if_dge.c revision 1.1 1 1.1 ragge /* $NetBSD: if_dge.c,v 1.1 2004/03/12 13:46:52 ragge Exp $ */
2 1.1 ragge
3 1.1 ragge /*
4 1.1 ragge * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 1.1 ragge * All rights reserved.
6 1.1 ragge *
7 1.1 ragge * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 1.1 ragge *
9 1.1 ragge * Redistribution and use in source and binary forms, with or without
10 1.1 ragge * modification, are permitted provided that the following conditions
11 1.1 ragge * are met:
12 1.1 ragge * 1. Redistributions of source code must retain the above copyright
13 1.1 ragge * notice, this list of conditions and the following disclaimer.
14 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 ragge * notice, this list of conditions and the following disclaimer in the
16 1.1 ragge * documentation and/or other materials provided with the distribution.
17 1.1 ragge * 3. All advertising materials mentioning features or use of this software
18 1.1 ragge * must display the following acknowledgement:
19 1.1 ragge * This product includes software developed for the NetBSD Project by
20 1.1 ragge * SUNET, Swedish University Computer Network.
21 1.1 ragge * 4. The name of SUNET may not be used to endorse or promote products
22 1.1 ragge * derived from this software without specific prior written permission.
23 1.1 ragge *
24 1.1 ragge * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 ragge * POSSIBILITY OF SUCH DAMAGE.
35 1.1 ragge */
36 1.1 ragge
37 1.1 ragge /*
38 1.1 ragge * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 1.1 ragge * All rights reserved.
40 1.1 ragge *
41 1.1 ragge * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 1.1 ragge *
43 1.1 ragge * Redistribution and use in source and binary forms, with or without
44 1.1 ragge * modification, are permitted provided that the following conditions
45 1.1 ragge * are met:
46 1.1 ragge * 1. Redistributions of source code must retain the above copyright
47 1.1 ragge * notice, this list of conditions and the following disclaimer.
48 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 ragge * notice, this list of conditions and the following disclaimer in the
50 1.1 ragge * documentation and/or other materials provided with the distribution.
51 1.1 ragge * 3. All advertising materials mentioning features or use of this software
52 1.1 ragge * must display the following acknowledgement:
53 1.1 ragge * This product includes software developed for the NetBSD Project by
54 1.1 ragge * Wasabi Systems, Inc.
55 1.1 ragge * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 1.1 ragge * or promote products derived from this software without specific prior
57 1.1 ragge * written permission.
58 1.1 ragge *
59 1.1 ragge * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 1.1 ragge * POSSIBILITY OF SUCH DAMAGE.
70 1.1 ragge */
71 1.1 ragge
72 1.1 ragge /*
73 1.1 ragge * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 1.1 ragge *
75 1.1 ragge * TODO (in no specific order):
76 1.1 ragge * HW VLAN support.
77 1.1 ragge * Large jumbo buffers (16k).
78 1.1 ragge * TSE offloading (needs kernel changes...)
79 1.1 ragge * RAIDC (receive interrupt delay adaptation)
80 1.1 ragge * Use memory > 4GB.
81 1.1 ragge */
82 1.1 ragge
83 1.1 ragge #include <sys/cdefs.h>
84 1.1 ragge __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.1 2004/03/12 13:46:52 ragge Exp $");
85 1.1 ragge
86 1.1 ragge #include "bpfilter.h"
87 1.1 ragge #include "rnd.h"
88 1.1 ragge
89 1.1 ragge #include <sys/param.h>
90 1.1 ragge #include <sys/systm.h>
91 1.1 ragge #include <sys/callout.h>
92 1.1 ragge #include <sys/mbuf.h>
93 1.1 ragge #include <sys/malloc.h>
94 1.1 ragge #include <sys/kernel.h>
95 1.1 ragge #include <sys/socket.h>
96 1.1 ragge #include <sys/ioctl.h>
97 1.1 ragge #include <sys/errno.h>
98 1.1 ragge #include <sys/device.h>
99 1.1 ragge #include <sys/queue.h>
100 1.1 ragge
101 1.1 ragge #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
102 1.1 ragge
103 1.1 ragge #if NRND > 0
104 1.1 ragge #include <sys/rnd.h>
105 1.1 ragge #endif
106 1.1 ragge
107 1.1 ragge #include <net/if.h>
108 1.1 ragge #include <net/if_dl.h>
109 1.1 ragge #include <net/if_media.h>
110 1.1 ragge #include <net/if_ether.h>
111 1.1 ragge
112 1.1 ragge #if NBPFILTER > 0
113 1.1 ragge #include <net/bpf.h>
114 1.1 ragge #endif
115 1.1 ragge
116 1.1 ragge #include <netinet/in.h> /* XXX for struct ip */
117 1.1 ragge #include <netinet/in_systm.h> /* XXX for struct ip */
118 1.1 ragge #include <netinet/ip.h> /* XXX for struct ip */
119 1.1 ragge #include <netinet/tcp.h> /* XXX for struct tcphdr */
120 1.1 ragge
121 1.1 ragge #include <machine/bus.h>
122 1.1 ragge #include <machine/intr.h>
123 1.1 ragge #include <machine/endian.h>
124 1.1 ragge
125 1.1 ragge #include <dev/mii/mii.h>
126 1.1 ragge #include <dev/mii/miivar.h>
127 1.1 ragge #include <dev/mii/mii_bitbang.h>
128 1.1 ragge
129 1.1 ragge #include <dev/pci/pcireg.h>
130 1.1 ragge #include <dev/pci/pcivar.h>
131 1.1 ragge #include <dev/pci/pcidevs.h>
132 1.1 ragge
133 1.1 ragge #include <dev/pci/if_dgereg.h>
134 1.1 ragge
135 1.1 ragge #define DGE_EVENT_COUNTERS
136 1.1 ragge #define DGE_DEBUG
137 1.1 ragge
138 1.1 ragge #ifdef DGE_DEBUG
139 1.1 ragge #define DGE_DEBUG_LINK 0x01
140 1.1 ragge #define DGE_DEBUG_TX 0x02
141 1.1 ragge #define DGE_DEBUG_RX 0x04
142 1.1 ragge #define DGE_DEBUG_CKSUM 0x08
143 1.1 ragge int dge_debug = 0;
144 1.1 ragge
145 1.1 ragge #define DPRINTF(x, y) if (dge_debug & (x)) printf y
146 1.1 ragge #else
147 1.1 ragge #define DPRINTF(x, y) /* nothing */
148 1.1 ragge #endif /* DGE_DEBUG */
149 1.1 ragge
150 1.1 ragge /*
151 1.1 ragge * Transmit descriptor list size. We allow up to 100 DMA segments per
152 1.1 ragge * packet (Intel reports of jumbo frame packets with as
153 1.1 ragge * many as 80 DMA segments when using 16k buffers).
154 1.1 ragge */
155 1.1 ragge #define DGE_NTXSEGS 100
156 1.1 ragge #define DGE_IFQUEUELEN 20000
157 1.1 ragge #define DGE_TXQUEUELEN 2048
158 1.1 ragge #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
159 1.1 ragge #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
160 1.1 ragge #define DGE_NTXDESC 1024
161 1.1 ragge #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
162 1.1 ragge #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
163 1.1 ragge #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
164 1.1 ragge
165 1.1 ragge /*
166 1.1 ragge * Receive descriptor list size.
167 1.1 ragge * Packet is of size MCLBYTES, and for jumbo packets buffers may
168 1.1 ragge * be chained. Due to the nature of the card (high-speed), keep this
169 1.1 ragge * ring large. With 2k buffers the ring can store 400 jumbo packets,
170 1.1 ragge * which at full speed will be received in just under 3ms.
171 1.1 ragge */
172 1.1 ragge #define DGE_NRXDESC 2048
173 1.1 ragge #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
174 1.1 ragge #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
175 1.1 ragge /*
176 1.1 ragge * # of descriptors between head and written descriptors.
177 1.1 ragge * This is to work-around two erratas.
178 1.1 ragge */
179 1.1 ragge #define DGE_RXSPACE 10
180 1.1 ragge #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
181 1.1 ragge /*
182 1.1 ragge * Receive descriptor fetch threshholds. These are values recommended
183 1.1 ragge * by Intel, do not touch them unless you know what you are doing.
184 1.1 ragge */
185 1.1 ragge #define RXDCTL_PTHRESH_VAL 128
186 1.1 ragge #define RXDCTL_HTHRESH_VAL 16
187 1.1 ragge #define RXDCTL_WTHRESH_VAL 16
188 1.1 ragge
189 1.1 ragge
190 1.1 ragge /*
191 1.1 ragge * Tweakable parameters; default values.
192 1.1 ragge */
193 1.1 ragge #define FCRTH 0x30000 /* Send XOFF water mark */
194 1.1 ragge #define FCRTL 0x28000 /* Send XON water mark */
195 1.1 ragge #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
196 1.1 ragge #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
197 1.1 ragge
198 1.1 ragge /*
199 1.1 ragge * Control structures are DMA'd to the i82597 chip. We allocate them in
200 1.1 ragge * a single clump that maps to a single DMA segment to make serveral things
201 1.1 ragge * easier.
202 1.1 ragge */
203 1.1 ragge struct dge_control_data {
204 1.1 ragge /*
205 1.1 ragge * The transmit descriptors.
206 1.1 ragge */
207 1.1 ragge struct dge_tdes wcd_txdescs[DGE_NTXDESC];
208 1.1 ragge
209 1.1 ragge /*
210 1.1 ragge * The receive descriptors.
211 1.1 ragge */
212 1.1 ragge struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
213 1.1 ragge };
214 1.1 ragge
215 1.1 ragge #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
216 1.1 ragge #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
217 1.1 ragge #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
218 1.1 ragge
219 1.1 ragge /*
220 1.1 ragge * Software state for transmit jobs.
221 1.1 ragge */
222 1.1 ragge struct dge_txsoft {
223 1.1 ragge struct mbuf *txs_mbuf; /* head of our mbuf chain */
224 1.1 ragge bus_dmamap_t txs_dmamap; /* our DMA map */
225 1.1 ragge int txs_firstdesc; /* first descriptor in packet */
226 1.1 ragge int txs_lastdesc; /* last descriptor in packet */
227 1.1 ragge int txs_ndesc; /* # of descriptors used */
228 1.1 ragge };
229 1.1 ragge
230 1.1 ragge /*
231 1.1 ragge * Software state for receive buffers. Each descriptor gets a
232 1.1 ragge * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
233 1.1 ragge * more than one buffer, we chain them together.
234 1.1 ragge */
235 1.1 ragge struct dge_rxsoft {
236 1.1 ragge struct mbuf *rxs_mbuf; /* head of our mbuf chain */
237 1.1 ragge bus_dmamap_t rxs_dmamap; /* our DMA map */
238 1.1 ragge };
239 1.1 ragge
240 1.1 ragge /*
241 1.1 ragge * Software state per device.
242 1.1 ragge */
243 1.1 ragge struct dge_softc {
244 1.1 ragge struct device sc_dev; /* generic device information */
245 1.1 ragge bus_space_tag_t sc_st; /* bus space tag */
246 1.1 ragge bus_space_handle_t sc_sh; /* bus space handle */
247 1.1 ragge bus_dma_tag_t sc_dmat; /* bus DMA tag */
248 1.1 ragge struct ethercom sc_ethercom; /* ethernet common data */
249 1.1 ragge void *sc_sdhook; /* shutdown hook */
250 1.1 ragge
251 1.1 ragge int sc_flags; /* flags; see below */
252 1.1 ragge int sc_bus_speed; /* PCI/PCIX bus speed */
253 1.1 ragge int sc_pcix_offset; /* PCIX capability register offset */
254 1.1 ragge
255 1.1 ragge pci_chipset_tag_t sc_pc;
256 1.1 ragge pcitag_t sc_pt;
257 1.1 ragge int sc_mmrbc; /* Max PCIX memory read byte count */
258 1.1 ragge
259 1.1 ragge void *sc_ih; /* interrupt cookie */
260 1.1 ragge
261 1.1 ragge struct ifmedia sc_media;
262 1.1 ragge
263 1.1 ragge bus_dmamap_t sc_cddmamap; /* control data DMA map */
264 1.1 ragge #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
265 1.1 ragge
266 1.1 ragge int sc_align_tweak;
267 1.1 ragge
268 1.1 ragge /*
269 1.1 ragge * Software state for the transmit and receive descriptors.
270 1.1 ragge */
271 1.1 ragge struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
272 1.1 ragge struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
273 1.1 ragge
274 1.1 ragge /*
275 1.1 ragge * Control data structures.
