprint_error_dev(sc->sc_dev,
425 "unable to map device registers\n");
426 return;
427 }
428
429 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
430 "mac-address")) != NULL)
431 memcpy(enaddr, prop_data_value(data), ETHER_ADDR_LEN);
432 if (cas_pci_readvpd(sc, pa, (data == NULL) ? enaddr : 0) != 0) {
433 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
434 memset(enaddr, 0, sizeof(enaddr));
435 }
436
437 sc->sc_burst = 16; /* XXX */
438
439 sc->sc_att_stage = CAS_ATT_BACKEND_0;
440
441 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
442 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
443 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
444 return;
445 }
446 sc->sc_pc = pa->pa_pc;
447 if (!cas_estintr(sc, CAS_INTR_PCI)) {
448 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
449 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
450 return;
451 }
452
453 sc->sc_att_stage = CAS_ATT_BACKEND_1;
454
455 /*
456 * call the main configure
457 */
458 cas_config(sc, enaddr);
459
460 if (pmf_device_register1(sc->sc_dev,
461 cas_suspend, cas_resume, cas_shutdown))
462 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
463 else
464 aprint_error_dev(sc->sc_dev,
465 "could not establish power handlers\n");
466
467 sc->sc_att_stage = CAS_ATT_FINISHED;
468 /*FALLTHROUGH*/
469 }
470
471 /*
472 * cas_config:
473 *
474 * Attach a Cassini interface to the system.
475 */
476 void
477 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
478 {
479 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
480 struct mii_data *mii = &sc->sc_mii;
481 struct mii_softc *child;
482 uint32_t reg;
483 int i, error;
484
485 /* Make sure the chip is stopped. */
486 ifp->if_softc = sc;
487 cas_reset(sc);
488
489 /*
490 * Allocate the control data structures, and create and load the
491 * DMA map for it.
492 */
493 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
494 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
495 1, &sc->sc_cdnseg, 0)) != 0) {
496 aprint_error_dev(sc->sc_dev,
497 "unable to allocate control data, error = %d\n",
498 error);
499 cas_partial_detach(sc, CAS_ATT_0);
500 }
501
502 /* XXX should map this in with correct endianness */
503 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg,
504 sc->sc_cdnseg, sizeof(struct cas_control_data),
505 (void **)&sc->sc_control_data, BUS_DMA_COHERENT)) != 0) {
506 aprint_error_dev(sc->sc_dev,
507 "unable to map control data, error = %d\n", error);
508 cas_partial_detach(sc, CAS_ATT_1);
509 }
510
511 if ((error = bus_dmamap_create(sc->sc_dmatag,
512 sizeof(struct cas_control_data), 1,
513 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
514 aprint_error_dev(sc->sc_dev,
515 "unable to create control data DMA map, error = %d\n",
516 error);
517 cas_partial_detach(sc, CAS_ATT_2);
518 }
519
520 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
521 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
522 0)) != 0) {
523 aprint_error_dev(sc->sc_dev,
524 "unable to load control data DMA map, error = %d\n",
525 error);
526 cas_partial_detach(sc, CAS_ATT_3);
527 }
528
529 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
530
531 /*
532 * Create the receive buffer DMA maps.
533 */
534 for (i = 0; i < CAS_NRXDESC; i++) {
535 bus_dma_segment_t seg;
536 char *kva;
537 int rseg;
538
539 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
540 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
541 aprint_error_dev(sc->sc_dev,
542 "unable to alloc rx DMA mem %d, error = %d\n",
543 i, error);
544 cas_partial_detach(sc, CAS_ATT_5);
545 }
546 sc->sc_rxsoft[i].rxs_dmaseg = seg;
547
548 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
549 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
550 aprint_error_dev(sc->sc_dev,
551 "unable to alloc rx DMA mem %d, error = %d\n",
552 i, error);
553 cas_partial_detach(sc, CAS_ATT_5);
554 }
555 sc->sc_rxsoft[i].rxs_kva = kva;
556
557 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
558 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
559 aprint_error_dev(sc->sc_dev,
560 "unable to create rx DMA map %d, error = %d\n",
561 i, error);
562 cas_partial_detach(sc, CAS_ATT_5);
563 }
564
565 if ((error = bus_dmamap_load(sc->sc_dmatag,
566 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
567 BUS_DMA_NOWAIT)) != 0) {
568 aprint_error_dev(sc->sc_dev,
569 "unable to load rx DMA map %d, error = %d\n",
570 i, error);
571 cas_partial_detach(sc, CAS_ATT_5);
572 }
573 }
574
575 /*
576 * Create the transmit buffer DMA maps.
577 */
578 for (i = 0; i < CAS_NTXDESC; i++) {
579 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
580 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
581 &sc->sc_txd[i].sd_map)) != 0) {
582 aprint_error_dev(sc->sc_dev,
583 "unable to create tx DMA map %d, error = %d\n",
584 i, error);
585 cas_partial_detach(sc, CAS_ATT_6);
586 }
587 sc->sc_txd[i].sd_mbuf = NULL;
588 }
589
590 /*
591 * From this point forward, the attachment cannot fail. A failure
592 * before this point releases all resources that may have been
593 * allocated.
594 */
595
596 /* Announce ourselves. */
597 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
598 ether_sprintf(enaddr));
599 aprint_naive(": Ethernet controller\n");
600
601 /* Get RX FIFO size */
602 sc->sc_rxfifosize = 16 * 1024;
603
604 /* Initialize ifnet structure. */
605 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
606 ifp->if_softc = sc;
607 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
608 ifp->if_start = cas_start;
609 ifp->if_ioctl = cas_ioctl;
610 ifp->if_watchdog = cas_watchdog;
611 ifp->if_stop = cas_stop;
612 ifp->if_init = cas_init;
613 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
614 IFQ_SET_READY(&ifp->if_snd);
615
616 /* Initialize ifmedia structures and MII info */
617 mii->mii_ifp = ifp;
618 mii->mii_readreg = cas_mii_readreg;
619 mii->mii_writereg = cas_mii_writereg;
620 mii->mii_statchg = cas_mii_statchg;
621
622 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
623 sc->sc_ethercom.ec_mii = mii;
624
625 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
626
627 cas_mifinit(sc);
628
629 if (sc->sc_mif_config & (CAS_MIF_CONFIG_MDI1 | CAS_MIF_CONFIG_MDI0)) {
630 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
631 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
632 bus_space_write_4(sc->sc_memt, sc->sc_memh,
633 CAS_MIF_CONFIG, sc->sc_mif_config);
634 }
635 /* Enable/unfreeze the GMII pins of Saturn. */
636 if (sc->sc_variant == CAS_SATURN) {
637 reg = bus_space_read_4(sc->sc_memt, sc->sc_memh,
638 CAS_SATURN_PCFG) & ~CAS_SATURN_PCFG_FSI;
639 if ((sc->sc_mif_config & CAS_MIF_CONFIG_MDI0) != 0)
640 reg |= CAS_SATURN_PCFG_FSI;
641 bus_space_write_4(sc->sc_memt, sc->sc_memh,
642 CAS_SATURN_PCFG, reg);
643 /* Read to flush */
644 bus_space_read_4(sc->sc_memt, sc->sc_memh,
645 CAS_SATURN_PCFG);
646 DELAY(10000);
647 }
648 }
649
650 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
651 MII_OFFSET_ANY, 0);
652
653 child = LIST_FIRST(&mii->mii_phys);
654 if (child == NULL &&
655 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0 | CAS_MIF_CONFIG_MDI1)) {
656 /*
657 * Try the external PCS SERDES if we didn't find any
658 * MII devices.
