Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.15.2.2
      1  1.15.2.2        ad /*	$NetBSD: if_dge.c,v 1.15.2.2 2007/10/09 13:41:44 ad Exp $ */
      2       1.1     ragge 
      3       1.1     ragge /*
      4       1.1     ragge  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5       1.1     ragge  * All rights reserved.
      6       1.1     ragge  *
      7       1.1     ragge  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8       1.1     ragge  *
      9       1.1     ragge  * Redistribution and use in source and binary forms, with or without
     10       1.1     ragge  * modification, are permitted provided that the following conditions
     11       1.1     ragge  * are met:
     12       1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     13       1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     14       1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     16       1.1     ragge  *    documentation and/or other materials provided with the distribution.
     17       1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     18       1.1     ragge  *    must display the following acknowledgement:
     19       1.1     ragge  *	This product includes software developed for the NetBSD Project by
     20       1.1     ragge  *	SUNET, Swedish University Computer Network.
     21       1.1     ragge  * 4. The name of SUNET may not be used to endorse or promote products
     22       1.1     ragge  *    derived from this software without specific prior written permission.
     23       1.1     ragge  *
     24       1.1     ragge  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25       1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26       1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27       1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28       1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29       1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30       1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31       1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32       1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33       1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34       1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     35       1.1     ragge  */
     36       1.1     ragge 
     37       1.1     ragge /*
     38       1.1     ragge  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39       1.1     ragge  * All rights reserved.
     40       1.1     ragge  *
     41       1.1     ragge  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42       1.1     ragge  *
     43       1.1     ragge  * Redistribution and use in source and binary forms, with or without
     44       1.1     ragge  * modification, are permitted provided that the following conditions
     45       1.1     ragge  * are met:
     46       1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     47       1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     48       1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     50       1.1     ragge  *    documentation and/or other materials provided with the distribution.
     51       1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     52       1.1     ragge  *    must display the following acknowledgement:
     53       1.1     ragge  *	This product includes software developed for the NetBSD Project by
     54       1.1     ragge  *	Wasabi Systems, Inc.
     55       1.1     ragge  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56       1.1     ragge  *    or promote products derived from this software without specific prior
     57       1.1     ragge  *    written permission.
     58       1.1     ragge  *
     59       1.1     ragge  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60       1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61       1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62       1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63       1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64       1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65       1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66       1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67       1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68       1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69       1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     70       1.1     ragge  */
     71       1.1     ragge 
     72       1.1     ragge /*
     73       1.1     ragge  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74       1.1     ragge  *
     75       1.1     ragge  * TODO (in no specific order):
     76       1.1     ragge  *	HW VLAN support.
     77       1.1     ragge  *	TSE offloading (needs kernel changes...)
     78       1.1     ragge  *	RAIDC (receive interrupt delay adaptation)
     79       1.1     ragge  *	Use memory > 4GB.
     80       1.1     ragge  */
     81       1.1     ragge 
     82       1.1     ragge #include <sys/cdefs.h>
     83  1.15.2.2        ad __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.15.2.2 2007/10/09 13:41:44 ad Exp $");
     84       1.1     ragge 
     85       1.1     ragge #include "bpfilter.h"
     86       1.1     ragge #include "rnd.h"
     87       1.1     ragge 
     88       1.1     ragge #include <sys/param.h>
     89       1.1     ragge #include <sys/systm.h>
     90      1.10     perry #include <sys/callout.h>
     91       1.1     ragge #include <sys/mbuf.h>
     92       1.1     ragge #include <sys/malloc.h>
     93       1.1     ragge #include <sys/kernel.h>
     94       1.1     ragge #include <sys/socket.h>
     95       1.1     ragge #include <sys/ioctl.h>
     96       1.1     ragge #include <sys/errno.h>
     97       1.1     ragge #include <sys/device.h>
     98       1.1     ragge #include <sys/queue.h>
     99       1.1     ragge 
    100       1.1     ragge #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101       1.1     ragge 
    102       1.1     ragge #if NRND > 0
    103       1.1     ragge #include <sys/rnd.h>
    104       1.1     ragge #endif
    105       1.1     ragge 
    106       1.1     ragge #include <net/if.h>
    107      1.10     perry #include <net/if_dl.h>
    108       1.1     ragge #include <net/if_media.h>
    109       1.1     ragge #include <net/if_ether.h>
    110       1.1     ragge 
    111      1.10     perry #if NBPFILTER > 0
    112       1.1     ragge #include <net/bpf.h>
    113       1.1     ragge #endif
    114       1.1     ragge 
    115       1.1     ragge #include <netinet/in.h>			/* XXX for struct ip */
    116       1.1     ragge #include <netinet/in_systm.h>		/* XXX for struct ip */
    117       1.1     ragge #include <netinet/ip.h>			/* XXX for struct ip */
    118       1.1     ragge #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    119       1.1     ragge 
    120       1.1     ragge #include <machine/bus.h>
    121       1.1     ragge #include <machine/intr.h>
    122       1.1     ragge #include <machine/endian.h>
    123       1.1     ragge 
    124       1.1     ragge #include <dev/mii/mii.h>
    125       1.1     ragge #include <dev/mii/miivar.h>
    126       1.1     ragge #include <dev/mii/mii_bitbang.h>
    127       1.1     ragge 
    128       1.1     ragge #include <dev/pci/pcireg.h>
    129       1.1     ragge #include <dev/pci/pcivar.h>
    130       1.1     ragge #include <dev/pci/pcidevs.h>
    131       1.1     ragge 
    132       1.1     ragge #include <dev/pci/if_dgereg.h>
    133       1.1     ragge 
    134       1.3     ragge /*
    135       1.3     ragge  * The receive engine may sometimes become off-by-one when writing back
    136       1.3     ragge  * chained descriptors.	 Avoid this by allocating a large chunk of
    137       1.3     ragge  * memory and use if instead (to avoid chained descriptors).
    138       1.3     ragge  * This only happens with chained descriptors under heavy load.
    139       1.3     ragge  */
    140       1.3     ragge #define DGE_OFFBYONE_RXBUG
    141       1.3     ragge 
    142       1.1     ragge #define DGE_EVENT_COUNTERS
    143       1.1     ragge #define DGE_DEBUG
    144       1.1     ragge 
    145       1.1     ragge #ifdef DGE_DEBUG
    146       1.3     ragge #define DGE_DEBUG_LINK		0x01
    147       1.3     ragge #define DGE_DEBUG_TX		0x02
    148       1.3     ragge #define DGE_DEBUG_RX		0x04
    149       1.3     ragge #define DGE_DEBUG_CKSUM		0x08
    150       1.1     ragge int	dge_debug = 0;
    151       1.1     ragge 
    152       1.3     ragge #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    153       1.1     ragge #else
    154       1.3     ragge #define DPRINTF(x, y)	/* nothing */
    155       1.1     ragge #endif /* DGE_DEBUG */
    156       1.1     ragge 
    157       1.1     ragge /*
    158       1.1     ragge  * Transmit descriptor list size. We allow up to 100 DMA segments per
    159       1.1     ragge  * packet (Intel reports of jumbo frame packets with as
    160       1.1     ragge  * many as 80 DMA segments when using 16k buffers).
    161       1.1     ragge  */
    162       1.3     ragge #define DGE_NTXSEGS		100
    163       1.3     ragge #define DGE_IFQUEUELEN		20000
    164       1.3     ragge #define DGE_TXQUEUELEN		2048
    165       1.3     ragge #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    166       1.3     ragge #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    167       1.3     ragge #define DGE_NTXDESC		1024
    168       1.3     ragge #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    169       1.3     ragge #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    170       1.3     ragge #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    171       1.1     ragge 
    172       1.1     ragge /*
    173       1.1     ragge  * Receive descriptor list size.
    174       1.1     ragge  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    175       1.3     ragge  * be chained.	Due to the nature of the card (high-speed), keep this
    176       1.1     ragge  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    177       1.1     ragge  * which at full speed will be received in just under 3ms.
    178       1.1     ragge  */
    179       1.3     ragge #define DGE_NRXDESC		2048
    180       1.3     ragge #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    181       1.3     ragge #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    182       1.1     ragge /*
    183       1.1     ragge  * # of descriptors between head and written descriptors.
    184       1.1     ragge  * This is to work-around two erratas.
    185       1.1     ragge  */
    186       1.1     ragge #define DGE_RXSPACE		10
    187       1.3     ragge #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    188       1.1     ragge /*
    189       1.1     ragge  * Receive descriptor fetch threshholds. These are values recommended
    190       1.1     ragge  * by Intel, do not touch them unless you know what you are doing.
    191       1.1     ragge  */
    192       1.3     ragge #define RXDCTL_PTHRESH_VAL	128
    193       1.3     ragge #define RXDCTL_HTHRESH_VAL	16
    194       1.3     ragge #define RXDCTL_WTHRESH_VAL	16
    195       1.1     ragge 
    196       1.1     ragge 
    197       1.1     ragge /*
    198       1.1     ragge  * Tweakable parameters; default values.
    199       1.1     ragge  */
    200       1.3     ragge #define FCRTH	0x30000 /* Send XOFF water mark */
    201       1.3     ragge #define FCRTL	0x28000 /* Send XON water mark */
    202       1.3     ragge #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    203       1.3     ragge #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    204       1.1     ragge 
    205       1.1     ragge /*
    206       1.1     ragge  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    207       1.1     ragge  * a single clump that maps to a single DMA segment to make serveral things
    208       1.1     ragge  * easier.
    209       1.1     ragge  */
    210       1.1     ragge struct dge_control_data {
    211       1.1     ragge 	/*
    212       1.1     ragge 	 * The transmit descriptors.
    213       1.1     ragge 	 */
    214       1.1     ragge 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    215       1.1     ragge 
    216       1.1     ragge 	/*
    217       1.1     ragge 	 * The receive descriptors.
    218       1.1     ragge 	 */
    219       1.1     ragge 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    220       1.1     ragge };
    221       1.1     ragge 
    222       1.3     ragge #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    223       1.3     ragge #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    224       1.3     ragge #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    225       1.1     ragge 
    226       1.1     ragge /*
    227       1.2     ragge  * The DGE interface have a higher max MTU size than normal jumbo frames.
    228       1.2     ragge  */
    229       1.3     ragge #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    230       1.2     ragge 
    231       1.2     ragge /*
    232       1.1     ragge  * Software state for transmit jobs.
    233       1.1     ragge  */
    234       1.1     ragge struct dge_txsoft {
    235       1.1     ragge 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    236       1.1     ragge 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    237       1.1     ragge 	int txs_firstdesc;		/* first descriptor in packet */
    238       1.1     ragge 	int txs_lastdesc;		/* last descriptor in packet */
    239       1.1     ragge 	int txs_ndesc;			/* # of descriptors used */
    240       1.1     ragge };
    241       1.1     ragge 
    242       1.1     ragge /*
    243       1.3     ragge  * Software state for receive buffers.	Each descriptor gets a
    244       1.3     ragge  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    245       1.1     ragge  * more than one buffer, we chain them together.
