1 1.65 rin /* $NetBSD: if_dge.c,v 1.65 2024/07/05 04:31:51 rin Exp $ */ 2 1.1 ragge 3 1.1 ragge /* 4 1.1 ragge * Copyright (c) 2004, SUNET, Swedish University Computer Network. 5 1.1 ragge * All rights reserved. 6 1.1 ragge * 7 1.1 ragge * Written by Anders Magnusson for SUNET, Swedish University Computer Network. 8 1.1 ragge * 9 1.1 ragge * Redistribution and use in source and binary forms, with or without 10 1.1 ragge * modification, are permitted provided that the following conditions 11 1.1 ragge * are met: 12 1.1 ragge * 1. Redistributions of source code must retain the above copyright 13 1.1 ragge * notice, this list of conditions and the following disclaimer. 14 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 15 1.1 ragge * notice, this list of conditions and the following disclaimer in the 16 1.1 ragge * documentation and/or other materials provided with the distribution. 17 1.1 ragge * 3. All advertising materials mentioning features or use of this software 18 1.1 ragge * must display the following acknowledgement: 19 1.1 ragge * This product includes software developed for the NetBSD Project by 20 1.1 ragge * SUNET, Swedish University Computer Network. 21 1.1 ragge * 4. The name of SUNET may not be used to endorse or promote products 22 1.1 ragge * derived from this software without specific prior written permission. 23 1.1 ragge * 24 1.1 ragge * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND 25 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 26 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 28 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 31 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 32 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 33 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 34 1.1 ragge * POSSIBILITY OF SUCH DAMAGE. 35 1.1 ragge */ 36 1.1 ragge 37 1.1 ragge /* 38 1.1 ragge * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc. 39 1.1 ragge * All rights reserved. 40 1.1 ragge * 41 1.1 ragge * Written by Jason R. Thorpe for Wasabi Systems, Inc. 42 1.1 ragge * 43 1.1 ragge * Redistribution and use in source and binary forms, with or without 44 1.1 ragge * modification, are permitted provided that the following conditions 45 1.1 ragge * are met: 46 1.1 ragge * 1. Redistributions of source code must retain the above copyright 47 1.1 ragge * notice, this list of conditions and the following disclaimer. 48 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright 49 1.1 ragge * notice, this list of conditions and the following disclaimer in the 50 1.1 ragge * documentation and/or other materials provided with the distribution. 51 1.1 ragge * 3. All advertising materials mentioning features or use of this software 52 1.1 ragge * must display the following acknowledgement: 53 1.1 ragge * This product includes software developed for the NetBSD Project by 54 1.1 ragge * Wasabi Systems, Inc. 55 1.1 ragge * 4. The name of Wasabi Systems, Inc. may not be used to endorse 56 1.1 ragge * or promote products derived from this software without specific prior 57 1.1 ragge * written permission. 58 1.1 ragge * 59 1.1 ragge * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND 60 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 61 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 62 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC 63 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 64 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 65 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 66 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 67 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 68 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 69 1.1 ragge * POSSIBILITY OF SUCH DAMAGE. 70 1.1 ragge */ 71 1.1 ragge 72 1.1 ragge /* 73 1.1 ragge * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller. 74 1.1 ragge * 75 1.1 ragge * TODO (in no specific order): 76 1.1 ragge * HW VLAN support. 77 1.1 ragge * TSE offloading (needs kernel changes...) 78 1.1 ragge * RAIDC (receive interrupt delay adaptation) 79 1.1 ragge * Use memory > 4GB. 80 1.1 ragge */ 81 1.1 ragge 82 1.1 ragge #include <sys/cdefs.h> 83 1.65 rin __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.65 2024/07/05 04:31:51 rin Exp $"); 84 1.34 tls 85 1.1 ragge 86 1.1 ragge 87 1.1 ragge #include <sys/param.h> 88 1.1 ragge #include <sys/systm.h> 89 1.10 perry #include <sys/callout.h> 90 1.1 ragge #include <sys/mbuf.h> 91 1.1 ragge #include <sys/malloc.h> 92 1.1 ragge #include <sys/kernel.h> 93 1.1 ragge #include <sys/socket.h> 94 1.1 ragge #include <sys/ioctl.h> 95 1.1 ragge #include <sys/errno.h> 96 1.1 ragge #include <sys/device.h> 97 1.1 ragge #include <sys/queue.h> 98 1.40 riastrad #include <sys/rndsource.h> 99 1.1 ragge 100 1.1 ragge #include <net/if.h> 101 1.10 perry #include <net/if_dl.h> 102 1.1 ragge #include <net/if_media.h> 103 1.1 ragge #include <net/if_ether.h> 104 1.1 ragge #include <net/bpf.h> 105 1.1 ragge 106 1.1 ragge #include <netinet/in.h> /* XXX for struct ip */ 107 1.1 ragge #include <netinet/in_systm.h> /* XXX for struct ip */ 108 1.1 ragge #include <netinet/ip.h> /* XXX for struct ip */ 109 1.1 ragge #include <netinet/tcp.h> /* XXX for struct tcphdr */ 110 1.1 ragge 111 1.17 ad #include <sys/bus.h> 112 1.17 ad #include <sys/intr.h> 113 1.1 ragge #include <machine/endian.h> 114 1.1 ragge 115 1.1 ragge #include <dev/mii/mii.h> 116 1.1 ragge #include <dev/mii/miivar.h> 117 1.1 ragge #include <dev/mii/mii_bitbang.h> 118 1.1 ragge 119 1.1 ragge #include <dev/pci/pcireg.h> 120 1.1 ragge #include <dev/pci/pcivar.h> 121 1.1 ragge #include <dev/pci/pcidevs.h> 122 1.1 ragge 123 1.1 ragge #include <dev/pci/if_dgereg.h> 124 1.1 ragge 125 1.3 ragge /* 126 1.3 ragge * The receive engine may sometimes become off-by-one when writing back 127 1.3 ragge * chained descriptors. Avoid this by allocating a large chunk of 128 1.3 ragge * memory and use if instead (to avoid chained descriptors). 129 1.3 ragge * This only happens with chained descriptors under heavy load. 130 1.3 ragge */ 131 1.3 ragge #define DGE_OFFBYONE_RXBUG 132 1.3 ragge 133 1.1 ragge #define DGE_EVENT_COUNTERS 134 1.1 ragge #define DGE_DEBUG 135 1.1 ragge 136 1.1 ragge #ifdef DGE_DEBUG 137 1.3 ragge #define DGE_DEBUG_LINK 0x01 138 1.3 ragge #define DGE_DEBUG_TX 0x02 139 1.3 ragge #define DGE_DEBUG_RX 0x04 140 1.3 ragge #define DGE_DEBUG_CKSUM 0x08 141 1.1 ragge int dge_debug = 0; 142 1.1 ragge 143 1.3 ragge #define DPRINTF(x, y) if (dge_debug & (x)) printf y 144 1.1 ragge #else 145 1.3 ragge #define DPRINTF(x, y) /* nothing */ 146 1.1 ragge #endif /* DGE_DEBUG */ 147 1.1 ragge 148 1.1 ragge /* 149 1.1 ragge * Transmit descriptor list size. We allow up to 100 DMA segments per 150 1.1 ragge * packet (Intel reports of jumbo frame packets with as 151 1.1 ragge * many as 80 DMA segments when using 16k buffers). 152 1.1 ragge */ 153 1.3 ragge #define DGE_NTXSEGS 100 154 1.3 ragge #define DGE_IFQUEUELEN 20000 155 1.3 ragge #define DGE_TXQUEUELEN 2048 156 1.3 ragge #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1) 157 1.3 ragge #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8) 158 1.3 ragge #define DGE_NTXDESC 1024 159 1.3 ragge #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1) 160 1.3 ragge #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK) 161 1.3 ragge #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK) 162 1.1 ragge 163 1.1 ragge /* 164 1.1 ragge * Receive descriptor list size. 165 1.1 ragge * Packet is of size MCLBYTES, and for jumbo packets buffers may 166 1.3 ragge * be chained. Due to the nature of the card (high-speed), keep this 167 1.1 ragge * ring large. With 2k buffers the ring can store 400 jumbo packets, 168 1.1 ragge * which at full speed will be received in just under 3ms. 169 1.1 ragge */ 170 1.3 ragge #define DGE_NRXDESC 2048 171 1.3 ragge #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1) 172 1.3 ragge #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK) 173 1.1 ragge /* 174 1.1 ragge * # of descriptors between head and written descriptors. 175 1.1 ragge * This is to work-around two erratas. 176 1.1 ragge */ 177 1.1 ragge #define DGE_RXSPACE 10 178 1.3 ragge #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK) 179 1.1 ragge /* 180 1.61 msaitoh * Receive descriptor fetch thresholds. These are values recommended 181 1.1 ragge * by Intel, do not touch them unless you know what you are doing. 182 1.1 ragge */ 183 1.3 ragge #define RXDCTL_PTHRESH_VAL 128 184 1.3 ragge #define RXDCTL_HTHRESH_VAL 16 185 1.3 ragge #define RXDCTL_WTHRESH_VAL 16 186 1.1 ragge 187 1.1 ragge 188 1.1 ragge /* 189 1.1 ragge * Tweakable parameters; default values. 190 1.1 ragge */ 191 1.3 ragge #define FCRTH 0x30000 /* Send XOFF water mark */ 192 1.3 ragge #define FCRTL 0x28000 /* Send XON water mark */ 193 1.3 ragge #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */ 194 1.3 ragge #define TIDV 0x20 /* Interrupt delay after send, .8192us units */ 195 1.1 ragge 196 1.1 ragge /* 197 1.1 ragge * Control structures are DMA'd to the i82597 chip. We allocate them in 198 1.1 ragge * a single clump that maps to a single DMA segment to make serveral things 199 1.1 ragge * easier. 200 1.1 ragge */ 201 1.1 ragge struct dge_control_data { 202 1.1 ragge /* 203 1.1 ragge * The transmit descriptors. 204 1.1 ragge */ 205 1.1 ragge struct dge_tdes wcd_txdescs[DGE_NTXDESC]; 206 1.1 ragge 207 1.1 ragge /* 208 1.1 ragge * The receive descriptors. 209 1.1 ragge */ 210 1.1 ragge struct dge_rdes wcd_rxdescs[DGE_NRXDESC]; 211 1.1 ragge }; 212 1.1 ragge 213 1.3 ragge #define DGE_CDOFF(x) offsetof(struct dge_control_data, x) 214 1.3 ragge #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)]) 215 1.3 ragge #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)]) 216 1.1 ragge 217 1.1 ragge /* 218 1.2 ragge * The DGE interface have a higher max MTU size than normal jumbo frames. 219 1.2 ragge */ 220 1.3 ragge #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */ 221 1.2 ragge 222 1.2 ragge /* 223 1.1 ragge * Software state for transmit jobs. 224 1.1 ragge */ 225 1.1 ragge struct dge_txsoft { 226 1.1 ragge struct mbuf *txs_mbuf; /* head of our mbuf chain */ 227 1.1 ragge bus_dmamap_t txs_dmamap; /* our DMA map */ 228 1.1 ragge int txs_firstdesc; /* first descriptor in packet */ 229 1.1 ragge int txs_lastdesc; /* last descriptor in packet */ 230 1.1 ragge int txs_ndesc; /* # of descriptors used */ 231 1.1 ragge }; 232 1.1 ragge 233 1.1 ragge /* 234 1.3 ragge * Software state for receive buffers. Each descriptor gets a 235 1.3 ragge * 2k (MCLBYTES) buffer and a DMA map. For packets which fill 236 1.1 ragge * more than one buffer, we chain them together. 237 1.1 ragge */ 238 1.1 ragge struct dge_rxsoft { 239 1.1 ragge struct mbuf *rxs_mbuf; /* head of our mbuf chain */ 240 1.1 ragge bus_dmamap_t rxs_dmamap; /* our DMA map */ 241 1.1 ragge }; 242 1.1 ragge 243 1.1 ragge /* 244 1.1 ragge * Software state per device. 245 1.1 ragge */ 246 1.1 ragge struct dge_softc { 247 1.35 chs device_t sc_dev; /* generic device information */ 248 1.1 ragge bus_space_tag_t sc_st; /* bus space tag */ 249 1.1 ragge bus_space_handle_t sc_sh; /* bus space handle */ 250 1.1 ragge bus_dma_tag_t sc_dmat; /* bus DMA tag */ 251 1.1 ragge struct ethercom sc_ethercom; /* ethernet common data */ 252 1.1 ragge 253 1.1 ragge int sc_flags; /* flags; see below */ 254 1.1 ragge int sc_bus_speed; /* PCI/PCIX bus speed */ 255 1.1 ragge int sc_pcix_offset; /* PCIX capability register offset */ 256 1.1 ragge 257 1.42 pgoyette const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */ 258 1.1 ragge pci_chipset_tag_t sc_pc; 259 1.1 ragge pcitag_t sc_pt; 260 1.1 ragge int sc_mmrbc; /* Max PCIX memory read byte count */ 261 1.1 ragge 262 1.1 ragge void *sc_ih; /* interrupt cookie */ 263 1.1 ragge 264 1.1 ragge struct ifmedia sc_media; 265 1.1 ragge 266 1.1 ragge bus_dmamap_t sc_cddmamap; /* control data DMA map */ 267 1.3 ragge #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr 268 1.1 ragge 269 1.1 ragge int sc_align_tweak; 270 1.1 ragge 271 1.1 ragge /* 272 1.1 ragge * Software state for the transmit and receive descriptors. 273 1.1 ragge */ 274 1.1 ragge struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN]; 275 1.1 ragge struct dge_rxsoft sc_rxsoft[DGE_NRXDESC]; 276 1.1 ragge 277 1.1 ragge /* 278 1.1 ragge * Control data structures. 