if_cas.c revision 1.8 1 /* $NetBSD: if_cas.c,v 1.8 2010/04/05 07:20:25 joerg Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.8 2010/04/05 07:20:25 joerg Exp $");
48
49 #include "opt_inet.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62
63 #include <machine/endian.h>
64
65 #include <uvm/uvm_extern.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80
81 #include <net/bpf.h>
82
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii_bitbang.h>
89
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcidevs.h>
93 #include <prop/proplib.h>
94
95 #include <dev/pci/if_casreg.h>
96 #include <dev/pci/if_casvar.h>
97
98 #define TRIES 10000
99
100 static bool cas_estintr(struct cas_softc *sc, int);
101 bool cas_shutdown(device_t, int);
102 static bool cas_suspend(device_t, const pmf_qual_t *);
103 static bool cas_resume(device_t, const pmf_qual_t *);
104 static int cas_detach(device_t, int);
105 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106
107 int cas_match(device_t, cfdata_t, void *);
108 void cas_attach(device_t, device_t, void *);
109
110
111 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113 DVF_DETACH_SHUTDOWN);
114
115 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116
117 void cas_config(struct cas_softc *, const uint8_t *);
118 void cas_start(struct ifnet *);
119 void cas_stop(struct ifnet *, int);
120 int cas_ioctl(struct ifnet *, u_long, void *);
121 void cas_tick(void *);
122 void cas_watchdog(struct ifnet *);
123 int cas_init(struct ifnet *);
124 void cas_init_regs(struct cas_softc *);
125 int cas_ringsize(int);
126 int cas_cringsize(int);
127 int cas_meminit(struct cas_softc *);
128 void cas_mifinit(struct cas_softc *);
129 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 u_int32_t, u_int32_t);
131 void cas_reset(struct cas_softc *);
132 int cas_reset_rx(struct cas_softc *);
133 int cas_reset_tx(struct cas_softc *);
134 int cas_disable_rx(struct cas_softc *);
135 int cas_disable_tx(struct cas_softc *);
136 void cas_rxdrain(struct cas_softc *);
137 int cas_add_rxbuf(struct cas_softc *, int idx);
138 void cas_iff(struct cas_softc *);
139 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140
141 /* MII methods & callbacks */
142 int cas_mii_readreg(device_t, int, int);
143 void cas_mii_writereg(device_t, int, int, int);
144 void cas_mii_statchg(device_t);
145 int cas_pcs_readreg(device_t, int, int);
146 void cas_pcs_writereg(device_t, int, int, int);
147
148 int cas_mediachange(struct ifnet *);
149 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
150
151 int cas_eint(struct cas_softc *, u_int);
152 int cas_rint(struct cas_softc *);
153 int cas_tint(struct cas_softc *, u_int32_t);
154 int cas_pint(struct cas_softc *);
155 int cas_intr(void *);
156
157 #ifdef CAS_DEBUG
158 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 printf x
160 #else
161 #define DPRINTF(sc, x) /* nothing */
162 #endif
163
164 int
165 cas_match(device_t parent, cfdata_t cf, void *aux)
166 {
167 struct pci_attach_args *pa = aux;
168
169 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 return 1;
172
173 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 return 1;
176
177 return 0;
178 }
179
180 #define PROMHDR_PTR_DATA 0x18
181 #define PROMDATA_PTR_VPD 0x08
182 #define PROMDATA_DATA2 0x0a
183
184 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 static const u_int8_t cas_promdat[] = {
186 'P', 'C', 'I', 'R',
187 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 };
190
191 static const u_int8_t cas_promdat2[] = {
192 0x18, 0x00, /* structure length */
193 0x00, /* structure revision */
194 0x00, /* interface revision */
195 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
196 PCI_CLASS_NETWORK /* class code */
197 };
198
199 int
200 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201 uint8_t *enaddr)
202 {
203 struct pci_vpd_largeres *res;
204 struct pci_vpd *vpd;
205 bus_space_handle_t romh;
206 bus_space_tag_t romt;
207 bus_size_t romsize = 0;
208 u_int8_t buf[32], *desc;
209 pcireg_t address;
210 int dataoff, vpdoff, len;
211 int rv = -1;
212
213 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214 &romt, &romh, NULL, &romsize))
215 return (-1);
216
217 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218 address |= PCI_MAPREG_ROM_ENABLE;
219 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220
221 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223 goto fail;
224
225 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226 if (dataoff < 0x1c)
227 goto fail;
228
229 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230 if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232 goto fail;
233
234 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235 if (vpdoff < 0x1c)
236 goto fail;
237
238 next:
239 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240 if (!PCI_VPDRES_ISLARGE(buf[0]))
241 goto fail;
242
243 res = (struct pci_vpd_largeres *)buf;
244 vpdoff += sizeof(*res);
245
246 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249 /* Skip identifier string. */
250 vpdoff += len;
251 goto next;
252
253 case PCI_VPDRES_TYPE_VPD:
254 while (len > 0) {
255 bus_space_read_region_1(romt, romh, vpdoff,
256 buf, sizeof(buf));
257
258 vpd = (struct pci_vpd *)buf;
259 vpdoff += sizeof(*vpd) + vpd->vpd_len;
260 len -= sizeof(*vpd) + vpd->vpd_len;
261
262 /*
263 * We're looking for an "Enhanced" VPD...
264 */
265 if (vpd->vpd_key0 != 'Z')
266 continue;
267
268 desc = buf + sizeof(*vpd);
269
270 /*
271 * ...which is an instance property...
272 */
273 if (desc[0] != 'I')
274 continue;
275 desc += 3;
276
277 /*
278 * ...that's a byte array with the proper
279 * length for a MAC address...
280 */
281 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282 continue;
283 desc += 2;
284
285 /*
286 * ...named "local-mac-address".
