if_cas.c revision 1.6 1 /* $NetBSD: if_cas.c,v 1.6 2010/02/24 22:38:00 dyoung Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.6 2010/02/24 22:38:00 dyoung Exp $");
48
49 #include "opt_inet.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62
63 #include <machine/endian.h>
64
65 #include <uvm/uvm_extern.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80
81 #include <net/bpf.h>
82
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii_bitbang.h>
89
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcidevs.h>
93 #include <prop/proplib.h>
94
95 #include <dev/pci/if_casreg.h>
96 #include <dev/pci/if_casvar.h>
97
98 #define TRIES 10000
99
100 static bool cas_estintr(struct cas_softc *sc, int);
101 bool cas_shutdown(device_t, int);
102 static bool cas_suspend(device_t, const pmf_qual_t *);
103 static bool cas_resume(device_t, const pmf_qual_t *);
104 static int cas_detach(device_t, int);
105 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106
107 int cas_match(device_t, cfdata_t, void *);
108 void cas_attach(device_t, device_t, void *);
109
110
111 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113 DVF_DETACH_SHUTDOWN);
114
115 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116
117 void cas_config(struct cas_softc *, const uint8_t *);
118 void cas_start(struct ifnet *);
119 void cas_stop(struct ifnet *, int);
120 int cas_ioctl(struct ifnet *, u_long, void *);
121 void cas_tick(void *);
122 void cas_watchdog(struct ifnet *);
123 int cas_init(struct ifnet *);
124 void cas_init_regs(struct cas_softc *);
125 int cas_ringsize(int);
126 int cas_cringsize(int);
127 int cas_meminit(struct cas_softc *);
128 void cas_mifinit(struct cas_softc *);
129 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 u_int32_t, u_int32_t);
131 void cas_reset(struct cas_softc *);
132 int cas_reset_rx(struct cas_softc *);
133 int cas_reset_tx(struct cas_softc *);
134 int cas_disable_rx(struct cas_softc *);
135 int cas_disable_tx(struct cas_softc *);
136 void cas_rxdrain(struct cas_softc *);
137 int cas_add_rxbuf(struct cas_softc *, int idx);
138 void cas_iff(struct cas_softc *);
139 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140
141 /* MII methods & callbacks */
142 int cas_mii_readreg(device_t, int, int);
143 void cas_mii_writereg(device_t, int, int, int);
144 void cas_mii_statchg(device_t);
145 int cas_pcs_readreg(device_t, int, int);
146 void cas_pcs_writereg(device_t, int, int, int);
147
148 int cas_mediachange(struct ifnet *);
149 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
150
151 int cas_eint(struct cas_softc *, u_int);
152 int cas_rint(struct cas_softc *);
153 int cas_tint(struct cas_softc *, u_int32_t);
154 int cas_pint(struct cas_softc *);
155 int cas_intr(void *);
156
157 #ifdef CAS_DEBUG
158 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 printf x
160 #else
161 #define DPRINTF(sc, x) /* nothing */
162 #endif
163
164 int
165 cas_match(device_t parent, cfdata_t cf, void *aux)
166 {
167 struct pci_attach_args *pa = aux;
168
169 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 return 1;
172
173 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 return 1;
176
177 return 0;
178 }
179
180 #define PROMHDR_PTR_DATA 0x18
181 #define PROMDATA_PTR_VPD 0x08
182 #define PROMDATA_DATA2 0x0a
183
184 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 static const u_int8_t cas_promdat[] = {
186 'P', 'C', 'I', 'R',
187 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 };
190
191 static const u_int8_t cas_promdat2[] = {
192 0x18, 0x00, /* structure length */
193 0x00, /* structure revision */
194 0x00, /* interface revision */
195 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
196 PCI_CLASS_NETWORK /* class code */
197 };
198
199 int
200 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201 uint8_t *enaddr)
202 {
203 struct pci_vpd_largeres *res;
204 struct pci_vpd *vpd;
205 bus_space_handle_t romh;
206 bus_space_tag_t romt;
207 bus_size_t romsize = 0;
208 u_int8_t buf[32], *desc;
209 pcireg_t address;
210 int dataoff, vpdoff, len;
211 int rv = -1;
212
213 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214 &romt, &romh, NULL, &romsize))
215 return (-1);
216
217 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218 address |= PCI_MAPREG_ROM_ENABLE;
219 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220
221 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223 goto fail;
224
225 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226 if (dataoff < 0x1c)
227 goto fail;
228
229 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230 if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232 goto fail;
233
234 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235 if (vpdoff < 0x1c)
236 goto fail;
237
238 next:
239 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240 if (!PCI_VPDRES_ISLARGE(buf[0]))
241 goto fail;
242
243 res = (struct pci_vpd_largeres *)buf;
244 vpdoff += sizeof(*res);
245
246 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249 /* Skip identifier string. */
250 vpdoff += len;
251 goto next;
252
253 case PCI_VPDRES_TYPE_VPD:
254 while (len > 0) {
255 bus_space_read_region_1(romt, romh, vpdoff,
256 buf, sizeof(buf));
257
258 vpd = (struct pci_vpd *)buf;
259 vpdoff += sizeof(*vpd) + vpd->vpd_len;
260 len -= sizeof(*vpd) + vpd->vpd_len;
261
262 /*
263 * We're looking for an "Enhanced" VPD...
264 */
265 if (vpd->vpd_key0 != 'Z')
266 continue;
267
268 desc = buf + sizeof(*vpd);
269
270 /*
271 * ...which is an instance property...
272 */
273 if (desc[0] != 'I')
274 continue;
275 desc += 3;
276
277 /*
278 * ...that's a byte array with the proper
279 * length for a MAC address...
280 */
281 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282 continue;
283 desc += 2;
284
285 /*
286 * ...named "local-mac-address".
