if_cas.c revision 1.7.4.3 1 /* $NetBSD: if_cas.c,v 1.7.4.3 2011/03/05 20:53:40 rmind Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.7.4.3 2011/03/05 20:53:40 rmind Exp $");
48
49 #ifndef _MODULE
50 #include "opt_inet.h"
51 #endif
52
53 #include <sys/param.h>
54 #include <sys/systm.h>
55 #include <sys/callout.h>
56 #include <sys/mbuf.h>
57 #include <sys/syslog.h>
58 #include <sys/malloc.h>
59 #include <sys/kernel.h>
60 #include <sys/socket.h>
61 #include <sys/ioctl.h>
62 #include <sys/errno.h>
63 #include <sys/device.h>
64 #include <sys/module.h>
65
66 #include <machine/endian.h>
67
68 #include <net/if.h>
69 #include <net/if_dl.h>
70 #include <net/if_media.h>
71 #include <net/if_ether.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/tcp.h>
79 #include <netinet/udp.h>
80 #endif
81
82 #include <net/bpf.h>
83
84 #include <sys/bus.h>
85 #include <sys/intr.h>
86
87 #include <dev/mii/mii.h>
88 #include <dev/mii/miivar.h>
89 #include <dev/mii/mii_bitbang.h>
90
91 #include <dev/pci/pcivar.h>
92 #include <dev/pci/pcireg.h>
93 #include <dev/pci/pcidevs.h>
94 #include <prop/proplib.h>
95
96 #include <dev/pci/if_casreg.h>
97 #include <dev/pci/if_casvar.h>
98
99 #define TRIES 10000
100
101 static bool cas_estintr(struct cas_softc *sc, int);
102 bool cas_shutdown(device_t, int);
103 static bool cas_suspend(device_t, const pmf_qual_t *);
104 static bool cas_resume(device_t, const pmf_qual_t *);
105 static int cas_detach(device_t, int);
106 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
107
108 int cas_match(device_t, cfdata_t, void *);
109 void cas_attach(device_t, device_t, void *);
110
111
112 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
113 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
114 DVF_DETACH_SHUTDOWN);
115
116 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
117
118 void cas_config(struct cas_softc *, const uint8_t *);
119 void cas_start(struct ifnet *);
120 void cas_stop(struct ifnet *, int);
121 int cas_ioctl(struct ifnet *, u_long, void *);
122 void cas_tick(void *);
123 void cas_watchdog(struct ifnet *);
124 int cas_init(struct ifnet *);
125 void cas_init_regs(struct cas_softc *);
126 int cas_ringsize(int);
127 int cas_cringsize(int);
128 int cas_meminit(struct cas_softc *);
129 void cas_mifinit(struct cas_softc *);
130 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
131 u_int32_t, u_int32_t);
132 void cas_reset(struct cas_softc *);
133 int cas_reset_rx(struct cas_softc *);
134 int cas_reset_tx(struct cas_softc *);
135 int cas_disable_rx(struct cas_softc *);
136 int cas_disable_tx(struct cas_softc *);
137 void cas_rxdrain(struct cas_softc *);
138 int cas_add_rxbuf(struct cas_softc *, int idx);
139 void cas_iff(struct cas_softc *);
140 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
141
142 /* MII methods & callbacks */
143 int cas_mii_readreg(device_t, int, int);
144 void cas_mii_writereg(device_t, int, int, int);
145 void cas_mii_statchg(device_t);
146 int cas_pcs_readreg(device_t, int, int);
147 void cas_pcs_writereg(device_t, int, int, int);
148
149 int cas_mediachange(struct ifnet *);
150 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
151
152 int cas_eint(struct cas_softc *, u_int);
153 int cas_rint(struct cas_softc *);
154 int cas_tint(struct cas_softc *, u_int32_t);
155 int cas_pint(struct cas_softc *);
156 int cas_intr(void *);
157
158 #ifdef CAS_DEBUG
159 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
160 printf x
161 #else
162 #define DPRINTF(sc, x) /* nothing */
163 #endif
164
165 int
166 cas_match(device_t parent, cfdata_t cf, void *aux)
167 {
168 struct pci_attach_args *pa = aux;
169
170 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
171 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
172 return 1;
173
174 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
175 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
176 return 1;
177
178 return 0;
179 }
180
181 #define PROMHDR_PTR_DATA 0x18
182 #define PROMDATA_PTR_VPD 0x08
183 #define PROMDATA_DATA2 0x0a
184
185 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
186 static const u_int8_t cas_promdat[] = {
187 'P', 'C', 'I', 'R',
188 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
189 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
190 };
191 static const u_int8_t cas_promdat_ns[] = {
192 'P', 'C', 'I', 'R',
193 PCI_VENDOR_NS & 0xff, PCI_VENDOR_NS >> 8,
194 PCI_PRODUCT_NS_SATURN & 0xff, PCI_PRODUCT_NS_SATURN >> 8
195 };
196
197 static const u_int8_t cas_promdat2[] = {
198 0x18, 0x00, /* structure length */
199 0x00, /* structure revision */
200 0x00, /* interface revision */
201 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
202 PCI_CLASS_NETWORK /* class code */
203 };
204
205 int
206 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
207 uint8_t *enaddr)
208 {
209 struct pci_vpd_largeres *res;
210 struct pci_vpd *vpd;
211 bus_space_handle_t romh;
212 bus_space_tag_t romt;
213 bus_size_t romsize = 0;
214 u_int8_t buf[32], *desc;
215 pcireg_t address;
216 int dataoff, vpdoff, len;
217 int rv = -1;
218
219 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
220 &romt, &romh, NULL, &romsize))
221 return (-1);
222
223 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
224 address |= PCI_MAPREG_ROM_ENABLE;
225 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
226
227 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
228 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
229 goto fail;
230
231 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
232 if (dataoff < 0x1c)
233 goto fail;
234
235 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
236 if ((bcmp(buf, cas_promdat, sizeof(cas_promdat)) &&
237 bcmp(buf, cas_promdat_ns, sizeof(cas_promdat_ns))) ||
238 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
239 goto fail;
240
241 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
242 if (vpdoff < 0x1c)
243 goto fail;
244
245 next:
246 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
247 if (!PCI_VPDRES_ISLARGE(buf[0]))
248 goto fail;
249
250 res = (struct pci_vpd_largeres *)buf;
251 vpdoff += sizeof(*res);
252
253 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
254 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
255 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
256 /* Skip identifier string. */
257 vpdoff += len;
258 goto next;
259
260 case PCI_VPDRES_TYPE_VPD:
261 while (len > 0) {
262 bus_space_read_region_1(romt, romh, vpdoff,
263 buf, sizeof(buf));
264
265 vpd = (struct pci_vpd *)buf;
266 vpdoff += sizeof(*vpd) + vpd->vpd_len;
267 len -= sizeof(*vpd) + vpd->vpd_len;
268
269 /*
270 * We're looking for an "Enhanced" VPD...
271 */
272 if (vpd->vpd_key0 != 'Z')
273 continue;
274
275 desc = buf + sizeof(*vpd);
276
277 /*
278 * ...which is an instance property...
