Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.1.2.1
      1  1.1.2.1   tron /*	$NetBSD: if_dge.c,v 1.1.2.1 2004/04/16 08:00:17 tron Exp $	*/
      2      1.1  ragge 
      3      1.1  ragge /*
      4      1.1  ragge  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5      1.1  ragge  * All rights reserved.
      6      1.1  ragge  *
      7      1.1  ragge  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8      1.1  ragge  *
      9      1.1  ragge  * Redistribution and use in source and binary forms, with or without
     10      1.1  ragge  * modification, are permitted provided that the following conditions
     11      1.1  ragge  * are met:
     12      1.1  ragge  * 1. Redistributions of source code must retain the above copyright
     13      1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     14      1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     15      1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     16      1.1  ragge  *    documentation and/or other materials provided with the distribution.
     17      1.1  ragge  * 3. All advertising materials mentioning features or use of this software
     18      1.1  ragge  *    must display the following acknowledgement:
     19      1.1  ragge  *	This product includes software developed for the NetBSD Project by
     20      1.1  ragge  *	SUNET, Swedish University Computer Network.
     21      1.1  ragge  * 4. The name of SUNET may not be used to endorse or promote products
     22      1.1  ragge  *    derived from this software without specific prior written permission.
     23      1.1  ragge  *
     24      1.1  ragge  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25      1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26      1.1  ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27      1.1  ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28      1.1  ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29      1.1  ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30      1.1  ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31      1.1  ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32      1.1  ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33      1.1  ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34      1.1  ragge  * POSSIBILITY OF SUCH DAMAGE.
     35      1.1  ragge  */
     36      1.1  ragge 
     37      1.1  ragge /*
     38      1.1  ragge  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39      1.1  ragge  * All rights reserved.
     40      1.1  ragge  *
     41      1.1  ragge  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42      1.1  ragge  *
     43      1.1  ragge  * Redistribution and use in source and binary forms, with or without
     44      1.1  ragge  * modification, are permitted provided that the following conditions
     45      1.1  ragge  * are met:
     46      1.1  ragge  * 1. Redistributions of source code must retain the above copyright
     47      1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     48      1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     49      1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     50      1.1  ragge  *    documentation and/or other materials provided with the distribution.
     51      1.1  ragge  * 3. All advertising materials mentioning features or use of this software
     52      1.1  ragge  *    must display the following acknowledgement:
     53      1.1  ragge  *	This product includes software developed for the NetBSD Project by
     54      1.1  ragge  *	Wasabi Systems, Inc.
     55      1.1  ragge  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56      1.1  ragge  *    or promote products derived from this software without specific prior
     57      1.1  ragge  *    written permission.
     58      1.1  ragge  *
     59      1.1  ragge  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60      1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61      1.1  ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62      1.1  ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63      1.1  ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64      1.1  ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65      1.1  ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66      1.1  ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67      1.1  ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68      1.1  ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69      1.1  ragge  * POSSIBILITY OF SUCH DAMAGE.
     70      1.1  ragge  */
     71      1.1  ragge 
     72      1.1  ragge /*
     73      1.1  ragge  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74      1.1  ragge  *
     75      1.1  ragge  * TODO (in no specific order):
     76      1.1  ragge  *	HW VLAN support.
     77      1.1  ragge  *	TSE offloading (needs kernel changes...)
     78      1.1  ragge  *	RAIDC (receive interrupt delay adaptation)
     79      1.1  ragge  *	Use memory > 4GB.
     80      1.1  ragge  */
     81      1.1  ragge 
     82      1.1  ragge #include <sys/cdefs.h>
     83  1.1.2.1   tron __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.1.2.1 2004/04/16 08:00:17 tron Exp $");
     84      1.1  ragge 
     85      1.1  ragge #include "bpfilter.h"
     86      1.1  ragge #include "rnd.h"
     87      1.1  ragge 
     88      1.1  ragge #include <sys/param.h>
     89      1.1  ragge #include <sys/systm.h>
     90      1.1  ragge #include <sys/callout.h>
     91      1.1  ragge #include <sys/mbuf.h>
     92      1.1  ragge #include <sys/malloc.h>
     93      1.1  ragge #include <sys/kernel.h>
     94      1.1  ragge #include <sys/socket.h>
     95      1.1  ragge #include <sys/ioctl.h>
     96      1.1  ragge #include <sys/errno.h>
     97      1.1  ragge #include <sys/device.h>
     98      1.1  ragge #include <sys/queue.h>
     99      1.1  ragge 
    100      1.1  ragge #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101      1.1  ragge 
    102      1.1  ragge #if NRND > 0
    103      1.1  ragge #include <sys/rnd.h>
    104      1.1  ragge #endif
    105      1.1  ragge 
    106      1.1  ragge #include <net/if.h>
    107      1.1  ragge #include <net/if_dl.h>
    108      1.1  ragge #include <net/if_media.h>
    109      1.1  ragge #include <net/if_ether.h>
    110      1.1  ragge 
    111      1.1  ragge #if NBPFILTER > 0
    112      1.1  ragge #include <net/bpf.h>
    113      1.1  ragge #endif
    114      1.1  ragge 
    115      1.1  ragge #include <netinet/in.h>			/* XXX for struct ip */
    116      1.1  ragge #include <netinet/in_systm.h>		/* XXX for struct ip */
    117      1.1  ragge #include <netinet/ip.h>			/* XXX for struct ip */
    118      1.1  ragge #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    119      1.1  ragge 
    120      1.1  ragge #include <machine/bus.h>
    121      1.1  ragge #include <machine/intr.h>
    122      1.1  ragge #include <machine/endian.h>
    123      1.1  ragge 
    124      1.1  ragge #include <dev/mii/mii.h>
    125      1.1  ragge #include <dev/mii/miivar.h>
    126      1.1  ragge #include <dev/mii/mii_bitbang.h>
    127      1.1  ragge 
    128      1.1  ragge #include <dev/pci/pcireg.h>
    129      1.1  ragge #include <dev/pci/pcivar.h>
    130      1.1  ragge #include <dev/pci/pcidevs.h>
    131      1.1  ragge 
    132      1.1  ragge #include <dev/pci/if_dgereg.h>
    133      1.1  ragge 
    134      1.1  ragge #define DGE_EVENT_COUNTERS
    135      1.1  ragge #define DGE_DEBUG
    136      1.1  ragge 
    137      1.1  ragge #ifdef DGE_DEBUG
    138      1.1  ragge #define	DGE_DEBUG_LINK		0x01
    139      1.1  ragge #define	DGE_DEBUG_TX		0x02
    140      1.1  ragge #define	DGE_DEBUG_RX		0x04
    141      1.1  ragge #define	DGE_DEBUG_CKSUM		0x08
    142      1.1  ragge int	dge_debug = 0;
    143      1.1  ragge 
    144      1.1  ragge #define	DPRINTF(x, y)	if (dge_debug & (x)) printf y
    145      1.1  ragge #else
    146      1.1  ragge #define	DPRINTF(x, y)	/* nothing */
    147      1.1  ragge #endif /* DGE_DEBUG */
    148      1.1  ragge 
    149      1.1  ragge /*
    150      1.1  ragge  * Transmit descriptor list size. We allow up to 100 DMA segments per
    151      1.1  ragge  * packet (Intel reports of jumbo frame packets with as
    152      1.1  ragge  * many as 80 DMA segments when using 16k buffers).
    153      1.1  ragge  */
    154      1.1  ragge #define	DGE_NTXSEGS		100
    155      1.1  ragge #define	DGE_IFQUEUELEN		20000
    156      1.1  ragge #define	DGE_TXQUEUELEN		2048
    157      1.1  ragge #define	DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    158      1.1  ragge #define	DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    159      1.1  ragge #define	DGE_NTXDESC		1024
    160      1.1  ragge #define	DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    161      1.1  ragge #define	DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    162      1.1  ragge #define	DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    163      1.1  ragge 
    164      1.1  ragge /*
    165      1.1  ragge  * Receive descriptor list size.
    166      1.1  ragge  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    167      1.1  ragge  * be chained.  Due to the nature of the card (high-speed), keep this
    168      1.1  ragge  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    169      1.1  ragge  * which at full speed will be received in just under 3ms.
    170      1.1  ragge  */
    171      1.1  ragge #define	DGE_NRXDESC		2048
    172      1.1  ragge #define	DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    173      1.1  ragge #define	DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    174      1.1  ragge /*
    175      1.1  ragge  * # of descriptors between head and written descriptors.
    176      1.1  ragge  * This is to work-around two erratas.
    177      1.1  ragge  */
    178      1.1  ragge #define DGE_RXSPACE		10
    179      1.1  ragge #define	DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    180      1.1  ragge /*
    181      1.1  ragge  * Receive descriptor fetch threshholds. These are values recommended
    182      1.1  ragge  * by Intel, do not touch them unless you know what you are doing.
    183      1.1  ragge  */
    184      1.1  ragge #define	RXDCTL_PTHRESH_VAL	128
    185      1.1  ragge #define	RXDCTL_HTHRESH_VAL	16
    186      1.1  ragge #define	RXDCTL_WTHRESH_VAL	16
    187      1.1  ragge 
    188      1.1  ragge 
    189      1.1  ragge /*
    190      1.1  ragge  * Tweakable parameters; default values.
    191      1.1  ragge  */
    192      1.1  ragge #define	FCRTH	0x30000	/* Send XOFF water mark */
    193      1.1  ragge #define	FCRTL	0x28000	/* Send XON water mark */
    194      1.1  ragge #define	RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    195      1.1  ragge #define	TIDV	0x20	/* Interrupt delay after send, .8192us units */
    196      1.1  ragge 
    197      1.1  ragge /*
    198      1.1  ragge  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    199      1.1  ragge  * a single clump that maps to a single DMA segment to make serveral things
    200      1.1  ragge  * easier.
    201      1.1  ragge  */
    202      1.1  ragge struct dge_control_data {
    203      1.1  ragge 	/*
    204      1.1  ragge 	 * The transmit descriptors.
    205      1.1  ragge 	 */
    206      1.1  ragge 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    207      1.1  ragge 
    208      1.1  ragge 	/*
    209      1.1  ragge 	 * The receive descriptors.
    210      1.1  ragge 	 */
    211      1.1  ragge 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    212      1.1  ragge };
    213      1.1  ragge 
    214      1.1  ragge #define	DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    215      1.1  ragge #define	DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    216      1.1  ragge #define	DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    217      1.1  ragge 
    218      1.1  ragge /*
    219  1.1.2.1   tron  * The DGE interface have a higher max MTU size than normal jumbo frames.
    220  1.1.2.1   tron  */
    221  1.1.2.1   tron #define DGE_MAX_MTU     16288   /* Max MTU size for this interface */
    222  1.1.2.1   tron 
    223  1.1.2.1   tron /*
    224      1.1  ragge  * Software state for transmit jobs.
    225      1.1  ragge  */
    226      1.1  ragge struct dge_txsoft {
    227      1.1  ragge 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    228      1.1  ragge 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    229      1.1  ragge 	int txs_firstdesc;		/* first descriptor in packet */
    230      1.1  ragge 	int txs_lastdesc;		/* last descriptor in packet */
    231      1.1  ragge 	int txs_ndesc;			/* # of descriptors used */
    232      1.1  ragge };
    233      1.1  ragge 
    234      1.1  ragge /*
    235      1.1  ragge  * Software state for receive buffers.  Each descriptor gets a
    236      1.1  ragge  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    237      1.1  ragge  * more than one buffer, we chain them together.
    238      1.1  ragge  */
    239      1.1  ragge struct dge_rxsoft {
    240      1.1  ragge 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    241      1.1  ragge 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    242      1.1  ragge };
    243      1.1  ragge 
    244      1.1  ragge /*
    245      1.1  ragge  * Software state per device.
    246      1.1  ragge  */
    247      1.1  ragge struct dge_softc {
    248      1.1  ragge 	struct device sc_dev;		/* generic device information */
    249      1.1  ragge 	bus_space_tag_t sc_st;		/* bus space tag */
    250      1.1  ragge 	bus_space_handle_t sc_sh;	/* bus space handle */
    251      1.1  ragge 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    252      1.1  ragge 	struct ethercom sc_ethercom;	/* ethernet common data */
    253      1.1  ragge 	void *sc_sdhook;		/* shutdown hook */
    254      1.1  ragge 
    255      1.1  ragge 	int sc_flags;			/* flags; see below */
    256      1.1  ragge 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    257      1.1  ragge 	int sc_pcix_offset;		/* PCIX capability register offset */
    258      1.1  ragge 
    259      1.1  ragge 	pci_chipset_tag_t sc_pc;
    260      1.1  ragge 	pcitag_t sc_pt;
    261      1.1  ragge 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    262      1.1  ragge 
    263      1.1  ragge 	void *sc_ih;			/* interrupt cookie */
    264      1.1  ragge 
    265      1.1  ragge 	struct ifmedia sc_media;
    266      1.1  ragge 
    267      1.1  ragge 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    268      1.1  ragge #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    269      1.1  ragge 
    270      1.1  ragge 	int		sc_align_tweak;
    271      1.1  ragge 
    272      1.1  ragge 	/*
    273      1.1  ragge 	 * Software state for the transmit and receive descriptors.
    274      1.1  ragge 	 */
    275      1.1  ragge 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    276      1.1  ragge 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    277      1.1  ragge 
    278      1.1  ragge 	/*
    279      1.1  ragge 	 * Control data structures.
