if_cas.c revision 1.5.2.2 1 /* $NetBSD: if_cas.c,v 1.5.2.2 2010/08/17 06:46:25 uebayasi Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.5.2.2 2010/08/17 06:46:25 uebayasi Exp $");
48
49 #include "opt_inet.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62
63 #include <machine/endian.h>
64
65 #include <uvm/uvm_extern.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80
81 #include <net/bpf.h>
82
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii_bitbang.h>
89
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcidevs.h>
93 #include <prop/proplib.h>
94
95 #include <dev/pci/if_casreg.h>
96 #include <dev/pci/if_casvar.h>
97
98 #define TRIES 10000
99
100 static bool cas_estintr(struct cas_softc *sc, int);
101 bool cas_shutdown(device_t, int);
102 static bool cas_suspend(device_t, const pmf_qual_t *);
103 static bool cas_resume(device_t, const pmf_qual_t *);
104 static int cas_detach(device_t, int);
105 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106
107 int cas_match(device_t, cfdata_t, void *);
108 void cas_attach(device_t, device_t, void *);
109
110
111 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113 DVF_DETACH_SHUTDOWN);
114
115 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116
117 void cas_config(struct cas_softc *, const uint8_t *);
118 void cas_start(struct ifnet *);
119 void cas_stop(struct ifnet *, int);
120 int cas_ioctl(struct ifnet *, u_long, void *);
121 void cas_tick(void *);
122 void cas_watchdog(struct ifnet *);
123 int cas_init(struct ifnet *);
124 void cas_init_regs(struct cas_softc *);
125 int cas_ringsize(int);
126 int cas_cringsize(int);
127 int cas_meminit(struct cas_softc *);
128 void cas_mifinit(struct cas_softc *);
129 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 u_int32_t, u_int32_t);
131 void cas_reset(struct cas_softc *);
132 int cas_reset_rx(struct cas_softc *);
133 int cas_reset_tx(struct cas_softc *);
134 int cas_disable_rx(struct cas_softc *);
135 int cas_disable_tx(struct cas_softc *);
136 void cas_rxdrain(struct cas_softc *);
137 int cas_add_rxbuf(struct cas_softc *, int idx);
138 void cas_iff(struct cas_softc *);
139 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140
141 /* MII methods & callbacks */
142 int cas_mii_readreg(device_t, int, int);
143 void cas_mii_writereg(device_t, int, int, int);
144 void cas_mii_statchg(device_t);
145 int cas_pcs_readreg(device_t, int, int);
146 void cas_pcs_writereg(device_t, int, int, int);
147
148 int cas_mediachange(struct ifnet *);
149 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
150
151 int cas_eint(struct cas_softc *, u_int);
152 int cas_rint(struct cas_softc *);
153 int cas_tint(struct cas_softc *, u_int32_t);
154 int cas_pint(struct cas_softc *);
155 int cas_intr(void *);
156
157 #ifdef CAS_DEBUG
158 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 printf x
160 #else
161 #define DPRINTF(sc, x) /* nothing */
162 #endif
163
164 int
165 cas_match(device_t parent, cfdata_t cf, void *aux)
166 {
167 struct pci_attach_args *pa = aux;
168
169 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 return 1;
172
173 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 return 1;
176
177 return 0;
178 }
179
180 #define PROMHDR_PTR_DATA 0x18
181 #define PROMDATA_PTR_VPD 0x08
182 #define PROMDATA_DATA2 0x0a
183
184 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 static const u_int8_t cas_promdat[] = {
186 'P', 'C', 'I', 'R',
187 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 };
190 static const u_int8_t cas_promdat_ns[] = {
191 'P', 'C', 'I', 'R',
192 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
193 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
194 };
195
196 static const u_int8_t cas_promdat2[] = {
197 0x18, 0x00, /* structure length */
198 0x00, /* structure revision */
199 0x00, /* interface revision */
200 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
201 PCI_CLASS_NETWORK /* class code */
202 };
203
204 int
205 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
206 uint8_t *enaddr)
207 {
208 struct pci_vpd_largeres *res;
209 struct pci_vpd *vpd;
210 bus_space_handle_t romh;
211 bus_space_tag_t romt;
212 bus_size_t romsize = 0;
213 u_int8_t buf[32], *desc;
214 pcireg_t address;
215 int dataoff, vpdoff, len;
216 int rv = -1;
217
218 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
219 &romt, &romh, NULL, &romsize))
220 return (-1);
221
222 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
223 address |= PCI_MAPREG_ROM_ENABLE;
224 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
225
226 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
227 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
228 goto fail;
229
230 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
231 if (dataoff < 0x1c)
232 goto fail;
233
234 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
235 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
236 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
237 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
238 goto fail;
239
240 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
241 if (vpdoff < 0x1c)
242 goto fail;
243
244 next:
245 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
246 if (!PCI_VPDRES_ISLARGE(buf[0]))
247 goto fail;
248
249 res = (struct pci_vpd_largeres *)buf;
250 vpdoff += sizeof(*res);
251
252 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
253 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
254 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
255 /* Skip identifier string. */
256 vpdoff += len;
257 goto next;
258
259 case PCI_VPDRES_TYPE_VPD:
260 while (len > 0) {
261 bus_space_read_region_1(romt, romh, vpdoff,
262 buf, sizeof(buf));
263
264 vpd = (struct pci_vpd *)buf;
265 vpdoff += sizeof(*vpd) + vpd->vpd_len;
266 len -= sizeof(*vpd) + vpd->vpd_len;
267
268 /*
269 * We're looking for an "Enhanced" VPD...
270 */
271 if (vpd->vpd_key0 != 'Z')
272 continue;
273
274 desc = buf + sizeof(*vpd);
275
276 /*
277 * ...which is an instance property...
278 */
279 if (desc[0] != 'I')
280 continue;
281 desc += 3;
282
283 /*
284 * ...that's a byte array with the proper
285 * length for a MAC address...
286 */
287 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
288 continue;
289 desc += 2;
290
291 /*
292 * ...named "local-mac-address".