287 */
288 if (strcmp(desc, "local-mac-address") != 0)
289 continue;
290 desc += strlen("local-mac-address") + 1;
291
292 memcpy(enaddr, desc, ETHER_ADDR_LEN);
293 rv = 0;
294 }
295 break;
296
297 default:
298 goto fail;
299 }
300
301 fail:
302 if (romsize != 0)
303 bus_space_unmap(romt, romh, romsize);
304
305 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306 address &= ~PCI_MAPREG_ROM_ENABLE;
307 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308
309 return (rv);
310 }
311
312 void
313 cas_attach(device_t parent, device_t self, void *aux)
314 {
315 struct pci_attach_args *pa = aux;
316 struct cas_softc *sc = device_private(self);
317 char devinfo[256];
318 prop_data_t data;
319 uint8_t enaddr[ETHER_ADDR_LEN];
320
321 sc->sc_dev = self;
322 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323 sc->sc_rev = PCI_REVISION(pa->pa_class);
324 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325 sc->sc_dmatag = pa->pa_dmat;
326
327 #define PCI_CAS_BASEADDR 0x10
328 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330 aprint_error_dev(sc->sc_dev,
331 "unable to map device registers\n");
332 return;
333 }
334
335 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336 "mac-address")) != NULL)
337 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338 else if (cas_pci_enaddr(sc, pa, enaddr) != 0)
339 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340
341 sc->sc_burst = 16; /* XXX */
342
343 sc->sc_att_stage = CAS_ATT_BACKEND_0;
344
345 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
346 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
347 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
348 return;
349 }
350 sc->sc_pc = pa->pa_pc;
351 if (!cas_estintr(sc, CAS_INTR_PCI)) {
352 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
353 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
354 return;
355 }
356
357 sc->sc_att_stage = CAS_ATT_BACKEND_1;
358
359 /*
360 * call the main configure
361 */
362 cas_config(sc, enaddr);
363
364 if (pmf_device_register1(sc->sc_dev,
365 cas_suspend, cas_resume, cas_shutdown))
366 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
367 else
368 aprint_error_dev(sc->sc_dev,
369 "could not establish power handlers\n");
370
371 sc->sc_att_stage = CAS_ATT_FINISHED;
372 /*FALLTHROUGH*/
373 }
374
375 /*
376 * cas_config:
377 *
378 * Attach a Cassini interface to the system.
379 */
380 void
381 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
382 {
383 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384 struct mii_data *mii = &sc->sc_mii;
385 struct mii_softc *child;
386 int i, error;
387
388 /* Make sure the chip is stopped. */
389 ifp->if_softc = sc;
390 cas_reset(sc);
391
392 /*
393 * Allocate the control data structures, and create and load the
394 * DMA map for it.
395 */
396 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
397 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
398 1, &sc->sc_cdnseg, 0)) != 0) {
399 aprint_error_dev(sc->sc_dev,
400 "unable to allocate control data, error = %d\n",
401 error);
402 cas_partial_detach(sc, CAS_ATT_0);
403 }
404
405 /* XXX should map this in with correct endianness */
406 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
407 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
408 BUS_DMA_COHERENT)) != 0) {
409 aprint_error_dev(sc->sc_dev,
410 "unable to map control data, error = %d\n", error);
411 cas_partial_detach(sc, CAS_ATT_1);
412 }
413
414 if ((error = bus_dmamap_create(sc->sc_dmatag,
415 sizeof(struct cas_control_data), 1,
416 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
417 aprint_error_dev(sc->sc_dev,
418 "unable to create control data DMA map, error = %d\n", error);
419 cas_partial_detach(sc, CAS_ATT_2);
420 }
421
422 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
423 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
424 0)) != 0) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to load control data DMA map, error = %d\n",
427 error);
428 cas_partial_detach(sc, CAS_ATT_3);
429 }
430
431 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
432
433 /*
434 * Create the receive buffer DMA maps.
435 */
436 for (i = 0; i < CAS_NRXDESC; i++) {
437 bus_dma_segment_t seg;
438 char *kva;
439 int rseg;
440
441 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
442 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
443 aprint_error_dev(sc->sc_dev,
444 "unable to alloc rx DMA mem %d, error = %d\n",
445 i, error);
446 cas_partial_detach(sc, CAS_ATT_5);
447 }
448 sc->sc_rxsoft[i].rxs_dmaseg = seg;
449
450 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
451 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
452 aprint_error_dev(sc->sc_dev,
453 "unable to alloc rx DMA mem %d, error = %d\n",
454 i, error);
455 cas_partial_detach(sc, CAS_ATT_5);
456 }
457 sc->sc_rxsoft[i].rxs_kva = kva;
458
459 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
460 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
461 aprint_error_dev(sc->sc_dev,
462 "unable to create rx DMA map %d, error = %d\n",
463 i, error);
464 cas_partial_detach(sc, CAS_ATT_5);
465 }
466
467 if ((error = bus_dmamap_load(sc->sc_dmatag,
468 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
469 BUS_DMA_NOWAIT)) != 0) {
470 aprint_error_dev(sc->sc_dev,
471 "unable to load rx DMA map %d, error = %d\n",
472 i, error);
473 cas_partial_detach(sc, CAS_ATT_5);
474 }
475 }
476
477 /*
478 * Create the transmit buffer DMA maps.
479 */
480 for (i = 0; i < CAS_NTXDESC; i++) {
481 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
482 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
483 &sc->sc_txd[i].sd_map)) != 0) {
484 aprint_error_dev(sc->sc_dev,
485 "unable to create tx DMA map %d, error = %d\n",
486 i, error);
487 cas_partial_detach(sc, CAS_ATT_6);
488 }
489 sc->sc_txd[i].sd_mbuf = NULL;
490 }
491
492 /*
493 * From this point forward, the attachment cannot fail. A failure
494 * before this point releases all resources that may have been
495 * allocated.
496 */
497
498 /* Announce ourselves. */
499 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
500 ether_sprintf(enaddr));
501
502 /* Get RX FIFO size */
503 sc->sc_rxfifosize = 16 * 1024;
504
505 /* Initialize ifnet structure. */
506 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
507 ifp->if_softc = sc;
508 ifp->if_flags =
509 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
510 ifp->if_start = cas_start;
511 ifp->if_ioctl = cas_ioctl;
512 ifp->if_watchdog = cas_watchdog;
513 ifp->if_stop = cas_stop;
514 ifp->if_init = cas_init;
515 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
516 IFQ_SET_READY(&ifp->if_snd);
517
518 /* Initialize ifmedia structures and MII info */
519 mii->mii_ifp = ifp;
520 mii->mii_readreg = cas_mii_readreg;
521 mii->mii_writereg = cas_mii_writereg;
522 mii->mii_statchg = cas_mii_statchg;
523
524 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
525 sc->sc_ethercom.ec_mii = mii;
526
527 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
528
529 cas_mifinit(sc);
530
531 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
532 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
533 bus_space_write_4(sc->sc_memt, sc->sc_memh,
534 CAS_MIF_CONFIG, sc->sc_mif_config);
535 }
536
537 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
538 MII_OFFSET_ANY, 0);
539
540 child = LIST_FIRST(&mii->mii_phys);
541 if (child == NULL &&
542 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
543 /*
544 * Try the external PCS SERDES if we didn't find any
545 * MII devices.