    246       1.1     ragge  */
    247       1.1     ragge struct dge_rxsoft {
    248       1.1     ragge 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    249       1.1     ragge 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    250       1.1     ragge };
    251       1.1     ragge 
    252       1.1     ragge /*
    253       1.1     ragge  * Software state per device.
    254       1.1     ragge  */
    255       1.1     ragge struct dge_softc {
    256       1.1     ragge 	struct device sc_dev;		/* generic device information */
    257       1.1     ragge 	bus_space_tag_t sc_st;		/* bus space tag */
    258       1.1     ragge 	bus_space_handle_t sc_sh;	/* bus space handle */
    259       1.1     ragge 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    260       1.1     ragge 	struct ethercom sc_ethercom;	/* ethernet common data */
    261       1.1     ragge 	void *sc_sdhook;		/* shutdown hook */
    262       1.1     ragge 
    263       1.1     ragge 	int sc_flags;			/* flags; see below */
    264       1.1     ragge 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    265       1.1     ragge 	int sc_pcix_offset;		/* PCIX capability register offset */
    266       1.1     ragge 
    267       1.1     ragge 	pci_chipset_tag_t sc_pc;
    268       1.1     ragge 	pcitag_t sc_pt;
    269       1.1     ragge 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    270       1.1     ragge 
    271       1.1     ragge 	void *sc_ih;			/* interrupt cookie */
    272       1.1     ragge 
    273       1.1     ragge 	struct ifmedia sc_media;
    274       1.1     ragge 
    275       1.1     ragge 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    276       1.3     ragge #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    277       1.1     ragge 
    278       1.1     ragge 	int		sc_align_tweak;
    279       1.1     ragge 
    280       1.1     ragge 	/*
    281       1.1     ragge 	 * Software state for the transmit and receive descriptors.
    282       1.1     ragge 	 */
    283       1.1     ragge 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    284       1.1     ragge 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    285       1.1     ragge 
    286       1.1     ragge 	/*
    287       1.1     ragge 	 * Control data structures.
    288       1.1     ragge 	 */
    289       1.1     ragge 	struct dge_control_data *sc_control_data;
    290       1.3     ragge #define sc_txdescs	sc_control_data->wcd_txdescs
    291       1.3     ragge #define sc_rxdescs	sc_control_data->wcd_rxdescs
    292       1.1     ragge 
    293       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    294       1.1     ragge 	/* Event counters. */
    295       1.1     ragge 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    296       1.1     ragge 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    297       1.3     ragge 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    298       1.1     ragge 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    299       1.1     ragge 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    300       1.1     ragge 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    301       1.1     ragge 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    302       1.1     ragge 
    303       1.1     ragge 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    304       1.1     ragge 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    305       1.1     ragge 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    306       1.1     ragge 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    307       1.1     ragge 
    308       1.1     ragge 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    309       1.1     ragge 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    310       1.1     ragge 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    311       1.1     ragge 
    312       1.1     ragge 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    313       1.1     ragge 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    314       1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    315       1.1     ragge 
    316       1.1     ragge 	int	sc_txfree;		/* number of free Tx descriptors */
    317       1.1     ragge 	int	sc_txnext;		/* next ready Tx descriptor */
    318       1.1     ragge 
    319       1.1     ragge 	int	sc_txsfree;		/* number of free Tx jobs */
    320       1.1     ragge 	int	sc_txsnext;		/* next free Tx job */
    321       1.1     ragge 	int	sc_txsdirty;		/* dirty Tx jobs */
    322       1.1     ragge 
    323       1.1     ragge 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    324       1.1     ragge 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    325       1.1     ragge 
    326       1.1     ragge 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    327       1.1     ragge 	int	sc_rxdiscard;
    328       1.1     ragge 	int	sc_rxlen;
    329       1.1     ragge 	struct mbuf *sc_rxhead;
    330       1.1     ragge 	struct mbuf *sc_rxtail;
    331       1.1     ragge 	struct mbuf **sc_rxtailp;
    332       1.1     ragge 
    333       1.1     ragge 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    334       1.1     ragge 	uint32_t sc_icr;		/* prototype interrupt bits */
    335       1.1     ragge 	uint32_t sc_tctl;		/* prototype TCTL register */
    336       1.1     ragge 	uint32_t sc_rctl;		/* prototype RCTL register */
    337       1.1     ragge 
    338       1.1     ragge 	int sc_mchash_type;		/* multicast filter offset */
    339       1.1     ragge 
    340       1.1     ragge 	uint16_t sc_eeprom[EEPROM_SIZE];
    341       1.1     ragge 
    342       1.1     ragge #if NRND > 0
    343       1.3     ragge 	rndsource_element_t rnd_source; /* random source */
    344       1.3     ragge #endif
    345       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    346      1.15  christos 	void *sc_bugbuf;
    347       1.3     ragge 	SLIST_HEAD(, rxbugentry) sc_buglist;
    348       1.3     ragge 	bus_dmamap_t sc_bugmap;
    349       1.3     ragge 	struct rxbugentry *sc_entry;
    350       1.1     ragge #endif
    351       1.1     ragge };
    352       1.1     ragge 
    353       1.3     ragge #define DGE_RXCHAIN_RESET(sc)						\
    354       1.1     ragge do {									\
    355       1.1     ragge 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    356       1.1     ragge 	*(sc)->sc_rxtailp = NULL;					\
    357       1.1     ragge 	(sc)->sc_rxlen = 0;						\
    358       1.1     ragge } while (/*CONSTCOND*/0)
    359       1.1     ragge 
    360       1.3     ragge #define DGE_RXCHAIN_LINK(sc, m)						\
    361       1.1     ragge do {									\
    362       1.1     ragge 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    363       1.1     ragge 	(sc)->sc_rxtailp = &(m)->m_next;				\
    364       1.1     ragge } while (/*CONSTCOND*/0)
    365       1.1     ragge 
    366       1.1     ragge /* sc_flags */
    367       1.3     ragge #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    368       1.3     ragge #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    369       1.1     ragge 
    370       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    371       1.3     ragge #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    372       1.1     ragge #else
    373       1.3     ragge #define DGE_EVCNT_INCR(ev)	/* nothing */
    374       1.1     ragge #endif
    375       1.1     ragge 
    376       1.3     ragge #define CSR_READ(sc, reg)						\
    377       1.1     ragge 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    378       1.3     ragge #define CSR_WRITE(sc, reg, val)						\
    379       1.1     ragge 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    380       1.1     ragge 
    381       1.3     ragge #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    382       1.3     ragge #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    383       1.1     ragge 
    384       1.3     ragge #define DGE_CDTXSYNC(sc, x, n, ops)					\
    385       1.1     ragge do {									\
    386       1.1     ragge 	int __x, __n;							\
    387       1.1     ragge 									\
    388       1.1     ragge 	__x = (x);							\
    389       1.1     ragge 	__n = (n);							\
    390       1.1     ragge 									\
    391       1.1     ragge 	/* If it will wrap around, sync to the end of the ring. */	\
    392       1.5   thorpej 	if ((__x + __n) > DGE_NTXDESC) {				\
    393       1.1     ragge 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    394       1.1     ragge 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    395       1.5   thorpej 		    (DGE_NTXDESC - __x), (ops));			\
    396       1.1     ragge 		__n -= (DGE_NTXDESC - __x);				\
    397       1.1     ragge 		__x = 0;						\
    398       1.1     ragge 	}								\
    399       1.1     ragge 									\
    400       1.1     ragge 	/* Now sync whatever is left. */				\
    401       1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    402       1.1     ragge 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    403       1.1     ragge } while (/*CONSTCOND*/0)
    404       1.1     ragge 
    405       1.3     ragge #define DGE_CDRXSYNC(sc, x, ops)						\
    406       1.1     ragge do {									\
    407       1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    408       1.1     ragge 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    409       1.1     ragge } while (/*CONSTCOND*/0)
    410       1.1     ragge 
    411       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    412       1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    413       1.3     ragge do {									\
    414       1.3     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    415       1.3     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    416       1.3     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    417       1.3     ragge 									\
    418       1.3     ragge 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    419       1.3     ragge 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    420       1.3     ragge 	__rxd->dr_baddrh = 0;						\
    421       1.3     ragge 	__rxd->dr_len = 0;						\
    422       1.3     ragge 	__rxd->dr_cksum = 0;						\
    423       1.3     ragge 	__rxd->dr_status = 0;						\
    424       1.3     ragge 	__rxd->dr_errors = 0;						\
    425       1.3     ragge 	__rxd->dr_special = 0;						\
    426       1.3     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    427       1.3     ragge 									\
    428       1.3     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    429       1.3     ragge } while (/*CONSTCOND*/0)
    430       1.3     ragge #else
    431       1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    432       1.1     ragge do {									\
    433       1.1     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    434       1.1     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    435       1.1     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    436       1.1     ragge 									\
    437       1.1     ragge 	/*								\
    438       1.1     ragge 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    439       1.1     ragge 	 * so that the payload after the Ethernet header is aligned	\
    440       1.1     ragge 	 * to a 4-byte boundary.					\
    441       1.1     ragge 	 *								\
    442       1.1     ragge 	 * XXX BRAINDAMAGE ALERT!					\
    443       1.1     ragge 	 * The stupid chip uses the same size for every buffer, which	\
    444       1.3     ragge 	 * is set in the Receive Control register.  We are using the 2K \
    445       1.1     ragge 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    446       1.1     ragge 	 * reason, we can't "scoot" packets longer than the standard	\
    447       1.1     ragge 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    448       1.1     ragge 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    449       1.1     ragge 	 * the upper layer copy the headers.				\
    450       1.1     ragge 	 */								\
    451       1.1     ragge 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    452       1.1     ragge 									\
    453       1.5   thorpej 	__rxd->dr_baddrl =						\
    454       1.3     ragge 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    455       1.1     ragge 		(sc)->sc_align_tweak);					\
    456       1.5   thorpej 	__rxd->dr_baddrh = 0;						\
    457       1.1     ragge 	__rxd->dr_len = 0;						\
    458       1.1     ragge 	__rxd->dr_cksum = 0;						\
    459       1.1     ragge 	__rxd->dr_status = 0;						\
    460       1.1     ragge 	__rxd->dr_errors = 0;						\
    461       1.1     ragge 	__rxd->dr_special = 0;						\
    462       1.1     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    463       1.1     ragge 									\
    464       1.1     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    465       1.1     ragge } while (/*CONSTCOND*/0)
    466       1.3     ragge #endif
    467       1.3     ragge 
    468       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    469       1.3     ragge /*
    470       1.3     ragge  * Allocation constants.  Much memory may be used for this.