279 */
280 if (desc[0] != 'I')
281 continue;
282 desc += 3;
283
284 /*
285 * ...that's a byte array with the proper
286 * length for a MAC address...
287 */
288 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
289 continue;
290 desc += 2;
291
292 /*
293 * ...named "local-mac-address".
294 */
295 if (strcmp(desc, "local-mac-address") != 0)
296 continue;
297 desc += strlen("local-mac-address") + 1;
298
299 memcpy(enaddr, desc, ETHER_ADDR_LEN);
300 rv = 0;
301 }
302 break;
303
304 default:
305 goto fail;
306 }
307
308 fail:
309 if (romsize != 0)
310 bus_space_unmap(romt, romh, romsize);
311
312 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
313 address &= ~PCI_MAPREG_ROM_ENABLE;
314 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
315
316 return (rv);
317 }
318
319 void
320 cas_attach(device_t parent, device_t self, void *aux)
321 {
322 struct pci_attach_args *pa = aux;
323 struct cas_softc *sc = device_private(self);
324 char devinfo[256];
325 prop_data_t data;
326 uint8_t enaddr[ETHER_ADDR_LEN];
327
328 sc->sc_dev = self;
329 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
330 sc->sc_rev = PCI_REVISION(pa->pa_class);
331 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
332 sc->sc_dmatag = pa->pa_dmat;
333
334 #define PCI_CAS_BASEADDR 0x10
335 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
336 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
337 aprint_error_dev(sc->sc_dev,
338 "unable to map device registers\n");
339 return;
340 }
341
342 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
343 "mac-address")) != NULL)
344 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
345 else if (cas_pci_enaddr(sc, pa, enaddr) != 0) {
346 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
347 memset(enaddr, 0, sizeof(enaddr));
348 }
349
350 sc->sc_burst = 16; /* XXX */
351
352 sc->sc_att_stage = CAS_ATT_BACKEND_0;
353
354 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
355 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
356 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
357 return;
358 }
359 sc->sc_pc = pa->pa_pc;
360 if (!cas_estintr(sc, CAS_INTR_PCI)) {
361 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
362 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
363 return;
364 }
365
366 sc->sc_att_stage = CAS_ATT_BACKEND_1;
367
368 /*
369 * call the main configure
370 */
371 cas_config(sc, enaddr);
372
373 if (pmf_device_register1(sc->sc_dev,
374 cas_suspend, cas_resume, cas_shutdown))
375 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
376 else
377 aprint_error_dev(sc->sc_dev,
378 "could not establish power handlers\n");
379
380 sc->sc_att_stage = CAS_ATT_FINISHED;
381 /*FALLTHROUGH*/
382 }
383
384 /*
385 * cas_config:
386 *
387 * Attach a Cassini interface to the system.
388 */
389 void
390 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
391 {
392 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
393 struct mii_data *mii = &sc->sc_mii;
394 struct mii_softc *child;
395 int i, error;
396
397 /* Make sure the chip is stopped. */
398 ifp->if_softc = sc;
399 cas_reset(sc);
400
401 /*
402 * Allocate the control data structures, and create and load the
403 * DMA map for it.
404 */
405 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
406 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
407 1, &sc->sc_cdnseg, 0)) != 0) {
408 aprint_error_dev(sc->sc_dev,
409 "unable to allocate control data, error = %d\n",
410 error);
411 cas_partial_detach(sc, CAS_ATT_0);
412 }
413
414 /* XXX should map this in with correct endianness */
415 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
416 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
417 BUS_DMA_COHERENT)) != 0) {
418 aprint_error_dev(sc->sc_dev,
419 "unable to map control data, error = %d\n", error);
420 cas_partial_detach(sc, CAS_ATT_1);
421 }
422
423 if ((error = bus_dmamap_create(sc->sc_dmatag,
424 sizeof(struct cas_control_data), 1,
425 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
426 aprint_error_dev(sc->sc_dev,
427 "unable to create control data DMA map, error = %d\n", error);
428 cas_partial_detach(sc, CAS_ATT_2);
429 }
430
431 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
432 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
433 0)) != 0) {
434 aprint_error_dev(sc->sc_dev,
435 "unable to load control data DMA map, error = %d\n",
436 error);
437 cas_partial_detach(sc, CAS_ATT_3);
438 }
439
440 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
441
442 /*
443 * Create the receive buffer DMA maps.
444 */
445 for (i = 0; i < CAS_NRXDESC; i++) {
446 bus_dma_segment_t seg;
447 char *kva;
448 int rseg;
449
450 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
451 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
452 aprint_error_dev(sc->sc_dev,
453 "unable to alloc rx DMA mem %d, error = %d\n",
454 i, error);
455 cas_partial_detach(sc, CAS_ATT_5);
456 }
457 sc->sc_rxsoft[i].rxs_dmaseg = seg;
458
459 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
460 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
461 aprint_error_dev(sc->sc_dev,
462 "unable to alloc rx DMA mem %d, error = %d\n",
463 i, error);
464 cas_partial_detach(sc, CAS_ATT_5);
465 }
466 sc->sc_rxsoft[i].rxs_kva = kva;
467
468 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
469 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
470 aprint_error_dev(sc->sc_dev,
471 "unable to create rx DMA map %d, error = %d\n",
472 i, error);
473 cas_partial_detach(sc, CAS_ATT_5);
474 }
475
476 if ((error = bus_dmamap_load(sc->sc_dmatag,
477 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
478 BUS_DMA_NOWAIT)) != 0) {
479 aprint_error_dev(sc->sc_dev,
480 "unable to load rx DMA map %d, error = %d\n",
481 i, error);
482 cas_partial_detach(sc, CAS_ATT_5);
483 }
484 }
485
486 /*
487 * Create the transmit buffer DMA maps.
488 */
489 for (i = 0; i < CAS_NTXDESC; i++) {
490 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
491 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
492 &sc->sc_txd[i].sd_map)) != 0) {
493 aprint_error_dev(sc->sc_dev,
494 "unable to create tx DMA map %d, error = %d\n",
495 i, error);
496 cas_partial_detach(sc, CAS_ATT_6);
497 }
498 sc->sc_txd[i].sd_mbuf = NULL;
499 }
500
501 /*
502 * From this point forward, the attachment cannot fail. A failure
503 * before this point releases all resources that may have been
504 * allocated.