546 */
547 bus_space_write_4(sc->sc_memt, sc->sc_memh,
548 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
549
550 bus_space_write_4(sc->sc_memt, sc->sc_memh,
551 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
552
553 mii->mii_readreg = cas_pcs_readreg;
554 mii->mii_writereg = cas_pcs_writereg;
555
556 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
557 MII_OFFSET_ANY, MIIF_NOISOLATE);
558 }
559
560 child = LIST_FIRST(&mii->mii_phys);
561 if (child == NULL) {
562 /* No PHY attached */
563 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
564 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
565 } else {
566 /*
567 * Walk along the list of attached MII devices and
568 * establish an `MII instance' to `phy number'
569 * mapping. We'll use this mapping in media change
570 * requests to determine which phy to use to program
571 * the MIF configuration register.
572 */
573 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
574 /*
575 * Note: we support just two PHYs: the built-in
576 * internal device and an external on the MII
577 * connector.
578 */
579 if (child->mii_phy > 1 || child->mii_inst > 1) {
580 aprint_error_dev(sc->sc_dev,
581 "cannot accommodate MII device %s"
582 " at phy %d, instance %d\n",
583 device_xname(child->mii_dev),
584 child->mii_phy, child->mii_inst);
585 continue;
586 }
587
588 sc->sc_phys[child->mii_inst] = child->mii_phy;
589 }
590
591 /*
592 * XXX - we can really do the following ONLY if the
593 * phy indeed has the auto negotiation capability!!
594 */
595 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
596 }
597
598 /* claim 802.1q capability */
599 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
600
601 /* Attach the interface. */
602 if_attach(ifp);
603 ether_ifattach(ifp, enaddr);
604
605 #if NRND > 0
606 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
607 RND_TYPE_NET, 0);
608 #endif
609
610 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
611 NULL, device_xname(sc->sc_dev), "interrupts");
612
613 callout_init(&sc->sc_tick_ch, 0);
614
615 return;
616 }
617
618 int
619 cas_detach(device_t self, int flags)
620 {
621 int i;
622 struct cas_softc *sc = device_private(self);
623 bus_space_tag_t t = sc->sc_memt;
624 bus_space_handle_t h = sc->sc_memh;
625 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
626
627 /*
628 * Free any resources we've allocated during the failed attach
629 * attempt. Do this in reverse order and fall through.
630 */
631 switch (sc->sc_att_stage) {
632 case CAS_ATT_FINISHED:
633 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
634 pmf_device_deregister(self);
635 cas_stop(&sc->sc_ethercom.ec_if, 1);
636 evcnt_detach(&sc->sc_ev_intr);
637
638 #if NRND > 0
639 rnd_detach_source(&sc->rnd_source);
640 #endif
641
642 ether_ifdetach(ifp);
643 if_detach(ifp);
644 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
645
646 callout_destroy(&sc->sc_tick_ch);
647
648 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
649
650 /*FALLTHROUGH*/
651 case CAS_ATT_MII:
652 case CAS_ATT_7:
653 case CAS_ATT_6:
654 for (i = 0; i < CAS_NTXDESC; i++) {
655 if (sc->sc_txd[i].sd_map != NULL)
656 bus_dmamap_destroy(sc->sc_dmatag,
657 sc->sc_txd[i].sd_map);
658 }
659 /*FALLTHROUGH*/
660 case CAS_ATT_5:
661 for (i = 0; i < CAS_NRXDESC; i++) {
662 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
663 bus_dmamap_unload(sc->sc_dmatag,
664 sc->sc_rxsoft[i].rxs_dmamap);
665 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
666 bus_dmamap_destroy(sc->sc_dmatag,
667 sc->sc_rxsoft[i].rxs_dmamap);
668 if (sc->sc_rxsoft[i].rxs_kva != NULL)
669 bus_dmamem_unmap(sc->sc_dmatag,
670 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
671 /* XXX need to check that bus_dmamem_alloc suceeded
672 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
673 */
674 bus_dmamem_free(sc->sc_dmatag,
675 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
676 }
677 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
678 /*FALLTHROUGH*/
679 case CAS_ATT_4:
680 case CAS_ATT_3:
681 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
682 /*FALLTHROUGH*/
683 case CAS_ATT_2:
684 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
685 sizeof(struct cas_control_data));
686 /*FALLTHROUGH*/
687 case CAS_ATT_1:
688 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
689 /*FALLTHROUGH*/
690 case CAS_ATT_0:
691 sc->sc_att_stage = CAS_ATT_0;
692 /*FALLTHROUGH*/
693 case CAS_ATT_BACKEND_2:
694 case CAS_ATT_BACKEND_1:
695 if (sc->sc_ih != NULL) {
696 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
697 sc->sc_ih = NULL;
698 }
699 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
700 /*FALLTHROUGH*/
701 case CAS_ATT_BACKEND_0:
702 break;
703 }
704 return 0;
705 }
706
707 static void
708 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
709 {
710 cfattach_t ca = device_cfattach(sc->sc_dev);
711
712 sc->sc_att_stage = stage;
713 (*ca->ca_detach)(sc->sc_dev, 0);
714 }
715
716 void
717 cas_tick(void *arg)
718 {
719 struct cas_softc *sc = arg;
720 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
721 bus_space_tag_t t = sc->sc_memt;
722 bus_space_handle_t mac = sc->sc_memh;
723 int s;
724 u_int32_t v;
725
726 /* unload collisions counters */
727 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
728 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
729 ifp->if_collisions += v +
730 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
731 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
732 ifp->if_oerrors += v;
733
734 /* read error counters */
735 ifp->if_ierrors +=
736 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
737 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
738 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
739 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
740
741 /* clear the hardware counters */
742 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
743 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
744 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
745 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
746 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
747 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
748 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
749 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
750
751 s = splnet();
752 mii_tick(&sc->sc_mii);
753 splx(s);
754
755 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
756 }
757
758 int
759 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
760 u_int32_t clr, u_int32_t set)
761 {
762 int i;
763 u_int32_t reg;
764
765 for (i = TRIES; i--; DELAY(100)) {
766 reg = bus_space_read_4(sc->sc_memt, h, r);
767 if ((reg & clr) == 0 && (reg & set) == set)
768 return (1);
769 }
770
771 return (0);
772 }
773
774 void
775 cas_reset(struct cas_softc *sc)
776 {
777 bus_space_tag_t t = sc->sc_memt;
778 bus_space_handle_t h = sc->sc_memh;
779 int s;
780
781 s = splnet();
782 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
783 cas_reset_rx(sc);
784 cas_reset_tx(sc);
785
786 /* Do a full reset */
787 bus_space_write_4(t, h, CAS_RESET,
788 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
789 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
790 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
791 splx(s);
792 }
793
794
795 /*
796 * cas_rxdrain:
797 *
798 * Drain the receive queue.
799 */
800 void
801 cas_rxdrain(struct cas_softc *sc)
802 {
803 /* Nothing to do yet. */
804 }
805
806 /*
807 * Reset the whole thing.