279 1.1 ragge */ 280 1.1 ragge struct dge_control_data *sc_control_data; 281 1.3 ragge #define sc_txdescs sc_control_data->wcd_txdescs 282 1.3 ragge #define sc_rxdescs sc_control_data->wcd_rxdescs 283 1.1 ragge 284 1.1 ragge #ifdef DGE_EVENT_COUNTERS 285 1.1 ragge /* Event counters. */ 286 1.1 ragge struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */ 287 1.1 ragge struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */ 288 1.3 ragge struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */ 289 1.1 ragge struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */ 290 1.1 ragge struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */ 291 1.1 ragge struct evcnt sc_ev_rxintr; /* Rx interrupts */ 292 1.1 ragge struct evcnt sc_ev_linkintr; /* Link interrupts */ 293 1.1 ragge 294 1.1 ragge struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */ 295 1.1 ragge struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */ 296 1.1 ragge struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */ 297 1.1 ragge struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */ 298 1.1 ragge 299 1.1 ragge struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */ 300 1.1 ragge struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */ 301 1.1 ragge struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */ 302 1.1 ragge 303 1.1 ragge struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */ 304 1.1 ragge struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */ 305 1.1 ragge #endif /* DGE_EVENT_COUNTERS */ 306 1.1 ragge 307 1.1 ragge int sc_txfree; /* number of free Tx descriptors */ 308 1.1 ragge int sc_txnext; /* next ready Tx descriptor */ 309 1.1 ragge 310 1.1 ragge int sc_txsfree; /* number of free Tx jobs */ 311 1.1 ragge int sc_txsnext; /* next free Tx job */ 312 1.1 ragge int sc_txsdirty; /* dirty Tx jobs */ 313 1.1 ragge 314 1.1 ragge uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */ 315 1.1 ragge uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */ 316 1.1 ragge 317 1.1 ragge int sc_rxptr; /* next ready Rx descriptor/queue ent */ 318 1.1 ragge int sc_rxdiscard; 319 1.1 ragge int sc_rxlen; 320 1.1 ragge struct mbuf *sc_rxhead; 321 1.1 ragge struct mbuf *sc_rxtail; 322 1.1 ragge struct mbuf **sc_rxtailp; 323 1.1 ragge 324 1.1 ragge uint32_t sc_ctrl0; /* prototype CTRL0 register */ 325 1.1 ragge uint32_t sc_icr; /* prototype interrupt bits */ 326 1.1 ragge uint32_t sc_tctl; /* prototype TCTL register */ 327 1.1 ragge uint32_t sc_rctl; /* prototype RCTL register */ 328 1.1 ragge 329 1.1 ragge int sc_mchash_type; /* multicast filter offset */ 330 1.1 ragge 331 1.1 ragge uint16_t sc_eeprom[EEPROM_SIZE]; 332 1.1 ragge 333 1.32 tls krndsource_t rnd_source; /* random source */ 334 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG 335 1.15 christos void *sc_bugbuf; 336 1.3 ragge SLIST_HEAD(, rxbugentry) sc_buglist; 337 1.3 ragge bus_dmamap_t sc_bugmap; 338 1.3 ragge struct rxbugentry *sc_entry; 339 1.1 ragge #endif 340 1.1 ragge }; 341 1.1 ragge 342 1.3 ragge #define DGE_RXCHAIN_RESET(sc) \ 343 1.1 ragge do { \ 344 1.1 ragge (sc)->sc_rxtailp = &(sc)->sc_rxhead; \ 345 1.1 ragge *(sc)->sc_rxtailp = NULL; \ 346 1.1 ragge (sc)->sc_rxlen = 0; \ 347 1.1 ragge } while (/*CONSTCOND*/0) 348 1.1 ragge 349 1.3 ragge #define DGE_RXCHAIN_LINK(sc, m) \ 350 1.1 ragge do { \ 351 1.1 ragge *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \ 352 1.1 ragge (sc)->sc_rxtailp = &(m)->m_next; \ 353 1.1 ragge } while (/*CONSTCOND*/0) 354 1.1 ragge 355 1.1 ragge /* sc_flags */ 356 1.3 ragge #define DGE_F_BUS64 0x20 /* bus is 64-bit */ 357 1.3 ragge #define DGE_F_PCIX 0x40 /* bus is PCI-X */ 358 1.1 ragge 359 1.1 ragge #ifdef DGE_EVENT_COUNTERS 360 1.3 ragge #define DGE_EVCNT_INCR(ev) (ev)->ev_count++ 361 1.1 ragge #else 362 1.3 ragge #define DGE_EVCNT_INCR(ev) /* nothing */ 363 1.1 ragge #endif 364 1.1 ragge 365 1.3 ragge #define CSR_READ(sc, reg) \ 366 1.1 ragge bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg)) 367 1.3 ragge #define CSR_WRITE(sc, reg, val) \ 368 1.1 ragge bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val)) 369 1.1 ragge 370 1.3 ragge #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x))) 371 1.3 ragge #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x))) 372 1.1 ragge 373 1.3 ragge #define DGE_CDTXSYNC(sc, x, n, ops) \ 374 1.1 ragge do { \ 375 1.1 ragge int __x, __n; \ 376 1.1 ragge \ 377 1.1 ragge __x = (x); \ 378 1.1 ragge __n = (n); \ 379 1.1 ragge \ 380 1.1 ragge /* If it will wrap around, sync to the end of the ring. */ \ 381 1.5 thorpej if ((__x + __n) > DGE_NTXDESC) { \ 382 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 383 1.1 ragge DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \ 384 1.5 thorpej (DGE_NTXDESC - __x), (ops)); \ 385 1.1 ragge __n -= (DGE_NTXDESC - __x); \ 386 1.1 ragge __x = 0; \ 387 1.1 ragge } \ 388 1.1 ragge \ 389 1.1 ragge /* Now sync whatever is left. */ \ 390 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 391 1.1 ragge DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \ 392 1.1 ragge } while (/*CONSTCOND*/0) 393 1.1 ragge 394 1.3 ragge #define DGE_CDRXSYNC(sc, x, ops) \ 395 1.1 ragge do { \ 396 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \ 397 1.1 ragge DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \ 398 1.1 ragge } while (/*CONSTCOND*/0) 399 1.1 ragge 400 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG 401 1.3 ragge #define DGE_INIT_RXDESC(sc, x) \ 402 1.3 ragge do { \ 403 1.3 ragge struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 404 1.3 ragge struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \ 405 1.3 ragge struct mbuf *__m = __rxs->rxs_mbuf; \ 406 1.58 thorpej const bus_addr_t __rxaddr = sc->sc_bugmap->dm_segs[0].ds_addr + \ 407 1.58 thorpej (mtod((__m), char *) - (char *)sc->sc_bugbuf); \ 408 1.3 ragge \ 409 1.58 thorpej __rxd->dr_baddrl = htole32(__rxaddr); \ 410 1.58 thorpej __rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32); \ 411 1.3 ragge __rxd->dr_len = 0; \ 412 1.3 ragge __rxd->dr_cksum = 0; \ 413 1.3 ragge __rxd->dr_status = 0; \ 414 1.3 ragge __rxd->dr_errors = 0; \ 415 1.3 ragge __rxd->dr_special = 0; \ 416 1.53 msaitoh DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \ 417 1.3 ragge \ 418 1.3 ragge CSR_WRITE((sc), DGE_RDT, (x)); \ 419 1.3 ragge } while (/*CONSTCOND*/0) 420 1.3 ragge #else 421 1.3 ragge #define DGE_INIT_RXDESC(sc, x) \ 422 1.1 ragge do { \ 423 1.1 ragge struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \ 424 1.1 ragge struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \ 425 1.1 ragge struct mbuf *__m = __rxs->rxs_mbuf; \ 426 1.1 ragge \ 427 1.1 ragge /* \ 428 1.1 ragge * Note: We scoot the packet forward 2 bytes in the buffer \ 429 1.1 ragge * so that the payload after the Ethernet header is aligned \ 430 1.1 ragge * to a 4-byte boundary. \ 431 1.1 ragge * \ 432 1.1 ragge * XXX BRAINDAMAGE ALERT! \ 433 1.1 ragge * The stupid chip uses the same size for every buffer, which \ 434 1.3 ragge * is set in the Receive Control register. We are using the 2K \ 435 1.1 ragge * size option, but what we REALLY want is (2K - 2)! For this \ 436 1.1 ragge * reason, we can't "scoot" packets longer than the standard \ 437 1.1 ragge * Ethernet MTU. On strict-alignment platforms, if the total \ 438 1.1 ragge * size exceeds (2K - 2) we set align_tweak to 0 and let \ 439 1.1 ragge * the upper layer copy the headers. \ 440 1.1 ragge */ \ 441 1.1 ragge __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \ 442 1.1 ragge \ 443 1.58 thorpej const bus_addr_t __rxaddr = \ 444 1.58 thorpej __rxs->rxs_dmamap->dm_segs[0].ds_addr + \ 445 1.58 thorpej (sc)->sc_align_tweak; \ 446 1.58 thorpej \ 447 1.58 thorpej __rxd->dr_baddrl = htole32(__rxaddr); \ 448 1.58 thorpej __rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32); \ 449 1.1 ragge __rxd->dr_len = 0; \ 450 1.1 ragge __rxd->dr_cksum = 0; \ 451 1.1 ragge __rxd->dr_status = 0; \ 452 1.1 ragge __rxd->dr_errors = 0; \ 453 1.1 ragge __rxd->dr_special = 0; \ 454 1.53 msaitoh DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \ 455 1.1 ragge \ 456 1.1 ragge CSR_WRITE((sc), DGE_RDT, (x)); \ 457 1.1 ragge } while (/*CONSTCOND*/0) 458 1.3 ragge #endif 459 1.3 ragge 460 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG 461 1.3 ragge /* 462 1.3 ragge * Allocation constants. Much memory may be used for this. 463 1.3 ragge */ 464 1.3 ragge #ifndef DGE_BUFFER_SIZE 465 1.3 ragge #define DGE_BUFFER_SIZE DGE_MAX_MTU 466 1.3 ragge #endif 467 1.3 ragge #define DGE_NBUFFERS (4*DGE_NRXDESC) 468 1.3 ragge #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE) 469 1.3 ragge 470 1.3 ragge struct rxbugentry { 471 1.3 ragge SLIST_ENTRY(rxbugentry) rb_entry; 472 1.3 ragge int rb_slot; 473 1.3 ragge }; 474 1.3 ragge 475 1.3 ragge static int 476 1.3 ragge dge_alloc_rcvmem(struct dge_softc *sc) 477 1.3 ragge { 478 1.36 christos char *kva; 479 1.3 ragge bus_dma_segment_t seg; 480 1.3 ragge int i, rseg, state, error; 481 1.3 ragge struct rxbugentry *entry; 482 1.3 ragge 483 1.3 ragge state = error = 0; 484 1.3 ragge 485 1.3 ragge if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0, 486 1.3 ragge &seg, 1, &rseg, BUS_DMA_NOWAIT)) { 487 1.35 chs aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n"); 488 1.3 ragge return ENOBUFS; 489 1.3 ragge } 490 1.3 ragge 491 1.3 ragge state = 1; 492 1.15 christos if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva, 493 1.3 ragge BUS_DMA_NOWAIT)) { 494 1.52 msaitoh aprint_error_dev(sc->sc_dev, 495 1.52 msaitoh "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM); 496 1.3 ragge error = ENOBUFS; 497 1.3 ragge goto out; 498 1.3 ragge } 499 1.3 ragge 500 1.3 ragge state = 2; 501 1.3 ragge if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0, 502 1.3 ragge BUS_DMA_NOWAIT, &sc->sc_bugmap)) { 503 1.35 chs aprint_error_dev(sc->sc_dev, "can't create DMA map\n"); 504 1.3 ragge error = ENOBUFS; 505 1.3 ragge goto out; 506 1.3 ragge } 507 1.3 ragge 508 1.3 ragge state = 3; 509 1.3 ragge if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap, 510 1.3 ragge kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) { 511 1.35 chs aprint_error_dev(sc->sc_dev, "can't load DMA map\n"); 512 1.3 ragge error = ENOBUFS; 513 1.3 ragge goto out; 514 1.3 ragge } 515 1.3 ragge 516 1.3 ragge state = 4; 517 1.15 christos sc->sc_bugbuf = (void *)kva; 518 1.3 ragge SLIST_INIT(&sc->sc_buglist); 519 1.3 ragge 520 1.3 ragge /* 521 1.3 ragge * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses 522 1.3 ragge * in an array. 523 1.3 ragge */ 524 1.56 chs entry = malloc(sizeof(*entry) * DGE_NBUFFERS, M_DEVBUF, M_WAITOK); 525 1.3 ragge sc->sc_entry = entry; 526 1.3 ragge for (i = 0; i < DGE_NBUFFERS; i++) { 527 1.3 ragge entry[i].rb_slot = i; 528 1.3 ragge SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry); 529 1.3 ragge } 530 1.3 ragge out: 531 1.3 ragge if (error != 0) { 532 1.3 ragge switch (state) { 533 1.3 ragge case 4: 534 1.3 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap); 535 1.51 mrg /* FALLTHROUGH */ 536 1.3 ragge case 3: 537 1.3 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap); 538 1.51 mrg /* FALLTHROUGH */ 539 1.3 ragge case 2: 540 1.3 ragge bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM); 541 1.51 mrg /* FALLTHROUGH */ 542 1.3 ragge case 1: 543 1.3 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg); 544 1.3 ragge break; 545 1.3 ragge default: 546 1.3 ragge break; 547 1.3 ragge } 548 1.3 ragge } 549 1.3 ragge 550 1.3 ragge return error; 551 1.3 ragge } 552 1.3 ragge 553 1.3 ragge /* 554 1.3 ragge * Allocate a jumbo buffer. 555 1.3 ragge */ 556 1.3 ragge static void * 557 1.3 ragge dge_getbuf(struct dge_softc *sc) 558 1.3 ragge { 559 1.3 ragge struct rxbugentry *entry; 560 1.3 ragge 561 1.3 ragge entry = SLIST_FIRST(&sc->sc_buglist); 562 1.3 ragge 563 1.3 ragge if (entry == NULL) { 564 1.35 chs printf("%s: no free RX buffers\n", device_xname(sc->sc_dev)); 565 1.52 msaitoh return NULL; 566 1.3 ragge } 567 1.3 ragge 568 1.3 ragge SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry); 569 1.15 christos return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE; 570 1.3 ragge } 571 1.3 ragge 572 1.3 ragge /* 573 1.3 ragge * Release a jumbo buffer. 