287 */
288 if (strcmp(desc, "local-mac-address") != 0)
289 continue;
290 desc += strlen("local-mac-address") + 1;
291
292 memcpy(enaddr, desc, ETHER_ADDR_LEN);
293 rv = 0;
294 }
295 break;
296
297 default:
298 goto fail;
299 }
300
301 fail:
302 if (romsize != 0)
303 bus_space_unmap(romt, romh, romsize);
304
305 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306 address &= ~PCI_MAPREG_ROM_ENABLE;
307 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308
309 return (rv);
310 }
311
312 void
313 cas_attach(device_t parent, device_t self, void *aux)
314 {
315 struct pci_attach_args *pa = aux;
316 struct cas_softc *sc = device_private(self);
317 char devinfo[256];
318 prop_data_t data;
319 uint8_t enaddr[ETHER_ADDR_LEN];
320
321 sc->sc_dev = self;
322 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323 sc->sc_rev = PCI_REVISION(pa->pa_class);
324 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325 sc->sc_dmatag = pa->pa_dmat;
326
327 #define PCI_CAS_BASEADDR 0x10
328 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330 aprint_error_dev(sc->sc_dev,
331 "unable to map device registers\n");
332 return;
333 }
334
335 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336 "mac-address")) != NULL)
337 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338 else if (cas_pci_enaddr(sc, pa, enaddr) != 0)
339 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340
341 sc->sc_burst = 16; /* XXX */
342
343 sc->sc_att_stage = CAS_ATT_BACKEND_0;
344
345 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
346 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
347 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
348 return;
349 }
350 sc->sc_pc = pa->pa_pc;
351 if (!cas_estintr(sc, CAS_INTR_PCI)) {
352 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
353 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
354 return;
355 }
356
357 sc->sc_att_stage = CAS_ATT_BACKEND_1;
358
359 /*
360 * call the main configure
361 */
362 cas_config(sc, enaddr);
363
364 if (pmf_device_register1(sc->sc_dev,
365 cas_suspend, cas_resume, cas_shutdown))
366 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
367 else
368 aprint_error_dev(sc->sc_dev,
369 "could not establish power handlers\n");
370
371 sc->sc_att_stage = CAS_ATT_FINISHED;
372 /*FALLTHROUGH*/
373 }
374
375 /*
376 * cas_config:
377 *
378 * Attach a Cassini interface to the system.
379 */
380 void
381 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
382 {
383 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384 struct mii_data *mii = &sc->sc_mii;
385 struct mii_softc *child;
386 int i, error;
387
388 /* Make sure the chip is stopped. */
389 ifp->if_softc = sc;
390 cas_reset(sc);
391
392 /*
393 * Allocate the control data structures, and create and load the
394 * DMA map for it.
395 */
396 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
397 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
398 1, &sc->sc_cdnseg, 0)) != 0) {
399 aprint_error_dev(sc->sc_dev,
400 "unable to allocate control data, error = %d\n",
401 error);
402 cas_partial_detach(sc, CAS_ATT_0);
403 }
404
405 /* XXX should map this in with correct endianness */
406 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
407 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
408 BUS_DMA_COHERENT)) != 0) {
409 aprint_error_dev(sc->sc_dev,
410 "unable to map control data, error = %d\n", error);
411 cas_partial_detach(sc, CAS_ATT_1);
412 }
413
414 if ((error = bus_dmamap_create(sc->sc_dmatag,
415 sizeof(struct cas_control_data), 1,
416 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
417 aprint_error_dev(sc->sc_dev,
418 "unable to create control data DMA map, error = %d\n", error);
419 cas_partial_detach(sc, CAS_ATT_2);
420 }
421
422 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
423 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
424 0)) != 0) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to load control data DMA map, error = %d\n",
427 error);
428 cas_partial_detach(sc, CAS_ATT_3);
429 }
430
431 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
432
433 /*
434 * Create the receive buffer DMA maps.
435 */
436 for (i = 0; i < CAS_NRXDESC; i++) {
437 bus_dma_segment_t seg;
438 char *kva;
439 int rseg;
440
441 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
442 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
443 aprint_error_dev(sc->sc_dev,
444 "unable to alloc rx DMA mem %d, error = %d\n",
445 i, error);
446 cas_partial_detach(sc, CAS_ATT_5);
447 }
448 sc->sc_rxsoft[i].rxs_dmaseg = seg;
449
450 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
451 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
452 aprint_error_dev(sc->sc_dev,
453 "unable to alloc rx DMA mem %d, error = %d\n",
454 i, error);
455 cas_partial_detach(sc, CAS_ATT_5);
456 }
457 sc->sc_rxsoft[i].rxs_kva = kva;
458
459 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
460 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
461 aprint_error_dev(sc->sc_dev,
462 "unable to create rx DMA map %d, error = %d\n",
463 i, error);
464 cas_partial_detach(sc, CAS_ATT_5);
465 }
466
467 if ((error = bus_dmamap_load(sc->sc_dmatag,
468 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
469 BUS_DMA_NOWAIT)) != 0) {
470 aprint_error_dev(sc->sc_dev,
471 "unable to load rx DMA map %d, error = %d\n",
472 i, error);
473 cas_partial_detach(sc, CAS_ATT_5);
474 }
475 }
476
477 /*
478 * Create the transmit buffer DMA maps.
479 */
480 for (i = 0; i < CAS_NTXDESC; i++) {
481 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
482 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
483 &sc->sc_txd[i].sd_map)) != 0) {
484 aprint_error_dev(sc->sc_dev,
485 "unable to create tx DMA map %d, error = %d\n",
486 i, error);
487 cas_partial_detach(sc, CAS_ATT_6);
488 }
489 sc->sc_txd[i].sd_mbuf = NULL;
490 }
491
492 /*
493 * From this point forward, the attachment cannot fail. A failure
494 * before this point releases all resources that may have been
495 * allocated.
496 */
497
498 /* Announce ourselves. */
499 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
500 ether_sprintf(enaddr));
501 aprint_naive(": Ethernet controller\n");
502
503 /* Get RX FIFO size */
504 sc->sc_rxfifosize = 16 * 1024;
505
506 /* Initialize ifnet structure. */
507 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
508 ifp->if_softc = sc;
509 ifp->if_flags =
510 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
511 ifp->if_start = cas_start;
512 ifp->if_ioctl = cas_ioctl;
513 ifp->if_watchdog = cas_watchdog;
514 ifp->if_stop = cas_stop;
515 ifp->if_init = cas_init;
516 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
517 IFQ_SET_READY(&ifp->if_snd);
518
519 /* Initialize ifmedia structures and MII info */
520 mii->mii_ifp = ifp;
521 mii->mii_readreg = cas_mii_readreg;
522 mii->mii_writereg = cas_mii_writereg;
523 mii->mii_statchg = cas_mii_statchg;
524
525 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
526 sc->sc_ethercom.ec_mii = mii;
527
528 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
529
530 cas_mifinit(sc);
531
532 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
533 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
534 bus_space_write_4(sc->sc_memt, sc->sc_memh,
535 CAS_MIF_CONFIG, sc->sc_mif_config);
536 }
537
538 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
539 MII_OFFSET_ANY, 0);
540
541 child = LIST_FIRST(&mii->mii_phys);
542 if (child == NULL &&
543 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
544 /*
545 * Try the external PCS SERDES if we didn't find any
546 * MII devices.