808 */
809 void
810 cas_stop(struct ifnet *ifp, int disable)
811 {
812 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
813 struct cas_sxd *sd;
814 u_int32_t i;
815
816 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
817
818 callout_stop(&sc->sc_tick_ch);
819
820 /*
821 * Mark the interface down and cancel the watchdog timer.
822 */
823 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
824 ifp->if_timer = 0;
825
826 mii_down(&sc->sc_mii);
827
828 cas_reset_rx(sc);
829 cas_reset_tx(sc);
830
831 /*
832 * Release any queued transmit buffers.
833 */
834 for (i = 0; i < CAS_NTXDESC; i++) {
835 sd = &sc->sc_txd[i];
836 if (sd->sd_mbuf != NULL) {
837 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
838 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
839 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
840 m_freem(sd->sd_mbuf);
841 sd->sd_mbuf = NULL;
842 }
843 }
844 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
845
846 if (disable)
847 cas_rxdrain(sc);
848 }
849
850
851 /*
852 * Reset the receiver
853 */
854 int
855 cas_reset_rx(struct cas_softc *sc)
856 {
857 bus_space_tag_t t = sc->sc_memt;
858 bus_space_handle_t h = sc->sc_memh;
859
860 /*
861 * Resetting while DMA is in progress can cause a bus hang, so we
862 * disable DMA first.
863 */
864 cas_disable_rx(sc);
865 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
866 /* Wait till it finishes */
867 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
868 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
869 /* Wait 5ms extra. */
870 delay(5000);
871
872 /* Finally, reset the ERX */
873 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
874 /* Wait till it finishes */
875 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
876 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
877 return (1);
878 }
879 return (0);
880 }
881
882
883 /*
884 * Reset the transmitter
885 */
886 int
887 cas_reset_tx(struct cas_softc *sc)
888 {
889 bus_space_tag_t t = sc->sc_memt;
890 bus_space_handle_t h = sc->sc_memh;
891
892 /*
893 * Resetting while DMA is in progress can cause a bus hang, so we
894 * disable DMA first.
895 */
896 cas_disable_tx(sc);
897 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
898 /* Wait till it finishes */
899 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
900 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
901 /* Wait 5ms extra. */
902 delay(5000);
903
904 /* Finally, reset the ETX */
905 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
906 /* Wait till it finishes */
907 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
908 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
909 return (1);
910 }
911 return (0);
912 }
913
914 /*
915 * Disable receiver.
916 */
917 int
918 cas_disable_rx(struct cas_softc *sc)
919 {
920 bus_space_tag_t t = sc->sc_memt;
921 bus_space_handle_t h = sc->sc_memh;
922 u_int32_t cfg;
923
924 /* Flip the enable bit */
925 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
926 cfg &= ~CAS_MAC_RX_ENABLE;
927 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
928
929 /* Wait for it to finish */
930 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
931 }
932
933 /*
934 * Disable transmitter.
935 */
936 int
937 cas_disable_tx(struct cas_softc *sc)
938 {
939 bus_space_tag_t t = sc->sc_memt;
940 bus_space_handle_t h = sc->sc_memh;
941 u_int32_t cfg;
942
943 /* Flip the enable bit */
944 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
945 cfg &= ~CAS_MAC_TX_ENABLE;
946 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
947
948 /* Wait for it to finish */
949 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
950 }
951
952 /*
953 * Initialize interface.
954 */
955 int
956 cas_meminit(struct cas_softc *sc)
957 {
958 struct cas_rxsoft *rxs;
959 int i, error;
960
961 rxs = (void *)&error;
962
963 /*
964 * Initialize the transmit descriptor ring.
965 */
966 for (i = 0; i < CAS_NTXDESC; i++) {
967 sc->sc_txdescs[i].cd_flags = 0;
968 sc->sc_txdescs[i].cd_addr = 0;
969 }
970 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
971 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
972
973 /*
974 * Initialize the receive descriptor and receive job
975 * descriptor rings.
976 */
977 for (i = 0; i < CAS_NRXDESC; i++)
978 CAS_INIT_RXDESC(sc, i, i);
979 sc->sc_rxdptr = 0;
980 sc->sc_rxptr = 0;
981
982 /*
983 * Initialize the receive completion ring.
984 */
985 for (i = 0; i < CAS_NRXCOMP; i++) {
986 sc->sc_rxcomps[i].cc_word[0] = 0;
987 sc->sc_rxcomps[i].cc_word[1] = 0;
988 sc->sc_rxcomps[i].cc_word[2] = 0;
989 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
990 CAS_CDRXCSYNC(sc, i,
991 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
992 }
993
994 return (0);
995 }
996
997 int
998 cas_ringsize(int sz)
999 {
1000 switch (sz) {
1001 case 32:
1002 return CAS_RING_SZ_32;
1003 case 64:
1004 return CAS_RING_SZ_64;
1005 case 128:
1006 return CAS_RING_SZ_128;
1007 case 256:
1008 return CAS_RING_SZ_256;
1009 case 512:
1010 return CAS_RING_SZ_512;
1011 case 1024:
1012 return CAS_RING_SZ_1024;
1013 case 2048:
1014 return CAS_RING_SZ_2048;
1015 case 4096:
1016 return CAS_RING_SZ_4096;
1017 case 8192:
1018 return CAS_RING_SZ_8192;
1019 default:
1020 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1021 sz);
1022 return CAS_RING_SZ_32;
1023 }
1024 }
1025
1026 int
1027 cas_cringsize(int sz)
1028 {
1029 int i;
1030
1031 for (i = 0; i < 9; i++)
1032 if (sz == (128 << i))
1033 return i;
1034
1035 aprint_error("cas: invalid completion ring size %d\n", sz);
1036 return 128;
1037 }
1038
1039 /*
1040 * Initialization of interface; set up initialization block
1041 * and transmit/receive descriptor rings.
1042 */
1043 int
1044 cas_init(struct ifnet *ifp)
1045 {
1046 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1047 bus_space_tag_t t = sc->sc_memt;
1048 bus_space_handle_t h = sc->sc_memh;
1049 int s;
1050 u_int max_frame_size;
1051 u_int32_t v;
1052
1053 s = splnet();
1054
1055 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1056 /*
1057 * Initialization sequence. The numbered steps below correspond
1058 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1059 * Channel Engine manual (part of the PCIO manual).
1060 * See also the STP2002-STQ document from Sun Microsystems.