574 1.3 ragge */ 575 1.3 ragge static void 576 1.15 christos dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg) 577 1.3 ragge { 578 1.3 ragge struct rxbugentry *entry; 579 1.3 ragge struct dge_softc *sc; 580 1.3 ragge int i, s; 581 1.3 ragge 582 1.3 ragge /* Extract the softc struct pointer. */ 583 1.3 ragge sc = (struct dge_softc *)arg; 584 1.3 ragge 585 1.3 ragge if (sc == NULL) 586 1.3 ragge panic("dge_freebuf: can't find softc pointer!"); 587 1.3 ragge 588 1.3 ragge /* calculate the slot this buffer belongs to */ 589 1.3 ragge 590 1.15 christos i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE; 591 1.3 ragge 592 1.3 ragge if ((i < 0) || (i >= DGE_NBUFFERS)) 593 1.3 ragge panic("dge_freebuf: asked to free buffer %d!", i); 594 1.3 ragge 595 1.3 ragge s = splvm(); 596 1.3 ragge entry = sc->sc_entry + i; 597 1.3 ragge SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry); 598 1.3 ragge 599 1.3 ragge if (__predict_true(m != NULL)) 600 1.18 ad pool_cache_put(mb_cache, m); 601 1.3 ragge splx(s); 602 1.3 ragge } 603 1.3 ragge #endif 604 1.1 ragge 605 1.1 ragge static void dge_start(struct ifnet *); 606 1.1 ragge static void dge_watchdog(struct ifnet *); 607 1.15 christos static int dge_ioctl(struct ifnet *, u_long, void *); 608 1.1 ragge static int dge_init(struct ifnet *); 609 1.1 ragge static void dge_stop(struct ifnet *, int); 610 1.1 ragge 611 1.27 tsutsui static bool dge_shutdown(device_t, int); 612 1.1 ragge 613 1.1 ragge static void dge_reset(struct dge_softc *); 614 1.1 ragge static void dge_rxdrain(struct dge_softc *); 615 1.1 ragge static int dge_add_rxbuf(struct dge_softc *, int); 616 1.1 ragge 617 1.1 ragge static void dge_set_filter(struct dge_softc *); 618 1.1 ragge 619 1.1 ragge static int dge_intr(void *); 620 1.1 ragge static void dge_txintr(struct dge_softc *); 621 1.1 ragge static void dge_rxintr(struct dge_softc *); 622 1.1 ragge static void dge_linkintr(struct dge_softc *, uint32_t); 623 1.1 ragge 624 1.25 cegger static int dge_match(device_t, cfdata_t, void *); 625 1.25 cegger static void dge_attach(device_t, device_t, void *); 626 1.1 ragge 627 1.1 ragge static int dge_read_eeprom(struct dge_softc *sc); 628 1.1 ragge static int dge_eeprom_clockin(struct dge_softc *sc); 629 1.1 ragge static void dge_eeprom_clockout(struct dge_softc *sc, int bit); 630 1.1 ragge static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr); 631 1.1 ragge static int dge_xgmii_mediachange(struct ifnet *); 632 1.1 ragge static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *); 633 1.1 ragge static void dge_xgmii_reset(struct dge_softc *); 634 1.39 chs static void dge_xgmii_writereg(struct dge_softc *, int, int, int); 635 1.1 ragge 636 1.1 ragge 637 1.35 chs CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc), 638 1.1 ragge dge_match, dge_attach, NULL, NULL); 639 1.1 ragge 640 1.1 ragge #ifdef DGE_EVENT_COUNTERS 641 1.1 ragge #if DGE_NTXSEGS > 100 642 1.1 ragge #error Update dge_txseg_evcnt_names 643 1.1 ragge #endif 644 1.1 ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */]; 645 1.1 ragge #endif /* DGE_EVENT_COUNTERS */ 646 1.1 ragge 647 1.42 pgoyette /* 648 1.42 pgoyette * Devices supported by this driver. 649 1.42 pgoyette */ 650 1.59 thorpej struct dge_product { 651 1.59 thorpej const char *name; 652 1.59 thorpej int flags; 653 1.52 msaitoh #define DGEP_F_10G_LR 0x01 654 1.52 msaitoh #define DGEP_F_10G_SR 0x02 655 1.42 pgoyette }; 656 1.42 pgoyette 657 1.59 thorpej static const struct dge_product i82597EX_lr = { 658 1.59 thorpej .name = "Intel i82597EX 10GbE-LR Ethernet", 659 1.59 thorpej .flags = DGEP_F_10G_LR 660 1.59 thorpej }; 661 1.59 thorpej 662 1.59 thorpej static const struct dge_product i82597EX_sr = { 663 1.59 thorpej .name = "Intel i82597EX 10GbE-SR Ethernet", 664 1.59 thorpej .flags = DGEP_F_10G_SR 665 1.59 thorpej }; 666 1.59 thorpej 667 1.59 thorpej static const struct device_compatible_entry compat_data[] = { 668 1.59 thorpej { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 669 1.59 thorpej PCI_PRODUCT_INTEL_82597EX), 670 1.59 thorpej .data = &i82597EX_lr }, 671 1.59 thorpej 672 1.59 thorpej { .id = PCI_ID_CODE(PCI_VENDOR_INTEL, 673 1.59 thorpej PCI_PRODUCT_INTEL_82597EX_SR), 674 1.59 thorpej .data = &i82597EX_sr }, 675 1.42 pgoyette 676 1.59 thorpej PCI_COMPAT_EOL 677 1.59 thorpej }; 678 1.42 pgoyette 679 1.1 ragge static int 680 1.25 cegger dge_match(device_t parent, cfdata_t cf, void *aux) 681 1.1 ragge { 682 1.1 ragge struct pci_attach_args *pa = aux; 683 1.1 ragge 684 1.59 thorpej return pci_compatible_match(pa, compat_data); 685 1.1 ragge } 686 1.1 ragge 687 1.1 ragge static void 688 1.25 cegger dge_attach(device_t parent, device_t self, void *aux) 689 1.1 ragge { 690 1.26 cegger struct dge_softc *sc = device_private(self); 691 1.1 ragge struct pci_attach_args *pa = aux; 692 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if; 693 1.1 ragge pci_chipset_tag_t pc = pa->pa_pc; 694 1.1 ragge pci_intr_handle_t ih; 695 1.1 ragge const char *intrstr = NULL; 696 1.1 ragge bus_dma_segment_t seg; 697 1.1 ragge int i, rseg, error; 698 1.1 ragge uint8_t enaddr[ETHER_ADDR_LEN]; 699 1.1 ragge pcireg_t preg, memtype; 700 1.1 ragge uint32_t reg; 701 1.37 christos char intrbuf[PCI_INTRSTR_LEN]; 702 1.59 thorpej const struct device_compatible_entry *dce; 703 1.42 pgoyette const struct dge_product *dgep; 704 1.42 pgoyette 705 1.59 thorpej dce = pci_compatible_lookup(pa, compat_data); 706 1.59 thorpej KASSERT(dce != NULL); 707 1.59 thorpej sc->sc_dgep = dgep = dce->data; 708 1.1 ragge 709 1.35 chs sc->sc_dev = self; 710 1.1 ragge sc->sc_pc = pa->pa_pc; 711 1.1 ragge sc->sc_pt = pa->pa_tag; 712 1.1 ragge 713 1.58 thorpej if (pci_dma64_available(pa)) 714 1.58 thorpej sc->sc_dmat = pa->pa_dmat64; 715 1.58 thorpej else 716 1.58 thorpej sc->sc_dmat = pa->pa_dmat; 717 1.58 thorpej 718 1.33 drochner pci_aprint_devinfo_fancy(pa, "Ethernet controller", 719 1.59 thorpej dgep->name, 1); 720 1.1 ragge 721 1.1 ragge memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR); 722 1.52 msaitoh if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0, 723 1.52 msaitoh &sc->sc_st, &sc->sc_sh, NULL, NULL)) { 724 1.52 msaitoh aprint_error_dev(sc->sc_dev, 725 1.45 msaitoh "unable to map device registers\n"); 726 1.52 msaitoh return; 727 1.52 msaitoh } 728 1.1 ragge 729 1.1 ragge /* Enable bus mastering */ 730 1.1 ragge preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); 731 1.1 ragge preg |= PCI_COMMAND_MASTER_ENABLE; 732 1.1 ragge pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg); 733 1.1 ragge 734 1.1 ragge /* 735 1.1 ragge * Map and establish our interrupt. 736 1.1 ragge */ 737 1.1 ragge if (pci_intr_map(pa, &ih)) { 738 1.35 chs aprint_error_dev(sc->sc_dev, "unable to map interrupt\n"); 739 1.1 ragge return; 740 1.1 ragge } 741 1.37 christos intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf)); 742 1.50 jdolecek sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc, 743 1.50 jdolecek device_xname(self)); 744 1.1 ragge if (sc->sc_ih == NULL) { 745 1.35 chs aprint_error_dev(sc->sc_dev, "unable to establish interrupt"); 746 1.1 ragge if (intrstr != NULL) 747 1.28 njoly aprint_error(" at %s", intrstr); 748 1.28 njoly aprint_error("\n"); 749 1.1 ragge return; 750 1.1 ragge } 751 1.35 chs aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr); 752 1.1 ragge 753 1.1 ragge /* 754 1.1 ragge * Determine a few things about the bus we're connected to. 755 1.1 ragge */ 756 1.1 ragge reg = CSR_READ(sc, DGE_STATUS); 757 1.1 ragge if (reg & STATUS_BUS64) 758 1.1 ragge sc->sc_flags |= DGE_F_BUS64; 759 1.1 ragge 760 1.1 ragge sc->sc_flags |= DGE_F_PCIX; 761 1.1 ragge if (pci_get_capability(pa->pa_pc, pa->pa_tag, 762 1.1 ragge PCI_CAP_PCIX, 763 1.1 ragge &sc->sc_pcix_offset, NULL) == 0) 764 1.35 chs aprint_error_dev(sc->sc_dev, "unable to find PCIX " 765 1.21 cegger "capability\n"); 766 1.1 ragge 767 1.1 ragge if (sc->sc_flags & DGE_F_PCIX) { 768 1.1 ragge switch (reg & STATUS_PCIX_MSK) { 769 1.1 ragge case STATUS_PCIX_66: 770 1.1 ragge sc->sc_bus_speed = 66; 771 1.1 ragge break; 772 1.1 ragge case STATUS_PCIX_100: 773 1.1 ragge sc->sc_bus_speed = 100; 774 1.1 ragge break; 775 1.1 ragge case STATUS_PCIX_133: 776 1.1 ragge sc->sc_bus_speed = 133; 777 1.1 ragge break; 778 1.1 ragge default: 779 1.35 chs aprint_error_dev(sc->sc_dev, 780 1.21 cegger "unknown PCIXSPD %d; assuming 66MHz\n", 781 1.1 ragge reg & STATUS_PCIX_MSK); 782 1.1 ragge sc->sc_bus_speed = 66; 783 1.1 ragge } 784 1.1 ragge } else 785 1.1 ragge sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33; 786 1.35 chs aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n", 787 1.1 ragge (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed, 788 1.1 ragge (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI"); 789 1.1 ragge 790 1.1 ragge /* 791 1.1 ragge * Allocate the control data structures, and create and load the 792 1.1 ragge * DMA map for it. 793 1.1 ragge */ 794 1.1 ragge if ((error = bus_dmamem_alloc(sc->sc_dmat, 795 1.1 ragge sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg, 796 1.1 ragge 0)) != 0) { 797 1.35 chs aprint_error_dev(sc->sc_dev, 798 1.21 cegger "unable to allocate control data, error = %d\n", 799 1.21 cegger error); 800 1.1 ragge goto fail_0; 801 1.1 ragge } 802 1.1 ragge 803 1.1 ragge if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, 804 1.15 christos sizeof(struct dge_control_data), (void **)&sc->sc_control_data, 805 1.1 ragge 0)) != 0) { 806 1.52 msaitoh aprint_error_dev(sc->sc_dev, 807 1.52 msaitoh "unable to map control data, error = %d\n", error); 808 1.1 ragge goto fail_1; 809 1.1 ragge } 810 1.1 ragge 811 1.1 ragge if ((error = bus_dmamap_create(sc->sc_dmat, 812 1.1 ragge sizeof(struct dge_control_data), 1, 813 1.1 ragge sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) { 814 1.52 msaitoh aprint_error_dev(sc->sc_dev, "unable to create control data " 815 1.52 msaitoh "DMA map, error = %d\n", error); 816 1.1 ragge goto fail_2; 817 1.1 ragge } 818 1.1 ragge 819 1.1 ragge if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap, 820 1.1 ragge sc->sc_control_data, sizeof(struct dge_control_data), NULL, 821 1.1 ragge 0)) != 0) { 822 1.35 chs aprint_error_dev(sc->sc_dev, 823 1.21 cegger "unable to load control data DMA map, error = %d\n", 824 1.21 cegger error); 825 1.1 ragge goto fail_3; 826 1.1 ragge } 827 1.1 ragge 828 1.10 perry #ifdef DGE_OFFBYONE_RXBUG 829 1.3 ragge if (dge_alloc_rcvmem(sc) != 0) 830 1.3 ragge return; /* Already complained */ 831 1.3 ragge #endif 832 1.1 ragge /* 833 1.1 ragge * Create the transmit buffer DMA maps. 834 1.1 ragge */ 835 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) { 836 1.2 ragge if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU, 837 1.1 ragge DGE_NTXSEGS, MCLBYTES, 0, 0, 838 1.1 ragge &sc->sc_txsoft[i].txs_dmamap)) != 0) { 839 1.35 chs aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, " 840 1.21 cegger "error = %d\n", i, error); 841 1.1 ragge goto fail_4; 842 1.1 ragge } 843 1.1 ragge } 844 1.1 ragge 845 1.1 ragge /* 846 1.1 ragge * Create the receive buffer DMA maps. 847 1.1 ragge */ 848 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) { 849 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG 850 1.3 ragge if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1, 851 1.3 ragge DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 852 1.3 ragge #else 853 1.1 ragge if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, 854 1.1 ragge MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) { 855 1.3 ragge #endif 856 1.52 msaitoh aprint_error_dev(sc->sc_dev, "unable to create Rx DMA " 857 1.52 msaitoh "map %d, error = %d\n", i, error); 858 1.1 ragge goto fail_5; 859 1.1 ragge } 860 1.1 ragge sc->sc_rxsoft[i].rxs_mbuf = NULL; 861 1.1 ragge } 862 1.1 ragge 863 1.1 ragge /* 864 1.1 ragge * Set bits in ctrl0 register. 865 1.1 ragge * Should get the software defined pins out of EEPROM? 866 1.1 ragge */ 867 1.1 ragge sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */ 868 1.1 ragge sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR | 869 1.1 ragge CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0; 870 1.1 ragge 871 1.1 ragge /* 872 1.1 ragge * Reset the chip to a known state. 