659 */
660 bus_space_write_4(sc->sc_memt, sc->sc_memh,
661 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
662
663 bus_space_write_4(sc->sc_memt, sc->sc_memh,
664 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
665
666 mii->mii_readreg = cas_pcs_readreg;
667 mii->mii_writereg = cas_pcs_writereg;
668
669 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
670 MII_OFFSET_ANY, MIIF_NOISOLATE);
671 }
672
673 child = LIST_FIRST(&mii->mii_phys);
674 if (child == NULL) {
675 /* No PHY attached */
676 ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
677 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_MANUAL);
678 } else {
679 /*
680 * Walk along the list of attached MII devices and
681 * establish an `MII instance' to `phy number'
682 * mapping. We'll use this mapping in media change
683 * requests to determine which phy to use to program
684 * the MIF configuration register.
685 */
686 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
687 /*
688 * Note: we support just two PHYs: the built-in
689 * internal device and an external on the MII
690 * connector.
691 */
692 if (child->mii_phy > 1 || child->mii_inst > 1) {
693 aprint_error_dev(sc->sc_dev,
694 "cannot accommodate MII device %s"
695 " at phy %d, instance %d\n",
696 device_xname(child->mii_dev),
697 child->mii_phy, child->mii_inst);
698 continue;
699 }
700
701 sc->sc_phys[child->mii_inst] = child->mii_phy;
702 }
703
704 /*
705 * XXX - we can really do the following ONLY if the
706 * phy indeed has the auto negotiation capability!!
707 */
708 ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_AUTO);
709 }
710
711 /* claim 802.1q capability */
712 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
713
714 /* Attach the interface. */
715 if_attach(ifp);
716 if_deferred_start_init(ifp, NULL);
717 ether_ifattach(ifp, enaddr);
718
719 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
720 RND_TYPE_NET, RND_FLAG_DEFAULT);
721
722 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
723 NULL, device_xname(sc->sc_dev), "interrupts");
724
725 callout_init(&sc->sc_tick_ch, 0);
726 callout_setfunc(&sc->sc_tick_ch, cas_tick, sc);
727
728 return;
729 }
730
731 int
732 cas_detach(device_t self, int flags)
733 {
734 int i;
735 struct cas_softc *sc = device_private(self);
736 bus_space_tag_t t = sc->sc_memt;
737 bus_space_handle_t h = sc->sc_memh;
738 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
739
740 /*
741 * Free any resources we've allocated during the failed attach
742 * attempt. Do this in reverse order and fall through.
743 */
744 switch (sc->sc_att_stage) {
745 case CAS_ATT_FINISHED:
746 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
747 pmf_device_deregister(self);
748 cas_stop(&sc->sc_ethercom.ec_if, 1);
749 evcnt_detach(&sc->sc_ev_intr);
750
751 rnd_detach_source(&sc->rnd_source);
752
753 ether_ifdetach(ifp);
754 if_detach(ifp);
755
756 callout_destroy(&sc->sc_tick_ch);
757
758 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
759
760 ifmedia_fini(&sc->sc_mii.mii_media);
761
762 /*FALLTHROUGH*/
763 case CAS_ATT_MII:
764 case CAS_ATT_7:
765 case CAS_ATT_6:
766 for (i = 0; i < CAS_NTXDESC; i++) {
767 if (sc->sc_txd[i].sd_map != NULL)
768 bus_dmamap_destroy(sc->sc_dmatag,
769 sc->sc_txd[i].sd_map);
770 }
771 /*FALLTHROUGH*/
772 case CAS_ATT_5:
773 for (i = 0; i < CAS_NRXDESC; i++) {
774 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
775 bus_dmamap_unload(sc->sc_dmatag,
776 sc->sc_rxsoft[i].rxs_dmamap);
777 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
778 bus_dmamap_destroy(sc->sc_dmatag,
779 sc->sc_rxsoft[i].rxs_dmamap);
780 if (sc->sc_rxsoft[i].rxs_kva != NULL)
781 bus_dmamem_unmap(sc->sc_dmatag,
782 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
783 /* XXX need to check that bus_dmamem_alloc suceeded
784 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
785 */
786 bus_dmamem_free(sc->sc_dmatag,
787 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
788 }
789 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
790 /*FALLTHROUGH*/
791 case CAS_ATT_4:
792 case CAS_ATT_3:
793 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
794 /*FALLTHROUGH*/
795 case CAS_ATT_2:
796 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
797 sizeof(struct cas_control_data));
798 /*FALLTHROUGH*/
799 case CAS_ATT_1:
800 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
801 /*FALLTHROUGH*/
802 case CAS_ATT_0:
803 sc->sc_att_stage = CAS_ATT_0;
804 /*FALLTHROUGH*/
805 case CAS_ATT_BACKEND_2:
806 case CAS_ATT_BACKEND_1:
807 if (sc->sc_ih != NULL) {
808 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
809 sc->sc_ih = NULL;
810 }
811 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
812 /*FALLTHROUGH*/
813 case CAS_ATT_BACKEND_0:
814 break;
815 }
816 return 0;
817 }
818
819 static void
820 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
821 {
822 cfattach_t ca = device_cfattach(sc->sc_dev);
823
824 sc->sc_att_stage = stage;
825 (*ca->ca_detach)(sc->sc_dev, 0);
826 }
827
828 void
829 cas_tick(void *arg)
830 {
831 struct cas_softc *sc = arg;
832 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
833 bus_space_tag_t t = sc->sc_memt;
834 bus_space_handle_t mac = sc->sc_memh;
835 int s;
836 uint32_t v;
837
838 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
839
840 /* unload collisions counters */
841 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
842 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
843 if_statadd_ref(nsr, if_collisions, v +
844 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
845 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT));
846 if_statadd_ref(nsr, if_oerrors, v);
847
848 /* read error counters */
849 if_statadd_ref(nsr, if_ierrors,
850 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
851 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
852 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
853 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL));
854
855 IF_STAT_PUTREF(ifp);
856
857 /* clear the hardware counters */
858 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
859 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
860 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
861 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
862 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
863 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
864 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
865 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
866
867 s = splnet();
868 mii_tick(&sc->sc_mii);
869 splx(s);
870
871 callout_schedule(&sc->sc_tick_ch, hz);
872 }
873
874 int
875 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
876 uint32_t clr, uint32_t set)
877 {
878 int i;
879 uint32_t reg;
880
881 for (i = TRIES; i--; DELAY(100)) {
882 reg = bus_space_read_4(sc->sc_memt, h, r);
883 if ((reg & clr) == 0 && (reg & set) == set)
884 return (1);
885 }
886
887 return (0);
888 }
889
890 void
891 cas_reset(struct cas_softc *sc)
892 {
893 bus_space_tag_t t = sc->sc_memt;
894 bus_space_handle_t h = sc->sc_memh;
895 int s;
896
897 s = splnet();
898 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
899 cas_reset_rx(sc);
900 cas_reset_tx(sc);
901
902 /* Disable interrupts */
903 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
904
905 /* Do a full reset */
906 bus_space_write_4(t, h, CAS_RESET,
907 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
908 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
909 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
910 splx(s);
911 }
912
913
914 /*
915 * cas_rxdrain:
916 *
917 * Drain the receive queue.