505 */
506
507 /* Announce ourselves. */
508 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
509 ether_sprintf(enaddr));
510 aprint_naive(": Ethernet controller\n");
511
512 /* Get RX FIFO size */
513 sc->sc_rxfifosize = 16 * 1024;
514
515 /* Initialize ifnet structure. */
516 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
517 ifp->if_softc = sc;
518 ifp->if_flags =
519 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
520 ifp->if_start = cas_start;
521 ifp->if_ioctl = cas_ioctl;
522 ifp->if_watchdog = cas_watchdog;
523 ifp->if_stop = cas_stop;
524 ifp->if_init = cas_init;
525 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
526 IFQ_SET_READY(&ifp->if_snd);
527
528 /* Initialize ifmedia structures and MII info */
529 mii->mii_ifp = ifp;
530 mii->mii_readreg = cas_mii_readreg;
531 mii->mii_writereg = cas_mii_writereg;
532 mii->mii_statchg = cas_mii_statchg;
533
534 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
535 sc->sc_ethercom.ec_mii = mii;
536
537 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
538
539 cas_mifinit(sc);
540
541 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
542 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
543 bus_space_write_4(sc->sc_memt, sc->sc_memh,
544 CAS_MIF_CONFIG, sc->sc_mif_config);
545 }
546
547 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
548 MII_OFFSET_ANY, 0);
549
550 child = LIST_FIRST(&mii->mii_phys);
551 if (child == NULL &&
552 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
553 /*
554 * Try the external PCS SERDES if we didn't find any
555 * MII devices.
556 */
557 bus_space_write_4(sc->sc_memt, sc->sc_memh,
558 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
559
560 bus_space_write_4(sc->sc_memt, sc->sc_memh,
561 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
562
563 mii->mii_readreg = cas_pcs_readreg;
564 mii->mii_writereg = cas_pcs_writereg;
565
566 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
567 MII_OFFSET_ANY, MIIF_NOISOLATE);
568 }
569
570 child = LIST_FIRST(&mii->mii_phys);
571 if (child == NULL) {
572 /* No PHY attached */
573 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
574 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
575 } else {
576 /*
577 * Walk along the list of attached MII devices and
578 * establish an `MII instance' to `phy number'
579 * mapping. We'll use this mapping in media change
580 * requests to determine which phy to use to program
581 * the MIF configuration register.
582 */
583 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
584 /*
585 * Note: we support just two PHYs: the built-in
586 * internal device and an external on the MII
587 * connector.
588 */
589 if (child->mii_phy > 1 || child->mii_inst > 1) {
590 aprint_error_dev(sc->sc_dev,
591 "cannot accommodate MII device %s"
592 " at phy %d, instance %d\n",
593 device_xname(child->mii_dev),
594 child->mii_phy, child->mii_inst);
595 continue;
596 }
597
598 sc->sc_phys[child->mii_inst] = child->mii_phy;
599 }
600
601 /*
602 * XXX - we can really do the following ONLY if the
603 * phy indeed has the auto negotiation capability!!
604 */
605 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
606 }
607
608 /* claim 802.1q capability */
609 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
610
611 /* Attach the interface. */
612 if_attach(ifp);
613 ether_ifattach(ifp, enaddr);
614
615 #if NRND > 0
616 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
617 RND_TYPE_NET, 0);
618 #endif
619
620 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
621 NULL, device_xname(sc->sc_dev), "interrupts");
622
623 callout_init(&sc->sc_tick_ch, 0);
624
625 return;
626 }
627
628 int
629 cas_detach(device_t self, int flags)
630 {
631 int i;
632 struct cas_softc *sc = device_private(self);
633 bus_space_tag_t t = sc->sc_memt;
634 bus_space_handle_t h = sc->sc_memh;
635 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
636
637 /*
638 * Free any resources we've allocated during the failed attach
639 * attempt. Do this in reverse order and fall through.
640 */
641 switch (sc->sc_att_stage) {
642 case CAS_ATT_FINISHED:
643 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
644 pmf_device_deregister(self);
645 cas_stop(&sc->sc_ethercom.ec_if, 1);
646 evcnt_detach(&sc->sc_ev_intr);
647
648 #if NRND > 0
649 rnd_detach_source(&sc->rnd_source);
650 #endif
651
652 ether_ifdetach(ifp);
653 if_detach(ifp);
654 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
655
656 callout_destroy(&sc->sc_tick_ch);
657
658 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
659
660 /*FALLTHROUGH*/
661 case CAS_ATT_MII:
662 case CAS_ATT_7:
663 case CAS_ATT_6:
664 for (i = 0; i < CAS_NTXDESC; i++) {
665 if (sc->sc_txd[i].sd_map != NULL)
666 bus_dmamap_destroy(sc->sc_dmatag,
667 sc->sc_txd[i].sd_map);
668 }
669 /*FALLTHROUGH*/
670 case CAS_ATT_5:
671 for (i = 0; i < CAS_NRXDESC; i++) {
672 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
673 bus_dmamap_unload(sc->sc_dmatag,
674 sc->sc_rxsoft[i].rxs_dmamap);
675 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
676 bus_dmamap_destroy(sc->sc_dmatag,
677 sc->sc_rxsoft[i].rxs_dmamap);
678 if (sc->sc_rxsoft[i].rxs_kva != NULL)
679 bus_dmamem_unmap(sc->sc_dmatag,
680 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
681 /* XXX need to check that bus_dmamem_alloc suceeded
682 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
683 */
684 bus_dmamem_free(sc->sc_dmatag,
685 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
686 }
687 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
688 /*FALLTHROUGH*/
689 case CAS_ATT_4:
690 case CAS_ATT_3:
691 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
692 /*FALLTHROUGH*/
693 case CAS_ATT_2:
694 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
695 sizeof(struct cas_control_data));
696 /*FALLTHROUGH*/
697 case CAS_ATT_1:
698 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
699 /*FALLTHROUGH*/
700 case CAS_ATT_0:
701 sc->sc_att_stage = CAS_ATT_0;
702 /*FALLTHROUGH*/
703 case CAS_ATT_BACKEND_2:
704 case CAS_ATT_BACKEND_1:
705 if (sc->sc_ih != NULL) {
706 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
707 sc->sc_ih = NULL;
708 }
709 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
710 /*FALLTHROUGH*/
711 case CAS_ATT_BACKEND_0:
712 break;
713 }
714 return 0;
715 }
716
717 static void
718 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
719 {
720 cfattach_t ca = device_cfattach(sc->sc_dev);
721
722 sc->sc_att_stage = stage;
723 (*ca->ca_detach)(sc->sc_dev, 0);
724 }
725
726 void
727 cas_tick(void *arg)
728 {
729 struct cas_softc *sc = arg;
730 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
731 bus_space_tag_t t = sc->sc_memt;
732 bus_space_handle_t mac = sc->sc_memh;
733 int s;
734 u_int32_t v;
735
736 /* unload collisions counters */
737 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
738 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
739 ifp->if_collisions += v +
740 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
741 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
742 ifp->if_oerrors += v;
743
744 /* read error counters */
745 ifp->if_ierrors +=
746 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
747 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
748 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
749 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
750
751 /* clear the hardware counters */
752 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
753 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
754 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
755 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
756 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
757 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
758 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
759 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
760
761 s = splnet();
762 mii_tick(&sc->sc_mii);
763 splx(s);
764
765 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
766 }
767
768 int
769 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
770 u_int32_t clr, u_int32_t set)
771 {
772 int i;
773 u_int32_t reg;
774
775 for (i = TRIES; i--; DELAY(100)) {
776 reg = bus_space_read_4(sc->sc_memt, h, r);
777 if ((reg & clr) == 0 && (reg & set) == set)
778 return (1);
779 }
780
781 return (0);
782 }
783
784 void
785 cas_reset(struct cas_softc *sc)
786 {
787 bus_space_tag_t t = sc->sc_memt;
788 bus_space_handle_t h = sc->sc_memh;
789 int s;
790
791 s = splnet();
792 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
793 cas_reset_rx(sc);
794 cas_reset_tx(sc);
795
796 /* Disable interrupts */
797 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
798
799 /* Do a full reset */
800 bus_space_write_4(t, h, CAS_RESET,
801 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
802 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
803 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
804 splx(s);
805 }
806
807
808 /*
809 * cas_rxdrain:
810 *
811 * Drain the receive queue.