    471       1.3     ragge  */
    472       1.3     ragge #ifndef DGE_BUFFER_SIZE
    473       1.3     ragge #define DGE_BUFFER_SIZE DGE_MAX_MTU
    474       1.3     ragge #endif
    475       1.3     ragge #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    476       1.3     ragge #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    477       1.3     ragge 
    478       1.3     ragge struct rxbugentry {
    479       1.3     ragge 	SLIST_ENTRY(rxbugentry) rb_entry;
    480       1.3     ragge 	int rb_slot;
    481       1.3     ragge };
    482       1.3     ragge 
    483       1.3     ragge static int
    484       1.3     ragge dge_alloc_rcvmem(struct dge_softc *sc)
    485       1.3     ragge {
    486      1.15  christos 	char *ptr, *kva;
    487       1.3     ragge 	bus_dma_segment_t seg;
    488       1.3     ragge 	int i, rseg, state, error;
    489       1.3     ragge 	struct rxbugentry *entry;
    490       1.3     ragge 
    491       1.3     ragge 	state = error = 0;
    492       1.3     ragge 
    493       1.3     ragge 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    494       1.3     ragge 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    495       1.3     ragge 		printf("%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
    496       1.3     ragge 		return ENOBUFS;
    497       1.3     ragge 	}
    498       1.3     ragge 
    499       1.3     ragge 	state = 1;
    500      1.15  christos 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    501       1.3     ragge 	    BUS_DMA_NOWAIT)) {
    502       1.3     ragge 		printf("%s: can't map DMA buffers (%d bytes)\n",
    503       1.3     ragge 		    sc->sc_dev.dv_xname, (int)DGE_RXMEM);
    504       1.3     ragge 		error = ENOBUFS;
    505       1.3     ragge 		goto out;
    506       1.3     ragge 	}
    507       1.3     ragge 
    508       1.3     ragge 	state = 2;
    509       1.3     ragge 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    510       1.3     ragge 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    511       1.3     ragge 		printf("%s: can't create DMA map\n", sc->sc_dev.dv_xname);
    512       1.3     ragge 		error = ENOBUFS;
    513       1.3     ragge 		goto out;
    514       1.3     ragge 	}
    515       1.3     ragge 
    516       1.3     ragge 	state = 3;
    517       1.3     ragge 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    518       1.3     ragge 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    519       1.3     ragge 		printf("%s: can't load DMA map\n", sc->sc_dev.dv_xname);
    520       1.3     ragge 		error = ENOBUFS;
    521       1.3     ragge 		goto out;
    522       1.3     ragge 	}
    523       1.3     ragge 
    524       1.3     ragge 	state = 4;
    525      1.15  christos 	sc->sc_bugbuf = (void *)kva;
    526       1.3     ragge 	SLIST_INIT(&sc->sc_buglist);
    527       1.3     ragge 
    528       1.3     ragge 	/*
    529       1.3     ragge 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    530       1.3     ragge 	 * in an array.
    531       1.3     ragge 	 */
    532       1.3     ragge 	ptr = sc->sc_bugbuf;
    533       1.3     ragge 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    534       1.3     ragge 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    535       1.3     ragge 		error = ENOBUFS;
    536       1.3     ragge 		goto out;
    537       1.3     ragge 	}
    538       1.3     ragge 	sc->sc_entry = entry;
    539       1.3     ragge 	for (i = 0; i < DGE_NBUFFERS; i++) {
    540       1.3     ragge 		entry[i].rb_slot = i;
    541       1.3     ragge 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    542       1.3     ragge 	}
    543       1.3     ragge out:
    544       1.3     ragge 	if (error != 0) {
    545       1.3     ragge 		switch (state) {
    546       1.3     ragge 		case 4:
    547       1.3     ragge 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    548       1.3     ragge 		case 3:
    549       1.3     ragge 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    550       1.3     ragge 		case 2:
    551       1.3     ragge 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    552       1.3     ragge 		case 1:
    553       1.3     ragge 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    554       1.3     ragge 			break;
    555       1.3     ragge 		default:
    556       1.3     ragge 			break;
    557       1.3     ragge 		}
    558       1.3     ragge 	}
    559       1.3     ragge 
    560       1.3     ragge 	return error;
    561       1.3     ragge }
    562       1.3     ragge 
    563       1.3     ragge /*
    564       1.3     ragge  * Allocate a jumbo buffer.
    565       1.3     ragge  */
    566       1.3     ragge static void *
    567       1.3     ragge dge_getbuf(struct dge_softc *sc)
    568       1.3     ragge {
    569       1.3     ragge 	struct rxbugentry *entry;
    570       1.3     ragge 
    571       1.3     ragge 	entry = SLIST_FIRST(&sc->sc_buglist);
    572       1.3     ragge 
    573       1.3     ragge 	if (entry == NULL) {
    574       1.3     ragge 		printf("%s: no free RX buffers\n", sc->sc_dev.dv_xname);
    575       1.3     ragge 		return(NULL);
    576       1.3     ragge 	}
    577       1.3     ragge 
    578       1.3     ragge 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    579      1.15  christos 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    580       1.3     ragge }
    581       1.3     ragge 
    582       1.3     ragge /*
    583       1.3     ragge  * Release a jumbo buffer.
    584       1.3     ragge  */
    585       1.3     ragge static void
    586      1.15  christos dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    587       1.3     ragge {
    588       1.3     ragge 	struct rxbugentry *entry;
    589       1.3     ragge 	struct dge_softc *sc;
    590       1.3     ragge 	int i, s;
    591       1.3     ragge 
    592       1.3     ragge 	/* Extract the softc struct pointer. */
    593       1.3     ragge 	sc = (struct dge_softc *)arg;
    594       1.3     ragge 
    595       1.3     ragge 	if (sc == NULL)
    596       1.3     ragge 		panic("dge_freebuf: can't find softc pointer!");
    597       1.3     ragge 
    598       1.3     ragge 	/* calculate the slot this buffer belongs to */
    599       1.3     ragge 
    600      1.15  christos 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    601       1.3     ragge 
    602       1.3     ragge 	if ((i < 0) || (i >= DGE_NBUFFERS))
    603       1.3     ragge 		panic("dge_freebuf: asked to free buffer %d!", i);
    604       1.3     ragge 
    605       1.3     ragge 	s = splvm();
    606       1.3     ragge 	entry = sc->sc_entry + i;
    607       1.3     ragge 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    608       1.3     ragge 
    609       1.3     ragge 	if (__predict_true(m != NULL))
    610  1.15.2.1        ad 		pool_cache_put(mb_cache, m);
    611       1.3     ragge 	splx(s);
    612       1.3     ragge }
    613       1.3     ragge #endif
    614       1.1     ragge 
    615       1.1     ragge static void	dge_start(struct ifnet *);
    616       1.1     ragge static void	dge_watchdog(struct ifnet *);
    617      1.15  christos static int	dge_ioctl(struct ifnet *, u_long, void *);
    618       1.1     ragge static int	dge_init(struct ifnet *);
    619       1.1     ragge static void	dge_stop(struct ifnet *, int);
    620       1.1     ragge 
    621       1.1     ragge static void	dge_shutdown(void *);
    622       1.1     ragge 
    623       1.1     ragge static void	dge_reset(struct dge_softc *);
    624       1.1     ragge static void	dge_rxdrain(struct dge_softc *);
    625       1.1     ragge static int	dge_add_rxbuf(struct dge_softc *, int);
    626       1.1     ragge 
    627       1.1     ragge static void	dge_set_filter(struct dge_softc *);
    628       1.1     ragge 
    629       1.1     ragge static int	dge_intr(void *);
    630       1.1     ragge static void	dge_txintr(struct dge_softc *);
    631       1.1     ragge static void	dge_rxintr(struct dge_softc *);
    632       1.1     ragge static void	dge_linkintr(struct dge_softc *, uint32_t);
    633       1.1     ragge 
    634       1.1     ragge static int	dge_match(struct device *, struct cfdata *, void *);
    635       1.1     ragge static void	dge_attach(struct device *, struct device *, void *);
    636       1.1     ragge 
    637       1.1     ragge static int	dge_read_eeprom(struct dge_softc *sc);
    638       1.1     ragge static int	dge_eeprom_clockin(struct dge_softc *sc);
    639       1.1     ragge static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    640       1.1     ragge static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    641       1.1     ragge static int	dge_xgmii_mediachange(struct ifnet *);
    642       1.1     ragge static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    643       1.1     ragge static void	dge_xgmii_reset(struct dge_softc *);
    644       1.1     ragge static void	dge_xgmii_writereg(struct device *, int, int, int);
    645       1.1     ragge 
    646       1.1     ragge 
    647       1.1     ragge CFATTACH_DECL(dge, sizeof(struct dge_softc),
    648       1.1     ragge     dge_match, dge_attach, NULL, NULL);
    649       1.1     ragge 
    650       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    651       1.1     ragge #if DGE_NTXSEGS > 100
    652       1.1     ragge #error Update dge_txseg_evcnt_names
    653       1.1     ragge #endif
    654       1.1     ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    655       1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    656       1.1     ragge 
    657       1.1     ragge static int
    658      1.14  christos dge_match(struct device *parent, struct cfdata *cf, void *aux)
    659       1.1     ragge {
    660       1.1     ragge 	struct pci_attach_args *pa = aux;
    661       1.1     ragge 
    662       1.1     ragge 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    663       1.1     ragge 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    664       1.1     ragge 		return (1);
    665       1.1     ragge 
    666       1.1     ragge 	return (0);
    667       1.1     ragge }
    668       1.1     ragge 
    669       1.1     ragge static void
    670      1.14  christos dge_attach(struct device *parent, struct device *self, void *aux)
    671       1.1     ragge {
    672       1.1     ragge 	struct dge_softc *sc = (void *) self;
    673       1.1     ragge 	struct pci_attach_args *pa = aux;
    674       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    675       1.1     ragge 	pci_chipset_tag_t pc = pa->pa_pc;
    676       1.1     ragge 	pci_intr_handle_t ih;
    677       1.1     ragge 	const char *intrstr = NULL;
    678       1.1     ragge 	bus_dma_segment_t seg;
    679       1.1     ragge 	int i, rseg, error;
    680       1.1     ragge 	uint8_t enaddr[ETHER_ADDR_LEN];
    681       1.1     ragge 	pcireg_t preg, memtype;
    682       1.1     ragge 	uint32_t reg;
    683       1.1     ragge 
    684       1.1     ragge 	sc->sc_dmat = pa->pa_dmat;
    685       1.1     ragge 	sc->sc_pc = pa->pa_pc;
    686       1.1     ragge 	sc->sc_pt = pa->pa_tag;
    687       1.1     ragge 
    688       1.1     ragge 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    689       1.1     ragge 	aprint_naive(": Ethernet controller\n");
    690       1.1     ragge 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    691       1.1     ragge 
    692       1.1     ragge 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    693       1.1     ragge         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    694       1.1     ragge             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    695       1.1     ragge                 aprint_error("%s: unable to map device registers\n",
    696       1.1     ragge                     sc->sc_dev.dv_xname);
    697       1.1     ragge                 return;
    698       1.1     ragge         }
    699       1.1     ragge 
    700       1.1     ragge 	/* Enable bus mastering */
    701       1.1     ragge 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    702       1.1     ragge 	preg |= PCI_COMMAND_MASTER_ENABLE;
    703       1.1     ragge 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    704       1.1     ragge 
    705       1.1     ragge 	/*
    706       1.1     ragge 	 * Map and establish our interrupt.