1061 */
1062
1063 /* step 1 & 2. Reset the Ethernet Channel */
1064 cas_stop(ifp, 0);
1065 cas_reset(sc);
1066 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1067
1068 /* Re-initialize the MIF */
1069 cas_mifinit(sc);
1070
1071 /* step 3. Setup data structures in host memory */
1072 cas_meminit(sc);
1073
1074 /* step 4. TX MAC registers & counters */
1075 cas_init_regs(sc);
1076 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1077 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1078 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1079
1080 /* step 5. RX MAC registers & counters */
1081 cas_iff(sc);
1082
1083 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1084 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1085 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1086 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1087 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1088
1089 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1090 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1091 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1092 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1093
1094 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1095 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1096 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1097 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1098
1099 if (CAS_PLUS(sc)) {
1100 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1101 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1102 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1103 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1104 CAS_CDRXADDR2(sc, 0));
1105 }
1106
1107 /* step 8. Global Configuration & Interrupt Mask */
1108 cas_estintr(sc, CAS_INTR_REG);
1109
1110 /* step 9. ETX Configuration: use mostly default values */
1111
1112 /* Enable DMA */
1113 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1114 bus_space_write_4(t, h, CAS_TX_CONFIG,
1115 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1116 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1117
1118 /* step 10. ERX Configuration */
1119
1120 /* Encode Receive Descriptor ring size */
1121 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1122 if (CAS_PLUS(sc))
1123 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1124
1125 /* Encode Receive Completion ring size */
1126 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1127
1128 /* Enable DMA */
1129 bus_space_write_4(t, h, CAS_RX_CONFIG,
1130 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1131
1132 /*
1133 * The following value is for an OFF Threshold of about 3/4 full
1134 * and an ON Threshold of 1/4 full.
1135 */
1136 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1137 (3 * sc->sc_rxfifosize / 256) |
1138 ((sc->sc_rxfifosize / 256) << 12));
1139 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1140
1141 /* step 11. Configure Media */
1142 mii_ifmedia_change(&sc->sc_mii);
1143
1144 /* step 12. RX_MAC Configuration Register */
1145 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1146 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1147 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1148
1149 /* step 14. Issue Transmit Pending command */
1150
1151 /* step 15. Give the receiver a swift kick */
1152 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1153 if (CAS_PLUS(sc))
1154 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1155
1156 /* Start the one second timer. */
1157 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1158
1159 ifp->if_flags |= IFF_RUNNING;
1160 ifp->if_flags &= ~IFF_OACTIVE;
1161 ifp->if_timer = 0;
1162 splx(s);
1163
1164 return (0);
1165 }
1166
1167 void
1168 cas_init_regs(struct cas_softc *sc)
1169 {
1170 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1171 bus_space_tag_t t = sc->sc_memt;
1172 bus_space_handle_t h = sc->sc_memh;
1173 const u_char *laddr = CLLADDR(ifp->if_sadl);
1174 u_int32_t v, r;
1175
1176 /* These regs are not cleared on reset */
1177 sc->sc_inited = 0;
1178 if (!sc->sc_inited) {
1179 /* Load recommended values */
1180 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1181 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1182 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1183
1184 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1185 /* Max frame and max burst size */
1186 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1187 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1188
1189 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1190 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1191 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1192 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1193 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1194 ((laddr[5]<<8)|laddr[4])&0x3ff);
1195
1196 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1197 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1198 bus_space_write_4(t, h, r, 0);
1199
1200 /* MAC control addr set to 0:1:c2:0:1:80 */
1201 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1202 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1203 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1204
1205 /* MAC filter addr set to 0:0:0:0:0:0 */
1206 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1207 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1208 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1209
1210 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1211 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1212
1213 /* Hash table initialized to 0 */
1214 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1215 bus_space_write_4(t, h, r, 0);
1216
1217 sc->sc_inited = 1;
1218 }
1219
1220 /* Counters need to be zeroed */
1221 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1222 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1223 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1224 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1225 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1226 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1227 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1228 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1229 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1230 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1231 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1232
1233 /* Un-pause stuff */
1234 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1235
1236 /*
1237 * Set the station address.
1238 */
1239 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1240 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1241 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1242 }
1243
1244 /*
1245 * Receive interrupt.
1246 */
1247 int
1248 cas_rint(struct cas_softc *sc)
1249 {
1250 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1251 bus_space_tag_t t = sc->sc_memt;
1252 bus_space_handle_t h = sc->sc_memh;
1253 struct cas_rxsoft *rxs;
1254 struct mbuf *m;
1255 u_int64_t word[4];
1256 int len, off, idx;
1257 int i, skip;
1258 void *cp;
1259
1260 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1261 CAS_CDRXCSYNC(sc, i,
1262 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1263
1264 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1265 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1266 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1267 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1268
1269 /* Stop if the hardware still owns the descriptor. */
1270 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1271 break;
1272
1273 len = CAS_RC1_HDR_LEN(word[1]);
1274 if (len > 0) {
1275 off = CAS_RC1_HDR_OFF(word[1]);
1276 idx = CAS_RC1_HDR_IDX(word[1]);
1277 rxs = &sc->sc_rxsoft[idx];
1278
1279 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1280 idx, off, len));
1281
1282 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1283 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1284
1285 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1286 m = m_devget(cp, len, 0, ifp, NULL);
1287
1288 if (word[0] & CAS_RC0_RELEASE_HDR)
1289 cas_add_rxbuf(sc, idx);
1290
1291 if (m != NULL) {
1292
1293 /*
1294 * Pass this up to any BPF listeners, but only
1295 * pass it up the stack if its for us.
1296 */
1297 if (ifp->if_bpf)
1298 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1299
1300 ifp->if_ipackets++;
1301 m->m_pkthdr.csum_flags = 0;
1302 (*ifp->if_input)(ifp, m);
1303 } else
1304 ifp->if_ierrors++;
1305 }
1306
1307 len = CAS_RC0_DATA_LEN(word[0]);
1308 if (len > 0) {
1309 off = CAS_RC0_DATA_OFF(word[0]);
1310 idx = CAS_RC0_DATA_IDX(word[0]);
1311 rxs = &sc->sc_rxsoft[idx];
1312
1313 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1314 idx, off, len));
1315
1316 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1317 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1318
1319 /* XXX We should not be copying the packet here. */
1320 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1321 m = m_devget(cp, len, 0, ifp, NULL);
1322
1323 if (word[0] & CAS_RC0_RELEASE_DATA)
1324 cas_add_rxbuf(sc, idx);
1325
1326 if (m != NULL) {
1327 /*
1328 * Pass this up to any BPF listeners, but only
1329 * pass it up the stack if its for us.