547 */
548 bus_space_write_4(sc->sc_memt, sc->sc_memh,
549 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
550
551 bus_space_write_4(sc->sc_memt, sc->sc_memh,
552 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
553
554 mii->mii_readreg = cas_pcs_readreg;
555 mii->mii_writereg = cas_pcs_writereg;
556
557 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
558 MII_OFFSET_ANY, MIIF_NOISOLATE);
559 }
560
561 child = LIST_FIRST(&mii->mii_phys);
562 if (child == NULL) {
563 /* No PHY attached */
564 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
565 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
566 } else {
567 /*
568 * Walk along the list of attached MII devices and
569 * establish an `MII instance' to `phy number'
570 * mapping. We'll use this mapping in media change
571 * requests to determine which phy to use to program
572 * the MIF configuration register.
573 */
574 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
575 /*
576 * Note: we support just two PHYs: the built-in
577 * internal device and an external on the MII
578 * connector.
579 */
580 if (child->mii_phy > 1 || child->mii_inst > 1) {
581 aprint_error_dev(sc->sc_dev,
582 "cannot accommodate MII device %s"
583 " at phy %d, instance %d\n",
584 device_xname(child->mii_dev),
585 child->mii_phy, child->mii_inst);
586 continue;
587 }
588
589 sc->sc_phys[child->mii_inst] = child->mii_phy;
590 }
591
592 /*
593 * XXX - we can really do the following ONLY if the
594 * phy indeed has the auto negotiation capability!!
595 */
596 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
597 }
598
599 /* claim 802.1q capability */
600 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
601
602 /* Attach the interface. */
603 if_attach(ifp);
604 ether_ifattach(ifp, enaddr);
605
606 #if NRND > 0
607 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
608 RND_TYPE_NET, 0);
609 #endif
610
611 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
612 NULL, device_xname(sc->sc_dev), "interrupts");
613
614 callout_init(&sc->sc_tick_ch, 0);
615
616 return;
617 }
618
619 int
620 cas_detach(device_t self, int flags)
621 {
622 int i;
623 struct cas_softc *sc = device_private(self);
624 bus_space_tag_t t = sc->sc_memt;
625 bus_space_handle_t h = sc->sc_memh;
626 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
627
628 /*
629 * Free any resources we've allocated during the failed attach
630 * attempt. Do this in reverse order and fall through.
631 */
632 switch (sc->sc_att_stage) {
633 case CAS_ATT_FINISHED:
634 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
635 pmf_device_deregister(self);
636 cas_stop(&sc->sc_ethercom.ec_if, 1);
637 evcnt_detach(&sc->sc_ev_intr);
638
639 #if NRND > 0
640 rnd_detach_source(&sc->rnd_source);
641 #endif
642
643 ether_ifdetach(ifp);
644 if_detach(ifp);
645 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
646
647 callout_destroy(&sc->sc_tick_ch);
648
649 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
650
651 /*FALLTHROUGH*/
652 case CAS_ATT_MII:
653 case CAS_ATT_7:
654 case CAS_ATT_6:
655 for (i = 0; i < CAS_NTXDESC; i++) {
656 if (sc->sc_txd[i].sd_map != NULL)
657 bus_dmamap_destroy(sc->sc_dmatag,
658 sc->sc_txd[i].sd_map);
659 }
660 /*FALLTHROUGH*/
661 case CAS_ATT_5:
662 for (i = 0; i < CAS_NRXDESC; i++) {
663 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
664 bus_dmamap_unload(sc->sc_dmatag,
665 sc->sc_rxsoft[i].rxs_dmamap);
666 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
667 bus_dmamap_destroy(sc->sc_dmatag,
668 sc->sc_rxsoft[i].rxs_dmamap);
669 if (sc->sc_rxsoft[i].rxs_kva != NULL)
670 bus_dmamem_unmap(sc->sc_dmatag,
671 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
672 /* XXX need to check that bus_dmamem_alloc suceeded
673 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
674 */
675 bus_dmamem_free(sc->sc_dmatag,
676 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
677 }
678 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
679 /*FALLTHROUGH*/
680 case CAS_ATT_4:
681 case CAS_ATT_3:
682 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
683 /*FALLTHROUGH*/
684 case CAS_ATT_2:
685 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
686 sizeof(struct cas_control_data));
687 /*FALLTHROUGH*/
688 case CAS_ATT_1:
689 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
690 /*FALLTHROUGH*/
691 case CAS_ATT_0:
692 sc->sc_att_stage = CAS_ATT_0;
693 /*FALLTHROUGH*/
694 case CAS_ATT_BACKEND_2:
695 case CAS_ATT_BACKEND_1:
696 if (sc->sc_ih != NULL) {
697 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
698 sc->sc_ih = NULL;
699 }
700 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
701 /*FALLTHROUGH*/
702 case CAS_ATT_BACKEND_0:
703 break;
704 }
705 return 0;
706 }
707
708 static void
709 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
710 {
711 cfattach_t ca = device_cfattach(sc->sc_dev);
712
713 sc->sc_att_stage = stage;
714 (*ca->ca_detach)(sc->sc_dev, 0);
715 }
716
717 void
718 cas_tick(void *arg)
719 {
720 struct cas_softc *sc = arg;
721 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
722 bus_space_tag_t t = sc->sc_memt;
723 bus_space_handle_t mac = sc->sc_memh;
724 int s;
725 u_int32_t v;
726
727 /* unload collisions counters */
728 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
729 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
730 ifp->if_collisions += v +
731 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
732 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
733 ifp->if_oerrors += v;
734
735 /* read error counters */
736 ifp->if_ierrors +=
737 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
738 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
739 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
740 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
741
742 /* clear the hardware counters */
743 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
744 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
745 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
746 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
747 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
748 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
749 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
750 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
751
752 s = splnet();
753 mii_tick(&sc->sc_mii);
754 splx(s);
755
756 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
757 }
758
759 int
760 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
761 u_int32_t clr, u_int32_t set)
762 {
763 int i;
764 u_int32_t reg;
765
766 for (i = TRIES; i--; DELAY(100)) {
767 reg = bus_space_read_4(sc->sc_memt, h, r);
768 if ((reg & clr) == 0 && (reg & set) == set)
769 return (1);
770 }
771
772 return (0);
773 }
774
775 void
776 cas_reset(struct cas_softc *sc)
777 {
778 bus_space_tag_t t = sc->sc_memt;
779 bus_space_handle_t h = sc->sc_memh;
780 int s;
781
782 s = splnet();
783 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
784 cas_reset_rx(sc);
785 cas_reset_tx(sc);
786
787 /* Do a full reset */
788 bus_space_write_4(t, h, CAS_RESET,
789 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
790 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
791 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
792 splx(s);
793 }
794
795
796 /*
797 * cas_rxdrain:
798 *
799 * Drain the receive queue.