873 1.1 ragge */ 874 1.1 ragge dge_reset(sc); 875 1.1 ragge 876 1.1 ragge /* 877 1.1 ragge * Reset the PHY. 878 1.1 ragge */ 879 1.1 ragge dge_xgmii_reset(sc); 880 1.1 ragge 881 1.1 ragge /* 882 1.1 ragge * Read in EEPROM data. 883 1.1 ragge */ 884 1.1 ragge if (dge_read_eeprom(sc)) { 885 1.35 chs aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n"); 886 1.1 ragge return; 887 1.1 ragge } 888 1.1 ragge 889 1.1 ragge /* 890 1.1 ragge * Get the ethernet address. 891 1.1 ragge */ 892 1.1 ragge enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377; 893 1.1 ragge enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8; 894 1.1 ragge enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377; 895 1.1 ragge enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8; 896 1.1 ragge enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377; 897 1.1 ragge enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8; 898 1.1 ragge 899 1.35 chs aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", 900 1.1 ragge ether_sprintf(enaddr)); 901 1.1 ragge 902 1.1 ragge /* 903 1.1 ragge * Setup media stuff. 904 1.1 ragge */ 905 1.55 msaitoh sc->sc_ethercom.ec_ifmedia = &sc->sc_media; 906 1.52 msaitoh ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange, 907 1.52 msaitoh dge_xgmii_mediastatus); 908 1.59 thorpej if (dgep->flags & DGEP_F_10G_SR) { 909 1.53 msaitoh ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL); 910 1.53 msaitoh ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR); 911 1.42 pgoyette } else { /* XXX default is LR */ 912 1.53 msaitoh ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL); 913 1.53 msaitoh ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR); 914 1.42 pgoyette } 915 1.1 ragge 916 1.1 ragge ifp = &sc->sc_ethercom.ec_if; 917 1.35 chs strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); 918 1.1 ragge ifp->if_softc = sc; 919 1.1 ragge ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 920 1.1 ragge ifp->if_ioctl = dge_ioctl; 921 1.1 ragge ifp->if_start = dge_start; 922 1.1 ragge ifp->if_watchdog = dge_watchdog; 923 1.1 ragge ifp->if_init = dge_init; 924 1.1 ragge ifp->if_stop = dge_stop; 925 1.49 riastrad IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN)); 926 1.1 ragge IFQ_SET_READY(&ifp->if_snd); 927 1.1 ragge 928 1.1 ragge sc->sc_ethercom.ec_capabilities |= 929 1.1 ragge ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU; 930 1.1 ragge 931 1.1 ragge /* 932 1.62 msaitoh * We can perform TCPv4 and UDPv4 checksums in-bound. 933 1.1 ragge */ 934 1.1 ragge ifp->if_capabilities |= 935 1.11 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx | 936 1.11 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx | 937 1.11 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx; 938 1.1 ragge 939 1.1 ragge /* 940 1.1 ragge * Attach the interface. 941 1.1 ragge */ 942 1.1 ragge if_attach(ifp); 943 1.46 ozaki if_deferred_start_init(ifp, NULL); 944 1.1 ragge ether_ifattach(ifp, enaddr); 945 1.35 chs rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev), 946 1.38 tls RND_TYPE_NET, RND_FLAG_DEFAULT); 947 1.1 ragge 948 1.1 ragge #ifdef DGE_EVENT_COUNTERS 949 1.1 ragge /* Fix segment event naming */ 950 1.1 ragge if (dge_txseg_evcnt_names == NULL) { 951 1.1 ragge dge_txseg_evcnt_names = 952 1.1 ragge malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK); 953 1.1 ragge for (i = 0; i < DGE_NTXSEGS; i++) 954 1.4 itojun snprintf((*dge_txseg_evcnt_names)[i], 955 1.4 itojun sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i); 956 1.1 ragge } 957 1.1 ragge 958 1.1 ragge /* Attach event counters. */ 959 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC, 960 1.35 chs NULL, device_xname(sc->sc_dev), "txsstall"); 961 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC, 962 1.35 chs NULL, device_xname(sc->sc_dev), "txdstall"); 963 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC, 964 1.35 chs NULL, device_xname(sc->sc_dev), "txforceintr"); 965 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR, 966 1.35 chs NULL, device_xname(sc->sc_dev), "txdw"); 967 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR, 968 1.35 chs NULL, device_xname(sc->sc_dev), "txqe"); 969 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR, 970 1.35 chs NULL, device_xname(sc->sc_dev), "rxintr"); 971 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR, 972 1.35 chs NULL, device_xname(sc->sc_dev), "linkintr"); 973 1.1 ragge 974 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC, 975 1.35 chs NULL, device_xname(sc->sc_dev), "rxipsum"); 976 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC, 977 1.35 chs NULL, device_xname(sc->sc_dev), "rxtusum"); 978 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC, 979 1.35 chs NULL, device_xname(sc->sc_dev), "txipsum"); 980 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC, 981 1.35 chs NULL, device_xname(sc->sc_dev), "txtusum"); 982 1.1 ragge 983 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC, 984 1.35 chs NULL, device_xname(sc->sc_dev), "txctx init"); 985 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC, 986 1.35 chs NULL, device_xname(sc->sc_dev), "txctx hit"); 987 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC, 988 1.35 chs NULL, device_xname(sc->sc_dev), "txctx miss"); 989 1.1 ragge 990 1.1 ragge for (i = 0; i < DGE_NTXSEGS; i++) 991 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC, 992 1.35 chs NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]); 993 1.1 ragge 994 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC, 995 1.35 chs NULL, device_xname(sc->sc_dev), "txdrop"); 996 1.1 ragge 997 1.1 ragge #endif /* DGE_EVENT_COUNTERS */ 998 1.1 ragge 999 1.1 ragge /* 1000 1.1 ragge * Make sure the interface is shutdown during reboot. 1001 1.1 ragge */ 1002 1.27 tsutsui if (pmf_device_register1(self, NULL, NULL, dge_shutdown)) 1003 1.27 tsutsui pmf_class_network_register(self, ifp); 1004 1.27 tsutsui else 1005 1.27 tsutsui aprint_error_dev(self, "couldn't establish power handler\n"); 1006 1.27 tsutsui 1007 1.1 ragge return; 1008 1.1 ragge 1009 1.1 ragge /* 1010 1.1 ragge * Free any resources we've allocated during the failed attach 1011 1.1 ragge * attempt. Do this in reverse order and fall through. 1012 1.1 ragge */ 1013 1.1 ragge fail_5: 1014 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) { 1015 1.1 ragge if (sc->sc_rxsoft[i].rxs_dmamap != NULL) 1016 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, 1017 1.1 ragge sc->sc_rxsoft[i].rxs_dmamap); 1018 1.1 ragge } 1019 1.1 ragge fail_4: 1020 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) { 1021 1.1 ragge if (sc->sc_txsoft[i].txs_dmamap != NULL) 1022 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, 1023 1.1 ragge sc->sc_txsoft[i].txs_dmamap); 1024 1.1 ragge } 1025 1.1 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap); 1026 1.1 ragge fail_3: 1027 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap); 1028 1.1 ragge fail_2: 1029 1.15 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data, 1030 1.1 ragge sizeof(struct dge_control_data)); 1031 1.1 ragge fail_1: 1032 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg); 1033 1.1 ragge fail_0: 1034 1.1 ragge return; 1035 1.1 ragge } 1036 1.1 ragge 1037 1.1 ragge /* 1038 1.1 ragge * dge_shutdown: 1039 1.1 ragge * 1040 1.1 ragge * Make sure the interface is stopped at reboot time. 1041 1.1 ragge */ 1042 1.27 tsutsui static bool 1043 1.27 tsutsui dge_shutdown(device_t self, int howto) 1044 1.1 ragge { 1045 1.27 tsutsui struct dge_softc *sc; 1046 1.1 ragge 1047 1.27 tsutsui sc = device_private(self); 1048 1.1 ragge dge_stop(&sc->sc_ethercom.ec_if, 1); 1049 1.27 tsutsui 1050 1.27 tsutsui return true; 1051 1.1 ragge } 1052 1.1 ragge 1053 1.1 ragge /* 1054 1.1 ragge * dge_tx_cksum: 1055 1.1 ragge * 1056 1.1 ragge * Set up TCP/IP checksumming parameters for the 1057 1.1 ragge * specified packet. 1058 1.1 ragge */ 1059 1.1 ragge static int 1060 1.1 ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp) 1061 1.1 ragge { 1062 1.1 ragge struct mbuf *m0 = txs->txs_mbuf; 1063 1.1 ragge struct dge_ctdes *t; 1064 1.1 ragge uint32_t ipcs, tucs; 1065 1.1 ragge struct ether_header *eh; 1066 1.1 ragge int offset, iphl; 1067 1.1 ragge uint8_t fields = 0; 1068 1.1 ragge 1069 1.1 ragge /* 1070 1.1 ragge * XXX It would be nice if the mbuf pkthdr had offset 1071 1.1 ragge * fields for the protocol headers. 1072 1.1 ragge */ 1073 1.1 ragge 1074 1.1 ragge eh = mtod(m0, struct ether_header *); 1075 1.1 ragge switch (htons(eh->ether_type)) { 1076 1.1 ragge case ETHERTYPE_IP: 1077 1.1 ragge offset = ETHER_HDR_LEN; 1078 1.1 ragge break; 1079 1.1 ragge 1080 1.1 ragge case ETHERTYPE_VLAN: 1081 1.1 ragge offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 1082 1.1 ragge break; 1083 1.1 ragge 1084 1.1 ragge default: 1085 1.1 ragge /* 1086 1.1 ragge * Don't support this protocol or encapsulation. 1087 1.1 ragge */ 1088 1.1 ragge *fieldsp = 0; 1089 1.52 msaitoh return 0; 1090 1.1 ragge } 1091 1.1 ragge 1092 1.9 thorpej iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data); 1093 1.1 ragge 1094 1.1 ragge /* 1095 1.1 ragge * NOTE: Even if we're not using the IP or TCP/UDP checksum 1096 1.1 ragge * offload feature, if we load the context descriptor, we 1097 1.1 ragge * MUST provide valid values for IPCSS and TUCSS fields. 1098 1.1 ragge */ 1099 1.1 ragge 1100 1.1 ragge if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) { 1101 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txipsum); 1102 1.1 ragge fields |= TDESC_POPTS_IXSM; 1103 1.1 ragge ipcs = DGE_TCPIP_IPCSS(offset) | 1104 1.1 ragge DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) | 1105 1.1 ragge DGE_TCPIP_IPCSE(offset + iphl - 1); 1106 1.1 ragge } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) { 1107 1.1 ragge /* Use the cached value. */ 1108 1.1 ragge ipcs = sc->sc_txctx_ipcs; 1109 1.1 ragge } else { 1110 1.1 ragge /* Just initialize it to the likely value anyway. */ 1111 1.1 ragge ipcs = DGE_TCPIP_IPCSS(offset) | 1112 1.1 ragge DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) | 1113 1.1 ragge DGE_TCPIP_IPCSE(offset + iphl - 1); 1114 1.1 ragge } 1115 1.1 ragge DPRINTF(DGE_DEBUG_CKSUM, 1116 1.10 perry ("%s: CKSUM: offset %d ipcs 0x%x\n", 1117 1.35 chs device_xname(sc->sc_dev), offset, ipcs)); 1118 1.1 ragge 1119 1.1 ragge offset += iphl; 1120 1.1 ragge 1121 1.53 msaitoh if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 1122 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txtusum); 1123 1.1 ragge fields |= TDESC_POPTS_TXSM; 1124 1.1 ragge tucs = DGE_TCPIP_TUCSS(offset) | 1125 1.9 thorpej DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) | 1126 1.8 heas DGE_TCPIP_TUCSE(0) /* rest of packet */; 1127 1.1 ragge } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) { 1128 1.1 ragge /* Use the cached value. */ 1129 1.1 ragge tucs = sc->sc_txctx_tucs; 1130 1.1 ragge } else { 1131 1.1 ragge /* Just initialize it to a valid TCP context. */ 1132 1.1 ragge tucs = DGE_TCPIP_TUCSS(offset) | 1133 1.1 ragge DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) | 1134 1.1 ragge DGE_TCPIP_TUCSE(0) /* rest of packet */; 1135 1.1 ragge } 1136 1.1 ragge 1137 1.1 ragge DPRINTF(DGE_DEBUG_CKSUM, 1138 1.1 ragge ("%s: CKSUM: offset %d tucs 0x%x\n", 1139 1.35 chs device_xname(sc->sc_dev), offset, tucs)); 1140 1.1 ragge 1141 1.1 ragge if (sc->sc_txctx_ipcs == ipcs && 1142 1.1 ragge sc->sc_txctx_tucs == tucs) { 1143 1.1 ragge /* Cached context is fine. */ 1144 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit); 1145 1.1 ragge } else { 1146 1.1 ragge /* Fill in the context descriptor. */ 1147 1.1 ragge #ifdef DGE_EVENT_COUNTERS 1148 1.1 ragge if (sc->sc_txctx_ipcs == 0xffffffff && 1149 1.1 ragge sc->sc_txctx_tucs == 0xffffffff) 1150 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_init); 1151 1.1 ragge else 1152 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss); 1153 1.1 ragge #endif 1154 1.1 ragge t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext]; 1155 1.1 ragge t->dc_tcpip_ipcs = htole32(ipcs); 1156 1.1 ragge t->dc_tcpip_tucs = htole32(tucs); 1157 1.1 ragge t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD); 1158 1.1 ragge t->dc_tcpip_seg = 0; 1159 1.1 ragge DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE); 1160 1.1 ragge 1161 1.1 ragge sc->sc_txctx_ipcs = ipcs; 1162 1.1 ragge sc->sc_txctx_tucs = tucs; 1163 1.1 ragge 1164 1.1 ragge sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext); 1165 1.1 ragge txs->txs_ndesc++; 1166 1.1 ragge } 1167 1.1 ragge 1168 1.1 ragge *fieldsp = fields; 1169 1.1 ragge 1170 1.52 msaitoh return 0; 1171 1.1 ragge } 1172 1.1 ragge 1173 1.1 ragge /* 1174 1.1 ragge * dge_start: [ifnet interface function] 1175 1.1 ragge * 1176 1.1 ragge * Start packet transmission on the interface. 