812 */
813 void
814 cas_rxdrain(struct cas_softc *sc)
815 {
816 /* Nothing to do yet. */
817 }
818
819 /*
820 * Reset the whole thing.
821 */
822 void
823 cas_stop(struct ifnet *ifp, int disable)
824 {
825 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
826 struct cas_sxd *sd;
827 u_int32_t i;
828
829 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
830
831 callout_stop(&sc->sc_tick_ch);
832
833 /*
834 * Mark the interface down and cancel the watchdog timer.
835 */
836 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
837 ifp->if_timer = 0;
838
839 mii_down(&sc->sc_mii);
840
841 cas_reset_rx(sc);
842 cas_reset_tx(sc);
843
844 /*
845 * Release any queued transmit buffers.
846 */
847 for (i = 0; i < CAS_NTXDESC; i++) {
848 sd = &sc->sc_txd[i];
849 if (sd->sd_mbuf != NULL) {
850 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
851 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
852 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
853 m_freem(sd->sd_mbuf);
854 sd->sd_mbuf = NULL;
855 }
856 }
857 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
858
859 if (disable)
860 cas_rxdrain(sc);
861 }
862
863
864 /*
865 * Reset the receiver
866 */
867 int
868 cas_reset_rx(struct cas_softc *sc)
869 {
870 bus_space_tag_t t = sc->sc_memt;
871 bus_space_handle_t h = sc->sc_memh;
872
873 /*
874 * Resetting while DMA is in progress can cause a bus hang, so we
875 * disable DMA first.
876 */
877 cas_disable_rx(sc);
878 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
879 /* Wait till it finishes */
880 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
881 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
882 /* Wait 5ms extra. */
883 delay(5000);
884
885 /* Finally, reset the ERX */
886 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
887 /* Wait till it finishes */
888 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
889 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
890 return (1);
891 }
892 return (0);
893 }
894
895
896 /*
897 * Reset the transmitter
898 */
899 int
900 cas_reset_tx(struct cas_softc *sc)
901 {
902 bus_space_tag_t t = sc->sc_memt;
903 bus_space_handle_t h = sc->sc_memh;
904
905 /*
906 * Resetting while DMA is in progress can cause a bus hang, so we
907 * disable DMA first.
908 */
909 cas_disable_tx(sc);
910 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
911 /* Wait till it finishes */
912 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
913 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
914 /* Wait 5ms extra. */
915 delay(5000);
916
917 /* Finally, reset the ETX */
918 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
919 /* Wait till it finishes */
920 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
921 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
922 return (1);
923 }
924 return (0);
925 }
926
927 /*
928 * Disable receiver.
929 */
930 int
931 cas_disable_rx(struct cas_softc *sc)
932 {
933 bus_space_tag_t t = sc->sc_memt;
934 bus_space_handle_t h = sc->sc_memh;
935 u_int32_t cfg;
936
937 /* Flip the enable bit */
938 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
939 cfg &= ~CAS_MAC_RX_ENABLE;
940 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
941
942 /* Wait for it to finish */
943 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
944 }
945
946 /*
947 * Disable transmitter.
948 */
949 int
950 cas_disable_tx(struct cas_softc *sc)
951 {
952 bus_space_tag_t t = sc->sc_memt;
953 bus_space_handle_t h = sc->sc_memh;
954 u_int32_t cfg;
955
956 /* Flip the enable bit */
957 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
958 cfg &= ~CAS_MAC_TX_ENABLE;
959 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
960
961 /* Wait for it to finish */
962 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
963 }
964
965 /*
966 * Initialize interface.
967 */
968 int
969 cas_meminit(struct cas_softc *sc)
970 {
971 struct cas_rxsoft *rxs;
972 int i, error;
973
974 rxs = (void *)&error;
975
976 /*
977 * Initialize the transmit descriptor ring.
978 */
979 for (i = 0; i < CAS_NTXDESC; i++) {
980 sc->sc_txdescs[i].cd_flags = 0;
981 sc->sc_txdescs[i].cd_addr = 0;
982 }
983 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
984 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
985
986 /*
987 * Initialize the receive descriptor and receive job
988 * descriptor rings.
989 */
990 for (i = 0; i < CAS_NRXDESC; i++)
991 CAS_INIT_RXDESC(sc, i, i);
992 sc->sc_rxdptr = 0;
993 sc->sc_rxptr = 0;
994
995 /*
996 * Initialize the receive completion ring.
997 */
998 for (i = 0; i < CAS_NRXCOMP; i++) {
999 sc->sc_rxcomps[i].cc_word[0] = 0;
1000 sc->sc_rxcomps[i].cc_word[1] = 0;
1001 sc->sc_rxcomps[i].cc_word[2] = 0;
1002 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
1003 CAS_CDRXCSYNC(sc, i,
1004 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1005 }
1006
1007 return (0);
1008 }
1009
1010 int
1011 cas_ringsize(int sz)
1012 {
1013 switch (sz) {
1014 case 32:
1015 return CAS_RING_SZ_32;
1016 case 64:
1017 return CAS_RING_SZ_64;
1018 case 128:
1019 return CAS_RING_SZ_128;
1020 case 256:
1021 return CAS_RING_SZ_256;
1022 case 512:
1023 return CAS_RING_SZ_512;
1024 case 1024:
1025 return CAS_RING_SZ_1024;
1026 case 2048:
1027 return CAS_RING_SZ_2048;
1028 case 4096:
1029 return CAS_RING_SZ_4096;
1030 case 8192:
1031 return CAS_RING_SZ_8192;
1032 default:
1033 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1034 sz);
1035 return CAS_RING_SZ_32;
1036 }
1037 }
1038
1039 int
1040 cas_cringsize(int sz)
1041 {
1042 int i;
1043
1044 for (i = 0; i < 9; i++)
1045 if (sz == (128 << i))
1046 return i;
1047
1048 aprint_error("cas: invalid completion ring size %d\n", sz);
1049 return 128;
1050 }
1051
1052 /*
1053 * Initialization of interface; set up initialization block
1054 * and transmit/receive descriptor rings.