1330 */
1331 if (ifp->if_bpf)
1332 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1333
1334 ifp->if_ipackets++;
1335 m->m_pkthdr.csum_flags = 0;
1336 (*ifp->if_input)(ifp, m);
1337 } else
1338 ifp->if_ierrors++;
1339 }
1340
1341 if (word[0] & CAS_RC0_SPLIT)
1342 aprint_error_dev(sc->sc_dev, "split packet\n");
1343
1344 skip = CAS_RC0_SKIP(word[0]);
1345 }
1346
1347 while (sc->sc_rxptr != i) {
1348 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1349 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1350 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1351 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1352 CAS_DMA_WRITE(CAS_RC3_OWN);
1353 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1354 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1355
1356 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1357 }
1358
1359 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1360
1361 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1362 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1363
1364 return (1);
1365 }
1366
1367 /*
1368 * cas_add_rxbuf:
1369 *
1370 * Add a receive buffer to the indicated descriptor.
1371 */
1372 int
1373 cas_add_rxbuf(struct cas_softc *sc, int idx)
1374 {
1375 bus_space_tag_t t = sc->sc_memt;
1376 bus_space_handle_t h = sc->sc_memh;
1377
1378 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1379
1380 if ((sc->sc_rxdptr % 4) == 0)
1381 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1382
1383 if (++sc->sc_rxdptr == CAS_NRXDESC)
1384 sc->sc_rxdptr = 0;
1385
1386 return (0);
1387 }
1388
1389 int
1390 cas_eint(struct cas_softc *sc, u_int status)
1391 {
1392 char bits[128];
1393 if ((status & CAS_INTR_MIF) != 0) {
1394 DPRINTF(sc, ("%s: link status changed\n",
1395 device_xname(sc->sc_dev)));
1396 return (1);
1397 }
1398
1399 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1400 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1401 return (1);
1402 }
1403
1404 int
1405 cas_pint(struct cas_softc *sc)
1406 {
1407 bus_space_tag_t t = sc->sc_memt;
1408 bus_space_handle_t seb = sc->sc_memh;
1409 u_int32_t status;
1410
1411 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1412 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1413 #ifdef CAS_DEBUG
1414 if (status)
1415 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1416 #endif
1417 return (1);
1418 }
1419
1420 int
1421 cas_intr(void *v)
1422 {
1423 struct cas_softc *sc = (struct cas_softc *)v;
1424 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1425 bus_space_tag_t t = sc->sc_memt;
1426 bus_space_handle_t seb = sc->sc_memh;
1427 u_int32_t status;
1428 int r = 0;
1429 #ifdef CAS_DEBUG
1430 char bits[128];
1431 #endif
1432
1433 sc->sc_ev_intr.ev_count++;
1434
1435 status = bus_space_read_4(t, seb, CAS_STATUS);
1436 #ifdef CAS_DEBUG
1437 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1438 #endif
1439 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1440 device_xname(sc->sc_dev), (status>>19), bits));
1441
1442 if ((status & CAS_INTR_PCS) != 0)
1443 r |= cas_pint(sc);
1444
1445 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1446 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1447 r |= cas_eint(sc, status);
1448
1449 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1450 r |= cas_tint(sc, status);
1451
1452 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1453 r |= cas_rint(sc);
1454
1455 /* We should eventually do more than just print out error stats. */
1456 if (status & CAS_INTR_TX_MAC) {
1457 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1458 #ifdef CAS_DEBUG
1459 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1460 printf("%s: MAC tx fault, status %x\n",
1461 device_xname(sc->sc_dev), txstat);
1462 #endif
1463 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1464 cas_init(ifp);
1465 }
1466 if (status & CAS_INTR_RX_MAC) {
1467 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1468 #ifdef CAS_DEBUG
1469 if (rxstat & ~CAS_MAC_RX_DONE)
1470 printf("%s: MAC rx fault, status %x\n",
1471 device_xname(sc->sc_dev), rxstat);
1472 #endif
1473 /*
1474 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1475 * due to a silicon bug so handle them silently.
1476 */
1477 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1478 ifp->if_ierrors++;
1479 cas_init(ifp);
1480 }
1481 #ifdef CAS_DEBUG
1482 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1483 printf("%s: MAC rx fault, status %x\n",
1484 device_xname(sc->sc_dev), rxstat);
1485 #endif
1486 }
1487 #if NRND > 0
1488 rnd_add_uint32(&sc->rnd_source, status);
1489 #endif
1490 return (r);
1491 }
1492
1493
1494 void
1495 cas_watchdog(struct ifnet *ifp)
1496 {
1497 struct cas_softc *sc = ifp->if_softc;
1498
1499 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1500 "CAS_MAC_RX_CONFIG %x\n",
1501 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1502 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1503 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1504
1505 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1506 ++ifp->if_oerrors;
1507
1508 /* Try to get more packets going. */
1509 cas_init(ifp);
1510 }
1511
1512 /*
1513 * Initialize the MII Management Interface
1514 */
1515 void
1516 cas_mifinit(struct cas_softc *sc)
1517 {
1518 bus_space_tag_t t = sc->sc_memt;
1519 bus_space_handle_t mif = sc->sc_memh;
1520
1521 /* Configure the MIF in frame mode */
1522 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1523 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1524 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1525 }
1526
1527 /*
1528 * MII interface
1529 *
1530 * The Cassini MII interface supports at least three different operating modes:
1531 *
1532 * Bitbang mode is implemented using data, clock and output enable registers.
1533 *
1534 * Frame mode is implemented by loading a complete frame into the frame
1535 * register and polling the valid bit for completion.
1536 *
1537 * Polling mode uses the frame register but completion is indicated by
1538 * an interrupt.