293 */
294 if (strcmp(desc, "local-mac-address") != 0)
295 continue;
296 desc += strlen("local-mac-address") + 1;
297
298 memcpy(enaddr, desc, ETHER_ADDR_LEN);
299 rv = 0;
300 }
301 break;
302
303 default:
304 goto fail;
305 }
306
307 fail:
308 if (romsize != 0)
309 bus_space_unmap(romt, romh, romsize);
310
311 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
312 address &= ~PCI_MAPREG_ROM_ENABLE;
313 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
314
315 return (rv);
316 }
317
318 void
319 cas_attach(device_t parent, device_t self, void *aux)
320 {
321 struct pci_attach_args *pa = aux;
322 struct cas_softc *sc = device_private(self);
323 char devinfo[256];
324 prop_data_t data;
325 uint8_t enaddr[ETHER_ADDR_LEN];
326
327 sc->sc_dev = self;
328 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
329 sc->sc_rev = PCI_REVISION(pa->pa_class);
330 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
331 sc->sc_dmatag = pa->pa_dmat;
332
333 #define PCI_CAS_BASEADDR 0x10
334 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
335 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
336 aprint_error_dev(sc->sc_dev,
337 "unable to map device registers\n");
338 return;
339 }
340
341 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
342 "mac-address")) != NULL)
343 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
344 else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
345 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
346 memset(enaddr, 0, sizeof(enaddr));
347 }
348
349 sc->sc_burst = 16; /* XXX */
350
351 sc->sc_att_stage = CAS_ATT_BACKEND_0;
352
353 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
354 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
355 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
356 return;
357 }
358 sc->sc_pc = pa->pa_pc;
359 if (!cas_estintr(sc, CAS_INTR_PCI)) {
360 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
361 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
362 return;
363 }
364
365 sc->sc_att_stage = CAS_ATT_BACKEND_1;
366
367 /*
368 * call the main configure
369 */
370 cas_config(sc, enaddr);
371
372 if (pmf_device_register1(sc->sc_dev,
373 cas_suspend, cas_resume, cas_shutdown))
374 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
375 else
376 aprint_error_dev(sc->sc_dev,
377 "could not establish power handlers\n");
378
379 sc->sc_att_stage = CAS_ATT_FINISHED;
380 /*FALLTHROUGH*/
381 }
382
383 /*
384 * cas_config:
385 *
386 * Attach a Cassini interface to the system.
387 */
388 void
389 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
390 {
391 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
392 struct mii_data *mii = &sc->sc_mii;
393 struct mii_softc *child;
394 int i, error;
395
396 /* Make sure the chip is stopped. */
397 ifp->if_softc = sc;
398 cas_reset(sc);
399
400 /*
401 * Allocate the control data structures, and create and load the
402 * DMA map for it.
403 */
404 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
405 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
406 1, &sc->sc_cdnseg, 0)) != 0) {
407 aprint_error_dev(sc->sc_dev,
408 "unable to allocate control data, error = %d\n",
409 error);
410 cas_partial_detach(sc, CAS_ATT_0);
411 }
412
413 /* XXX should map this in with correct endianness */
414 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
415 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
416 BUS_DMA_COHERENT)) != 0) {
417 aprint_error_dev(sc->sc_dev,
418 "unable to map control data, error = %d\n", error);
419 cas_partial_detach(sc, CAS_ATT_1);
420 }
421
422 if ((error = bus_dmamap_create(sc->sc_dmatag,
423 sizeof(struct cas_control_data), 1,
424 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to create control data DMA map, error = %d\n", error);
427 cas_partial_detach(sc, CAS_ATT_2);
428 }
429
430 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
431 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
432 0)) != 0) {
433 aprint_error_dev(sc->sc_dev,
434 "unable to load control data DMA map, error = %d\n",
435 error);
436 cas_partial_detach(sc, CAS_ATT_3);
437 }
438
439 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
440
441 /*
442 * Create the receive buffer DMA maps.
443 */
444 for (i = 0; i < CAS_NRXDESC; i++) {
445 bus_dma_segment_t seg;
446 char *kva;
447 int rseg;
448
449 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
450 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
451 aprint_error_dev(sc->sc_dev,
452 "unable to alloc rx DMA mem %d, error = %d\n",
453 i, error);
454 cas_partial_detach(sc, CAS_ATT_5);
455 }
456 sc->sc_rxsoft[i].rxs_dmaseg = seg;
457
458 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
459 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
460 aprint_error_dev(sc->sc_dev,
461 "unable to alloc rx DMA mem %d, error = %d\n",
462 i, error);
463 cas_partial_detach(sc, CAS_ATT_5);
464 }
465 sc->sc_rxsoft[i].rxs_kva = kva;
466
467 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
468 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
469 aprint_error_dev(sc->sc_dev,
470 "unable to create rx DMA map %d, error = %d\n",
471 i, error);
472 cas_partial_detach(sc, CAS_ATT_5);
473 }
474
475 if ((error = bus_dmamap_load(sc->sc_dmatag,
476 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
477 BUS_DMA_NOWAIT)) != 0) {
478 aprint_error_dev(sc->sc_dev,
479 "unable to load rx DMA map %d, error = %d\n",
480 i, error);
481 cas_partial_detach(sc, CAS_ATT_5);
482 }
483 }
484
485 /*
486 * Create the transmit buffer DMA maps.
487 */
488 for (i = 0; i < CAS_NTXDESC; i++) {
489 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
490 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
491 &sc->sc_txd[i].sd_map)) != 0) {
492 aprint_error_dev(sc->sc_dev,
493 "unable to create tx DMA map %d, error = %d\n",
494 i, error);
495 cas_partial_detach(sc, CAS_ATT_6);
496 }
497 sc->sc_txd[i].sd_mbuf = NULL;
498 }
499
500 /*
501 * From this point forward, the attachment cannot fail. A failure
502 * before this point releases all resources that may have been
503 * allocated.
504 */
505
506 /* Announce ourselves. */
507 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
508 ether_sprintf(enaddr));
509 aprint_naive(": Ethernet controller\n");
510
511 /* Get RX FIFO size */
512 sc->sc_rxfifosize = 16 * 1024;
513
514 /* Initialize ifnet structure. */
515 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
516 ifp->if_softc = sc;
517 ifp->if_flags =
518 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
519 ifp->if_start = cas_start;
520 ifp->if_ioctl = cas_ioctl;
521 ifp->if_watchdog = cas_watchdog;
522 ifp->if_stop = cas_stop;
523 ifp->if_init = cas_init;
524 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
525 IFQ_SET_READY(&ifp->if_snd);
526
527 /* Initialize ifmedia structures and MII info */
528 mii->mii_ifp = ifp;
529 mii->mii_readreg = cas_mii_readreg;
530 mii->mii_writereg = cas_mii_writereg;
531 mii->mii_statchg = cas_mii_statchg;
532
533 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
534 sc->sc_ethercom.ec_mii = mii;
535
536 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
537
538 cas_mifinit(sc);
539
540 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
541 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
542 bus_space_write_4(sc->sc_memt, sc->sc_memh,
543 CAS_MIF_CONFIG, sc->sc_mif_config);
544 }
545
546 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
547 MII_OFFSET_ANY, 0);
548
549 child = LIST_FIRST(&mii->mii_phys);
550 if (child == NULL &&
551 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
552 /*
553 * Try the external PCS SERDES if we didn't find any
554 * MII devices.