    280      1.1  ragge 	 */
    281      1.1  ragge 	struct dge_control_data *sc_control_data;
    282      1.1  ragge #define	sc_txdescs	sc_control_data->wcd_txdescs
    283      1.1  ragge #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    284      1.1  ragge 
    285      1.1  ragge #ifdef DGE_EVENT_COUNTERS
    286      1.1  ragge 	/* Event counters. */
    287      1.1  ragge 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    288      1.1  ragge 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    289      1.1  ragge 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    290      1.1  ragge 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    291      1.1  ragge 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    292      1.1  ragge 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    293      1.1  ragge 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    294      1.1  ragge 
    295      1.1  ragge 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    296      1.1  ragge 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    297      1.1  ragge 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    298      1.1  ragge 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    299      1.1  ragge 
    300      1.1  ragge 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    301      1.1  ragge 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    302      1.1  ragge 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    303      1.1  ragge 
    304      1.1  ragge 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    305      1.1  ragge 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    306      1.1  ragge #endif /* DGE_EVENT_COUNTERS */
    307      1.1  ragge 
    308      1.1  ragge 	int	sc_txfree;		/* number of free Tx descriptors */
    309      1.1  ragge 	int	sc_txnext;		/* next ready Tx descriptor */
    310      1.1  ragge 
    311      1.1  ragge 	int	sc_txsfree;		/* number of free Tx jobs */
    312      1.1  ragge 	int	sc_txsnext;		/* next free Tx job */
    313      1.1  ragge 	int	sc_txsdirty;		/* dirty Tx jobs */
    314      1.1  ragge 
    315      1.1  ragge 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    316      1.1  ragge 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    317      1.1  ragge 
    318      1.1  ragge 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    319      1.1  ragge 	int	sc_rxdiscard;
    320      1.1  ragge 	int	sc_rxlen;
    321      1.1  ragge 	struct mbuf *sc_rxhead;
    322      1.1  ragge 	struct mbuf *sc_rxtail;
    323      1.1  ragge 	struct mbuf **sc_rxtailp;
    324      1.1  ragge 
    325      1.1  ragge 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    326      1.1  ragge 	uint32_t sc_icr;		/* prototype interrupt bits */
    327      1.1  ragge 	uint32_t sc_tctl;		/* prototype TCTL register */
    328      1.1  ragge 	uint32_t sc_rctl;		/* prototype RCTL register */
    329      1.1  ragge 
    330      1.1  ragge 	int sc_mchash_type;		/* multicast filter offset */
    331      1.1  ragge 
    332      1.1  ragge 	uint16_t sc_eeprom[EEPROM_SIZE];
    333      1.1  ragge 
    334      1.1  ragge #if NRND > 0
    335      1.1  ragge 	rndsource_element_t rnd_source;	/* random source */
    336      1.1  ragge #endif
    337      1.1  ragge };
    338      1.1  ragge 
    339      1.1  ragge #define	DGE_RXCHAIN_RESET(sc)						\
    340      1.1  ragge do {									\
    341      1.1  ragge 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    342      1.1  ragge 	*(sc)->sc_rxtailp = NULL;					\
    343      1.1  ragge 	(sc)->sc_rxlen = 0;						\
    344      1.1  ragge } while (/*CONSTCOND*/0)
    345      1.1  ragge 
    346      1.1  ragge #define	DGE_RXCHAIN_LINK(sc, m)						\
    347      1.1  ragge do {									\
    348      1.1  ragge 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    349      1.1  ragge 	(sc)->sc_rxtailp = &(m)->m_next;				\
    350      1.1  ragge } while (/*CONSTCOND*/0)
    351      1.1  ragge 
    352      1.1  ragge /* sc_flags */
    353      1.1  ragge #define	DGE_F_BUS64		0x20	/* bus is 64-bit */
    354      1.1  ragge #define	DGE_F_PCIX		0x40	/* bus is PCI-X */
    355      1.1  ragge 
    356      1.1  ragge #ifdef DGE_EVENT_COUNTERS
    357      1.1  ragge #define	DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    358      1.1  ragge #else
    359      1.1  ragge #define	DGE_EVCNT_INCR(ev)	/* nothing */
    360      1.1  ragge #endif
    361      1.1  ragge 
    362      1.1  ragge #define	CSR_READ(sc, reg)						\
    363      1.1  ragge 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    364      1.1  ragge #define	CSR_WRITE(sc, reg, val)						\
    365      1.1  ragge 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    366      1.1  ragge 
    367      1.1  ragge #define	DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    368      1.1  ragge #define	DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    369      1.1  ragge 
    370      1.1  ragge #define	DGE_CDTXSYNC(sc, x, n, ops)					\
    371      1.1  ragge do {									\
    372      1.1  ragge 	int __x, __n;							\
    373      1.1  ragge 									\
    374      1.1  ragge 	__x = (x);							\
    375      1.1  ragge 	__n = (n);							\
    376      1.1  ragge 									\
    377      1.1  ragge 	/* If it will wrap around, sync to the end of the ring. */	\
    378      1.1  ragge 	if ((__x + __n) > DGE_NTXDESC) {					\
    379      1.1  ragge 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    380      1.1  ragge 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    381      1.1  ragge 		    (DGE_NTXDESC - __x), (ops));				\
    382      1.1  ragge 		__n -= (DGE_NTXDESC - __x);				\
    383      1.1  ragge 		__x = 0;						\
    384      1.1  ragge 	}								\
    385      1.1  ragge 									\
    386      1.1  ragge 	/* Now sync whatever is left. */				\
    387      1.1  ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    388      1.1  ragge 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    389      1.1  ragge } while (/*CONSTCOND*/0)
    390      1.1  ragge 
    391      1.1  ragge #define	DGE_CDRXSYNC(sc, x, ops)						\
    392      1.1  ragge do {									\
    393      1.1  ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    394      1.1  ragge 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    395      1.1  ragge } while (/*CONSTCOND*/0)
    396      1.1  ragge 
    397      1.1  ragge #define	DGE_INIT_RXDESC(sc, x)						\
    398      1.1  ragge do {									\
    399      1.1  ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    400      1.1  ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    401      1.1  ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    402      1.1  ragge 									\
    403      1.1  ragge 	/*								\
    404      1.1  ragge 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    405      1.1  ragge 	 * so that the payload after the Ethernet header is aligned	\
    406      1.1  ragge 	 * to a 4-byte boundary.					\
    407      1.1  ragge 	 *								\
    408      1.1  ragge 	 * XXX BRAINDAMAGE ALERT!					\
    409      1.1  ragge 	 * The stupid chip uses the same size for every buffer, which	\
    410      1.1  ragge 	 * is set in the Receive Control register.  We are using the 2K	\
    411      1.1  ragge 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    412      1.1  ragge 	 * reason, we can't "scoot" packets longer than the standard	\
    413      1.1  ragge 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    414      1.1  ragge 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    415      1.1  ragge 	 * the upper layer copy the headers.				\
    416      1.1  ragge 	 */								\
    417      1.1  ragge 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    418      1.1  ragge 									\
    419      1.1  ragge 	__rxd->dr_baddrl =					\
    420      1.1  ragge 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 		\
    421      1.1  ragge 		(sc)->sc_align_tweak);					\
    422      1.1  ragge 	__rxd->dr_baddrh = 0;					\
    423      1.1  ragge 	__rxd->dr_len = 0;						\
    424      1.1  ragge 	__rxd->dr_cksum = 0;						\
    425      1.1  ragge 	__rxd->dr_status = 0;						\
    426      1.1  ragge 	__rxd->dr_errors = 0;						\
    427      1.1  ragge 	__rxd->dr_special = 0;						\
    428      1.1  ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    429      1.1  ragge 									\
    430      1.1  ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    431      1.1  ragge } while (/*CONSTCOND*/0)
    432      1.1  ragge 
    433      1.1  ragge static void	dge_start(struct ifnet *);
    434      1.1  ragge static void	dge_watchdog(struct ifnet *);
    435      1.1  ragge static int	dge_ioctl(struct ifnet *, u_long, caddr_t);
    436      1.1  ragge static int	dge_init(struct ifnet *);
    437      1.1  ragge static void	dge_stop(struct ifnet *, int);
    438      1.1  ragge 
    439      1.1  ragge static void	dge_shutdown(void *);
    440      1.1  ragge 
    441      1.1  ragge static void	dge_reset(struct dge_softc *);
    442      1.1  ragge static void	dge_rxdrain(struct dge_softc *);
    443      1.1  ragge static int	dge_add_rxbuf(struct dge_softc *, int);
    444      1.1  ragge 
    445      1.1  ragge static void	dge_set_filter(struct dge_softc *);
    446      1.1  ragge 
    447      1.1  ragge static int	dge_intr(void *);
    448      1.1  ragge static void	dge_txintr(struct dge_softc *);
    449      1.1  ragge static void	dge_rxintr(struct dge_softc *);
    450      1.1  ragge static void	dge_linkintr(struct dge_softc *, uint32_t);
    451      1.1  ragge 
    452      1.1  ragge static int	dge_match(struct device *, struct cfdata *, void *);
    453      1.1  ragge static void	dge_attach(struct device *, struct device *, void *);
    454      1.1  ragge 
    455      1.1  ragge static int	dge_read_eeprom(struct dge_softc *sc);
    456      1.1  ragge static int	dge_eeprom_clockin(struct dge_softc *sc);
    457      1.1  ragge static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    458      1.1  ragge static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    459      1.1  ragge static int	dge_xgmii_mediachange(struct ifnet *);
    460      1.1  ragge static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    461      1.1  ragge static void	dge_xgmii_reset(struct dge_softc *);
    462      1.1  ragge static void	dge_xgmii_writereg(struct device *, int, int, int);
    463      1.1  ragge 
    464      1.1  ragge 
    465      1.1  ragge CFATTACH_DECL(dge, sizeof(struct dge_softc),
    466      1.1  ragge     dge_match, dge_attach, NULL, NULL);
    467      1.1  ragge 
    468      1.1  ragge #ifdef DGE_EVENT_COUNTERS
    469      1.1  ragge #if DGE_NTXSEGS > 100
    470      1.1  ragge #error Update dge_txseg_evcnt_names
    471      1.1  ragge #endif
    472      1.1  ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    473      1.1  ragge #endif /* DGE_EVENT_COUNTERS */
    474      1.1  ragge 
    475      1.1  ragge static int
    476      1.1  ragge dge_match(struct device *parent, struct cfdata *cf, void *aux)
    477      1.1  ragge {
    478      1.1  ragge 	struct pci_attach_args *pa = aux;
    479      1.1  ragge 
    480      1.1  ragge 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    481      1.1  ragge 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    482      1.1  ragge 		return (1);
    483      1.1  ragge 
    484      1.1  ragge 	return (0);
    485      1.1  ragge }
    486      1.1  ragge 
    487      1.1  ragge static void
    488      1.1  ragge dge_attach(struct device *parent, struct device *self, void *aux)
    489      1.1  ragge {
    490      1.1  ragge 	struct dge_softc *sc = (void *) self;
    491      1.1  ragge 	struct pci_attach_args *pa = aux;
    492      1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    493      1.1  ragge 	pci_chipset_tag_t pc = pa->pa_pc;
    494      1.1  ragge 	pci_intr_handle_t ih;
    495      1.1  ragge 	const char *intrstr = NULL;
    496      1.1  ragge 	bus_dma_segment_t seg;
    497      1.1  ragge 	int i, rseg, error;
    498      1.1  ragge 	uint8_t enaddr[ETHER_ADDR_LEN];
    499      1.1  ragge 	pcireg_t preg, memtype;
    500      1.1  ragge 	uint32_t reg;
    501      1.1  ragge 
    502      1.1  ragge 	sc->sc_dmat = pa->pa_dmat;
    503      1.1  ragge 	sc->sc_pc = pa->pa_pc;
    504      1.1  ragge 	sc->sc_pt = pa->pa_tag;
    505      1.1  ragge 
    506      1.1  ragge 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    507      1.1  ragge 	aprint_naive(": Ethernet controller\n");
    508      1.1  ragge 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    509      1.1  ragge 
    510      1.1  ragge 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    511      1.1  ragge         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    512      1.1  ragge             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    513      1.1  ragge                 aprint_error("%s: unable to map device registers\n",
    514      1.1  ragge                     sc->sc_dev.dv_xname);
    515      1.1  ragge                 return;
    516      1.1  ragge         }
    517      1.1  ragge 
    518      1.1  ragge 	/* Enable bus mastering */
    519      1.1  ragge 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    520      1.1  ragge 	preg |= PCI_COMMAND_MASTER_ENABLE;
    521      1.1  ragge 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    522      1.1  ragge 
    523      1.1  ragge 	/*
    524      1.1  ragge 	 * Map and establish our interrupt.
    525      1.1  ragge 	 */
    526      1.1  ragge 	if (pci_intr_map(pa, &ih)) {
    527      1.1  ragge 		aprint_error("%s: unable to map interrupt\n",
    528      1.1  ragge 		    sc->sc_dev.dv_xname);
    529      1.1  ragge 		return;
    530      1.1  ragge 	}
    531      1.1  ragge 	intrstr = pci_intr_string(pc, ih);
    532      1.1  ragge 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    533      1.1  ragge 	if (sc->sc_ih == NULL) {
    534      1.1  ragge 		aprint_error("%s: unable to establish interrupt",
    535      1.1  ragge 		    sc->sc_dev.dv_xname);
    536      1.1  ragge 		if (intrstr != NULL)
    537      1.1  ragge 			aprint_normal(" at %s", intrstr);
    538      1.1  ragge 		aprint_normal("\n");
    539      1.1  ragge 		return;
    540      1.1  ragge 	}
    541      1.1  ragge 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    542      1.1  ragge 
    543      1.1  ragge 	/*
    544      1.1  ragge 	 * Determine a few things about the bus we're connected to.