1539 *
1540 */
1541 int
1542 cas_mii_readreg(device_t self, int phy, int reg)
1543 {
1544 struct cas_softc *sc = device_private(self);
1545 bus_space_tag_t t = sc->sc_memt;
1546 bus_space_handle_t mif = sc->sc_memh;
1547 int n;
1548 u_int32_t v;
1549
1550 #ifdef CAS_DEBUG
1551 if (sc->sc_debug)
1552 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1553 #endif
1554
1555 /* Construct the frame command */
1556 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1557 CAS_MIF_FRAME_READ;
1558
1559 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1560 for (n = 0; n < 100; n++) {
1561 DELAY(1);
1562 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1563 if (v & CAS_MIF_FRAME_TA0)
1564 return (v & CAS_MIF_FRAME_DATA);
1565 }
1566
1567 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1568 return (0);
1569 }
1570
1571 void
1572 cas_mii_writereg(device_t self, int phy, int reg, int val)
1573 {
1574 struct cas_softc *sc = device_private(self);
1575 bus_space_tag_t t = sc->sc_memt;
1576 bus_space_handle_t mif = sc->sc_memh;
1577 int n;
1578 u_int32_t v;
1579
1580 #ifdef CAS_DEBUG
1581 if (sc->sc_debug)
1582 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1583 phy, reg, val);
1584 #endif
1585
1586 /* Construct the frame command */
1587 v = CAS_MIF_FRAME_WRITE |
1588 (phy << CAS_MIF_PHY_SHIFT) |
1589 (reg << CAS_MIF_REG_SHIFT) |
1590 (val & CAS_MIF_FRAME_DATA);
1591
1592 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1593 for (n = 0; n < 100; n++) {
1594 DELAY(1);
1595 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1596 if (v & CAS_MIF_FRAME_TA0)
1597 return;
1598 }
1599
1600 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1601 }
1602
1603 void
1604 cas_mii_statchg(device_t self)
1605 {
1606 struct cas_softc *sc = device_private(self);
1607 #ifdef CAS_DEBUG
1608 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1609 #endif
1610 bus_space_tag_t t = sc->sc_memt;
1611 bus_space_handle_t mac = sc->sc_memh;
1612 u_int32_t v;
1613
1614 #ifdef CAS_DEBUG
1615 if (sc->sc_debug)
1616 printf("cas_mii_statchg: status change: phy = %d\n",
1617 sc->sc_phys[instance]);
1618 #endif
1619
1620 /* Set tx full duplex options */
1621 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1622 delay(10000); /* reg must be cleared and delay before changing. */
1623 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1624 CAS_MAC_TX_ENABLE;
1625 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1626 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1627 }
1628 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1629
1630 /* XIF Configuration */
1631 v = CAS_MAC_XIF_TX_MII_ENA;
1632 v |= CAS_MAC_XIF_LINK_LED;
1633
1634 /* MII needs echo disable if half duplex. */
1635 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1636 /* turn on full duplex LED */
1637 v |= CAS_MAC_XIF_FDPLX_LED;
1638 else
1639 /* half duplex -- disable echo */
1640 v |= CAS_MAC_XIF_ECHO_DISABL;
1641
1642 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1643 case IFM_1000_T: /* Gigabit using GMII interface */
1644 case IFM_1000_SX:
1645 v |= CAS_MAC_XIF_GMII_MODE;
1646 break;
1647 default:
1648 v &= ~CAS_MAC_XIF_GMII_MODE;
1649 }
1650 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1651 }
1652
1653 int
1654 cas_pcs_readreg(device_t self, int phy, int reg)
1655 {
1656 struct cas_softc *sc = device_private(self);
1657 bus_space_tag_t t = sc->sc_memt;
1658 bus_space_handle_t pcs = sc->sc_memh;
1659
1660 #ifdef CAS_DEBUG
1661 if (sc->sc_debug)
1662 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1663 #endif
1664
1665 if (phy != CAS_PHYAD_EXTERNAL)
1666 return (0);
1667
1668 switch (reg) {
1669 case MII_BMCR:
1670 reg = CAS_MII_CONTROL;
1671 break;
1672 case MII_BMSR:
1673 reg = CAS_MII_STATUS;
1674 break;
1675 case MII_ANAR:
1676 reg = CAS_MII_ANAR;
1677 break;
1678 case MII_ANLPAR:
1679 reg = CAS_MII_ANLPAR;
1680 break;
1681 case MII_EXTSR:
1682 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1683 default:
1684 return (0);
1685 }
1686
1687 return bus_space_read_4(t, pcs, reg);
1688 }
1689
1690 void
1691 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1692 {
1693 struct cas_softc *sc = device_private(self);
1694 bus_space_tag_t t = sc->sc_memt;
1695 bus_space_handle_t pcs = sc->sc_memh;
1696 int reset = 0;
1697
1698 #ifdef CAS_DEBUG
1699 if (sc->sc_debug)
1700 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1701 phy, reg, val);
1702 #endif
1703
1704 if (phy != CAS_PHYAD_EXTERNAL)
1705 return;
1706
1707 if (reg == MII_ANAR)
1708 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1709
1710 switch (reg) {
1711 case MII_BMCR:
1712 reset = (val & CAS_MII_CONTROL_RESET);
1713 reg = CAS_MII_CONTROL;
1714 break;
1715 case MII_BMSR:
1716 reg = CAS_MII_STATUS;
1717 break;
1718 case MII_ANAR:
1719 reg = CAS_MII_ANAR;
1720 break;
1721 case MII_ANLPAR:
1722 reg = CAS_MII_ANLPAR;
1723 break;
1724 default:
1725 return;
1726 }
1727
1728 bus_space_write_4(t, pcs, reg, val);
1729
1730 if (reset)
1731 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1732
1733 if (reg == CAS_MII_ANAR || reset)
1734 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1735 CAS_MII_CONFIG_ENABLE);
1736 }
1737
1738 int
1739 cas_mediachange(struct ifnet *ifp)
1740 {
1741 struct cas_softc *sc = ifp->if_softc;
1742 struct mii_data *mii = &sc->sc_mii;
1743
1744 if (mii->mii_instance) {
1745 struct mii_softc *miisc;
1746 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1747 mii_phy_reset(miisc);
1748 }
1749
1750 return (mii_mediachg(&sc->sc_mii));
1751 }
1752
1753 void
1754 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1755 {
1756 struct cas_softc *sc = ifp->if_softc;
1757
1758 mii_pollstat(&sc->sc_mii);
1759 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1760 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1761 }
1762
1763 /*
1764 * Process an ioctl request.
1765 */
1766 int
1767 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1768 {
1769 struct cas_softc *sc = ifp->if_softc;
1770 int s, error = 0;
1771
1772 s = splnet();
1773
1774 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1775 error = 0;
1776 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1777 ;
1778 else if (ifp->if_flags & IFF_RUNNING) {
1779 /*
1780 * Multicast list has changed; set the hardware filter
1781 * accordingly.