276 1.1 ragge */
277 1.1 ragge struct dge_control_data *sc_control_data;
278 1.1 ragge #define sc_txdescs sc_control_data->wcd_txdescs
279 1.1 ragge #define sc_rxdescs sc_control_data->wcd_rxdescs
280 1.1 ragge
281 1.1 ragge #ifdef DGE_EVENT_COUNTERS
282 1.1 ragge /* Event counters. */
283 1.1 ragge struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
284 1.1 ragge struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
285 1.1 ragge struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
286 1.1 ragge struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
287 1.1 ragge struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
288 1.1 ragge struct evcnt sc_ev_rxintr; /* Rx interrupts */
289 1.1 ragge struct evcnt sc_ev_linkintr; /* Link interrupts */
290 1.1 ragge
291 1.1 ragge struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
292 1.1 ragge struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
293 1.1 ragge struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
294 1.1 ragge struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
295 1.1 ragge
296 1.1 ragge struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
297 1.1 ragge struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
298 1.1 ragge struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
299 1.1 ragge
300 1.1 ragge struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
301 1.1 ragge struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
302 1.1 ragge #endif /* DGE_EVENT_COUNTERS */
303 1.1 ragge
304 1.1 ragge int sc_txfree; /* number of free Tx descriptors */
305 1.1 ragge int sc_txnext; /* next ready Tx descriptor */
306 1.1 ragge
307 1.1 ragge int sc_txsfree; /* number of free Tx jobs */
308 1.1 ragge int sc_txsnext; /* next free Tx job */
309 1.1 ragge int sc_txsdirty; /* dirty Tx jobs */
310 1.1 ragge
311 1.1 ragge uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
312 1.1 ragge uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
313 1.1 ragge
314 1.1 ragge int sc_rxptr; /* next ready Rx descriptor/queue ent */
315 1.1 ragge int sc_rxdiscard;
316 1.1 ragge int sc_rxlen;
317 1.1 ragge struct mbuf *sc_rxhead;
318 1.1 ragge struct mbuf *sc_rxtail;
319 1.1 ragge struct mbuf **sc_rxtailp;
320 1.1 ragge
321 1.1 ragge uint32_t sc_ctrl0; /* prototype CTRL0 register */
322 1.1 ragge uint32_t sc_icr; /* prototype interrupt bits */
323 1.1 ragge uint32_t sc_tctl; /* prototype TCTL register */
324 1.1 ragge uint32_t sc_rctl; /* prototype RCTL register */
325 1.1 ragge
326 1.1 ragge int sc_mchash_type; /* multicast filter offset */
327 1.1 ragge
328 1.1 ragge uint16_t sc_eeprom[EEPROM_SIZE];
329 1.1 ragge
330 1.1 ragge #if NRND > 0
331 1.1 ragge rndsource_element_t rnd_source; /* random source */
332 1.1 ragge #endif
333 1.1 ragge };
334 1.1 ragge
335 1.1 ragge #define DGE_RXCHAIN_RESET(sc) \
336 1.1 ragge do { \
337 1.1 ragge (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
338 1.1 ragge *(sc)->sc_rxtailp = NULL; \
339 1.1 ragge (sc)->sc_rxlen = 0; \
340 1.1 ragge } while (/*CONSTCOND*/0)
341 1.1 ragge
342 1.1 ragge #define DGE_RXCHAIN_LINK(sc, m) \
343 1.1 ragge do { \
344 1.1 ragge *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
345 1.1 ragge (sc)->sc_rxtailp = &(m)->m_next; \
346 1.1 ragge } while (/*CONSTCOND*/0)
347 1.1 ragge
348 1.1 ragge /* sc_flags */
349 1.1 ragge #define DGE_F_BUS64 0x20 /* bus is 64-bit */
350 1.1 ragge #define DGE_F_PCIX 0x40 /* bus is PCI-X */
351 1.1 ragge
352 1.1 ragge #ifdef DGE_EVENT_COUNTERS
353 1.1 ragge #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
354 1.1 ragge #else
355 1.1 ragge #define DGE_EVCNT_INCR(ev) /* nothing */
356 1.1 ragge #endif
357 1.1 ragge
358 1.1 ragge #define CSR_READ(sc, reg) \
359 1.1 ragge bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
360 1.1 ragge #define CSR_WRITE(sc, reg, val) \
361 1.1 ragge bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
362 1.1 ragge
363 1.1 ragge #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
364 1.1 ragge #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
365 1.1 ragge
366 1.1 ragge #define DGE_CDTXSYNC(sc, x, n, ops) \
367 1.1 ragge do { \
368 1.1 ragge int __x, __n; \
369 1.1 ragge \
370 1.1 ragge __x = (x); \
371 1.1 ragge __n = (n); \
372 1.1 ragge \
373 1.1 ragge /* If it will wrap around, sync to the end of the ring. */ \
374 1.1 ragge if ((__x + __n) > DGE_NTXDESC) { \
375 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
376 1.1 ragge DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
377 1.1 ragge (DGE_NTXDESC - __x), (ops)); \
378 1.1 ragge __n -= (DGE_NTXDESC - __x); \
379 1.1 ragge __x = 0; \
380 1.1 ragge } \
381 1.1 ragge \
382 1.1 ragge /* Now sync whatever is left. */ \
383 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
384 1.1 ragge DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
385 1.1 ragge } while (/*CONSTCOND*/0)
386 1.1 ragge
387 1.1 ragge #define DGE_CDRXSYNC(sc, x, ops) \
388 1.1 ragge do { \
389 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
390 1.1 ragge DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
391 1.1 ragge } while (/*CONSTCOND*/0)
392 1.1 ragge
393 1.1 ragge #define DGE_INIT_RXDESC(sc, x) \
394 1.1 ragge do { \
395 1.1 ragge struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
396 1.1 ragge struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
397 1.1 ragge struct mbuf *__m = __rxs->rxs_mbuf; \
398 1.1 ragge \
399 1.1 ragge /* \
400 1.1 ragge * Note: We scoot the packet forward 2 bytes in the buffer \
401 1.1 ragge * so that the payload after the Ethernet header is aligned \
402 1.1 ragge * to a 4-byte boundary. \
403 1.1 ragge * \
404 1.1 ragge * XXX BRAINDAMAGE ALERT! \
405 1.1 ragge * The stupid chip uses the same size for every buffer, which \
406 1.1 ragge * is set in the Receive Control register. We are using the 2K \
407 1.1 ragge * size option, but what we REALLY want is (2K - 2)! For this \
408 1.1 ragge * reason, we can't "scoot" packets longer than the standard \
409 1.1 ragge * Ethernet MTU. On strict-alignment platforms, if the total \
410 1.1 ragge * size exceeds (2K - 2) we set align_tweak to 0 and let \
411 1.1 ragge * the upper layer copy the headers. \
412 1.1 ragge */ \
413 1.1 ragge __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
414 1.1 ragge \
415 1.1 ragge __rxd->dr_baddrl = \
416 1.1 ragge htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
417 1.1 ragge (sc)->sc_align_tweak); \
418 1.1 ragge __rxd->dr_baddrh = 0; \
419 1.1 ragge __rxd->dr_len = 0; \
420 1.1 ragge __rxd->dr_cksum = 0; \
421 1.1 ragge __rxd->dr_status = 0; \
422 1.1 ragge __rxd->dr_errors = 0; \
423 1.1 ragge __rxd->dr_special = 0; \
424 1.1 ragge DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
425 1.1 ragge \
426 1.1 ragge CSR_WRITE((sc), DGE_RDT, (x)); \
427 1.1 ragge } while (/*CONSTCOND*/0)
428 1.1 ragge
429 1.1 ragge static void dge_start(struct ifnet *);
430 1.1 ragge static void dge_watchdog(struct ifnet *);
431 1.1 ragge static int dge_ioctl(struct ifnet *, u_long, caddr_t);
432 1.1 ragge static int dge_init(struct ifnet *);
433 1.1 ragge static void dge_stop(struct ifnet *, int);
434 1.1 ragge
435 1.1 ragge static void dge_shutdown(void *);
436 1.1 ragge
437 1.1 ragge static void dge_reset(struct dge_softc *);
438 1.1 ragge static void dge_rxdrain(struct dge_softc *);
439 1.1 ragge static int dge_add_rxbuf(struct dge_softc *, int);
440 1.1 ragge
441 1.1 ragge static void dge_set_filter(struct dge_softc *);
442 1.1 ragge
443 1.1 ragge static int dge_intr(void *);
444 1.1 ragge static void dge_txintr(struct dge_softc *);
445 1.1 ragge static void dge_rxintr(struct dge_softc *);
446 1.1 ragge static void dge_linkintr(struct dge_softc *, uint32_t);
447 1.1 ragge
448 1.1 ragge static int dge_match(struct device *, struct cfdata *, void *);
449 1.1 ragge static void dge_attach(struct device *, struct device *, void *);
450 1.1 ragge
451 1.1 ragge static int dge_read_eeprom(struct dge_softc *sc);
452 1.1 ragge static int dge_eeprom_clockin(struct dge_softc *sc);
453 1.1 ragge static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
454 1.1 ragge static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
455 1.1 ragge static int dge_xgmii_mediachange(struct ifnet *);
456 1.1 ragge static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
457 1.1 ragge static void dge_xgmii_reset(struct dge_softc *);
458 1.1 ragge static void dge_xgmii_writereg(struct device *, int, int, int);
459 1.1 ragge
460 1.1 ragge
461 1.1 ragge CFATTACH_DECL(dge, sizeof(struct dge_softc),
462 1.1 ragge dge_match, dge_attach, NULL, NULL);
463 1.1 ragge
464 1.1 ragge #ifdef DGE_EVENT_COUNTERS
465 1.1 ragge #if DGE_NTXSEGS > 100
466 1.1 ragge #error Update dge_txseg_evcnt_names
467 1.1 ragge #endif
468 1.1 ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
469 1.1 ragge #endif /* DGE_EVENT_COUNTERS */
470 1.1 ragge
471 1.1 ragge static int
472 1.1 ragge dge_match(struct device *parent, struct cfdata *cf, void *aux)
473 1.1 ragge {
474 1.1 ragge struct pci_attach_args *pa = aux;
475 1.1 ragge
476 1.1 ragge if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
477 1.1 ragge PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
478 1.1 ragge return (1);
479 1.1 ragge
480 1.1 ragge return (0);
481 1.1 ragge }
482 1.1 ragge
483 1.1 ragge static void
484 1.1 ragge dge_attach(struct device *parent, struct device *self, void *aux)
485 1.1 ragge {
486 1.1 ragge struct dge_softc *sc = (void *) self;
487 1.1 ragge struct pci_attach_args *pa = aux;
488 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
489 1.1 ragge pci_chipset_tag_t pc = pa->pa_pc;
490 1.1 ragge pci_intr_handle_t ih;
491 1.1 ragge const char *intrstr = NULL;
492 1.1 ragge bus_dma_segment_t seg;
493 1.1 ragge int i, rseg, error;
494 1.1 ragge uint8_t enaddr[ETHER_ADDR_LEN];
495 1.1 ragge pcireg_t preg, memtype;
496 1.1 ragge uint32_t reg;
497 1.1 ragge
498 1.1 ragge sc->sc_dmat = pa->pa_dmat;
499 1.1 ragge sc->sc_pc = pa->pa_pc;
500 1.1 ragge sc->sc_pt = pa->pa_tag;
501 1.1 ragge
502 1.1 ragge preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
503 1.1 ragge aprint_naive(": Ethernet controller\n");
504 1.1 ragge aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
505 1.1 ragge
506 1.1 ragge memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
507 1.1 ragge if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
508 1.1 ragge &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
509 1.1 ragge aprint_error("%s: unable to map device registers\n",
510 1.1 ragge sc->sc_dev.dv_xname);
511 1.1 ragge return;
512 1.1 ragge }
513 1.1 ragge
514 1.1 ragge /* Enable bus mastering */
515 1.1 ragge preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
516 1.1 ragge preg |= PCI_COMMAND_MASTER_ENABLE;
517 1.1 ragge pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
518 1.1 ragge
519 1.1 ragge /*
520 1.1 ragge * Map and establish our interrupt.