918 */
919 void
920 cas_rxdrain(struct cas_softc *sc)
921 {
922 /* Nothing to do yet. */
923 }
924
925 /*
926 * Reset the whole thing.
927 */
928 void
929 cas_stop(struct ifnet *ifp, int disable)
930 {
931 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
932 struct cas_sxd *sd;
933 uint32_t i;
934
935 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
936
937 callout_stop(&sc->sc_tick_ch);
938
939 /*
940 * Mark the interface down and cancel the watchdog timer.
941 */
942 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
943 ifp->if_timer = 0;
944
945 mii_down(&sc->sc_mii);
946
947 cas_reset_rx(sc);
948 cas_reset_tx(sc);
949
950 /*
951 * Release any queued transmit buffers.
952 */
953 for (i = 0; i < CAS_NTXDESC; i++) {
954 sd = &sc->sc_txd[i];
955 if (sd->sd_mbuf != NULL) {
956 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
957 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
958 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
959 m_freem(sd->sd_mbuf);
960 sd->sd_mbuf = NULL;
961 }
962 }
963 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
964
965 if (disable)
966 cas_rxdrain(sc);
967 }
968
969
970 /*
971 * Reset the receiver
972 */
973 int
974 cas_reset_rx(struct cas_softc *sc)
975 {
976 bus_space_tag_t t = sc->sc_memt;
977 bus_space_handle_t h = sc->sc_memh;
978
979 /*
980 * Resetting while DMA is in progress can cause a bus hang, so we
981 * disable DMA first.
982 */
983 cas_disable_rx(sc);
984 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
985 /* Wait till it finishes */
986 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
987 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
988 /* Wait 5ms extra. */
989 delay(5000);
990
991 /* Finally, reset the ERX */
992 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
993 /* Wait till it finishes */
994 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
995 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
996 return (1);
997 }
998 return (0);
999 }
1000
1001
1002 /*
1003 * Reset the transmitter
1004 */
1005 int
1006 cas_reset_tx(struct cas_softc *sc)
1007 {
1008 bus_space_tag_t t = sc->sc_memt;
1009 bus_space_handle_t h = sc->sc_memh;
1010
1011 /*
1012 * Resetting while DMA is in progress can cause a bus hang, so we
1013 * disable DMA first.
1014 */
1015 cas_disable_tx(sc);
1016 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
1017 /* Wait till it finishes */
1018 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
1019 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
1020 /* Wait 5ms extra. */
1021 delay(5000);
1022
1023 /* Finally, reset the ETX */
1024 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
1025 /* Wait till it finishes */
1026 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
1027 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
1028 return (1);
1029 }
1030 return (0);
1031 }
1032
1033 /*
1034 * Disable receiver.
1035 */
1036 int
1037 cas_disable_rx(struct cas_softc *sc)
1038 {
1039 bus_space_tag_t t = sc->sc_memt;
1040 bus_space_handle_t h = sc->sc_memh;
1041 uint32_t cfg;
1042
1043 /* Flip the enable bit */
1044 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1045 cfg &= ~CAS_MAC_RX_ENABLE;
1046 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
1047
1048 /* Wait for it to finish */
1049 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
1050 }
1051
1052 /*
1053 * Disable transmitter.
1054 */
1055 int
1056 cas_disable_tx(struct cas_softc *sc)
1057 {
1058 bus_space_tag_t t = sc->sc_memt;
1059 bus_space_handle_t h = sc->sc_memh;
1060 uint32_t cfg;
1061
1062 /* Flip the enable bit */
1063 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
1064 cfg &= ~CAS_MAC_TX_ENABLE;
1065 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
1066
1067 /* Wait for it to finish */
1068 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
1069 }
1070
1071 /*
1072 * Initialize interface.
1073 */
1074 int
1075 cas_meminit(struct cas_softc *sc)
1076 {
1077 int i;
1078
1079 /*
1080 * Initialize the transmit descriptor ring.
1081 */
1082 for (i = 0; i < CAS_NTXDESC; i++) {
1083 sc->sc_txdescs[i].cd_flags = 0;
1084 sc->sc_txdescs[i].cd_addr = 0;
1085 }
1086 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
1087 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1088
1089 /*
1090 * Initialize the receive descriptor and receive job
1091 * descriptor rings.
1092 */
1093 for (i = 0; i < CAS_NRXDESC; i++)
1094 CAS_INIT_RXDESC(sc, i, i);
1095 sc->sc_rxdptr = 0;
1096 sc->sc_rxptr = 0;
1097
1098 /*
1099 * Initialize the receive completion ring.