1055 */
1056 int
1057 cas_init(struct ifnet *ifp)
1058 {
1059 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1060 bus_space_tag_t t = sc->sc_memt;
1061 bus_space_handle_t h = sc->sc_memh;
1062 int s;
1063 u_int max_frame_size;
1064 u_int32_t v;
1065
1066 s = splnet();
1067
1068 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1069 /*
1070 * Initialization sequence. The numbered steps below correspond
1071 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1072 * Channel Engine manual (part of the PCIO manual).
1073 * See also the STP2002-STQ document from Sun Microsystems.
1074 */
1075
1076 /* step 1 & 2. Reset the Ethernet Channel */
1077 cas_stop(ifp, 0);
1078 cas_reset(sc);
1079 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1080
1081 /* Re-initialize the MIF */
1082 cas_mifinit(sc);
1083
1084 /* step 3. Setup data structures in host memory */
1085 cas_meminit(sc);
1086
1087 /* step 4. TX MAC registers & counters */
1088 cas_init_regs(sc);
1089 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1090 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1091 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1092
1093 /* step 5. RX MAC registers & counters */
1094 cas_iff(sc);
1095
1096 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1097 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1098 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1099 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1100 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1101
1102 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1103 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1104 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1105 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1106
1107 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1108 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1109 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1110 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1111
1112 if (CAS_PLUS(sc)) {
1113 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1114 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1115 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1116 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1117 CAS_CDRXADDR2(sc, 0));
1118 }
1119
1120 /* step 8. Global Configuration & Interrupt Mask */
1121 cas_estintr(sc, CAS_INTR_REG);
1122
1123 /* step 9. ETX Configuration: use mostly default values */
1124
1125 /* Enable DMA */
1126 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1127 bus_space_write_4(t, h, CAS_TX_CONFIG,
1128 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1129 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1130
1131 /* step 10. ERX Configuration */
1132
1133 /* Encode Receive Descriptor ring size */
1134 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1135 if (CAS_PLUS(sc))
1136 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1137
1138 /* Encode Receive Completion ring size */
1139 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1140
1141 /* Enable DMA */
1142 bus_space_write_4(t, h, CAS_RX_CONFIG,
1143 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1144
1145 /*
1146 * The following value is for an OFF Threshold of about 3/4 full
1147 * and an ON Threshold of 1/4 full.
1148 */
1149 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1150 (3 * sc->sc_rxfifosize / 256) |
1151 ((sc->sc_rxfifosize / 256) << 12));
1152 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1153
1154 /* step 11. Configure Media */
1155 mii_ifmedia_change(&sc->sc_mii);
1156
1157 /* step 12. RX_MAC Configuration Register */
1158 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1159 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1160 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1161
1162 /* step 14. Issue Transmit Pending command */
1163
1164 /* step 15. Give the receiver a swift kick */
1165 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1166 if (CAS_PLUS(sc))
1167 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1168
1169 /* Start the one second timer. */
1170 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1171
1172 ifp->if_flags |= IFF_RUNNING;
1173 ifp->if_flags &= ~IFF_OACTIVE;
1174 ifp->if_timer = 0;
1175 splx(s);
1176
1177 return (0);
1178 }
1179
1180 void
1181 cas_init_regs(struct cas_softc *sc)
1182 {
1183 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1184 bus_space_tag_t t = sc->sc_memt;
1185 bus_space_handle_t h = sc->sc_memh;
1186 const u_char *laddr = CLLADDR(ifp->if_sadl);
1187 u_int32_t v, r;
1188
1189 /* These regs are not cleared on reset */
1190 sc->sc_inited = 0;
1191 if (!sc->sc_inited) {
1192 /* Load recommended values */
1193 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1194 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1195 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1196
1197 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1198 /* Max frame and max burst size */
1199 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1200 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1201
1202 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1203 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1204 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1205 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1206 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1207 ((laddr[5]<<8)|laddr[4])&0x3ff);
1208
1209 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1210 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1211 bus_space_write_4(t, h, r, 0);
1212
1213 /* MAC control addr set to 0:1:c2:0:1:80 */
1214 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1215 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1216 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1217
1218 /* MAC filter addr set to 0:0:0:0:0:0 */
1219 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1220 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1221 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1222
1223 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1224 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1225
1226 /* Hash table initialized to 0 */
1227 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1228 bus_space_write_4(t, h, r, 0);
1229
1230 sc->sc_inited = 1;
1231 }
1232
1233 /* Counters need to be zeroed */
1234 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1235 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1236 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1237 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1238 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1239 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1240 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1241 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1242 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1243 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1244 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1245
1246 /* Un-pause stuff */
1247 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1248
1249 /*
1250 * Set the station address.
1251 */
1252 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1253 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1254 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1255 }
1256
1257 /*
1258 * Receive interrupt.
1259 */
1260 int
1261 cas_rint(struct cas_softc *sc)
1262 {
1263 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1264 bus_space_tag_t t = sc->sc_memt;
1265 bus_space_handle_t h = sc->sc_memh;
1266 struct cas_rxsoft *rxs;
1267 struct mbuf *m;
1268 u_int64_t word[4];
1269 int len, off, idx;
1270 int i, skip;
1271 void *cp;
1272
1273 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1274 CAS_CDRXCSYNC(sc, i,
1275 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1276
1277 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1278 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1279 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1280 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1281
1282 /* Stop if the hardware still owns the descriptor. */
1283 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1284 break;
1285
1286 len = CAS_RC1_HDR_LEN(word[1]);
1287 if (len > 0) {
1288 off = CAS_RC1_HDR_OFF(word[1]);
1289 idx = CAS_RC1_HDR_IDX(word[1]);
1290 rxs = &sc->sc_rxsoft[idx];
1291
1292 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1293 idx, off, len));
1294
1295 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1296 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1297
1298 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1299 m = m_devget(cp, len, 0, ifp, NULL);
1300
1301 if (word[0] & CAS_RC0_RELEASE_HDR)
1302 cas_add_rxbuf(sc, idx);
1303
1304 if (m != NULL) {
1305
1306 /*
1307 * Pass this up to any BPF listeners, but only
1308 * pass it up the stack if its for us.
1309 */
1310 bpf_mtap(ifp, m);
1311
1312 ifp->if_ipackets++;
1313 m->m_pkthdr.csum_flags = 0;
1314 (*ifp->if_input)(ifp, m);
1315 } else
1316 ifp->if_ierrors++;
1317 }
1318
1319 len = CAS_RC0_DATA_LEN(word[0]);
1320 if (len > 0) {
1321 off = CAS_RC0_DATA_OFF(word[0]);
1322 idx = CAS_RC0_DATA_IDX(word[0]);
1323 rxs = &sc->sc_rxsoft[idx];
1324
1325 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1326 idx, off, len));
1327
1328 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1329 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1330
1331 /* XXX We should not be copying the packet here. */
1332 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1333 m = m_devget(cp, len, 0, ifp, NULL);
1334
1335 if (word[0] & CAS_RC0_RELEASE_DATA)
1336 cas_add_rxbuf(sc, idx);
1337
1338 if (m != NULL) {
1339 /*
1340 * Pass this up to any BPF listeners, but only
1341 * pass it up the stack if its for us.