800 */
801 void
802 cas_rxdrain(struct cas_softc *sc)
803 {
804 /* Nothing to do yet. */
805 }
806
807 /*
808 * Reset the whole thing.
809 */
810 void
811 cas_stop(struct ifnet *ifp, int disable)
812 {
813 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
814 struct cas_sxd *sd;
815 u_int32_t i;
816
817 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
818
819 callout_stop(&sc->sc_tick_ch);
820
821 /*
822 * Mark the interface down and cancel the watchdog timer.
823 */
824 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
825 ifp->if_timer = 0;
826
827 mii_down(&sc->sc_mii);
828
829 cas_reset_rx(sc);
830 cas_reset_tx(sc);
831
832 /*
833 * Release any queued transmit buffers.
834 */
835 for (i = 0; i < CAS_NTXDESC; i++) {
836 sd = &sc->sc_txd[i];
837 if (sd->sd_mbuf != NULL) {
838 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
839 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
840 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
841 m_freem(sd->sd_mbuf);
842 sd->sd_mbuf = NULL;
843 }
844 }
845 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
846
847 if (disable)
848 cas_rxdrain(sc);
849 }
850
851
852 /*
853 * Reset the receiver
854 */
855 int
856 cas_reset_rx(struct cas_softc *sc)
857 {
858 bus_space_tag_t t = sc->sc_memt;
859 bus_space_handle_t h = sc->sc_memh;
860
861 /*
862 * Resetting while DMA is in progress can cause a bus hang, so we
863 * disable DMA first.
864 */
865 cas_disable_rx(sc);
866 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
867 /* Wait till it finishes */
868 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
869 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
870 /* Wait 5ms extra. */
871 delay(5000);
872
873 /* Finally, reset the ERX */
874 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
875 /* Wait till it finishes */
876 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
877 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
878 return (1);
879 }
880 return (0);
881 }
882
883
884 /*
885 * Reset the transmitter
886 */
887 int
888 cas_reset_tx(struct cas_softc *sc)
889 {
890 bus_space_tag_t t = sc->sc_memt;
891 bus_space_handle_t h = sc->sc_memh;
892
893 /*
894 * Resetting while DMA is in progress can cause a bus hang, so we
895 * disable DMA first.
896 */
897 cas_disable_tx(sc);
898 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
899 /* Wait till it finishes */
900 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
901 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
902 /* Wait 5ms extra. */
903 delay(5000);
904
905 /* Finally, reset the ETX */
906 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
907 /* Wait till it finishes */
908 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
909 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
910 return (1);
911 }
912 return (0);
913 }
914
915 /*
916 * Disable receiver.
917 */
918 int
919 cas_disable_rx(struct cas_softc *sc)
920 {
921 bus_space_tag_t t = sc->sc_memt;
922 bus_space_handle_t h = sc->sc_memh;
923 u_int32_t cfg;
924
925 /* Flip the enable bit */
926 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
927 cfg &= ~CAS_MAC_RX_ENABLE;
928 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
929
930 /* Wait for it to finish */
931 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
932 }
933
934 /*
935 * Disable transmitter.
936 */
937 int
938 cas_disable_tx(struct cas_softc *sc)
939 {
940 bus_space_tag_t t = sc->sc_memt;
941 bus_space_handle_t h = sc->sc_memh;
942 u_int32_t cfg;
943
944 /* Flip the enable bit */
945 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
946 cfg &= ~CAS_MAC_TX_ENABLE;
947 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
948
949 /* Wait for it to finish */
950 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
951 }
952
953 /*
954 * Initialize interface.
955 */
956 int
957 cas_meminit(struct cas_softc *sc)
958 {
959 struct cas_rxsoft *rxs;
960 int i, error;
961
962 rxs = (void *)&error;
963
964 /*
965 * Initialize the transmit descriptor ring.
966 */
967 for (i = 0; i < CAS_NTXDESC; i++) {
968 sc->sc_txdescs[i].cd_flags = 0;
969 sc->sc_txdescs[i].cd_addr = 0;
970 }
971 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
972 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
973
974 /*
975 * Initialize the receive descriptor and receive job
976 * descriptor rings.
977 */
978 for (i = 0; i < CAS_NRXDESC; i++)
979 CAS_INIT_RXDESC(sc, i, i);
980 sc->sc_rxdptr = 0;
981 sc->sc_rxptr = 0;
982
983 /*
984 * Initialize the receive completion ring.
985 */
986 for (i = 0; i < CAS_NRXCOMP; i++) {
987 sc->sc_rxcomps[i].cc_word[0] = 0;
988 sc->sc_rxcomps[i].cc_word[1] = 0;
989 sc->sc_rxcomps[i].cc_word[2] = 0;
990 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
991 CAS_CDRXCSYNC(sc, i,
992 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
993 }
994
995 return (0);
996 }
997
998 int
999 cas_ringsize(int sz)
1000 {
1001 switch (sz) {
1002 case 32:
1003 return CAS_RING_SZ_32;
1004 case 64:
1005 return CAS_RING_SZ_64;
1006 case 128:
1007 return CAS_RING_SZ_128;
1008 case 256:
1009 return CAS_RING_SZ_256;
1010 case 512:
1011 return CAS_RING_SZ_512;
1012 case 1024:
1013 return CAS_RING_SZ_1024;
1014 case 2048:
1015 return CAS_RING_SZ_2048;
1016 case 4096:
1017 return CAS_RING_SZ_4096;
1018 case 8192:
1019 return CAS_RING_SZ_8192;
1020 default:
1021 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1022 sz);
1023 return CAS_RING_SZ_32;
1024 }
1025 }
1026
1027 int
1028 cas_cringsize(int sz)
1029 {
1030 int i;
1031
1032 for (i = 0; i < 9; i++)
1033 if (sz == (128 << i))
1034 return i;
1035
1036 aprint_error("cas: invalid completion ring size %d\n", sz);
1037 return 128;
1038 }
1039
1040 /*
1041 * Initialization of interface; set up initialization block
1042 * and transmit/receive descriptor rings.
1043 */
1044 int
1045 cas_init(struct ifnet *ifp)
1046 {
1047 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1048 bus_space_tag_t t = sc->sc_memt;
1049 bus_space_handle_t h = sc->sc_memh;
1050 int s;
1051 u_int max_frame_size;
1052 u_int32_t v;
1053
1054 s = splnet();
1055
1056 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1057 /*
1058 * Initialization sequence. The numbered steps below correspond
1059 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1060 * Channel Engine manual (part of the PCIO manual).
1061 * See also the STP2002-STQ document from Sun Microsystems.