    707       1.1     ragge 	 */
    708       1.1     ragge 	if (pci_intr_map(pa, &ih)) {
    709       1.1     ragge 		aprint_error("%s: unable to map interrupt\n",
    710       1.1     ragge 		    sc->sc_dev.dv_xname);
    711       1.1     ragge 		return;
    712       1.1     ragge 	}
    713       1.1     ragge 	intrstr = pci_intr_string(pc, ih);
    714       1.1     ragge 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    715       1.1     ragge 	if (sc->sc_ih == NULL) {
    716       1.1     ragge 		aprint_error("%s: unable to establish interrupt",
    717       1.1     ragge 		    sc->sc_dev.dv_xname);
    718       1.1     ragge 		if (intrstr != NULL)
    719       1.1     ragge 			aprint_normal(" at %s", intrstr);
    720       1.1     ragge 		aprint_normal("\n");
    721       1.1     ragge 		return;
    722       1.1     ragge 	}
    723       1.1     ragge 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    724       1.1     ragge 
    725       1.1     ragge 	/*
    726       1.1     ragge 	 * Determine a few things about the bus we're connected to.
    727       1.1     ragge 	 */
    728       1.1     ragge 	reg = CSR_READ(sc, DGE_STATUS);
    729       1.1     ragge 	if (reg & STATUS_BUS64)
    730       1.1     ragge 		sc->sc_flags |= DGE_F_BUS64;
    731       1.1     ragge 
    732       1.1     ragge 	sc->sc_flags |= DGE_F_PCIX;
    733       1.1     ragge 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    734       1.1     ragge 			       PCI_CAP_PCIX,
    735       1.1     ragge 			       &sc->sc_pcix_offset, NULL) == 0)
    736       1.1     ragge 		aprint_error("%s: unable to find PCIX "
    737       1.1     ragge 		    "capability\n", sc->sc_dev.dv_xname);
    738       1.1     ragge 
    739       1.1     ragge 	if (sc->sc_flags & DGE_F_PCIX) {
    740       1.1     ragge 		switch (reg & STATUS_PCIX_MSK) {
    741       1.1     ragge 		case STATUS_PCIX_66:
    742       1.1     ragge 			sc->sc_bus_speed = 66;
    743       1.1     ragge 			break;
    744       1.1     ragge 		case STATUS_PCIX_100:
    745       1.1     ragge 			sc->sc_bus_speed = 100;
    746       1.1     ragge 			break;
    747       1.1     ragge 		case STATUS_PCIX_133:
    748       1.1     ragge 			sc->sc_bus_speed = 133;
    749       1.1     ragge 			break;
    750       1.1     ragge 		default:
    751       1.1     ragge 			aprint_error(
    752       1.1     ragge 			    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    753       1.1     ragge 			    sc->sc_dev.dv_xname,
    754       1.1     ragge 			    reg & STATUS_PCIX_MSK);
    755       1.1     ragge 			sc->sc_bus_speed = 66;
    756       1.1     ragge 		}
    757       1.1     ragge 	} else
    758       1.1     ragge 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    759       1.1     ragge 	aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    760       1.1     ragge 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    761       1.1     ragge 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    762       1.1     ragge 
    763       1.1     ragge 	/*
    764       1.1     ragge 	 * Allocate the control data structures, and create and load the
    765       1.1     ragge 	 * DMA map for it.
    766       1.1     ragge 	 */
    767       1.1     ragge 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    768       1.1     ragge 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    769       1.1     ragge 	    0)) != 0) {
    770       1.1     ragge 		aprint_error(
    771       1.1     ragge 		    "%s: unable to allocate control data, error = %d\n",
    772       1.1     ragge 		    sc->sc_dev.dv_xname, error);
    773       1.1     ragge 		goto fail_0;
    774       1.1     ragge 	}
    775       1.1     ragge 
    776       1.1     ragge 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    777      1.15  christos 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    778       1.1     ragge 	    0)) != 0) {
    779       1.1     ragge 		aprint_error("%s: unable to map control data, error = %d\n",
    780       1.1     ragge 		    sc->sc_dev.dv_xname, error);
    781       1.1     ragge 		goto fail_1;
    782       1.1     ragge 	}
    783       1.1     ragge 
    784       1.1     ragge 	if ((error = bus_dmamap_create(sc->sc_dmat,
    785       1.1     ragge 	    sizeof(struct dge_control_data), 1,
    786       1.1     ragge 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    787       1.1     ragge 		aprint_error("%s: unable to create control data DMA map, "
    788       1.1     ragge 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    789       1.1     ragge 		goto fail_2;
    790       1.1     ragge 	}
    791       1.1     ragge 
    792       1.1     ragge 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    793       1.1     ragge 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    794       1.1     ragge 	    0)) != 0) {
    795       1.1     ragge 		aprint_error(
    796       1.1     ragge 		    "%s: unable to load control data DMA map, error = %d\n",
    797       1.1     ragge 		    sc->sc_dev.dv_xname, error);
    798       1.1     ragge 		goto fail_3;
    799       1.1     ragge 	}
    800       1.1     ragge 
    801      1.10     perry #ifdef DGE_OFFBYONE_RXBUG
    802       1.3     ragge 	if (dge_alloc_rcvmem(sc) != 0)
    803       1.3     ragge 		return; /* Already complained */
    804       1.3     ragge #endif
    805       1.1     ragge 	/*
    806       1.1     ragge 	 * Create the transmit buffer DMA maps.
    807       1.1     ragge 	 */
    808       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    809       1.2     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    810       1.1     ragge 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    811       1.1     ragge 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    812       1.1     ragge 			aprint_error("%s: unable to create Tx DMA map %d, "
    813       1.1     ragge 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    814       1.1     ragge 			goto fail_4;
    815       1.1     ragge 		}
    816       1.1     ragge 	}
    817       1.1     ragge 
    818       1.1     ragge 	/*
    819       1.1     ragge 	 * Create the receive buffer DMA maps.
    820       1.1     ragge 	 */
    821       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    822       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    823       1.3     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    824       1.3     ragge 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    825       1.3     ragge #else
    826       1.1     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    827       1.1     ragge 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    828       1.3     ragge #endif
    829       1.1     ragge 			aprint_error("%s: unable to create Rx DMA map %d, "
    830       1.1     ragge 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    831       1.1     ragge 			goto fail_5;
    832       1.1     ragge 		}
    833       1.1     ragge 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    834       1.1     ragge 	}
    835       1.1     ragge 
    836       1.1     ragge 	/*
    837       1.1     ragge 	 * Set bits in ctrl0 register.
    838       1.1     ragge 	 * Should get the software defined pins out of EEPROM?
    839       1.1     ragge 	 */
    840       1.1     ragge 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    841       1.1     ragge 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    842       1.1     ragge 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    843       1.1     ragge 
    844       1.1     ragge 	/*
    845       1.1     ragge 	 * Reset the chip to a known state.
    846       1.1     ragge 	 */
    847       1.1     ragge 	dge_reset(sc);
    848       1.1     ragge 
    849       1.1     ragge 	/*
    850       1.1     ragge 	 * Reset the PHY.
    851       1.1     ragge 	 */
    852       1.1     ragge 	dge_xgmii_reset(sc);
    853       1.1     ragge 
    854       1.1     ragge 	/*
    855       1.1     ragge 	 * Read in EEPROM data.
    856       1.1     ragge 	 */
    857       1.1     ragge 	if (dge_read_eeprom(sc)) {
    858       1.1     ragge 		aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
    859       1.1     ragge 		return;
    860       1.1     ragge 	}
    861       1.1     ragge 
    862       1.1     ragge 	/*
    863       1.1     ragge 	 * Get the ethernet address.
    864       1.1     ragge 	 */
    865       1.1     ragge 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    866       1.1     ragge 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    867       1.1     ragge 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    868       1.1     ragge 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    869       1.1     ragge 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    870       1.1     ragge 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    871       1.1     ragge 
    872       1.1     ragge 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    873       1.1     ragge 	    ether_sprintf(enaddr));
    874       1.1     ragge 
    875       1.1     ragge 	/*
    876       1.1     ragge 	 * Setup media stuff.
    877       1.1     ragge 	 */
    878       1.1     ragge         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    879       1.1     ragge             dge_xgmii_mediastatus);
    880       1.1     ragge         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    881       1.1     ragge         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    882       1.1     ragge 
    883       1.1     ragge 	ifp = &sc->sc_ethercom.ec_if;
    884       1.1     ragge 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    885       1.1     ragge 	ifp->if_softc = sc;
    886       1.1     ragge 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    887       1.1     ragge 	ifp->if_ioctl = dge_ioctl;
    888       1.1     ragge 	ifp->if_start = dge_start;
    889       1.1     ragge 	ifp->if_watchdog = dge_watchdog;
    890       1.1     ragge 	ifp->if_init = dge_init;
    891       1.1     ragge 	ifp->if_stop = dge_stop;
    892       1.1     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    893       1.1     ragge 	IFQ_SET_READY(&ifp->if_snd);
    894       1.1     ragge 
    895       1.1     ragge 	sc->sc_ethercom.ec_capabilities |=
    896       1.1     ragge 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    897       1.1     ragge 
    898       1.1     ragge 	/*
    899       1.1     ragge 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    900       1.1     ragge 	 */
    901       1.1     ragge 	ifp->if_capabilities |=
    902      1.11      yamt 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    903      1.11      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    904      1.11      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    905       1.1     ragge 
    906       1.1     ragge 	/*
    907       1.1     ragge 	 * Attach the interface.
    908       1.1     ragge 	 */
    909       1.1     ragge 	if_attach(ifp);
    910       1.1     ragge 	ether_ifattach(ifp, enaddr);
    911       1.1     ragge #if NRND > 0
    912       1.1     ragge 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    913       1.1     ragge 	    RND_TYPE_NET, 0);
    914       1.1     ragge #endif
    915       1.1     ragge 
    916       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    917       1.1     ragge 	/* Fix segment event naming */
    918       1.1     ragge 	if (dge_txseg_evcnt_names == NULL) {
    919       1.1     ragge 		dge_txseg_evcnt_names =
    920       1.1     ragge 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    921       1.1     ragge 		for (i = 0; i < DGE_NTXSEGS; i++)
    922       1.4    itojun 			snprintf((*dge_txseg_evcnt_names)[i],
    923       1.4    itojun 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    924       1.1     ragge 	}
    925       1.1     ragge 
    926       1.1     ragge 	/* Attach event counters. */
    927       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    928       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    929       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    930       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    931       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    932       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    933       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    934       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txdw");
    935       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    936       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txqe");
    937       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    938       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    939       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    940       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    941       1.1     ragge 
    942       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    943       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    944       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    945       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    946       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    947       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    948       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    949       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    950       1.1     ragge 
    951       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    952       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    953       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    954       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    955       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    956       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    957       1.1     ragge 
    958       1.1     ragge 	for (i = 0; i < DGE_NTXSEGS; i++)
    959       1.1     ragge 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    960       1.1     ragge 		    NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
    961       1.1     ragge 
    962       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    963       1.1     ragge 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    964       1.1     ragge 
    965       1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    966       1.1     ragge 
    967       1.1     ragge 	/*
    968       1.1     ragge 	 * Make sure the interface is shutdown during reboot.