1177 1.1 ragge */ 1178 1.1 ragge static void 1179 1.1 ragge dge_start(struct ifnet *ifp) 1180 1.1 ragge { 1181 1.1 ragge struct dge_softc *sc = ifp->if_softc; 1182 1.1 ragge struct mbuf *m0; 1183 1.1 ragge struct dge_txsoft *txs; 1184 1.1 ragge bus_dmamap_t dmamap; 1185 1.1 ragge int error, nexttx, lasttx = -1, ofree, seg; 1186 1.1 ragge uint32_t cksumcmd; 1187 1.1 ragge uint8_t cksumfields; 1188 1.1 ragge 1189 1.53 msaitoh if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) 1190 1.1 ragge return; 1191 1.1 ragge 1192 1.1 ragge /* 1193 1.1 ragge * Remember the previous number of free descriptors. 1194 1.1 ragge */ 1195 1.1 ragge ofree = sc->sc_txfree; 1196 1.1 ragge 1197 1.1 ragge /* 1198 1.1 ragge * Loop through the send queue, setting up transmit descriptors 1199 1.1 ragge * until we drain the queue, or use up all available transmit 1200 1.1 ragge * descriptors. 1201 1.1 ragge */ 1202 1.1 ragge for (;;) { 1203 1.1 ragge /* Grab a packet off the queue. */ 1204 1.1 ragge IFQ_POLL(&ifp->if_snd, m0); 1205 1.1 ragge if (m0 == NULL) 1206 1.1 ragge break; 1207 1.1 ragge 1208 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1209 1.1 ragge ("%s: TX: have packet to transmit: %p\n", 1210 1.35 chs device_xname(sc->sc_dev), m0)); 1211 1.1 ragge 1212 1.1 ragge /* Get a work queue entry. */ 1213 1.1 ragge if (sc->sc_txsfree < DGE_TXQUEUE_GC) { 1214 1.1 ragge dge_txintr(sc); 1215 1.1 ragge if (sc->sc_txsfree == 0) { 1216 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1217 1.1 ragge ("%s: TX: no free job descriptors\n", 1218 1.35 chs device_xname(sc->sc_dev))); 1219 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txsstall); 1220 1.1 ragge break; 1221 1.1 ragge } 1222 1.1 ragge } 1223 1.1 ragge 1224 1.1 ragge txs = &sc->sc_txsoft[sc->sc_txsnext]; 1225 1.1 ragge dmamap = txs->txs_dmamap; 1226 1.1 ragge 1227 1.1 ragge /* 1228 1.1 ragge * Load the DMA map. If this fails, the packet either 1229 1.1 ragge * didn't fit in the allotted number of segments, or we 1230 1.1 ragge * were short on resources. For the too-many-segments 1231 1.1 ragge * case, we simply report an error and drop the packet, 1232 1.1 ragge * since we can't sanely copy a jumbo packet to a single 1233 1.1 ragge * buffer. 1234 1.1 ragge */ 1235 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0, 1236 1.53 msaitoh BUS_DMA_WRITE | BUS_DMA_NOWAIT); 1237 1.1 ragge if (error) { 1238 1.1 ragge if (error == EFBIG) { 1239 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdrop); 1240 1.1 ragge printf("%s: Tx packet consumes too many " 1241 1.1 ragge "DMA segments, dropping...\n", 1242 1.35 chs device_xname(sc->sc_dev)); 1243 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m0); 1244 1.1 ragge m_freem(m0); 1245 1.1 ragge continue; 1246 1.1 ragge } 1247 1.1 ragge /* 1248 1.1 ragge * Short on resources, just stop for now. 1249 1.1 ragge */ 1250 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1251 1.1 ragge ("%s: TX: dmamap load failed: %d\n", 1252 1.35 chs device_xname(sc->sc_dev), error)); 1253 1.1 ragge break; 1254 1.1 ragge } 1255 1.1 ragge 1256 1.1 ragge /* 1257 1.1 ragge * Ensure we have enough descriptors free to describe 1258 1.1 ragge * the packet. Note, we always reserve one descriptor 1259 1.1 ragge * at the end of the ring due to the semantics of the 1260 1.1 ragge * TDT register, plus one more in the event we need 1261 1.1 ragge * to re-load checksum offload context. 1262 1.1 ragge */ 1263 1.1 ragge if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) { 1264 1.1 ragge /* 1265 1.1 ragge * Not enough free descriptors to transmit this 1266 1.1 ragge * packet. We haven't committed anything yet, 1267 1.1 ragge * so just unload the DMA map, put the packet 1268 1.1 ragge * pack on the queue, and punt. Notify the upper 1269 1.1 ragge * layer that there are no more slots left. 1270 1.1 ragge */ 1271 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1272 1.1 ragge ("%s: TX: need %d descriptors, have %d\n", 1273 1.35 chs device_xname(sc->sc_dev), dmamap->dm_nsegs, 1274 1.1 ragge sc->sc_txfree - 1)); 1275 1.1 ragge ifp->if_flags |= IFF_OACTIVE; 1276 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmamap); 1277 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdstall); 1278 1.1 ragge break; 1279 1.1 ragge } 1280 1.1 ragge 1281 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m0); 1282 1.1 ragge 1283 1.1 ragge /* 1284 1.1 ragge * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET. 1285 1.1 ragge */ 1286 1.1 ragge 1287 1.1 ragge /* Sync the DMA map. */ 1288 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize, 1289 1.1 ragge BUS_DMASYNC_PREWRITE); 1290 1.1 ragge 1291 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1292 1.1 ragge ("%s: TX: packet has %d DMA segments\n", 1293 1.35 chs device_xname(sc->sc_dev), dmamap->dm_nsegs)); 1294 1.1 ragge 1295 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]); 1296 1.1 ragge 1297 1.1 ragge /* 1298 1.1 ragge * Store a pointer to the packet so that we can free it 1299 1.1 ragge * later. 1300 1.1 ragge * 1301 1.1 ragge * Initially, we consider the number of descriptors the 1302 1.1 ragge * packet uses the number of DMA segments. This may be 1303 1.1 ragge * incremented by 1 if we do checksum offload (a descriptor 1304 1.1 ragge * is used to set the checksum context). 1305 1.1 ragge */ 1306 1.1 ragge txs->txs_mbuf = m0; 1307 1.1 ragge txs->txs_firstdesc = sc->sc_txnext; 1308 1.1 ragge txs->txs_ndesc = dmamap->dm_nsegs; 1309 1.1 ragge 1310 1.1 ragge /* 1311 1.1 ragge * Set up checksum offload parameters for 1312 1.1 ragge * this packet. 1313 1.1 ragge */ 1314 1.1 ragge if (m0->m_pkthdr.csum_flags & 1315 1.53 msaitoh (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) { 1316 1.1 ragge if (dge_tx_cksum(sc, txs, &cksumfields) != 0) { 1317 1.1 ragge /* Error message already displayed. */ 1318 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmamap); 1319 1.1 ragge continue; 1320 1.1 ragge } 1321 1.1 ragge } else { 1322 1.1 ragge cksumfields = 0; 1323 1.1 ragge } 1324 1.1 ragge 1325 1.1 ragge cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA; 1326 1.1 ragge 1327 1.1 ragge /* 1328 1.1 ragge * Initialize the transmit descriptor. 1329 1.1 ragge */ 1330 1.1 ragge for (nexttx = sc->sc_txnext, seg = 0; 1331 1.1 ragge seg < dmamap->dm_nsegs; 1332 1.1 ragge seg++, nexttx = DGE_NEXTTX(nexttx)) { 1333 1.58 thorpej sc->sc_txdescs[nexttx].dt_baddrh = 1334 1.58 thorpej htole32(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32); 1335 1.1 ragge sc->sc_txdescs[nexttx].dt_baddrl = 1336 1.1 ragge htole32(dmamap->dm_segs[seg].ds_addr); 1337 1.1 ragge sc->sc_txdescs[nexttx].dt_ctl = 1338 1.1 ragge htole32(cksumcmd | dmamap->dm_segs[seg].ds_len); 1339 1.1 ragge sc->sc_txdescs[nexttx].dt_status = 0; 1340 1.1 ragge sc->sc_txdescs[nexttx].dt_popts = cksumfields; 1341 1.1 ragge sc->sc_txdescs[nexttx].dt_vlan = 0; 1342 1.1 ragge lasttx = nexttx; 1343 1.1 ragge 1344 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1345 1.58 thorpej ("%s: TX: desc %d: high 0x%08lx, low 0x%08lx, len 0x%04lx\n", 1346 1.35 chs device_xname(sc->sc_dev), nexttx, 1347 1.58 thorpej (unsigned long)(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32), 1348 1.58 thorpej (unsigned long)((uint32_t)dmamap->dm_segs[seg].ds_addr), 1349 1.58 thorpej (unsigned long)dmamap->dm_segs[seg].ds_len)); 1350 1.1 ragge } 1351 1.1 ragge 1352 1.1 ragge KASSERT(lasttx != -1); 1353 1.1 ragge 1354 1.1 ragge /* 1355 1.1 ragge * Set up the command byte on the last descriptor of 1356 1.1 ragge * the packet. If we're in the interrupt delay window, 1357 1.1 ragge * delay the interrupt. 1358 1.1 ragge */ 1359 1.1 ragge sc->sc_txdescs[lasttx].dt_ctl |= 1360 1.1 ragge htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS); 1361 1.1 ragge 1362 1.1 ragge txs->txs_lastdesc = lasttx; 1363 1.1 ragge 1364 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1365 1.35 chs ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev), 1366 1.1 ragge lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl))); 1367 1.1 ragge 1368 1.1 ragge /* Sync the descriptors we're using. */ 1369 1.1 ragge DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs, 1370 1.53 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1371 1.1 ragge 1372 1.1 ragge /* Give the packet to the chip. */ 1373 1.1 ragge CSR_WRITE(sc, DGE_TDT, nexttx); 1374 1.1 ragge 1375 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1376 1.35 chs ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx)); 1377 1.1 ragge 1378 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1379 1.1 ragge ("%s: TX: finished transmitting packet, job %d\n", 1380 1.35 chs device_xname(sc->sc_dev), sc->sc_txsnext)); 1381 1.1 ragge 1382 1.1 ragge /* Advance the tx pointer. */ 1383 1.1 ragge sc->sc_txfree -= txs->txs_ndesc; 1384 1.1 ragge sc->sc_txnext = nexttx; 1385 1.1 ragge 1386 1.1 ragge sc->sc_txsfree--; 1387 1.1 ragge sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext); 1388 1.1 ragge 1389 1.1 ragge /* Pass the packet to any BPF listeners. */ 1390 1.48 msaitoh bpf_mtap(ifp, m0, BPF_D_OUT); 1391 1.1 ragge } 1392 1.1 ragge 1393 1.1 ragge if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) { 1394 1.1 ragge /* No more slots; notify upper layer. */ 1395 1.1 ragge ifp->if_flags |= IFF_OACTIVE; 1396 1.1 ragge } 1397 1.1 ragge 1398 1.1 ragge if (sc->sc_txfree != ofree) { 1399 1.1 ragge /* Set a watchdog timer in case the chip flakes out. */ 1400 1.1 ragge ifp->if_timer = 5; 1401 1.1 ragge } 1402 1.1 ragge } 1403 1.1 ragge 1404 1.1 ragge /* 1405 1.1 ragge * dge_watchdog: [ifnet interface function] 1406 1.1 ragge * 1407 1.1 ragge * Watchdog timer handler. 1408 1.1 ragge */ 1409 1.1 ragge static void 1410 1.1 ragge dge_watchdog(struct ifnet *ifp) 1411 1.1 ragge { 1412 1.1 ragge struct dge_softc *sc = ifp->if_softc; 1413 1.1 ragge 1414 1.1 ragge /* 1415 1.1 ragge * Since we're using delayed interrupts, sweep up 1416 1.1 ragge * before we report an error. 1417 1.1 ragge */ 1418 1.1 ragge dge_txintr(sc); 1419 1.1 ragge 1420 1.1 ragge if (sc->sc_txfree != DGE_NTXDESC) { 1421 1.1 ragge printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n", 1422 1.35 chs device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree, 1423 1.1 ragge sc->sc_txnext); 1424 1.57 thorpej if_statinc(ifp, if_oerrors); 1425 1.1 ragge 1426 1.1 ragge /* Reset the interface. */ 1427 1.1 ragge (void) dge_init(ifp); 1428 1.1 ragge } 1429 1.1 ragge 1430 1.1 ragge /* Try to get more packets going. */ 1431 1.1 ragge dge_start(ifp); 1432 1.1 ragge } 1433 1.1 ragge 1434 1.1 ragge /* 1435 1.1 ragge * dge_ioctl: [ifnet interface function] 1436 1.1 ragge * 1437 1.1 ragge * Handle control requests from the operator. 