1062 */
1063
1064 /* step 1 & 2. Reset the Ethernet Channel */
1065 cas_stop(ifp, 0);
1066 cas_reset(sc);
1067 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1068
1069 /* Re-initialize the MIF */
1070 cas_mifinit(sc);
1071
1072 /* step 3. Setup data structures in host memory */
1073 cas_meminit(sc);
1074
1075 /* step 4. TX MAC registers & counters */
1076 cas_init_regs(sc);
1077 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1078 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1079 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1080
1081 /* step 5. RX MAC registers & counters */
1082 cas_iff(sc);
1083
1084 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1085 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1086 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1087 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1088 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1089
1090 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1091 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1092 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1093 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1094
1095 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1096 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1097 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1098 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1099
1100 if (CAS_PLUS(sc)) {
1101 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1102 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1103 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1104 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1105 CAS_CDRXADDR2(sc, 0));
1106 }
1107
1108 /* step 8. Global Configuration & Interrupt Mask */
1109 cas_estintr(sc, CAS_INTR_REG);
1110
1111 /* step 9. ETX Configuration: use mostly default values */
1112
1113 /* Enable DMA */
1114 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1115 bus_space_write_4(t, h, CAS_TX_CONFIG,
1116 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1117 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1118
1119 /* step 10. ERX Configuration */
1120
1121 /* Encode Receive Descriptor ring size */
1122 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1123 if (CAS_PLUS(sc))
1124 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1125
1126 /* Encode Receive Completion ring size */
1127 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1128
1129 /* Enable DMA */
1130 bus_space_write_4(t, h, CAS_RX_CONFIG,
1131 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1132
1133 /*
1134 * The following value is for an OFF Threshold of about 3/4 full
1135 * and an ON Threshold of 1/4 full.
1136 */
1137 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1138 (3 * sc->sc_rxfifosize / 256) |
1139 ((sc->sc_rxfifosize / 256) << 12));
1140 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1141
1142 /* step 11. Configure Media */
1143 mii_ifmedia_change(&sc->sc_mii);
1144
1145 /* step 12. RX_MAC Configuration Register */
1146 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1147 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1148 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1149
1150 /* step 14. Issue Transmit Pending command */
1151
1152 /* step 15. Give the receiver a swift kick */
1153 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1154 if (CAS_PLUS(sc))
1155 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1156
1157 /* Start the one second timer. */
1158 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1159
1160 ifp->if_flags |= IFF_RUNNING;
1161 ifp->if_flags &= ~IFF_OACTIVE;
1162 ifp->if_timer = 0;
1163 splx(s);
1164
1165 return (0);
1166 }
1167
1168 void
1169 cas_init_regs(struct cas_softc *sc)
1170 {
1171 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1172 bus_space_tag_t t = sc->sc_memt;
1173 bus_space_handle_t h = sc->sc_memh;
1174 const u_char *laddr = CLLADDR(ifp->if_sadl);
1175 u_int32_t v, r;
1176
1177 /* These regs are not cleared on reset */
1178 sc->sc_inited = 0;
1179 if (!sc->sc_inited) {
1180 /* Load recommended values */
1181 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1182 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1183 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1184
1185 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1186 /* Max frame and max burst size */
1187 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1188 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1189
1190 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1191 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1192 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1193 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1194 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1195 ((laddr[5]<<8)|laddr[4])&0x3ff);
1196
1197 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1198 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1199 bus_space_write_4(t, h, r, 0);
1200
1201 /* MAC control addr set to 0:1:c2:0:1:80 */
1202 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1203 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1204 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1205
1206 /* MAC filter addr set to 0:0:0:0:0:0 */
1207 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1208 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1209 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1210
1211 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1212 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1213
1214 /* Hash table initialized to 0 */
1215 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1216 bus_space_write_4(t, h, r, 0);
1217
1218 sc->sc_inited = 1;
1219 }
1220
1221 /* Counters need to be zeroed */
1222 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1223 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1224 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1225 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1226 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1227 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1228 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1229 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1230 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1231 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1232 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1233
1234 /* Un-pause stuff */
1235 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1236
1237 /*
1238 * Set the station address.
1239 */
1240 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1241 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1242 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1243 }
1244
1245 /*
1246 * Receive interrupt.
1247 */
1248 int
1249 cas_rint(struct cas_softc *sc)
1250 {
1251 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1252 bus_space_tag_t t = sc->sc_memt;
1253 bus_space_handle_t h = sc->sc_memh;
1254 struct cas_rxsoft *rxs;
1255 struct mbuf *m;
1256 u_int64_t word[4];
1257 int len, off, idx;
1258 int i, skip;
1259 void *cp;
1260
1261 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1262 CAS_CDRXCSYNC(sc, i,
1263 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1264
1265 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1266 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1267 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1268 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1269
1270 /* Stop if the hardware still owns the descriptor. */
1271 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1272 break;
1273
1274 len = CAS_RC1_HDR_LEN(word[1]);
1275 if (len > 0) {
1276 off = CAS_RC1_HDR_OFF(word[1]);
1277 idx = CAS_RC1_HDR_IDX(word[1]);
1278 rxs = &sc->sc_rxsoft[idx];
1279
1280 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1281 idx, off, len));
1282
1283 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1284 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1285
1286 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1287 m = m_devget(cp, len, 0, ifp, NULL);
1288
1289 if (word[0] & CAS_RC0_RELEASE_HDR)
1290 cas_add_rxbuf(sc, idx);
1291
1292 if (m != NULL) {
1293
1294 /*
1295 * Pass this up to any BPF listeners, but only
1296 * pass it up the stack if its for us.
1297 */
1298 bpf_mtap(ifp, m);
1299
1300 ifp->if_ipackets++;
1301 m->m_pkthdr.csum_flags = 0;
1302 (*ifp->if_input)(ifp, m);
1303 } else
1304 ifp->if_ierrors++;
1305 }
1306
1307 len = CAS_RC0_DATA_LEN(word[0]);
1308 if (len > 0) {
1309 off = CAS_RC0_DATA_OFF(word[0]);
1310 idx = CAS_RC0_DATA_IDX(word[0]);
1311 rxs = &sc->sc_rxsoft[idx];
1312
1313 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1314 idx, off, len));
1315
1316 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1317 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1318
1319 /* XXX We should not be copying the packet here. */
1320 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1321 m = m_devget(cp, len, 0, ifp, NULL);
1322
1323 if (word[0] & CAS_RC0_RELEASE_DATA)
1324 cas_add_rxbuf(sc, idx);
1325
1326 if (m != NULL) {
1327 /*
1328 * Pass this up to any BPF listeners, but only
1329 * pass it up the stack if its for us.