521 1.1 ragge */
522 1.1 ragge if (pci_intr_map(pa, &ih)) {
523 1.1 ragge aprint_error("%s: unable to map interrupt\n",
524 1.1 ragge sc->sc_dev.dv_xname);
525 1.1 ragge return;
526 1.1 ragge }
527 1.1 ragge intrstr = pci_intr_string(pc, ih);
528 1.1 ragge sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
529 1.1 ragge if (sc->sc_ih == NULL) {
530 1.1 ragge aprint_error("%s: unable to establish interrupt",
531 1.1 ragge sc->sc_dev.dv_xname);
532 1.1 ragge if (intrstr != NULL)
533 1.1 ragge aprint_normal(" at %s", intrstr);
534 1.1 ragge aprint_normal("\n");
535 1.1 ragge return;
536 1.1 ragge }
537 1.1 ragge aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
538 1.1 ragge
539 1.1 ragge /*
540 1.1 ragge * Determine a few things about the bus we're connected to.
541 1.1 ragge */
542 1.1 ragge reg = CSR_READ(sc, DGE_STATUS);
543 1.1 ragge if (reg & STATUS_BUS64)
544 1.1 ragge sc->sc_flags |= DGE_F_BUS64;
545 1.1 ragge
546 1.1 ragge sc->sc_flags |= DGE_F_PCIX;
547 1.1 ragge if (pci_get_capability(pa->pa_pc, pa->pa_tag,
548 1.1 ragge PCI_CAP_PCIX,
549 1.1 ragge &sc->sc_pcix_offset, NULL) == 0)
550 1.1 ragge aprint_error("%s: unable to find PCIX "
551 1.1 ragge "capability\n", sc->sc_dev.dv_xname);
552 1.1 ragge
553 1.1 ragge if (sc->sc_flags & DGE_F_PCIX) {
554 1.1 ragge switch (reg & STATUS_PCIX_MSK) {
555 1.1 ragge case STATUS_PCIX_66:
556 1.1 ragge sc->sc_bus_speed = 66;
557 1.1 ragge break;
558 1.1 ragge case STATUS_PCIX_100:
559 1.1 ragge sc->sc_bus_speed = 100;
560 1.1 ragge break;
561 1.1 ragge case STATUS_PCIX_133:
562 1.1 ragge sc->sc_bus_speed = 133;
563 1.1 ragge break;
564 1.1 ragge default:
565 1.1 ragge aprint_error(
566 1.1 ragge "%s: unknown PCIXSPD %d; assuming 66MHz\n",
567 1.1 ragge sc->sc_dev.dv_xname,
568 1.1 ragge reg & STATUS_PCIX_MSK);
569 1.1 ragge sc->sc_bus_speed = 66;
570 1.1 ragge }
571 1.1 ragge } else
572 1.1 ragge sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
573 1.1 ragge aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
574 1.1 ragge (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
575 1.1 ragge (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
576 1.1 ragge
577 1.1 ragge /*
578 1.1 ragge * Allocate the control data structures, and create and load the
579 1.1 ragge * DMA map for it.
580 1.1 ragge */
581 1.1 ragge if ((error = bus_dmamem_alloc(sc->sc_dmat,
582 1.1 ragge sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
583 1.1 ragge 0)) != 0) {
584 1.1 ragge aprint_error(
585 1.1 ragge "%s: unable to allocate control data, error = %d\n",
586 1.1 ragge sc->sc_dev.dv_xname, error);
587 1.1 ragge goto fail_0;
588 1.1 ragge }
589 1.1 ragge
590 1.1 ragge if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
591 1.1 ragge sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
592 1.1 ragge 0)) != 0) {
593 1.1 ragge aprint_error("%s: unable to map control data, error = %d\n",
594 1.1 ragge sc->sc_dev.dv_xname, error);
595 1.1 ragge goto fail_1;
596 1.1 ragge }
597 1.1 ragge
598 1.1 ragge if ((error = bus_dmamap_create(sc->sc_dmat,
599 1.1 ragge sizeof(struct dge_control_data), 1,
600 1.1 ragge sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
601 1.1 ragge aprint_error("%s: unable to create control data DMA map, "
602 1.1 ragge "error = %d\n", sc->sc_dev.dv_xname, error);
603 1.1 ragge goto fail_2;
604 1.1 ragge }
605 1.1 ragge
606 1.1 ragge if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
607 1.1 ragge sc->sc_control_data, sizeof(struct dge_control_data), NULL,
608 1.1 ragge 0)) != 0) {
609 1.1 ragge aprint_error(
610 1.1 ragge "%s: unable to load control data DMA map, error = %d\n",
611 1.1 ragge sc->sc_dev.dv_xname, error);
612 1.1 ragge goto fail_3;
613 1.1 ragge }
614 1.1 ragge
615 1.1 ragge /*
616 1.1 ragge * Create the transmit buffer DMA maps.
617 1.1 ragge */
618 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) {
619 1.1 ragge if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
620 1.1 ragge DGE_NTXSEGS, MCLBYTES, 0, 0,
621 1.1 ragge &sc->sc_txsoft[i].txs_dmamap)) != 0) {
622 1.1 ragge aprint_error("%s: unable to create Tx DMA map %d, "
623 1.1 ragge "error = %d\n", sc->sc_dev.dv_xname, i, error);
624 1.1 ragge goto fail_4;
625 1.1 ragge }
626 1.1 ragge }
627 1.1 ragge
628 1.1 ragge /*
629 1.1 ragge * Create the receive buffer DMA maps.
630 1.1 ragge */
631 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
632 1.1 ragge if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
633 1.1 ragge MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
634 1.1 ragge aprint_error("%s: unable to create Rx DMA map %d, "
635 1.1 ragge "error = %d\n", sc->sc_dev.dv_xname, i, error);
636 1.1 ragge goto fail_5;
637 1.1 ragge }
638 1.1 ragge sc->sc_rxsoft[i].rxs_mbuf = NULL;
639 1.1 ragge }
640 1.1 ragge
641 1.1 ragge /*
642 1.1 ragge * Set bits in ctrl0 register.
643 1.1 ragge * Should get the software defined pins out of EEPROM?
644 1.1 ragge */
645 1.1 ragge sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
646 1.1 ragge sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
647 1.1 ragge CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
648 1.1 ragge
649 1.1 ragge /*
650 1.1 ragge * Reset the chip to a known state.
651 1.1 ragge */
652 1.1 ragge dge_reset(sc);
653 1.1 ragge
654 1.1 ragge /*
655 1.1 ragge * Reset the PHY.
656 1.1 ragge */
657 1.1 ragge dge_xgmii_reset(sc);
658 1.1 ragge
659 1.1 ragge /*
660 1.1 ragge * Read in EEPROM data.
661 1.1 ragge */
662 1.1 ragge if (dge_read_eeprom(sc)) {
663 1.1 ragge aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
664 1.1 ragge return;
665 1.1 ragge }
666 1.1 ragge
667 1.1 ragge /*
668 1.1 ragge * Get the ethernet address.
669 1.1 ragge */
670 1.1 ragge enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
671 1.1 ragge enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
672 1.1 ragge enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
673 1.1 ragge enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
674 1.1 ragge enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
675 1.1 ragge enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
676 1.1 ragge
677 1.1 ragge aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
678 1.1 ragge ether_sprintf(enaddr));
679 1.1 ragge
680 1.1 ragge /*
681 1.1 ragge * Setup media stuff.
682 1.1 ragge */
683 1.1 ragge ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
684 1.1 ragge dge_xgmii_mediastatus);
685 1.1 ragge ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
686 1.1 ragge ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
687 1.1 ragge
688 1.1 ragge ifp = &sc->sc_ethercom.ec_if;
689 1.1 ragge strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
690 1.1 ragge ifp->if_softc = sc;
691 1.1 ragge ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
692 1.1 ragge ifp->if_ioctl = dge_ioctl;
693 1.1 ragge ifp->if_start = dge_start;
694 1.1 ragge ifp->if_watchdog = dge_watchdog;
695 1.1 ragge ifp->if_init = dge_init;
696 1.1 ragge ifp->if_stop = dge_stop;
697 1.1 ragge IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
698 1.1 ragge IFQ_SET_READY(&ifp->if_snd);
699 1.1 ragge
700 1.1 ragge sc->sc_ethercom.ec_capabilities |=
701 1.1 ragge ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
702 1.1 ragge
703 1.1 ragge /*
704 1.1 ragge * We can perform TCPv4 and UDPv4 checkums in-bound.
705 1.1 ragge */
706 1.1 ragge ifp->if_capabilities |=
707 1.1 ragge IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
708 1.1 ragge
709 1.1 ragge /*
710 1.1 ragge * Attach the interface.
711 1.1 ragge */
712 1.1 ragge if_attach(ifp);
713 1.1 ragge ether_ifattach(ifp, enaddr);
714 1.1 ragge #if NRND > 0
715 1.1 ragge rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
716 1.1 ragge RND_TYPE_NET, 0);
717 1.1 ragge #endif
718 1.1 ragge
719 1.1 ragge #ifdef DGE_EVENT_COUNTERS
720 1.1 ragge /* Fix segment event naming */
721 1.1 ragge if (dge_txseg_evcnt_names == NULL) {
722 1.1 ragge dge_txseg_evcnt_names =
723 1.1 ragge malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
724 1.1 ragge for (i = 0; i < DGE_NTXSEGS; i++)
725 1.1 ragge sprintf((*dge_txseg_evcnt_names)[i], "txseg%d", i);
726 1.1 ragge }
727 1.1 ragge
728 1.1 ragge /* Attach event counters. */
729 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
730 1.1 ragge NULL, sc->sc_dev.dv_xname, "txsstall");
731 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
732 1.1 ragge NULL, sc->sc_dev.dv_xname, "txdstall");
733 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
734 1.1 ragge NULL, sc->sc_dev.dv_xname, "txforceintr");
735 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
736 1.1 ragge NULL, sc->sc_dev.dv_xname, "txdw");
737 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
738 1.1 ragge NULL, sc->sc_dev.dv_xname, "txqe");
739 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
740 1.1 ragge NULL, sc->sc_dev.dv_xname, "rxintr");
741 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
742 1.1 ragge NULL, sc->sc_dev.dv_xname, "linkintr");
743 1.1 ragge
744 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
745 1.1 ragge NULL, sc->sc_dev.dv_xname, "rxipsum");
746 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
747 1.1 ragge NULL, sc->sc_dev.dv_xname, "rxtusum");
748 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
749 1.1 ragge NULL, sc->sc_dev.dv_xname, "txipsum");
750 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
751 1.1 ragge NULL, sc->sc_dev.dv_xname, "txtusum");
752 1.1 ragge
753 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
754 1.1 ragge NULL, sc->sc_dev.dv_xname, "txctx init");
755 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
756 1.1 ragge NULL, sc->sc_dev.dv_xname, "txctx hit");
757 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
758 1.1 ragge NULL, sc->sc_dev.dv_xname, "txctx miss");
759 1.1 ragge
760 1.1 ragge for (i = 0; i < DGE_NTXSEGS; i++)
761 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
762 1.1 ragge NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
763 1.1 ragge
764 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
765 1.1 ragge NULL, sc->sc_dev.dv_xname, "txdrop");
766 1.1 ragge
767 1.1 ragge #endif /* DGE_EVENT_COUNTERS */
768 1.1 ragge
769 1.1 ragge /*
770 1.1 ragge * Make sure the interface is shutdown during reboot.
771 1.1 ragge */
772 1.1 ragge sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
773 1.1 ragge if (sc->sc_sdhook == NULL)
774 1.1 ragge aprint_error("%s: WARNING: unable to establish shutdown hook\n",
775 1.1 ragge sc->sc_dev.dv_xname);
776 1.1 ragge return;
777 1.1 ragge
778 1.1 ragge /*
779 1.1 ragge * Free any resources we've allocated during the failed attach
780 1.1 ragge * attempt. Do this in reverse order and fall through.
781 1.1 ragge */
782 1.1 ragge fail_5:
783 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
784 1.1 ragge if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
785 1.1 ragge bus_dmamap_destroy(sc->sc_dmat,
786 1.1 ragge sc->sc_rxsoft[i].rxs_dmamap);
787 1.1 ragge }
788 1.1 ragge fail_4:
789 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) {
790 1.1 ragge if (sc->sc_txsoft[i].txs_dmamap != NULL)
791 1.1 ragge bus_dmamap_destroy(sc->sc_dmat,
792 1.1 ragge sc->sc_txsoft[i].txs_dmamap);
793 1.1 ragge }
794 1.1 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
795 1.1 ragge fail_3:
796 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
797 1.1 ragge fail_2:
798 1.1 ragge bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
799 1.1 ragge sizeof(struct dge_control_data));
800 1.1 ragge fail_1:
801 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
802 1.1 ragge fail_0:
803 1.1 ragge return;
804 1.1 ragge }
805 1.1 ragge
806 1.1 ragge /*
807 1.1 ragge * dge_shutdown:
808 1.1 ragge *
809 1.1 ragge * Make sure the interface is stopped at reboot time.