    969       1.1     ragge 	 */
    970       1.1     ragge 	sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
    971       1.1     ragge 	if (sc->sc_sdhook == NULL)
    972       1.1     ragge 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    973       1.1     ragge 		    sc->sc_dev.dv_xname);
    974       1.1     ragge 	return;
    975       1.1     ragge 
    976       1.1     ragge 	/*
    977       1.1     ragge 	 * Free any resources we've allocated during the failed attach
    978       1.1     ragge 	 * attempt.  Do this in reverse order and fall through.
    979       1.1     ragge 	 */
    980       1.1     ragge  fail_5:
    981       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    982       1.1     ragge 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    983       1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    984       1.1     ragge 			    sc->sc_rxsoft[i].rxs_dmamap);
    985       1.1     ragge 	}
    986       1.1     ragge  fail_4:
    987       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    988       1.1     ragge 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    989       1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    990       1.1     ragge 			    sc->sc_txsoft[i].txs_dmamap);
    991       1.1     ragge 	}
    992       1.1     ragge 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    993       1.1     ragge  fail_3:
    994       1.1     ragge 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    995       1.1     ragge  fail_2:
    996      1.15  christos 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    997       1.1     ragge 	    sizeof(struct dge_control_data));
    998       1.1     ragge  fail_1:
    999       1.1     ragge 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1000       1.1     ragge  fail_0:
   1001       1.1     ragge 	return;
   1002       1.1     ragge }
   1003       1.1     ragge 
   1004       1.1     ragge /*
   1005       1.1     ragge  * dge_shutdown:
   1006       1.1     ragge  *
   1007       1.1     ragge  *	Make sure the interface is stopped at reboot time.
   1008       1.1     ragge  */
   1009       1.1     ragge static void
   1010       1.1     ragge dge_shutdown(void *arg)
   1011       1.1     ragge {
   1012       1.1     ragge 	struct dge_softc *sc = arg;
   1013       1.1     ragge 
   1014       1.1     ragge 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1015       1.1     ragge }
   1016       1.1     ragge 
   1017       1.1     ragge /*
   1018       1.1     ragge  * dge_tx_cksum:
   1019       1.1     ragge  *
   1020       1.1     ragge  *	Set up TCP/IP checksumming parameters for the
   1021       1.1     ragge  *	specified packet.
   1022       1.1     ragge  */
   1023       1.1     ragge static int
   1024       1.1     ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1025       1.1     ragge {
   1026       1.1     ragge 	struct mbuf *m0 = txs->txs_mbuf;
   1027       1.1     ragge 	struct dge_ctdes *t;
   1028       1.1     ragge 	uint32_t ipcs, tucs;
   1029       1.1     ragge 	struct ether_header *eh;
   1030       1.1     ragge 	int offset, iphl;
   1031       1.1     ragge 	uint8_t fields = 0;
   1032       1.1     ragge 
   1033       1.1     ragge 	/*
   1034       1.1     ragge 	 * XXX It would be nice if the mbuf pkthdr had offset
   1035       1.1     ragge 	 * fields for the protocol headers.
   1036       1.1     ragge 	 */
   1037       1.1     ragge 
   1038       1.1     ragge 	eh = mtod(m0, struct ether_header *);
   1039       1.1     ragge 	switch (htons(eh->ether_type)) {
   1040       1.1     ragge 	case ETHERTYPE_IP:
   1041       1.1     ragge 		offset = ETHER_HDR_LEN;
   1042       1.1     ragge 		break;
   1043       1.1     ragge 
   1044       1.1     ragge 	case ETHERTYPE_VLAN:
   1045       1.1     ragge 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1046       1.1     ragge 		break;
   1047       1.1     ragge 
   1048       1.1     ragge 	default:
   1049       1.1     ragge 		/*
   1050       1.1     ragge 		 * Don't support this protocol or encapsulation.
   1051       1.1     ragge 		 */
   1052       1.1     ragge 		*fieldsp = 0;
   1053       1.1     ragge 		return (0);
   1054       1.1     ragge 	}
   1055       1.1     ragge 
   1056       1.9   thorpej 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1057       1.1     ragge 
   1058       1.1     ragge 	/*
   1059       1.1     ragge 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1060       1.1     ragge 	 * offload feature, if we load the context descriptor, we
   1061       1.1     ragge 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1062       1.1     ragge 	 */
   1063       1.1     ragge 
   1064       1.1     ragge 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1065       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1066       1.1     ragge 		fields |= TDESC_POPTS_IXSM;
   1067       1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1068       1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1069       1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1070       1.1     ragge 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1071       1.1     ragge 		/* Use the cached value. */
   1072       1.1     ragge 		ipcs = sc->sc_txctx_ipcs;
   1073       1.1     ragge 	} else {
   1074       1.1     ragge 		/* Just initialize it to the likely value anyway. */
   1075       1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1076       1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1077       1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1078       1.1     ragge 	}
   1079       1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1080      1.10     perry 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1081       1.1     ragge 	    sc->sc_dev.dv_xname, offset, ipcs));
   1082       1.1     ragge 
   1083       1.1     ragge 	offset += iphl;
   1084       1.1     ragge 
   1085       1.1     ragge 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1086       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1087       1.1     ragge 		fields |= TDESC_POPTS_TXSM;
   1088       1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1089       1.9   thorpej 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1090       1.8      heas 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1091       1.1     ragge 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1092       1.1     ragge 		/* Use the cached value. */
   1093       1.1     ragge 		tucs = sc->sc_txctx_tucs;
   1094       1.1     ragge 	} else {
   1095       1.1     ragge 		/* Just initialize it to a valid TCP context. */
   1096       1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1097       1.1     ragge 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1098       1.1     ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1099       1.1     ragge 	}
   1100       1.1     ragge 
   1101       1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1102       1.1     ragge 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1103       1.1     ragge 	    sc->sc_dev.dv_xname, offset, tucs));
   1104       1.1     ragge 
   1105       1.1     ragge 	if (sc->sc_txctx_ipcs == ipcs &&
   1106       1.1     ragge 	    sc->sc_txctx_tucs == tucs) {
   1107       1.1     ragge 		/* Cached context is fine. */
   1108       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1109       1.1     ragge 	} else {
   1110       1.1     ragge 		/* Fill in the context descriptor. */
   1111       1.1     ragge #ifdef DGE_EVENT_COUNTERS
   1112       1.1     ragge 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1113       1.1     ragge 		    sc->sc_txctx_tucs == 0xffffffff)
   1114       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1115       1.1     ragge 		else
   1116       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1117       1.1     ragge #endif
   1118       1.1     ragge 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1119       1.1     ragge 		t->dc_tcpip_ipcs = htole32(ipcs);
   1120       1.1     ragge 		t->dc_tcpip_tucs = htole32(tucs);
   1121       1.1     ragge 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1122       1.1     ragge 		t->dc_tcpip_seg = 0;
   1123       1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1124       1.1     ragge 
   1125       1.1     ragge 		sc->sc_txctx_ipcs = ipcs;
   1126       1.1     ragge 		sc->sc_txctx_tucs = tucs;
   1127       1.1     ragge 
   1128       1.1     ragge 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1129       1.1     ragge 		txs->txs_ndesc++;
   1130       1.1     ragge 	}
   1131       1.1     ragge 
   1132       1.1     ragge 	*fieldsp = fields;
   1133       1.1     ragge 
   1134       1.1     ragge 	return (0);
   1135       1.1     ragge }
   1136       1.1     ragge 
   1137       1.1     ragge /*
   1138       1.1     ragge  * dge_start:		[ifnet interface function]
   1139       1.1     ragge  *
   1140       1.1     ragge  *	Start packet transmission on the interface.
   1141       1.1     ragge  */
   1142       1.1     ragge static void
   1143       1.1     ragge dge_start(struct ifnet *ifp)
   1144       1.1     ragge {
   1145       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1146       1.1     ragge 	struct mbuf *m0;
   1147       1.1     ragge 	struct dge_txsoft *txs;
   1148       1.1     ragge 	bus_dmamap_t dmamap;
   1149       1.1     ragge 	int error, nexttx, lasttx = -1, ofree, seg;
   1150       1.1     ragge 	uint32_t cksumcmd;
   1151       1.1     ragge 	uint8_t cksumfields;
   1152       1.1     ragge 
   1153       1.1     ragge 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1154       1.1     ragge 		return;
   1155       1.1     ragge 
   1156       1.1     ragge 	/*
   1157       1.1     ragge 	 * Remember the previous number of free descriptors.
   1158       1.1     ragge 	 */
   1159       1.1     ragge 	ofree = sc->sc_txfree;
   1160       1.1     ragge 
   1161       1.1     ragge 	/*
   1162       1.1     ragge 	 * Loop through the send queue, setting up transmit descriptors
   1163       1.1     ragge 	 * until we drain the queue, or use up all available transmit
   1164       1.1     ragge 	 * descriptors.
   1165       1.1     ragge 	 */
   1166       1.1     ragge 	for (;;) {
   1167       1.1     ragge 		/* Grab a packet off the queue. */
   1168       1.1     ragge 		IFQ_POLL(&ifp->if_snd, m0);
   1169       1.1     ragge 		if (m0 == NULL)
   1170       1.1     ragge 			break;
   1171       1.1     ragge 
   1172       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1173       1.1     ragge 		    ("%s: TX: have packet to transmit: %p\n",
   1174       1.1     ragge 		    sc->sc_dev.dv_xname, m0));
   1175       1.1     ragge 
   1176       1.1     ragge 		/* Get a work queue entry. */
   1177       1.1     ragge 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1178       1.1     ragge 			dge_txintr(sc);
   1179       1.1     ragge 			if (sc->sc_txsfree == 0) {
   1180       1.1     ragge 				DPRINTF(DGE_DEBUG_TX,
   1181       1.1     ragge 				    ("%s: TX: no free job descriptors\n",
   1182       1.1     ragge 					sc->sc_dev.dv_xname));
   1183       1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1184       1.1     ragge 				break;
   1185       1.1     ragge 			}
   1186       1.1     ragge 		}
   1187       1.1     ragge 
   1188       1.1     ragge 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1189       1.1     ragge 		dmamap = txs->txs_dmamap;
   1190       1.1     ragge 
   1191       1.1     ragge 		/*
   1192       1.1     ragge 		 * Load the DMA map.  If this fails, the packet either
   1193       1.1     ragge 		 * didn't fit in the allotted number of segments, or we
   1194       1.1     ragge 		 * were short on resources.  For the too-many-segments
   1195       1.1     ragge 		 * case, we simply report an error and drop the packet,
   1196       1.1     ragge 		 * since we can't sanely copy a jumbo packet to a single
   1197       1.1     ragge 		 * buffer.