    545      1.1  ragge 	 */
    546      1.1  ragge 	reg = CSR_READ(sc, DGE_STATUS);
    547      1.1  ragge 	if (reg & STATUS_BUS64)
    548      1.1  ragge 		sc->sc_flags |= DGE_F_BUS64;
    549      1.1  ragge 
    550      1.1  ragge 	sc->sc_flags |= DGE_F_PCIX;
    551      1.1  ragge 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    552      1.1  ragge 			       PCI_CAP_PCIX,
    553      1.1  ragge 			       &sc->sc_pcix_offset, NULL) == 0)
    554      1.1  ragge 		aprint_error("%s: unable to find PCIX "
    555      1.1  ragge 		    "capability\n", sc->sc_dev.dv_xname);
    556      1.1  ragge 
    557      1.1  ragge 	if (sc->sc_flags & DGE_F_PCIX) {
    558      1.1  ragge 		switch (reg & STATUS_PCIX_MSK) {
    559      1.1  ragge 		case STATUS_PCIX_66:
    560      1.1  ragge 			sc->sc_bus_speed = 66;
    561      1.1  ragge 			break;
    562      1.1  ragge 		case STATUS_PCIX_100:
    563      1.1  ragge 			sc->sc_bus_speed = 100;
    564      1.1  ragge 			break;
    565      1.1  ragge 		case STATUS_PCIX_133:
    566      1.1  ragge 			sc->sc_bus_speed = 133;
    567      1.1  ragge 			break;
    568      1.1  ragge 		default:
    569      1.1  ragge 			aprint_error(
    570      1.1  ragge 			    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    571      1.1  ragge 			    sc->sc_dev.dv_xname,
    572      1.1  ragge 			    reg & STATUS_PCIX_MSK);
    573      1.1  ragge 			sc->sc_bus_speed = 66;
    574      1.1  ragge 		}
    575      1.1  ragge 	} else
    576      1.1  ragge 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    577      1.1  ragge 	aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    578      1.1  ragge 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    579      1.1  ragge 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    580      1.1  ragge 
    581      1.1  ragge 	/*
    582      1.1  ragge 	 * Allocate the control data structures, and create and load the
    583      1.1  ragge 	 * DMA map for it.
    584      1.1  ragge 	 */
    585      1.1  ragge 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    586      1.1  ragge 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    587      1.1  ragge 	    0)) != 0) {
    588      1.1  ragge 		aprint_error(
    589      1.1  ragge 		    "%s: unable to allocate control data, error = %d\n",
    590      1.1  ragge 		    sc->sc_dev.dv_xname, error);
    591      1.1  ragge 		goto fail_0;
    592      1.1  ragge 	}
    593      1.1  ragge 
    594      1.1  ragge 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    595      1.1  ragge 	    sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
    596      1.1  ragge 	    0)) != 0) {
    597      1.1  ragge 		aprint_error("%s: unable to map control data, error = %d\n",
    598      1.1  ragge 		    sc->sc_dev.dv_xname, error);
    599      1.1  ragge 		goto fail_1;
    600      1.1  ragge 	}
    601      1.1  ragge 
    602      1.1  ragge 	if ((error = bus_dmamap_create(sc->sc_dmat,
    603      1.1  ragge 	    sizeof(struct dge_control_data), 1,
    604      1.1  ragge 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    605      1.1  ragge 		aprint_error("%s: unable to create control data DMA map, "
    606      1.1  ragge 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    607      1.1  ragge 		goto fail_2;
    608      1.1  ragge 	}
    609      1.1  ragge 
    610      1.1  ragge 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    611      1.1  ragge 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    612      1.1  ragge 	    0)) != 0) {
    613      1.1  ragge 		aprint_error(
    614      1.1  ragge 		    "%s: unable to load control data DMA map, error = %d\n",
    615      1.1  ragge 		    sc->sc_dev.dv_xname, error);
    616      1.1  ragge 		goto fail_3;
    617      1.1  ragge 	}
    618      1.1  ragge 
    619      1.1  ragge 	/*
    620      1.1  ragge 	 * Create the transmit buffer DMA maps.
    621      1.1  ragge 	 */
    622      1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    623  1.1.2.1   tron 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    624      1.1  ragge 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    625      1.1  ragge 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    626      1.1  ragge 			aprint_error("%s: unable to create Tx DMA map %d, "
    627      1.1  ragge 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    628      1.1  ragge 			goto fail_4;
    629      1.1  ragge 		}
    630      1.1  ragge 	}
    631      1.1  ragge 
    632      1.1  ragge 	/*
    633      1.1  ragge 	 * Create the receive buffer DMA maps.
    634      1.1  ragge 	 */
    635      1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    636      1.1  ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    637      1.1  ragge 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    638      1.1  ragge 			aprint_error("%s: unable to create Rx DMA map %d, "
    639      1.1  ragge 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    640      1.1  ragge 			goto fail_5;
    641      1.1  ragge 		}
    642      1.1  ragge 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    643      1.1  ragge 	}
    644      1.1  ragge 
    645      1.1  ragge 	/*
    646      1.1  ragge 	 * Set bits in ctrl0 register.
    647      1.1  ragge 	 * Should get the software defined pins out of EEPROM?
    648      1.1  ragge 	 */
    649      1.1  ragge 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    650      1.1  ragge 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    651      1.1  ragge 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    652      1.1  ragge 
    653      1.1  ragge 	/*
    654      1.1  ragge 	 * Reset the chip to a known state.
    655      1.1  ragge 	 */
    656      1.1  ragge 	dge_reset(sc);
    657      1.1  ragge 
    658      1.1  ragge 	/*
    659      1.1  ragge 	 * Reset the PHY.
    660      1.1  ragge 	 */
    661      1.1  ragge 	dge_xgmii_reset(sc);
    662      1.1  ragge 
    663      1.1  ragge 	/*
    664      1.1  ragge 	 * Read in EEPROM data.
    665      1.1  ragge 	 */
    666      1.1  ragge 	if (dge_read_eeprom(sc)) {
    667      1.1  ragge 		aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
    668      1.1  ragge 		return;
    669      1.1  ragge 	}
    670      1.1  ragge 
    671      1.1  ragge 	/*
    672      1.1  ragge 	 * Get the ethernet address.
    673      1.1  ragge 	 */
    674      1.1  ragge 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    675      1.1  ragge 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    676      1.1  ragge 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    677      1.1  ragge 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    678      1.1  ragge 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    679      1.1  ragge 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    680      1.1  ragge 
    681      1.1  ragge 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    682      1.1  ragge 	    ether_sprintf(enaddr));
    683      1.1  ragge 
    684      1.1  ragge 	/*
    685      1.1  ragge 	 * Setup media stuff.
    686      1.1  ragge 	 */
    687      1.1  ragge         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    688      1.1  ragge             dge_xgmii_mediastatus);
    689      1.1  ragge         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    690      1.1  ragge         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    691      1.1  ragge 
    692      1.1  ragge 	ifp = &sc->sc_ethercom.ec_if;
    693      1.1  ragge 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    694      1.1  ragge 	ifp->if_softc = sc;
    695      1.1  ragge 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    696      1.1  ragge 	ifp->if_ioctl = dge_ioctl;
    697      1.1  ragge 	ifp->if_start = dge_start;
    698      1.1  ragge 	ifp->if_watchdog = dge_watchdog;
    699      1.1  ragge 	ifp->if_init = dge_init;
    700      1.1  ragge 	ifp->if_stop = dge_stop;
    701      1.1  ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    702      1.1  ragge 	IFQ_SET_READY(&ifp->if_snd);
    703      1.1  ragge 
    704      1.1  ragge 	sc->sc_ethercom.ec_capabilities |=
    705      1.1  ragge 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    706      1.1  ragge 
    707      1.1  ragge 	/*
    708      1.1  ragge 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    709      1.1  ragge 	 */
    710      1.1  ragge 	ifp->if_capabilities |=
    711      1.1  ragge 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    712      1.1  ragge 
    713      1.1  ragge 	/*
    714      1.1  ragge 	 * Attach the interface.
    715      1.1  ragge 	 */
    716      1.1  ragge 	if_attach(ifp);
    717      1.1  ragge 	ether_ifattach(ifp, enaddr);
    718      1.1  ragge #if NRND > 0
    719      1.1  ragge 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    720      1.1  ragge 	    RND_TYPE_NET, 0);
    721      1.1  ragge #endif
    722      1.1  ragge 
    723      1.1  ragge #ifdef DGE_EVENT_COUNTERS
    724      1.1  ragge 	/* Fix segment event naming */
    725      1.1  ragge 	if (dge_txseg_evcnt_names == NULL) {
    726      1.1  ragge 		dge_txseg_evcnt_names =
    727      1.1  ragge 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    728      1.1  ragge 		for (i = 0; i < DGE_NTXSEGS; i++)
    729      1.1  ragge 			sprintf((*dge_txseg_evcnt_names)[i], "txseg%d", i);
    730      1.1  ragge 	}
    731      1.1  ragge 
    732      1.1  ragge 	/* Attach event counters. */
    733      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    734      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    735      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    736      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    737      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    738      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    739      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    740      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txdw");
    741      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    742      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txqe");
    743      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    744      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    745      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    746      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    747      1.1  ragge 
    748      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    749      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    750      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    751      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    752      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    753      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    754      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    755      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    756      1.1  ragge 
    757      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    758      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    759      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    760      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    761      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    762      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    763      1.1  ragge 
    764      1.1  ragge 	for (i = 0; i < DGE_NTXSEGS; i++)
    765      1.1  ragge 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    766      1.1  ragge 		    NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
    767      1.1  ragge 
    768      1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    769      1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    770      1.1  ragge 
    771      1.1  ragge #endif /* DGE_EVENT_COUNTERS */
    772      1.1  ragge 
    773      1.1  ragge 	/*
    774      1.1  ragge 	 * Make sure the interface is shutdown during reboot.
    775      1.1  ragge 	 */
    776      1.1  ragge 	sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
    777      1.1  ragge 	if (sc->sc_sdhook == NULL)
    778      1.1  ragge 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    779      1.1  ragge 		    sc->sc_dev.dv_xname);
    780      1.1  ragge 	return;
    781      1.1  ragge 
    782      1.1  ragge 	/*
    783      1.1  ragge 	 * Free any resources we've allocated during the failed attach
    784      1.1  ragge 	 * attempt.  Do this in reverse order and fall through.
    785      1.1  ragge 	 */
    786      1.1  ragge  fail_5:
    787      1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    788      1.1  ragge 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    789      1.1  ragge 			bus_dmamap_destroy(sc->sc_dmat,
    790      1.1  ragge 			    sc->sc_rxsoft[i].rxs_dmamap);
    791      1.1  ragge 	}
    792      1.1  ragge  fail_4:
    793      1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    794      1.1  ragge 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    795      1.1  ragge 			bus_dmamap_destroy(sc->sc_dmat,
    796      1.1  ragge 			    sc->sc_txsoft[i].txs_dmamap);
    797      1.1  ragge 	}
    798      1.1  ragge 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    799      1.1  ragge  fail_3:
    800      1.1  ragge 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    801      1.1  ragge  fail_2:
    802      1.1  ragge 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    803      1.1  ragge 	    sizeof(struct dge_control_data));
    804      1.1  ragge  fail_1:
    805      1.1  ragge 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    806      1.1  ragge  fail_0:
    807      1.1  ragge 	return;
    808      1.1  ragge }
    809      1.1  ragge 
    810      1.1  ragge /*
    811      1.1  ragge  * dge_shutdown:
    812      1.1  ragge  *
    813      1.1  ragge  *	Make sure the interface is stopped at reboot time.
    814      1.1  ragge  */
    815      1.1  ragge static void
    816      1.1  ragge dge_shutdown(void *arg)
    817      1.1  ragge {
    818      1.1  ragge 	struct dge_softc *sc = arg;
    819      1.1  ragge 
    820      1.1  ragge 	dge_stop(&sc->sc_ethercom.ec_if, 1);
    821      1.1  ragge }
    822      1.1  ragge 
    823      1.1  ragge /*
    824      1.1  ragge  * dge_tx_cksum:
    825      1.1  ragge  *
    826      1.1  ragge  *	Set up TCP/IP checksumming parameters for the
    827      1.1  ragge  *	specified packet.
    828      1.1  ragge  */
    829      1.1  ragge static int
    830      1.1  ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
    831      1.1  ragge {
    832      1.1  ragge 	struct mbuf *m0 = txs->txs_mbuf;
    833      1.1  ragge 	struct dge_ctdes *t;
    834      1.1  ragge 	uint32_t ipcs, tucs;
    835      1.1  ragge 	struct ip *ip;
    836      1.1  ragge 	struct ether_header *eh;
    837      1.1  ragge 	int offset, iphl;
    838      1.1  ragge 	uint8_t fields = 0;
    839      1.1  ragge 
    840      1.1  ragge 	/*
    841      1.1  ragge 	 * XXX It would be nice if the mbuf pkthdr had offset
    842      1.1  ragge 	 * fields for the protocol headers.