1330 */
1331 bpf_mtap(ifp, m);
1332
1333 ifp->if_ipackets++;
1334 m->m_pkthdr.csum_flags = 0;
1335 (*ifp->if_input)(ifp, m);
1336 } else
1337 ifp->if_ierrors++;
1338 }
1339
1340 if (word[0] & CAS_RC0_SPLIT)
1341 aprint_error_dev(sc->sc_dev, "split packet\n");
1342
1343 skip = CAS_RC0_SKIP(word[0]);
1344 }
1345
1346 while (sc->sc_rxptr != i) {
1347 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1348 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1349 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1350 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1351 CAS_DMA_WRITE(CAS_RC3_OWN);
1352 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1353 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1354
1355 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1356 }
1357
1358 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1359
1360 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1361 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1362
1363 return (1);
1364 }
1365
1366 /*
1367 * cas_add_rxbuf:
1368 *
1369 * Add a receive buffer to the indicated descriptor.
1370 */
1371 int
1372 cas_add_rxbuf(struct cas_softc *sc, int idx)
1373 {
1374 bus_space_tag_t t = sc->sc_memt;
1375 bus_space_handle_t h = sc->sc_memh;
1376
1377 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1378
1379 if ((sc->sc_rxdptr % 4) == 0)
1380 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1381
1382 if (++sc->sc_rxdptr == CAS_NRXDESC)
1383 sc->sc_rxdptr = 0;
1384
1385 return (0);
1386 }
1387
1388 int
1389 cas_eint(struct cas_softc *sc, u_int status)
1390 {
1391 char bits[128];
1392 if ((status & CAS_INTR_MIF) != 0) {
1393 DPRINTF(sc, ("%s: link status changed\n",
1394 device_xname(sc->sc_dev)));
1395 return (1);
1396 }
1397
1398 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1399 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1400 return (1);
1401 }
1402
1403 int
1404 cas_pint(struct cas_softc *sc)
1405 {
1406 bus_space_tag_t t = sc->sc_memt;
1407 bus_space_handle_t seb = sc->sc_memh;
1408 u_int32_t status;
1409
1410 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1411 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1412 #ifdef CAS_DEBUG
1413 if (status)
1414 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1415 #endif
1416 return (1);
1417 }
1418
1419 int
1420 cas_intr(void *v)
1421 {
1422 struct cas_softc *sc = (struct cas_softc *)v;
1423 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1424 bus_space_tag_t t = sc->sc_memt;
1425 bus_space_handle_t seb = sc->sc_memh;
1426 u_int32_t status;
1427 int r = 0;
1428 #ifdef CAS_DEBUG
1429 char bits[128];
1430 #endif
1431
1432 sc->sc_ev_intr.ev_count++;
1433
1434 status = bus_space_read_4(t, seb, CAS_STATUS);
1435 #ifdef CAS_DEBUG
1436 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1437 #endif
1438 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1439 device_xname(sc->sc_dev), (status>>19), bits));
1440
1441 if ((status & CAS_INTR_PCS) != 0)
1442 r |= cas_pint(sc);
1443
1444 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1445 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1446 r |= cas_eint(sc, status);
1447
1448 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1449 r |= cas_tint(sc, status);
1450
1451 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1452 r |= cas_rint(sc);
1453
1454 /* We should eventually do more than just print out error stats. */
1455 if (status & CAS_INTR_TX_MAC) {
1456 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1457 #ifdef CAS_DEBUG
1458 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1459 printf("%s: MAC tx fault, status %x\n",
1460 device_xname(sc->sc_dev), txstat);
1461 #endif
1462 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1463 cas_init(ifp);
1464 }
1465 if (status & CAS_INTR_RX_MAC) {
1466 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1467 #ifdef CAS_DEBUG
1468 if (rxstat & ~CAS_MAC_RX_DONE)
1469 printf("%s: MAC rx fault, status %x\n",
1470 device_xname(sc->sc_dev), rxstat);
1471 #endif
1472 /*
1473 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1474 * due to a silicon bug so handle them silently.
1475 */
1476 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1477 ifp->if_ierrors++;
1478 cas_init(ifp);
1479 }
1480 #ifdef CAS_DEBUG
1481 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1482 printf("%s: MAC rx fault, status %x\n",
1483 device_xname(sc->sc_dev), rxstat);
1484 #endif
1485 }
1486 #if NRND > 0
1487 rnd_add_uint32(&sc->rnd_source, status);
1488 #endif
1489 return (r);
1490 }
1491
1492
1493 void
1494 cas_watchdog(struct ifnet *ifp)
1495 {
1496 struct cas_softc *sc = ifp->if_softc;
1497
1498 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1499 "CAS_MAC_RX_CONFIG %x\n",
1500 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1501 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1502 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1503
1504 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1505 ++ifp->if_oerrors;
1506
1507 /* Try to get more packets going. */
1508 cas_init(ifp);
1509 }
1510
1511 /*
1512 * Initialize the MII Management Interface
1513 */
1514 void
1515 cas_mifinit(struct cas_softc *sc)
1516 {
1517 bus_space_tag_t t = sc->sc_memt;
1518 bus_space_handle_t mif = sc->sc_memh;
1519
1520 /* Configure the MIF in frame mode */
1521 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1522 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1523 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1524 }
1525
1526 /*
1527 * MII interface
1528 *
1529 * The Cassini MII interface supports at least three different operating modes:
1530 *
1531 * Bitbang mode is implemented using data, clock and output enable registers.
1532 *
1533 * Frame mode is implemented by loading a complete frame into the frame
1534 * register and polling the valid bit for completion.
1535 *
1536 * Polling mode uses the frame register but completion is indicated by
1537 * an interrupt.