1438 1.1 ragge */ 1439 1.1 ragge static int 1440 1.15 christos dge_ioctl(struct ifnet *ifp, u_long cmd, void *data) 1441 1.1 ragge { 1442 1.1 ragge struct dge_softc *sc = ifp->if_softc; 1443 1.1 ragge struct ifreq *ifr = (struct ifreq *) data; 1444 1.1 ragge pcireg_t preg; 1445 1.1 ragge int s, error, mmrbc; 1446 1.1 ragge 1447 1.1 ragge s = splnet(); 1448 1.1 ragge 1449 1.1 ragge switch (cmd) { 1450 1.2 ragge case SIOCSIFMTU: 1451 1.19 dyoung if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) 1452 1.2 ragge error = EINVAL; 1453 1.19 dyoung else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET) 1454 1.19 dyoung break; 1455 1.19 dyoung else if (ifp->if_flags & IFF_UP) 1456 1.63 riastrad error = if_init(ifp); 1457 1.19 dyoung else 1458 1.2 ragge error = 0; 1459 1.2 ragge break; 1460 1.2 ragge 1461 1.52 msaitoh case SIOCSIFFLAGS: 1462 1.22 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0) 1463 1.22 dyoung break; 1464 1.1 ragge /* extract link flags */ 1465 1.1 ragge if ((ifp->if_flags & IFF_LINK0) == 0 && 1466 1.1 ragge (ifp->if_flags & IFF_LINK1) == 0) 1467 1.1 ragge mmrbc = PCIX_MMRBC_512; 1468 1.1 ragge else if ((ifp->if_flags & IFF_LINK0) == 0 && 1469 1.1 ragge (ifp->if_flags & IFF_LINK1) != 0) 1470 1.1 ragge mmrbc = PCIX_MMRBC_1024; 1471 1.1 ragge else if ((ifp->if_flags & IFF_LINK0) != 0 && 1472 1.1 ragge (ifp->if_flags & IFF_LINK1) == 0) 1473 1.1 ragge mmrbc = PCIX_MMRBC_2048; 1474 1.1 ragge else 1475 1.1 ragge mmrbc = PCIX_MMRBC_4096; 1476 1.1 ragge if (mmrbc != sc->sc_mmrbc) { 1477 1.1 ragge preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD); 1478 1.1 ragge preg &= ~PCIX_MMRBC_MSK; 1479 1.1 ragge preg |= mmrbc; 1480 1.1 ragge pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg); 1481 1.1 ragge sc->sc_mmrbc = mmrbc; 1482 1.1 ragge } 1483 1.52 msaitoh /* FALLTHROUGH */ 1484 1.1 ragge default: 1485 1.19 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET) 1486 1.19 dyoung break; 1487 1.19 dyoung 1488 1.19 dyoung error = 0; 1489 1.19 dyoung 1490 1.19 dyoung if (cmd == SIOCSIFCAP) 1491 1.63 riastrad error = if_init(ifp); 1492 1.19 dyoung else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI) 1493 1.19 dyoung ; 1494 1.19 dyoung else if (ifp->if_flags & IFF_RUNNING) { 1495 1.1 ragge /* 1496 1.1 ragge * Multicast list has changed; set the hardware filter 1497 1.1 ragge * accordingly. 1498 1.1 ragge */ 1499 1.19 dyoung dge_set_filter(sc); 1500 1.1 ragge } 1501 1.1 ragge break; 1502 1.1 ragge } 1503 1.1 ragge 1504 1.1 ragge /* Try to get more packets going. */ 1505 1.1 ragge dge_start(ifp); 1506 1.1 ragge 1507 1.1 ragge splx(s); 1508 1.52 msaitoh return error; 1509 1.1 ragge } 1510 1.1 ragge 1511 1.1 ragge /* 1512 1.1 ragge * dge_intr: 1513 1.1 ragge * 1514 1.1 ragge * Interrupt service routine. 1515 1.1 ragge */ 1516 1.1 ragge static int 1517 1.1 ragge dge_intr(void *arg) 1518 1.1 ragge { 1519 1.1 ragge struct dge_softc *sc = arg; 1520 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1521 1.1 ragge uint32_t icr; 1522 1.1 ragge int wantinit, handled = 0; 1523 1.1 ragge 1524 1.1 ragge for (wantinit = 0; wantinit == 0;) { 1525 1.1 ragge icr = CSR_READ(sc, DGE_ICR); 1526 1.1 ragge if ((icr & sc->sc_icr) == 0) 1527 1.1 ragge break; 1528 1.1 ragge 1529 1.34 tls rnd_add_uint32(&sc->rnd_source, icr); 1530 1.1 ragge 1531 1.1 ragge handled = 1; 1532 1.1 ragge 1533 1.1 ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS) 1534 1.53 msaitoh if (icr & (ICR_RXDMT0 | ICR_RXT0)) { 1535 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1536 1.1 ragge ("%s: RX: got Rx intr 0x%08x\n", 1537 1.35 chs device_xname(sc->sc_dev), 1538 1.53 msaitoh icr & (ICR_RXDMT0 | ICR_RXT0))); 1539 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxintr); 1540 1.1 ragge } 1541 1.1 ragge #endif 1542 1.1 ragge dge_rxintr(sc); 1543 1.1 ragge 1544 1.1 ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS) 1545 1.1 ragge if (icr & ICR_TXDW) { 1546 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1547 1.1 ragge ("%s: TX: got TXDW interrupt\n", 1548 1.35 chs device_xname(sc->sc_dev))); 1549 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdw); 1550 1.1 ragge } 1551 1.1 ragge if (icr & ICR_TXQE) 1552 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txqe); 1553 1.1 ragge #endif 1554 1.1 ragge dge_txintr(sc); 1555 1.1 ragge 1556 1.53 msaitoh if (icr & (ICR_LSC | ICR_RXSEQ)) { 1557 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_linkintr); 1558 1.1 ragge dge_linkintr(sc, icr); 1559 1.1 ragge } 1560 1.1 ragge 1561 1.1 ragge if (icr & ICR_RXO) { 1562 1.52 msaitoh printf("%s: Receive overrun\n", 1563 1.52 msaitoh device_xname(sc->sc_dev)); 1564 1.1 ragge wantinit = 1; 1565 1.1 ragge } 1566 1.1 ragge } 1567 1.1 ragge 1568 1.1 ragge if (handled) { 1569 1.1 ragge if (wantinit) 1570 1.1 ragge dge_init(ifp); 1571 1.1 ragge 1572 1.1 ragge /* Try to get more packets going. */ 1573 1.46 ozaki if_schedule_deferred_start(ifp); 1574 1.1 ragge } 1575 1.1 ragge 1576 1.52 msaitoh return handled; 1577 1.1 ragge } 1578 1.1 ragge 1579 1.1 ragge /* 1580 1.1 ragge * dge_txintr: 1581 1.1 ragge * 1582 1.1 ragge * Helper; handle transmit interrupts. 1583 1.1 ragge */ 1584 1.1 ragge static void 1585 1.1 ragge dge_txintr(struct dge_softc *sc) 1586 1.1 ragge { 1587 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1588 1.1 ragge struct dge_txsoft *txs; 1589 1.1 ragge uint8_t status; 1590 1.1 ragge int i; 1591 1.1 ragge 1592 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE; 1593 1.1 ragge 1594 1.1 ragge /* 1595 1.1 ragge * Go through the Tx list and free mbufs for those 1596 1.1 ragge * frames which have been transmitted. 1597 1.1 ragge */ 1598 1.1 ragge for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN; 1599 1.1 ragge i = DGE_NEXTTXS(i), sc->sc_txsfree++) { 1600 1.1 ragge txs = &sc->sc_txsoft[i]; 1601 1.1 ragge 1602 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1603 1.35 chs ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i)); 1604 1.1 ragge 1605 1.1 ragge DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs, 1606 1.53 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1607 1.1 ragge 1608 1.1 ragge status = 1609 1.1 ragge sc->sc_txdescs[txs->txs_lastdesc].dt_status; 1610 1.1 ragge if ((status & TDESC_STA_DD) == 0) { 1611 1.1 ragge DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1, 1612 1.1 ragge BUS_DMASYNC_PREREAD); 1613 1.1 ragge break; 1614 1.1 ragge } 1615 1.1 ragge 1616 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1617 1.1 ragge ("%s: TX: job %d done: descs %d..%d\n", 1618 1.35 chs device_xname(sc->sc_dev), i, txs->txs_firstdesc, 1619 1.1 ragge txs->txs_lastdesc)); 1620 1.1 ragge 1621 1.57 thorpej if_statinc(ifp, if_opackets); 1622 1.1 ragge sc->sc_txfree += txs->txs_ndesc; 1623 1.1 ragge bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap, 1624 1.1 ragge 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE); 1625 1.1 ragge bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 1626 1.1 ragge m_freem(txs->txs_mbuf); 1627 1.1 ragge txs->txs_mbuf = NULL; 1628 1.1 ragge } 1629 1.1 ragge 1630 1.1 ragge /* Update the dirty transmit buffer pointer. */ 1631 1.1 ragge sc->sc_txsdirty = i; 1632 1.1 ragge DPRINTF(DGE_DEBUG_TX, 1633 1.35 chs ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i)); 1634 1.1 ragge 1635 1.1 ragge /* 1636 1.1 ragge * If there are no more pending transmissions, cancel the watchdog 1637 1.1 ragge * timer. 1638 1.1 ragge */ 1639 1.1 ragge if (sc->sc_txsfree == DGE_TXQUEUELEN) 1640 1.1 ragge ifp->if_timer = 0; 1641 1.1 ragge } 1642 1.1 ragge 1643 1.1 ragge /* 1644 1.1 ragge * dge_rxintr: 1645 1.1 ragge * 1646 1.1 ragge * Helper; handle receive interrupts. 1647 1.1 ragge */ 1648 1.1 ragge static void 1649 1.1 ragge dge_rxintr(struct dge_softc *sc) 1650 1.1 ragge { 1651 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if; 1652 1.1 ragge struct dge_rxsoft *rxs; 1653 1.1 ragge struct mbuf *m; 1654 1.1 ragge int i, len; 1655 1.1 ragge uint8_t status, errors; 1656 1.1 ragge 1657 1.1 ragge for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) { 1658 1.1 ragge rxs = &sc->sc_rxsoft[i]; 1659 1.1 ragge 1660 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1661 1.1 ragge ("%s: RX: checking descriptor %d\n", 1662 1.35 chs device_xname(sc->sc_dev), i)); 1663 1.1 ragge 1664 1.53 msaitoh DGE_CDRXSYNC(sc, i, 1665 1.53 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1666 1.1 ragge 1667 1.1 ragge status = sc->sc_rxdescs[i].dr_status; 1668 1.1 ragge errors = sc->sc_rxdescs[i].dr_errors; 1669 1.1 ragge len = le16toh(sc->sc_rxdescs[i].dr_len); 1670 1.1 ragge 1671 1.1 ragge if ((status & RDESC_STS_DD) == 0) { 1672 1.52 msaitoh /* We have processed all of the receive descriptors. */ 1673 1.1 ragge DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD); 1674 1.1 ragge break; 1675 1.1 ragge } 1676 1.1 ragge 1677 1.1 ragge if (__predict_false(sc->sc_rxdiscard)) { 1678 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1679 1.1 ragge ("%s: RX: discarding contents of descriptor %d\n", 1680 1.35 chs device_xname(sc->sc_dev), i)); 1681 1.1 ragge DGE_INIT_RXDESC(sc, i); 1682 1.1 ragge if (status & RDESC_STS_EOP) { 1683 1.1 ragge /* Reset our state. */ 1684 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1685 1.1 ragge ("%s: RX: resetting rxdiscard -> 0\n", 1686 1.35 chs device_xname(sc->sc_dev))); 1687 1.1 ragge sc->sc_rxdiscard = 0; 1688 1.1 ragge } 1689 1.1 ragge continue; 1690 1.1 ragge } 1691 1.1 ragge 1692 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1693 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD); 1694 1.1 ragge 1695 1.1 ragge m = rxs->rxs_mbuf; 1696 1.1 ragge 1697 1.1 ragge /* 1698 1.1 ragge * Add a new receive buffer to the ring. 1699 1.1 ragge */ 1700 1.1 ragge if (dge_add_rxbuf(sc, i) != 0) { 1701 1.1 ragge /* 1702 1.1 ragge * Failed, throw away what we've done so 1703 1.1 ragge * far, and discard the rest of the packet. 1704 1.1 ragge */ 1705 1.57 thorpej if_statinc(ifp, if_ierrors); 1706 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 1707 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 1708 1.1 ragge DGE_INIT_RXDESC(sc, i); 1709 1.1 ragge if ((status & RDESC_STS_EOP) == 0) 1710 1.1 ragge sc->sc_rxdiscard = 1; 1711 1.65 rin m_freem(sc->sc_rxhead); 1712 1.1 ragge DGE_RXCHAIN_RESET(sc); 1713 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1714 1.1 ragge ("%s: RX: Rx buffer allocation failed, " 1715 1.35 chs "dropping packet%s\n", device_xname(sc->sc_dev), 1716 1.1 ragge sc->sc_rxdiscard ? " (discard)" : "")); 1717 1.1 ragge continue; 1718 1.1 ragge } 1719 1.1 ragge DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */ 1720 1.1 ragge 1721 1.1 ragge DGE_RXCHAIN_LINK(sc, m); 1722 1.1 ragge 1723 1.1 ragge m->m_len = len; 1724 1.1 ragge 1725 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1726 1.1 ragge ("%s: RX: buffer at %p len %d\n", 1727 1.35 chs device_xname(sc->sc_dev), m->m_data, len)); 1728 1.1 ragge 1729 1.1 ragge /* 1730 1.1 ragge * If this is not the end of the packet, keep 1731 1.1 ragge * looking. 1732 1.1 ragge */ 1733 1.1 ragge if ((status & RDESC_STS_EOP) == 0) { 1734 1.1 ragge sc->sc_rxlen += len; 1735 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1736 1.1 ragge ("%s: RX: not yet EOP, rxlen -> %d\n", 1737 1.35 chs device_xname(sc->sc_dev), sc->sc_rxlen)); 1738 1.1 ragge continue; 1739 1.1 ragge } 1740 1.1 ragge 1741 1.1 ragge /* 1742 1.1 ragge * Okay, we have the entire packet now... 1743 1.1 ragge */ 1744 1.1 ragge *sc->sc_rxtailp = NULL; 1745 1.1 ragge m = sc->sc_rxhead; 1746 1.1 ragge len += sc->sc_rxlen; 1747 1.1 ragge 1748 1.1 ragge DGE_RXCHAIN_RESET(sc); 1749 1.1 ragge 1750 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1751 1.1 ragge ("%s: RX: have entire packet, len -> %d\n", 1752 1.35 chs device_xname(sc->sc_dev), len)); 1753 1.1 ragge 1754 1.1 ragge /* 1755 1.1 ragge * If an error occurred, update stats and drop the packet. 1756 1.1 ragge */ 1757 1.53 msaitoh if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P | 1758 1.53 msaitoh RDESC_ERR_RXE)) { 1759 1.57 thorpej if_statinc(ifp, if_ierrors); 1760 1.1 ragge if (errors & RDESC_ERR_SE) 1761 1.1 ragge printf("%s: symbol error\n", 1762 1.35 chs device_xname(sc->sc_dev)); 1763 1.1 ragge else if (errors & RDESC_ERR_P) 1764 1.1 ragge printf("%s: parity error\n", 1765 1.35 chs device_xname(sc->sc_dev)); 1766 1.1 ragge else if (errors & RDESC_ERR_CE) 1767 1.1 ragge printf("%s: CRC error\n", 1768 1.35 chs device_xname(sc->sc_dev)); 1769 1.1 ragge m_freem(m); 1770 1.1 ragge continue; 1771 1.1 ragge } 1772 1.1 ragge 1773 1.1 ragge /* 1774 1.1 ragge * No errors. Receive the packet. 1775 1.1 ragge */ 1776 1.44 ozaki m_set_rcvif(m, ifp); 1777 1.1 ragge m->m_pkthdr.len = len; 1778 1.1 ragge 1779 1.1 ragge /* 1780 1.1 ragge * Set up checksum info for this packet. 1781 1.1 ragge */ 1782 1.1 ragge if (status & RDESC_STS_IPCS) { 1783 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxipsum); 1784 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4; 1785 1.1 ragge if (errors & RDESC_ERR_IPE) 1786 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD; 1787 1.1 ragge } 1788 1.1 ragge if (status & RDESC_STS_TCPCS) { 1789 1.1 ragge /* 1790 1.1 ragge * Note: we don't know if this was TCP or UDP, 1791 1.1 ragge * so we just set both bits, and expect the 1792 1.1 ragge * upper layers to deal. 1793 1.1 ragge */ 1794 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxtusum); 1795 1.53 msaitoh m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4; 1796 1.1 ragge if (errors & RDESC_ERR_TCPE) 1797 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD; 1798 1.1 ragge } 1799 1.1 ragge 1800 1.1 ragge /* Pass it on. */ 1801 1.41 ozaki if_percpuq_enqueue(ifp->if_percpuq, m); 1802 1.1 ragge } 1803 1.1 ragge 1804 1.1 ragge /* Update the receive pointer. */ 1805 1.1 ragge sc->sc_rxptr = i; 1806 1.1 ragge 1807 1.1 ragge DPRINTF(DGE_DEBUG_RX, 1808 1.35 chs ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i)); 1809 1.1 ragge } 1810 1.1 ragge 1811 1.1 ragge /* 1812 1.1 ragge * dge_linkintr: 1813 1.1 ragge * 1814 1.1 ragge * Helper; handle link interrupts. 