    843      1.1  ragge 	 */
    844      1.1  ragge 
    845      1.1  ragge 	eh = mtod(m0, struct ether_header *);
    846      1.1  ragge 	switch (htons(eh->ether_type)) {
    847      1.1  ragge 	case ETHERTYPE_IP:
    848      1.1  ragge 		iphl = sizeof(struct ip);
    849      1.1  ragge 		offset = ETHER_HDR_LEN;
    850      1.1  ragge 		break;
    851      1.1  ragge 
    852      1.1  ragge 	case ETHERTYPE_VLAN:
    853      1.1  ragge 		iphl = sizeof(struct ip);
    854      1.1  ragge 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    855      1.1  ragge 		break;
    856      1.1  ragge 
    857      1.1  ragge 	default:
    858      1.1  ragge 		/*
    859      1.1  ragge 		 * Don't support this protocol or encapsulation.
    860      1.1  ragge 		 */
    861      1.1  ragge 		*fieldsp = 0;
    862      1.1  ragge 		return (0);
    863      1.1  ragge 	}
    864      1.1  ragge 
    865      1.1  ragge 	if (m0->m_len < (offset + iphl)) {
    866      1.1  ragge 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
    867      1.1  ragge 			printf("%s: dge_tx_cksum: mbuf allocation failed, "
    868      1.1  ragge 			    "packet dropped\n", sc->sc_dev.dv_xname);
    869      1.1  ragge 			return (ENOMEM);
    870      1.1  ragge 		}
    871      1.1  ragge 		m0 = txs->txs_mbuf;
    872      1.1  ragge 	}
    873      1.1  ragge 
    874      1.1  ragge 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
    875      1.1  ragge 	iphl = ip->ip_hl << 2;
    876      1.1  ragge 
    877      1.1  ragge 	/*
    878      1.1  ragge 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
    879      1.1  ragge 	 * offload feature, if we load the context descriptor, we
    880      1.1  ragge 	 * MUST provide valid values for IPCSS and TUCSS fields.
    881      1.1  ragge 	 */
    882      1.1  ragge 
    883      1.1  ragge 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    884      1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    885      1.1  ragge 		fields |= TDESC_POPTS_IXSM;
    886      1.1  ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
    887      1.1  ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
    888      1.1  ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
    889      1.1  ragge 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
    890      1.1  ragge 		/* Use the cached value. */
    891      1.1  ragge 		ipcs = sc->sc_txctx_ipcs;
    892      1.1  ragge 	} else {
    893      1.1  ragge 		/* Just initialize it to the likely value anyway. */
    894      1.1  ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
    895      1.1  ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
    896      1.1  ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
    897      1.1  ragge 	}
    898      1.1  ragge 	DPRINTF(DGE_DEBUG_CKSUM,
    899      1.1  ragge 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
    900      1.1  ragge 	    sc->sc_dev.dv_xname, offset, ipcs));
    901      1.1  ragge 
    902      1.1  ragge 	offset += iphl;
    903      1.1  ragge 
    904      1.1  ragge 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    905      1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
    906      1.1  ragge 		fields |= TDESC_POPTS_TXSM;
    907      1.1  ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
    908      1.1  ragge 		    DGE_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
    909      1.1  ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
    910      1.1  ragge 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
    911      1.1  ragge 		/* Use the cached value. */
    912      1.1  ragge 		tucs = sc->sc_txctx_tucs;
    913      1.1  ragge 	} else {
    914      1.1  ragge 		/* Just initialize it to a valid TCP context. */
    915      1.1  ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
    916      1.1  ragge 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
    917      1.1  ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
    918      1.1  ragge 	}
    919      1.1  ragge 
    920      1.1  ragge 	DPRINTF(DGE_DEBUG_CKSUM,
    921      1.1  ragge 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
    922      1.1  ragge 	    sc->sc_dev.dv_xname, offset, tucs));
    923      1.1  ragge 
    924      1.1  ragge 	if (sc->sc_txctx_ipcs == ipcs &&
    925      1.1  ragge 	    sc->sc_txctx_tucs == tucs) {
    926      1.1  ragge 		/* Cached context is fine. */
    927      1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
    928      1.1  ragge 	} else {
    929      1.1  ragge 		/* Fill in the context descriptor. */
    930      1.1  ragge #ifdef DGE_EVENT_COUNTERS
    931      1.1  ragge 		if (sc->sc_txctx_ipcs == 0xffffffff &&
    932      1.1  ragge 		    sc->sc_txctx_tucs == 0xffffffff)
    933      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
    934      1.1  ragge 		else
    935      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
    936      1.1  ragge #endif
    937      1.1  ragge 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
    938      1.1  ragge 		t->dc_tcpip_ipcs = htole32(ipcs);
    939      1.1  ragge 		t->dc_tcpip_tucs = htole32(tucs);
    940      1.1  ragge 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
    941      1.1  ragge 		t->dc_tcpip_seg = 0;
    942      1.1  ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
    943      1.1  ragge 
    944      1.1  ragge 		sc->sc_txctx_ipcs = ipcs;
    945      1.1  ragge 		sc->sc_txctx_tucs = tucs;
    946      1.1  ragge 
    947      1.1  ragge 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
    948      1.1  ragge 		txs->txs_ndesc++;
    949      1.1  ragge 	}
    950      1.1  ragge 
    951      1.1  ragge 	*fieldsp = fields;
    952      1.1  ragge 
    953      1.1  ragge 	return (0);
    954      1.1  ragge }
    955      1.1  ragge 
    956      1.1  ragge /*
    957      1.1  ragge  * dge_start:		[ifnet interface function]
    958      1.1  ragge  *
    959      1.1  ragge  *	Start packet transmission on the interface.
    960      1.1  ragge  */
    961      1.1  ragge static void
    962      1.1  ragge dge_start(struct ifnet *ifp)
    963      1.1  ragge {
    964      1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
    965      1.1  ragge 	struct mbuf *m0;
    966      1.1  ragge 	struct dge_txsoft *txs;
    967      1.1  ragge 	bus_dmamap_t dmamap;
    968      1.1  ragge 	int error, nexttx, lasttx = -1, ofree, seg;
    969      1.1  ragge 	uint32_t cksumcmd;
    970      1.1  ragge 	uint8_t cksumfields;
    971      1.1  ragge 
    972      1.1  ragge 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    973      1.1  ragge 		return;
    974      1.1  ragge 
    975      1.1  ragge 	/*
    976      1.1  ragge 	 * Remember the previous number of free descriptors.
    977      1.1  ragge 	 */
    978      1.1  ragge 	ofree = sc->sc_txfree;
    979      1.1  ragge 
    980      1.1  ragge 	/*
    981      1.1  ragge 	 * Loop through the send queue, setting up transmit descriptors
    982      1.1  ragge 	 * until we drain the queue, or use up all available transmit
    983      1.1  ragge 	 * descriptors.
    984      1.1  ragge 	 */
    985      1.1  ragge 	for (;;) {
    986      1.1  ragge 		/* Grab a packet off the queue. */
    987      1.1  ragge 		IFQ_POLL(&ifp->if_snd, m0);
    988      1.1  ragge 		if (m0 == NULL)
    989      1.1  ragge 			break;
    990      1.1  ragge 
    991      1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
    992      1.1  ragge 		    ("%s: TX: have packet to transmit: %p\n",
    993      1.1  ragge 		    sc->sc_dev.dv_xname, m0));
    994      1.1  ragge 
    995      1.1  ragge 		/* Get a work queue entry. */
    996      1.1  ragge 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
    997      1.1  ragge 			dge_txintr(sc);
    998      1.1  ragge 			if (sc->sc_txsfree == 0) {
    999      1.1  ragge 				DPRINTF(DGE_DEBUG_TX,
   1000      1.1  ragge 				    ("%s: TX: no free job descriptors\n",
   1001      1.1  ragge 					sc->sc_dev.dv_xname));
   1002      1.1  ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1003      1.1  ragge 				break;
   1004      1.1  ragge 			}
   1005      1.1  ragge 		}
   1006      1.1  ragge 
   1007      1.1  ragge 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1008      1.1  ragge 		dmamap = txs->txs_dmamap;
   1009      1.1  ragge 
   1010      1.1  ragge 		/*
   1011      1.1  ragge 		 * Load the DMA map.  If this fails, the packet either
   1012      1.1  ragge 		 * didn't fit in the allotted number of segments, or we
   1013      1.1  ragge 		 * were short on resources.  For the too-many-segments
   1014      1.1  ragge 		 * case, we simply report an error and drop the packet,
   1015      1.1  ragge 		 * since we can't sanely copy a jumbo packet to a single
   1016      1.1  ragge 		 * buffer.
   1017      1.1  ragge 		 */
   1018      1.1  ragge 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1019      1.1  ragge 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1020      1.1  ragge 		if (error) {
   1021      1.1  ragge 			if (error == EFBIG) {
   1022      1.1  ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1023      1.1  ragge 				printf("%s: Tx packet consumes too many "
   1024      1.1  ragge 				    "DMA segments, dropping...\n",
   1025      1.1  ragge 				    sc->sc_dev.dv_xname);
   1026      1.1  ragge 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1027      1.1  ragge 				m_freem(m0);
   1028      1.1  ragge 				continue;
   1029      1.1  ragge 			}
   1030      1.1  ragge 			/*
   1031      1.1  ragge 			 * Short on resources, just stop for now.
   1032      1.1  ragge 			 */
   1033      1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1034      1.1  ragge 			    ("%s: TX: dmamap load failed: %d\n",
   1035      1.1  ragge 			    sc->sc_dev.dv_xname, error));
   1036      1.1  ragge 			break;
   1037      1.1  ragge 		}
   1038      1.1  ragge 
   1039      1.1  ragge 		/*
   1040      1.1  ragge 		 * Ensure we have enough descriptors free to describe
   1041      1.1  ragge 		 * the packet.  Note, we always reserve one descriptor
   1042      1.1  ragge 		 * at the end of the ring due to the semantics of the
   1043      1.1  ragge 		 * TDT register, plus one more in the event we need
   1044      1.1  ragge 		 * to re-load checksum offload context.
   1045      1.1  ragge 		 */
   1046      1.1  ragge 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1047      1.1  ragge 			/*
   1048      1.1  ragge 			 * Not enough free descriptors to transmit this
   1049      1.1  ragge 			 * packet.  We haven't committed anything yet,
   1050      1.1  ragge 			 * so just unload the DMA map, put the packet
   1051      1.1  ragge 			 * pack on the queue, and punt.  Notify the upper
   1052      1.1  ragge 			 * layer that there are no more slots left.
   1053      1.1  ragge 			 */
   1054      1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1055      1.1  ragge 			    ("%s: TX: need %d descriptors, have %d\n",
   1056      1.1  ragge 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1057      1.1  ragge 			    sc->sc_txfree - 1));
   1058      1.1  ragge 			ifp->if_flags |= IFF_OACTIVE;
   1059      1.1  ragge 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1060      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1061      1.1  ragge 			break;
   1062      1.1  ragge 		}
   1063      1.1  ragge 
   1064      1.1  ragge 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1065      1.1  ragge 
   1066      1.1  ragge 		/*
   1067      1.1  ragge 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1068      1.1  ragge 		 */
   1069      1.1  ragge 
   1070      1.1  ragge 		/* Sync the DMA map. */
   1071      1.1  ragge 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1072      1.1  ragge 		    BUS_DMASYNC_PREWRITE);
   1073      1.1  ragge 
   1074      1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1075      1.1  ragge 		    ("%s: TX: packet has %d DMA segments\n",
   1076      1.1  ragge 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1077      1.1  ragge 
   1078      1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1079      1.1  ragge 
   1080      1.1  ragge 		/*
   1081      1.1  ragge 		 * Store a pointer to the packet so that we can free it
   1082      1.1  ragge 		 * later.
   1083      1.1  ragge 		 *
   1084      1.1  ragge 		 * Initially, we consider the number of descriptors the
   1085      1.1  ragge 		 * packet uses the number of DMA segments.  This may be
   1086      1.1  ragge 		 * incremented by 1 if we do checksum offload (a descriptor
   1087      1.1  ragge 		 * is used to set the checksum context).
   1088      1.1  ragge 		 */
   1089      1.1  ragge 		txs->txs_mbuf = m0;
   1090      1.1  ragge 		txs->txs_firstdesc = sc->sc_txnext;
   1091      1.1  ragge 		txs->txs_ndesc = dmamap->dm_nsegs;
   1092      1.1  ragge 
   1093      1.1  ragge 		/*
   1094      1.1  ragge 		 * Set up checksum offload parameters for
   1095      1.1  ragge 		 * this packet.
   1096      1.1  ragge 		 */
   1097      1.1  ragge 		if (m0->m_pkthdr.csum_flags &
   1098      1.1  ragge 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1099      1.1  ragge 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1100      1.1  ragge 				/* Error message already displayed. */
   1101      1.1  ragge 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1102      1.1  ragge 				continue;
   1103      1.1  ragge 			}
   1104      1.1  ragge 		} else {
   1105      1.1  ragge 			cksumfields = 0;
   1106      1.1  ragge 		}
   1107      1.1  ragge 
   1108      1.1  ragge 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1109      1.1  ragge 
   1110      1.1  ragge 		/*
   1111      1.1  ragge 		 * Initialize the transmit descriptor.