1782 */
1783 cas_iff(sc);
1784 }
1785 }
1786
1787 splx(s);
1788 return (error);
1789 }
1790
1791 static bool
1792 cas_suspend(device_t self, const pmf_qual_t *qual)
1793 {
1794 struct cas_softc *sc = device_private(self);
1795 bus_space_tag_t t = sc->sc_memt;
1796 bus_space_handle_t h = sc->sc_memh;
1797
1798 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1799 if (sc->sc_ih != NULL) {
1800 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1801 sc->sc_ih = NULL;
1802 }
1803
1804 return true;
1805 }
1806
1807 static bool
1808 cas_resume(device_t self, const pmf_qual_t *qual)
1809 {
1810 struct cas_softc *sc = device_private(self);
1811
1812 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1813 }
1814
1815 static bool
1816 cas_estintr(struct cas_softc *sc, int what)
1817 {
1818 bus_space_tag_t t = sc->sc_memt;
1819 bus_space_handle_t h = sc->sc_memh;
1820 const char *intrstr = NULL;
1821
1822 /* PCI interrupts */
1823 if (what & CAS_INTR_PCI) {
1824 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1825 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1826 IPL_NET, cas_intr, sc);
1827 if (sc->sc_ih == NULL) {
1828 aprint_error_dev(sc->sc_dev,
1829 "unable to establish interrupt");
1830 if (intrstr != NULL)
1831 aprint_error(" at %s", intrstr);
1832 aprint_error("\n");
1833 return false;
1834 }
1835
1836 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1837 }
1838
1839 /* Interrupt register */
1840 if (what & CAS_INTR_REG) {
1841 bus_space_write_4(t, h, CAS_INTMASK,
1842 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1843 CAS_INTR_TX_TAG_ERR|
1844 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1845 CAS_INTR_RX_TAG_ERR|
1846 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1847 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1848 CAS_INTR_BERR));
1849 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1850 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1851 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1852 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1853 }
1854 return true;
1855 }
1856
1857 bool
1858 cas_shutdown(device_t self, int howto)
1859 {
1860 struct cas_softc *sc = device_private(self);
1861 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1862
1863 cas_stop(ifp, 1);
1864
1865 return true;
1866 }
1867
1868 void
1869 cas_iff(struct cas_softc *sc)
1870 {
1871 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1872 struct ethercom *ec = &sc->sc_ethercom;
1873 struct ether_multi *enm;
1874 struct ether_multistep step;
1875 bus_space_tag_t t = sc->sc_memt;
1876 bus_space_handle_t h = sc->sc_memh;
1877 u_int32_t crc, hash[16], rxcfg;
1878 int i;
1879
1880 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1881 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1882 CAS_MAC_RX_PROMISC_GRP);
1883 ifp->if_flags &= ~IFF_ALLMULTI;
1884
1885 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1886 ifp->if_flags |= IFF_ALLMULTI;
1887 if (ifp->if_flags & IFF_PROMISC)
1888 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1889 else
1890 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1891 } else {
1892 /*
1893 * Set up multicast address filter by passing all multicast
1894 * addresses through a crc generator, and then using the
1895 * high order 8 bits as an index into the 256 bit logical
1896 * address filter. The high order 4 bits selects the word,
1897 * while the other 4 bits select the bit within the word
1898 * (where bit 0 is the MSB).
1899 */
1900
1901 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1902
1903 /* Clear hash table */
1904 for (i = 0; i < 16; i++)
1905 hash[i] = 0;
1906
1907 ETHER_FIRST_MULTI(step, ec, enm);
1908 while (enm != NULL) {
1909 crc = ether_crc32_le(enm->enm_addrlo,
1910 ETHER_ADDR_LEN);
1911
1912 /* Just want the 8 most significant bits. */
1913 crc >>= 24;
1914
1915 /* Set the corresponding bit in the filter. */
1916 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1917
1918 ETHER_NEXT_MULTI(step, enm);
1919 }
1920
1921 /* Now load the hash table into the chip (if we are using it) */
1922 for (i = 0; i < 16; i++) {
1923 bus_space_write_4(t, h,
1924 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1925 hash[i]);
1926 }
1927 }
1928
1929 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1930 }
1931
1932 int
1933 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1934 {
1935 u_int64_t flags;
1936 u_int32_t cur, frag, i;
1937 bus_dmamap_t map;
1938
1939 cur = frag = *bixp;
1940 map = sc->sc_txd[cur].sd_map;
1941
1942 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1943 BUS_DMA_NOWAIT) != 0) {
1944 return (ENOBUFS);
1945 }
1946
1947 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1948 bus_dmamap_unload(sc->sc_dmatag, map);
1949 return (ENOBUFS);
1950 }
1951
1952 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1953 BUS_DMASYNC_PREWRITE);
1954
1955 for (i = 0; i < map->dm_nsegs; i++) {
1956 sc->sc_txdescs[frag].cd_addr =
1957 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1958 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1959 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1960 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1961 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1962 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1963 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1964 BUS_DMASYNC_PREWRITE);
1965 cur = frag;
1966 if (++frag == CAS_NTXDESC)
1967 frag = 0;
1968 }
1969
1970 sc->sc_tx_cnt += map->dm_nsegs;
1971 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1972 sc->sc_txd[cur].sd_map = map;
1973 sc->sc_txd[cur].sd_mbuf = mhead;
1974
1975 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1976
1977 *bixp = frag;
1978
1979 /* sync descriptors */
1980
1981 return (0);
1982 }
1983
1984 /*
1985 * Transmit interrupt.
1986 */
1987 int
1988 cas_tint(struct cas_softc *sc, u_int32_t status)
1989 {
1990 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1991 struct cas_sxd *sd;
1992 u_int32_t cons, comp;
1993
1994 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1995 cons = sc->sc_tx_cons;
1996 while (cons != comp) {
1997 sd = &sc->sc_txd[cons];
1998 if (sd->sd_mbuf != NULL) {
1999 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2000 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2001 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2002 m_freem(sd->sd_mbuf);
2003 sd->sd_mbuf = NULL;
2004 ifp->if_opackets++;
2005 }
2006 sc->sc_tx_cnt--;
2007 if (++cons == CAS_NTXDESC)
2008 cons = 0;
2009 }
2010 sc->sc_tx_cons = cons;
2011
2012 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2013 ifp->if_flags &= ~IFF_OACTIVE;
2014 if (sc->sc_tx_cnt == 0)
2015 ifp->if_timer = 0;
2016
2017 cas_start(ifp);
2018
2019 return (1);
2020 }
2021
2022 void
2023 cas_start(struct ifnet *ifp)
2024 {
2025 struct cas_softc *sc = ifp->if_softc;
2026 struct mbuf *m;
2027 u_int32_t bix;
2028
2029 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2030 return;
2031
2032 bix = sc->sc_tx_prod;
2033 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2034 IFQ_POLL(&ifp->if_snd, m);
2035 if (m == NULL)
2036 break;
2037
2038 /*
2039 * If BPF is listening on this interface, let it see the
2040 * packet before we commit it to the wire.
2041 */
2042 if (ifp->if_bpf)
2043 bpf_ops->bpf_mtap(ifp->if_bpf, m);
2044
2045 /*
2046 * Encapsulate this packet and start it going...
2047 * or fail...
2048 */
2049 if (cas_encap(sc, m, &bix)) {
2050 ifp->if_flags |= IFF_OACTIVE;
2051 break;
2052 }
2053
2054 IFQ_DEQUEUE(&ifp->if_snd, m);
2055 ifp->if_timer = 5;
2056 }
2057
2058 sc->sc_tx_prod = bix;
2059 }
2060