555 */
556 bus_space_write_4(sc->sc_memt, sc->sc_memh,
557 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
558
559 bus_space_write_4(sc->sc_memt, sc->sc_memh,
560 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
561
562 mii->mii_readreg = cas_pcs_readreg;
563 mii->mii_writereg = cas_pcs_writereg;
564
565 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
566 MII_OFFSET_ANY, MIIF_NOISOLATE);
567 }
568
569 child = LIST_FIRST(&mii->mii_phys);
570 if (child == NULL) {
571 /* No PHY attached */
572 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
573 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
574 } else {
575 /*
576 * Walk along the list of attached MII devices and
577 * establish an `MII instance' to `phy number'
578 * mapping. We'll use this mapping in media change
579 * requests to determine which phy to use to program
580 * the MIF configuration register.
581 */
582 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
583 /*
584 * Note: we support just two PHYs: the built-in
585 * internal device and an external on the MII
586 * connector.
587 */
588 if (child->mii_phy > 1 || child->mii_inst > 1) {
589 aprint_error_dev(sc->sc_dev,
590 "cannot accommodate MII device %s"
591 " at phy %d, instance %d\n",
592 device_xname(child->mii_dev),
593 child->mii_phy, child->mii_inst);
594 continue;
595 }
596
597 sc->sc_phys[child->mii_inst] = child->mii_phy;
598 }
599
600 /*
601 * XXX - we can really do the following ONLY if the
602 * phy indeed has the auto negotiation capability!!
603 */
604 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
605 }
606
607 /* claim 802.1q capability */
608 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
609
610 /* Attach the interface. */
611 if_attach(ifp);
612 ether_ifattach(ifp, enaddr);
613
614 #if NRND > 0
615 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
616 RND_TYPE_NET, 0);
617 #endif
618
619 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
620 NULL, device_xname(sc->sc_dev), "interrupts");
621
622 callout_init(&sc->sc_tick_ch, 0);
623
624 return;
625 }
626
627 int
628 cas_detach(device_t self, int flags)
629 {
630 int i;
631 struct cas_softc *sc = device_private(self);
632 bus_space_tag_t t = sc->sc_memt;
633 bus_space_handle_t h = sc->sc_memh;
634 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
635
636 /*
637 * Free any resources we've allocated during the failed attach
638 * attempt. Do this in reverse order and fall through.
639 */
640 switch (sc->sc_att_stage) {
641 case CAS_ATT_FINISHED:
642 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
643 pmf_device_deregister(self);
644 cas_stop(&sc->sc_ethercom.ec_if, 1);
645 evcnt_detach(&sc->sc_ev_intr);
646
647 #if NRND > 0
648 rnd_detach_source(&sc->rnd_source);
649 #endif
650
651 ether_ifdetach(ifp);
652 if_detach(ifp);
653 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
654
655 callout_destroy(&sc->sc_tick_ch);
656
657 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
658
659 /*FALLTHROUGH*/
660 case CAS_ATT_MII:
661 case CAS_ATT_7:
662 case CAS_ATT_6:
663 for (i = 0; i < CAS_NTXDESC; i++) {
664 if (sc->sc_txd[i].sd_map != NULL)
665 bus_dmamap_destroy(sc->sc_dmatag,
666 sc->sc_txd[i].sd_map);
667 }
668 /*FALLTHROUGH*/
669 case CAS_ATT_5:
670 for (i = 0; i < CAS_NRXDESC; i++) {
671 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
672 bus_dmamap_unload(sc->sc_dmatag,
673 sc->sc_rxsoft[i].rxs_dmamap);
674 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
675 bus_dmamap_destroy(sc->sc_dmatag,
676 sc->sc_rxsoft[i].rxs_dmamap);
677 if (sc->sc_rxsoft[i].rxs_kva != NULL)
678 bus_dmamem_unmap(sc->sc_dmatag,
679 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
680 /* XXX need to check that bus_dmamem_alloc suceeded
681 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
682 */
683 bus_dmamem_free(sc->sc_dmatag,
684 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
685 }
686 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
687 /*FALLTHROUGH*/
688 case CAS_ATT_4:
689 case CAS_ATT_3:
690 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
691 /*FALLTHROUGH*/
692 case CAS_ATT_2:
693 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
694 sizeof(struct cas_control_data));
695 /*FALLTHROUGH*/
696 case CAS_ATT_1:
697 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
698 /*FALLTHROUGH*/
699 case CAS_ATT_0:
700 sc->sc_att_stage = CAS_ATT_0;
701 /*FALLTHROUGH*/
702 case CAS_ATT_BACKEND_2:
703 case CAS_ATT_BACKEND_1:
704 if (sc->sc_ih != NULL) {
705 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
706 sc->sc_ih = NULL;
707 }
708 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
709 /*FALLTHROUGH*/
710 case CAS_ATT_BACKEND_0:
711 break;
712 }
713 return 0;
714 }
715
716 static void
717 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
718 {
719 cfattach_t ca = device_cfattach(sc->sc_dev);
720
721 sc->sc_att_stage = stage;
722 (*ca->ca_detach)(sc->sc_dev, 0);
723 }
724
725 void
726 cas_tick(void *arg)
727 {
728 struct cas_softc *sc = arg;
729 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
730 bus_space_tag_t t = sc->sc_memt;
731 bus_space_handle_t mac = sc->sc_memh;
732 int s;
733 u_int32_t v;
734
735 /* unload collisions counters */
736 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
737 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
738 ifp->if_collisions += v +
739 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
740 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
741 ifp->if_oerrors += v;
742
743 /* read error counters */
744 ifp->if_ierrors +=
745 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
746 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
747 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
748 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
749
750 /* clear the hardware counters */
751 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
752 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
753 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
754 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
755 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
756 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
757 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
758 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
759
760 s = splnet();
761 mii_tick(&sc->sc_mii);
762 splx(s);
763
764 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
765 }
766
767 int
768 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
769 u_int32_t clr, u_int32_t set)
770 {
771 int i;
772 u_int32_t reg;
773
774 for (i = TRIES; i--; DELAY(100)) {
775 reg = bus_space_read_4(sc->sc_memt, h, r);
776 if ((reg & clr) == 0 && (reg & set) == set)
777 return (1);
778 }
779
780 return (0);
781 }
782
783 void
784 cas_reset(struct cas_softc *sc)
785 {
786 bus_space_tag_t t = sc->sc_memt;
787 bus_space_handle_t h = sc->sc_memh;
788 int s;
789
790 s = splnet();
791 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
792 cas_reset_rx(sc);
793 cas_reset_tx(sc);
794
795 /* Disable interrupts */
796 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
797
798 /* Do a full reset */
799 bus_space_write_4(t, h, CAS_RESET,
800 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
801 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
802 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
803 splx(s);
804 }
805
806
807 /*
808 * cas_rxdrain:
809 *
810 * Drain the receive queue.