1100 */
1101 for (i = 0; i < CAS_NRXCOMP; i++) {
1102 sc->sc_rxcomps[i].cc_word[0] = 0;
1103 sc->sc_rxcomps[i].cc_word[1] = 0;
1104 sc->sc_rxcomps[i].cc_word[2] = 0;
1105 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1106 CAS_CDRXCSYNC(sc, i,
1107 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1108 }
1109
1110 return (0);
1111 }
1112
1113 int
1114 cas_ringsize(int sz)
1115 {
1116 switch (sz) {
1117 case 32:
1118 return CAS_RING_SZ_32;
1119 case 64:
1120 return CAS_RING_SZ_64;
1121 case 128:
1122 return CAS_RING_SZ_128;
1123 case 256:
1124 return CAS_RING_SZ_256;
1125 case 512:
1126 return CAS_RING_SZ_512;
1127 case 1024:
1128 return CAS_RING_SZ_1024;
1129 case 2048:
1130 return CAS_RING_SZ_2048;
1131 case 4096:
1132 return CAS_RING_SZ_4096;
1133 case 8192:
1134 return CAS_RING_SZ_8192;
1135 default:
1136 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1137 sz);
1138 return CAS_RING_SZ_32;
1139 }
1140 }
1141
1142 int
1143 cas_cringsize(int sz)
1144 {
1145 int i;
1146
1147 for (i = 0; i < 9; i++)
1148 if (sz == (128 << i))
1149 return i;
1150
1151 aprint_error("cas: invalid completion ring size %d\n", sz);
1152 return 128;
1153 }
1154
1155 /*
1156 * Initialization of interface; set up initialization block
1157 * and transmit/receive descriptor rings.
1158 */
1159 int
1160 cas_init(struct ifnet *ifp)
1161 {
1162 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1163 bus_space_tag_t t = sc->sc_memt;
1164 bus_space_handle_t h = sc->sc_memh;
1165 int s;
1166 u_int max_frame_size;
1167 uint32_t v;
1168
1169 s = splnet();
1170
1171 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1172 /*
1173 * Initialization sequence. The numbered steps below correspond
1174 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1175 * Channel Engine manual (part of the PCIO manual).
1176 * See also the STP2002-STQ document from Sun Microsystems.
1177 */
1178
1179 /* step 1 & 2. Reset the Ethernet Channel */
1180 cas_stop(ifp, 0);
1181 cas_reset(sc);
1182 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1183
1184 /* Re-initialize the MIF */
1185 cas_mifinit(sc);
1186
1187 /* step 3. Setup data structures in host memory */
1188 cas_meminit(sc);
1189
1190 /* step 4. TX MAC registers & counters */
1191 cas_init_regs(sc);
1192 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1193 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1194 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1195
1196 /* step 5. RX MAC registers & counters */
1197 cas_iff(sc);
1198
1199 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1200 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1201 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1202 BUS_ADDR_HI32(CAS_CDTXADDR(sc, 0)));
1203 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO,
1204 BUS_ADDR_LO32(CAS_CDTXADDR(sc, 0)));
1205
1206 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1207 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1208 BUS_ADDR_HI32(CAS_CDRXADDR(sc, 0)));
1209 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO,
1210 BUS_ADDR_LO32(CAS_CDRXADDR(sc, 0)));
1211
1212 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1213 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1214 BUS_ADDR_HI32(CAS_CDRXCADDR(sc, 0)));
1215 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO,
1216 BUS_ADDR_LO32(CAS_CDRXCADDR(sc, 0)));
1217
1218 if (CAS_PLUS(sc)) {
1219 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1220 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1221 BUS_ADDR_HI32(CAS_CDRXADDR2(sc, 0)));
1222 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1223 BUS_ADDR_LO32(CAS_CDRXADDR2(sc, 0)));
1224 }
1225
1226 /* step 8. Global Configuration & Interrupt Mask */
1227 cas_estintr(sc, CAS_INTR_REG);
1228
1229 /* step 9. ETX Configuration: use mostly default values */
1230
1231 /* Enable DMA */
1232 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1233 bus_space_write_4(t, h, CAS_TX_CONFIG,
1234 v | CAS_TX_CONFIG_TXDMA_EN | (1 << 24) | (1 << 29));
1235 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1236
1237 /* step 10. ERX Configuration */
1238
1239 /* Encode Receive Descriptor ring size */
1240 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1241 if (CAS_PLUS(sc))
1242 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1243
1244 /* Encode Receive Completion ring size */
1245 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1246
1247 /* Enable DMA */
1248 bus_space_write_4(t, h, CAS_RX_CONFIG,
1249 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT) | CAS_RX_CONFIG_RXDMA_EN);
1250
1251 /*
1252 * The following value is for an OFF Threshold of about 3/4 full
1253 * and an ON Threshold of 1/4 full.
1254 */
1255 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1256 (3 * sc->sc_rxfifosize / 256) |
1257 ((sc->sc_rxfifosize / 256) << 12));
1258 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1259
1260 /* step 11. Configure Media */
1261 mii_ifmedia_change(&sc->sc_mii);
1262
1263 /* step 12. RX_MAC Configuration Register */
1264 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1265 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1266 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1267
1268 /* step 14. Issue Transmit Pending command */
1269
1270 /* step 15. Give the receiver a swift kick */
1271 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1272 if (CAS_PLUS(sc))
1273 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1274
1275 /* Start the one second timer. */
1276 callout_schedule(&sc->sc_tick_ch, hz);
1277
1278 ifp->if_flags |= IFF_RUNNING;
1279 ifp->if_flags &= ~IFF_OACTIVE;
1280 ifp->if_timer = 0;
1281 splx(s);
1282
1283 return (0);
1284 }
1285
1286 void
1287 cas_init_regs(struct cas_softc *sc)
1288 {
1289 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290 bus_space_tag_t t = sc->sc_memt;
1291 bus_space_handle_t h = sc->sc_memh;
1292 const u_char *laddr = CLLADDR(ifp->if_sadl);
1293 uint32_t v, r;
1294
1295 /* These regs are not cleared on reset */
1296 sc->sc_inited = 0;
1297 if (!sc->sc_inited) {
1298 /* Load recommended values */
1299 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1300 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1301 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1302
1303 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1304 /* Max frame and max burst size */
1305 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1306 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1307
1308 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1309 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1310 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1311 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1312 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1313 ((laddr[5]<<8)|laddr[4])&0x3ff);
1314
1315 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1316 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1317 bus_space_write_4(t, h, r, 0);
1318
1319 /* MAC control addr set to 0:1:c2:0:1:80 */
1320 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1321 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1322 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1323
1324 /* MAC filter addr set to 0:0:0:0:0:0 */
1325 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1326 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1327 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1328
1329 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1330 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1331
1332 /* Hash table initialized to 0 */
1333 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1334 bus_space_write_4(t, h, r, 0);
1335
1336 sc->sc_inited = 1;
1337 }
1338
1339 /* Counters need to be zeroed */
1340 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1341 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1342 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1343 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1344 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1345 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1346 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1347 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1348 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1349 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1350 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1351
1352 /* Un-pause stuff */
1353 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1354
1355 /*
1356 * Set the station address.