810 1.1 ragge */
811 1.1 ragge static void
812 1.1 ragge dge_shutdown(void *arg)
813 1.1 ragge {
814 1.1 ragge struct dge_softc *sc = arg;
815 1.1 ragge
816 1.1 ragge dge_stop(&sc->sc_ethercom.ec_if, 1);
817 1.1 ragge }
818 1.1 ragge
819 1.1 ragge /*
820 1.1 ragge * dge_tx_cksum:
821 1.1 ragge *
822 1.1 ragge * Set up TCP/IP checksumming parameters for the
823 1.1 ragge * specified packet.
824 1.1 ragge */
825 1.1 ragge static int
826 1.1 ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
827 1.1 ragge {
828 1.1 ragge struct mbuf *m0 = txs->txs_mbuf;
829 1.1 ragge struct dge_ctdes *t;
830 1.1 ragge uint32_t ipcs, tucs;
831 1.1 ragge struct ip *ip;
832 1.1 ragge struct ether_header *eh;
833 1.1 ragge int offset, iphl;
834 1.1 ragge uint8_t fields = 0;
835 1.1 ragge
836 1.1 ragge /*
837 1.1 ragge * XXX It would be nice if the mbuf pkthdr had offset
838 1.1 ragge * fields for the protocol headers.
839 1.1 ragge */
840 1.1 ragge
841 1.1 ragge eh = mtod(m0, struct ether_header *);
842 1.1 ragge switch (htons(eh->ether_type)) {
843 1.1 ragge case ETHERTYPE_IP:
844 1.1 ragge iphl = sizeof(struct ip);
845 1.1 ragge offset = ETHER_HDR_LEN;
846 1.1 ragge break;
847 1.1 ragge
848 1.1 ragge case ETHERTYPE_VLAN:
849 1.1 ragge iphl = sizeof(struct ip);
850 1.1 ragge offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
851 1.1 ragge break;
852 1.1 ragge
853 1.1 ragge default:
854 1.1 ragge /*
855 1.1 ragge * Don't support this protocol or encapsulation.
856 1.1 ragge */
857 1.1 ragge *fieldsp = 0;
858 1.1 ragge return (0);
859 1.1 ragge }
860 1.1 ragge
861 1.1 ragge if (m0->m_len < (offset + iphl)) {
862 1.1 ragge if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
863 1.1 ragge printf("%s: dge_tx_cksum: mbuf allocation failed, "
864 1.1 ragge "packet dropped\n", sc->sc_dev.dv_xname);
865 1.1 ragge return (ENOMEM);
866 1.1 ragge }
867 1.1 ragge m0 = txs->txs_mbuf;
868 1.1 ragge }
869 1.1 ragge
870 1.1 ragge ip = (struct ip *) (mtod(m0, caddr_t) + offset);
871 1.1 ragge iphl = ip->ip_hl << 2;
872 1.1 ragge
873 1.1 ragge /*
874 1.1 ragge * NOTE: Even if we're not using the IP or TCP/UDP checksum
875 1.1 ragge * offload feature, if we load the context descriptor, we
876 1.1 ragge * MUST provide valid values for IPCSS and TUCSS fields.
877 1.1 ragge */
878 1.1 ragge
879 1.1 ragge if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
880 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
881 1.1 ragge fields |= TDESC_POPTS_IXSM;
882 1.1 ragge ipcs = DGE_TCPIP_IPCSS(offset) |
883 1.1 ragge DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
884 1.1 ragge DGE_TCPIP_IPCSE(offset + iphl - 1);
885 1.1 ragge } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
886 1.1 ragge /* Use the cached value. */
887 1.1 ragge ipcs = sc->sc_txctx_ipcs;
888 1.1 ragge } else {
889 1.1 ragge /* Just initialize it to the likely value anyway. */
890 1.1 ragge ipcs = DGE_TCPIP_IPCSS(offset) |
891 1.1 ragge DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
892 1.1 ragge DGE_TCPIP_IPCSE(offset + iphl - 1);
893 1.1 ragge }
894 1.1 ragge DPRINTF(DGE_DEBUG_CKSUM,
895 1.1 ragge ("%s: CKSUM: offset %d ipcs 0x%x\n",
896 1.1 ragge sc->sc_dev.dv_xname, offset, ipcs));
897 1.1 ragge
898 1.1 ragge offset += iphl;
899 1.1 ragge
900 1.1 ragge if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
901 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
902 1.1 ragge fields |= TDESC_POPTS_TXSM;
903 1.1 ragge tucs = DGE_TCPIP_TUCSS(offset) |
904 1.1 ragge DGE_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
905 1.1 ragge DGE_TCPIP_TUCSE(0) /* rest of packet */;
906 1.1 ragge } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
907 1.1 ragge /* Use the cached value. */
908 1.1 ragge tucs = sc->sc_txctx_tucs;
909 1.1 ragge } else {
910 1.1 ragge /* Just initialize it to a valid TCP context. */
911 1.1 ragge tucs = DGE_TCPIP_TUCSS(offset) |
912 1.1 ragge DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
913 1.1 ragge DGE_TCPIP_TUCSE(0) /* rest of packet */;
914 1.1 ragge }
915 1.1 ragge
916 1.1 ragge DPRINTF(DGE_DEBUG_CKSUM,
917 1.1 ragge ("%s: CKSUM: offset %d tucs 0x%x\n",
918 1.1 ragge sc->sc_dev.dv_xname, offset, tucs));
919 1.1 ragge
920 1.1 ragge if (sc->sc_txctx_ipcs == ipcs &&
921 1.1 ragge sc->sc_txctx_tucs == tucs) {
922 1.1 ragge /* Cached context is fine. */
923 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
924 1.1 ragge } else {
925 1.1 ragge /* Fill in the context descriptor. */
926 1.1 ragge #ifdef DGE_EVENT_COUNTERS
927 1.1 ragge if (sc->sc_txctx_ipcs == 0xffffffff &&
928 1.1 ragge sc->sc_txctx_tucs == 0xffffffff)
929 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
930 1.1 ragge else
931 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
932 1.1 ragge #endif
933 1.1 ragge t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
934 1.1 ragge t->dc_tcpip_ipcs = htole32(ipcs);
935 1.1 ragge t->dc_tcpip_tucs = htole32(tucs);
936 1.1 ragge t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
937 1.1 ragge t->dc_tcpip_seg = 0;
938 1.1 ragge DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
939 1.1 ragge
940 1.1 ragge sc->sc_txctx_ipcs = ipcs;
941 1.1 ragge sc->sc_txctx_tucs = tucs;
942 1.1 ragge
943 1.1 ragge sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
944 1.1 ragge txs->txs_ndesc++;
945 1.1 ragge }
946 1.1 ragge
947 1.1 ragge *fieldsp = fields;
948 1.1 ragge
949 1.1 ragge return (0);
950 1.1 ragge }
951 1.1 ragge
952 1.1 ragge /*
953 1.1 ragge * dge_start: [ifnet interface function]
954 1.1 ragge *
955 1.1 ragge * Start packet transmission on the interface.
956 1.1 ragge */
957 1.1 ragge static void
958 1.1 ragge dge_start(struct ifnet *ifp)
959 1.1 ragge {
960 1.1 ragge struct dge_softc *sc = ifp->if_softc;
961 1.1 ragge struct mbuf *m0;
962 1.1 ragge struct dge_txsoft *txs;
963 1.1 ragge bus_dmamap_t dmamap;
964 1.1 ragge int error, nexttx, lasttx = -1, ofree, seg;
965 1.1 ragge uint32_t cksumcmd;
966 1.1 ragge uint8_t cksumfields;
967 1.1 ragge
968 1.1 ragge if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
969 1.1 ragge return;
970 1.1 ragge
971 1.1 ragge /*
972 1.1 ragge * Remember the previous number of free descriptors.
973 1.1 ragge */
974 1.1 ragge ofree = sc->sc_txfree;
975 1.1 ragge
976 1.1 ragge /*
977 1.1 ragge * Loop through the send queue, setting up transmit descriptors
978 1.1 ragge * until we drain the queue, or use up all available transmit
979 1.1 ragge * descriptors.
980 1.1 ragge */
981 1.1 ragge for (;;) {
982 1.1 ragge /* Grab a packet off the queue. */
983 1.1 ragge IFQ_POLL(&ifp->if_snd, m0);
984 1.1 ragge if (m0 == NULL)
985 1.1 ragge break;
986 1.1 ragge
987 1.1 ragge DPRINTF(DGE_DEBUG_TX,
988 1.1 ragge ("%s: TX: have packet to transmit: %p\n",
989 1.1 ragge sc->sc_dev.dv_xname, m0));
990 1.1 ragge
991 1.1 ragge /* Get a work queue entry. */
992 1.1 ragge if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
993 1.1 ragge dge_txintr(sc);
994 1.1 ragge if (sc->sc_txsfree == 0) {
995 1.1 ragge DPRINTF(DGE_DEBUG_TX,
996 1.1 ragge ("%s: TX: no free job descriptors\n",
997 1.1 ragge sc->sc_dev.dv_xname));
998 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
999 1.1 ragge break;
1000 1.1 ragge }
1001 1.1 ragge }
1002 1.1 ragge
1003 1.1 ragge txs = &sc->sc_txsoft[sc->sc_txsnext];
1004 1.1 ragge dmamap = txs->txs_dmamap;
1005 1.1 ragge
1006 1.1 ragge /*
1007 1.1 ragge * Load the DMA map. If this fails, the packet either
1008 1.1 ragge * didn't fit in the allotted number of segments, or we
1009 1.1 ragge * were short on resources. For the too-many-segments
1010 1.1 ragge * case, we simply report an error and drop the packet,
1011 1.1 ragge * since we can't sanely copy a jumbo packet to a single
1012 1.1 ragge * buffer.
1013 1.1 ragge */
1014 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1015 1.1 ragge BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1016 1.1 ragge if (error) {
1017 1.1 ragge if (error == EFBIG) {
1018 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1019 1.1 ragge printf("%s: Tx packet consumes too many "
1020 1.1 ragge "DMA segments, dropping...\n",
1021 1.1 ragge sc->sc_dev.dv_xname);
1022 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m0);
1023 1.1 ragge m_freem(m0);
1024 1.1 ragge continue;
1025 1.1 ragge }
1026 1.1 ragge /*
1027 1.1 ragge * Short on resources, just stop for now.
1028 1.1 ragge */
1029 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1030 1.1 ragge ("%s: TX: dmamap load failed: %d\n",
1031 1.1 ragge sc->sc_dev.dv_xname, error));
1032 1.1 ragge break;
1033 1.1 ragge }
1034 1.1 ragge
1035 1.1 ragge /*
1036 1.1 ragge * Ensure we have enough descriptors free to describe
1037 1.1 ragge * the packet. Note, we always reserve one descriptor
1038 1.1 ragge * at the end of the ring due to the semantics of the
1039 1.1 ragge * TDT register, plus one more in the event we need
1040 1.1 ragge * to re-load checksum offload context.
1041 1.1 ragge */
1042 1.1 ragge if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1043 1.1 ragge /*
1044 1.1 ragge * Not enough free descriptors to transmit this
1045 1.1 ragge * packet. We haven't committed anything yet,
1046 1.1 ragge * so just unload the DMA map, put the packet
1047 1.1 ragge * pack on the queue, and punt. Notify the upper
1048 1.1 ragge * layer that there are no more slots left.
1049 1.1 ragge */
1050 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1051 1.1 ragge ("%s: TX: need %d descriptors, have %d\n",
1052 1.1 ragge sc->sc_dev.dv_xname, dmamap->dm_nsegs,
1053 1.1 ragge sc->sc_txfree - 1));
1054 1.1 ragge ifp->if_flags |= IFF_OACTIVE;
1055 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmamap);
1056 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1057 1.1 ragge break;
1058 1.1 ragge }
1059 1.1 ragge
1060 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m0);
1061 1.1 ragge
1062 1.1 ragge /*
1063 1.1 ragge * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1064 1.1 ragge */
1065 1.1 ragge
1066 1.1 ragge /* Sync the DMA map. */
1067 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1068 1.1 ragge BUS_DMASYNC_PREWRITE);
1069 1.1 ragge
1070 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1071 1.1 ragge ("%s: TX: packet has %d DMA segments\n",
1072 1.1 ragge sc->sc_dev.dv_xname, dmamap->dm_nsegs));
1073 1.1 ragge
1074 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1075 1.1 ragge
1076 1.1 ragge /*
1077 1.1 ragge * Store a pointer to the packet so that we can free it
1078 1.1 ragge * later.