1815 1.1 ragge */ 1816 1.1 ragge static void 1817 1.1 ragge dge_linkintr(struct dge_softc *sc, uint32_t icr) 1818 1.1 ragge { 1819 1.1 ragge uint32_t status; 1820 1.1 ragge 1821 1.1 ragge if (icr & ICR_LSC) { 1822 1.1 ragge status = CSR_READ(sc, DGE_STATUS); 1823 1.1 ragge if (status & STATUS_LINKUP) { 1824 1.1 ragge DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n", 1825 1.35 chs device_xname(sc->sc_dev))); 1826 1.1 ragge } else { 1827 1.1 ragge DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n", 1828 1.35 chs device_xname(sc->sc_dev))); 1829 1.1 ragge } 1830 1.1 ragge } else if (icr & ICR_RXSEQ) { 1831 1.1 ragge DPRINTF(DGE_DEBUG_LINK, 1832 1.1 ragge ("%s: LINK: Receive sequence error\n", 1833 1.35 chs device_xname(sc->sc_dev))); 1834 1.1 ragge } 1835 1.1 ragge /* XXX - fix errata */ 1836 1.1 ragge } 1837 1.1 ragge 1838 1.1 ragge /* 1839 1.1 ragge * dge_reset: 1840 1.1 ragge * 1841 1.1 ragge * Reset the i82597 chip. 1842 1.1 ragge */ 1843 1.1 ragge static void 1844 1.1 ragge dge_reset(struct dge_softc *sc) 1845 1.1 ragge { 1846 1.1 ragge int i; 1847 1.1 ragge 1848 1.1 ragge /* 1849 1.1 ragge * Do a chip reset. 1850 1.1 ragge */ 1851 1.1 ragge CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0); 1852 1.1 ragge 1853 1.1 ragge delay(10000); 1854 1.1 ragge 1855 1.1 ragge for (i = 0; i < 1000; i++) { 1856 1.1 ragge if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0) 1857 1.1 ragge break; 1858 1.1 ragge delay(20); 1859 1.1 ragge } 1860 1.1 ragge 1861 1.1 ragge if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) 1862 1.1 ragge printf("%s: WARNING: reset failed to complete\n", 1863 1.35 chs device_xname(sc->sc_dev)); 1864 1.52 msaitoh /* 1865 1.52 msaitoh * Reset the EEPROM logic. 1866 1.52 msaitoh * This will cause the chip to reread its default values, 1867 1.1 ragge * which doesn't happen otherwise (errata). 1868 1.52 msaitoh */ 1869 1.52 msaitoh CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST); 1870 1.52 msaitoh delay(10000); 1871 1.1 ragge } 1872 1.1 ragge 1873 1.1 ragge /* 1874 1.1 ragge * dge_init: [ifnet interface function] 1875 1.1 ragge * 1876 1.1 ragge * Initialize the interface. Must be called at splnet(). 1877 1.1 ragge */ 1878 1.1 ragge static int 1879 1.1 ragge dge_init(struct ifnet *ifp) 1880 1.1 ragge { 1881 1.1 ragge struct dge_softc *sc = ifp->if_softc; 1882 1.1 ragge struct dge_rxsoft *rxs; 1883 1.1 ragge int i, error = 0; 1884 1.1 ragge uint32_t reg; 1885 1.1 ragge 1886 1.1 ragge /* 1887 1.60 andvar * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGNMENT is set. 1888 1.1 ragge * There is a small but measurable benefit to avoiding the adjusment 1889 1.1 ragge * of the descriptor so that the headers are aligned, for normal mtu, 1890 1.1 ragge * on such platforms. One possibility is that the DMA itself is 1891 1.1 ragge * slightly more efficient if the front of the entire packet (instead 1892 1.1 ragge * of the front of the headers) is aligned. 1893 1.1 ragge * 1894 1.1 ragge * Note we must always set align_tweak to 0 if we are using 1895 1.1 ragge * jumbo frames. 1896 1.1 ragge */ 1897 1.1 ragge #ifdef __NO_STRICT_ALIGNMENT 1898 1.1 ragge sc->sc_align_tweak = 0; 1899 1.1 ragge #else 1900 1.1 ragge if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2)) 1901 1.1 ragge sc->sc_align_tweak = 0; 1902 1.1 ragge else 1903 1.1 ragge sc->sc_align_tweak = 2; 1904 1.1 ragge #endif /* __NO_STRICT_ALIGNMENT */ 1905 1.1 ragge 1906 1.1 ragge /* Cancel any pending I/O. */ 1907 1.1 ragge dge_stop(ifp, 0); 1908 1.1 ragge 1909 1.1 ragge /* Reset the chip to a known state. */ 1910 1.1 ragge dge_reset(sc); 1911 1.1 ragge 1912 1.1 ragge /* Initialize the transmit descriptor ring. */ 1913 1.1 ragge memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs)); 1914 1.1 ragge DGE_CDTXSYNC(sc, 0, DGE_NTXDESC, 1915 1.53 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1916 1.1 ragge sc->sc_txfree = DGE_NTXDESC; 1917 1.1 ragge sc->sc_txnext = 0; 1918 1.1 ragge 1919 1.1 ragge sc->sc_txctx_ipcs = 0xffffffff; 1920 1.1 ragge sc->sc_txctx_tucs = 0xffffffff; 1921 1.1 ragge 1922 1.58 thorpej CSR_WRITE(sc, DGE_TDBAH, ((uint64_t)DGE_CDTXADDR(sc, 0)) >> 32); 1923 1.1 ragge CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0)); 1924 1.1 ragge CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs)); 1925 1.1 ragge CSR_WRITE(sc, DGE_TDH, 0); 1926 1.1 ragge CSR_WRITE(sc, DGE_TDT, 0); 1927 1.1 ragge CSR_WRITE(sc, DGE_TIDV, TIDV); 1928 1.1 ragge 1929 1.1 ragge #if 0 1930 1.1 ragge CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) | 1931 1.1 ragge TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0)); 1932 1.1 ragge #endif 1933 1.1 ragge CSR_WRITE(sc, DGE_RXDCTL, 1934 1.1 ragge RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) | 1935 1.1 ragge RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) | 1936 1.1 ragge RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL)); 1937 1.1 ragge 1938 1.1 ragge /* Initialize the transmit job descriptors. */ 1939 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) 1940 1.1 ragge sc->sc_txsoft[i].txs_mbuf = NULL; 1941 1.1 ragge sc->sc_txsfree = DGE_TXQUEUELEN; 1942 1.1 ragge sc->sc_txsnext = 0; 1943 1.1 ragge sc->sc_txsdirty = 0; 1944 1.1 ragge 1945 1.1 ragge /* 1946 1.1 ragge * Initialize the receive descriptor and receive job 1947 1.1 ragge * descriptor rings. 1948 1.1 ragge */ 1949 1.58 thorpej CSR_WRITE(sc, DGE_RDBAH, ((uint64_t)DGE_CDRXADDR(sc, 0)) >> 32); 1950 1.1 ragge CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0)); 1951 1.1 ragge CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs)); 1952 1.1 ragge CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE); 1953 1.1 ragge CSR_WRITE(sc, DGE_RDT, 0); 1954 1.1 ragge CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000); 1955 1.1 ragge CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE); 1956 1.1 ragge CSR_WRITE(sc, DGE_FCRTH, FCRTH); 1957 1.1 ragge 1958 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) { 1959 1.1 ragge rxs = &sc->sc_rxsoft[i]; 1960 1.1 ragge if (rxs->rxs_mbuf == NULL) { 1961 1.1 ragge if ((error = dge_add_rxbuf(sc, i)) != 0) { 1962 1.1 ragge printf("%s: unable to allocate or map rx " 1963 1.1 ragge "buffer %d, error = %d\n", 1964 1.35 chs device_xname(sc->sc_dev), i, error); 1965 1.1 ragge /* 1966 1.1 ragge * XXX Should attempt to run with fewer receive 1967 1.1 ragge * XXX buffers instead of just failing. 1968 1.1 ragge */ 1969 1.1 ragge dge_rxdrain(sc); 1970 1.1 ragge goto out; 1971 1.1 ragge } 1972 1.1 ragge } 1973 1.1 ragge DGE_INIT_RXDESC(sc, i); 1974 1.1 ragge } 1975 1.1 ragge sc->sc_rxptr = DGE_RXSPACE; 1976 1.1 ragge sc->sc_rxdiscard = 0; 1977 1.1 ragge DGE_RXCHAIN_RESET(sc); 1978 1.1 ragge 1979 1.1 ragge if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) { 1980 1.1 ragge sc->sc_ctrl0 |= CTRL0_JFE; 1981 1.1 ragge CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16); 1982 1.1 ragge } 1983 1.1 ragge 1984 1.1 ragge /* Write the control registers. */ 1985 1.1 ragge CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0); 1986 1.1 ragge 1987 1.1 ragge /* 1988 1.1 ragge * Set up checksum offload parameters. 1989 1.1 ragge */ 1990 1.1 ragge reg = CSR_READ(sc, DGE_RXCSUM); 1991 1.11 yamt if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) 1992 1.1 ragge reg |= RXCSUM_IPOFL; 1993 1.1 ragge else 1994 1.1 ragge reg &= ~RXCSUM_IPOFL; 1995 1.11 yamt if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx)) 1996 1.1 ragge reg |= RXCSUM_IPOFL | RXCSUM_TUOFL; 1997 1.1 ragge else { 1998 1.1 ragge reg &= ~RXCSUM_TUOFL; 1999 1.11 yamt if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0) 2000 1.1 ragge reg &= ~RXCSUM_IPOFL; 2001 1.1 ragge } 2002 1.1 ragge CSR_WRITE(sc, DGE_RXCSUM, reg); 2003 1.1 ragge 2004 1.1 ragge /* 2005 1.1 ragge * Set up the interrupt registers. 2006 1.1 ragge */ 2007 1.1 ragge CSR_WRITE(sc, DGE_IMC, 0xffffffffU); 2008 1.1 ragge sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 | 2009 1.1 ragge ICR_RXO | ICR_RXT0; 2010 1.1 ragge 2011 1.1 ragge CSR_WRITE(sc, DGE_IMS, sc->sc_icr); 2012 1.1 ragge 2013 1.1 ragge /* 2014 1.1 ragge * Set up the transmit control register. 2015 1.1 ragge */ 2016 1.53 msaitoh sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN; 2017 1.1 ragge CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl); 2018 1.1 ragge 2019 1.1 ragge /* 2020 1.1 ragge * Set up the receive control register; we actually program 2021 1.1 ragge * the register when we set the receive filter. Use multicast 2022 1.1 ragge * address offset type 0. 2023 1.1 ragge */ 2024 1.1 ragge sc->sc_mchash_type = 0; 2025 1.1 ragge 2026 1.10 perry sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC | 2027 1.1 ragge RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type); 2028 1.1 ragge 2029 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG 2030 1.3 ragge sc->sc_rctl |= RCTL_BSIZE_16k; 2031 1.3 ragge #else 2032 1.53 msaitoh switch (MCLBYTES) { 2033 1.1 ragge case 2048: 2034 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_2k; 2035 1.1 ragge break; 2036 1.1 ragge case 4096: 2037 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_4k; 2038 1.1 ragge break; 2039 1.1 ragge case 8192: 2040 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_8k; 2041 1.1 ragge break; 2042 1.1 ragge case 16384: 2043 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_16k; 2044 1.1 ragge break; 2045 1.1 ragge default: 2046 1.1 ragge panic("dge_init: MCLBYTES %d unsupported", MCLBYTES); 2047 1.1 ragge } 2048 1.3 ragge #endif 2049 1.1 ragge 2050 1.1 ragge /* Set the receive filter. */ 2051 1.1 ragge /* Also sets RCTL */ 2052 1.1 ragge dge_set_filter(sc); 2053 1.1 ragge 2054 1.1 ragge /* ...all done! */ 2055 1.10 perry ifp->if_flags |= IFF_RUNNING; 2056 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE; 2057 1.1 ragge 2058 1.1 ragge out: 2059 1.1 ragge if (error) 2060 1.35 chs printf("%s: interface not running\n", device_xname(sc->sc_dev)); 2061 1.52 msaitoh return error; 2062 1.1 ragge } 2063 1.1 ragge 2064 1.1 ragge /* 2065 1.1 ragge * dge_rxdrain: 2066 1.1 ragge * 2067 1.1 ragge * Drain the receive queue. 2068 1.1 ragge */ 2069 1.1 ragge static void 2070 1.1 ragge dge_rxdrain(struct dge_softc *sc) 2071 1.1 ragge { 2072 1.1 ragge struct dge_rxsoft *rxs; 2073 1.1 ragge int i; 2074 1.1 ragge 2075 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) { 2076 1.1 ragge rxs = &sc->sc_rxsoft[i]; 2077 1.1 ragge if (rxs->rxs_mbuf != NULL) { 2078 1.1 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2079 1.1 ragge m_freem(rxs->rxs_mbuf); 2080 1.1 ragge rxs->rxs_mbuf = NULL; 2081 1.1 ragge } 2082 1.1 ragge } 2083 1.1 ragge } 2084 1.1 ragge 2085 1.1 ragge /* 2086 1.1 ragge * dge_stop: [ifnet interface function] 2087 1.1 ragge * 2088 1.1 ragge * Stop transmission on the interface. 2089 1.1 ragge */ 2090 1.1 ragge static void 2091 1.1 ragge dge_stop(struct ifnet *ifp, int disable) 2092 1.1 ragge { 2093 1.1 ragge struct dge_softc *sc = ifp->if_softc; 2094 1.1 ragge struct dge_txsoft *txs; 2095 1.1 ragge int i; 2096 1.1 ragge 2097 1.1 ragge /* Stop the transmit and receive processes. */ 2098 1.1 ragge CSR_WRITE(sc, DGE_TCTL, 0); 2099 1.1 ragge CSR_WRITE(sc, DGE_RCTL, 0); 2100 1.1 ragge 2101 1.1 ragge /* Release any queued transmit buffers. */ 2102 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) { 2103 1.1 ragge txs = &sc->sc_txsoft[i]; 2104 1.1 ragge if (txs->txs_mbuf != NULL) { 2105 1.1 ragge bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap); 2106 1.1 ragge m_freem(txs->txs_mbuf); 2107 1.1 ragge txs->txs_mbuf = NULL; 2108 1.1 ragge } 2109 1.1 ragge } 2110 1.1 ragge 2111 1.1 ragge /* Mark the interface as down and cancel the watchdog timer. */ 2112 1.1 ragge ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); 2113 1.1 ragge ifp->if_timer = 0; 2114 1.20 dyoung 2115 1.20 dyoung if (disable) 2116 1.20 dyoung dge_rxdrain(sc); 2117 1.1 ragge } 2118 1.1 ragge 2119 1.1 ragge /* 2120 1.1 ragge * dge_add_rxbuf: 2121 1.1 ragge * 2122 1.64 andvar * Add a receive buffer to the indicated descriptor. 