1342 */
1343 bpf_mtap(ifp, m);
1344
1345 ifp->if_ipackets++;
1346 m->m_pkthdr.csum_flags = 0;
1347 (*ifp->if_input)(ifp, m);
1348 } else
1349 ifp->if_ierrors++;
1350 }
1351
1352 if (word[0] & CAS_RC0_SPLIT)
1353 aprint_error_dev(sc->sc_dev, "split packet\n");
1354
1355 skip = CAS_RC0_SKIP(word[0]);
1356 }
1357
1358 while (sc->sc_rxptr != i) {
1359 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1360 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1361 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1362 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1363 CAS_DMA_WRITE(CAS_RC3_OWN);
1364 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1365 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1366
1367 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1368 }
1369
1370 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1371
1372 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1373 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1374
1375 return (1);
1376 }
1377
1378 /*
1379 * cas_add_rxbuf:
1380 *
1381 * Add a receive buffer to the indicated descriptor.
1382 */
1383 int
1384 cas_add_rxbuf(struct cas_softc *sc, int idx)
1385 {
1386 bus_space_tag_t t = sc->sc_memt;
1387 bus_space_handle_t h = sc->sc_memh;
1388
1389 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1390
1391 if ((sc->sc_rxdptr % 4) == 0)
1392 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1393
1394 if (++sc->sc_rxdptr == CAS_NRXDESC)
1395 sc->sc_rxdptr = 0;
1396
1397 return (0);
1398 }
1399
1400 int
1401 cas_eint(struct cas_softc *sc, u_int status)
1402 {
1403 char bits[128];
1404 if ((status & CAS_INTR_MIF) != 0) {
1405 DPRINTF(sc, ("%s: link status changed\n",
1406 device_xname(sc->sc_dev)));
1407 return (1);
1408 }
1409
1410 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1411 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1412 return (1);
1413 }
1414
1415 int
1416 cas_pint(struct cas_softc *sc)
1417 {
1418 bus_space_tag_t t = sc->sc_memt;
1419 bus_space_handle_t seb = sc->sc_memh;
1420 u_int32_t status;
1421
1422 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1423 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1424 #ifdef CAS_DEBUG
1425 if (status)
1426 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1427 #endif
1428 return (1);
1429 }
1430
1431 int
1432 cas_intr(void *v)
1433 {
1434 struct cas_softc *sc = (struct cas_softc *)v;
1435 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1436 bus_space_tag_t t = sc->sc_memt;
1437 bus_space_handle_t seb = sc->sc_memh;
1438 u_int32_t status;
1439 int r = 0;
1440 #ifdef CAS_DEBUG
1441 char bits[128];
1442 #endif
1443
1444 sc->sc_ev_intr.ev_count++;
1445
1446 status = bus_space_read_4(t, seb, CAS_STATUS);
1447 #ifdef CAS_DEBUG
1448 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1449 #endif
1450 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1451 device_xname(sc->sc_dev), (status>>19), bits));
1452
1453 if ((status & CAS_INTR_PCS) != 0)
1454 r |= cas_pint(sc);
1455
1456 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1457 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1458 r |= cas_eint(sc, status);
1459
1460 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1461 r |= cas_tint(sc, status);
1462
1463 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1464 r |= cas_rint(sc);
1465
1466 /* We should eventually do more than just print out error stats. */
1467 if (status & CAS_INTR_TX_MAC) {
1468 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1469 #ifdef CAS_DEBUG
1470 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1471 printf("%s: MAC tx fault, status %x\n",
1472 device_xname(sc->sc_dev), txstat);
1473 #endif
1474 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1475 cas_init(ifp);
1476 }
1477 if (status & CAS_INTR_RX_MAC) {
1478 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1479 #ifdef CAS_DEBUG
1480 if (rxstat & ~CAS_MAC_RX_DONE)
1481 printf("%s: MAC rx fault, status %x\n",
1482 device_xname(sc->sc_dev), rxstat);
1483 #endif
1484 /*
1485 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1486 * due to a silicon bug so handle them silently.
1487 */
1488 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1489 ifp->if_ierrors++;
1490 cas_init(ifp);
1491 }
1492 #ifdef CAS_DEBUG
1493 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1494 printf("%s: MAC rx fault, status %x\n",
1495 device_xname(sc->sc_dev), rxstat);
1496 #endif
1497 }
1498 #if NRND > 0
1499 rnd_add_uint32(&sc->rnd_source, status);
1500 #endif
1501 return (r);
1502 }
1503
1504
1505 void
1506 cas_watchdog(struct ifnet *ifp)
1507 {
1508 struct cas_softc *sc = ifp->if_softc;
1509
1510 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1511 "CAS_MAC_RX_CONFIG %x\n",
1512 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1513 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1514 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1515
1516 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1517 ++ifp->if_oerrors;
1518
1519 /* Try to get more packets going. */
1520 cas_init(ifp);
1521 }
1522
1523 /*
1524 * Initialize the MII Management Interface
1525 */
1526 void
1527 cas_mifinit(struct cas_softc *sc)
1528 {
1529 bus_space_tag_t t = sc->sc_memt;
1530 bus_space_handle_t mif = sc->sc_memh;
1531
1532 /* Configure the MIF in frame mode */
1533 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1534 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1535 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1536 }
1537
1538 /*
1539 * MII interface
1540 *
1541 * The Cassini MII interface supports at least three different operating modes:
1542 *
1543 * Bitbang mode is implemented using data, clock and output enable registers.
1544 *
1545 * Frame mode is implemented by loading a complete frame into the frame
1546 * register and polling the valid bit for completion.
1547 *
1548 * Polling mode uses the frame register but completion is indicated by
1549 * an interrupt.
