if_cas.c revision 1.9 1 /* $NetBSD: if_cas.c,v 1.9 2010/06/17 06:41:05 mrg Exp $ */
2 /* $OpenBSD: if_cas.c,v 1.29 2009/11/29 16:19:38 kettenis Exp $ */
3
4 /*
5 *
6 * Copyright (C) 2007 Mark Kettenis.
7 * Copyright (C) 2001 Eduardo Horvath.
8 * All rights reserved.
9 *
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 */
33
34 /*
35 * Driver for Sun Cassini ethernet controllers.
36 *
37 * There are basically two variants of this chip: Cassini and
38 * Cassini+. We can distinguish between the two by revision: 0x10 and
39 * up are Cassini+. The most important difference is that Cassini+
40 * has a second RX descriptor ring. Cassini+ will not work without
41 * configuring that second ring. However, since we don't use it we
42 * don't actually fill the descriptors, and only hand off the first
43 * four to the chip.
44 */
45
46 #include <sys/cdefs.h>
47 __KERNEL_RCSID(0, "$NetBSD: if_cas.c,v 1.9 2010/06/17 06:41:05 mrg Exp $");
48
49 #include "opt_inet.h"
50
51 #include <sys/param.h>
52 #include <sys/systm.h>
53 #include <sys/callout.h>
54 #include <sys/mbuf.h>
55 #include <sys/syslog.h>
56 #include <sys/malloc.h>
57 #include <sys/kernel.h>
58 #include <sys/socket.h>
59 #include <sys/ioctl.h>
60 #include <sys/errno.h>
61 #include <sys/device.h>
62
63 #include <machine/endian.h>
64
65 #include <uvm/uvm_extern.h>
66
67 #include <net/if.h>
68 #include <net/if_dl.h>
69 #include <net/if_media.h>
70 #include <net/if_ether.h>
71
72 #ifdef INET
73 #include <netinet/in.h>
74 #include <netinet/in_systm.h>
75 #include <netinet/in_var.h>
76 #include <netinet/ip.h>
77 #include <netinet/tcp.h>
78 #include <netinet/udp.h>
79 #endif
80
81 #include <net/bpf.h>
82
83 #include <sys/bus.h>
84 #include <sys/intr.h>
85
86 #include <dev/mii/mii.h>
87 #include <dev/mii/miivar.h>
88 #include <dev/mii/mii_bitbang.h>
89
90 #include <dev/pci/pcivar.h>
91 #include <dev/pci/pcireg.h>
92 #include <dev/pci/pcidevs.h>
93 #include <prop/proplib.h>
94
95 #include <dev/pci/if_casreg.h>
96 #include <dev/pci/if_casvar.h>
97
98 #define TRIES 10000
99
100 static bool cas_estintr(struct cas_softc *sc, int);
101 bool cas_shutdown(device_t, int);
102 static bool cas_suspend(device_t, const pmf_qual_t *);
103 static bool cas_resume(device_t, const pmf_qual_t *);
104 static int cas_detach(device_t, int);
105 static void cas_partial_detach(struct cas_softc *, enum cas_attach_stage);
106
107 int cas_match(device_t, cfdata_t, void *);
108 void cas_attach(device_t, device_t, void *);
109
110
111 CFATTACH_DECL3_NEW(cas, sizeof(struct cas_softc),
112 cas_match, cas_attach, cas_detach, NULL, NULL, NULL,
113 DVF_DETACH_SHUTDOWN);
114
115 int cas_pci_enaddr(struct cas_softc *, struct pci_attach_args *, uint8_t *);
116
117 void cas_config(struct cas_softc *, const uint8_t *);
118 void cas_start(struct ifnet *);
119 void cas_stop(struct ifnet *, int);
120 int cas_ioctl(struct ifnet *, u_long, void *);
121 void cas_tick(void *);
122 void cas_watchdog(struct ifnet *);
123 int cas_init(struct ifnet *);
124 void cas_init_regs(struct cas_softc *);
125 int cas_ringsize(int);
126 int cas_cringsize(int);
127 int cas_meminit(struct cas_softc *);
128 void cas_mifinit(struct cas_softc *);
129 int cas_bitwait(struct cas_softc *, bus_space_handle_t, int,
130 u_int32_t, u_int32_t);
131 void cas_reset(struct cas_softc *);
132 int cas_reset_rx(struct cas_softc *);
133 int cas_reset_tx(struct cas_softc *);
134 int cas_disable_rx(struct cas_softc *);
135 int cas_disable_tx(struct cas_softc *);
136 void cas_rxdrain(struct cas_softc *);
137 int cas_add_rxbuf(struct cas_softc *, int idx);
138 void cas_iff(struct cas_softc *);
139 int cas_encap(struct cas_softc *, struct mbuf *, u_int32_t *);
140
141 /* MII methods & callbacks */
142 int cas_mii_readreg(device_t, int, int);
143 void cas_mii_writereg(device_t, int, int, int);
144 void cas_mii_statchg(device_t);
145 int cas_pcs_readreg(device_t, int, int);
146 void cas_pcs_writereg(device_t, int, int, int);
147
148 int cas_mediachange(struct ifnet *);
149 void cas_mediastatus(struct ifnet *, struct ifmediareq *);
150
151 int cas_eint(struct cas_softc *, u_int);
152 int cas_rint(struct cas_softc *);
153 int cas_tint(struct cas_softc *, u_int32_t);
154 int cas_pint(struct cas_softc *);
155 int cas_intr(void *);
156
157 #ifdef CAS_DEBUG
158 #define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
159 printf x
160 #else
161 #define DPRINTF(sc, x) /* nothing */
162 #endif
163
164 int
165 cas_match(device_t parent, cfdata_t cf, void *aux)
166 {
167 struct pci_attach_args *pa = aux;
168
169 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_SUN &&
170 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_SUN_CASSINI))
171 return 1;
172
173 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_NS &&
174 (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_NS_SATURN))
175 return 1;
176
177 return 0;
178 }
179
180 #define PROMHDR_PTR_DATA 0x18
181 #define PROMDATA_PTR_VPD 0x08
182 #define PROMDATA_DATA2 0x0a
183
184 static const u_int8_t cas_promhdr[] = { 0x55, 0xaa };
185 static const u_int8_t cas_promdat[] = {
186 'P', 'C', 'I', 'R',
187 PCI_VENDOR_SUN & 0xff, PCI_VENDOR_SUN >> 8,
188 PCI_PRODUCT_SUN_CASSINI & 0xff, PCI_PRODUCT_SUN_CASSINI >> 8
189 };
190
191 static const u_int8_t cas_promdat2[] = {
192 0x18, 0x00, /* structure length */
193 0x00, /* structure revision */
194 0x00, /* interface revision */
195 PCI_SUBCLASS_NETWORK_ETHERNET, /* subclass code */
196 PCI_CLASS_NETWORK /* class code */
197 };
198
199 int
200 cas_pci_enaddr(struct cas_softc *sc, struct pci_attach_args *pa,
201 uint8_t *enaddr)
202 {
203 struct pci_vpd_largeres *res;
204 struct pci_vpd *vpd;
205 bus_space_handle_t romh;
206 bus_space_tag_t romt;
207 bus_size_t romsize = 0;
208 u_int8_t buf[32], *desc;
209 pcireg_t address;
210 int dataoff, vpdoff, len;
211 int rv = -1;
212
213 if (pci_mapreg_map(pa, PCI_MAPREG_ROM, PCI_MAPREG_TYPE_MEM, 0,
214 &romt, &romh, NULL, &romsize))
215 return (-1);
216
217 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
218 address |= PCI_MAPREG_ROM_ENABLE;
219 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START, address);
220
221 bus_space_read_region_1(romt, romh, 0, buf, sizeof(buf));
222 if (bcmp(buf, cas_promhdr, sizeof(cas_promhdr)))
223 goto fail;
224
225 dataoff = buf[PROMHDR_PTR_DATA] | (buf[PROMHDR_PTR_DATA + 1] << 8);
226 if (dataoff < 0x1c)
227 goto fail;
228
229 bus_space_read_region_1(romt, romh, dataoff, buf, sizeof(buf));
230 if (bcmp(buf, cas_promdat, sizeof(cas_promdat)) ||
231 bcmp(buf + PROMDATA_DATA2, cas_promdat2, sizeof(cas_promdat2)))
232 goto fail;
233
234 vpdoff = buf[PROMDATA_PTR_VPD] | (buf[PROMDATA_PTR_VPD + 1] << 8);
235 if (vpdoff < 0x1c)
236 goto fail;
237
238 next:
239 bus_space_read_region_1(romt, romh, vpdoff, buf, sizeof(buf));
240 if (!PCI_VPDRES_ISLARGE(buf[0]))
241 goto fail;
242
243 res = (struct pci_vpd_largeres *)buf;
244 vpdoff += sizeof(*res);
245
246 len = ((res->vpdres_len_msb << 8) + res->vpdres_len_lsb);
247 switch(PCI_VPDRES_LARGE_NAME(res->vpdres_byte0)) {
248 case PCI_VPDRES_TYPE_IDENTIFIER_STRING:
249 /* Skip identifier string. */
250 vpdoff += len;
251 goto next;
252
253 case PCI_VPDRES_TYPE_VPD:
254 while (len > 0) {
255 bus_space_read_region_1(romt, romh, vpdoff,
256 buf, sizeof(buf));
257
258 vpd = (struct pci_vpd *)buf;
259 vpdoff += sizeof(*vpd) + vpd->vpd_len;
260 len -= sizeof(*vpd) + vpd->vpd_len;
261
262 /*
263 * We're looking for an "Enhanced" VPD...
264 */
265 if (vpd->vpd_key0 != 'Z')
266 continue;
267
268 desc = buf + sizeof(*vpd);
269
270 /*
271 * ...which is an instance property...