1538 *
1539 */
1540 int
1541 cas_mii_readreg(device_t self, int phy, int reg)
1542 {
1543 struct cas_softc *sc = device_private(self);
1544 bus_space_tag_t t = sc->sc_memt;
1545 bus_space_handle_t mif = sc->sc_memh;
1546 int n;
1547 u_int32_t v;
1548
1549 #ifdef CAS_DEBUG
1550 if (sc->sc_debug)
1551 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1552 #endif
1553
1554 /* Construct the frame command */
1555 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1556 CAS_MIF_FRAME_READ;
1557
1558 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1559 for (n = 0; n < 100; n++) {
1560 DELAY(1);
1561 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1562 if (v & CAS_MIF_FRAME_TA0)
1563 return (v & CAS_MIF_FRAME_DATA);
1564 }
1565
1566 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1567 return (0);
1568 }
1569
1570 void
1571 cas_mii_writereg(device_t self, int phy, int reg, int val)
1572 {
1573 struct cas_softc *sc = device_private(self);
1574 bus_space_tag_t t = sc->sc_memt;
1575 bus_space_handle_t mif = sc->sc_memh;
1576 int n;
1577 u_int32_t v;
1578
1579 #ifdef CAS_DEBUG
1580 if (sc->sc_debug)
1581 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1582 phy, reg, val);
1583 #endif
1584
1585 /* Construct the frame command */
1586 v = CAS_MIF_FRAME_WRITE |
1587 (phy << CAS_MIF_PHY_SHIFT) |
1588 (reg << CAS_MIF_REG_SHIFT) |
1589 (val & CAS_MIF_FRAME_DATA);
1590
1591 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1592 for (n = 0; n < 100; n++) {
1593 DELAY(1);
1594 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1595 if (v & CAS_MIF_FRAME_TA0)
1596 return;
1597 }
1598
1599 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1600 }
1601
1602 void
1603 cas_mii_statchg(device_t self)
1604 {
1605 struct cas_softc *sc = device_private(self);
1606 #ifdef CAS_DEBUG
1607 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1608 #endif
1609 bus_space_tag_t t = sc->sc_memt;
1610 bus_space_handle_t mac = sc->sc_memh;
1611 u_int32_t v;
1612
1613 #ifdef CAS_DEBUG
1614 if (sc->sc_debug)
1615 printf("cas_mii_statchg: status change: phy = %d\n",
1616 sc->sc_phys[instance]);
1617 #endif
1618
1619 /* Set tx full duplex options */
1620 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1621 delay(10000); /* reg must be cleared and delay before changing. */
1622 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1623 CAS_MAC_TX_ENABLE;
1624 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1625 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1626 }
1627 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1628
1629 /* XIF Configuration */
1630 v = CAS_MAC_XIF_TX_MII_ENA;
1631 v |= CAS_MAC_XIF_LINK_LED;
1632
1633 /* MII needs echo disable if half duplex. */
1634 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1635 /* turn on full duplex LED */
1636 v |= CAS_MAC_XIF_FDPLX_LED;
1637 else
1638 /* half duplex -- disable echo */
1639 v |= CAS_MAC_XIF_ECHO_DISABL;
1640
1641 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1642 case IFM_1000_T: /* Gigabit using GMII interface */
1643 case IFM_1000_SX:
1644 v |= CAS_MAC_XIF_GMII_MODE;
1645 break;
1646 default:
1647 v &= ~CAS_MAC_XIF_GMII_MODE;
1648 }
1649 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1650 }
1651
1652 int
1653 cas_pcs_readreg(device_t self, int phy, int reg)
1654 {
1655 struct cas_softc *sc = device_private(self);
1656 bus_space_tag_t t = sc->sc_memt;
1657 bus_space_handle_t pcs = sc->sc_memh;
1658
1659 #ifdef CAS_DEBUG
1660 if (sc->sc_debug)
1661 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1662 #endif
1663
1664 if (phy != CAS_PHYAD_EXTERNAL)
1665 return (0);
1666
1667 switch (reg) {
1668 case MII_BMCR:
1669 reg = CAS_MII_CONTROL;
1670 break;
1671 case MII_BMSR:
1672 reg = CAS_MII_STATUS;
1673 break;
1674 case MII_ANAR:
1675 reg = CAS_MII_ANAR;
1676 break;
1677 case MII_ANLPAR:
1678 reg = CAS_MII_ANLPAR;
1679 break;
1680 case MII_EXTSR:
1681 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1682 default:
1683 return (0);
1684 }
1685
1686 return bus_space_read_4(t, pcs, reg);
1687 }
1688
1689 void
1690 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1691 {
1692 struct cas_softc *sc = device_private(self);
1693 bus_space_tag_t t = sc->sc_memt;
1694 bus_space_handle_t pcs = sc->sc_memh;
1695 int reset = 0;
1696
1697 #ifdef CAS_DEBUG
1698 if (sc->sc_debug)
1699 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1700 phy, reg, val);
1701 #endif
1702
1703 if (phy != CAS_PHYAD_EXTERNAL)
1704 return;
1705
1706 if (reg == MII_ANAR)
1707 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1708
1709 switch (reg) {
1710 case MII_BMCR:
1711 reset = (val & CAS_MII_CONTROL_RESET);
1712 reg = CAS_MII_CONTROL;
1713 break;
1714 case MII_BMSR:
1715 reg = CAS_MII_STATUS;
1716 break;
1717 case MII_ANAR:
1718 reg = CAS_MII_ANAR;
1719 break;
1720 case MII_ANLPAR:
1721 reg = CAS_MII_ANLPAR;
1722 break;
1723 default:
1724 return;
1725 }
1726
1727 bus_space_write_4(t, pcs, reg, val);
1728
1729 if (reset)
1730 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1731
1732 if (reg == CAS_MII_ANAR || reset)
1733 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1734 CAS_MII_CONFIG_ENABLE);
1735 }
1736
1737 int
1738 cas_mediachange(struct ifnet *ifp)
1739 {
1740 struct cas_softc *sc = ifp->if_softc;
1741 struct mii_data *mii = &sc->sc_mii;
1742
1743 if (mii->mii_instance) {
1744 struct mii_softc *miisc;
1745 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1746 mii_phy_reset(miisc);
1747 }
1748
1749 return (mii_mediachg(&sc->sc_mii));
1750 }
1751
1752 void
1753 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1754 {
1755 struct cas_softc *sc = ifp->if_softc;
1756
1757 mii_pollstat(&sc->sc_mii);
1758 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1759 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1760 }
1761
1762 /*
1763 * Process an ioctl request.
1764 */
1765 int
1766 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1767 {
1768 struct cas_softc *sc = ifp->if_softc;
1769 int s, error = 0;
1770
1771 s = splnet();
1772
1773 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1774 error = 0;
1775 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1776 ;
1777 else if (ifp->if_flags & IFF_RUNNING) {
1778 /*
1779 * Multicast list has changed; set the hardware filter
1780 * accordingly.