1550 *
1551 */
1552 int
1553 cas_mii_readreg(device_t self, int phy, int reg)
1554 {
1555 struct cas_softc *sc = device_private(self);
1556 bus_space_tag_t t = sc->sc_memt;
1557 bus_space_handle_t mif = sc->sc_memh;
1558 int n;
1559 u_int32_t v;
1560
1561 #ifdef CAS_DEBUG
1562 if (sc->sc_debug)
1563 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1564 #endif
1565
1566 /* Construct the frame command */
1567 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1568 CAS_MIF_FRAME_READ;
1569
1570 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1571 for (n = 0; n < 100; n++) {
1572 DELAY(1);
1573 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1574 if (v & CAS_MIF_FRAME_TA0)
1575 return (v & CAS_MIF_FRAME_DATA);
1576 }
1577
1578 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1579 return (0);
1580 }
1581
1582 void
1583 cas_mii_writereg(device_t self, int phy, int reg, int val)
1584 {
1585 struct cas_softc *sc = device_private(self);
1586 bus_space_tag_t t = sc->sc_memt;
1587 bus_space_handle_t mif = sc->sc_memh;
1588 int n;
1589 u_int32_t v;
1590
1591 #ifdef CAS_DEBUG
1592 if (sc->sc_debug)
1593 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1594 phy, reg, val);
1595 #endif
1596
1597 /* Construct the frame command */
1598 v = CAS_MIF_FRAME_WRITE |
1599 (phy << CAS_MIF_PHY_SHIFT) |
1600 (reg << CAS_MIF_REG_SHIFT) |
1601 (val & CAS_MIF_FRAME_DATA);
1602
1603 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1604 for (n = 0; n < 100; n++) {
1605 DELAY(1);
1606 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1607 if (v & CAS_MIF_FRAME_TA0)
1608 return;
1609 }
1610
1611 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1612 }
1613
1614 void
1615 cas_mii_statchg(device_t self)
1616 {
1617 struct cas_softc *sc = device_private(self);
1618 #ifdef CAS_DEBUG
1619 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1620 #endif
1621 bus_space_tag_t t = sc->sc_memt;
1622 bus_space_handle_t mac = sc->sc_memh;
1623 u_int32_t v;
1624
1625 #ifdef CAS_DEBUG
1626 if (sc->sc_debug)
1627 printf("cas_mii_statchg: status change: phy = %d\n",
1628 sc->sc_phys[instance]);
1629 #endif
1630
1631 /* Set tx full duplex options */
1632 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1633 delay(10000); /* reg must be cleared and delay before changing. */
1634 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1635 CAS_MAC_TX_ENABLE;
1636 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1637 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1638 }
1639 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1640
1641 /* XIF Configuration */
1642 v = CAS_MAC_XIF_TX_MII_ENA;
1643 v |= CAS_MAC_XIF_LINK_LED;
1644
1645 /* MII needs echo disable if half duplex. */
1646 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1647 /* turn on full duplex LED */
1648 v |= CAS_MAC_XIF_FDPLX_LED;
1649 else
1650 /* half duplex -- disable echo */
1651 v |= CAS_MAC_XIF_ECHO_DISABL;
1652
1653 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1654 case IFM_1000_T: /* Gigabit using GMII interface */
1655 case IFM_1000_SX:
1656 v |= CAS_MAC_XIF_GMII_MODE;
1657 break;
1658 default:
1659 v &= ~CAS_MAC_XIF_GMII_MODE;
1660 }
1661 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1662 }
1663
1664 int
1665 cas_pcs_readreg(device_t self, int phy, int reg)
1666 {
1667 struct cas_softc *sc = device_private(self);
1668 bus_space_tag_t t = sc->sc_memt;
1669 bus_space_handle_t pcs = sc->sc_memh;
1670
1671 #ifdef CAS_DEBUG
1672 if (sc->sc_debug)
1673 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1674 #endif
1675
1676 if (phy != CAS_PHYAD_EXTERNAL)
1677 return (0);
1678
1679 switch (reg) {
1680 case MII_BMCR:
1681 reg = CAS_MII_CONTROL;
1682 break;
1683 case MII_BMSR:
1684 reg = CAS_MII_STATUS;
1685 break;
1686 case MII_ANAR:
1687 reg = CAS_MII_ANAR;
1688 break;
1689 case MII_ANLPAR:
1690 reg = CAS_MII_ANLPAR;
1691 break;
1692 case MII_EXTSR:
1693 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1694 default:
1695 return (0);
1696 }
1697
1698 return bus_space_read_4(t, pcs, reg);
1699 }
1700
1701 void
1702 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1703 {
1704 struct cas_softc *sc = device_private(self);
1705 bus_space_tag_t t = sc->sc_memt;
1706 bus_space_handle_t pcs = sc->sc_memh;
1707 int reset = 0;
1708
1709 #ifdef CAS_DEBUG
1710 if (sc->sc_debug)
1711 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1712 phy, reg, val);
1713 #endif
1714
1715 if (phy != CAS_PHYAD_EXTERNAL)
1716 return;
1717
1718 if (reg == MII_ANAR)
1719 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1720
1721 switch (reg) {
1722 case MII_BMCR:
1723 reset = (val & CAS_MII_CONTROL_RESET);
1724 reg = CAS_MII_CONTROL;
1725 break;
1726 case MII_BMSR:
1727 reg = CAS_MII_STATUS;
1728 break;
1729 case MII_ANAR:
1730 reg = CAS_MII_ANAR;
1731 break;
1732 case MII_ANLPAR:
1733 reg = CAS_MII_ANLPAR;
1734 break;
1735 default:
1736 return;
1737 }
1738
1739 bus_space_write_4(t, pcs, reg, val);
1740
1741 if (reset)
1742 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1743
1744 if (reg == CAS_MII_ANAR || reset)
1745 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1746 CAS_MII_CONFIG_ENABLE);
1747 }
1748
1749 int
1750 cas_mediachange(struct ifnet *ifp)
1751 {
1752 struct cas_softc *sc = ifp->if_softc;
1753 struct mii_data *mii = &sc->sc_mii;
1754
1755 if (mii->mii_instance) {
1756 struct mii_softc *miisc;
1757 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1758 mii_phy_reset(miisc);
1759 }
1760
1761 return (mii_mediachg(&sc->sc_mii));
1762 }
1763
1764 void
1765 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1766 {
1767 struct cas_softc *sc = ifp->if_softc;
1768
1769 mii_pollstat(&sc->sc_mii);
1770 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1771 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1772 }
1773
1774 /*
1775 * Process an ioctl request.
1776 */
1777 int
1778 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1779 {
1780 struct cas_softc *sc = ifp->if_softc;
1781 int s, error = 0;
1782
1783 s = splnet();
1784
1785 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1786 error = 0;
1787 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1788 ;
1789 else if (ifp->if_flags & IFF_RUNNING) {
1790 /*
1791 * Multicast list has changed; set the hardware filter
1792 * accordingly.