1079 1.1 ragge *
1080 1.1 ragge * Initially, we consider the number of descriptors the
1081 1.1 ragge * packet uses the number of DMA segments. This may be
1082 1.1 ragge * incremented by 1 if we do checksum offload (a descriptor
1083 1.1 ragge * is used to set the checksum context).
1084 1.1 ragge */
1085 1.1 ragge txs->txs_mbuf = m0;
1086 1.1 ragge txs->txs_firstdesc = sc->sc_txnext;
1087 1.1 ragge txs->txs_ndesc = dmamap->dm_nsegs;
1088 1.1 ragge
1089 1.1 ragge /*
1090 1.1 ragge * Set up checksum offload parameters for
1091 1.1 ragge * this packet.
1092 1.1 ragge */
1093 1.1 ragge if (m0->m_pkthdr.csum_flags &
1094 1.1 ragge (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1095 1.1 ragge if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1096 1.1 ragge /* Error message already displayed. */
1097 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmamap);
1098 1.1 ragge continue;
1099 1.1 ragge }
1100 1.1 ragge } else {
1101 1.1 ragge cksumfields = 0;
1102 1.1 ragge }
1103 1.1 ragge
1104 1.1 ragge cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1105 1.1 ragge
1106 1.1 ragge /*
1107 1.1 ragge * Initialize the transmit descriptor.
1108 1.1 ragge */
1109 1.1 ragge for (nexttx = sc->sc_txnext, seg = 0;
1110 1.1 ragge seg < dmamap->dm_nsegs;
1111 1.1 ragge seg++, nexttx = DGE_NEXTTX(nexttx)) {
1112 1.1 ragge /*
1113 1.1 ragge * Note: we currently only use 32-bit DMA
1114 1.1 ragge * addresses.
1115 1.1 ragge */
1116 1.1 ragge sc->sc_txdescs[nexttx].dt_baddrh = 0;
1117 1.1 ragge sc->sc_txdescs[nexttx].dt_baddrl =
1118 1.1 ragge htole32(dmamap->dm_segs[seg].ds_addr);
1119 1.1 ragge sc->sc_txdescs[nexttx].dt_ctl =
1120 1.1 ragge htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1121 1.1 ragge sc->sc_txdescs[nexttx].dt_status = 0;
1122 1.1 ragge sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1123 1.1 ragge sc->sc_txdescs[nexttx].dt_vlan = 0;
1124 1.1 ragge lasttx = nexttx;
1125 1.1 ragge
1126 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1127 1.1 ragge ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1128 1.1 ragge sc->sc_dev.dv_xname, nexttx,
1129 1.1 ragge le32toh(dmamap->dm_segs[seg].ds_addr),
1130 1.1 ragge le32toh(dmamap->dm_segs[seg].ds_len)));
1131 1.1 ragge }
1132 1.1 ragge
1133 1.1 ragge KASSERT(lasttx != -1);
1134 1.1 ragge
1135 1.1 ragge /*
1136 1.1 ragge * Set up the command byte on the last descriptor of
1137 1.1 ragge * the packet. If we're in the interrupt delay window,
1138 1.1 ragge * delay the interrupt.
1139 1.1 ragge */
1140 1.1 ragge sc->sc_txdescs[lasttx].dt_ctl |=
1141 1.1 ragge htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1142 1.1 ragge
1143 1.1 ragge txs->txs_lastdesc = lasttx;
1144 1.1 ragge
1145 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1146 1.1 ragge ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1147 1.1 ragge lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1148 1.1 ragge
1149 1.1 ragge /* Sync the descriptors we're using. */
1150 1.1 ragge DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1151 1.1 ragge BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1152 1.1 ragge
1153 1.1 ragge /* Give the packet to the chip. */
1154 1.1 ragge CSR_WRITE(sc, DGE_TDT, nexttx);
1155 1.1 ragge
1156 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1157 1.1 ragge ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1158 1.1 ragge
1159 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1160 1.1 ragge ("%s: TX: finished transmitting packet, job %d\n",
1161 1.1 ragge sc->sc_dev.dv_xname, sc->sc_txsnext));
1162 1.1 ragge
1163 1.1 ragge /* Advance the tx pointer. */
1164 1.1 ragge sc->sc_txfree -= txs->txs_ndesc;
1165 1.1 ragge sc->sc_txnext = nexttx;
1166 1.1 ragge
1167 1.1 ragge sc->sc_txsfree--;
1168 1.1 ragge sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1169 1.1 ragge
1170 1.1 ragge #if NBPFILTER > 0
1171 1.1 ragge /* Pass the packet to any BPF listeners. */
1172 1.1 ragge if (ifp->if_bpf)
1173 1.1 ragge bpf_mtap(ifp->if_bpf, m0);
1174 1.1 ragge #endif /* NBPFILTER > 0 */
1175 1.1 ragge }
1176 1.1 ragge
1177 1.1 ragge if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1178 1.1 ragge /* No more slots; notify upper layer. */
1179 1.1 ragge ifp->if_flags |= IFF_OACTIVE;
1180 1.1 ragge }
1181 1.1 ragge
1182 1.1 ragge if (sc->sc_txfree != ofree) {
1183 1.1 ragge /* Set a watchdog timer in case the chip flakes out. */
1184 1.1 ragge ifp->if_timer = 5;
1185 1.1 ragge }
1186 1.1 ragge }
1187 1.1 ragge
1188 1.1 ragge /*
1189 1.1 ragge * dge_watchdog: [ifnet interface function]
1190 1.1 ragge *
1191 1.1 ragge * Watchdog timer handler.
1192 1.1 ragge */
1193 1.1 ragge static void
1194 1.1 ragge dge_watchdog(struct ifnet *ifp)
1195 1.1 ragge {
1196 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1197 1.1 ragge
1198 1.1 ragge /*
1199 1.1 ragge * Since we're using delayed interrupts, sweep up
1200 1.1 ragge * before we report an error.
1201 1.1 ragge */
1202 1.1 ragge dge_txintr(sc);
1203 1.1 ragge
1204 1.1 ragge if (sc->sc_txfree != DGE_NTXDESC) {
1205 1.1 ragge printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1206 1.1 ragge sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1207 1.1 ragge sc->sc_txnext);
1208 1.1 ragge ifp->if_oerrors++;
1209 1.1 ragge
1210 1.1 ragge /* Reset the interface. */
1211 1.1 ragge (void) dge_init(ifp);
1212 1.1 ragge }
1213 1.1 ragge
1214 1.1 ragge /* Try to get more packets going. */
1215 1.1 ragge dge_start(ifp);
1216 1.1 ragge }
1217 1.1 ragge
1218 1.1 ragge /*
1219 1.1 ragge * dge_ioctl: [ifnet interface function]
1220 1.1 ragge *
1221 1.1 ragge * Handle control requests from the operator.
1222 1.1 ragge */
1223 1.1 ragge static int
1224 1.1 ragge dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1225 1.1 ragge {
1226 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1227 1.1 ragge struct ifreq *ifr = (struct ifreq *) data;
1228 1.1 ragge pcireg_t preg;
1229 1.1 ragge int s, error, mmrbc;
1230 1.1 ragge
1231 1.1 ragge s = splnet();
1232 1.1 ragge
1233 1.1 ragge switch (cmd) {
1234 1.1 ragge case SIOCSIFMEDIA:
1235 1.1 ragge case SIOCGIFMEDIA:
1236 1.1 ragge error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1237 1.1 ragge break;
1238 1.1 ragge
1239 1.1 ragge case SIOCSIFFLAGS:
1240 1.1 ragge /* extract link flags */
1241 1.1 ragge if ((ifp->if_flags & IFF_LINK0) == 0 &&
1242 1.1 ragge (ifp->if_flags & IFF_LINK1) == 0)
1243 1.1 ragge mmrbc = PCIX_MMRBC_512;
1244 1.1 ragge else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1245 1.1 ragge (ifp->if_flags & IFF_LINK1) != 0)
1246 1.1 ragge mmrbc = PCIX_MMRBC_1024;
1247 1.1 ragge else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1248 1.1 ragge (ifp->if_flags & IFF_LINK1) == 0)
1249 1.1 ragge mmrbc = PCIX_MMRBC_2048;
1250 1.1 ragge else
1251 1.1 ragge mmrbc = PCIX_MMRBC_4096;
1252 1.1 ragge if (mmrbc != sc->sc_mmrbc) {
1253 1.1 ragge preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1254 1.1 ragge preg &= ~PCIX_MMRBC_MSK;
1255 1.1 ragge preg |= mmrbc;
1256 1.1 ragge pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1257 1.1 ragge sc->sc_mmrbc = mmrbc;
1258 1.1 ragge }
1259 1.1 ragge /* FALLTHROUGH */
1260 1.1 ragge default:
1261 1.1 ragge error = ether_ioctl(ifp, cmd, data);
1262 1.1 ragge if (error == ENETRESET) {
1263 1.1 ragge /*
1264 1.1 ragge * Multicast list has changed; set the hardware filter
1265 1.1 ragge * accordingly.
1266 1.1 ragge */
1267 1.1 ragge dge_set_filter(sc);
1268 1.1 ragge error = 0;
1269 1.1 ragge }
1270 1.1 ragge break;
1271 1.1 ragge }
1272 1.1 ragge
1273 1.1 ragge /* Try to get more packets going. */
1274 1.1 ragge dge_start(ifp);
1275 1.1 ragge
1276 1.1 ragge splx(s);
1277 1.1 ragge return (error);
1278 1.1 ragge }
1279 1.1 ragge
1280 1.1 ragge /*
1281 1.1 ragge * dge_intr:
1282 1.1 ragge *
1283 1.1 ragge * Interrupt service routine.
1284 1.1 ragge */
1285 1.1 ragge static int
1286 1.1 ragge dge_intr(void *arg)
1287 1.1 ragge {
1288 1.1 ragge struct dge_softc *sc = arg;
1289 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1290 1.1 ragge uint32_t icr;
1291 1.1 ragge int wantinit, handled = 0;
1292 1.1 ragge
1293 1.1 ragge for (wantinit = 0; wantinit == 0;) {
1294 1.1 ragge icr = CSR_READ(sc, DGE_ICR);
1295 1.1 ragge if ((icr & sc->sc_icr) == 0)
1296 1.1 ragge break;
1297 1.1 ragge
1298 1.1 ragge #if 0 /*NRND > 0*/
1299 1.1 ragge if (RND_ENABLED(&sc->rnd_source))
1300 1.1 ragge rnd_add_uint32(&sc->rnd_source, icr);
1301 1.1 ragge #endif
1302 1.1 ragge
1303 1.1 ragge handled = 1;
1304 1.1 ragge
1305 1.1 ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1306 1.1 ragge if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1307 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1308 1.1 ragge ("%s: RX: got Rx intr 0x%08x\n",
1309 1.1 ragge sc->sc_dev.dv_xname,
1310 1.1 ragge icr & (ICR_RXDMT0|ICR_RXT0)));
1311 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1312 1.1 ragge }
1313 1.1 ragge #endif
1314 1.1 ragge dge_rxintr(sc);
1315 1.1 ragge
1316 1.1 ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1317 1.1 ragge if (icr & ICR_TXDW) {
1318 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1319 1.1 ragge ("%s: TX: got TXDW interrupt\n",
1320 1.1 ragge sc->sc_dev.dv_xname));
1321 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1322 1.1 ragge }
1323 1.1 ragge if (icr & ICR_TXQE)
1324 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1325 1.1 ragge #endif
1326 1.1 ragge dge_txintr(sc);
1327 1.1 ragge
1328 1.1 ragge if (icr & (ICR_LSC|ICR_RXSEQ)) {
1329 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1330 1.1 ragge dge_linkintr(sc, icr);
1331 1.1 ragge }
1332 1.1 ragge
1333 1.1 ragge if (icr & ICR_RXO) {
1334 1.1 ragge printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1335 1.1 ragge wantinit = 1;
1336 1.1 ragge }
1337 1.1 ragge }
1338 1.1 ragge
1339 1.1 ragge if (handled) {
1340 1.1 ragge if (wantinit)
1341 1.1 ragge dge_init(ifp);
1342 1.1 ragge
1343 1.1 ragge /* Try to get more packets going. */
1344 1.1 ragge dge_start(ifp);
1345 1.1 ragge }
1346 1.1 ragge
1347 1.1 ragge return (handled);
1348 1.1 ragge }
1349 1.1 ragge
1350 1.1 ragge /*
1351 1.1 ragge * dge_txintr:
1352 1.1 ragge *
1353 1.1 ragge * Helper; handle transmit interrupts.