811 */
812 void
813 cas_rxdrain(struct cas_softc *sc)
814 {
815 /* Nothing to do yet. */
816 }
817
818 /*
819 * Reset the whole thing.
820 */
821 void
822 cas_stop(struct ifnet *ifp, int disable)
823 {
824 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
825 struct cas_sxd *sd;
826 u_int32_t i;
827
828 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
829
830 callout_stop(&sc->sc_tick_ch);
831
832 /*
833 * Mark the interface down and cancel the watchdog timer.
834 */
835 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
836 ifp->if_timer = 0;
837
838 mii_down(&sc->sc_mii);
839
840 cas_reset_rx(sc);
841 cas_reset_tx(sc);
842
843 /*
844 * Release any queued transmit buffers.
845 */
846 for (i = 0; i < CAS_NTXDESC; i++) {
847 sd = &sc->sc_txd[i];
848 if (sd->sd_mbuf != NULL) {
849 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
850 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
851 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
852 m_freem(sd->sd_mbuf);
853 sd->sd_mbuf = NULL;
854 }
855 }
856 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
857
858 if (disable)
859 cas_rxdrain(sc);
860 }
861
862
863 /*
864 * Reset the receiver
865 */
866 int
867 cas_reset_rx(struct cas_softc *sc)
868 {
869 bus_space_tag_t t = sc->sc_memt;
870 bus_space_handle_t h = sc->sc_memh;
871
872 /*
873 * Resetting while DMA is in progress can cause a bus hang, so we
874 * disable DMA first.
875 */
876 cas_disable_rx(sc);
877 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
878 /* Wait till it finishes */
879 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
880 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
881 /* Wait 5ms extra. */
882 delay(5000);
883
884 /* Finally, reset the ERX */
885 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
886 /* Wait till it finishes */
887 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
888 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
889 return (1);
890 }
891 return (0);
892 }
893
894
895 /*
896 * Reset the transmitter
897 */
898 int
899 cas_reset_tx(struct cas_softc *sc)
900 {
901 bus_space_tag_t t = sc->sc_memt;
902 bus_space_handle_t h = sc->sc_memh;
903
904 /*
905 * Resetting while DMA is in progress can cause a bus hang, so we
906 * disable DMA first.
907 */
908 cas_disable_tx(sc);
909 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
910 /* Wait till it finishes */
911 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
912 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
913 /* Wait 5ms extra. */
914 delay(5000);
915
916 /* Finally, reset the ETX */
917 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
918 /* Wait till it finishes */
919 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
920 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
921 return (1);
922 }
923 return (0);
924 }
925
926 /*
927 * Disable receiver.
928 */
929 int
930 cas_disable_rx(struct cas_softc *sc)
931 {
932 bus_space_tag_t t = sc->sc_memt;
933 bus_space_handle_t h = sc->sc_memh;
934 u_int32_t cfg;
935
936 /* Flip the enable bit */
937 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
938 cfg &= ~CAS_MAC_RX_ENABLE;
939 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
940
941 /* Wait for it to finish */
942 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
943 }
944
945 /*
946 * Disable transmitter.
947 */
948 int
949 cas_disable_tx(struct cas_softc *sc)
950 {
951 bus_space_tag_t t = sc->sc_memt;
952 bus_space_handle_t h = sc->sc_memh;
953 u_int32_t cfg;
954
955 /* Flip the enable bit */
956 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
957 cfg &= ~CAS_MAC_TX_ENABLE;
958 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
959
960 /* Wait for it to finish */
961 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
962 }
963
964 /*
965 * Initialize interface.
966 */
967 int
968 cas_meminit(struct cas_softc *sc)
969 {
970 struct cas_rxsoft *rxs;
971 int i, error;
972
973 rxs = (void *)&error;
974
975 /*
976 * Initialize the transmit descriptor ring.
977 */
978 for (i = 0; i < CAS_NTXDESC; i++) {
979 sc->sc_txdescs[i].cd_flags = 0;
980 sc->sc_txdescs[i].cd_addr = 0;
981 }
982 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
983 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
984
985 /*
986 * Initialize the receive descriptor and receive job
987 * descriptor rings.
988 */
989 for (i = 0; i < CAS_NRXDESC; i++)
990 CAS_INIT_RXDESC(sc, i, i);
991 sc->sc_rxdptr = 0;
992 sc->sc_rxptr = 0;
993
994 /*
995 * Initialize the receive completion ring.
996 */
997 for (i = 0; i < CAS_NRXCOMP; i++) {
998 sc->sc_rxcomps[i].cc_word[0] = 0;
999 sc->sc_rxcomps[i].cc_word[1] = 0;
1000 sc->sc_rxcomps[i].cc_word[2] = 0;
1001 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1002 CAS_CDRXCSYNC(sc, i,
1003 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1004 }
1005
1006 return (0);
1007 }
1008
1009 int
1010 cas_ringsize(int sz)
1011 {
1012 switch (sz) {
1013 case 32:
1014 return CAS_RING_SZ_32;
1015 case 64:
1016 return CAS_RING_SZ_64;
1017 case 128:
1018 return CAS_RING_SZ_128;
1019 case 256:
1020 return CAS_RING_SZ_256;
1021 case 512:
1022 return CAS_RING_SZ_512;
1023 case 1024:
1024 return CAS_RING_SZ_1024;
1025 case 2048:
1026 return CAS_RING_SZ_2048;
1027 case 4096:
1028 return CAS_RING_SZ_4096;
1029 case 8192:
1030 return CAS_RING_SZ_8192;
1031 default:
1032 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1033 sz);
1034 return CAS_RING_SZ_32;
1035 }
1036 }
1037
1038 int
1039 cas_cringsize(int sz)
1040 {
1041 int i;
1042
1043 for (i = 0; i < 9; i++)
1044 if (sz == (128 << i))
1045 return i;
1046
1047 aprint_error("cas: invalid completion ring size %d\n", sz);
1048 return 128;
1049 }
1050
1051 /*
1052 * Initialization of interface; set up initialization block
1053 * and transmit/receive descriptor rings.
1054 */
1055 int
1056 cas_init(struct ifnet *ifp)
1057 {
1058 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1059 bus_space_tag_t t = sc->sc_memt;
1060 bus_space_handle_t h = sc->sc_memh;
1061 int s;
1062 u_int max_frame_size;
1063 u_int32_t v;
1064
1065 s = splnet();
1066
1067 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1068 /*
1069 * Initialization sequence. The numbered steps below correspond
1070 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1071 * Channel Engine manual (part of the PCIO manual).
1072 * See also the STP2002-STQ document from Sun Microsystems.