272 */
273 if (desc[0] != 'I')
274 continue;
275 desc += 3;
276
277 /*
278 * ...that's a byte array with the proper
279 * length for a MAC address...
280 */
281 if (desc[0] != 'B' || desc[1] != ETHER_ADDR_LEN)
282 continue;
283 desc += 2;
284
285 /*
286 * ...named "local-mac-address".
287 */
288 if (strcmp(desc, "local-mac-address") != 0)
289 continue;
290 desc += strlen("local-mac-address") + 1;
291
292 memcpy(enaddr, desc, ETHER_ADDR_LEN);
293 rv = 0;
294 }
295 break;
296
297 default:
298 goto fail;
299 }
300
301 fail:
302 if (romsize != 0)
303 bus_space_unmap(romt, romh, romsize);
304
305 address = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM);
306 address &= ~PCI_MAPREG_ROM_ENABLE;
307 pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_MAPREG_ROM, address);
308
309 return (rv);
310 }
311
312 void
313 cas_attach(device_t parent, device_t self, void *aux)
314 {
315 struct pci_attach_args *pa = aux;
316 struct cas_softc *sc = device_private(self);
317 char devinfo[256];
318 prop_data_t data;
319 uint8_t enaddr[ETHER_ADDR_LEN];
320
321 sc->sc_dev = self;
322 pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
323 sc->sc_rev = PCI_REVISION(pa->pa_class);
324 aprint_normal(": %s (rev. 0x%02x)\n", devinfo, sc->sc_rev);
325 sc->sc_dmatag = pa->pa_dmat;
326
327 #define PCI_CAS_BASEADDR 0x10
328 if (pci_mapreg_map(pa, PCI_CAS_BASEADDR, PCI_MAPREG_TYPE_MEM, 0,
329 &sc->sc_memt, &sc->sc_memh, NULL, &sc->sc_size) != 0) {
330 aprint_error_dev(sc->sc_dev,
331 "unable to map device registers\n");
332 return;
333 }
334
335 if ((data = prop_dictionary_get(device_properties(sc->sc_dev),
336 "mac-address")) != NULL)
337 memcpy(enaddr, prop_data_data_nocopy(data), ETHER_ADDR_LEN);
338 else if (cas_pci_enaddr(sc, pa, enaddr) != 0)
339 aprint_error_dev(sc->sc_dev, "no Ethernet address found\n");
340
341 sc->sc_burst = 16; /* XXX */
342
343 sc->sc_att_stage = CAS_ATT_BACKEND_0;
344
345 if (pci_intr_map(pa, &sc->sc_handle) != 0) {
346 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
347 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
348 return;
349 }
350 sc->sc_pc = pa->pa_pc;
351 if (!cas_estintr(sc, CAS_INTR_PCI)) {
352 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
353 aprint_error_dev(sc->sc_dev, "unable to establish interrupt\n");
354 return;
355 }
356
357 sc->sc_att_stage = CAS_ATT_BACKEND_1;
358
359 /*
360 * call the main configure
361 */
362 cas_config(sc, enaddr);
363
364 if (pmf_device_register1(sc->sc_dev,
365 cas_suspend, cas_resume, cas_shutdown))
366 pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
367 else
368 aprint_error_dev(sc->sc_dev,
369 "could not establish power handlers\n");
370
371 sc->sc_att_stage = CAS_ATT_FINISHED;
372 /*FALLTHROUGH*/
373 }
374
375 /*
376 * cas_config:
377 *
378 * Attach a Cassini interface to the system.
379 */
380 void
381 cas_config(struct cas_softc *sc, const uint8_t *enaddr)
382 {
383 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
384 struct mii_data *mii = &sc->sc_mii;
385 struct mii_softc *child;
386 int i, error;
387
388 /* Make sure the chip is stopped. */
389 ifp->if_softc = sc;
390 cas_reset(sc);
391
392 /*
393 * Allocate the control data structures, and create and load the
394 * DMA map for it.
395 */
396 if ((error = bus_dmamem_alloc(sc->sc_dmatag,
397 sizeof(struct cas_control_data), CAS_PAGE_SIZE, 0, &sc->sc_cdseg,
398 1, &sc->sc_cdnseg, 0)) != 0) {
399 aprint_error_dev(sc->sc_dev,
400 "unable to allocate control data, error = %d\n",
401 error);
402 cas_partial_detach(sc, CAS_ATT_0);
403 }
404
405 /* XXX should map this in with correct endianness */
406 if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
407 sizeof(struct cas_control_data), (void **)&sc->sc_control_data,
408 BUS_DMA_COHERENT)) != 0) {
409 aprint_error_dev(sc->sc_dev,
410 "unable to map control data, error = %d\n", error);
411 cas_partial_detach(sc, CAS_ATT_1);
412 }
413
414 if ((error = bus_dmamap_create(sc->sc_dmatag,
415 sizeof(struct cas_control_data), 1,
416 sizeof(struct cas_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
417 aprint_error_dev(sc->sc_dev,
418 "unable to create control data DMA map, error = %d\n", error);
419 cas_partial_detach(sc, CAS_ATT_2);
420 }
421
422 if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
423 sc->sc_control_data, sizeof(struct cas_control_data), NULL,
424 0)) != 0) {
425 aprint_error_dev(sc->sc_dev,
426 "unable to load control data DMA map, error = %d\n",
427 error);
428 cas_partial_detach(sc, CAS_ATT_3);
429 }
430
431 memset(sc->sc_control_data, 0, sizeof(struct cas_control_data));
432
433 /*
434 * Create the receive buffer DMA maps.
435 */
436 for (i = 0; i < CAS_NRXDESC; i++) {
437 bus_dma_segment_t seg;
438 char *kva;
439 int rseg;
440
441 if ((error = bus_dmamem_alloc(sc->sc_dmatag, CAS_PAGE_SIZE,
442 CAS_PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
443 aprint_error_dev(sc->sc_dev,
444 "unable to alloc rx DMA mem %d, error = %d\n",
445 i, error);
446 cas_partial_detach(sc, CAS_ATT_5);
447 }
448 sc->sc_rxsoft[i].rxs_dmaseg = seg;
449
450 if ((error = bus_dmamem_map(sc->sc_dmatag, &seg, rseg,
451 CAS_PAGE_SIZE, (void **)&kva, BUS_DMA_NOWAIT)) != 0) {
452 aprint_error_dev(sc->sc_dev,
453 "unable to alloc rx DMA mem %d, error = %d\n",
454 i, error);
455 cas_partial_detach(sc, CAS_ATT_5);
456 }
457 sc->sc_rxsoft[i].rxs_kva = kva;
458
459 if ((error = bus_dmamap_create(sc->sc_dmatag, CAS_PAGE_SIZE, 1,
460 CAS_PAGE_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
461 aprint_error_dev(sc->sc_dev,
462 "unable to create rx DMA map %d, error = %d\n",
463 i, error);
464 cas_partial_detach(sc, CAS_ATT_5);
465 }
466
467 if ((error = bus_dmamap_load(sc->sc_dmatag,
468 sc->sc_rxsoft[i].rxs_dmamap, kva, CAS_PAGE_SIZE, NULL,
469 BUS_DMA_NOWAIT)) != 0) {
470 aprint_error_dev(sc->sc_dev,
471 "unable to load rx DMA map %d, error = %d\n",
472 i, error);
473 cas_partial_detach(sc, CAS_ATT_5);
474 }
475 }
476
477 /*
478 * Create the transmit buffer DMA maps.
479 */
480 for (i = 0; i < CAS_NTXDESC; i++) {
481 if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES,
482 CAS_NTXSEGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
483 &sc->sc_txd[i].sd_map)) != 0) {
484 aprint_error_dev(sc->sc_dev,
485 "unable to create tx DMA map %d, error = %d\n",
486 i, error);
487 cas_partial_detach(sc, CAS_ATT_6);
488 }
489 sc->sc_txd[i].sd_mbuf = NULL;
490 }
491
492 /*
493 * From this point forward, the attachment cannot fail. A failure
494 * before this point releases all resources that may have been
495 * allocated.
496 */
497
498 /* Announce ourselves. */
499 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
500 ether_sprintf(enaddr));
501 aprint_naive(": Ethernet controller\n");
502
503 /* Get RX FIFO size */
504 sc->sc_rxfifosize = 16 * 1024;
505
506 /* Initialize ifnet structure. */
507 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
508 ifp->if_softc = sc;
509 ifp->if_flags =
510 IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
511 ifp->if_start = cas_start;
512 ifp->if_ioctl = cas_ioctl;
513 ifp->if_watchdog = cas_watchdog;
514 ifp->if_stop = cas_stop;
515 ifp->if_init = cas_init;
516 IFQ_SET_MAXLEN(&ifp->if_snd, CAS_NTXDESC - 1);
517 IFQ_SET_READY(&ifp->if_snd);
518
519 /* Initialize ifmedia structures and MII info */
520 mii->mii_ifp = ifp;
521 mii->mii_readreg = cas_mii_readreg;
522 mii->mii_writereg = cas_mii_writereg;
523 mii->mii_statchg = cas_mii_statchg;
524
525 ifmedia_init(&mii->mii_media, 0, cas_mediachange, cas_mediastatus);
526 sc->sc_ethercom.ec_mii = mii;
527
528 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_MII_DATAPATH_MODE, 0);
529
530 cas_mifinit(sc);
531
532 if (sc->sc_mif_config & CAS_MIF_CONFIG_MDI1) {
533 sc->sc_mif_config |= CAS_MIF_CONFIG_PHY_SEL;
534 bus_space_write_4(sc->sc_memt, sc->sc_memh,
535 CAS_MIF_CONFIG, sc->sc_mif_config);
536 }
537
538 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
539 MII_OFFSET_ANY, 0);
540
541 child = LIST_FIRST(&mii->mii_phys);
542 if (child == NULL &&
543 sc->sc_mif_config & (CAS_MIF_CONFIG_MDI0|CAS_MIF_CONFIG_MDI1)) {
544 /*
545 * Try the external PCS SERDES if we didn't find any
546 * MII devices.