1354 1.1 ragge */
1355 1.1 ragge static void
1356 1.1 ragge dge_txintr(struct dge_softc *sc)
1357 1.1 ragge {
1358 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1359 1.1 ragge struct dge_txsoft *txs;
1360 1.1 ragge uint8_t status;
1361 1.1 ragge int i;
1362 1.1 ragge
1363 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
1364 1.1 ragge
1365 1.1 ragge /*
1366 1.1 ragge * Go through the Tx list and free mbufs for those
1367 1.1 ragge * frames which have been transmitted.
1368 1.1 ragge */
1369 1.1 ragge for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1370 1.1 ragge i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1371 1.1 ragge txs = &sc->sc_txsoft[i];
1372 1.1 ragge
1373 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1374 1.1 ragge ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1375 1.1 ragge
1376 1.1 ragge DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1377 1.1 ragge BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1378 1.1 ragge
1379 1.1 ragge status =
1380 1.1 ragge sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1381 1.1 ragge if ((status & TDESC_STA_DD) == 0) {
1382 1.1 ragge DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1383 1.1 ragge BUS_DMASYNC_PREREAD);
1384 1.1 ragge break;
1385 1.1 ragge }
1386 1.1 ragge
1387 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1388 1.1 ragge ("%s: TX: job %d done: descs %d..%d\n",
1389 1.1 ragge sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
1390 1.1 ragge txs->txs_lastdesc));
1391 1.1 ragge
1392 1.1 ragge ifp->if_opackets++;
1393 1.1 ragge sc->sc_txfree += txs->txs_ndesc;
1394 1.1 ragge bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1395 1.1 ragge 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1396 1.1 ragge bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1397 1.1 ragge m_freem(txs->txs_mbuf);
1398 1.1 ragge txs->txs_mbuf = NULL;
1399 1.1 ragge }
1400 1.1 ragge
1401 1.1 ragge /* Update the dirty transmit buffer pointer. */
1402 1.1 ragge sc->sc_txsdirty = i;
1403 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1404 1.1 ragge ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
1405 1.1 ragge
1406 1.1 ragge /*
1407 1.1 ragge * If there are no more pending transmissions, cancel the watchdog
1408 1.1 ragge * timer.
1409 1.1 ragge */
1410 1.1 ragge if (sc->sc_txsfree == DGE_TXQUEUELEN)
1411 1.1 ragge ifp->if_timer = 0;
1412 1.1 ragge }
1413 1.1 ragge
1414 1.1 ragge /*
1415 1.1 ragge * dge_rxintr:
1416 1.1 ragge *
1417 1.1 ragge * Helper; handle receive interrupts.
1418 1.1 ragge */
1419 1.1 ragge static void
1420 1.1 ragge dge_rxintr(struct dge_softc *sc)
1421 1.1 ragge {
1422 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1423 1.1 ragge struct dge_rxsoft *rxs;
1424 1.1 ragge struct mbuf *m;
1425 1.1 ragge int i, len;
1426 1.1 ragge uint8_t status, errors;
1427 1.1 ragge
1428 1.1 ragge for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1429 1.1 ragge rxs = &sc->sc_rxsoft[i];
1430 1.1 ragge
1431 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1432 1.1 ragge ("%s: RX: checking descriptor %d\n",
1433 1.1 ragge sc->sc_dev.dv_xname, i));
1434 1.1 ragge
1435 1.1 ragge DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1436 1.1 ragge
1437 1.1 ragge status = sc->sc_rxdescs[i].dr_status;
1438 1.1 ragge errors = sc->sc_rxdescs[i].dr_errors;
1439 1.1 ragge len = le16toh(sc->sc_rxdescs[i].dr_len);
1440 1.1 ragge
1441 1.1 ragge if ((status & RDESC_STS_DD) == 0) {
1442 1.1 ragge /*
1443 1.1 ragge * We have processed all of the receive descriptors.
1444 1.1 ragge */
1445 1.1 ragge DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1446 1.1 ragge break;
1447 1.1 ragge }
1448 1.1 ragge
1449 1.1 ragge if (__predict_false(sc->sc_rxdiscard)) {
1450 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1451 1.1 ragge ("%s: RX: discarding contents of descriptor %d\n",
1452 1.1 ragge sc->sc_dev.dv_xname, i));
1453 1.1 ragge DGE_INIT_RXDESC(sc, i);
1454 1.1 ragge if (status & RDESC_STS_EOP) {
1455 1.1 ragge /* Reset our state. */
1456 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1457 1.1 ragge ("%s: RX: resetting rxdiscard -> 0\n",
1458 1.1 ragge sc->sc_dev.dv_xname));
1459 1.1 ragge sc->sc_rxdiscard = 0;
1460 1.1 ragge }
1461 1.1 ragge continue;
1462 1.1 ragge }
1463 1.1 ragge
1464 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1465 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1466 1.1 ragge
1467 1.1 ragge m = rxs->rxs_mbuf;
1468 1.1 ragge
1469 1.1 ragge /*
1470 1.1 ragge * Add a new receive buffer to the ring.
1471 1.1 ragge */
1472 1.1 ragge if (dge_add_rxbuf(sc, i) != 0) {
1473 1.1 ragge /*
1474 1.1 ragge * Failed, throw away what we've done so
1475 1.1 ragge * far, and discard the rest of the packet.
1476 1.1 ragge */
1477 1.1 ragge ifp->if_ierrors++;
1478 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1479 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1480 1.1 ragge DGE_INIT_RXDESC(sc, i);
1481 1.1 ragge if ((status & RDESC_STS_EOP) == 0)
1482 1.1 ragge sc->sc_rxdiscard = 1;
1483 1.1 ragge if (sc->sc_rxhead != NULL)
1484 1.1 ragge m_freem(sc->sc_rxhead);
1485 1.1 ragge DGE_RXCHAIN_RESET(sc);
1486 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1487 1.1 ragge ("%s: RX: Rx buffer allocation failed, "
1488 1.1 ragge "dropping packet%s\n", sc->sc_dev.dv_xname,
1489 1.1 ragge sc->sc_rxdiscard ? " (discard)" : ""));
1490 1.1 ragge continue;
1491 1.1 ragge }
1492 1.1 ragge DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1493 1.1 ragge
1494 1.1 ragge DGE_RXCHAIN_LINK(sc, m);
1495 1.1 ragge
1496 1.1 ragge m->m_len = len;
1497 1.1 ragge
1498 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1499 1.1 ragge ("%s: RX: buffer at %p len %d\n",
1500 1.1 ragge sc->sc_dev.dv_xname, m->m_data, len));
1501 1.1 ragge
1502 1.1 ragge /*
1503 1.1 ragge * If this is not the end of the packet, keep
1504 1.1 ragge * looking.
1505 1.1 ragge */
1506 1.1 ragge if ((status & RDESC_STS_EOP) == 0) {
1507 1.1 ragge sc->sc_rxlen += len;
1508 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1509 1.1 ragge ("%s: RX: not yet EOP, rxlen -> %d\n",
1510 1.1 ragge sc->sc_dev.dv_xname, sc->sc_rxlen));
1511 1.1 ragge continue;
1512 1.1 ragge }
1513 1.1 ragge
1514 1.1 ragge /*
1515 1.1 ragge * Okay, we have the entire packet now...
1516 1.1 ragge */
1517 1.1 ragge *sc->sc_rxtailp = NULL;
1518 1.1 ragge m = sc->sc_rxhead;
1519 1.1 ragge len += sc->sc_rxlen;
1520 1.1 ragge
1521 1.1 ragge DGE_RXCHAIN_RESET(sc);
1522 1.1 ragge
1523 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1524 1.1 ragge ("%s: RX: have entire packet, len -> %d\n",
1525 1.1 ragge sc->sc_dev.dv_xname, len));
1526 1.1 ragge
1527 1.1 ragge /*
1528 1.1 ragge * If an error occurred, update stats and drop the packet.
1529 1.1 ragge */
1530 1.1 ragge if (errors &
1531 1.1 ragge (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1532 1.1 ragge ifp->if_ierrors++;
1533 1.1 ragge if (errors & RDESC_ERR_SE)
1534 1.1 ragge printf("%s: symbol error\n",
1535 1.1 ragge sc->sc_dev.dv_xname);
1536 1.1 ragge else if (errors & RDESC_ERR_P)
1537 1.1 ragge printf("%s: parity error\n",
1538 1.1 ragge sc->sc_dev.dv_xname);
1539 1.1 ragge else if (errors & RDESC_ERR_CE)
1540 1.1 ragge printf("%s: CRC error\n",
1541 1.1 ragge sc->sc_dev.dv_xname);
1542 1.1 ragge m_freem(m);
1543 1.1 ragge continue;
1544 1.1 ragge }
1545 1.1 ragge
1546 1.1 ragge /*
1547 1.1 ragge * No errors. Receive the packet.
1548 1.1 ragge */
1549 1.1 ragge m->m_pkthdr.rcvif = ifp;
1550 1.1 ragge m->m_pkthdr.len = len;
1551 1.1 ragge
1552 1.1 ragge /*
1553 1.1 ragge * Set up checksum info for this packet.
1554 1.1 ragge */
1555 1.1 ragge if (status & RDESC_STS_IPCS) {
1556 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1557 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1558 1.1 ragge if (errors & RDESC_ERR_IPE)
1559 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1560 1.1 ragge }
1561 1.1 ragge if (status & RDESC_STS_TCPCS) {
1562 1.1 ragge /*
1563 1.1 ragge * Note: we don't know if this was TCP or UDP,
1564 1.1 ragge * so we just set both bits, and expect the
1565 1.1 ragge * upper layers to deal.
1566 1.1 ragge */
1567 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1568 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1569 1.1 ragge if (errors & RDESC_ERR_TCPE)
1570 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1571 1.1 ragge }
1572 1.1 ragge
1573 1.1 ragge ifp->if_ipackets++;
1574 1.1 ragge
1575 1.1 ragge #if NBPFILTER > 0
1576 1.1 ragge /* Pass this up to any BPF listeners. */
1577 1.1 ragge if (ifp->if_bpf)
1578 1.1 ragge bpf_mtap(ifp->if_bpf, m);
1579 1.1 ragge #endif /* NBPFILTER > 0 */
1580 1.1 ragge
1581 1.1 ragge /* Pass it on. */
1582 1.1 ragge (*ifp->if_input)(ifp, m);
1583 1.1 ragge }
1584 1.1 ragge
1585 1.1 ragge /* Update the receive pointer. */
1586 1.1 ragge sc->sc_rxptr = i;
1587 1.1 ragge
1588 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1589 1.1 ragge ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
1590 1.1 ragge }
1591 1.1 ragge
1592 1.1 ragge /*
1593 1.1 ragge * dge_linkintr:
1594 1.1 ragge *
1595 1.1 ragge * Helper; handle link interrupts.
1596 1.1 ragge */
1597 1.1 ragge static void
1598 1.1 ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
1599 1.1 ragge {
1600 1.1 ragge uint32_t status;
1601 1.1 ragge
1602 1.1 ragge if (icr & ICR_LSC) {
1603 1.1 ragge status = CSR_READ(sc, DGE_STATUS);
1604 1.1 ragge if (status & STATUS_LINKUP) {
1605 1.1 ragge DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1606 1.1 ragge sc->sc_dev.dv_xname));
1607 1.1 ragge } else {
1608 1.1 ragge DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1609 1.1 ragge sc->sc_dev.dv_xname));
1610 1.1 ragge }
1611 1.1 ragge } else if (icr & ICR_RXSEQ) {
1612 1.1 ragge DPRINTF(DGE_DEBUG_LINK,
1613 1.1 ragge ("%s: LINK: Receive sequence error\n",
1614 1.1 ragge sc->sc_dev.dv_xname));
1615 1.1 ragge }
1616 1.1 ragge /* XXX - fix errata */
1617 1.1 ragge }
1618 1.1 ragge
1619 1.1 ragge /*
1620 1.1 ragge * dge_reset:
1621 1.1 ragge *
1622 1.1 ragge * Reset the i82597 chip.
1623 1.1 ragge */
1624 1.1 ragge static void
1625 1.1 ragge dge_reset(struct dge_softc *sc)
1626 1.1 ragge {
1627 1.1 ragge int i;
1628 1.1 ragge
1629 1.1 ragge /*
1630 1.1 ragge * Do a chip reset.