   1198       1.1     ragge 		 */
   1199       1.1     ragge 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1200       1.1     ragge 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1201       1.1     ragge 		if (error) {
   1202       1.1     ragge 			if (error == EFBIG) {
   1203       1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1204       1.1     ragge 				printf("%s: Tx packet consumes too many "
   1205       1.1     ragge 				    "DMA segments, dropping...\n",
   1206       1.1     ragge 				    sc->sc_dev.dv_xname);
   1207       1.1     ragge 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1208       1.1     ragge 				m_freem(m0);
   1209       1.1     ragge 				continue;
   1210       1.1     ragge 			}
   1211       1.1     ragge 			/*
   1212       1.1     ragge 			 * Short on resources, just stop for now.
   1213       1.1     ragge 			 */
   1214       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1215       1.1     ragge 			    ("%s: TX: dmamap load failed: %d\n",
   1216       1.1     ragge 			    sc->sc_dev.dv_xname, error));
   1217       1.1     ragge 			break;
   1218       1.1     ragge 		}
   1219       1.1     ragge 
   1220       1.1     ragge 		/*
   1221       1.1     ragge 		 * Ensure we have enough descriptors free to describe
   1222       1.1     ragge 		 * the packet.  Note, we always reserve one descriptor
   1223       1.1     ragge 		 * at the end of the ring due to the semantics of the
   1224       1.1     ragge 		 * TDT register, plus one more in the event we need
   1225       1.1     ragge 		 * to re-load checksum offload context.
   1226       1.1     ragge 		 */
   1227       1.1     ragge 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1228       1.1     ragge 			/*
   1229       1.1     ragge 			 * Not enough free descriptors to transmit this
   1230       1.1     ragge 			 * packet.  We haven't committed anything yet,
   1231       1.1     ragge 			 * so just unload the DMA map, put the packet
   1232       1.1     ragge 			 * pack on the queue, and punt.  Notify the upper
   1233       1.1     ragge 			 * layer that there are no more slots left.
   1234       1.1     ragge 			 */
   1235       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1236       1.1     ragge 			    ("%s: TX: need %d descriptors, have %d\n",
   1237       1.1     ragge 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1238       1.1     ragge 			    sc->sc_txfree - 1));
   1239       1.1     ragge 			ifp->if_flags |= IFF_OACTIVE;
   1240       1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1241       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1242       1.1     ragge 			break;
   1243       1.1     ragge 		}
   1244       1.1     ragge 
   1245       1.1     ragge 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1246       1.1     ragge 
   1247       1.1     ragge 		/*
   1248       1.1     ragge 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1249       1.1     ragge 		 */
   1250       1.1     ragge 
   1251       1.1     ragge 		/* Sync the DMA map. */
   1252       1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1253       1.1     ragge 		    BUS_DMASYNC_PREWRITE);
   1254       1.1     ragge 
   1255       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1256       1.1     ragge 		    ("%s: TX: packet has %d DMA segments\n",
   1257       1.1     ragge 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1258       1.1     ragge 
   1259       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1260       1.1     ragge 
   1261       1.1     ragge 		/*
   1262       1.1     ragge 		 * Store a pointer to the packet so that we can free it
   1263       1.1     ragge 		 * later.
   1264       1.1     ragge 		 *
   1265       1.1     ragge 		 * Initially, we consider the number of descriptors the
   1266       1.1     ragge 		 * packet uses the number of DMA segments.  This may be
   1267       1.1     ragge 		 * incremented by 1 if we do checksum offload (a descriptor
   1268       1.1     ragge 		 * is used to set the checksum context).
   1269       1.1     ragge 		 */
   1270       1.1     ragge 		txs->txs_mbuf = m0;
   1271       1.1     ragge 		txs->txs_firstdesc = sc->sc_txnext;
   1272       1.1     ragge 		txs->txs_ndesc = dmamap->dm_nsegs;
   1273       1.1     ragge 
   1274       1.1     ragge 		/*
   1275       1.1     ragge 		 * Set up checksum offload parameters for
   1276       1.1     ragge 		 * this packet.
   1277       1.1     ragge 		 */
   1278       1.1     ragge 		if (m0->m_pkthdr.csum_flags &
   1279       1.1     ragge 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1280       1.1     ragge 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1281       1.1     ragge 				/* Error message already displayed. */
   1282       1.1     ragge 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1283       1.1     ragge 				continue;
   1284       1.1     ragge 			}
   1285       1.1     ragge 		} else {
   1286       1.1     ragge 			cksumfields = 0;
   1287       1.1     ragge 		}
   1288       1.1     ragge 
   1289       1.1     ragge 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1290       1.1     ragge 
   1291       1.1     ragge 		/*
   1292       1.1     ragge 		 * Initialize the transmit descriptor.
   1293       1.1     ragge 		 */
   1294       1.1     ragge 		for (nexttx = sc->sc_txnext, seg = 0;
   1295       1.1     ragge 		     seg < dmamap->dm_nsegs;
   1296       1.1     ragge 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1297       1.1     ragge 			/*
   1298       1.1     ragge 			 * Note: we currently only use 32-bit DMA
   1299       1.1     ragge 			 * addresses.
   1300       1.1     ragge 			 */
   1301       1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1302       1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrl =
   1303       1.1     ragge 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1304       1.1     ragge 			sc->sc_txdescs[nexttx].dt_ctl =
   1305       1.1     ragge 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1306       1.1     ragge 			sc->sc_txdescs[nexttx].dt_status = 0;
   1307       1.1     ragge 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1308       1.1     ragge 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1309       1.1     ragge 			lasttx = nexttx;
   1310       1.1     ragge 
   1311       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1312       1.1     ragge 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1313       1.1     ragge 			    sc->sc_dev.dv_xname, nexttx,
   1314       1.1     ragge 			    le32toh(dmamap->dm_segs[seg].ds_addr),
   1315       1.1     ragge 			    le32toh(dmamap->dm_segs[seg].ds_len)));
   1316       1.1     ragge 		}
   1317       1.1     ragge 
   1318       1.1     ragge 		KASSERT(lasttx != -1);
   1319       1.1     ragge 
   1320       1.1     ragge 		/*
   1321       1.1     ragge 		 * Set up the command byte on the last descriptor of
   1322       1.1     ragge 		 * the packet.  If we're in the interrupt delay window,
   1323       1.1     ragge 		 * delay the interrupt.
   1324       1.1     ragge 		 */
   1325       1.1     ragge 		sc->sc_txdescs[lasttx].dt_ctl |=
   1326       1.1     ragge 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1327       1.1     ragge 
   1328       1.1     ragge 		txs->txs_lastdesc = lasttx;
   1329       1.1     ragge 
   1330       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1331       1.1     ragge 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1332       1.1     ragge 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1333       1.1     ragge 
   1334       1.1     ragge 		/* Sync the descriptors we're using. */
   1335       1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1336       1.1     ragge 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1337       1.1     ragge 
   1338       1.1     ragge 		/* Give the packet to the chip. */
   1339       1.1     ragge 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1340       1.1     ragge 
   1341       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1342       1.1     ragge 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1343       1.1     ragge 
   1344       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1345       1.1     ragge 		    ("%s: TX: finished transmitting packet, job %d\n",
   1346       1.1     ragge 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1347       1.1     ragge 
   1348       1.1     ragge 		/* Advance the tx pointer. */
   1349       1.1     ragge 		sc->sc_txfree -= txs->txs_ndesc;
   1350       1.1     ragge 		sc->sc_txnext = nexttx;
   1351       1.1     ragge 
   1352       1.1     ragge 		sc->sc_txsfree--;
   1353       1.1     ragge 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1354       1.1     ragge 
   1355       1.1     ragge #if NBPFILTER > 0
   1356       1.1     ragge 		/* Pass the packet to any BPF listeners. */
   1357       1.1     ragge 		if (ifp->if_bpf)
   1358       1.1     ragge 			bpf_mtap(ifp->if_bpf, m0);
   1359       1.1     ragge #endif /* NBPFILTER > 0 */
   1360       1.1     ragge 	}
   1361       1.1     ragge 
   1362       1.1     ragge 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1363       1.1     ragge 		/* No more slots; notify upper layer. */
   1364       1.1     ragge 		ifp->if_flags |= IFF_OACTIVE;
   1365       1.1     ragge 	}
   1366       1.1     ragge 
   1367       1.1     ragge 	if (sc->sc_txfree != ofree) {
   1368       1.1     ragge 		/* Set a watchdog timer in case the chip flakes out. */
   1369       1.1     ragge 		ifp->if_timer = 5;
   1370       1.1     ragge 	}
   1371       1.1     ragge }
   1372       1.1     ragge 
   1373       1.1     ragge /*
   1374       1.1     ragge  * dge_watchdog:		[ifnet interface function]
   1375       1.1     ragge  *
   1376       1.1     ragge  *	Watchdog timer handler.
   1377       1.1     ragge  */
   1378       1.1     ragge static void
   1379       1.1     ragge dge_watchdog(struct ifnet *ifp)
   1380       1.1     ragge {
   1381       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1382       1.1     ragge 
   1383       1.1     ragge 	/*
   1384       1.1     ragge 	 * Since we're using delayed interrupts, sweep up
   1385       1.1     ragge 	 * before we report an error.
   1386       1.1     ragge 	 */
   1387       1.1     ragge 	dge_txintr(sc);
   1388       1.1     ragge 
   1389       1.1     ragge 	if (sc->sc_txfree != DGE_NTXDESC) {
   1390       1.1     ragge 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1391       1.1     ragge 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1392       1.1     ragge 		    sc->sc_txnext);
   1393       1.1     ragge 		ifp->if_oerrors++;
   1394       1.1     ragge 
   1395       1.1     ragge 		/* Reset the interface. */
   1396       1.1     ragge 		(void) dge_init(ifp);
   1397       1.1     ragge 	}
   1398       1.1     ragge 
   1399       1.1     ragge 	/* Try to get more packets going. */
   1400       1.1     ragge 	dge_start(ifp);
   1401       1.1     ragge }
   1402       1.1     ragge 
   1403       1.1     ragge /*
   1404       1.1     ragge  * dge_ioctl:		[ifnet interface function]
   1405       1.1     ragge  *
   1406       1.1     ragge  *	Handle control requests from the operator.