1357 */
1358 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1359 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1360 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1361 }
1362
1363 /*
1364 * Receive interrupt.
1365 */
1366 int
1367 cas_rint(struct cas_softc *sc)
1368 {
1369 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1370 bus_space_tag_t t = sc->sc_memt;
1371 bus_space_handle_t h = sc->sc_memh;
1372 struct cas_rxsoft *rxs;
1373 struct mbuf *m;
1374 uint64_t word[4];
1375 int len, off, idx;
1376 int i, skip;
1377 void *cp;
1378
1379 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1380 CAS_CDRXCSYNC(sc, i,
1381 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1382
1383 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1384 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1385 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1386 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1387
1388 /* Stop if the hardware still owns the descriptor. */
1389 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1390 break;
1391
1392 len = CAS_RC1_HDR_LEN(word[1]);
1393 if (len > 0) {
1394 off = CAS_RC1_HDR_OFF(word[1]);
1395 idx = CAS_RC1_HDR_IDX(word[1]);
1396 rxs = &sc->sc_rxsoft[idx];
1397
1398 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1399 idx, off, len));
1400
1401 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1402 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1403
1404 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1405 m = m_devget(cp, len, 0, ifp);
1406
1407 if (word[0] & CAS_RC0_RELEASE_HDR)
1408 cas_add_rxbuf(sc, idx);
1409
1410 if (m != NULL) {
1411
1412 /*
1413 * Pass this up to any BPF listeners, but only
1414 * pass it up the stack if its for us.
1415 */
1416 m->m_pkthdr.csum_flags = 0;
1417 if_percpuq_enqueue(ifp->if_percpuq, m);
1418 } else
1419 if_statinc(ifp, if_ierrors);
1420 }
1421
1422 len = CAS_RC0_DATA_LEN(word[0]);
1423 if (len > 0) {
1424 off = CAS_RC0_DATA_OFF(word[0]);
1425 idx = CAS_RC0_DATA_IDX(word[0]);
1426 rxs = &sc->sc_rxsoft[idx];
1427
1428 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1429 idx, off, len));
1430
1431 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1432 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1433
1434 /* XXX We should not be copying the packet here. */
1435 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1436 m = m_devget(cp, len, 0, ifp);
1437
1438 if (word[0] & CAS_RC0_RELEASE_DATA)
1439 cas_add_rxbuf(sc, idx);
1440
1441 if (m != NULL) {
1442 /*
1443 * Pass this up to any BPF listeners, but only
1444 * pass it up the stack if its for us.
1445 */
1446 m->m_pkthdr.csum_flags = 0;
1447 if_percpuq_enqueue(ifp->if_percpuq, m);
1448 } else
1449 if_statinc(ifp, if_ierrors);
1450 }
1451
1452 if (word[0] & CAS_RC0_SPLIT)
1453 aprint_error_dev(sc->sc_dev, "split packet\n");
1454
1455 skip = CAS_RC0_SKIP(word[0]);
1456 }
1457
1458 while (sc->sc_rxptr != i) {
1459 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1460 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1461 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1462 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1463 CAS_DMA_WRITE(CAS_RC3_OWN);
1464 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1465 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1466
1467 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1468 }
1469
1470 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1471
1472 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1473 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1474
1475 return (1);
1476 }
1477
1478 /*
1479 * cas_add_rxbuf:
1480 *
1481 * Add a receive buffer to the indicated descriptor.
1482 */
1483 int
1484 cas_add_rxbuf(struct cas_softc *sc, int idx)
1485 {
1486 bus_space_tag_t t = sc->sc_memt;
1487 bus_space_handle_t h = sc->sc_memh;
1488
1489 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1490
1491 if ((sc->sc_rxdptr % 4) == 0)
1492 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1493
1494 if (++sc->sc_rxdptr == CAS_NRXDESC)
1495 sc->sc_rxdptr = 0;
1496
1497 return (0);
1498 }
1499
1500 int
1501 cas_eint(struct cas_softc *sc, u_int status)
1502 {
1503 char bits[128];
1504 if ((status & CAS_INTR_MIF) != 0) {
1505 DPRINTF(sc, ("%s: link status changed\n",
1506 device_xname(sc->sc_dev)));
1507 return (1);
1508 }
1509
1510 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1511 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1512 return (1);
1513 }
1514
1515 int
1516 cas_pint(struct cas_softc *sc)
1517 {
1518 bus_space_tag_t t = sc->sc_memt;
1519 bus_space_handle_t seb = sc->sc_memh;
1520 uint32_t status;
1521
1522 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1523 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1524 #ifdef CAS_DEBUG
1525 if (status)
1526 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1527 #endif
1528 return (1);
1529 }
1530
1531 int
1532 cas_intr(void *v)
1533 {
1534 struct cas_softc *sc = (struct cas_softc *)v;
1535 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1536 bus_space_tag_t t = sc->sc_memt;
1537 bus_space_handle_t seb = sc->sc_memh;
1538 uint32_t status;
1539 int r = 0;
1540 #ifdef CAS_DEBUG
1541 char bits[128];
1542 #endif
1543
1544 sc->sc_ev_intr.ev_count++;
1545
1546 status = bus_space_read_4(t, seb, CAS_STATUS);
1547 #ifdef CAS_DEBUG
1548 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1549 #endif
1550 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1551 device_xname(sc->sc_dev), (status>>19), bits));
1552
1553 if ((status & CAS_INTR_PCS) != 0)
1554 r |= cas_pint(sc);
1555
1556 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1557 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1558 r |= cas_eint(sc, status);
1559
1560 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1561 r |= cas_tint(sc, status);
1562
1563 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1564 r |= cas_rint(sc);
1565
1566 /* We should eventually do more than just print out error stats. */
1567 if (status & CAS_INTR_TX_MAC) {
1568 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1569 #ifdef CAS_DEBUG
1570 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1571 printf("%s: MAC tx fault, status %x\n",
1572 device_xname(sc->sc_dev), txstat);
1573 #endif
1574 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1575 cas_init(ifp);
1576 }
1577 if (status & CAS_INTR_RX_MAC) {
1578 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1579 #ifdef CAS_DEBUG
1580 if (rxstat & ~CAS_MAC_RX_DONE)
1581 printf("%s: MAC rx fault, status %x\n",
1582 device_xname(sc->sc_dev), rxstat);
1583 #endif
1584 /*
1585 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1586 * due to a silicon bug so handle them silently.