1073 */
1074
1075 /* step 1 & 2. Reset the Ethernet Channel */
1076 cas_stop(ifp, 0);
1077 cas_reset(sc);
1078 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1079
1080 /* Re-initialize the MIF */
1081 cas_mifinit(sc);
1082
1083 /* step 3. Setup data structures in host memory */
1084 cas_meminit(sc);
1085
1086 /* step 4. TX MAC registers & counters */
1087 cas_init_regs(sc);
1088 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1089 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1090 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1091
1092 /* step 5. RX MAC registers & counters */
1093 cas_iff(sc);
1094
1095 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1096 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1097 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1098 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1099 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1100
1101 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1102 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1103 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1104 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1105
1106 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1107 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1108 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1109 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1110
1111 if (CAS_PLUS(sc)) {
1112 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1113 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1114 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1115 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1116 CAS_CDRXADDR2(sc, 0));
1117 }
1118
1119 /* step 8. Global Configuration & Interrupt Mask */
1120 cas_estintr(sc, CAS_INTR_REG);
1121
1122 /* step 9. ETX Configuration: use mostly default values */
1123
1124 /* Enable DMA */
1125 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1126 bus_space_write_4(t, h, CAS_TX_CONFIG,
1127 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1128 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1129
1130 /* step 10. ERX Configuration */
1131
1132 /* Encode Receive Descriptor ring size */
1133 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1134 if (CAS_PLUS(sc))
1135 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1136
1137 /* Encode Receive Completion ring size */
1138 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1139
1140 /* Enable DMA */
1141 bus_space_write_4(t, h, CAS_RX_CONFIG,
1142 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1143
1144 /*
1145 * The following value is for an OFF Threshold of about 3/4 full
1146 * and an ON Threshold of 1/4 full.
1147 */
1148 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1149 (3 * sc->sc_rxfifosize / 256) |
1150 ((sc->sc_rxfifosize / 256) << 12));
1151 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1152
1153 /* step 11. Configure Media */
1154 mii_ifmedia_change(&sc->sc_mii);
1155
1156 /* step 12. RX_MAC Configuration Register */
1157 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1158 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1159 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1160
1161 /* step 14. Issue Transmit Pending command */
1162
1163 /* step 15. Give the receiver a swift kick */
1164 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1165 if (CAS_PLUS(sc))
1166 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1167
1168 /* Start the one second timer. */
1169 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1170
1171 ifp->if_flags |= IFF_RUNNING;
1172 ifp->if_flags &= ~IFF_OACTIVE;
1173 ifp->if_timer = 0;
1174 splx(s);
1175
1176 return (0);
1177 }
1178
1179 void
1180 cas_init_regs(struct cas_softc *sc)
1181 {
1182 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1183 bus_space_tag_t t = sc->sc_memt;
1184 bus_space_handle_t h = sc->sc_memh;
1185 const u_char *laddr = CLLADDR(ifp->if_sadl);
1186 u_int32_t v, r;
1187
1188 /* These regs are not cleared on reset */
1189 sc->sc_inited = 0;
1190 if (!sc->sc_inited) {
1191 /* Load recommended values */
1192 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1193 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1194 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1195
1196 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1197 /* Max frame and max burst size */
1198 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1199 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1200
1201 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1202 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1203 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1204 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1205 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1206 ((laddr[5]<<8)|laddr[4])&0x3ff);
1207
1208 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1209 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1210 bus_space_write_4(t, h, r, 0);
1211
1212 /* MAC control addr set to 0:1:c2:0:1:80 */
1213 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1214 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1215 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1216
1217 /* MAC filter addr set to 0:0:0:0:0:0 */
1218 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1219 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1220 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1221
1222 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1223 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1224
1225 /* Hash table initialized to 0 */
1226 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1227 bus_space_write_4(t, h, r, 0);
1228
1229 sc->sc_inited = 1;
1230 }
1231
1232 /* Counters need to be zeroed */
1233 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1234 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1235 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1236 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1237 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1238 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1239 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1240 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1241 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1242 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1243 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1244
1245 /* Un-pause stuff */
1246 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1247
1248 /*
1249 * Set the station address.
1250 */
1251 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1252 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1253 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1254 }
1255
1256 /*
1257 * Receive interrupt.
1258 */
1259 int
1260 cas_rint(struct cas_softc *sc)
1261 {
1262 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1263 bus_space_tag_t t = sc->sc_memt;
1264 bus_space_handle_t h = sc->sc_memh;
1265 struct cas_rxsoft *rxs;
1266 struct mbuf *m;
1267 u_int64_t word[4];
1268 int len, off, idx;
1269 int i, skip;
1270 void *cp;
1271
1272 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1273 CAS_CDRXCSYNC(sc, i,
1274 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1275
1276 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1277 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1278 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1279 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1280
1281 /* Stop if the hardware still owns the descriptor. */
1282 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1283 break;
1284
1285 len = CAS_RC1_HDR_LEN(word[1]);
1286 if (len > 0) {
1287 off = CAS_RC1_HDR_OFF(word[1]);
1288 idx = CAS_RC1_HDR_IDX(word[1]);
1289 rxs = &sc->sc_rxsoft[idx];
1290
1291 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1292 idx, off, len));
1293
1294 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1295 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1296
1297 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1298 m = m_devget(cp, len, 0, ifp, NULL);
1299
1300 if (word[0] & CAS_RC0_RELEASE_HDR)
1301 cas_add_rxbuf(sc, idx);
1302
1303 if (m != NULL) {
1304
1305 /*
1306 * Pass this up to any BPF listeners, but only
1307 * pass it up the stack if its for us.
1308 */
1309 bpf_mtap(ifp, m);
1310
1311 ifp->if_ipackets++;
1312 m->m_pkthdr.csum_flags = 0;
1313 (*ifp->if_input)(ifp, m);
1314 } else
1315 ifp->if_ierrors++;
1316 }
1317
1318 len = CAS_RC0_DATA_LEN(word[0]);
1319 if (len > 0) {
1320 off = CAS_RC0_DATA_OFF(word[0]);
1321 idx = CAS_RC0_DATA_IDX(word[0]);
1322 rxs = &sc->sc_rxsoft[idx];
1323
1324 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1325 idx, off, len));
1326
1327 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1328 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1329
1330 /* XXX We should not be copying the packet here. */
1331 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1332 m = m_devget(cp, len, 0, ifp, NULL);
1333
1334 if (word[0] & CAS_RC0_RELEASE_DATA)
1335 cas_add_rxbuf(sc, idx);
1336
1337 if (m != NULL) {
1338 /*
1339 * Pass this up to any BPF listeners, but only
1340 * pass it up the stack if its for us.