   1407       1.1     ragge  */
   1408       1.1     ragge static int
   1409      1.15  christos dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1410       1.1     ragge {
   1411       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1412       1.1     ragge 	struct ifreq *ifr = (struct ifreq *) data;
   1413       1.1     ragge 	pcireg_t preg;
   1414       1.1     ragge 	int s, error, mmrbc;
   1415       1.1     ragge 
   1416       1.1     ragge 	s = splnet();
   1417       1.1     ragge 
   1418       1.1     ragge 	switch (cmd) {
   1419       1.1     ragge 	case SIOCSIFMEDIA:
   1420       1.1     ragge 	case SIOCGIFMEDIA:
   1421       1.1     ragge 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1422       1.1     ragge 		break;
   1423       1.1     ragge 
   1424       1.2     ragge 	case SIOCSIFMTU:
   1425       1.2     ragge 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) {
   1426       1.2     ragge 			error = EINVAL;
   1427       1.2     ragge 		} else {
   1428       1.2     ragge 			error = 0;
   1429       1.2     ragge 			ifp->if_mtu = ifr->ifr_mtu;
   1430       1.2     ragge 			if (ifp->if_flags & IFF_UP)
   1431       1.2     ragge 				error = (*ifp->if_init)(ifp);
   1432       1.2     ragge 		}
   1433       1.2     ragge 		break;
   1434       1.2     ragge 
   1435       1.1     ragge         case SIOCSIFFLAGS:
   1436       1.1     ragge 		/* extract link flags */
   1437       1.1     ragge 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1438       1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1439       1.1     ragge 			mmrbc = PCIX_MMRBC_512;
   1440       1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1441       1.1     ragge 		    (ifp->if_flags & IFF_LINK1) != 0)
   1442       1.1     ragge 			mmrbc = PCIX_MMRBC_1024;
   1443       1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1444       1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1445       1.1     ragge 			mmrbc = PCIX_MMRBC_2048;
   1446       1.1     ragge 		else
   1447       1.1     ragge 			mmrbc = PCIX_MMRBC_4096;
   1448       1.1     ragge 		if (mmrbc != sc->sc_mmrbc) {
   1449       1.1     ragge 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1450       1.1     ragge 			preg &= ~PCIX_MMRBC_MSK;
   1451       1.1     ragge 			preg |= mmrbc;
   1452       1.1     ragge 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1453       1.1     ragge 			sc->sc_mmrbc = mmrbc;
   1454       1.1     ragge 		}
   1455       1.1     ragge                 /* FALLTHROUGH */
   1456       1.1     ragge 	default:
   1457       1.1     ragge 		error = ether_ioctl(ifp, cmd, data);
   1458       1.1     ragge 		if (error == ENETRESET) {
   1459       1.1     ragge 			/*
   1460       1.1     ragge 			 * Multicast list has changed; set the hardware filter
   1461       1.1     ragge 			 * accordingly.
   1462       1.1     ragge 			 */
   1463       1.7   thorpej 			if (ifp->if_flags & IFF_RUNNING)
   1464       1.7   thorpej 				dge_set_filter(sc);
   1465       1.1     ragge 			error = 0;
   1466       1.1     ragge 		}
   1467       1.1     ragge 		break;
   1468       1.1     ragge 	}
   1469       1.1     ragge 
   1470       1.1     ragge 	/* Try to get more packets going. */
   1471       1.1     ragge 	dge_start(ifp);
   1472       1.1     ragge 
   1473       1.1     ragge 	splx(s);
   1474       1.1     ragge 	return (error);
   1475       1.1     ragge }
   1476       1.1     ragge 
   1477       1.1     ragge /*
   1478       1.1     ragge  * dge_intr:
   1479       1.1     ragge  *
   1480       1.1     ragge  *	Interrupt service routine.
   1481       1.1     ragge  */
   1482       1.1     ragge static int
   1483       1.1     ragge dge_intr(void *arg)
   1484       1.1     ragge {
   1485       1.1     ragge 	struct dge_softc *sc = arg;
   1486       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1487       1.1     ragge 	uint32_t icr;
   1488       1.1     ragge 	int wantinit, handled = 0;
   1489       1.1     ragge 
   1490       1.1     ragge 	for (wantinit = 0; wantinit == 0;) {
   1491       1.1     ragge 		icr = CSR_READ(sc, DGE_ICR);
   1492       1.1     ragge 		if ((icr & sc->sc_icr) == 0)
   1493       1.1     ragge 			break;
   1494       1.1     ragge 
   1495       1.1     ragge #if 0 /*NRND > 0*/
   1496       1.1     ragge 		if (RND_ENABLED(&sc->rnd_source))
   1497       1.1     ragge 			rnd_add_uint32(&sc->rnd_source, icr);
   1498       1.1     ragge #endif
   1499       1.1     ragge 
   1500       1.1     ragge 		handled = 1;
   1501       1.1     ragge 
   1502       1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1503       1.1     ragge 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1504       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1505       1.1     ragge 			    ("%s: RX: got Rx intr 0x%08x\n",
   1506       1.1     ragge 			    sc->sc_dev.dv_xname,
   1507       1.1     ragge 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1508       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1509       1.1     ragge 		}
   1510       1.1     ragge #endif
   1511       1.1     ragge 		dge_rxintr(sc);
   1512       1.1     ragge 
   1513       1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1514       1.1     ragge 		if (icr & ICR_TXDW) {
   1515       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1516       1.1     ragge 			    ("%s: TX: got TXDW interrupt\n",
   1517       1.1     ragge 			    sc->sc_dev.dv_xname));
   1518       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1519       1.1     ragge 		}
   1520       1.1     ragge 		if (icr & ICR_TXQE)
   1521       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1522       1.1     ragge #endif
   1523       1.1     ragge 		dge_txintr(sc);
   1524       1.1     ragge 
   1525       1.1     ragge 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1526       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1527       1.1     ragge 			dge_linkintr(sc, icr);
   1528       1.1     ragge 		}
   1529       1.1     ragge 
   1530       1.1     ragge 		if (icr & ICR_RXO) {
   1531       1.1     ragge 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1532       1.1     ragge 			wantinit = 1;
   1533       1.1     ragge 		}
   1534       1.1     ragge 	}
   1535       1.1     ragge 
   1536       1.1     ragge 	if (handled) {
   1537       1.1     ragge 		if (wantinit)
   1538       1.1     ragge 			dge_init(ifp);
   1539       1.1     ragge 
   1540       1.1     ragge 		/* Try to get more packets going. */
   1541       1.1     ragge 		dge_start(ifp);
   1542       1.1     ragge 	}
   1543       1.1     ragge 
   1544       1.1     ragge 	return (handled);
   1545       1.1     ragge }
   1546       1.1     ragge 
   1547       1.1     ragge /*
   1548       1.1     ragge  * dge_txintr:
   1549       1.1     ragge  *
   1550       1.1     ragge  *	Helper; handle transmit interrupts.
   1551       1.1     ragge  */
   1552       1.1     ragge static void
   1553       1.1     ragge dge_txintr(struct dge_softc *sc)
   1554       1.1     ragge {
   1555       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1556       1.1     ragge 	struct dge_txsoft *txs;
   1557       1.1     ragge 	uint8_t status;
   1558       1.1     ragge 	int i;
   1559       1.1     ragge 
   1560       1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1561       1.1     ragge 
   1562       1.1     ragge 	/*
   1563       1.1     ragge 	 * Go through the Tx list and free mbufs for those
   1564       1.1     ragge 	 * frames which have been transmitted.
   1565       1.1     ragge 	 */
   1566       1.1     ragge 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1567       1.1     ragge 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1568       1.1     ragge 		txs = &sc->sc_txsoft[i];
   1569       1.1     ragge 
   1570       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1571       1.1     ragge 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1572       1.1     ragge 
   1573       1.1     ragge 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1574       1.1     ragge 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1575       1.1     ragge 
   1576       1.1     ragge 		status =
   1577       1.1     ragge 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1578       1.1     ragge 		if ((status & TDESC_STA_DD) == 0) {
   1579       1.1     ragge 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1580       1.1     ragge 			    BUS_DMASYNC_PREREAD);
   1581       1.1     ragge 			break;
   1582       1.1     ragge 		}
   1583       1.1     ragge 
   1584       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1585       1.1     ragge 		    ("%s: TX: job %d done: descs %d..%d\n",
   1586       1.1     ragge 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1587       1.1     ragge 		    txs->txs_lastdesc));
   1588       1.1     ragge 
   1589       1.1     ragge 		ifp->if_opackets++;
   1590       1.1     ragge 		sc->sc_txfree += txs->txs_ndesc;
   1591       1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1592       1.1     ragge 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1593       1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1594       1.1     ragge 		m_freem(txs->txs_mbuf);
   1595       1.1     ragge 		txs->txs_mbuf = NULL;
   1596       1.1     ragge 	}
   1597       1.1     ragge 
   1598       1.1     ragge 	/* Update the dirty transmit buffer pointer. */
   1599       1.1     ragge 	sc->sc_txsdirty = i;
   1600       1.1     ragge 	DPRINTF(DGE_DEBUG_TX,
   1601       1.1     ragge 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1602       1.1     ragge 
   1603       1.1     ragge 	/*
   1604       1.1     ragge 	 * If there are no more pending transmissions, cancel the watchdog
   1605       1.1     ragge 	 * timer.
   1606       1.1     ragge 	 */
   1607       1.1     ragge 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1608       1.1     ragge 		ifp->if_timer = 0;
   1609       1.1     ragge }
   1610       1.1     ragge 
   1611       1.1     ragge /*
   1612       1.1     ragge  * dge_rxintr:
   1613       1.1     ragge  *
   1614       1.1     ragge  *	Helper; handle receive interrupts.
   1615       1.1     ragge  */
   1616       1.1     ragge static void
   1617       1.1     ragge dge_rxintr(struct dge_softc *sc)
   1618       1.1     ragge {
   1619       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1620       1.1     ragge 	struct dge_rxsoft *rxs;
   1621       1.1     ragge 	struct mbuf *m;
   1622       1.1     ragge 	int i, len;
   1623       1.1     ragge 	uint8_t status, errors;
   1624       1.1     ragge 
   1625       1.1     ragge 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1626       1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1627       1.1     ragge 
   1628       1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1629       1.1     ragge 		    ("%s: RX: checking descriptor %d\n",
   1630       1.1     ragge 		    sc->sc_dev.dv_xname, i));
   1631       1.1     ragge 
   1632       1.1     ragge 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1633       1.1     ragge 
   1634       1.1     ragge 		status = sc->sc_rxdescs[i].dr_status;
   1635       1.1     ragge 		errors = sc->sc_rxdescs[i].dr_errors;
   1636       1.1     ragge 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1637       1.1     ragge 
   1638       1.1     ragge 		if ((status & RDESC_STS_DD) == 0) {
   1639       1.1     ragge 			/*
   1640       1.1     ragge 			 * We have processed all of the receive descriptors.
   1641       1.1     ragge 			 */
   1642       1.1     ragge 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1643       1.1     ragge 			break;
   1644       1.1     ragge 		}
   1645       1.1     ragge 
   1646       1.1     ragge 		if (__predict_false(sc->sc_rxdiscard)) {
   1647       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1648       1.1     ragge 			    ("%s: RX: discarding contents of descriptor %d\n",
   1649       1.1     ragge 			    sc->sc_dev.dv_xname, i));
   1650       1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1651       1.1     ragge 			if (status & RDESC_STS_EOP) {
   1652       1.1     ragge 				/* Reset our state. */
   1653       1.1     ragge 				DPRINTF(DGE_DEBUG_RX,
   1654       1.1     ragge 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1655       1.1     ragge 				    sc->sc_dev.dv_xname));
   1656       1.1     ragge 				sc->sc_rxdiscard = 0;
   1657       1.1     ragge 			}
   1658       1.1     ragge 			continue;
   1659       1.1     ragge 		}
   1660       1.1     ragge 
   1661       1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1662       1.1     ragge 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1663       1.1     ragge 
   1664       1.1     ragge 		m = rxs->rxs_mbuf;
   1665       1.1     ragge 
   1666       1.1     ragge 		/*
   1667       1.1     ragge 		 * Add a new receive buffer to the ring.