1781 */
1782 cas_iff(sc);
1783 }
1784 }
1785
1786 splx(s);
1787 return (error);
1788 }
1789
1790 static bool
1791 cas_suspend(device_t self, const pmf_qual_t *qual)
1792 {
1793 struct cas_softc *sc = device_private(self);
1794 bus_space_tag_t t = sc->sc_memt;
1795 bus_space_handle_t h = sc->sc_memh;
1796
1797 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1798 if (sc->sc_ih != NULL) {
1799 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1800 sc->sc_ih = NULL;
1801 }
1802
1803 return true;
1804 }
1805
1806 static bool
1807 cas_resume(device_t self, const pmf_qual_t *qual)
1808 {
1809 struct cas_softc *sc = device_private(self);
1810
1811 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1812 }
1813
1814 static bool
1815 cas_estintr(struct cas_softc *sc, int what)
1816 {
1817 bus_space_tag_t t = sc->sc_memt;
1818 bus_space_handle_t h = sc->sc_memh;
1819 const char *intrstr = NULL;
1820
1821 /* PCI interrupts */
1822 if (what & CAS_INTR_PCI) {
1823 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1824 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1825 IPL_NET, cas_intr, sc);
1826 if (sc->sc_ih == NULL) {
1827 aprint_error_dev(sc->sc_dev,
1828 "unable to establish interrupt");
1829 if (intrstr != NULL)
1830 aprint_error(" at %s", intrstr);
1831 aprint_error("\n");
1832 return false;
1833 }
1834
1835 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1836 }
1837
1838 /* Interrupt register */
1839 if (what & CAS_INTR_REG) {
1840 bus_space_write_4(t, h, CAS_INTMASK,
1841 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1842 CAS_INTR_TX_TAG_ERR|
1843 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1844 CAS_INTR_RX_TAG_ERR|
1845 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1846 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1847 CAS_INTR_BERR));
1848 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1849 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1850 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1851 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1852 }
1853 return true;
1854 }
1855
1856 bool
1857 cas_shutdown(device_t self, int howto)
1858 {
1859 struct cas_softc *sc = device_private(self);
1860 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1861
1862 cas_stop(ifp, 1);
1863
1864 return true;
1865 }
1866
1867 void
1868 cas_iff(struct cas_softc *sc)
1869 {
1870 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1871 struct ethercom *ec = &sc->sc_ethercom;
1872 struct ether_multi *enm;
1873 struct ether_multistep step;
1874 bus_space_tag_t t = sc->sc_memt;
1875 bus_space_handle_t h = sc->sc_memh;
1876 u_int32_t crc, hash[16], rxcfg;
1877 int i;
1878
1879 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1880 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1881 CAS_MAC_RX_PROMISC_GRP);
1882 ifp->if_flags &= ~IFF_ALLMULTI;
1883
1884 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1885 ifp->if_flags |= IFF_ALLMULTI;
1886 if (ifp->if_flags & IFF_PROMISC)
1887 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1888 else
1889 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1890 } else {
1891 /*
1892 * Set up multicast address filter by passing all multicast
1893 * addresses through a crc generator, and then using the
1894 * high order 8 bits as an index into the 256 bit logical
1895 * address filter. The high order 4 bits selects the word,
1896 * while the other 4 bits select the bit within the word
1897 * (where bit 0 is the MSB).
1898 */
1899
1900 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1901
1902 /* Clear hash table */
1903 for (i = 0; i < 16; i++)
1904 hash[i] = 0;
1905
1906 ETHER_FIRST_MULTI(step, ec, enm);
1907 while (enm != NULL) {
1908 crc = ether_crc32_le(enm->enm_addrlo,
1909 ETHER_ADDR_LEN);
1910
1911 /* Just want the 8 most significant bits. */
1912 crc >>= 24;
1913
1914 /* Set the corresponding bit in the filter. */
1915 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1916
1917 ETHER_NEXT_MULTI(step, enm);
1918 }
1919
1920 /* Now load the hash table into the chip (if we are using it) */
1921 for (i = 0; i < 16; i++) {
1922 bus_space_write_4(t, h,
1923 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1924 hash[i]);
1925 }
1926 }
1927
1928 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1929 }
1930
1931 int
1932 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1933 {
1934 u_int64_t flags;
1935 u_int32_t cur, frag, i;
1936 bus_dmamap_t map;
1937
1938 cur = frag = *bixp;
1939 map = sc->sc_txd[cur].sd_map;
1940
1941 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1942 BUS_DMA_NOWAIT) != 0) {
1943 return (ENOBUFS);
1944 }
1945
1946 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1947 bus_dmamap_unload(sc->sc_dmatag, map);
1948 return (ENOBUFS);
1949 }
1950
1951 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1952 BUS_DMASYNC_PREWRITE);
1953
1954 for (i = 0; i < map->dm_nsegs; i++) {
1955 sc->sc_txdescs[frag].cd_addr =
1956 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1957 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1958 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1959 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1960 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1961 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1962 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1963 BUS_DMASYNC_PREWRITE);
1964 cur = frag;
1965 if (++frag == CAS_NTXDESC)
1966 frag = 0;
1967 }
1968
1969 sc->sc_tx_cnt += map->dm_nsegs;
1970 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1971 sc->sc_txd[cur].sd_map = map;
1972 sc->sc_txd[cur].sd_mbuf = mhead;
1973
1974 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1975
1976 *bixp = frag;
1977
1978 /* sync descriptors */
1979
1980 return (0);
1981 }
1982
1983 /*
1984 * Transmit interrupt.
1985 */
1986 int
1987 cas_tint(struct cas_softc *sc, u_int32_t status)
1988 {
1989 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1990 struct cas_sxd *sd;
1991 u_int32_t cons, comp;
1992
1993 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1994 cons = sc->sc_tx_cons;
1995 while (cons != comp) {
1996 sd = &sc->sc_txd[cons];
1997 if (sd->sd_mbuf != NULL) {
1998 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
1999 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2000 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2001 m_freem(sd->sd_mbuf);
2002 sd->sd_mbuf = NULL;
2003 ifp->if_opackets++;
2004 }
2005 sc->sc_tx_cnt--;
2006 if (++cons == CAS_NTXDESC)
2007 cons = 0;
2008 }
2009 sc->sc_tx_cons = cons;
2010
2011 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2012 ifp->if_flags &= ~IFF_OACTIVE;
2013 if (sc->sc_tx_cnt == 0)
2014 ifp->if_timer = 0;
2015
2016 cas_start(ifp);
2017
2018 return (1);
2019 }
2020
2021 void
2022 cas_start(struct ifnet *ifp)
2023 {
2024 struct cas_softc *sc = ifp->if_softc;
2025 struct mbuf *m;
2026 u_int32_t bix;
2027
2028 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2029 return;
2030
2031 bix = sc->sc_tx_prod;
2032 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2033 IFQ_POLL(&ifp->if_snd, m);
2034 if (m == NULL)
2035 break;
2036
2037 /*
2038 * If BPF is listening on this interface, let it see the
2039 * packet before we commit it to the wire.
2040 */
2041 bpf_mtap(ifp, m);
2042
2043 /*
2044 * Encapsulate this packet and start it going...
2045 * or fail...
2046 */
2047 if (cas_encap(sc, m, &bix)) {
2048 ifp->if_flags |= IFF_OACTIVE;
2049 break;
2050 }
2051
2052 IFQ_DEQUEUE(&ifp->if_snd, m);
2053 ifp->if_timer = 5;
2054 }
2055
2056 sc->sc_tx_prod = bix;
2057 }
2058