1587 */
1588 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1589 if_statinc(ifp, if_ierrors);
1590 cas_init(ifp);
1591 }
1592 #ifdef CAS_DEBUG
1593 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1594 printf("%s: MAC rx fault, status %x\n",
1595 device_xname(sc->sc_dev), rxstat);
1596 #endif
1597 }
1598 rnd_add_uint32(&sc->rnd_source, status);
1599 return (r);
1600 }
1601
1602
1603 void
1604 cas_watchdog(struct ifnet *ifp)
1605 {
1606 struct cas_softc *sc = ifp->if_softc;
1607
1608 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1609 "CAS_MAC_RX_CONFIG %x\n",
1610 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1611 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1612 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1613
1614 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1615 if_statinc(ifp, if_oerrors);
1616
1617 /* Try to get more packets going. */
1618 cas_init(ifp);
1619 }
1620
1621 /*
1622 * Initialize the MII Management Interface
1623 */
1624 void
1625 cas_mifinit(struct cas_softc *sc)
1626 {
1627 bus_space_tag_t t = sc->sc_memt;
1628 bus_space_handle_t mif = sc->sc_memh;
1629
1630 /* Configure the MIF in frame mode */
1631 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1632 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1633 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1634 }
1635
1636 /*
1637 * MII interface
1638 *
1639 * The Cassini MII interface supports at least three different operating modes:
1640 *
1641 * Bitbang mode is implemented using data, clock and output enable registers.
1642 *
1643 * Frame mode is implemented by loading a complete frame into the frame
1644 * register and polling the valid bit for completion.
1645 *
1646 * Polling mode uses the frame register but completion is indicated by
1647 * an interrupt.
1648 *
1649 */
1650 int
1651 cas_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
1652 {
1653 struct cas_softc *sc = device_private(self);
1654 bus_space_tag_t t = sc->sc_memt;
1655 bus_space_handle_t mif = sc->sc_memh;
1656 int n;
1657 uint32_t v;
1658
1659 #ifdef CAS_DEBUG
1660 if (sc->sc_debug)
1661 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1662 #endif
1663
1664 /* Construct the frame command */
1665 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1666 CAS_MIF_FRAME_READ;
1667
1668 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1669 for (n = 0; n < 100; n++) {
1670 DELAY(1);
1671 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1672 if (v & CAS_MIF_FRAME_TA0) {
1673 *val = v & CAS_MIF_FRAME_DATA;
1674 return 0;
1675 }
1676 }
1677
1678 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1679 return ETIMEDOUT;
1680 }
1681
1682 int
1683 cas_mii_writereg(device_t self, int phy, int reg, uint16_t val)
1684 {
1685 struct cas_softc *sc = device_private(self);
1686 bus_space_tag_t t = sc->sc_memt;
1687 bus_space_handle_t mif = sc->sc_memh;
1688 int n;
1689 uint32_t v;
1690
1691 #ifdef CAS_DEBUG
1692 if (sc->sc_debug)
1693 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1694 phy, reg, val);
1695 #endif
1696
1697 /* Construct the frame command */
1698 v = CAS_MIF_FRAME_WRITE |
1699 (phy << CAS_MIF_PHY_SHIFT) |
1700 (reg << CAS_MIF_REG_SHIFT) |
1701 (val & CAS_MIF_FRAME_DATA);
1702
1703 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1704 for (n = 0; n < 100; n++) {
1705 DELAY(1);
1706 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1707 if (v & CAS_MIF_FRAME_TA0)
1708 return 0;
1709 }
1710
1711 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1712 return ETIMEDOUT;
1713 }
1714
1715 void
1716 cas_mii_statchg(struct ifnet *ifp)
1717 {
1718 struct cas_softc *sc = ifp->if_softc;
1719 #ifdef CAS_DEBUG
1720 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1721 #endif
1722 bus_space_tag_t t = sc->sc_memt;
1723 bus_space_handle_t mac = sc->sc_memh;
1724 uint32_t v;
1725
1726 #ifdef CAS_DEBUG
1727 if (sc->sc_debug)
1728 printf("cas_mii_statchg: status change: phy = %d\n",
1729 sc->sc_phys[instance]);
1730 #endif
1731
1732 /* Set tx full duplex options */
1733 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1734 delay(10000); /* reg must be cleared and delay before changing. */
1735 v = CAS_MAC_TX_ENA_IPG0 | CAS_MAC_TX_NGU | CAS_MAC_TX_NGU_LIMIT |
1736 CAS_MAC_TX_ENABLE;
1737 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1738 v |= CAS_MAC_TX_IGN_CARRIER | CAS_MAC_TX_IGN_COLLIS;
1739 }
1740 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1741
1742 /* XIF Configuration */
1743 v = CAS_MAC_XIF_TX_MII_ENA;
1744 v |= CAS_MAC_XIF_LINK_LED;
1745
1746 /* MII needs echo disable if half duplex. */
1747 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1748 /* turn on full duplex LED */
1749 v |= CAS_MAC_XIF_FDPLX_LED;
1750 else
1751 /* half duplex -- disable echo */
1752 v |= CAS_MAC_XIF_ECHO_DISABL;
1753
1754 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1755 case IFM_1000_T: /* Gigabit using GMII interface */
1756 case IFM_1000_SX:
1757 v |= CAS_MAC_XIF_GMII_MODE;
1758 break;
1759 default:
1760 v &= ~CAS_MAC_XIF_GMII_MODE;
1761 }
1762 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1763 }
1764
1765 int
1766 cas_pcs_readreg(device_t self, int phy, int reg, uint16_t *val)
1767 {
1768 struct cas_softc *sc = device_private(self);
1769 bus_space_tag_t t = sc->sc_memt;
1770 bus_space_handle_t pcs = sc->sc_memh;
1771
1772 #ifdef CAS_DEBUG
1773 if (sc->sc_debug)
1774 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1775 #endif
1776
1777 if (phy != CAS_PHYAD_EXTERNAL)
1778 return -1;
1779
1780 switch (reg) {
1781 case MII_BMCR:
1782 reg = CAS_MII_CONTROL;
1783 break;
1784 case MII_BMSR:
1785 reg = CAS_MII_STATUS;
1786 break;
1787 case MII_ANAR:
1788 reg = CAS_MII_ANAR;
1789 break;
1790 case MII_ANLPAR:
1791 reg = CAS_MII_ANLPAR;
1792 break;
1793 case MII_EXTSR:
1794 *val = EXTSR_1000XFDX | EXTSR_1000XHDX;
1795 return 0;
1796 default:
1797 return (0);
1798 }
1799
1800 *val = bus_space_read_4(t, pcs, reg) & 0xffff;
1801 return 0;
1802 }
1803
1804 int
1805 cas_pcs_writereg(device_t self, int phy, int reg, uint16_t val)
1806 {
1807 struct cas_softc *sc = device_private(self);
1808 bus_space_tag_t t = sc->sc_memt;
1809 bus_space_handle_t pcs = sc->sc_memh;
1810 int reset = 0;
1811
1812 #ifdef CAS_DEBUG
1813 if (sc->sc_debug)
1814 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1815 phy, reg, val);
1816 #endif
1817
1818 if (phy != CAS_PHYAD_EXTERNAL)
1819 return -1;
1820
1821 if (reg == MII_ANAR)
1822 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1823
1824 switch (reg) {
1825 case MII_BMCR:
1826 reset = (val & CAS_MII_CONTROL_RESET);
1827 reg = CAS_MII_CONTROL;
1828 break;
1829 case MII_BMSR:
1830 reg = CAS_MII_STATUS;
1831 break;
1832 case MII_ANAR:
1833 reg = CAS_MII_ANAR;
1834 break;
1835 case MII_ANLPAR:
1836 reg = CAS_MII_ANLPAR;
1837 break;
1838 default:
1839 return 0;
1840 }
1841
1842 bus_space_write_4(t, pcs, reg, val);
1843
1844 if (reset)
1845 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1846
1847 if (reg == CAS_MII_ANAR || reset)
1848 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1849 CAS_MII_CONFIG_ENABLE);
1850
1851 return 0;
1852 }
1853
1854 int
1855 cas_mediachange(struct ifnet *ifp)
1856 {
1857 struct cas_softc *sc = ifp->if_softc;
1858 struct mii_data *mii = &sc->sc_mii;
1859
1860 if (mii->mii_instance) {
1861 struct mii_softc *miisc;
1862 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1863 mii_phy_reset(miisc);
1864 }
1865
1866 return (mii_mediachg(&sc->sc_mii));
1867 }
1868
1869 void
1870 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1871 {
1872 struct cas_softc *sc = ifp->if_softc;
1873
1874 mii_pollstat(&sc->sc_mii);
1875 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1876 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1877 }
1878
1879 /*
1880 * Process an ioctl request.
1881 */
1882 int
1883 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1884 {
1885 struct cas_softc *sc = ifp->if_softc;
1886 int s, error = 0;
1887
1888 s = splnet();
1889
1890 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1891 error = 0;
1892 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1893 ;
1894 else if (ifp->if_flags & IFF_RUNNING) {
1895 /*
1896 * Multicast list has changed; set the hardware filter
1897 * accordingly.
1898 */
1899 cas_iff(sc);
1900 }
1901 }
1902
1903 splx(s);
1904 return (error);
1905 }
1906
1907 static bool
1908 cas_suspend(device_t self, const pmf_qual_t *qual)
1909 {
1910 struct cas_softc *sc = device_private(self);
1911 bus_space_tag_t t = sc->sc_memt;
1912 bus_space_handle_t h = sc->sc_memh;
1913
1914 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1915 if (sc->sc_ih != NULL) {
1916 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1917 sc->sc_ih = NULL;
1918 }
1919
1920 return true;
1921 }
1922
1923 static bool
1924 cas_resume(device_t self, const pmf_qual_t *qual)
1925 {
1926 struct cas_softc *sc = device_private(self);
1927
1928 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1929 }
1930
1931 static bool
1932 cas_estintr(struct cas_softc *sc, int what)
1933 {
1934 bus_space_tag_t t = sc->sc_memt;
1935 bus_space_handle_t h = sc->sc_memh;
1936 const char *intrstr = NULL;
1937 char intrbuf[PCI_INTRSTR_LEN];
1938
1939 /* PCI interrupts */
1940 if (what & CAS_INTR_PCI) {
1941 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle, intrbuf,
1942 sizeof(intrbuf));
1943 sc->sc_ih = pci_intr_establish_xname(sc->sc_pc, sc->sc_handle,
1944 IPL_NET, cas_intr, sc, device_xname(sc->sc_dev));
1945 if (sc->sc_ih == NULL) {
1946 aprint_error_dev(sc->sc_dev,
1947 "unable to establish interrupt");
1948 if (intrstr != NULL)
1949 aprint_error(" at %s", intrstr);
1950 aprint_error("\n");
1951 return false;
1952 }
1953
1954 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1955 }
1956
1957 /* Interrupt register */
1958 if (what & CAS_INTR_REG) {
1959 bus_space_write_4(t, h, CAS_INTMASK,
1960 ~(CAS_INTR_TX_INTME | CAS_INTR_TX_EMPTY |
1961 CAS_INTR_TX_TAG_ERR |
1962 CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF |
1963 CAS_INTR_RX_TAG_ERR |
1964 CAS_INTR_RX_COMP_FULL | CAS_INTR_PCS |
1965 CAS_INTR_MAC_CONTROL | CAS_INTR_MIF |
1966 CAS_INTR_BERR));
1967 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1968 CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT);
1969 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1970 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1971 }
1972 return true;
1973 }
1974
1975 bool
1976 cas_shutdown(device_t self, int howto)
1977 {
1978 struct cas_softc *sc = device_private(self);
1979 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1980
1981 cas_stop(ifp, 1);
1982
1983 return true;
1984 }
1985
1986 void
1987 cas_iff(struct cas_softc *sc)
1988 {
1989 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1990 struct ethercom *ec = &sc->sc_ethercom;
1991 struct ether_multi *enm;
1992 struct ether_multistep step;
1993 bus_space_tag_t t = sc->sc_memt;
1994 bus_space_handle_t h = sc->sc_memh;
1995 uint32_t crc, hash[16], rxcfg;
1996 int i;
1997
1998 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1999 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
2000 CAS_MAC_RX_PROMISC_GRP);
2001 ifp->if_flags &= ~IFF_ALLMULTI;
2002
2003 if ((ifp->if_flags & IFF_PROMISC) != 0)
2004 goto update;
2005
2006 /*
2007 * Set up multicast address filter by passing all multicast
2008 * addresses through a crc generator, and then using the
2009 * high order 8 bits as an index into the 256 bit logical
2010 * address filter. The high order 4 bits selects the word,
2011 * while the other 4 bits select the bit within the word
2012 * (where bit 0 is the MSB).