547 */
548 bus_space_write_4(sc->sc_memt, sc->sc_memh,
549 CAS_MII_DATAPATH_MODE, CAS_MII_DATAPATH_SERDES);
550
551 bus_space_write_4(sc->sc_memt, sc->sc_memh,
552 CAS_MII_CONFIG, CAS_MII_CONFIG_ENABLE);
553
554 mii->mii_readreg = cas_pcs_readreg;
555 mii->mii_writereg = cas_pcs_writereg;
556
557 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
558 MII_OFFSET_ANY, MIIF_NOISOLATE);
559 }
560
561 child = LIST_FIRST(&mii->mii_phys);
562 if (child == NULL) {
563 /* No PHY attached */
564 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
565 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_MANUAL);
566 } else {
567 /*
568 * Walk along the list of attached MII devices and
569 * establish an `MII instance' to `phy number'
570 * mapping. We'll use this mapping in media change
571 * requests to determine which phy to use to program
572 * the MIF configuration register.
573 */
574 for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
575 /*
576 * Note: we support just two PHYs: the built-in
577 * internal device and an external on the MII
578 * connector.
579 */
580 if (child->mii_phy > 1 || child->mii_inst > 1) {
581 aprint_error_dev(sc->sc_dev,
582 "cannot accommodate MII device %s"
583 " at phy %d, instance %d\n",
584 device_xname(child->mii_dev),
585 child->mii_phy, child->mii_inst);
586 continue;
587 }
588
589 sc->sc_phys[child->mii_inst] = child->mii_phy;
590 }
591
592 /*
593 * XXX - we can really do the following ONLY if the
594 * phy indeed has the auto negotiation capability!!
595 */
596 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_AUTO);
597 }
598
599 /* claim 802.1q capability */
600 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
601
602 /* Attach the interface. */
603 if_attach(ifp);
604 ether_ifattach(ifp, enaddr);
605
606 #if NRND > 0
607 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
608 RND_TYPE_NET, 0);
609 #endif
610
611 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
612 NULL, device_xname(sc->sc_dev), "interrupts");
613
614 callout_init(&sc->sc_tick_ch, 0);
615
616 return;
617 }
618
619 int
620 cas_detach(device_t self, int flags)
621 {
622 int i;
623 struct cas_softc *sc = device_private(self);
624 bus_space_tag_t t = sc->sc_memt;
625 bus_space_handle_t h = sc->sc_memh;
626 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
627
628 /*
629 * Free any resources we've allocated during the failed attach
630 * attempt. Do this in reverse order and fall through.
631 */
632 switch (sc->sc_att_stage) {
633 case CAS_ATT_FINISHED:
634 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
635 pmf_device_deregister(self);
636 cas_stop(&sc->sc_ethercom.ec_if, 1);
637 evcnt_detach(&sc->sc_ev_intr);
638
639 #if NRND > 0
640 rnd_detach_source(&sc->rnd_source);
641 #endif
642
643 ether_ifdetach(ifp);
644 if_detach(ifp);
645 ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
646
647 callout_destroy(&sc->sc_tick_ch);
648
649 mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
650
651 /*FALLTHROUGH*/
652 case CAS_ATT_MII:
653 case CAS_ATT_7:
654 case CAS_ATT_6:
655 for (i = 0; i < CAS_NTXDESC; i++) {
656 if (sc->sc_txd[i].sd_map != NULL)
657 bus_dmamap_destroy(sc->sc_dmatag,
658 sc->sc_txd[i].sd_map);
659 }
660 /*FALLTHROUGH*/
661 case CAS_ATT_5:
662 for (i = 0; i < CAS_NRXDESC; i++) {
663 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
664 bus_dmamap_unload(sc->sc_dmatag,
665 sc->sc_rxsoft[i].rxs_dmamap);
666 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
667 bus_dmamap_destroy(sc->sc_dmatag,
668 sc->sc_rxsoft[i].rxs_dmamap);
669 if (sc->sc_rxsoft[i].rxs_kva != NULL)
670 bus_dmamem_unmap(sc->sc_dmatag,
671 sc->sc_rxsoft[i].rxs_kva, CAS_PAGE_SIZE);
672 /* XXX need to check that bus_dmamem_alloc suceeded
673 if (sc->sc_rxsoft[i].rxs_dmaseg != NULL)
674 */
675 bus_dmamem_free(sc->sc_dmatag,
676 &(sc->sc_rxsoft[i].rxs_dmaseg), 1);
677 }
678 bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
679 /*FALLTHROUGH*/
680 case CAS_ATT_4:
681 case CAS_ATT_3:
682 bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
683 /*FALLTHROUGH*/
684 case CAS_ATT_2:
685 bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
686 sizeof(struct cas_control_data));
687 /*FALLTHROUGH*/
688 case CAS_ATT_1:
689 bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
690 /*FALLTHROUGH*/
691 case CAS_ATT_0:
692 sc->sc_att_stage = CAS_ATT_0;
693 /*FALLTHROUGH*/
694 case CAS_ATT_BACKEND_2:
695 case CAS_ATT_BACKEND_1:
696 if (sc->sc_ih != NULL) {
697 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
698 sc->sc_ih = NULL;
699 }
700 bus_space_unmap(sc->sc_memt, sc->sc_memh, sc->sc_size);
701 /*FALLTHROUGH*/
702 case CAS_ATT_BACKEND_0:
703 break;
704 }
705 return 0;
706 }
707
708 static void
709 cas_partial_detach(struct cas_softc *sc, enum cas_attach_stage stage)
710 {
711 cfattach_t ca = device_cfattach(sc->sc_dev);
712
713 sc->sc_att_stage = stage;
714 (*ca->ca_detach)(sc->sc_dev, 0);
715 }
716
717 void
718 cas_tick(void *arg)
719 {
720 struct cas_softc *sc = arg;
721 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
722 bus_space_tag_t t = sc->sc_memt;
723 bus_space_handle_t mac = sc->sc_memh;
724 int s;
725 u_int32_t v;
726
727 /* unload collisions counters */
728 v = bus_space_read_4(t, mac, CAS_MAC_EXCESS_COLL_CNT) +
729 bus_space_read_4(t, mac, CAS_MAC_LATE_COLL_CNT);
730 ifp->if_collisions += v +
731 bus_space_read_4(t, mac, CAS_MAC_NORM_COLL_CNT) +
732 bus_space_read_4(t, mac, CAS_MAC_FIRST_COLL_CNT);
733 ifp->if_oerrors += v;
734
735 /* read error counters */
736 ifp->if_ierrors +=
737 bus_space_read_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT) +
738 bus_space_read_4(t, mac, CAS_MAC_RX_ALIGN_ERR) +
739 bus_space_read_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT) +
740 bus_space_read_4(t, mac, CAS_MAC_RX_CODE_VIOL);
741
742 /* clear the hardware counters */
743 bus_space_write_4(t, mac, CAS_MAC_NORM_COLL_CNT, 0);
744 bus_space_write_4(t, mac, CAS_MAC_FIRST_COLL_CNT, 0);
745 bus_space_write_4(t, mac, CAS_MAC_EXCESS_COLL_CNT, 0);
746 bus_space_write_4(t, mac, CAS_MAC_LATE_COLL_CNT, 0);
747 bus_space_write_4(t, mac, CAS_MAC_RX_LEN_ERR_CNT, 0);
748 bus_space_write_4(t, mac, CAS_MAC_RX_ALIGN_ERR, 0);
749 bus_space_write_4(t, mac, CAS_MAC_RX_CRC_ERR_CNT, 0);
750 bus_space_write_4(t, mac, CAS_MAC_RX_CODE_VIOL, 0);
751
752 s = splnet();
753 mii_tick(&sc->sc_mii);
754 splx(s);
755
756 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
757 }
758
759 int
760 cas_bitwait(struct cas_softc *sc, bus_space_handle_t h, int r,
761 u_int32_t clr, u_int32_t set)
762 {
763 int i;
764 u_int32_t reg;
765
766 for (i = TRIES; i--; DELAY(100)) {
767 reg = bus_space_read_4(sc->sc_memt, h, r);
768 if ((reg & clr) == 0 && (reg & set) == set)
769 return (1);
770 }
771
772 return (0);
773 }
774
775 void
776 cas_reset(struct cas_softc *sc)
777 {
778 bus_space_tag_t t = sc->sc_memt;
779 bus_space_handle_t h = sc->sc_memh;
780 int s;
781
782 s = splnet();
783 DPRINTF(sc, ("%s: cas_reset\n", device_xname(sc->sc_dev)));
784 cas_reset_rx(sc);
785 cas_reset_tx(sc);
786
787 /* Disable interrupts */
788 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_INTMASK, ~(uint32_t)0);
789
790 /* Do a full reset */
791 bus_space_write_4(t, h, CAS_RESET,
792 CAS_RESET_RX | CAS_RESET_TX | CAS_RESET_BLOCK_PCS);
793 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
794 aprint_error_dev(sc->sc_dev, "cannot reset device\n");
795 splx(s);
796 }
797
798
799 /*
800 * cas_rxdrain:
801 *
802 * Drain the receive queue.
803 */
804 void
805 cas_rxdrain(struct cas_softc *sc)
806 {
807 /* Nothing to do yet. */
808 }
809
810 /*
811 * Reset the whole thing.