   1112      1.1  ragge 		 */
   1113      1.1  ragge 		for (nexttx = sc->sc_txnext, seg = 0;
   1114      1.1  ragge 		     seg < dmamap->dm_nsegs;
   1115      1.1  ragge 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1116      1.1  ragge 			/*
   1117      1.1  ragge 			 * Note: we currently only use 32-bit DMA
   1118      1.1  ragge 			 * addresses.
   1119      1.1  ragge 			 */
   1120      1.1  ragge 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1121      1.1  ragge 			sc->sc_txdescs[nexttx].dt_baddrl =
   1122      1.1  ragge 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1123      1.1  ragge 			sc->sc_txdescs[nexttx].dt_ctl =
   1124      1.1  ragge 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1125      1.1  ragge 			sc->sc_txdescs[nexttx].dt_status = 0;
   1126      1.1  ragge 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1127      1.1  ragge 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1128      1.1  ragge 			lasttx = nexttx;
   1129      1.1  ragge 
   1130      1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1131      1.1  ragge 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1132      1.1  ragge 			    sc->sc_dev.dv_xname, nexttx,
   1133      1.1  ragge 			    le32toh(dmamap->dm_segs[seg].ds_addr),
   1134      1.1  ragge 			    le32toh(dmamap->dm_segs[seg].ds_len)));
   1135      1.1  ragge 		}
   1136      1.1  ragge 
   1137      1.1  ragge 		KASSERT(lasttx != -1);
   1138      1.1  ragge 
   1139      1.1  ragge 		/*
   1140      1.1  ragge 		 * Set up the command byte on the last descriptor of
   1141      1.1  ragge 		 * the packet.  If we're in the interrupt delay window,
   1142      1.1  ragge 		 * delay the interrupt.
   1143      1.1  ragge 		 */
   1144      1.1  ragge 		sc->sc_txdescs[lasttx].dt_ctl |=
   1145      1.1  ragge 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1146      1.1  ragge 
   1147      1.1  ragge 		txs->txs_lastdesc = lasttx;
   1148      1.1  ragge 
   1149      1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1150      1.1  ragge 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1151      1.1  ragge 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1152      1.1  ragge 
   1153      1.1  ragge 		/* Sync the descriptors we're using. */
   1154      1.1  ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1155      1.1  ragge 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1156      1.1  ragge 
   1157      1.1  ragge 		/* Give the packet to the chip. */
   1158      1.1  ragge 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1159      1.1  ragge 
   1160      1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1161      1.1  ragge 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1162      1.1  ragge 
   1163      1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1164      1.1  ragge 		    ("%s: TX: finished transmitting packet, job %d\n",
   1165      1.1  ragge 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1166      1.1  ragge 
   1167      1.1  ragge 		/* Advance the tx pointer. */
   1168      1.1  ragge 		sc->sc_txfree -= txs->txs_ndesc;
   1169      1.1  ragge 		sc->sc_txnext = nexttx;
   1170      1.1  ragge 
   1171      1.1  ragge 		sc->sc_txsfree--;
   1172      1.1  ragge 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1173      1.1  ragge 
   1174      1.1  ragge #if NBPFILTER > 0
   1175      1.1  ragge 		/* Pass the packet to any BPF listeners. */
   1176      1.1  ragge 		if (ifp->if_bpf)
   1177      1.1  ragge 			bpf_mtap(ifp->if_bpf, m0);
   1178      1.1  ragge #endif /* NBPFILTER > 0 */
   1179      1.1  ragge 	}
   1180      1.1  ragge 
   1181      1.1  ragge 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1182      1.1  ragge 		/* No more slots; notify upper layer. */
   1183      1.1  ragge 		ifp->if_flags |= IFF_OACTIVE;
   1184      1.1  ragge 	}
   1185      1.1  ragge 
   1186      1.1  ragge 	if (sc->sc_txfree != ofree) {
   1187      1.1  ragge 		/* Set a watchdog timer in case the chip flakes out. */
   1188      1.1  ragge 		ifp->if_timer = 5;
   1189      1.1  ragge 	}
   1190      1.1  ragge }
   1191      1.1  ragge 
   1192      1.1  ragge /*
   1193      1.1  ragge  * dge_watchdog:		[ifnet interface function]
   1194      1.1  ragge  *
   1195      1.1  ragge  *	Watchdog timer handler.
   1196      1.1  ragge  */
   1197      1.1  ragge static void
   1198      1.1  ragge dge_watchdog(struct ifnet *ifp)
   1199      1.1  ragge {
   1200      1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1201      1.1  ragge 
   1202      1.1  ragge 	/*
   1203      1.1  ragge 	 * Since we're using delayed interrupts, sweep up
   1204      1.1  ragge 	 * before we report an error.
   1205      1.1  ragge 	 */
   1206      1.1  ragge 	dge_txintr(sc);
   1207      1.1  ragge 
   1208      1.1  ragge 	if (sc->sc_txfree != DGE_NTXDESC) {
   1209      1.1  ragge 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1210      1.1  ragge 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1211      1.1  ragge 		    sc->sc_txnext);
   1212      1.1  ragge 		ifp->if_oerrors++;
   1213      1.1  ragge 
   1214      1.1  ragge 		/* Reset the interface. */
   1215      1.1  ragge 		(void) dge_init(ifp);
   1216      1.1  ragge 	}
   1217      1.1  ragge 
   1218      1.1  ragge 	/* Try to get more packets going. */
   1219      1.1  ragge 	dge_start(ifp);
   1220      1.1  ragge }
   1221      1.1  ragge 
   1222      1.1  ragge /*
   1223      1.1  ragge  * dge_ioctl:		[ifnet interface function]
   1224      1.1  ragge  *
   1225      1.1  ragge  *	Handle control requests from the operator.
   1226      1.1  ragge  */
   1227      1.1  ragge static int
   1228      1.1  ragge dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1229      1.1  ragge {
   1230      1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1231      1.1  ragge 	struct ifreq *ifr = (struct ifreq *) data;
   1232      1.1  ragge 	pcireg_t preg;
   1233      1.1  ragge 	int s, error, mmrbc;
   1234      1.1  ragge 
   1235      1.1  ragge 	s = splnet();
   1236      1.1  ragge 
   1237      1.1  ragge 	switch (cmd) {
   1238      1.1  ragge 	case SIOCSIFMEDIA:
   1239      1.1  ragge 	case SIOCGIFMEDIA:
   1240      1.1  ragge 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1241      1.1  ragge 		break;
   1242      1.1  ragge 
   1243  1.1.2.1   tron 	case SIOCSIFMTU:
   1244  1.1.2.1   tron 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) {
   1245  1.1.2.1   tron 			error = EINVAL;
   1246  1.1.2.1   tron 		} else {
   1247  1.1.2.1   tron 			error = 0;
   1248  1.1.2.1   tron 			ifp->if_mtu = ifr->ifr_mtu;
   1249  1.1.2.1   tron 			if (ifp->if_flags & IFF_UP)
   1250  1.1.2.1   tron 				error = (*ifp->if_init)(ifp);
   1251  1.1.2.1   tron 		}
   1252  1.1.2.1   tron 		break;
   1253  1.1.2.1   tron 
   1254      1.1  ragge         case SIOCSIFFLAGS:
   1255      1.1  ragge 		/* extract link flags */
   1256      1.1  ragge 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1257      1.1  ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1258      1.1  ragge 			mmrbc = PCIX_MMRBC_512;
   1259      1.1  ragge 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1260      1.1  ragge 		    (ifp->if_flags & IFF_LINK1) != 0)
   1261      1.1  ragge 			mmrbc = PCIX_MMRBC_1024;
   1262      1.1  ragge 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1263      1.1  ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1264      1.1  ragge 			mmrbc = PCIX_MMRBC_2048;
   1265      1.1  ragge 		else
   1266      1.1  ragge 			mmrbc = PCIX_MMRBC_4096;
   1267      1.1  ragge 		if (mmrbc != sc->sc_mmrbc) {
   1268      1.1  ragge 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1269      1.1  ragge 			preg &= ~PCIX_MMRBC_MSK;
   1270      1.1  ragge 			preg |= mmrbc;
   1271      1.1  ragge 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1272      1.1  ragge 			sc->sc_mmrbc = mmrbc;
   1273      1.1  ragge 		}
   1274      1.1  ragge                 /* FALLTHROUGH */
   1275      1.1  ragge 	default:
   1276      1.1  ragge 		error = ether_ioctl(ifp, cmd, data);
   1277      1.1  ragge 		if (error == ENETRESET) {
   1278      1.1  ragge 			/*
   1279      1.1  ragge 			 * Multicast list has changed; set the hardware filter
   1280      1.1  ragge 			 * accordingly.
   1281      1.1  ragge 			 */
   1282      1.1  ragge 			dge_set_filter(sc);
   1283      1.1  ragge 			error = 0;
   1284      1.1  ragge 		}
   1285      1.1  ragge 		break;
   1286      1.1  ragge 	}
   1287      1.1  ragge 
   1288      1.1  ragge 	/* Try to get more packets going. */
   1289      1.1  ragge 	dge_start(ifp);
   1290      1.1  ragge 
   1291      1.1  ragge 	splx(s);
   1292      1.1  ragge 	return (error);
   1293      1.1  ragge }
   1294      1.1  ragge 
   1295      1.1  ragge /*
   1296      1.1  ragge  * dge_intr:
   1297      1.1  ragge  *
   1298      1.1  ragge  *	Interrupt service routine.
   1299      1.1  ragge  */
   1300      1.1  ragge static int
   1301      1.1  ragge dge_intr(void *arg)
   1302      1.1  ragge {
   1303      1.1  ragge 	struct dge_softc *sc = arg;
   1304      1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1305      1.1  ragge 	uint32_t icr;
   1306      1.1  ragge 	int wantinit, handled = 0;
   1307      1.1  ragge 
   1308      1.1  ragge 	for (wantinit = 0; wantinit == 0;) {
   1309      1.1  ragge 		icr = CSR_READ(sc, DGE_ICR);
   1310      1.1  ragge 		if ((icr & sc->sc_icr) == 0)
   1311      1.1  ragge 			break;
   1312      1.1  ragge 
   1313      1.1  ragge #if 0 /*NRND > 0*/
   1314      1.1  ragge 		if (RND_ENABLED(&sc->rnd_source))
   1315      1.1  ragge 			rnd_add_uint32(&sc->rnd_source, icr);
   1316      1.1  ragge #endif
   1317      1.1  ragge 
   1318      1.1  ragge 		handled = 1;
   1319      1.1  ragge 
   1320      1.1  ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1321      1.1  ragge 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1322      1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1323      1.1  ragge 			    ("%s: RX: got Rx intr 0x%08x\n",
   1324      1.1  ragge 			    sc->sc_dev.dv_xname,
   1325      1.1  ragge 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1326      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1327      1.1  ragge 		}
   1328      1.1  ragge #endif
   1329      1.1  ragge 		dge_rxintr(sc);
   1330      1.1  ragge 
   1331      1.1  ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1332      1.1  ragge 		if (icr & ICR_TXDW) {
   1333      1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1334      1.1  ragge 			    ("%s: TX: got TXDW interrupt\n",
   1335      1.1  ragge 			    sc->sc_dev.dv_xname));
   1336      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1337      1.1  ragge 		}
   1338      1.1  ragge 		if (icr & ICR_TXQE)
   1339      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1340      1.1  ragge #endif
   1341      1.1  ragge 		dge_txintr(sc);
   1342      1.1  ragge 
   1343      1.1  ragge 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1344      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1345      1.1  ragge 			dge_linkintr(sc, icr);
   1346      1.1  ragge 		}
   1347      1.1  ragge 
   1348      1.1  ragge 		if (icr & ICR_RXO) {
   1349      1.1  ragge 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1350      1.1  ragge 			wantinit = 1;
   1351      1.1  ragge 		}
   1352      1.1  ragge 	}
   1353      1.1  ragge 
   1354      1.1  ragge 	if (handled) {
   1355      1.1  ragge 		if (wantinit)
   1356      1.1  ragge 			dge_init(ifp);
   1357      1.1  ragge 
   1358      1.1  ragge 		/* Try to get more packets going. */
   1359      1.1  ragge 		dge_start(ifp);
   1360      1.1  ragge 	}
   1361      1.1  ragge 
   1362      1.1  ragge 	return (handled);
   1363      1.1  ragge }
   1364      1.1  ragge 
   1365      1.1  ragge /*
   1366      1.1  ragge  * dge_txintr:
   1367      1.1  ragge  *
   1368      1.1  ragge  *	Helper; handle transmit interrupts.
   1369      1.1  ragge  */
   1370      1.1  ragge static void
   1371      1.1  ragge dge_txintr(struct dge_softc *sc)
   1372      1.1  ragge {
   1373      1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1374      1.1  ragge 	struct dge_txsoft *txs;
   1375      1.1  ragge 	uint8_t status;
   1376      1.1  ragge 	int i;
   1377      1.1  ragge 
   1378      1.1  ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1379      1.1  ragge 
   1380      1.1  ragge 	/*
   1381      1.1  ragge 	 * Go through the Tx list and free mbufs for those
   1382      1.1  ragge 	 * frames which have been transmitted.