2013 */
2014
2015 /* Clear hash table */
2016 for (i = 0; i < 16; i++)
2017 hash[i] = 0;
2018
2019 ETHER_LOCK(ec);
2020 ETHER_FIRST_MULTI(step, ec, enm);
2021 while (enm != NULL) {
2022 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2023 /* XXX Use ETHER_F_ALLMULTI in future. */
2024 ifp->if_flags |= IFF_ALLMULTI;
2025 ETHER_UNLOCK(ec);
2026 goto update;
2027 }
2028
2029 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
2030
2031 /* Just want the 8 most significant bits. */
2032 crc >>= 24;
2033
2034 /* Set the corresponding bit in the filter. */
2035 hash[crc >> 4] |= 1 << (15 - (crc & 15));
2036
2037 ETHER_NEXT_MULTI(step, enm);
2038 }
2039 ETHER_UNLOCK(ec);
2040
2041 rxcfg |= CAS_MAC_RX_HASH_FILTER;
2042
2043 /* Now load the hash table into the chip (if we are using it) */
2044 for (i = 0; i < 16; i++) {
2045 bus_space_write_4(t, h,
2046 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2047 hash[i]);
2048 }
2049
2050 update:
2051 if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
2052 if (ifp->if_flags & IFF_PROMISC) {
2053 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
2054 /* XXX Use ETHER_F_ALLMULTI in future. */
2055 ifp->if_flags |= IFF_ALLMULTI;
2056 } else
2057 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
2058 }
2059 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
2060 }
2061
2062 int
2063 cas_encap(struct cas_softc *sc, struct mbuf *mhead, uint32_t *bixp)
2064 {
2065 uint64_t flags;
2066 uint32_t cur, frag, i;
2067 bus_dmamap_t map;
2068
2069 cur = frag = *bixp;
2070 map = sc->sc_txd[cur].sd_map;
2071
2072 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
2073 BUS_DMA_NOWAIT) != 0) {
2074 return (ENOBUFS);
2075 }
2076
2077 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
2078 bus_dmamap_unload(sc->sc_dmatag, map);
2079 return (ENOBUFS);
2080 }
2081
2082 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
2083 BUS_DMASYNC_PREWRITE);
2084
2085 for (i = 0; i < map->dm_nsegs; i++) {
2086 sc->sc_txdescs[frag].cd_addr =
2087 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
2088 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
2089 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
2090 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
2091 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
2092 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
2093 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
2094 BUS_DMASYNC_PREWRITE);
2095 cur = frag;
2096 if (++frag == CAS_NTXDESC)
2097 frag = 0;
2098 }
2099
2100 sc->sc_tx_cnt += map->dm_nsegs;
2101 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
2102 sc->sc_txd[cur].sd_map = map;
2103 sc->sc_txd[cur].sd_mbuf = mhead;
2104
2105 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
2106
2107 *bixp = frag;
2108
2109 /* sync descriptors */
2110
2111 return (0);
2112 }
2113
2114 /*
2115 * Transmit interrupt.
2116 */
2117 int
2118 cas_tint(struct cas_softc *sc, uint32_t status)
2119 {
2120 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2121 struct cas_sxd *sd;
2122 uint32_t cons, comp;
2123
2124 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2125 cons = sc->sc_tx_cons;
2126 while (cons != comp) {
2127 sd = &sc->sc_txd[cons];
2128 if (sd->sd_mbuf != NULL) {
2129 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2130 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2131 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2132 m_freem(sd->sd_mbuf);
2133 sd->sd_mbuf = NULL;
2134 if_statinc(ifp, if_opackets);
2135 }
2136 sc->sc_tx_cnt--;
2137 if (++cons == CAS_NTXDESC)
2138 cons = 0;
2139 }
2140 sc->sc_tx_cons = cons;
2141
2142 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2143 ifp->if_flags &= ~IFF_OACTIVE;
2144 if (sc->sc_tx_cnt == 0)
2145 ifp->if_timer = 0;
2146
2147 if_schedule_deferred_start(ifp);
2148
2149 return (1);
2150 }
2151
2152 void
2153 cas_start(struct ifnet *ifp)
2154 {
2155 struct cas_softc *sc = ifp->if_softc;
2156 struct mbuf *m;
2157 uint32_t bix;
2158
2159 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2160 return;
2161
2162 bix = sc->sc_tx_prod;
2163 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2164 IFQ_POLL(&ifp->if_snd, m);
2165 if (m == NULL)
2166 break;
2167
2168 /*
2169 * If BPF is listening on this interface, let it see the
2170 * packet before we commit it to the wire.
2171 */
2172 bpf_mtap(ifp, m, BPF_D_OUT);
2173
2174 /*
2175 * Encapsulate this packet and start it going...
2176 * or fail...
2177 */
2178 if (cas_encap(sc, m, &bix)) {
2179 ifp->if_flags |= IFF_OACTIVE;
2180 break;
2181 }
2182
2183 IFQ_DEQUEUE(&ifp->if_snd, m);
2184 ifp->if_timer = 5;
2185 }
2186
2187 sc->sc_tx_prod = bix;
2188 }
2189
2190 MODULE(MODULE_CLASS_DRIVER, if_cas, "pci");
2191
2192 #ifdef _MODULE
2193 #include "ioconf.c"
2194 #endif
2195
2196 static int
2197 if_cas_modcmd(modcmd_t cmd, void *opaque)
2198 {
2199 int error = 0;
2200
2201 switch (cmd) {
2202 case MODULE_CMD_INIT:
2203 #ifdef _MODULE
2204 error = config_init_component(cfdriver_ioconf_cas,
2205 cfattach_ioconf_cas, cfdata_ioconf_cas);
2206 #endif
2207 return error;
2208 case MODULE_CMD_FINI:
2209 #ifdef _MODULE
2210 error = config_fini_component(cfdriver_ioconf_cas,
2211 cfattach_ioconf_cas, cfdata_ioconf_cas);
2212 #endif
2213 return error;
2214 default:
2215 return ENOTTY;
2216 }
2217 }
2218