812 */
813 void
814 cas_stop(struct ifnet *ifp, int disable)
815 {
816 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
817 struct cas_sxd *sd;
818 u_int32_t i;
819
820 DPRINTF(sc, ("%s: cas_stop\n", device_xname(sc->sc_dev)));
821
822 callout_stop(&sc->sc_tick_ch);
823
824 /*
825 * Mark the interface down and cancel the watchdog timer.
826 */
827 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
828 ifp->if_timer = 0;
829
830 mii_down(&sc->sc_mii);
831
832 cas_reset_rx(sc);
833 cas_reset_tx(sc);
834
835 /*
836 * Release any queued transmit buffers.
837 */
838 for (i = 0; i < CAS_NTXDESC; i++) {
839 sd = &sc->sc_txd[i];
840 if (sd->sd_mbuf != NULL) {
841 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
842 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
843 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
844 m_freem(sd->sd_mbuf);
845 sd->sd_mbuf = NULL;
846 }
847 }
848 sc->sc_tx_cnt = sc->sc_tx_prod = sc->sc_tx_cons = 0;
849
850 if (disable)
851 cas_rxdrain(sc);
852 }
853
854
855 /*
856 * Reset the receiver
857 */
858 int
859 cas_reset_rx(struct cas_softc *sc)
860 {
861 bus_space_tag_t t = sc->sc_memt;
862 bus_space_handle_t h = sc->sc_memh;
863
864 /*
865 * Resetting while DMA is in progress can cause a bus hang, so we
866 * disable DMA first.
867 */
868 cas_disable_rx(sc);
869 bus_space_write_4(t, h, CAS_RX_CONFIG, 0);
870 /* Wait till it finishes */
871 if (!cas_bitwait(sc, h, CAS_RX_CONFIG, 1, 0))
872 aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
873 /* Wait 5ms extra. */
874 delay(5000);
875
876 /* Finally, reset the ERX */
877 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_RX);
878 /* Wait till it finishes */
879 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_RX, 0)) {
880 aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
881 return (1);
882 }
883 return (0);
884 }
885
886
887 /*
888 * Reset the transmitter
889 */
890 int
891 cas_reset_tx(struct cas_softc *sc)
892 {
893 bus_space_tag_t t = sc->sc_memt;
894 bus_space_handle_t h = sc->sc_memh;
895
896 /*
897 * Resetting while DMA is in progress can cause a bus hang, so we
898 * disable DMA first.
899 */
900 cas_disable_tx(sc);
901 bus_space_write_4(t, h, CAS_TX_CONFIG, 0);
902 /* Wait till it finishes */
903 if (!cas_bitwait(sc, h, CAS_TX_CONFIG, 1, 0))
904 aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n");
905 /* Wait 5ms extra. */
906 delay(5000);
907
908 /* Finally, reset the ETX */
909 bus_space_write_4(t, h, CAS_RESET, CAS_RESET_TX);
910 /* Wait till it finishes */
911 if (!cas_bitwait(sc, h, CAS_RESET, CAS_RESET_TX, 0)) {
912 aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n");
913 return (1);
914 }
915 return (0);
916 }
917
918 /*
919 * Disable receiver.
920 */
921 int
922 cas_disable_rx(struct cas_softc *sc)
923 {
924 bus_space_tag_t t = sc->sc_memt;
925 bus_space_handle_t h = sc->sc_memh;
926 u_int32_t cfg;
927
928 /* Flip the enable bit */
929 cfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
930 cfg &= ~CAS_MAC_RX_ENABLE;
931 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, cfg);
932
933 /* Wait for it to finish */
934 return (cas_bitwait(sc, h, CAS_MAC_RX_CONFIG, CAS_MAC_RX_ENABLE, 0));
935 }
936
937 /*
938 * Disable transmitter.
939 */
940 int
941 cas_disable_tx(struct cas_softc *sc)
942 {
943 bus_space_tag_t t = sc->sc_memt;
944 bus_space_handle_t h = sc->sc_memh;
945 u_int32_t cfg;
946
947 /* Flip the enable bit */
948 cfg = bus_space_read_4(t, h, CAS_MAC_TX_CONFIG);
949 cfg &= ~CAS_MAC_TX_ENABLE;
950 bus_space_write_4(t, h, CAS_MAC_TX_CONFIG, cfg);
951
952 /* Wait for it to finish */
953 return (cas_bitwait(sc, h, CAS_MAC_TX_CONFIG, CAS_MAC_TX_ENABLE, 0));
954 }
955
956 /*
957 * Initialize interface.
958 */
959 int
960 cas_meminit(struct cas_softc *sc)
961 {
962 struct cas_rxsoft *rxs;
963 int i, error;
964
965 rxs = (void *)&error;
966
967 /*
968 * Initialize the transmit descriptor ring.
969 */
970 for (i = 0; i < CAS_NTXDESC; i++) {
971 sc->sc_txdescs[i].cd_flags = 0;
972 sc->sc_txdescs[i].cd_addr = 0;
973 }
974 CAS_CDTXSYNC(sc, 0, CAS_NTXDESC,
975 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
976
977 /*
978 * Initialize the receive descriptor and receive job
979 * descriptor rings.
980 */
981 for (i = 0; i < CAS_NRXDESC; i++)
982 CAS_INIT_RXDESC(sc, i, i);
983 sc->sc_rxdptr = 0;
984 sc->sc_rxptr = 0;
985
986 /*
987 * Initialize the receive completion ring.
988 */
989 for (i = 0; i < CAS_NRXCOMP; i++) {
990 sc->sc_rxcomps[i].cc_word[0] = 0;
991 sc->sc_rxcomps[i].cc_word[1] = 0;
992 sc->sc_rxcomps[i].cc_word[2] = 0;
993 sc->sc_rxcomps[i].cc_word[3] = CAS_DMA_WRITE(CAS_RC3_OWN);
994 CAS_CDRXCSYNC(sc, i,
995 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
996 }
997
998 return (0);
999 }
1000
1001 int
1002 cas_ringsize(int sz)
1003 {
1004 switch (sz) {
1005 case 32:
1006 return CAS_RING_SZ_32;
1007 case 64:
1008 return CAS_RING_SZ_64;
1009 case 128:
1010 return CAS_RING_SZ_128;
1011 case 256:
1012 return CAS_RING_SZ_256;
1013 case 512:
1014 return CAS_RING_SZ_512;
1015 case 1024:
1016 return CAS_RING_SZ_1024;
1017 case 2048:
1018 return CAS_RING_SZ_2048;
1019 case 4096:
1020 return CAS_RING_SZ_4096;
1021 case 8192:
1022 return CAS_RING_SZ_8192;
1023 default:
1024 aprint_error("cas: invalid Receive Descriptor ring size %d\n",
1025 sz);
1026 return CAS_RING_SZ_32;
1027 }
1028 }
1029
1030 int
1031 cas_cringsize(int sz)
1032 {
1033 int i;
1034
1035 for (i = 0; i < 9; i++)
1036 if (sz == (128 << i))
1037 return i;
1038
1039 aprint_error("cas: invalid completion ring size %d\n", sz);
1040 return 128;
1041 }
1042
1043 /*
1044 * Initialization of interface; set up initialization block
1045 * and transmit/receive descriptor rings.
1046 */
1047 int
1048 cas_init(struct ifnet *ifp)
1049 {
1050 struct cas_softc *sc = (struct cas_softc *)ifp->if_softc;
1051 bus_space_tag_t t = sc->sc_memt;
1052 bus_space_handle_t h = sc->sc_memh;
1053 int s;
1054 u_int max_frame_size;
1055 u_int32_t v;
1056
1057 s = splnet();
1058
1059 DPRINTF(sc, ("%s: cas_init: calling stop\n", device_xname(sc->sc_dev)));
1060 /*
1061 * Initialization sequence. The numbered steps below correspond
1062 * to the sequence outlined in section 6.3.5.1 in the Ethernet
1063 * Channel Engine manual (part of the PCIO manual).
1064 * See also the STP2002-STQ document from Sun Microsystems.