1341 */
1342 bpf_mtap(ifp, m);
1343
1344 ifp->if_ipackets++;
1345 m->m_pkthdr.csum_flags = 0;
1346 (*ifp->if_input)(ifp, m);
1347 } else
1348 ifp->if_ierrors++;
1349 }
1350
1351 if (word[0] & CAS_RC0_SPLIT)
1352 aprint_error_dev(sc->sc_dev, "split packet\n");
1353
1354 skip = CAS_RC0_SKIP(word[0]);
1355 }
1356
1357 while (sc->sc_rxptr != i) {
1358 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1359 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1360 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1361 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1362 CAS_DMA_WRITE(CAS_RC3_OWN);
1363 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1364 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1365
1366 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1367 }
1368
1369 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1370
1371 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1372 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1373
1374 return (1);
1375 }
1376
1377 /*
1378 * cas_add_rxbuf:
1379 *
1380 * Add a receive buffer to the indicated descriptor.
1381 */
1382 int
1383 cas_add_rxbuf(struct cas_softc *sc, int idx)
1384 {
1385 bus_space_tag_t t = sc->sc_memt;
1386 bus_space_handle_t h = sc->sc_memh;
1387
1388 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1389
1390 if ((sc->sc_rxdptr % 4) == 0)
1391 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1392
1393 if (++sc->sc_rxdptr == CAS_NRXDESC)
1394 sc->sc_rxdptr = 0;
1395
1396 return (0);
1397 }
1398
1399 int
1400 cas_eint(struct cas_softc *sc, u_int status)
1401 {
1402 char bits[128];
1403 if ((status & CAS_INTR_MIF) != 0) {
1404 DPRINTF(sc, ("%s: link status changed\n",
1405 device_xname(sc->sc_dev)));
1406 return (1);
1407 }
1408
1409 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1410 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1411 return (1);
1412 }
1413
1414 int
1415 cas_pint(struct cas_softc *sc)
1416 {
1417 bus_space_tag_t t = sc->sc_memt;
1418 bus_space_handle_t seb = sc->sc_memh;
1419 u_int32_t status;
1420
1421 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1422 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1423 #ifdef CAS_DEBUG
1424 if (status)
1425 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1426 #endif
1427 return (1);
1428 }
1429
1430 int
1431 cas_intr(void *v)
1432 {
1433 struct cas_softc *sc = (struct cas_softc *)v;
1434 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1435 bus_space_tag_t t = sc->sc_memt;
1436 bus_space_handle_t seb = sc->sc_memh;
1437 u_int32_t status;
1438 int r = 0;
1439 #ifdef CAS_DEBUG
1440 char bits[128];
1441 #endif
1442
1443 sc->sc_ev_intr.ev_count++;
1444
1445 status = bus_space_read_4(t, seb, CAS_STATUS);
1446 #ifdef CAS_DEBUG
1447 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1448 #endif
1449 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1450 device_xname(sc->sc_dev), (status>>19), bits));
1451
1452 if ((status & CAS_INTR_PCS) != 0)
1453 r |= cas_pint(sc);
1454
1455 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1456 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1457 r |= cas_eint(sc, status);
1458
1459 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1460 r |= cas_tint(sc, status);
1461
1462 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1463 r |= cas_rint(sc);
1464
1465 /* We should eventually do more than just print out error stats. */
1466 if (status & CAS_INTR_TX_MAC) {
1467 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1468 #ifdef CAS_DEBUG
1469 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1470 printf("%s: MAC tx fault, status %x\n",
1471 device_xname(sc->sc_dev), txstat);
1472 #endif
1473 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1474 cas_init(ifp);
1475 }
1476 if (status & CAS_INTR_RX_MAC) {
1477 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1478 #ifdef CAS_DEBUG
1479 if (rxstat & ~CAS_MAC_RX_DONE)
1480 printf("%s: MAC rx fault, status %x\n",
1481 device_xname(sc->sc_dev), rxstat);
1482 #endif
1483 /*
1484 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1485 * due to a silicon bug so handle them silently.
1486 */
1487 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1488 ifp->if_ierrors++;
1489 cas_init(ifp);
1490 }
1491 #ifdef CAS_DEBUG
1492 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1493 printf("%s: MAC rx fault, status %x\n",
1494 device_xname(sc->sc_dev), rxstat);
1495 #endif
1496 }
1497 #if NRND > 0
1498 rnd_add_uint32(&sc->rnd_source, status);
1499 #endif
1500 return (r);
1501 }
1502
1503
1504 void
1505 cas_watchdog(struct ifnet *ifp)
1506 {
1507 struct cas_softc *sc = ifp->if_softc;
1508
1509 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1510 "CAS_MAC_RX_CONFIG %x\n",
1511 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1512 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1513 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1514
1515 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1516 ++ifp->if_oerrors;
1517
1518 /* Try to get more packets going. */
1519 cas_init(ifp);
1520 }
1521
1522 /*
1523 * Initialize the MII Management Interface
1524 */
1525 void
1526 cas_mifinit(struct cas_softc *sc)
1527 {
1528 bus_space_tag_t t = sc->sc_memt;
1529 bus_space_handle_t mif = sc->sc_memh;
1530
1531 /* Configure the MIF in frame mode */
1532 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1533 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1534 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1535 }
1536
1537 /*
1538 * MII interface
1539 *
1540 * The Cassini MII interface supports at least three different operating modes:
1541 *
1542 * Bitbang mode is implemented using data, clock and output enable registers.
1543 *
1544 * Frame mode is implemented by loading a complete frame into the frame
1545 * register and polling the valid bit for completion.
1546 *
1547 * Polling mode uses the frame register but completion is indicated by
1548 * an interrupt.