2123 1.1 ragge */ 2124 1.1 ragge static int 2125 1.1 ragge dge_add_rxbuf(struct dge_softc *sc, int idx) 2126 1.1 ragge { 2127 1.1 ragge struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx]; 2128 1.1 ragge struct mbuf *m; 2129 1.1 ragge int error; 2130 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG 2131 1.15 christos void *buf; 2132 1.3 ragge #endif 2133 1.1 ragge 2134 1.1 ragge MGETHDR(m, M_DONTWAIT, MT_DATA); 2135 1.1 ragge if (m == NULL) 2136 1.52 msaitoh return ENOBUFS; 2137 1.1 ragge 2138 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG 2139 1.3 ragge if ((buf = dge_getbuf(sc)) == NULL) 2140 1.3 ragge return ENOBUFS; 2141 1.3 ragge 2142 1.3 ragge m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE; 2143 1.3 ragge MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc); 2144 1.6 yamt m->m_flags |= M_EXT_RW; 2145 1.3 ragge 2146 1.3 ragge if (rxs->rxs_mbuf != NULL) 2147 1.3 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2148 1.3 ragge rxs->rxs_mbuf = m; 2149 1.3 ragge 2150 1.3 ragge error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf, 2151 1.53 msaitoh DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT); 2152 1.3 ragge #else 2153 1.1 ragge MCLGET(m, M_DONTWAIT); 2154 1.1 ragge if ((m->m_flags & M_EXT) == 0) { 2155 1.1 ragge m_freem(m); 2156 1.52 msaitoh return ENOBUFS; 2157 1.1 ragge } 2158 1.1 ragge 2159 1.1 ragge if (rxs->rxs_mbuf != NULL) 2160 1.1 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap); 2161 1.1 ragge 2162 1.1 ragge rxs->rxs_mbuf = m; 2163 1.1 ragge 2164 1.1 ragge m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; 2165 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m, 2166 1.53 msaitoh BUS_DMA_READ | BUS_DMA_NOWAIT); 2167 1.3 ragge #endif 2168 1.1 ragge if (error) { 2169 1.1 ragge printf("%s: unable to load rx DMA map %d, error = %d\n", 2170 1.35 chs device_xname(sc->sc_dev), idx, error); 2171 1.1 ragge panic("dge_add_rxbuf"); /* XXX XXX XXX */ 2172 1.1 ragge } 2173 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0, 2174 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD); 2175 1.1 ragge 2176 1.52 msaitoh return 0; 2177 1.1 ragge } 2178 1.1 ragge 2179 1.1 ragge /* 2180 1.1 ragge * dge_set_ral: 2181 1.1 ragge * 2182 1.1 ragge * Set an entry in the receive address list. 2183 1.1 ragge */ 2184 1.1 ragge static void 2185 1.1 ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx) 2186 1.1 ragge { 2187 1.1 ragge uint32_t ral_lo, ral_hi; 2188 1.1 ragge 2189 1.1 ragge if (enaddr != NULL) { 2190 1.1 ragge ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) | 2191 1.1 ragge (enaddr[3] << 24); 2192 1.1 ragge ral_hi = enaddr[4] | (enaddr[5] << 8); 2193 1.1 ragge ral_hi |= RAH_AV; 2194 1.1 ragge } else { 2195 1.1 ragge ral_lo = 0; 2196 1.1 ragge ral_hi = 0; 2197 1.1 ragge } 2198 1.1 ragge CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo); 2199 1.1 ragge CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi); 2200 1.1 ragge } 2201 1.1 ragge 2202 1.1 ragge /* 2203 1.1 ragge * dge_mchash: 2204 1.1 ragge * 2205 1.1 ragge * Compute the hash of the multicast address for the 4096-bit 2206 1.1 ragge * multicast filter. 2207 1.1 ragge */ 2208 1.1 ragge static uint32_t 2209 1.1 ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr) 2210 1.1 ragge { 2211 1.1 ragge static const int lo_shift[4] = { 4, 3, 2, 0 }; 2212 1.1 ragge static const int hi_shift[4] = { 4, 5, 6, 8 }; 2213 1.1 ragge uint32_t hash; 2214 1.1 ragge 2215 1.1 ragge hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) | 2216 1.1 ragge (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]); 2217 1.1 ragge 2218 1.1 ragge return (hash & 0xfff); 2219 1.1 ragge } 2220 1.1 ragge 2221 1.1 ragge /* 2222 1.1 ragge * dge_set_filter: 2223 1.1 ragge * 2224 1.1 ragge * Set up the receive filter. 2225 1.1 ragge */ 2226 1.1 ragge static void 2227 1.1 ragge dge_set_filter(struct dge_softc *sc) 2228 1.1 ragge { 2229 1.1 ragge struct ethercom *ec = &sc->sc_ethercom; 2230 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if; 2231 1.1 ragge struct ether_multi *enm; 2232 1.1 ragge struct ether_multistep step; 2233 1.1 ragge uint32_t hash, reg, bit; 2234 1.1 ragge int i; 2235 1.1 ragge 2236 1.1 ragge sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE); 2237 1.1 ragge 2238 1.1 ragge if (ifp->if_flags & IFF_BROADCAST) 2239 1.1 ragge sc->sc_rctl |= RCTL_BAM; 2240 1.1 ragge if (ifp->if_flags & IFF_PROMISC) { 2241 1.1 ragge sc->sc_rctl |= RCTL_UPE; 2242 1.1 ragge goto allmulti; 2243 1.1 ragge } 2244 1.1 ragge 2245 1.1 ragge /* 2246 1.1 ragge * Set the station address in the first RAL slot, and 2247 1.1 ragge * clear the remaining slots. 2248 1.1 ragge */ 2249 1.16 dyoung dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0); 2250 1.1 ragge for (i = 1; i < RA_TABSIZE; i++) 2251 1.1 ragge dge_set_ral(sc, NULL, i); 2252 1.1 ragge 2253 1.1 ragge /* Clear out the multicast table. */ 2254 1.1 ragge for (i = 0; i < MC_TABSIZE; i++) 2255 1.1 ragge CSR_WRITE(sc, DGE_MTA + (i << 2), 0); 2256 1.1 ragge 2257 1.54 msaitoh ETHER_LOCK(ec); 2258 1.1 ragge ETHER_FIRST_MULTI(step, ec, enm); 2259 1.1 ragge while (enm != NULL) { 2260 1.1 ragge if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) { 2261 1.1 ragge /* 2262 1.1 ragge * We must listen to a range of multicast addresses. 2263 1.1 ragge * For now, just accept all multicasts, rather than 2264 1.1 ragge * trying to set only those filter bits needed to match 2265 1.1 ragge * the range. (At this time, the only use of address 2266 1.1 ragge * ranges is for IP multicast routing, for which the 2267 1.1 ragge * range is big enough to require all bits set.) 2268 1.1 ragge */ 2269 1.54 msaitoh ETHER_UNLOCK(ec); 2270 1.1 ragge goto allmulti; 2271 1.1 ragge } 2272 1.1 ragge 2273 1.1 ragge hash = dge_mchash(sc, enm->enm_addrlo); 2274 1.1 ragge 2275 1.1 ragge reg = (hash >> 5) & 0x7f; 2276 1.1 ragge bit = hash & 0x1f; 2277 1.1 ragge 2278 1.1 ragge hash = CSR_READ(sc, DGE_MTA + (reg << 2)); 2279 1.1 ragge hash |= 1U << bit; 2280 1.1 ragge 2281 1.1 ragge CSR_WRITE(sc, DGE_MTA + (reg << 2), hash); 2282 1.1 ragge 2283 1.1 ragge ETHER_NEXT_MULTI(step, enm); 2284 1.1 ragge } 2285 1.54 msaitoh ETHER_UNLOCK(ec); 2286 1.1 ragge 2287 1.1 ragge ifp->if_flags &= ~IFF_ALLMULTI; 2288 1.1 ragge goto setit; 2289 1.1 ragge 2290 1.1 ragge allmulti: 2291 1.1 ragge ifp->if_flags |= IFF_ALLMULTI; 2292 1.1 ragge sc->sc_rctl |= RCTL_MPE; 2293 1.1 ragge 2294 1.1 ragge setit: 2295 1.1 ragge CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl); 2296 1.1 ragge } 2297 1.1 ragge 2298 1.1 ragge /* 2299 1.1 ragge * Read in the EEPROM info and verify checksum. 2300 1.1 ragge */ 2301 1.1 ragge int 2302 1.1 ragge dge_read_eeprom(struct dge_softc *sc) 2303 1.1 ragge { 2304 1.1 ragge uint16_t cksum; 2305 1.1 ragge int i; 2306 1.1 ragge 2307 1.1 ragge cksum = 0; 2308 1.1 ragge for (i = 0; i < EEPROM_SIZE; i++) { 2309 1.1 ragge sc->sc_eeprom[i] = dge_eeprom_word(sc, i); 2310 1.1 ragge cksum += sc->sc_eeprom[i]; 2311 1.1 ragge } 2312 1.1 ragge return cksum != EEPROM_CKSUM; 2313 1.1 ragge } 2314 1.1 ragge 2315 1.1 ragge 2316 1.1 ragge /* 2317 1.1 ragge * Read a 16-bit word from address addr in the serial EEPROM. 2318 1.1 ragge */ 2319 1.1 ragge uint16_t 2320 1.1 ragge dge_eeprom_word(struct dge_softc *sc, int addr) 2321 1.1 ragge { 2322 1.1 ragge uint32_t reg; 2323 1.1 ragge uint16_t rval = 0; 2324 1.1 ragge int i; 2325 1.1 ragge 2326 1.53 msaitoh reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS); 2327 1.1 ragge 2328 1.1 ragge /* Lower clock pulse (and data in to chip) */ 2329 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg); 2330 1.1 ragge /* Select chip */ 2331 1.53 msaitoh CSR_WRITE(sc, DGE_EECD, reg | EECD_CS); 2332 1.1 ragge 2333 1.1 ragge /* Send read command */ 2334 1.1 ragge dge_eeprom_clockout(sc, 1); 2335 1.1 ragge dge_eeprom_clockout(sc, 1); 2336 1.1 ragge dge_eeprom_clockout(sc, 0); 2337 1.1 ragge 2338 1.1 ragge /* Send address */ 2339 1.1 ragge for (i = 5; i >= 0; i--) 2340 1.1 ragge dge_eeprom_clockout(sc, (addr >> i) & 1); 2341 1.1 ragge 2342 1.1 ragge /* Read data */ 2343 1.1 ragge for (i = 0; i < 16; i++) { 2344 1.1 ragge rval <<= 1; 2345 1.1 ragge rval |= dge_eeprom_clockin(sc); 2346 1.1 ragge } 2347 1.1 ragge 2348 1.1 ragge /* Deselect chip */ 2349 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg); 2350 1.1 ragge 2351 1.1 ragge return rval; 2352 1.1 ragge } 2353 1.1 ragge 2354 1.1 ragge /* 2355 1.1 ragge * Clock out a single bit to the EEPROM. 2356 1.1 ragge */ 2357 1.1 ragge void 2358 1.1 ragge dge_eeprom_clockout(struct dge_softc *sc, int bit) 2359 1.1 ragge { 2360 1.1 ragge int reg; 2361 1.1 ragge 2362 1.53 msaitoh reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK); 2363 1.1 ragge if (bit) 2364 1.1 ragge reg |= EECD_DI; 2365 1.10 perry 2366 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg); 2367 1.1 ragge delay(2); 2368 1.53 msaitoh CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); 2369 1.1 ragge delay(2); 2370 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg); 2371 1.1 ragge delay(2); 2372 1.1 ragge } 2373 1.1 ragge 2374 1.1 ragge /* 2375 1.1 ragge * Clock in a single bit from EEPROM. 2376 1.1 ragge */ 2377 1.1 ragge int 2378 1.1 ragge dge_eeprom_clockin(struct dge_softc *sc) 2379 1.1 ragge { 2380 1.1 ragge int reg, rv; 2381 1.1 ragge 2382 1.53 msaitoh reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK); 2383 1.1 ragge 2384 1.53 msaitoh CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */ 2385 1.1 ragge delay(2); 2386 1.1 ragge rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */ 2387 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */ 2388 1.1 ragge delay(2); 2389 1.1 ragge 2390 1.1 ragge return rv; 2391 1.1 ragge } 2392 1.1 ragge 2393 1.1 ragge static void 2394 1.1 ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr) 2395 1.1 ragge { 2396 1.1 ragge struct dge_softc *sc = ifp->if_softc; 2397 1.1 ragge 2398 1.1 ragge ifmr->ifm_status = IFM_AVALID; 2399 1.59 thorpej if (sc->sc_dgep->flags & DGEP_F_10G_SR ) { 2400 1.53 msaitoh ifmr->ifm_active = IFM_ETHER | IFM_10G_SR; 2401 1.42 pgoyette } else { 2402 1.53 msaitoh ifmr->ifm_active = IFM_ETHER | IFM_10G_LR; 2403 1.42 pgoyette } 2404 1.1 ragge 2405 1.1 ragge if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP) 2406 1.1 ragge ifmr->ifm_status |= IFM_ACTIVE; 2407 1.1 ragge } 2408 1.1 ragge 2409 1.1 ragge static inline int 2410 1.1 ragge phwait(struct dge_softc *sc, int p, int r, int d, int type) 2411 1.1 ragge { 2412 1.52 msaitoh int i, mdic; 2413 1.1 ragge 2414 1.52 msaitoh CSR_WRITE(sc, DGE_MDIO, 2415 1.1 ragge MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD); 2416 1.52 msaitoh for (i = 0; i < 10; i++) { 2417 1.52 msaitoh delay(10); 2418 1.52 msaitoh if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0) 2419 1.52 msaitoh break; 2420 1.52 msaitoh } 2421 1.52 msaitoh return mdic; 2422 1.1 ragge } 2423 1.1 ragge 2424 1.1 ragge static void 2425 1.39 chs dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val) 2426 1.1 ragge { 2427 1.1 ragge int mdic; 2428 1.1 ragge 2429 1.1 ragge CSR_WRITE(sc, DGE_MDIRW, val); 2430 1.1 ragge if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) { 2431 1.1 ragge printf("%s: address cycle timeout; phy %d reg %d\n", 2432 1.35 chs device_xname(sc->sc_dev), phy, reg); 2433 1.1 ragge return; 2434 1.1 ragge } 2435 1.1 ragge if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) { 2436 1.39 chs printf("%s: write cycle timeout; phy %d reg %d\n", 2437 1.35 chs device_xname(sc->sc_dev), phy, reg); 2438 1.1 ragge return; 2439 1.1 ragge } 2440 1.1 ragge } 2441 1.1 ragge 2442 1.1 ragge static void 2443 1.1 ragge dge_xgmii_reset(struct dge_softc *sc) 2444 1.1 ragge { 2445 1.39 chs dge_xgmii_writereg(sc, 0, 0, BMCR_RESET); 2446 1.1 ragge } 2447 1.1 ragge 2448 1.1 ragge static int 2449 1.14 christos dge_xgmii_mediachange(struct ifnet *ifp) 2450 1.1 ragge { 2451 1.1 ragge return 0; 2452 1.1 ragge } 2453