1065 */
1066
1067 /* step 1 & 2. Reset the Ethernet Channel */
1068 cas_stop(ifp, 0);
1069 cas_reset(sc);
1070 DPRINTF(sc, ("%s: cas_init: restarting\n", device_xname(sc->sc_dev)));
1071
1072 /* Re-initialize the MIF */
1073 cas_mifinit(sc);
1074
1075 /* step 3. Setup data structures in host memory */
1076 cas_meminit(sc);
1077
1078 /* step 4. TX MAC registers & counters */
1079 cas_init_regs(sc);
1080 max_frame_size = ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN;
1081 v = (max_frame_size) | (0x2000 << 16) /* Burst size */;
1082 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1083
1084 /* step 5. RX MAC registers & counters */
1085 cas_iff(sc);
1086
1087 /* step 6 & 7. Program Descriptor Ring Base Addresses */
1088 KASSERT((CAS_CDTXADDR(sc, 0) & 0x1fff) == 0);
1089 bus_space_write_4(t, h, CAS_TX_RING_PTR_HI,
1090 (((uint64_t)CAS_CDTXADDR(sc,0)) >> 32));
1091 bus_space_write_4(t, h, CAS_TX_RING_PTR_LO, CAS_CDTXADDR(sc, 0));
1092
1093 KASSERT((CAS_CDRXADDR(sc, 0) & 0x1fff) == 0);
1094 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI,
1095 (((uint64_t)CAS_CDRXADDR(sc,0)) >> 32));
1096 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO, CAS_CDRXADDR(sc, 0));
1097
1098 KASSERT((CAS_CDRXCADDR(sc, 0) & 0x1fff) == 0);
1099 bus_space_write_4(t, h, CAS_RX_CRING_PTR_HI,
1100 (((uint64_t)CAS_CDRXCADDR(sc,0)) >> 32));
1101 bus_space_write_4(t, h, CAS_RX_CRING_PTR_LO, CAS_CDRXCADDR(sc, 0));
1102
1103 if (CAS_PLUS(sc)) {
1104 KASSERT((CAS_CDRXADDR2(sc, 0) & 0x1fff) == 0);
1105 bus_space_write_4(t, h, CAS_RX_DRING_PTR_HI2,
1106 (((uint64_t)CAS_CDRXADDR2(sc,0)) >> 32));
1107 bus_space_write_4(t, h, CAS_RX_DRING_PTR_LO2,
1108 CAS_CDRXADDR2(sc, 0));
1109 }
1110
1111 /* step 8. Global Configuration & Interrupt Mask */
1112 cas_estintr(sc, CAS_INTR_REG);
1113
1114 /* step 9. ETX Configuration: use mostly default values */
1115
1116 /* Enable DMA */
1117 v = cas_ringsize(CAS_NTXDESC /*XXX*/) << 10;
1118 bus_space_write_4(t, h, CAS_TX_CONFIG,
1119 v|CAS_TX_CONFIG_TXDMA_EN|(1<<24)|(1<<29));
1120 bus_space_write_4(t, h, CAS_TX_KICK, 0);
1121
1122 /* step 10. ERX Configuration */
1123
1124 /* Encode Receive Descriptor ring size */
1125 v = cas_ringsize(CAS_NRXDESC) << CAS_RX_CONFIG_RXDRNG_SZ_SHIFT;
1126 if (CAS_PLUS(sc))
1127 v |= cas_ringsize(32) << CAS_RX_CONFIG_RXDRNG2_SZ_SHIFT;
1128
1129 /* Encode Receive Completion ring size */
1130 v |= cas_cringsize(CAS_NRXCOMP) << CAS_RX_CONFIG_RXCRNG_SZ_SHIFT;
1131
1132 /* Enable DMA */
1133 bus_space_write_4(t, h, CAS_RX_CONFIG,
1134 v|(2<<CAS_RX_CONFIG_FBOFF_SHFT)|CAS_RX_CONFIG_RXDMA_EN);
1135
1136 /*
1137 * The following value is for an OFF Threshold of about 3/4 full
1138 * and an ON Threshold of 1/4 full.
1139 */
1140 bus_space_write_4(t, h, CAS_RX_PAUSE_THRESH,
1141 (3 * sc->sc_rxfifosize / 256) |
1142 ((sc->sc_rxfifosize / 256) << 12));
1143 bus_space_write_4(t, h, CAS_RX_BLANKING, (6 << 12) | 6);
1144
1145 /* step 11. Configure Media */
1146 mii_ifmedia_change(&sc->sc_mii);
1147
1148 /* step 12. RX_MAC Configuration Register */
1149 v = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1150 v |= CAS_MAC_RX_ENABLE | CAS_MAC_RX_STRIP_CRC;
1151 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, v);
1152
1153 /* step 14. Issue Transmit Pending command */
1154
1155 /* step 15. Give the receiver a swift kick */
1156 bus_space_write_4(t, h, CAS_RX_KICK, CAS_NRXDESC-4);
1157 if (CAS_PLUS(sc))
1158 bus_space_write_4(t, h, CAS_RX_KICK2, 4);
1159
1160 /* Start the one second timer. */
1161 callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1162
1163 ifp->if_flags |= IFF_RUNNING;
1164 ifp->if_flags &= ~IFF_OACTIVE;
1165 ifp->if_timer = 0;
1166 splx(s);
1167
1168 return (0);
1169 }
1170
1171 void
1172 cas_init_regs(struct cas_softc *sc)
1173 {
1174 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1175 bus_space_tag_t t = sc->sc_memt;
1176 bus_space_handle_t h = sc->sc_memh;
1177 const u_char *laddr = CLLADDR(ifp->if_sadl);
1178 u_int32_t v, r;
1179
1180 /* These regs are not cleared on reset */
1181 sc->sc_inited = 0;
1182 if (!sc->sc_inited) {
1183 /* Load recommended values */
1184 bus_space_write_4(t, h, CAS_MAC_IPG0, 0x00);
1185 bus_space_write_4(t, h, CAS_MAC_IPG1, 0x08);
1186 bus_space_write_4(t, h, CAS_MAC_IPG2, 0x04);
1187
1188 bus_space_write_4(t, h, CAS_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1189 /* Max frame and max burst size */
1190 v = ETHER_MAX_LEN | (0x2000 << 16) /* Burst size */;
1191 bus_space_write_4(t, h, CAS_MAC_MAC_MAX_FRAME, v);
1192
1193 bus_space_write_4(t, h, CAS_MAC_PREAMBLE_LEN, 0x07);
1194 bus_space_write_4(t, h, CAS_MAC_JAM_SIZE, 0x04);
1195 bus_space_write_4(t, h, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1196 bus_space_write_4(t, h, CAS_MAC_CONTROL_TYPE, 0x8088);
1197 bus_space_write_4(t, h, CAS_MAC_RANDOM_SEED,
1198 ((laddr[5]<<8)|laddr[4])&0x3ff);
1199
1200 /* Secondary MAC addresses set to 0:0:0:0:0:0 */
1201 for (r = CAS_MAC_ADDR3; r < CAS_MAC_ADDR42; r += 4)
1202 bus_space_write_4(t, h, r, 0);
1203
1204 /* MAC control addr set to 0:1:c2:0:1:80 */
1205 bus_space_write_4(t, h, CAS_MAC_ADDR42, 0x0001);
1206 bus_space_write_4(t, h, CAS_MAC_ADDR43, 0xc200);
1207 bus_space_write_4(t, h, CAS_MAC_ADDR44, 0x0180);
1208
1209 /* MAC filter addr set to 0:0:0:0:0:0 */
1210 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER0, 0);
1211 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER1, 0);
1212 bus_space_write_4(t, h, CAS_MAC_ADDR_FILTER2, 0);
1213
1214 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK1_2, 0);
1215 bus_space_write_4(t, h, CAS_MAC_ADR_FLT_MASK0, 0);
1216
1217 /* Hash table initialized to 0 */
1218 for (r = CAS_MAC_HASH0; r <= CAS_MAC_HASH15; r += 4)
1219 bus_space_write_4(t, h, r, 0);
1220
1221 sc->sc_inited = 1;
1222 }
1223
1224 /* Counters need to be zeroed */
1225 bus_space_write_4(t, h, CAS_MAC_NORM_COLL_CNT, 0);
1226 bus_space_write_4(t, h, CAS_MAC_FIRST_COLL_CNT, 0);
1227 bus_space_write_4(t, h, CAS_MAC_EXCESS_COLL_CNT, 0);
1228 bus_space_write_4(t, h, CAS_MAC_LATE_COLL_CNT, 0);
1229 bus_space_write_4(t, h, CAS_MAC_DEFER_TMR_CNT, 0);
1230 bus_space_write_4(t, h, CAS_MAC_PEAK_ATTEMPTS, 0);
1231 bus_space_write_4(t, h, CAS_MAC_RX_FRAME_COUNT, 0);
1232 bus_space_write_4(t, h, CAS_MAC_RX_LEN_ERR_CNT, 0);
1233 bus_space_write_4(t, h, CAS_MAC_RX_ALIGN_ERR, 0);
1234 bus_space_write_4(t, h, CAS_MAC_RX_CRC_ERR_CNT, 0);
1235 bus_space_write_4(t, h, CAS_MAC_RX_CODE_VIOL, 0);
1236
1237 /* Un-pause stuff */
1238 bus_space_write_4(t, h, CAS_MAC_SEND_PAUSE_CMD, 0);
1239
1240 /*
1241 * Set the station address.
1242 */
1243 bus_space_write_4(t, h, CAS_MAC_ADDR0, (laddr[4]<<8) | laddr[5]);
1244 bus_space_write_4(t, h, CAS_MAC_ADDR1, (laddr[2]<<8) | laddr[3]);
1245 bus_space_write_4(t, h, CAS_MAC_ADDR2, (laddr[0]<<8) | laddr[1]);
1246 }
1247
1248 /*
1249 * Receive interrupt.
1250 */
1251 int
1252 cas_rint(struct cas_softc *sc)
1253 {
1254 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1255 bus_space_tag_t t = sc->sc_memt;
1256 bus_space_handle_t h = sc->sc_memh;
1257 struct cas_rxsoft *rxs;
1258 struct mbuf *m;
1259 u_int64_t word[4];
1260 int len, off, idx;
1261 int i, skip;
1262 void *cp;
1263
1264 for (i = sc->sc_rxptr;; i = CAS_NEXTRX(i + skip)) {
1265 CAS_CDRXCSYNC(sc, i,
1266 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1267
1268 word[0] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[0]);
1269 word[1] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[1]);
1270 word[2] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[2]);
1271 word[3] = CAS_DMA_READ(sc->sc_rxcomps[i].cc_word[3]);
1272
1273 /* Stop if the hardware still owns the descriptor. */
1274 if ((word[0] & CAS_RC0_TYPE) == 0 || word[3] & CAS_RC3_OWN)
1275 break;
1276
1277 len = CAS_RC1_HDR_LEN(word[1]);
1278 if (len > 0) {
1279 off = CAS_RC1_HDR_OFF(word[1]);
1280 idx = CAS_RC1_HDR_IDX(word[1]);
1281 rxs = &sc->sc_rxsoft[idx];
1282
1283 DPRINTF(sc, ("hdr at idx %d, off %d, len %d\n",
1284 idx, off, len));
1285
1286 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1287 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1288
1289 cp = rxs->rxs_kva + off * 256 + ETHER_ALIGN;
1290 m = m_devget(cp, len, 0, ifp, NULL);
1291
1292 if (word[0] & CAS_RC0_RELEASE_HDR)
1293 cas_add_rxbuf(sc, idx);
1294
1295 if (m != NULL) {
1296
1297 /*
1298 * Pass this up to any BPF listeners, but only
1299 * pass it up the stack if its for us.