1549 *
1550 */
1551 int
1552 cas_mii_readreg(device_t self, int phy, int reg)
1553 {
1554 struct cas_softc *sc = device_private(self);
1555 bus_space_tag_t t = sc->sc_memt;
1556 bus_space_handle_t mif = sc->sc_memh;
1557 int n;
1558 u_int32_t v;
1559
1560 #ifdef CAS_DEBUG
1561 if (sc->sc_debug)
1562 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1563 #endif
1564
1565 /* Construct the frame command */
1566 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1567 CAS_MIF_FRAME_READ;
1568
1569 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1570 for (n = 0; n < 100; n++) {
1571 DELAY(1);
1572 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1573 if (v & CAS_MIF_FRAME_TA0)
1574 return (v & CAS_MIF_FRAME_DATA);
1575 }
1576
1577 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1578 return (0);
1579 }
1580
1581 void
1582 cas_mii_writereg(device_t self, int phy, int reg, int val)
1583 {
1584 struct cas_softc *sc = device_private(self);
1585 bus_space_tag_t t = sc->sc_memt;
1586 bus_space_handle_t mif = sc->sc_memh;
1587 int n;
1588 u_int32_t v;
1589
1590 #ifdef CAS_DEBUG
1591 if (sc->sc_debug)
1592 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1593 phy, reg, val);
1594 #endif
1595
1596 /* Construct the frame command */
1597 v = CAS_MIF_FRAME_WRITE |
1598 (phy << CAS_MIF_PHY_SHIFT) |
1599 (reg << CAS_MIF_REG_SHIFT) |
1600 (val & CAS_MIF_FRAME_DATA);
1601
1602 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1603 for (n = 0; n < 100; n++) {
1604 DELAY(1);
1605 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1606 if (v & CAS_MIF_FRAME_TA0)
1607 return;
1608 }
1609
1610 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1611 }
1612
1613 void
1614 cas_mii_statchg(device_t self)
1615 {
1616 struct cas_softc *sc = device_private(self);
1617 #ifdef CAS_DEBUG
1618 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1619 #endif
1620 bus_space_tag_t t = sc->sc_memt;
1621 bus_space_handle_t mac = sc->sc_memh;
1622 u_int32_t v;
1623
1624 #ifdef CAS_DEBUG
1625 if (sc->sc_debug)
1626 printf("cas_mii_statchg: status change: phy = %d\n",
1627 sc->sc_phys[instance]);
1628 #endif
1629
1630 /* Set tx full duplex options */
1631 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1632 delay(10000); /* reg must be cleared and delay before changing. */
1633 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1634 CAS_MAC_TX_ENABLE;
1635 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1636 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1637 }
1638 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1639
1640 /* XIF Configuration */
1641 v = CAS_MAC_XIF_TX_MII_ENA;
1642 v |= CAS_MAC_XIF_LINK_LED;
1643
1644 /* MII needs echo disable if half duplex. */
1645 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1646 /* turn on full duplex LED */
1647 v |= CAS_MAC_XIF_FDPLX_LED;
1648 else
1649 /* half duplex -- disable echo */
1650 v |= CAS_MAC_XIF_ECHO_DISABL;
1651
1652 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1653 case IFM_1000_T: /* Gigabit using GMII interface */
1654 case IFM_1000_SX:
1655 v |= CAS_MAC_XIF_GMII_MODE;
1656 break;
1657 default:
1658 v &= ~CAS_MAC_XIF_GMII_MODE;
1659 }
1660 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1661 }
1662
1663 int
1664 cas_pcs_readreg(device_t self, int phy, int reg)
1665 {
1666 struct cas_softc *sc = device_private(self);
1667 bus_space_tag_t t = sc->sc_memt;
1668 bus_space_handle_t pcs = sc->sc_memh;
1669
1670 #ifdef CAS_DEBUG
1671 if (sc->sc_debug)
1672 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1673 #endif
1674
1675 if (phy != CAS_PHYAD_EXTERNAL)
1676 return (0);
1677
1678 switch (reg) {
1679 case MII_BMCR:
1680 reg = CAS_MII_CONTROL;
1681 break;
1682 case MII_BMSR:
1683 reg = CAS_MII_STATUS;
1684 break;
1685 case MII_ANAR:
1686 reg = CAS_MII_ANAR;
1687 break;
1688 case MII_ANLPAR:
1689 reg = CAS_MII_ANLPAR;
1690 break;
1691 case MII_EXTSR:
1692 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1693 default:
1694 return (0);
1695 }
1696
1697 return bus_space_read_4(t, pcs, reg);
1698 }
1699
1700 void
1701 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1702 {
1703 struct cas_softc *sc = device_private(self);
1704 bus_space_tag_t t = sc->sc_memt;
1705 bus_space_handle_t pcs = sc->sc_memh;
1706 int reset = 0;
1707
1708 #ifdef CAS_DEBUG
1709 if (sc->sc_debug)
1710 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1711 phy, reg, val);
1712 #endif
1713
1714 if (phy != CAS_PHYAD_EXTERNAL)
1715 return;
1716
1717 if (reg == MII_ANAR)
1718 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1719
1720 switch (reg) {
1721 case MII_BMCR:
1722 reset = (val & CAS_MII_CONTROL_RESET);
1723 reg = CAS_MII_CONTROL;
1724 break;
1725 case MII_BMSR:
1726 reg = CAS_MII_STATUS;
1727 break;
1728 case MII_ANAR:
1729 reg = CAS_MII_ANAR;
1730 break;
1731 case MII_ANLPAR:
1732 reg = CAS_MII_ANLPAR;
1733 break;
1734 default:
1735 return;
1736 }
1737
1738 bus_space_write_4(t, pcs, reg, val);
1739
1740 if (reset)
1741 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1742
1743 if (reg == CAS_MII_ANAR || reset)
1744 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1745 CAS_MII_CONFIG_ENABLE);
1746 }
1747
1748 int
1749 cas_mediachange(struct ifnet *ifp)
1750 {
1751 struct cas_softc *sc = ifp->if_softc;
1752 struct mii_data *mii = &sc->sc_mii;
1753
1754 if (mii->mii_instance) {
1755 struct mii_softc *miisc;
1756 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1757 mii_phy_reset(miisc);
1758 }
1759
1760 return (mii_mediachg(&sc->sc_mii));
1761 }
1762
1763 void
1764 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1765 {
1766 struct cas_softc *sc = ifp->if_softc;
1767
1768 mii_pollstat(&sc->sc_mii);
1769 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1770 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1771 }
1772
1773 /*
1774 * Process an ioctl request.
1775 */
1776 int
1777 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1778 {
1779 struct cas_softc *sc = ifp->if_softc;
1780 int s, error = 0;
1781
1782 s = splnet();
1783
1784 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1785 error = 0;
1786 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1787 ;
1788 else if (ifp->if_flags & IFF_RUNNING) {
1789 /*
1790 * Multicast list has changed; set the hardware filter
1791 * accordingly.