   1383      1.1  ragge 	 */
   1384      1.1  ragge 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1385      1.1  ragge 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1386      1.1  ragge 		txs = &sc->sc_txsoft[i];
   1387      1.1  ragge 
   1388      1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1389      1.1  ragge 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1390      1.1  ragge 
   1391      1.1  ragge 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1392      1.1  ragge 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1393      1.1  ragge 
   1394      1.1  ragge 		status =
   1395      1.1  ragge 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1396      1.1  ragge 		if ((status & TDESC_STA_DD) == 0) {
   1397      1.1  ragge 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1398      1.1  ragge 			    BUS_DMASYNC_PREREAD);
   1399      1.1  ragge 			break;
   1400      1.1  ragge 		}
   1401      1.1  ragge 
   1402      1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1403      1.1  ragge 		    ("%s: TX: job %d done: descs %d..%d\n",
   1404      1.1  ragge 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1405      1.1  ragge 		    txs->txs_lastdesc));
   1406      1.1  ragge 
   1407      1.1  ragge 		ifp->if_opackets++;
   1408      1.1  ragge 		sc->sc_txfree += txs->txs_ndesc;
   1409      1.1  ragge 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1410      1.1  ragge 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1411      1.1  ragge 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1412      1.1  ragge 		m_freem(txs->txs_mbuf);
   1413      1.1  ragge 		txs->txs_mbuf = NULL;
   1414      1.1  ragge 	}
   1415      1.1  ragge 
   1416      1.1  ragge 	/* Update the dirty transmit buffer pointer. */
   1417      1.1  ragge 	sc->sc_txsdirty = i;
   1418      1.1  ragge 	DPRINTF(DGE_DEBUG_TX,
   1419      1.1  ragge 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1420      1.1  ragge 
   1421      1.1  ragge 	/*
   1422      1.1  ragge 	 * If there are no more pending transmissions, cancel the watchdog
   1423      1.1  ragge 	 * timer.
   1424      1.1  ragge 	 */
   1425      1.1  ragge 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1426      1.1  ragge 		ifp->if_timer = 0;
   1427      1.1  ragge }
   1428      1.1  ragge 
   1429      1.1  ragge /*
   1430      1.1  ragge  * dge_rxintr:
   1431      1.1  ragge  *
   1432      1.1  ragge  *	Helper; handle receive interrupts.
   1433      1.1  ragge  */
   1434      1.1  ragge static void
   1435      1.1  ragge dge_rxintr(struct dge_softc *sc)
   1436      1.1  ragge {
   1437      1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1438      1.1  ragge 	struct dge_rxsoft *rxs;
   1439      1.1  ragge 	struct mbuf *m;
   1440      1.1  ragge 	int i, len;
   1441      1.1  ragge 	uint8_t status, errors;
   1442      1.1  ragge 
   1443      1.1  ragge 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1444      1.1  ragge 		rxs = &sc->sc_rxsoft[i];
   1445      1.1  ragge 
   1446      1.1  ragge 		DPRINTF(DGE_DEBUG_RX,
   1447      1.1  ragge 		    ("%s: RX: checking descriptor %d\n",
   1448      1.1  ragge 		    sc->sc_dev.dv_xname, i));
   1449      1.1  ragge 
   1450      1.1  ragge 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1451      1.1  ragge 
   1452      1.1  ragge 		status = sc->sc_rxdescs[i].dr_status;
   1453      1.1  ragge 		errors = sc->sc_rxdescs[i].dr_errors;
   1454      1.1  ragge 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1455      1.1  ragge 
   1456      1.1  ragge 		if ((status & RDESC_STS_DD) == 0) {
   1457      1.1  ragge 			/*
   1458      1.1  ragge 			 * We have processed all of the receive descriptors.
   1459      1.1  ragge 			 */
   1460      1.1  ragge 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1461      1.1  ragge 			break;
   1462      1.1  ragge 		}
   1463      1.1  ragge 
   1464      1.1  ragge 		if (__predict_false(sc->sc_rxdiscard)) {
   1465      1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1466      1.1  ragge 			    ("%s: RX: discarding contents of descriptor %d\n",
   1467      1.1  ragge 			    sc->sc_dev.dv_xname, i));
   1468      1.1  ragge 			DGE_INIT_RXDESC(sc, i);
   1469      1.1  ragge 			if (status & RDESC_STS_EOP) {
   1470      1.1  ragge 				/* Reset our state. */
   1471      1.1  ragge 				DPRINTF(DGE_DEBUG_RX,
   1472      1.1  ragge 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1473      1.1  ragge 				    sc->sc_dev.dv_xname));
   1474      1.1  ragge 				sc->sc_rxdiscard = 0;
   1475      1.1  ragge 			}
   1476      1.1  ragge 			continue;
   1477      1.1  ragge 		}
   1478      1.1  ragge 
   1479      1.1  ragge 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1480      1.1  ragge 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1481      1.1  ragge 
   1482      1.1  ragge 		m = rxs->rxs_mbuf;
   1483      1.1  ragge 
   1484      1.1  ragge 		/*
   1485      1.1  ragge 		 * Add a new receive buffer to the ring.
   1486      1.1  ragge 		 */
   1487      1.1  ragge 		if (dge_add_rxbuf(sc, i) != 0) {
   1488      1.1  ragge 			/*
   1489      1.1  ragge 			 * Failed, throw away what we've done so
   1490      1.1  ragge 			 * far, and discard the rest of the packet.
   1491      1.1  ragge 			 */
   1492      1.1  ragge 			ifp->if_ierrors++;
   1493      1.1  ragge 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1494      1.1  ragge 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1495      1.1  ragge 			DGE_INIT_RXDESC(sc, i);
   1496      1.1  ragge 			if ((status & RDESC_STS_EOP) == 0)
   1497      1.1  ragge 				sc->sc_rxdiscard = 1;
   1498      1.1  ragge 			if (sc->sc_rxhead != NULL)
   1499      1.1  ragge 				m_freem(sc->sc_rxhead);
   1500      1.1  ragge 			DGE_RXCHAIN_RESET(sc);
   1501      1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1502      1.1  ragge 			    ("%s: RX: Rx buffer allocation failed, "
   1503      1.1  ragge 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1504      1.1  ragge 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1505      1.1  ragge 			continue;
   1506      1.1  ragge 		}
   1507      1.1  ragge 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1508      1.1  ragge 
   1509      1.1  ragge 		DGE_RXCHAIN_LINK(sc, m);
   1510      1.1  ragge 
   1511      1.1  ragge 		m->m_len = len;
   1512      1.1  ragge 
   1513      1.1  ragge 		DPRINTF(DGE_DEBUG_RX,
   1514      1.1  ragge 		    ("%s: RX: buffer at %p len %d\n",
   1515      1.1  ragge 		    sc->sc_dev.dv_xname, m->m_data, len));
   1516      1.1  ragge 
   1517      1.1  ragge 		/*
   1518      1.1  ragge 		 * If this is not the end of the packet, keep
   1519      1.1  ragge 		 * looking.
   1520      1.1  ragge 		 */
   1521      1.1  ragge 		if ((status & RDESC_STS_EOP) == 0) {
   1522      1.1  ragge 			sc->sc_rxlen += len;
   1523      1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1524      1.1  ragge 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1525      1.1  ragge 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1526      1.1  ragge 			continue;
   1527      1.1  ragge 		}
   1528      1.1  ragge 
   1529      1.1  ragge 		/*
   1530      1.1  ragge 		 * Okay, we have the entire packet now...
   1531      1.1  ragge 		 */
   1532      1.1  ragge 		*sc->sc_rxtailp = NULL;
   1533      1.1  ragge 		m = sc->sc_rxhead;
   1534      1.1  ragge 		len += sc->sc_rxlen;
   1535      1.1  ragge 
   1536      1.1  ragge 		DGE_RXCHAIN_RESET(sc);
   1537      1.1  ragge 
   1538      1.1  ragge 		DPRINTF(DGE_DEBUG_RX,
   1539      1.1  ragge 		    ("%s: RX: have entire packet, len -> %d\n",
   1540      1.1  ragge 		    sc->sc_dev.dv_xname, len));
   1541      1.1  ragge 
   1542      1.1  ragge 		/*
   1543      1.1  ragge 		 * If an error occurred, update stats and drop the packet.
   1544      1.1  ragge 		 */
   1545      1.1  ragge 		if (errors &
   1546      1.1  ragge 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1547      1.1  ragge 			ifp->if_ierrors++;
   1548      1.1  ragge 			if (errors & RDESC_ERR_SE)
   1549      1.1  ragge 				printf("%s: symbol error\n",
   1550      1.1  ragge 				    sc->sc_dev.dv_xname);
   1551      1.1  ragge 			else if (errors & RDESC_ERR_P)
   1552      1.1  ragge 				printf("%s: parity error\n",
   1553      1.1  ragge 				    sc->sc_dev.dv_xname);
   1554      1.1  ragge 			else if (errors & RDESC_ERR_CE)
   1555      1.1  ragge 				printf("%s: CRC error\n",
   1556      1.1  ragge 				    sc->sc_dev.dv_xname);
   1557      1.1  ragge 			m_freem(m);
   1558      1.1  ragge 			continue;
   1559      1.1  ragge 		}
   1560      1.1  ragge 
   1561      1.1  ragge 		/*
   1562      1.1  ragge 		 * No errors.  Receive the packet.
   1563      1.1  ragge 		 */
   1564      1.1  ragge 		m->m_pkthdr.rcvif = ifp;
   1565      1.1  ragge 		m->m_pkthdr.len = len;
   1566      1.1  ragge 
   1567      1.1  ragge 		/*
   1568      1.1  ragge 		 * Set up checksum info for this packet.
   1569      1.1  ragge 		 */
   1570      1.1  ragge 		if (status & RDESC_STS_IPCS) {
   1571      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1572      1.1  ragge 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1573      1.1  ragge 			if (errors & RDESC_ERR_IPE)
   1574      1.1  ragge 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1575      1.1  ragge 		}
   1576      1.1  ragge 		if (status & RDESC_STS_TCPCS) {
   1577      1.1  ragge 			/*
   1578      1.1  ragge 			 * Note: we don't know if this was TCP or UDP,
   1579      1.1  ragge 			 * so we just set both bits, and expect the
   1580      1.1  ragge 			 * upper layers to deal.
   1581      1.1  ragge 			 */
   1582      1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1583      1.1  ragge 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1584      1.1  ragge 			if (errors & RDESC_ERR_TCPE)
   1585      1.1  ragge 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1586      1.1  ragge 		}
   1587      1.1  ragge 
   1588      1.1  ragge 		ifp->if_ipackets++;
   1589      1.1  ragge 
   1590      1.1  ragge #if NBPFILTER > 0
   1591      1.1  ragge 		/* Pass this up to any BPF listeners. */
   1592      1.1  ragge 		if (ifp->if_bpf)
   1593      1.1  ragge 			bpf_mtap(ifp->if_bpf, m);
   1594      1.1  ragge #endif /* NBPFILTER > 0 */
   1595      1.1  ragge 
   1596      1.1  ragge 		/* Pass it on. */
   1597      1.1  ragge 		(*ifp->if_input)(ifp, m);
   1598      1.1  ragge 	}
   1599      1.1  ragge 
   1600      1.1  ragge 	/* Update the receive pointer. */
   1601      1.1  ragge 	sc->sc_rxptr = i;
   1602      1.1  ragge 
   1603      1.1  ragge 	DPRINTF(DGE_DEBUG_RX,
   1604      1.1  ragge 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1605      1.1  ragge }
   1606      1.1  ragge 
   1607      1.1  ragge /*
   1608      1.1  ragge  * dge_linkintr:
   1609      1.1  ragge  *
   1610      1.1  ragge  *	Helper; handle link interrupts.
   1611      1.1  ragge  */
   1612      1.1  ragge static void
   1613      1.1  ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1614      1.1  ragge {
   1615      1.1  ragge 	uint32_t status;
   1616      1.1  ragge 
   1617      1.1  ragge 	if (icr & ICR_LSC) {
   1618      1.1  ragge 		status = CSR_READ(sc, DGE_STATUS);
   1619      1.1  ragge 		if (status & STATUS_LINKUP) {
   1620      1.1  ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1621      1.1  ragge 			    sc->sc_dev.dv_xname));
   1622      1.1  ragge 		} else {
   1623      1.1  ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1624      1.1  ragge 			    sc->sc_dev.dv_xname));
   1625      1.1  ragge 		}
   1626      1.1  ragge 	} else if (icr & ICR_RXSEQ) {
   1627      1.1  ragge 		DPRINTF(DGE_DEBUG_LINK,
   1628      1.1  ragge 		    ("%s: LINK: Receive sequence error\n",
   1629      1.1  ragge 		    sc->sc_dev.dv_xname));
   1630      1.1  ragge 	}
   1631      1.1  ragge 	/* XXX - fix errata */
   1632      1.1  ragge }
   1633      1.1  ragge 
   1634      1.1  ragge /*
   1635      1.1  ragge  * dge_reset:
   1636      1.1  ragge  *
   1637      1.1  ragge  *	Reset the i82597 chip.
   1638      1.1  ragge  */
   1639      1.1  ragge static void
   1640      1.1  ragge dge_reset(struct dge_softc *sc)
   1641      1.1  ragge {
   1642      1.1  ragge 	int i;
   1643      1.1  ragge 
   1644      1.1  ragge 	/*
   1645      1.1  ragge 	 * Do a chip reset.