1300 */
1301 bpf_mtap(ifp, m);
1302
1303 ifp->if_ipackets++;
1304 m->m_pkthdr.csum_flags = 0;
1305 (*ifp->if_input)(ifp, m);
1306 } else
1307 ifp->if_ierrors++;
1308 }
1309
1310 len = CAS_RC0_DATA_LEN(word[0]);
1311 if (len > 0) {
1312 off = CAS_RC0_DATA_OFF(word[0]);
1313 idx = CAS_RC0_DATA_IDX(word[0]);
1314 rxs = &sc->sc_rxsoft[idx];
1315
1316 DPRINTF(sc, ("data at idx %d, off %d, len %d\n",
1317 idx, off, len));
1318
1319 bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
1320 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1321
1322 /* XXX We should not be copying the packet here. */
1323 cp = rxs->rxs_kva + off + ETHER_ALIGN;
1324 m = m_devget(cp, len, 0, ifp, NULL);
1325
1326 if (word[0] & CAS_RC0_RELEASE_DATA)
1327 cas_add_rxbuf(sc, idx);
1328
1329 if (m != NULL) {
1330 /*
1331 * Pass this up to any BPF listeners, but only
1332 * pass it up the stack if its for us.
1333 */
1334 bpf_mtap(ifp, m);
1335
1336 ifp->if_ipackets++;
1337 m->m_pkthdr.csum_flags = 0;
1338 (*ifp->if_input)(ifp, m);
1339 } else
1340 ifp->if_ierrors++;
1341 }
1342
1343 if (word[0] & CAS_RC0_SPLIT)
1344 aprint_error_dev(sc->sc_dev, "split packet\n");
1345
1346 skip = CAS_RC0_SKIP(word[0]);
1347 }
1348
1349 while (sc->sc_rxptr != i) {
1350 sc->sc_rxcomps[sc->sc_rxptr].cc_word[0] = 0;
1351 sc->sc_rxcomps[sc->sc_rxptr].cc_word[1] = 0;
1352 sc->sc_rxcomps[sc->sc_rxptr].cc_word[2] = 0;
1353 sc->sc_rxcomps[sc->sc_rxptr].cc_word[3] =
1354 CAS_DMA_WRITE(CAS_RC3_OWN);
1355 CAS_CDRXCSYNC(sc, sc->sc_rxptr,
1356 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1357
1358 sc->sc_rxptr = CAS_NEXTRX(sc->sc_rxptr);
1359 }
1360
1361 bus_space_write_4(t, h, CAS_RX_COMP_TAIL, sc->sc_rxptr);
1362
1363 DPRINTF(sc, ("cas_rint: done sc->rxptr %d, complete %d\n",
1364 sc->sc_rxptr, bus_space_read_4(t, h, CAS_RX_COMPLETION)));
1365
1366 return (1);
1367 }
1368
1369 /*
1370 * cas_add_rxbuf:
1371 *
1372 * Add a receive buffer to the indicated descriptor.
1373 */
1374 int
1375 cas_add_rxbuf(struct cas_softc *sc, int idx)
1376 {
1377 bus_space_tag_t t = sc->sc_memt;
1378 bus_space_handle_t h = sc->sc_memh;
1379
1380 CAS_INIT_RXDESC(sc, sc->sc_rxdptr, idx);
1381
1382 if ((sc->sc_rxdptr % 4) == 0)
1383 bus_space_write_4(t, h, CAS_RX_KICK, sc->sc_rxdptr);
1384
1385 if (++sc->sc_rxdptr == CAS_NRXDESC)
1386 sc->sc_rxdptr = 0;
1387
1388 return (0);
1389 }
1390
1391 int
1392 cas_eint(struct cas_softc *sc, u_int status)
1393 {
1394 char bits[128];
1395 if ((status & CAS_INTR_MIF) != 0) {
1396 DPRINTF(sc, ("%s: link status changed\n",
1397 device_xname(sc->sc_dev)));
1398 return (1);
1399 }
1400
1401 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1402 printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
1403 return (1);
1404 }
1405
1406 int
1407 cas_pint(struct cas_softc *sc)
1408 {
1409 bus_space_tag_t t = sc->sc_memt;
1410 bus_space_handle_t seb = sc->sc_memh;
1411 u_int32_t status;
1412
1413 status = bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1414 status |= bus_space_read_4(t, seb, CAS_MII_INTERRUP_STATUS);
1415 #ifdef CAS_DEBUG
1416 if (status)
1417 printf("%s: link status changed\n", device_xname(sc->sc_dev));
1418 #endif
1419 return (1);
1420 }
1421
1422 int
1423 cas_intr(void *v)
1424 {
1425 struct cas_softc *sc = (struct cas_softc *)v;
1426 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1427 bus_space_tag_t t = sc->sc_memt;
1428 bus_space_handle_t seb = sc->sc_memh;
1429 u_int32_t status;
1430 int r = 0;
1431 #ifdef CAS_DEBUG
1432 char bits[128];
1433 #endif
1434
1435 sc->sc_ev_intr.ev_count++;
1436
1437 status = bus_space_read_4(t, seb, CAS_STATUS);
1438 #ifdef CAS_DEBUG
1439 snprintb(bits, sizeof(bits), CAS_INTR_BITS, status);
1440 #endif
1441 DPRINTF(sc, ("%s: cas_intr: cplt %x status %s\n",
1442 device_xname(sc->sc_dev), (status>>19), bits));
1443
1444 if ((status & CAS_INTR_PCS) != 0)
1445 r |= cas_pint(sc);
1446
1447 if ((status & (CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
1448 CAS_INTR_RX_COMP_FULL | CAS_INTR_BERR)) != 0)
1449 r |= cas_eint(sc, status);
1450
1451 if ((status & (CAS_INTR_TX_EMPTY | CAS_INTR_TX_INTME)) != 0)
1452 r |= cas_tint(sc, status);
1453
1454 if ((status & (CAS_INTR_RX_DONE | CAS_INTR_RX_NOBUF)) != 0)
1455 r |= cas_rint(sc);
1456
1457 /* We should eventually do more than just print out error stats. */
1458 if (status & CAS_INTR_TX_MAC) {
1459 int txstat = bus_space_read_4(t, seb, CAS_MAC_TX_STATUS);
1460 #ifdef CAS_DEBUG
1461 if (txstat & ~CAS_MAC_TX_XMIT_DONE)
1462 printf("%s: MAC tx fault, status %x\n",
1463 device_xname(sc->sc_dev), txstat);
1464 #endif
1465 if (txstat & (CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_PKT_TOO_LONG))
1466 cas_init(ifp);
1467 }
1468 if (status & CAS_INTR_RX_MAC) {
1469 int rxstat = bus_space_read_4(t, seb, CAS_MAC_RX_STATUS);
1470 #ifdef CAS_DEBUG
1471 if (rxstat & ~CAS_MAC_RX_DONE)
1472 printf("%s: MAC rx fault, status %x\n",
1473 device_xname(sc->sc_dev), rxstat);
1474 #endif
1475 /*
1476 * On some chip revisions CAS_MAC_RX_OVERFLOW happen often
1477 * due to a silicon bug so handle them silently.
1478 */
1479 if (rxstat & CAS_MAC_RX_OVERFLOW) {
1480 ifp->if_ierrors++;
1481 cas_init(ifp);
1482 }
1483 #ifdef CAS_DEBUG
1484 else if (rxstat & ~(CAS_MAC_RX_DONE | CAS_MAC_RX_FRAME_CNT))
1485 printf("%s: MAC rx fault, status %x\n",
1486 device_xname(sc->sc_dev), rxstat);
1487 #endif
1488 }
1489 #if NRND > 0
1490 rnd_add_uint32(&sc->rnd_source, status);
1491 #endif
1492 return (r);
1493 }
1494
1495
1496 void
1497 cas_watchdog(struct ifnet *ifp)
1498 {
1499 struct cas_softc *sc = ifp->if_softc;
1500
1501 DPRINTF(sc, ("cas_watchdog: CAS_RX_CONFIG %x CAS_MAC_RX_STATUS %x "
1502 "CAS_MAC_RX_CONFIG %x\n",
1503 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_RX_CONFIG),
1504 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_STATUS),
1505 bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_MAC_RX_CONFIG)));
1506
1507 log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
1508 ++ifp->if_oerrors;
1509
1510 /* Try to get more packets going. */
1511 cas_init(ifp);
1512 }
1513
1514 /*
1515 * Initialize the MII Management Interface
1516 */
1517 void
1518 cas_mifinit(struct cas_softc *sc)
1519 {
1520 bus_space_tag_t t = sc->sc_memt;
1521 bus_space_handle_t mif = sc->sc_memh;
1522
1523 /* Configure the MIF in frame mode */
1524 sc->sc_mif_config = bus_space_read_4(t, mif, CAS_MIF_CONFIG);
1525 sc->sc_mif_config &= ~CAS_MIF_CONFIG_BB_ENA;
1526 bus_space_write_4(t, mif, CAS_MIF_CONFIG, sc->sc_mif_config);
1527 }
1528
1529 /*
1530 * MII interface
1531 *
1532 * The Cassini MII interface supports at least three different operating modes:
1533 *
1534 * Bitbang mode is implemented using data, clock and output enable registers.
1535 *
1536 * Frame mode is implemented by loading a complete frame into the frame
1537 * register and polling the valid bit for completion.