1631 1.1 ragge */
1632 1.1 ragge CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1633 1.1 ragge
1634 1.1 ragge delay(10000);
1635 1.1 ragge
1636 1.1 ragge for (i = 0; i < 1000; i++) {
1637 1.1 ragge if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1638 1.1 ragge break;
1639 1.1 ragge delay(20);
1640 1.1 ragge }
1641 1.1 ragge
1642 1.1 ragge if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1643 1.1 ragge printf("%s: WARNING: reset failed to complete\n",
1644 1.1 ragge sc->sc_dev.dv_xname);
1645 1.1 ragge /*
1646 1.1 ragge * Reset the EEPROM logic.
1647 1.1 ragge * This will cause the chip to reread its default values,
1648 1.1 ragge * which doesn't happen otherwise (errata).
1649 1.1 ragge */
1650 1.1 ragge CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1651 1.1 ragge delay(10000);
1652 1.1 ragge }
1653 1.1 ragge
1654 1.1 ragge /*
1655 1.1 ragge * dge_init: [ifnet interface function]
1656 1.1 ragge *
1657 1.1 ragge * Initialize the interface. Must be called at splnet().
1658 1.1 ragge */
1659 1.1 ragge static int
1660 1.1 ragge dge_init(struct ifnet *ifp)
1661 1.1 ragge {
1662 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1663 1.1 ragge struct dge_rxsoft *rxs;
1664 1.1 ragge int i, error = 0;
1665 1.1 ragge uint32_t reg;
1666 1.1 ragge
1667 1.1 ragge /*
1668 1.1 ragge * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1669 1.1 ragge * There is a small but measurable benefit to avoiding the adjusment
1670 1.1 ragge * of the descriptor so that the headers are aligned, for normal mtu,
1671 1.1 ragge * on such platforms. One possibility is that the DMA itself is
1672 1.1 ragge * slightly more efficient if the front of the entire packet (instead
1673 1.1 ragge * of the front of the headers) is aligned.
1674 1.1 ragge *
1675 1.1 ragge * Note we must always set align_tweak to 0 if we are using
1676 1.1 ragge * jumbo frames.
1677 1.1 ragge */
1678 1.1 ragge #ifdef __NO_STRICT_ALIGNMENT
1679 1.1 ragge sc->sc_align_tweak = 0;
1680 1.1 ragge #else
1681 1.1 ragge if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1682 1.1 ragge sc->sc_align_tweak = 0;
1683 1.1 ragge else
1684 1.1 ragge sc->sc_align_tweak = 2;
1685 1.1 ragge #endif /* __NO_STRICT_ALIGNMENT */
1686 1.1 ragge
1687 1.1 ragge /* Cancel any pending I/O. */
1688 1.1 ragge dge_stop(ifp, 0);
1689 1.1 ragge
1690 1.1 ragge /* Reset the chip to a known state. */
1691 1.1 ragge dge_reset(sc);
1692 1.1 ragge
1693 1.1 ragge /* Initialize the transmit descriptor ring. */
1694 1.1 ragge memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1695 1.1 ragge DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1696 1.1 ragge BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1697 1.1 ragge sc->sc_txfree = DGE_NTXDESC;
1698 1.1 ragge sc->sc_txnext = 0;
1699 1.1 ragge
1700 1.1 ragge sc->sc_txctx_ipcs = 0xffffffff;
1701 1.1 ragge sc->sc_txctx_tucs = 0xffffffff;
1702 1.1 ragge
1703 1.1 ragge CSR_WRITE(sc, DGE_TDBAH, 0);
1704 1.1 ragge CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1705 1.1 ragge CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1706 1.1 ragge CSR_WRITE(sc, DGE_TDH, 0);
1707 1.1 ragge CSR_WRITE(sc, DGE_TDT, 0);
1708 1.1 ragge CSR_WRITE(sc, DGE_TIDV, TIDV);
1709 1.1 ragge
1710 1.1 ragge #if 0
1711 1.1 ragge CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1712 1.1 ragge TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1713 1.1 ragge #endif
1714 1.1 ragge CSR_WRITE(sc, DGE_RXDCTL,
1715 1.1 ragge RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1716 1.1 ragge RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1717 1.1 ragge RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1718 1.1 ragge
1719 1.1 ragge /* Initialize the transmit job descriptors. */
1720 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++)
1721 1.1 ragge sc->sc_txsoft[i].txs_mbuf = NULL;
1722 1.1 ragge sc->sc_txsfree = DGE_TXQUEUELEN;
1723 1.1 ragge sc->sc_txsnext = 0;
1724 1.1 ragge sc->sc_txsdirty = 0;
1725 1.1 ragge
1726 1.1 ragge /*
1727 1.1 ragge * Initialize the receive descriptor and receive job
1728 1.1 ragge * descriptor rings.
1729 1.1 ragge */
1730 1.1 ragge CSR_WRITE(sc, DGE_RDBAH, 0);
1731 1.1 ragge CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1732 1.1 ragge CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1733 1.1 ragge CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1734 1.1 ragge CSR_WRITE(sc, DGE_RDT, 0);
1735 1.1 ragge CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1736 1.1 ragge CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1737 1.1 ragge CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1738 1.1 ragge
1739 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
1740 1.1 ragge rxs = &sc->sc_rxsoft[i];
1741 1.1 ragge if (rxs->rxs_mbuf == NULL) {
1742 1.1 ragge if ((error = dge_add_rxbuf(sc, i)) != 0) {
1743 1.1 ragge printf("%s: unable to allocate or map rx "
1744 1.1 ragge "buffer %d, error = %d\n",
1745 1.1 ragge sc->sc_dev.dv_xname, i, error);
1746 1.1 ragge /*
1747 1.1 ragge * XXX Should attempt to run with fewer receive
1748 1.1 ragge * XXX buffers instead of just failing.
1749 1.1 ragge */
1750 1.1 ragge dge_rxdrain(sc);
1751 1.1 ragge goto out;
1752 1.1 ragge }
1753 1.1 ragge }
1754 1.1 ragge DGE_INIT_RXDESC(sc, i);
1755 1.1 ragge }
1756 1.1 ragge sc->sc_rxptr = DGE_RXSPACE;
1757 1.1 ragge sc->sc_rxdiscard = 0;
1758 1.1 ragge DGE_RXCHAIN_RESET(sc);
1759 1.1 ragge
1760 1.1 ragge if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1761 1.1 ragge sc->sc_ctrl0 |= CTRL0_JFE;
1762 1.1 ragge CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1763 1.1 ragge }
1764 1.1 ragge
1765 1.1 ragge /* Write the control registers. */
1766 1.1 ragge CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1767 1.1 ragge
1768 1.1 ragge /*
1769 1.1 ragge * Set up checksum offload parameters.
1770 1.1 ragge */
1771 1.1 ragge reg = CSR_READ(sc, DGE_RXCSUM);
1772 1.1 ragge if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1773 1.1 ragge reg |= RXCSUM_IPOFL;
1774 1.1 ragge else
1775 1.1 ragge reg &= ~RXCSUM_IPOFL;
1776 1.1 ragge if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
1777 1.1 ragge reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1778 1.1 ragge else {
1779 1.1 ragge reg &= ~RXCSUM_TUOFL;
1780 1.1 ragge if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
1781 1.1 ragge reg &= ~RXCSUM_IPOFL;
1782 1.1 ragge }
1783 1.1 ragge CSR_WRITE(sc, DGE_RXCSUM, reg);
1784 1.1 ragge
1785 1.1 ragge /*
1786 1.1 ragge * Set up the interrupt registers.
1787 1.1 ragge */
1788 1.1 ragge CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1789 1.1 ragge sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1790 1.1 ragge ICR_RXO | ICR_RXT0;
1791 1.1 ragge
1792 1.1 ragge CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1793 1.1 ragge
1794 1.1 ragge /*
1795 1.1 ragge * Set up the transmit control register.
1796 1.1 ragge */
1797 1.1 ragge sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1798 1.1 ragge CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1799 1.1 ragge
1800 1.1 ragge /*
1801 1.1 ragge * Set up the receive control register; we actually program
1802 1.1 ragge * the register when we set the receive filter. Use multicast
1803 1.1 ragge * address offset type 0.
1804 1.1 ragge */
1805 1.1 ragge sc->sc_mchash_type = 0;
1806 1.1 ragge
1807 1.1 ragge sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
1808 1.1 ragge RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
1809 1.1 ragge
1810 1.1 ragge switch(MCLBYTES) {
1811 1.1 ragge case 2048:
1812 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_2k;
1813 1.1 ragge break;
1814 1.1 ragge case 4096:
1815 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_4k;
1816 1.1 ragge break;
1817 1.1 ragge case 8192:
1818 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_8k;
1819 1.1 ragge break;
1820 1.1 ragge case 16384:
1821 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_16k;
1822 1.1 ragge break;
1823 1.1 ragge default:
1824 1.1 ragge panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
1825 1.1 ragge }
1826 1.1 ragge
1827 1.1 ragge /* Set the receive filter. */
1828 1.1 ragge /* Also sets RCTL */
1829 1.1 ragge dge_set_filter(sc);
1830 1.1 ragge
1831 1.1 ragge /* ...all done! */
1832 1.1 ragge ifp->if_flags |= IFF_RUNNING;
1833 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
1834 1.1 ragge
1835 1.1 ragge out:
1836 1.1 ragge if (error)
1837 1.1 ragge printf("%s: interface not running\n", sc->sc_dev.dv_xname);
1838 1.1 ragge return (error);
1839 1.1 ragge }
1840 1.1 ragge
1841 1.1 ragge /*
1842 1.1 ragge * dge_rxdrain:
1843 1.1 ragge *
1844 1.1 ragge * Drain the receive queue.
1845 1.1 ragge */
1846 1.1 ragge static void
1847 1.1 ragge dge_rxdrain(struct dge_softc *sc)
1848 1.1 ragge {
1849 1.1 ragge struct dge_rxsoft *rxs;
1850 1.1 ragge int i;
1851 1.1 ragge
1852 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
1853 1.1 ragge rxs = &sc->sc_rxsoft[i];
1854 1.1 ragge if (rxs->rxs_mbuf != NULL) {
1855 1.1 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1856 1.1 ragge m_freem(rxs->rxs_mbuf);
1857 1.1 ragge rxs->rxs_mbuf = NULL;
1858 1.1 ragge }
1859 1.1 ragge }
1860 1.1 ragge }
1861 1.1 ragge
1862 1.1 ragge /*
1863 1.1 ragge * dge_stop: [ifnet interface function]
1864 1.1 ragge *
1865 1.1 ragge * Stop transmission on the interface.
1866 1.1 ragge */
1867 1.1 ragge static void
1868 1.1 ragge dge_stop(struct ifnet *ifp, int disable)
1869 1.1 ragge {
1870 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1871 1.1 ragge struct dge_txsoft *txs;
1872 1.1 ragge int i;
1873 1.1 ragge
1874 1.1 ragge /* Stop the transmit and receive processes. */
1875 1.1 ragge CSR_WRITE(sc, DGE_TCTL, 0);
1876 1.1 ragge CSR_WRITE(sc, DGE_RCTL, 0);
1877 1.1 ragge
1878 1.1 ragge /* Release any queued transmit buffers. */
1879 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) {
1880 1.1 ragge txs = &sc->sc_txsoft[i];
1881 1.1 ragge if (txs->txs_mbuf != NULL) {
1882 1.1 ragge bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1883 1.1 ragge m_freem(txs->txs_mbuf);
1884 1.1 ragge txs->txs_mbuf = NULL;
1885 1.1 ragge }
1886 1.1 ragge }
1887 1.1 ragge
1888 1.1 ragge if (disable)
1889 1.1 ragge dge_rxdrain(sc);
1890 1.1 ragge
1891 1.1 ragge /* Mark the interface as down and cancel the watchdog timer. */
1892 1.1 ragge ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1893 1.1 ragge ifp->if_timer = 0;
1894 1.1 ragge }
1895 1.1 ragge
1896 1.1 ragge /*
1897 1.1 ragge * dge_add_rxbuf:
1898 1.1 ragge *
1899 1.1 ragge * Add a receive buffer to the indiciated descriptor.