   1646      1.1  ragge 	 */
   1647      1.1  ragge 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1648      1.1  ragge 
   1649      1.1  ragge 	delay(10000);
   1650      1.1  ragge 
   1651      1.1  ragge 	for (i = 0; i < 1000; i++) {
   1652      1.1  ragge 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1653      1.1  ragge 			break;
   1654      1.1  ragge 		delay(20);
   1655      1.1  ragge 	}
   1656      1.1  ragge 
   1657      1.1  ragge 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1658      1.1  ragge 		printf("%s: WARNING: reset failed to complete\n",
   1659      1.1  ragge 		    sc->sc_dev.dv_xname);
   1660      1.1  ragge         /*
   1661      1.1  ragge          * Reset the EEPROM logic.
   1662      1.1  ragge          * This will cause the chip to reread its default values,
   1663      1.1  ragge 	 * which doesn't happen otherwise (errata).
   1664      1.1  ragge          */
   1665      1.1  ragge         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1666      1.1  ragge         delay(10000);
   1667      1.1  ragge }
   1668      1.1  ragge 
   1669      1.1  ragge /*
   1670      1.1  ragge  * dge_init:		[ifnet interface function]
   1671      1.1  ragge  *
   1672      1.1  ragge  *	Initialize the interface.  Must be called at splnet().
   1673      1.1  ragge  */
   1674      1.1  ragge static int
   1675      1.1  ragge dge_init(struct ifnet *ifp)
   1676      1.1  ragge {
   1677      1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1678      1.1  ragge 	struct dge_rxsoft *rxs;
   1679      1.1  ragge 	int i, error = 0;
   1680      1.1  ragge 	uint32_t reg;
   1681      1.1  ragge 
   1682      1.1  ragge 	/*
   1683      1.1  ragge 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1684      1.1  ragge 	 * There is a small but measurable benefit to avoiding the adjusment
   1685      1.1  ragge 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1686      1.1  ragge 	 * on such platforms.  One possibility is that the DMA itself is
   1687      1.1  ragge 	 * slightly more efficient if the front of the entire packet (instead
   1688      1.1  ragge 	 * of the front of the headers) is aligned.
   1689      1.1  ragge 	 *
   1690      1.1  ragge 	 * Note we must always set align_tweak to 0 if we are using
   1691      1.1  ragge 	 * jumbo frames.
   1692      1.1  ragge 	 */
   1693      1.1  ragge #ifdef __NO_STRICT_ALIGNMENT
   1694      1.1  ragge 	sc->sc_align_tweak = 0;
   1695      1.1  ragge #else
   1696      1.1  ragge 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1697      1.1  ragge 		sc->sc_align_tweak = 0;
   1698      1.1  ragge 	else
   1699      1.1  ragge 		sc->sc_align_tweak = 2;
   1700      1.1  ragge #endif /* __NO_STRICT_ALIGNMENT */
   1701      1.1  ragge 
   1702      1.1  ragge 	/* Cancel any pending I/O. */
   1703      1.1  ragge 	dge_stop(ifp, 0);
   1704      1.1  ragge 
   1705      1.1  ragge 	/* Reset the chip to a known state. */
   1706      1.1  ragge 	dge_reset(sc);
   1707      1.1  ragge 
   1708      1.1  ragge 	/* Initialize the transmit descriptor ring. */
   1709      1.1  ragge 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1710      1.1  ragge 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1711      1.1  ragge 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1712      1.1  ragge 	sc->sc_txfree = DGE_NTXDESC;
   1713      1.1  ragge 	sc->sc_txnext = 0;
   1714      1.1  ragge 
   1715      1.1  ragge 	sc->sc_txctx_ipcs = 0xffffffff;
   1716      1.1  ragge 	sc->sc_txctx_tucs = 0xffffffff;
   1717      1.1  ragge 
   1718      1.1  ragge 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1719      1.1  ragge 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1720      1.1  ragge 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1721      1.1  ragge 	CSR_WRITE(sc, DGE_TDH, 0);
   1722      1.1  ragge 	CSR_WRITE(sc, DGE_TDT, 0);
   1723      1.1  ragge 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1724      1.1  ragge 
   1725      1.1  ragge #if 0
   1726      1.1  ragge 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1727      1.1  ragge 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1728      1.1  ragge #endif
   1729      1.1  ragge 	CSR_WRITE(sc, DGE_RXDCTL,
   1730      1.1  ragge 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1731      1.1  ragge 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1732      1.1  ragge 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1733      1.1  ragge 
   1734      1.1  ragge 	/* Initialize the transmit job descriptors. */
   1735      1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1736      1.1  ragge 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1737      1.1  ragge 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1738      1.1  ragge 	sc->sc_txsnext = 0;
   1739      1.1  ragge 	sc->sc_txsdirty = 0;
   1740      1.1  ragge 
   1741      1.1  ragge 	/*
   1742      1.1  ragge 	 * Initialize the receive descriptor and receive job
   1743      1.1  ragge 	 * descriptor rings.
   1744      1.1  ragge 	 */
   1745      1.1  ragge 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1746      1.1  ragge 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1747      1.1  ragge 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1748      1.1  ragge 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1749      1.1  ragge 	CSR_WRITE(sc, DGE_RDT, 0);
   1750      1.1  ragge 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1751      1.1  ragge 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1752      1.1  ragge 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1753      1.1  ragge 
   1754      1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1755      1.1  ragge 		rxs = &sc->sc_rxsoft[i];
   1756      1.1  ragge 		if (rxs->rxs_mbuf == NULL) {
   1757      1.1  ragge 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1758      1.1  ragge 				printf("%s: unable to allocate or map rx "
   1759      1.1  ragge 				    "buffer %d, error = %d\n",
   1760      1.1  ragge 				    sc->sc_dev.dv_xname, i, error);
   1761      1.1  ragge 				/*
   1762      1.1  ragge 				 * XXX Should attempt to run with fewer receive
   1763      1.1  ragge 				 * XXX buffers instead of just failing.
   1764      1.1  ragge 				 */
   1765      1.1  ragge 				dge_rxdrain(sc);
   1766      1.1  ragge 				goto out;
   1767      1.1  ragge 			}
   1768      1.1  ragge 		}
   1769      1.1  ragge 		DGE_INIT_RXDESC(sc, i);
   1770      1.1  ragge 	}
   1771      1.1  ragge 	sc->sc_rxptr = DGE_RXSPACE;
   1772      1.1  ragge 	sc->sc_rxdiscard = 0;
   1773      1.1  ragge 	DGE_RXCHAIN_RESET(sc);
   1774      1.1  ragge 
   1775      1.1  ragge 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1776      1.1  ragge 		sc->sc_ctrl0 |= CTRL0_JFE;
   1777      1.1  ragge 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1778      1.1  ragge 	}
   1779      1.1  ragge 
   1780      1.1  ragge 	/* Write the control registers. */
   1781      1.1  ragge 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1782      1.1  ragge 
   1783      1.1  ragge 	/*
   1784      1.1  ragge 	 * Set up checksum offload parameters.
   1785      1.1  ragge 	 */
   1786      1.1  ragge 	reg = CSR_READ(sc, DGE_RXCSUM);
   1787      1.1  ragge 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1788      1.1  ragge 		reg |= RXCSUM_IPOFL;
   1789      1.1  ragge 	else
   1790      1.1  ragge 		reg &= ~RXCSUM_IPOFL;
   1791      1.1  ragge 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1792      1.1  ragge 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1793      1.1  ragge 	else {
   1794      1.1  ragge 		reg &= ~RXCSUM_TUOFL;
   1795      1.1  ragge 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   1796      1.1  ragge 			reg &= ~RXCSUM_IPOFL;
   1797      1.1  ragge 	}
   1798      1.1  ragge 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1799      1.1  ragge 
   1800      1.1  ragge 	/*
   1801      1.1  ragge 	 * Set up the interrupt registers.
   1802      1.1  ragge 	 */
   1803      1.1  ragge 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1804      1.1  ragge 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1805      1.1  ragge 	    ICR_RXO | ICR_RXT0;
   1806      1.1  ragge 
   1807      1.1  ragge 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1808      1.1  ragge 
   1809      1.1  ragge 	/*
   1810      1.1  ragge 	 * Set up the transmit control register.
   1811      1.1  ragge 	 */
   1812      1.1  ragge 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1813      1.1  ragge 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1814      1.1  ragge 
   1815      1.1  ragge 	/*
   1816      1.1  ragge 	 * Set up the receive control register; we actually program
   1817      1.1  ragge 	 * the register when we set the receive filter.  Use multicast
   1818      1.1  ragge 	 * address offset type 0.
   1819      1.1  ragge 	 */
   1820      1.1  ragge 	sc->sc_mchash_type = 0;
   1821      1.1  ragge 
   1822      1.1  ragge 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   1823      1.1  ragge 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   1824      1.1  ragge 
   1825      1.1  ragge 	switch(MCLBYTES) {
   1826      1.1  ragge 	case 2048:
   1827      1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_2k;
   1828      1.1  ragge 		break;
   1829      1.1  ragge 	case 4096:
   1830      1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_4k;
   1831      1.1  ragge 		break;
   1832      1.1  ragge 	case 8192:
   1833      1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_8k;
   1834      1.1  ragge 		break;
   1835      1.1  ragge 	case 16384:
   1836      1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_16k;
   1837      1.1  ragge 		break;
   1838      1.1  ragge 	default:
   1839      1.1  ragge 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   1840      1.1  ragge 	}
   1841      1.1  ragge 
   1842      1.1  ragge 	/* Set the receive filter. */
   1843      1.1  ragge 	/* Also sets RCTL */
   1844      1.1  ragge 	dge_set_filter(sc);
   1845      1.1  ragge 
   1846      1.1  ragge 	/* ...all done! */
   1847      1.1  ragge 	ifp->if_flags |= IFF_RUNNING;
   1848      1.1  ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1849      1.1  ragge 
   1850      1.1  ragge  out:
   1851      1.1  ragge 	if (error)
   1852      1.1  ragge 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1853      1.1  ragge 	return (error);
   1854      1.1  ragge }
   1855      1.1  ragge 
   1856      1.1  ragge /*
   1857      1.1  ragge  * dge_rxdrain:
   1858      1.1  ragge  *
   1859      1.1  ragge  *	Drain the receive queue.
   1860      1.1  ragge  */
   1861      1.1  ragge static void
   1862      1.1  ragge dge_rxdrain(struct dge_softc *sc)
   1863      1.1  ragge {
   1864      1.1  ragge 	struct dge_rxsoft *rxs;
   1865      1.1  ragge 	int i;
   1866      1.1  ragge 
   1867      1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1868      1.1  ragge 		rxs = &sc->sc_rxsoft[i];
   1869      1.1  ragge 		if (rxs->rxs_mbuf != NULL) {
   1870      1.1  ragge 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1871      1.1  ragge 			m_freem(rxs->rxs_mbuf);
   1872      1.1  ragge 			rxs->rxs_mbuf = NULL;
   1873      1.1  ragge 		}
   1874      1.1  ragge 	}
   1875      1.1  ragge }
   1876      1.1  ragge 
   1877      1.1  ragge /*
   1878      1.1  ragge  * dge_stop:		[ifnet interface function]
   1879      1.1  ragge  *
   1880      1.1  ragge  *	Stop transmission on the interface.
   1881      1.1  ragge  */
   1882      1.1  ragge static void
   1883      1.1  ragge dge_stop(struct ifnet *ifp, int disable)
   1884      1.1  ragge {
   1885      1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1886      1.1  ragge 	struct dge_txsoft *txs;
   1887      1.1  ragge 	int i;
   1888      1.1  ragge 
   1889      1.1  ragge 	/* Stop the transmit and receive processes. */
   1890      1.1  ragge 	CSR_WRITE(sc, DGE_TCTL, 0);
   1891      1.1  ragge 	CSR_WRITE(sc, DGE_RCTL, 0);
   1892      1.1  ragge 
   1893      1.1  ragge 	/* Release any queued transmit buffers. */
   1894      1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   1895      1.1  ragge 		txs = &sc->sc_txsoft[i];
   1896      1.1  ragge 		if (txs->txs_mbuf != NULL) {
   1897      1.1  ragge 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1898      1.1  ragge 			m_freem(txs->txs_mbuf);
   1899      1.1  ragge 			txs->txs_mbuf = NULL;
   1900      1.1  ragge 		}
   1901      1.1  ragge 	}
   1902      1.1  ragge 
   1903      1.1  ragge 	if (disable)
   1904      1.1  ragge 		dge_rxdrain(sc);
   1905      1.1  ragge 
   1906      1.1  ragge 	/* Mark the interface as down and cancel the watchdog timer. */
   1907      1.1  ragge 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1908      1.1  ragge 	ifp->if_timer = 0;
   1909      1.1  ragge }
   1910      1.1  ragge 
   1911      1.1  ragge /*
   1912      1.1  ragge  * dge_add_rxbuf:
   1913      1.1  ragge  *
   1914      1.1  ragge  *	Add a receive buffer to the indiciated descriptor.