1538 *
1539 * Polling mode uses the frame register but completion is indicated by
1540 * an interrupt.
1541 *
1542 */
1543 int
1544 cas_mii_readreg(device_t self, int phy, int reg)
1545 {
1546 struct cas_softc *sc = device_private(self);
1547 bus_space_tag_t t = sc->sc_memt;
1548 bus_space_handle_t mif = sc->sc_memh;
1549 int n;
1550 u_int32_t v;
1551
1552 #ifdef CAS_DEBUG
1553 if (sc->sc_debug)
1554 printf("cas_mii_readreg: phy %d reg %d\n", phy, reg);
1555 #endif
1556
1557 /* Construct the frame command */
1558 v = (reg << CAS_MIF_REG_SHIFT) | (phy << CAS_MIF_PHY_SHIFT) |
1559 CAS_MIF_FRAME_READ;
1560
1561 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1562 for (n = 0; n < 100; n++) {
1563 DELAY(1);
1564 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1565 if (v & CAS_MIF_FRAME_TA0)
1566 return (v & CAS_MIF_FRAME_DATA);
1567 }
1568
1569 printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
1570 return (0);
1571 }
1572
1573 void
1574 cas_mii_writereg(device_t self, int phy, int reg, int val)
1575 {
1576 struct cas_softc *sc = device_private(self);
1577 bus_space_tag_t t = sc->sc_memt;
1578 bus_space_handle_t mif = sc->sc_memh;
1579 int n;
1580 u_int32_t v;
1581
1582 #ifdef CAS_DEBUG
1583 if (sc->sc_debug)
1584 printf("cas_mii_writereg: phy %d reg %d val %x\n",
1585 phy, reg, val);
1586 #endif
1587
1588 /* Construct the frame command */
1589 v = CAS_MIF_FRAME_WRITE |
1590 (phy << CAS_MIF_PHY_SHIFT) |
1591 (reg << CAS_MIF_REG_SHIFT) |
1592 (val & CAS_MIF_FRAME_DATA);
1593
1594 bus_space_write_4(t, mif, CAS_MIF_FRAME, v);
1595 for (n = 0; n < 100; n++) {
1596 DELAY(1);
1597 v = bus_space_read_4(t, mif, CAS_MIF_FRAME);
1598 if (v & CAS_MIF_FRAME_TA0)
1599 return;
1600 }
1601
1602 printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
1603 }
1604
1605 void
1606 cas_mii_statchg(device_t self)
1607 {
1608 struct cas_softc *sc = device_private(self);
1609 #ifdef CAS_DEBUG
1610 int instance = IFM_INST(sc->sc_media.ifm_cur->ifm_media);
1611 #endif
1612 bus_space_tag_t t = sc->sc_memt;
1613 bus_space_handle_t mac = sc->sc_memh;
1614 u_int32_t v;
1615
1616 #ifdef CAS_DEBUG
1617 if (sc->sc_debug)
1618 printf("cas_mii_statchg: status change: phy = %d\n",
1619 sc->sc_phys[instance]);
1620 #endif
1621
1622 /* Set tx full duplex options */
1623 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, 0);
1624 delay(10000); /* reg must be cleared and delay before changing. */
1625 v = CAS_MAC_TX_ENA_IPG0|CAS_MAC_TX_NGU|CAS_MAC_TX_NGU_LIMIT|
1626 CAS_MAC_TX_ENABLE;
1627 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
1628 v |= CAS_MAC_TX_IGN_CARRIER|CAS_MAC_TX_IGN_COLLIS;
1629 }
1630 bus_space_write_4(t, mac, CAS_MAC_TX_CONFIG, v);
1631
1632 /* XIF Configuration */
1633 v = CAS_MAC_XIF_TX_MII_ENA;
1634 v |= CAS_MAC_XIF_LINK_LED;
1635
1636 /* MII needs echo disable if half duplex. */
1637 if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
1638 /* turn on full duplex LED */
1639 v |= CAS_MAC_XIF_FDPLX_LED;
1640 else
1641 /* half duplex -- disable echo */
1642 v |= CAS_MAC_XIF_ECHO_DISABL;
1643
1644 switch (IFM_SUBTYPE(sc->sc_mii.mii_media_active)) {
1645 case IFM_1000_T: /* Gigabit using GMII interface */
1646 case IFM_1000_SX:
1647 v |= CAS_MAC_XIF_GMII_MODE;
1648 break;
1649 default:
1650 v &= ~CAS_MAC_XIF_GMII_MODE;
1651 }
1652 bus_space_write_4(t, mac, CAS_MAC_XIF_CONFIG, v);
1653 }
1654
1655 int
1656 cas_pcs_readreg(device_t self, int phy, int reg)
1657 {
1658 struct cas_softc *sc = device_private(self);
1659 bus_space_tag_t t = sc->sc_memt;
1660 bus_space_handle_t pcs = sc->sc_memh;
1661
1662 #ifdef CAS_DEBUG
1663 if (sc->sc_debug)
1664 printf("cas_pcs_readreg: phy %d reg %d\n", phy, reg);
1665 #endif
1666
1667 if (phy != CAS_PHYAD_EXTERNAL)
1668 return (0);
1669
1670 switch (reg) {
1671 case MII_BMCR:
1672 reg = CAS_MII_CONTROL;
1673 break;
1674 case MII_BMSR:
1675 reg = CAS_MII_STATUS;
1676 break;
1677 case MII_ANAR:
1678 reg = CAS_MII_ANAR;
1679 break;
1680 case MII_ANLPAR:
1681 reg = CAS_MII_ANLPAR;
1682 break;
1683 case MII_EXTSR:
1684 return (EXTSR_1000XFDX|EXTSR_1000XHDX);
1685 default:
1686 return (0);
1687 }
1688
1689 return bus_space_read_4(t, pcs, reg);
1690 }
1691
1692 void
1693 cas_pcs_writereg(device_t self, int phy, int reg, int val)
1694 {
1695 struct cas_softc *sc = device_private(self);
1696 bus_space_tag_t t = sc->sc_memt;
1697 bus_space_handle_t pcs = sc->sc_memh;
1698 int reset = 0;
1699
1700 #ifdef CAS_DEBUG
1701 if (sc->sc_debug)
1702 printf("cas_pcs_writereg: phy %d reg %d val %x\n",
1703 phy, reg, val);
1704 #endif
1705
1706 if (phy != CAS_PHYAD_EXTERNAL)
1707 return;
1708
1709 if (reg == MII_ANAR)
1710 bus_space_write_4(t, pcs, CAS_MII_CONFIG, 0);
1711
1712 switch (reg) {
1713 case MII_BMCR:
1714 reset = (val & CAS_MII_CONTROL_RESET);
1715 reg = CAS_MII_CONTROL;
1716 break;
1717 case MII_BMSR:
1718 reg = CAS_MII_STATUS;
1719 break;
1720 case MII_ANAR:
1721 reg = CAS_MII_ANAR;
1722 break;
1723 case MII_ANLPAR:
1724 reg = CAS_MII_ANLPAR;
1725 break;
1726 default:
1727 return;
1728 }
1729
1730 bus_space_write_4(t, pcs, reg, val);
1731
1732 if (reset)
1733 cas_bitwait(sc, pcs, CAS_MII_CONTROL, CAS_MII_CONTROL_RESET, 0);
1734
1735 if (reg == CAS_MII_ANAR || reset)
1736 bus_space_write_4(t, pcs, CAS_MII_CONFIG,
1737 CAS_MII_CONFIG_ENABLE);
1738 }
1739
1740 int
1741 cas_mediachange(struct ifnet *ifp)
1742 {
1743 struct cas_softc *sc = ifp->if_softc;
1744 struct mii_data *mii = &sc->sc_mii;
1745
1746 if (mii->mii_instance) {
1747 struct mii_softc *miisc;
1748 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
1749 mii_phy_reset(miisc);
1750 }
1751
1752 return (mii_mediachg(&sc->sc_mii));
1753 }
1754
1755 void
1756 cas_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1757 {
1758 struct cas_softc *sc = ifp->if_softc;
1759
1760 mii_pollstat(&sc->sc_mii);
1761 ifmr->ifm_active = sc->sc_mii.mii_media_active;
1762 ifmr->ifm_status = sc->sc_mii.mii_media_status;
1763 }
1764
1765 /*
1766 * Process an ioctl request.
1767 */
1768 int
1769 cas_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1770 {
1771 struct cas_softc *sc = ifp->if_softc;
1772 int s, error = 0;
1773
1774 s = splnet();
1775
1776 if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
1777 error = 0;
1778 if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1779 ;
1780 else if (ifp->if_flags & IFF_RUNNING) {
1781 /*
1782 * Multicast list has changed; set the hardware filter
1783 * accordingly.