1900 1.1 ragge */
1901 1.1 ragge static int
1902 1.1 ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
1903 1.1 ragge {
1904 1.1 ragge struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
1905 1.1 ragge struct mbuf *m;
1906 1.1 ragge int error;
1907 1.1 ragge
1908 1.1 ragge MGETHDR(m, M_DONTWAIT, MT_DATA);
1909 1.1 ragge if (m == NULL)
1910 1.1 ragge return (ENOBUFS);
1911 1.1 ragge
1912 1.1 ragge MCLGET(m, M_DONTWAIT);
1913 1.1 ragge if ((m->m_flags & M_EXT) == 0) {
1914 1.1 ragge m_freem(m);
1915 1.1 ragge return (ENOBUFS);
1916 1.1 ragge }
1917 1.1 ragge
1918 1.1 ragge if (rxs->rxs_mbuf != NULL)
1919 1.1 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
1920 1.1 ragge
1921 1.1 ragge rxs->rxs_mbuf = m;
1922 1.1 ragge
1923 1.1 ragge m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
1924 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
1925 1.1 ragge BUS_DMA_READ|BUS_DMA_NOWAIT);
1926 1.1 ragge if (error) {
1927 1.1 ragge printf("%s: unable to load rx DMA map %d, error = %d\n",
1928 1.1 ragge sc->sc_dev.dv_xname, idx, error);
1929 1.1 ragge panic("dge_add_rxbuf"); /* XXX XXX XXX */
1930 1.1 ragge }
1931 1.1 ragge
1932 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1933 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1934 1.1 ragge
1935 1.1 ragge return (0);
1936 1.1 ragge }
1937 1.1 ragge
1938 1.1 ragge /*
1939 1.1 ragge * dge_set_ral:
1940 1.1 ragge *
1941 1.1 ragge * Set an entry in the receive address list.
1942 1.1 ragge */
1943 1.1 ragge static void
1944 1.1 ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
1945 1.1 ragge {
1946 1.1 ragge uint32_t ral_lo, ral_hi;
1947 1.1 ragge
1948 1.1 ragge if (enaddr != NULL) {
1949 1.1 ragge ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
1950 1.1 ragge (enaddr[3] << 24);
1951 1.1 ragge ral_hi = enaddr[4] | (enaddr[5] << 8);
1952 1.1 ragge ral_hi |= RAH_AV;
1953 1.1 ragge } else {
1954 1.1 ragge ral_lo = 0;
1955 1.1 ragge ral_hi = 0;
1956 1.1 ragge }
1957 1.1 ragge CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
1958 1.1 ragge CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
1959 1.1 ragge }
1960 1.1 ragge
1961 1.1 ragge /*
1962 1.1 ragge * dge_mchash:
1963 1.1 ragge *
1964 1.1 ragge * Compute the hash of the multicast address for the 4096-bit
1965 1.1 ragge * multicast filter.
1966 1.1 ragge */
1967 1.1 ragge static uint32_t
1968 1.1 ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
1969 1.1 ragge {
1970 1.1 ragge static const int lo_shift[4] = { 4, 3, 2, 0 };
1971 1.1 ragge static const int hi_shift[4] = { 4, 5, 6, 8 };
1972 1.1 ragge uint32_t hash;
1973 1.1 ragge
1974 1.1 ragge hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
1975 1.1 ragge (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
1976 1.1 ragge
1977 1.1 ragge return (hash & 0xfff);
1978 1.1 ragge }
1979 1.1 ragge
1980 1.1 ragge /*
1981 1.1 ragge * dge_set_filter:
1982 1.1 ragge *
1983 1.1 ragge * Set up the receive filter.
1984 1.1 ragge */
1985 1.1 ragge static void
1986 1.1 ragge dge_set_filter(struct dge_softc *sc)
1987 1.1 ragge {
1988 1.1 ragge struct ethercom *ec = &sc->sc_ethercom;
1989 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1990 1.1 ragge struct ether_multi *enm;
1991 1.1 ragge struct ether_multistep step;
1992 1.1 ragge uint32_t hash, reg, bit;
1993 1.1 ragge int i;
1994 1.1 ragge
1995 1.1 ragge sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
1996 1.1 ragge
1997 1.1 ragge if (ifp->if_flags & IFF_BROADCAST)
1998 1.1 ragge sc->sc_rctl |= RCTL_BAM;
1999 1.1 ragge if (ifp->if_flags & IFF_PROMISC) {
2000 1.1 ragge sc->sc_rctl |= RCTL_UPE;
2001 1.1 ragge goto allmulti;
2002 1.1 ragge }
2003 1.1 ragge
2004 1.1 ragge /*
2005 1.1 ragge * Set the station address in the first RAL slot, and
2006 1.1 ragge * clear the remaining slots.
2007 1.1 ragge */
2008 1.1 ragge dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
2009 1.1 ragge for (i = 1; i < RA_TABSIZE; i++)
2010 1.1 ragge dge_set_ral(sc, NULL, i);
2011 1.1 ragge
2012 1.1 ragge /* Clear out the multicast table. */
2013 1.1 ragge for (i = 0; i < MC_TABSIZE; i++)
2014 1.1 ragge CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2015 1.1 ragge
2016 1.1 ragge ETHER_FIRST_MULTI(step, ec, enm);
2017 1.1 ragge while (enm != NULL) {
2018 1.1 ragge if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2019 1.1 ragge /*
2020 1.1 ragge * We must listen to a range of multicast addresses.
2021 1.1 ragge * For now, just accept all multicasts, rather than
2022 1.1 ragge * trying to set only those filter bits needed to match
2023 1.1 ragge * the range. (At this time, the only use of address
2024 1.1 ragge * ranges is for IP multicast routing, for which the
2025 1.1 ragge * range is big enough to require all bits set.)
2026 1.1 ragge */
2027 1.1 ragge goto allmulti;
2028 1.1 ragge }
2029 1.1 ragge
2030 1.1 ragge hash = dge_mchash(sc, enm->enm_addrlo);
2031 1.1 ragge
2032 1.1 ragge reg = (hash >> 5) & 0x7f;
2033 1.1 ragge bit = hash & 0x1f;
2034 1.1 ragge
2035 1.1 ragge hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2036 1.1 ragge hash |= 1U << bit;
2037 1.1 ragge
2038 1.1 ragge CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2039 1.1 ragge
2040 1.1 ragge ETHER_NEXT_MULTI(step, enm);
2041 1.1 ragge }
2042 1.1 ragge
2043 1.1 ragge ifp->if_flags &= ~IFF_ALLMULTI;
2044 1.1 ragge goto setit;
2045 1.1 ragge
2046 1.1 ragge allmulti:
2047 1.1 ragge ifp->if_flags |= IFF_ALLMULTI;
2048 1.1 ragge sc->sc_rctl |= RCTL_MPE;
2049 1.1 ragge
2050 1.1 ragge setit:
2051 1.1 ragge CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2052 1.1 ragge }
2053 1.1 ragge
2054 1.1 ragge /*
2055 1.1 ragge * Read in the EEPROM info and verify checksum.
2056 1.1 ragge */
2057 1.1 ragge int
2058 1.1 ragge dge_read_eeprom(struct dge_softc *sc)
2059 1.1 ragge {
2060 1.1 ragge uint16_t cksum;
2061 1.1 ragge int i;
2062 1.1 ragge
2063 1.1 ragge cksum = 0;
2064 1.1 ragge for (i = 0; i < EEPROM_SIZE; i++) {
2065 1.1 ragge sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2066 1.1 ragge cksum += sc->sc_eeprom[i];
2067 1.1 ragge }
2068 1.1 ragge return cksum != EEPROM_CKSUM;
2069 1.1 ragge }
2070 1.1 ragge
2071 1.1 ragge
2072 1.1 ragge /*
2073 1.1 ragge * Read a 16-bit word from address addr in the serial EEPROM.
2074 1.1 ragge */
2075 1.1 ragge uint16_t
2076 1.1 ragge dge_eeprom_word(struct dge_softc *sc, int addr)
2077 1.1 ragge {
2078 1.1 ragge uint32_t reg;
2079 1.1 ragge uint16_t rval = 0;
2080 1.1 ragge int i;
2081 1.1 ragge
2082 1.1 ragge reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2083 1.1 ragge
2084 1.1 ragge /* Lower clock pulse (and data in to chip) */
2085 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2086 1.1 ragge /* Select chip */
2087 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2088 1.1 ragge
2089 1.1 ragge /* Send read command */
2090 1.1 ragge dge_eeprom_clockout(sc, 1);
2091 1.1 ragge dge_eeprom_clockout(sc, 1);
2092 1.1 ragge dge_eeprom_clockout(sc, 0);
2093 1.1 ragge
2094 1.1 ragge /* Send address */
2095 1.1 ragge for (i = 5; i >= 0; i--)
2096 1.1 ragge dge_eeprom_clockout(sc, (addr >> i) & 1);
2097 1.1 ragge
2098 1.1 ragge /* Read data */
2099 1.1 ragge for (i = 0; i < 16; i++) {
2100 1.1 ragge rval <<= 1;
2101 1.1 ragge rval |= dge_eeprom_clockin(sc);
2102 1.1 ragge }
2103 1.1 ragge
2104 1.1 ragge /* Deselect chip */
2105 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2106 1.1 ragge
2107 1.1 ragge return rval;
2108 1.1 ragge }
2109 1.1 ragge
2110 1.1 ragge /*
2111 1.1 ragge * Clock out a single bit to the EEPROM.
2112 1.1 ragge */
2113 1.1 ragge void
2114 1.1 ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
2115 1.1 ragge {
2116 1.1 ragge int reg;
2117 1.1 ragge
2118 1.1 ragge reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2119 1.1 ragge if (bit)
2120 1.1 ragge reg |= EECD_DI;
2121 1.1 ragge
2122 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2123 1.1 ragge delay(2);
2124 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2125 1.1 ragge delay(2);
2126 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2127 1.1 ragge delay(2);
2128 1.1 ragge }
2129 1.1 ragge
2130 1.1 ragge /*
2131 1.1 ragge * Clock in a single bit from EEPROM.
2132 1.1 ragge */
2133 1.1 ragge int
2134 1.1 ragge dge_eeprom_clockin(struct dge_softc *sc)
2135 1.1 ragge {
2136 1.1 ragge int reg, rv;
2137 1.1 ragge
2138 1.1 ragge reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2139 1.1 ragge
2140 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2141 1.1 ragge delay(2);
2142 1.1 ragge rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2143 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2144 1.1 ragge delay(2);
2145 1.1 ragge
2146 1.1 ragge return rv;
2147 1.1 ragge }
2148 1.1 ragge
2149 1.1 ragge static void
2150 1.1 ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2151 1.1 ragge {
2152 1.1 ragge struct dge_softc *sc = ifp->if_softc;
2153 1.1 ragge
2154 1.1 ragge ifmr->ifm_status = IFM_AVALID;
2155 1.1 ragge ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2156 1.1 ragge
2157 1.1 ragge if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2158 1.1 ragge ifmr->ifm_status |= IFM_ACTIVE;
2159 1.1 ragge }
2160 1.1 ragge
2161 1.1 ragge static inline int
2162 1.1 ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
2163 1.1 ragge {
2164 1.1 ragge int i, mdic;
2165 1.1 ragge
2166 1.1 ragge CSR_WRITE(sc, DGE_MDIO,
2167 1.1 ragge MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2168 1.1 ragge for (i = 0; i < 10; i++) {
2169 1.1 ragge delay(10);
2170 1.1 ragge if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2171 1.1 ragge break;
2172 1.1 ragge }
2173 1.1 ragge return mdic;
2174 1.1 ragge }
2175 1.1 ragge
2176 1.1 ragge
2177 1.1 ragge static void
2178 1.1 ragge dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
2179 1.1 ragge {
2180 1.1 ragge struct dge_softc *sc = (void *) self;
2181 1.1 ragge int mdic;
2182 1.1 ragge
2183 1.1 ragge CSR_WRITE(sc, DGE_MDIRW, val);
2184 1.1 ragge if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2185 1.1 ragge printf("%s: address cycle timeout; phy %d reg %d\n",
2186 1.1 ragge sc->sc_dev.dv_xname, phy, reg);
2187 1.1 ragge return;
2188 1.1 ragge }
2189 1.1 ragge if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2190 1.1 ragge printf("%s: read cycle timeout; phy %d reg %d\n",
2191 1.1 ragge sc->sc_dev.dv_xname, phy, reg);
2192 1.1 ragge return;
2193 1.1 ragge }
2194 1.1 ragge }
2195 1.1 ragge
2196 1.1 ragge static void
2197 1.1 ragge dge_xgmii_reset(struct dge_softc *sc)
2198 1.1 ragge {
2199 1.1 ragge dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2200 1.1 ragge }
2201 1.1 ragge
2202 1.1 ragge static int
2203 1.1 ragge dge_xgmii_mediachange(struct ifnet *ifp)
2204 1.1 ragge {
2205 1.1 ragge return 0;
2206 1.1 ragge }
2207 1.1 ragge
2208