   1915      1.1  ragge  */
   1916      1.1  ragge static int
   1917      1.1  ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
   1918      1.1  ragge {
   1919      1.1  ragge 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1920      1.1  ragge 	struct mbuf *m;
   1921      1.1  ragge 	int error;
   1922      1.1  ragge 
   1923      1.1  ragge 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1924      1.1  ragge 	if (m == NULL)
   1925      1.1  ragge 		return (ENOBUFS);
   1926      1.1  ragge 
   1927      1.1  ragge 	MCLGET(m, M_DONTWAIT);
   1928      1.1  ragge 	if ((m->m_flags & M_EXT) == 0) {
   1929      1.1  ragge 		m_freem(m);
   1930      1.1  ragge 		return (ENOBUFS);
   1931      1.1  ragge 	}
   1932      1.1  ragge 
   1933      1.1  ragge 	if (rxs->rxs_mbuf != NULL)
   1934      1.1  ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1935      1.1  ragge 
   1936      1.1  ragge 	rxs->rxs_mbuf = m;
   1937      1.1  ragge 
   1938      1.1  ragge 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   1939      1.1  ragge 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   1940      1.1  ragge 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1941      1.1  ragge 	if (error) {
   1942      1.1  ragge 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   1943      1.1  ragge 		    sc->sc_dev.dv_xname, idx, error);
   1944      1.1  ragge 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   1945      1.1  ragge 	}
   1946      1.1  ragge 
   1947      1.1  ragge 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1948      1.1  ragge 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1949      1.1  ragge 
   1950      1.1  ragge 	return (0);
   1951      1.1  ragge }
   1952      1.1  ragge 
   1953      1.1  ragge /*
   1954      1.1  ragge  * dge_set_ral:
   1955      1.1  ragge  *
   1956      1.1  ragge  *	Set an entry in the receive address list.
   1957      1.1  ragge  */
   1958      1.1  ragge static void
   1959      1.1  ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   1960      1.1  ragge {
   1961      1.1  ragge 	uint32_t ral_lo, ral_hi;
   1962      1.1  ragge 
   1963      1.1  ragge 	if (enaddr != NULL) {
   1964      1.1  ragge 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   1965      1.1  ragge 		    (enaddr[3] << 24);
   1966      1.1  ragge 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   1967      1.1  ragge 		ral_hi |= RAH_AV;
   1968      1.1  ragge 	} else {
   1969      1.1  ragge 		ral_lo = 0;
   1970      1.1  ragge 		ral_hi = 0;
   1971      1.1  ragge 	}
   1972      1.1  ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   1973      1.1  ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   1974      1.1  ragge }
   1975      1.1  ragge 
   1976      1.1  ragge /*
   1977      1.1  ragge  * dge_mchash:
   1978      1.1  ragge  *
   1979      1.1  ragge  *	Compute the hash of the multicast address for the 4096-bit
   1980      1.1  ragge  *	multicast filter.
   1981      1.1  ragge  */
   1982      1.1  ragge static uint32_t
   1983      1.1  ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   1984      1.1  ragge {
   1985      1.1  ragge 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   1986      1.1  ragge 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   1987      1.1  ragge 	uint32_t hash;
   1988      1.1  ragge 
   1989      1.1  ragge 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   1990      1.1  ragge 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   1991      1.1  ragge 
   1992      1.1  ragge 	return (hash & 0xfff);
   1993      1.1  ragge }
   1994      1.1  ragge 
   1995      1.1  ragge /*
   1996      1.1  ragge  * dge_set_filter:
   1997      1.1  ragge  *
   1998      1.1  ragge  *	Set up the receive filter.
   1999      1.1  ragge  */
   2000      1.1  ragge static void
   2001      1.1  ragge dge_set_filter(struct dge_softc *sc)
   2002      1.1  ragge {
   2003      1.1  ragge 	struct ethercom *ec = &sc->sc_ethercom;
   2004      1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2005      1.1  ragge 	struct ether_multi *enm;
   2006      1.1  ragge 	struct ether_multistep step;
   2007      1.1  ragge 	uint32_t hash, reg, bit;
   2008      1.1  ragge 	int i;
   2009      1.1  ragge 
   2010      1.1  ragge 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2011      1.1  ragge 
   2012      1.1  ragge 	if (ifp->if_flags & IFF_BROADCAST)
   2013      1.1  ragge 		sc->sc_rctl |= RCTL_BAM;
   2014      1.1  ragge 	if (ifp->if_flags & IFF_PROMISC) {
   2015      1.1  ragge 		sc->sc_rctl |= RCTL_UPE;
   2016      1.1  ragge 		goto allmulti;
   2017      1.1  ragge 	}
   2018      1.1  ragge 
   2019      1.1  ragge 	/*
   2020      1.1  ragge 	 * Set the station address in the first RAL slot, and
   2021      1.1  ragge 	 * clear the remaining slots.
   2022      1.1  ragge 	 */
   2023      1.1  ragge 	dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2024      1.1  ragge 	for (i = 1; i < RA_TABSIZE; i++)
   2025      1.1  ragge 		dge_set_ral(sc, NULL, i);
   2026      1.1  ragge 
   2027      1.1  ragge 	/* Clear out the multicast table. */
   2028      1.1  ragge 	for (i = 0; i < MC_TABSIZE; i++)
   2029      1.1  ragge 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2030      1.1  ragge 
   2031      1.1  ragge 	ETHER_FIRST_MULTI(step, ec, enm);
   2032      1.1  ragge 	while (enm != NULL) {
   2033      1.1  ragge 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2034      1.1  ragge 			/*
   2035      1.1  ragge 			 * We must listen to a range of multicast addresses.
   2036      1.1  ragge 			 * For now, just accept all multicasts, rather than
   2037      1.1  ragge 			 * trying to set only those filter bits needed to match
   2038      1.1  ragge 			 * the range.  (At this time, the only use of address
   2039      1.1  ragge 			 * ranges is for IP multicast routing, for which the
   2040      1.1  ragge 			 * range is big enough to require all bits set.)
   2041      1.1  ragge 			 */
   2042      1.1  ragge 			goto allmulti;
   2043      1.1  ragge 		}
   2044      1.1  ragge 
   2045      1.1  ragge 		hash = dge_mchash(sc, enm->enm_addrlo);
   2046      1.1  ragge 
   2047      1.1  ragge 		reg = (hash >> 5) & 0x7f;
   2048      1.1  ragge 		bit = hash & 0x1f;
   2049      1.1  ragge 
   2050      1.1  ragge 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2051      1.1  ragge 		hash |= 1U << bit;
   2052      1.1  ragge 
   2053      1.1  ragge 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2054      1.1  ragge 
   2055      1.1  ragge 		ETHER_NEXT_MULTI(step, enm);
   2056      1.1  ragge 	}
   2057      1.1  ragge 
   2058      1.1  ragge 	ifp->if_flags &= ~IFF_ALLMULTI;
   2059      1.1  ragge 	goto setit;
   2060      1.1  ragge 
   2061      1.1  ragge  allmulti:
   2062      1.1  ragge 	ifp->if_flags |= IFF_ALLMULTI;
   2063      1.1  ragge 	sc->sc_rctl |= RCTL_MPE;
   2064      1.1  ragge 
   2065      1.1  ragge  setit:
   2066      1.1  ragge 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2067      1.1  ragge }
   2068      1.1  ragge 
   2069      1.1  ragge /*
   2070      1.1  ragge  * Read in the EEPROM info and verify checksum.
   2071      1.1  ragge  */
   2072      1.1  ragge int
   2073      1.1  ragge dge_read_eeprom(struct dge_softc *sc)
   2074      1.1  ragge {
   2075      1.1  ragge 	uint16_t cksum;
   2076      1.1  ragge 	int i;
   2077      1.1  ragge 
   2078      1.1  ragge 	cksum = 0;
   2079      1.1  ragge 	for (i = 0; i < EEPROM_SIZE; i++) {
   2080      1.1  ragge 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2081      1.1  ragge 		cksum += sc->sc_eeprom[i];
   2082      1.1  ragge 	}
   2083      1.1  ragge 	return cksum != EEPROM_CKSUM;
   2084      1.1  ragge }
   2085      1.1  ragge 
   2086      1.1  ragge 
   2087      1.1  ragge /*
   2088      1.1  ragge  * Read a 16-bit word from address addr in the serial EEPROM.
   2089      1.1  ragge  */
   2090      1.1  ragge uint16_t
   2091      1.1  ragge dge_eeprom_word(struct dge_softc *sc, int addr)
   2092      1.1  ragge {
   2093      1.1  ragge 	uint32_t reg;
   2094      1.1  ragge 	uint16_t rval = 0;
   2095      1.1  ragge 	int i;
   2096      1.1  ragge 
   2097      1.1  ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2098      1.1  ragge 
   2099      1.1  ragge 	/* Lower clock pulse (and data in to chip) */
   2100      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2101      1.1  ragge 	/* Select chip */
   2102      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2103      1.1  ragge 
   2104      1.1  ragge 	/* Send read command */
   2105      1.1  ragge 	dge_eeprom_clockout(sc, 1);
   2106      1.1  ragge 	dge_eeprom_clockout(sc, 1);
   2107      1.1  ragge 	dge_eeprom_clockout(sc, 0);
   2108      1.1  ragge 
   2109      1.1  ragge 	/* Send address */
   2110      1.1  ragge 	for (i = 5; i >= 0; i--)
   2111      1.1  ragge 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2112      1.1  ragge 
   2113      1.1  ragge 	/* Read data */
   2114      1.1  ragge 	for (i = 0; i < 16; i++) {
   2115      1.1  ragge 		rval <<= 1;
   2116      1.1  ragge 		rval |= dge_eeprom_clockin(sc);
   2117      1.1  ragge 	}
   2118      1.1  ragge 
   2119      1.1  ragge 	/* Deselect chip */
   2120      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2121      1.1  ragge 
   2122      1.1  ragge 	return rval;
   2123      1.1  ragge }
   2124      1.1  ragge 
   2125      1.1  ragge /*
   2126      1.1  ragge  * Clock out a single bit to the EEPROM.
   2127      1.1  ragge  */
   2128      1.1  ragge void
   2129      1.1  ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2130      1.1  ragge {
   2131      1.1  ragge 	int reg;
   2132      1.1  ragge 
   2133      1.1  ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2134      1.1  ragge 	if (bit)
   2135      1.1  ragge 		reg |= EECD_DI;
   2136      1.1  ragge 
   2137      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2138      1.1  ragge 	delay(2);
   2139      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2140      1.1  ragge 	delay(2);
   2141      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2142      1.1  ragge 	delay(2);
   2143      1.1  ragge }
   2144      1.1  ragge 
   2145      1.1  ragge /*
   2146      1.1  ragge  * Clock in a single bit from EEPROM.
   2147      1.1  ragge  */
   2148      1.1  ragge int
   2149      1.1  ragge dge_eeprom_clockin(struct dge_softc *sc)
   2150      1.1  ragge {
   2151      1.1  ragge 	int reg, rv;
   2152      1.1  ragge 
   2153      1.1  ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2154      1.1  ragge 
   2155      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2156      1.1  ragge 	delay(2);
   2157      1.1  ragge 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2158      1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2159      1.1  ragge 	delay(2);
   2160      1.1  ragge 
   2161      1.1  ragge 	return rv;
   2162      1.1  ragge }
   2163      1.1  ragge 
   2164      1.1  ragge static void
   2165      1.1  ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2166      1.1  ragge {
   2167      1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   2168      1.1  ragge 
   2169      1.1  ragge 	ifmr->ifm_status = IFM_AVALID;
   2170      1.1  ragge 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2171      1.1  ragge 
   2172      1.1  ragge 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2173      1.1  ragge 		ifmr->ifm_status |= IFM_ACTIVE;
   2174      1.1  ragge }
   2175      1.1  ragge 
   2176      1.1  ragge static inline int
   2177      1.1  ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2178      1.1  ragge {
   2179      1.1  ragge         int i, mdic;
   2180      1.1  ragge 
   2181      1.1  ragge         CSR_WRITE(sc, DGE_MDIO,
   2182      1.1  ragge 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2183      1.1  ragge         for (i = 0; i < 10; i++) {
   2184      1.1  ragge                 delay(10);
   2185      1.1  ragge                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2186      1.1  ragge                         break;
   2187      1.1  ragge         }
   2188      1.1  ragge         return mdic;
   2189      1.1  ragge }
   2190      1.1  ragge 
   2191      1.1  ragge 
   2192      1.1  ragge static void
   2193      1.1  ragge dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
   2194      1.1  ragge {
   2195      1.1  ragge 	struct dge_softc *sc = (void *) self;
   2196      1.1  ragge 	int mdic;
   2197      1.1  ragge 
   2198      1.1  ragge 	CSR_WRITE(sc, DGE_MDIRW, val);
   2199      1.1  ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2200      1.1  ragge 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2201      1.1  ragge 		    sc->sc_dev.dv_xname, phy, reg);
   2202      1.1  ragge 		return;
   2203      1.1  ragge 	}
   2204      1.1  ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2205      1.1  ragge 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2206      1.1  ragge 		    sc->sc_dev.dv_xname, phy, reg);
   2207      1.1  ragge 		return;
   2208      1.1  ragge 	}
   2209      1.1  ragge }
   2210      1.1  ragge 
   2211      1.1  ragge static void
   2212      1.1  ragge dge_xgmii_reset(struct dge_softc *sc)
   2213      1.1  ragge {
   2214      1.1  ragge 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2215      1.1  ragge }
   2216      1.1  ragge 
   2217      1.1  ragge static int
   2218      1.1  ragge dge_xgmii_mediachange(struct ifnet *ifp)
   2219      1.1  ragge {
   2220      1.1  ragge 	return 0;
   2221      1.1  ragge }
   2222      1.1  ragge 
   2223