1784 */
1785 cas_iff(sc);
1786 }
1787 }
1788
1789 splx(s);
1790 return (error);
1791 }
1792
1793 static bool
1794 cas_suspend(device_t self, const pmf_qual_t *qual)
1795 {
1796 struct cas_softc *sc = device_private(self);
1797 bus_space_tag_t t = sc->sc_memt;
1798 bus_space_handle_t h = sc->sc_memh;
1799
1800 bus_space_write_4(t, h, CAS_INTMASK, ~(uint32_t)0);
1801 if (sc->sc_ih != NULL) {
1802 pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
1803 sc->sc_ih = NULL;
1804 }
1805
1806 return true;
1807 }
1808
1809 static bool
1810 cas_resume(device_t self, const pmf_qual_t *qual)
1811 {
1812 struct cas_softc *sc = device_private(self);
1813
1814 return cas_estintr(sc, CAS_INTR_PCI | CAS_INTR_REG);
1815 }
1816
1817 static bool
1818 cas_estintr(struct cas_softc *sc, int what)
1819 {
1820 bus_space_tag_t t = sc->sc_memt;
1821 bus_space_handle_t h = sc->sc_memh;
1822 const char *intrstr = NULL;
1823
1824 /* PCI interrupts */
1825 if (what & CAS_INTR_PCI) {
1826 intrstr = pci_intr_string(sc->sc_pc, sc->sc_handle);
1827 sc->sc_ih = pci_intr_establish(sc->sc_pc, sc->sc_handle,
1828 IPL_NET, cas_intr, sc);
1829 if (sc->sc_ih == NULL) {
1830 aprint_error_dev(sc->sc_dev,
1831 "unable to establish interrupt");
1832 if (intrstr != NULL)
1833 aprint_error(" at %s", intrstr);
1834 aprint_error("\n");
1835 return false;
1836 }
1837
1838 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
1839 }
1840
1841 /* Interrupt register */
1842 if (what & CAS_INTR_REG) {
1843 bus_space_write_4(t, h, CAS_INTMASK,
1844 ~(CAS_INTR_TX_INTME|CAS_INTR_TX_EMPTY|
1845 CAS_INTR_TX_TAG_ERR|
1846 CAS_INTR_RX_DONE|CAS_INTR_RX_NOBUF|
1847 CAS_INTR_RX_TAG_ERR|
1848 CAS_INTR_RX_COMP_FULL|CAS_INTR_PCS|
1849 CAS_INTR_MAC_CONTROL|CAS_INTR_MIF|
1850 CAS_INTR_BERR));
1851 bus_space_write_4(t, h, CAS_MAC_RX_MASK,
1852 CAS_MAC_RX_DONE|CAS_MAC_RX_FRAME_CNT);
1853 bus_space_write_4(t, h, CAS_MAC_TX_MASK, CAS_MAC_TX_XMIT_DONE);
1854 bus_space_write_4(t, h, CAS_MAC_CONTROL_MASK, 0); /* XXXX */
1855 }
1856 return true;
1857 }
1858
1859 bool
1860 cas_shutdown(device_t self, int howto)
1861 {
1862 struct cas_softc *sc = device_private(self);
1863 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1864
1865 cas_stop(ifp, 1);
1866
1867 return true;
1868 }
1869
1870 void
1871 cas_iff(struct cas_softc *sc)
1872 {
1873 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1874 struct ethercom *ec = &sc->sc_ethercom;
1875 struct ether_multi *enm;
1876 struct ether_multistep step;
1877 bus_space_tag_t t = sc->sc_memt;
1878 bus_space_handle_t h = sc->sc_memh;
1879 u_int32_t crc, hash[16], rxcfg;
1880 int i;
1881
1882 rxcfg = bus_space_read_4(t, h, CAS_MAC_RX_CONFIG);
1883 rxcfg &= ~(CAS_MAC_RX_HASH_FILTER | CAS_MAC_RX_PROMISCUOUS |
1884 CAS_MAC_RX_PROMISC_GRP);
1885 ifp->if_flags &= ~IFF_ALLMULTI;
1886
1887 if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
1888 ifp->if_flags |= IFF_ALLMULTI;
1889 if (ifp->if_flags & IFF_PROMISC)
1890 rxcfg |= CAS_MAC_RX_PROMISCUOUS;
1891 else
1892 rxcfg |= CAS_MAC_RX_PROMISC_GRP;
1893 } else {
1894 /*
1895 * Set up multicast address filter by passing all multicast
1896 * addresses through a crc generator, and then using the
1897 * high order 8 bits as an index into the 256 bit logical
1898 * address filter. The high order 4 bits selects the word,
1899 * while the other 4 bits select the bit within the word
1900 * (where bit 0 is the MSB).
1901 */
1902
1903 rxcfg |= CAS_MAC_RX_HASH_FILTER;
1904
1905 /* Clear hash table */
1906 for (i = 0; i < 16; i++)
1907 hash[i] = 0;
1908
1909 ETHER_FIRST_MULTI(step, ec, enm);
1910 while (enm != NULL) {
1911 crc = ether_crc32_le(enm->enm_addrlo,
1912 ETHER_ADDR_LEN);
1913
1914 /* Just want the 8 most significant bits. */
1915 crc >>= 24;
1916
1917 /* Set the corresponding bit in the filter. */
1918 hash[crc >> 4] |= 1 << (15 - (crc & 15));
1919
1920 ETHER_NEXT_MULTI(step, enm);
1921 }
1922
1923 /* Now load the hash table into the chip (if we are using it) */
1924 for (i = 0; i < 16; i++) {
1925 bus_space_write_4(t, h,
1926 CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
1927 hash[i]);
1928 }
1929 }
1930
1931 bus_space_write_4(t, h, CAS_MAC_RX_CONFIG, rxcfg);
1932 }
1933
1934 int
1935 cas_encap(struct cas_softc *sc, struct mbuf *mhead, u_int32_t *bixp)
1936 {
1937 u_int64_t flags;
1938 u_int32_t cur, frag, i;
1939 bus_dmamap_t map;
1940
1941 cur = frag = *bixp;
1942 map = sc->sc_txd[cur].sd_map;
1943
1944 if (bus_dmamap_load_mbuf(sc->sc_dmatag, map, mhead,
1945 BUS_DMA_NOWAIT) != 0) {
1946 return (ENOBUFS);
1947 }
1948
1949 if ((sc->sc_tx_cnt + map->dm_nsegs) > (CAS_NTXDESC - 2)) {
1950 bus_dmamap_unload(sc->sc_dmatag, map);
1951 return (ENOBUFS);
1952 }
1953
1954 bus_dmamap_sync(sc->sc_dmatag, map, 0, map->dm_mapsize,
1955 BUS_DMASYNC_PREWRITE);
1956
1957 for (i = 0; i < map->dm_nsegs; i++) {
1958 sc->sc_txdescs[frag].cd_addr =
1959 CAS_DMA_WRITE(map->dm_segs[i].ds_addr);
1960 flags = (map->dm_segs[i].ds_len & CAS_TD_BUFSIZE) |
1961 (i == 0 ? CAS_TD_START_OF_PACKET : 0) |
1962 ((i == (map->dm_nsegs - 1)) ? CAS_TD_END_OF_PACKET : 0);
1963 sc->sc_txdescs[frag].cd_flags = CAS_DMA_WRITE(flags);
1964 bus_dmamap_sync(sc->sc_dmatag, sc->sc_cddmamap,
1965 CAS_CDTXOFF(frag), sizeof(struct cas_desc),
1966 BUS_DMASYNC_PREWRITE);
1967 cur = frag;
1968 if (++frag == CAS_NTXDESC)
1969 frag = 0;
1970 }
1971
1972 sc->sc_tx_cnt += map->dm_nsegs;
1973 sc->sc_txd[*bixp].sd_map = sc->sc_txd[cur].sd_map;
1974 sc->sc_txd[cur].sd_map = map;
1975 sc->sc_txd[cur].sd_mbuf = mhead;
1976
1977 bus_space_write_4(sc->sc_memt, sc->sc_memh, CAS_TX_KICK, frag);
1978
1979 *bixp = frag;
1980
1981 /* sync descriptors */
1982
1983 return (0);
1984 }
1985
1986 /*
1987 * Transmit interrupt.
1988 */
1989 int
1990 cas_tint(struct cas_softc *sc, u_int32_t status)
1991 {
1992 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1993 struct cas_sxd *sd;
1994 u_int32_t cons, comp;
1995
1996 comp = bus_space_read_4(sc->sc_memt, sc->sc_memh, CAS_TX_COMPLETION);
1997 cons = sc->sc_tx_cons;
1998 while (cons != comp) {
1999 sd = &sc->sc_txd[cons];
2000 if (sd->sd_mbuf != NULL) {
2001 bus_dmamap_sync(sc->sc_dmatag, sd->sd_map, 0,
2002 sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2003 bus_dmamap_unload(sc->sc_dmatag, sd->sd_map);
2004 m_freem(sd->sd_mbuf);
2005 sd->sd_mbuf = NULL;
2006 ifp->if_opackets++;
2007 }
2008 sc->sc_tx_cnt--;
2009 if (++cons == CAS_NTXDESC)
2010 cons = 0;
2011 }
2012 sc->sc_tx_cons = cons;
2013
2014 if (sc->sc_tx_cnt < CAS_NTXDESC - 2)
2015 ifp->if_flags &= ~IFF_OACTIVE;
2016 if (sc->sc_tx_cnt == 0)
2017 ifp->if_timer = 0;
2018
2019 cas_start(ifp);
2020
2021 return (1);
2022 }
2023
2024 void
2025 cas_start(struct ifnet *ifp)
2026 {
2027 struct cas_softc *sc = ifp->if_softc;
2028 struct mbuf *m;
2029 u_int32_t bix;
2030
2031 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
2032 return;
2033
2034 bix = sc->sc_tx_prod;
2035 while (sc->sc_txd[bix].sd_mbuf == NULL) {
2036 IFQ_POLL(&ifp->if_snd, m);
2037 if (m == NULL)
2038 break;
2039
2040 /*
2041 * If BPF is listening on this interface, let it see the
2042 * packet before we commit it to the wire.
2043 */
2044 bpf_mtap(ifp, m);
2045
2046 /*
2047 * Encapsulate this packet and start it going...
2048 * or fail...
2049 */
2050 if (cas_encap(sc, m, &bix)) {
2051 ifp->if_flags |= IFF_OACTIVE;
2052 break;
2053 }
2054
2055 IFQ_DEQUEUE(&ifp->if_snd, m);
2056 ifp->if_timer = 5;
2057 }
2058
2059 sc->sc_tx_prod = bix;
2060 }
2061