1793 */
1794 cas_iff(sc);
1795 }
1796 }
1797
1798 splx(s);
1799 return (error);
1800 }
1801
1802 static bool
1803 cas_suspend(device_t self, const pmf_qual_t *qual)
1804 {
1805 struct cas_softc *sc = device_private(self);
1806 bus_space_tag_t t = sc->sc_memt;
1807 bus_space_handle_t h = sc->sc_memh;
1808
1809 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1810 if (sc->sc_ih != NULL) {
1811 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1812 sc->sc_ih = NULL;
1813 }
1814
1815 return true;
1816 }
1817
1818 static bool
1819 cas_resume(device_t self, const pmf_qual_t *qual)
1820 {
1821 struct cas_softc *sc = device_private(self);
1822
1823 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1824 }
1825
1826 static bool
1827 cas_estintr(struct cas_softc *sc, int what)
1828 {
1829 bus_space_tag_t t = sc->sc_memt;
1830 bus_space_handle_t h = sc->sc_memh;
1831 const char *intrstr = NULL;
1832
1833 /* PCI interrupts */
1834 if (what & CAS_INTR_PCI) {
1835 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1836 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1837 IPL_NET, cas_intr, sc);
1838 if (sc->sc_ih == NULL) {
1839 aprint_error_dev(sc->sc_dev,
1840 "unable to establish interrupt");
1841 if (intrstr != NULL)
1842 aprint_error(" at %s", intrstr);
1843 aprint_error("\n");
1844 return false;
1845 }
1846
1847 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1848 }
1849
1850 /* Interrupt register */
1851 if (what & CAS_INTR_REG) {
1852 bus_space_write_4(t, h, CAS_INTMASK,
1853 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1854 CAS_INTR_TX_TAG_ERR|
1855 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1856 CAS_INTR_RX_TAG_ERR|
1857 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1858 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1859 CAS_INTR_BERR));
1860 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1861 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1862 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1863 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1864 }
1865 return true;
1866 }
1867
1868 bool
1869 cas_shutdown(device_t self, int howto)
1870 {
1871 struct cas_softc *sc = device_private(self);
1872 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1873
1874 cas_stop(ifp, 1);
1875
1876 return true;
1877 }
1878
1879 void
1880 cas_iff(struct cas_softc *sc)
1881 {
1882 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1883 struct ethercom *ec = &sc->sc_ethercom;
1884 struct ether_multi *enm;
1885 struct ether_multistep step;
1886 bus_space_tag_t t = sc->sc_memt;
1887 bus_space_handle_t h = sc->sc_memh;
1888 u_int32_t crc, hash[16], rxcfg;
1889 int i;
1890
1891 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1892 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1893 CAS_MAC_RX_PROMISC_GRP);
1894 ifp->if_flags &= ~IFF_ALLMULTI;
1895
1896 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1897 ifp->if_flags |= IFF_ALLMULTI;
1898 if (ifp->if_flags & IFF_PROMISC)
1899 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1900 else
1901 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1902 } else {
1903 /*
1904 * Set up multicast address filter by passing all multicast
1905 * addresses through a crc generator, and then using the
1906 * high order 8 bits as an index into the 256 bit logical
1907 * address filter. The high order 4 bits selects the word,
1908 * while the other 4 bits select the bit within the word
1909 * (where bit 0 is the MSB).
1910 */
1911
1912 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1913
1914 /* Clear hash table */
1915 for (i = 0; i < 16; i++)
1916 hash[i] = 0;
1917
1918 ETHER_FIRST_MULTI(step, ec, enm);
1919 while (enm != NULL) {
1920 crc = ether_crc32_le(enm->enm_addrlo,
1921 ETHER_ADDR_LEN);
1922
1923 /* Just want the 8 most significant bits. */
1924 crc >>= 24;
1925
1926 /* Set the corresponding bit in the filter. */
1927 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1928
1929 ETHER_NEXT_MULTI(step, enm);
1930 }
1931
1932 /* Now load the hash table into the chip (if we are using it) */
1933 for (i = 0; i < 16; i++) {
1934 bus_space_write_4(t, h,
1935 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1936 hash[i]);
1937 }
1938 }
1939
1940 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1941 }
1942
1943 int
1944 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1945 {
1946 u_int64_t flags;
1947 u_int32_t cur, frag, i;
1948 bus_dmamap_t map;
1949
1950 cur = frag = *bixp;
1951 map = sc->sc_txd[cur].sd_map;
1952
1953 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1954 BUS_DMA_NOWAIT) != 0) {
1955 return (ENOBUFS);
1956 }
1957
1958 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1959 bus_dmamap_unload(sc->sc_dmatag, map);
1960 return (ENOBUFS);
1961 }
1962
1963 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1964 BUS_DMASYNC_PREWRITE);
1965
1966 for (i = 0; i < map->dm_nsegs; i++) {
1967 sc->sc_txdescs[frag].cd_addr =
1968 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1969 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1970 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1971 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1972 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1973 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1974 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1975 BUS_DMASYNC_PREWRITE);
1976 cur = frag;
1977 if (++frag == CAS_NTXDESC)
1978 frag = 0;
1979 }
1980
1981 sc->sc_tx_cnt += map->dm_nsegs;
1982 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1983 sc->sc_txd[cur].sd_map = map;
1984 sc->sc_txd[cur].sd_mbuf = mhead;
1985
1986 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1987
1988 *bixp = frag;
1989
1990 /* sync descriptors */
1991
1992 return (0);
1993 }
1994
1995 /*
1996 * Transmit interrupt.
1997 */
1998 int
1999 cas_tint(struct cas_softc *sc, u_int32_t status)
2000 {
2001 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2002 struct cas_sxd *sd;
2003 u_int32_t cons, comp;
2004
2005 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
2006 cons = sc->sc_tx_cons;
2007 while (cons != comp) {
2008 sd = &sc->sc_txd[cons];
2009 if (sd->sd_mbuf != NULL) {
2010 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2011 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2012 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2013 m_freem(sd->sd_mbuf);
2014 sd->sd_mbuf = NULL;
2015 ifp->if_opackets++;
2016 }
2017 sc->sc_tx_cnt--;
2018 if (++cons == CAS_NTXDESC)
2019 cons = 0;
2020 }
2021 sc->sc_tx_cons = cons;
2022
2023 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2024 ifp->if_flags &= ~IFF_OACTIVE;
2025 if (sc->sc_tx_cnt == 0)
2026 ifp->if_timer = 0;
2027
2028 cas_start(ifp);
2029
2030 return (1);
2031 }
2032
2033 void
2034 cas_start(struct ifnet *ifp)
2035 {
2036 struct cas_softc *sc = ifp->if_softc;
2037 struct mbuf *m;
2038 u_int32_t bix;
2039
2040 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2041 return;
2042
2043 bix = sc->sc_tx_prod;
2044 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2045 IFQ_POLL(&ifp->if_snd, m);
2046 if (m == NULL)
2047 break;
2048
2049 /*
2050 * If BPF is listening on this interface, let it see the
2051 * packet before we commit it to the wire.
2052 */
2053 bpf_mtap(ifp, m);
2054
2055 /*
2056 * Encapsulate this packet and start it going...
2057 * or fail...
2058 */
2059 if (cas_encap(sc, m, &bix)) {
2060 ifp->if_flags |= IFF_OACTIVE;
2061 break;
2062 }
2063
2064 IFQ_DEQUEUE(&ifp->if_snd, m);
2065 ifp->if_timer = 5;
2066 }
2067
2068 sc->sc_tx_prod = bix;
2069 }
2070
2071 MODULE(MODULE_CLASS_DRIVER, if_cas, NULL);
2072
2073 #ifdef _MODULE
2074 #include "ioconf.c"
2075 #endif
2076
2077 static int
2078 if_cas_modcmd(modcmd_t cmd, void *opaque)
2079 {
2080 int error = 0;
2081
2082 switch (cmd) {
2083 case MODULE_CMD_INIT:
2084 #ifdef _MODULE
2085 error = config_init_component(cfdriver_ioconf_cas,
2086 cfattach_ioconf_cas, cfdata_ioconf_cas);
2087 #endif
2088 return error;
2089 case MODULE_CMD_FINI:
2090 #ifdef _MODULE
2091 error = config_fini_component(cfdriver_ioconf_cas,
2092 cfattach_ioconf_cas, cfdata_ioconf_cas);
2093 #endif
2094 return error;
2095 default:
2096 return ENOTTY;
2097 }
2098 }
2099