1792 */
1793 cas_iff(sc);
1794 }
1795 }
1796
1797 splx(s);
1798 return (error);
1799 }
1800
1801 static bool
1802 cas_suspend(device_t self, const pmf_qual_t *qual)
1803 {
1804 struct cas_softc *sc = device_private(self);
1805 bus_space_tag_t t = sc->sc_memt;
1806 bus_space_handle_t h = sc->sc_memh;
1807
1808 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1809 if (sc->sc_ih != NULL) {
1810 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1811 sc->sc_ih = NULL;
1812 }
1813
1814 return true;
1815 }
1816
1817 static bool
1818 cas_resume(device_t self, const pmf_qual_t *qual)
1819 {
1820 struct cas_softc *sc = device_private(self);
1821
1822 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1823 }
1824
1825 static bool
1826 cas_estintr(struct cas_softc *sc, int what)
1827 {
1828 bus_space_tag_t t = sc->sc_memt;
1829 bus_space_handle_t h = sc->sc_memh;
1830 const char *intrstr = NULL;
1831
1832 /* PCI interrupts */
1833 if (what & CAS_INTR_PCI) {
1834 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1835 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1836 IPL_NET, cas_intr, sc);
1837 if (sc->sc_ih == NULL) {
1838 aprint_error_dev(sc->sc_dev,
1839 "unable to establish interrupt");
1840 if (intrstr != NULL)
1841 aprint_error(" at %s", intrstr);
1842 aprint_error("\n");
1843 return false;
1844 }
1845
1846 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1847 }
1848
1849 /* Interrupt register */
1850 if (what & CAS_INTR_REG) {
1851 bus_space_write_4(t, h, CAS_INTMASK,
1852 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1853 CAS_INTR_TX_TAG_ERR|
1854 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1855 CAS_INTR_RX_TAG_ERR|
1856 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1857 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1858 CAS_INTR_BERR));
1859 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1860 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1861 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1862 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1863 }
1864 return true;
1865 }
1866
1867 bool
1868 cas_shutdown(device_t self, int howto)
1869 {
1870 struct cas_softc *sc = device_private(self);
1871 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1872
1873 cas_stop(ifp, 1);
1874
1875 return true;
1876 }
1877
1878 void
1879 cas_iff(struct cas_softc *sc)
1880 {
1881 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1882 struct ethercom *ec = &sc->sc_ethercom;
1883 struct ether_multi *enm;
1884 struct ether_multistep step;
1885 bus_space_tag_t t = sc->sc_memt;
1886 bus_space_handle_t h = sc->sc_memh;
1887 u_int32_t crc, hash[16], rxcfg;
1888 int i;
1889
1890 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1891 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1892 CAS_MAC_RX_PROMISC_GRP);
1893 ifp->if_flags &= ~IFF_ALLMULTI;
1894
1895 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1896 ifp->if_flags |= IFF_ALLMULTI;
1897 if (ifp->if_flags & IFF_PROMISC)
1898 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1899 else
1900 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1901 } else {
1902 /*
1903 * Set up multicast address filter by passing all multicast
1904 * addresses through a crc generator, and then using the
1905 * high order 8 bits as an index into the 256 bit logical
1906 * address filter. The high order 4 bits selects the word,
1907 * while the other 4 bits select the bit within the word
1908 * (where bit 0 is the MSB).
1909 */
1910
1911 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1912
1913 /* Clear hash table */
1914 for (i = 0; i < 16; i++)
1915 hash[i] = 0;
1916
1917 ETHER_FIRST_MULTI(step, ec, enm);
1918 while (enm != NULL) {
1919 crc = ether_crc32_le(enm->enm_addrlo,
1920 ETHER_ADDR_LEN);
1921
1922 /* Just want the 8 most significant bits. */
1923 crc >>= 24;
1924
1925 /* Set the corresponding bit in the filter. */
1926 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1927
1928 ETHER_NEXT_MULTI(step, enm);
1929 }
1930
1931 /* Now load the hash table into the chip (if we are using it) */
1932 for (i = 0; i < 16; i++) {
1933 bus_space_write_4(t, h,
1934 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1935 hash[i]);
1936 }
1937 }
1938
1939 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1940 }
1941
1942 int
1943 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1944 {
1945 u_int64_t flags;
1946 u_int32_t cur, frag, i;
1947 bus_dmamap_t map;
1948
1949 cur = frag = *bixp;
1950 map = sc->sc_txd[cur].sd_map;
1951
1952 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1953 BUS_DMA_NOWAIT) != 0) {
1954 return (ENOBUFS);
1955 }
1956
1957 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1958 bus_dmamap_unload(sc->sc_dmatag, map);
1959 return (ENOBUFS);
1960 }
1961
1962 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1963 BUS_DMASYNC_PREWRITE);
1964
1965 for (i = 0; i < map->dm_nsegs; i++) {
1966 sc->sc_txdescs[frag].cd_addr =
1967 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1968 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1969 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1970 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1971 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1972 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1973 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1974 BUS_DMASYNC_PREWRITE);
1975 cur = frag;
1976 if (++frag == CAS_NTXDESC)
1977 frag = 0;
1978 }
1979
1980 sc->sc_tx_cnt += map->dm_nsegs;
1981 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1982 sc->sc_txd[cur].sd_map = map;
1983 sc->sc_txd[cur].sd_mbuf = mhead;
1984
1985 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1986
1987 *bixp = frag;
1988
1989 /* sync descriptors */
1990
1991 return (0);
1992 }
1993
1994 /*
1995 * Transmit interrupt.
1996 */
1997 int
1998 cas_tint(struct cas_softc *sc, u_int32_t status)
1999 {
2000 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2001 struct cas_sxd *sd;
2002 u_int32_t cons, comp;
2003
2004 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2005 cons = sc->sc_tx_cons;
2006 while (cons != comp) {
2007 sd = &sc->sc_txd[cons];
2008 if (sd->sd_mbuf != NULL) {
2009 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2010 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2011 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2012 m_freem(sd->sd_mbuf);
2013 sd->sd_mbuf = NULL;
2014 ifp->if_opackets++;
2015 }
2016 sc->sc_tx_cnt--;
2017 if (++cons == CAS_NTXDESC)
2018 cons = 0;
2019 }
2020 sc->sc_tx_cons = cons;
2021
2022 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2023 ifp->if_flags &= ~IFF_OACTIVE;
2024 if (sc->sc_tx_cnt == 0)
2025 ifp->if_timer = 0;
2026
2027 cas_start(ifp);
2028
2029 return (1);
2030 }
2031
2032 void
2033 cas_start(struct ifnet *ifp)
2034 {
2035 struct cas_softc *sc = ifp->if_softc;
2036 struct mbuf *m;
2037 u_int32_t bix;
2038
2039 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2040 return;
2041
2042 bix = sc->sc_tx_prod;
2043 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2044 IFQ_POLL(&ifp->if_snd, m);
2045 if (m == NULL)
2046 break;
2047
2048 /*
2049 * If BPF is listening on this interface, let it see the
2050 * packet before we commit it to the wire.
2051 */
2052 bpf_mtap(ifp, m);
2053
2054 /*
2055 * Encapsulate this packet and start it going...
2056 * or fail...
2057 */
2058 if (cas_encap(sc, m, &bix)) {
2059 ifp->if_flags |= IFF_OACTIVE;
2060 break;
2061 }
2062
2063 IFQ_DEQUEUE(&ifp->if_snd, m);
2064 ifp->if_timer = 5;
2065 }
2066
2067 sc->sc_tx_prod = bix;
2068 }
2069