   1668       1.1     ragge 		 */
   1669       1.1     ragge 		if (dge_add_rxbuf(sc, i) != 0) {
   1670       1.1     ragge 			/*
   1671       1.1     ragge 			 * Failed, throw away what we've done so
   1672       1.1     ragge 			 * far, and discard the rest of the packet.
   1673       1.1     ragge 			 */
   1674       1.1     ragge 			ifp->if_ierrors++;
   1675       1.1     ragge 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1676       1.1     ragge 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1677       1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1678       1.1     ragge 			if ((status & RDESC_STS_EOP) == 0)
   1679       1.1     ragge 				sc->sc_rxdiscard = 1;
   1680       1.1     ragge 			if (sc->sc_rxhead != NULL)
   1681       1.1     ragge 				m_freem(sc->sc_rxhead);
   1682       1.1     ragge 			DGE_RXCHAIN_RESET(sc);
   1683       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1684       1.1     ragge 			    ("%s: RX: Rx buffer allocation failed, "
   1685       1.1     ragge 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1686       1.1     ragge 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1687       1.1     ragge 			continue;
   1688       1.1     ragge 		}
   1689       1.1     ragge 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1690       1.1     ragge 
   1691       1.1     ragge 		DGE_RXCHAIN_LINK(sc, m);
   1692       1.1     ragge 
   1693       1.1     ragge 		m->m_len = len;
   1694       1.1     ragge 
   1695       1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1696       1.1     ragge 		    ("%s: RX: buffer at %p len %d\n",
   1697       1.1     ragge 		    sc->sc_dev.dv_xname, m->m_data, len));
   1698       1.1     ragge 
   1699       1.1     ragge 		/*
   1700       1.1     ragge 		 * If this is not the end of the packet, keep
   1701       1.1     ragge 		 * looking.
   1702       1.1     ragge 		 */
   1703       1.1     ragge 		if ((status & RDESC_STS_EOP) == 0) {
   1704       1.1     ragge 			sc->sc_rxlen += len;
   1705       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1706       1.1     ragge 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1707       1.1     ragge 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1708       1.1     ragge 			continue;
   1709       1.1     ragge 		}
   1710       1.1     ragge 
   1711       1.1     ragge 		/*
   1712       1.1     ragge 		 * Okay, we have the entire packet now...
   1713       1.1     ragge 		 */
   1714       1.1     ragge 		*sc->sc_rxtailp = NULL;
   1715       1.1     ragge 		m = sc->sc_rxhead;
   1716       1.1     ragge 		len += sc->sc_rxlen;
   1717       1.1     ragge 
   1718       1.1     ragge 		DGE_RXCHAIN_RESET(sc);
   1719       1.1     ragge 
   1720       1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1721       1.1     ragge 		    ("%s: RX: have entire packet, len -> %d\n",
   1722       1.1     ragge 		    sc->sc_dev.dv_xname, len));
   1723       1.1     ragge 
   1724       1.1     ragge 		/*
   1725       1.1     ragge 		 * If an error occurred, update stats and drop the packet.
   1726       1.1     ragge 		 */
   1727       1.1     ragge 		if (errors &
   1728       1.1     ragge 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1729       1.1     ragge 			ifp->if_ierrors++;
   1730       1.1     ragge 			if (errors & RDESC_ERR_SE)
   1731       1.1     ragge 				printf("%s: symbol error\n",
   1732       1.1     ragge 				    sc->sc_dev.dv_xname);
   1733       1.1     ragge 			else if (errors & RDESC_ERR_P)
   1734       1.1     ragge 				printf("%s: parity error\n",
   1735       1.1     ragge 				    sc->sc_dev.dv_xname);
   1736       1.1     ragge 			else if (errors & RDESC_ERR_CE)
   1737       1.1     ragge 				printf("%s: CRC error\n",
   1738       1.1     ragge 				    sc->sc_dev.dv_xname);
   1739       1.1     ragge 			m_freem(m);
   1740       1.1     ragge 			continue;
   1741       1.1     ragge 		}
   1742       1.1     ragge 
   1743       1.1     ragge 		/*
   1744       1.1     ragge 		 * No errors.  Receive the packet.
   1745       1.1     ragge 		 */
   1746       1.1     ragge 		m->m_pkthdr.rcvif = ifp;
   1747       1.1     ragge 		m->m_pkthdr.len = len;
   1748       1.1     ragge 
   1749       1.1     ragge 		/*
   1750       1.1     ragge 		 * Set up checksum info for this packet.
   1751       1.1     ragge 		 */
   1752       1.1     ragge 		if (status & RDESC_STS_IPCS) {
   1753       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1754       1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1755       1.1     ragge 			if (errors & RDESC_ERR_IPE)
   1756       1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1757       1.1     ragge 		}
   1758       1.1     ragge 		if (status & RDESC_STS_TCPCS) {
   1759       1.1     ragge 			/*
   1760       1.1     ragge 			 * Note: we don't know if this was TCP or UDP,
   1761       1.1     ragge 			 * so we just set both bits, and expect the
   1762       1.1     ragge 			 * upper layers to deal.
   1763       1.1     ragge 			 */
   1764       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1765       1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1766       1.1     ragge 			if (errors & RDESC_ERR_TCPE)
   1767       1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1768       1.1     ragge 		}
   1769       1.1     ragge 
   1770       1.1     ragge 		ifp->if_ipackets++;
   1771       1.1     ragge 
   1772       1.1     ragge #if NBPFILTER > 0
   1773       1.1     ragge 		/* Pass this up to any BPF listeners. */
   1774       1.1     ragge 		if (ifp->if_bpf)
   1775       1.1     ragge 			bpf_mtap(ifp->if_bpf, m);
   1776       1.1     ragge #endif /* NBPFILTER > 0 */
   1777       1.1     ragge 
   1778       1.1     ragge 		/* Pass it on. */
   1779       1.1     ragge 		(*ifp->if_input)(ifp, m);
   1780       1.1     ragge 	}
   1781       1.1     ragge 
   1782       1.1     ragge 	/* Update the receive pointer. */
   1783       1.1     ragge 	sc->sc_rxptr = i;
   1784       1.1     ragge 
   1785       1.1     ragge 	DPRINTF(DGE_DEBUG_RX,
   1786       1.1     ragge 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1787       1.1     ragge }
   1788       1.1     ragge 
   1789       1.1     ragge /*
   1790       1.1     ragge  * dge_linkintr:
   1791       1.1     ragge  *
   1792       1.1     ragge  *	Helper; handle link interrupts.
   1793       1.1     ragge  */
   1794       1.1     ragge static void
   1795       1.1     ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1796       1.1     ragge {
   1797       1.1     ragge 	uint32_t status;
   1798       1.1     ragge 
   1799       1.1     ragge 	if (icr & ICR_LSC) {
   1800       1.1     ragge 		status = CSR_READ(sc, DGE_STATUS);
   1801       1.1     ragge 		if (status & STATUS_LINKUP) {
   1802       1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1803       1.1     ragge 			    sc->sc_dev.dv_xname));
   1804       1.1     ragge 		} else {
   1805       1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1806       1.1     ragge 			    sc->sc_dev.dv_xname));
   1807       1.1     ragge 		}
   1808       1.1     ragge 	} else if (icr & ICR_RXSEQ) {
   1809       1.1     ragge 		DPRINTF(DGE_DEBUG_LINK,
   1810       1.1     ragge 		    ("%s: LINK: Receive sequence error\n",
   1811       1.1     ragge 		    sc->sc_dev.dv_xname));
   1812       1.1     ragge 	}
   1813       1.1     ragge 	/* XXX - fix errata */
   1814       1.1     ragge }
   1815       1.1     ragge 
   1816       1.1     ragge /*
   1817       1.1     ragge  * dge_reset:
   1818       1.1     ragge  *
   1819       1.1     ragge  *	Reset the i82597 chip.
   1820       1.1     ragge  */
   1821       1.1     ragge static void
   1822       1.1     ragge dge_reset(struct dge_softc *sc)
   1823       1.1     ragge {
   1824       1.1     ragge 	int i;
   1825       1.1     ragge 
   1826       1.1     ragge 	/*
   1827       1.1     ragge 	 * Do a chip reset.
   1828       1.1     ragge 	 */
   1829       1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1830       1.1     ragge 
   1831       1.1     ragge 	delay(10000);
   1832       1.1     ragge 
   1833       1.1     ragge 	for (i = 0; i < 1000; i++) {
   1834       1.1     ragge 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1835       1.1     ragge 			break;
   1836       1.1     ragge 		delay(20);
   1837       1.1     ragge 	}
   1838       1.1     ragge 
   1839       1.1     ragge 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1840       1.1     ragge 		printf("%s: WARNING: reset failed to complete\n",
   1841       1.1     ragge 		    sc->sc_dev.dv_xname);
   1842       1.1     ragge         /*
   1843       1.1     ragge          * Reset the EEPROM logic.
   1844       1.1     ragge          * This will cause the chip to reread its default values,
   1845       1.1     ragge 	 * which doesn't happen otherwise (errata).
   1846       1.1     ragge          */
   1847       1.1     ragge         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1848       1.1     ragge         delay(10000);
   1849       1.1     ragge }
   1850       1.1     ragge 
   1851       1.1     ragge /*
   1852       1.1     ragge  * dge_init:		[ifnet interface function]
   1853       1.1     ragge  *
   1854       1.1     ragge  *	Initialize the interface.  Must be called at splnet().
   1855       1.1     ragge  */
   1856       1.1     ragge static int
   1857       1.1     ragge dge_init(struct ifnet *ifp)
   1858       1.1     ragge {
   1859       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1860       1.1     ragge 	struct dge_rxsoft *rxs;
   1861       1.1     ragge 	int i, error = 0;
   1862       1.1     ragge 	uint32_t reg;
   1863       1.1     ragge 
   1864       1.1     ragge 	/*
   1865       1.1     ragge 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1866       1.1     ragge 	 * There is a small but measurable benefit to avoiding the adjusment
   1867       1.1     ragge 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1868       1.1     ragge 	 * on such platforms.  One possibility is that the DMA itself is
   1869       1.1     ragge 	 * slightly more efficient if the front of the entire packet (instead
   1870       1.1     ragge 	 * of the front of the headers) is aligned.
   1871       1.1     ragge 	 *
   1872       1.1     ragge 	 * Note we must always set align_tweak to 0 if we are using
   1873       1.1     ragge 	 * jumbo frames.
   1874       1.1     ragge 	 */
   1875       1.1     ragge #ifdef __NO_STRICT_ALIGNMENT
   1876       1.1     ragge 	sc->sc_align_tweak = 0;
   1877       1.1     ragge #else
   1878       1.1     ragge 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1879       1.1     ragge 		sc->sc_align_tweak = 0;
   1880       1.1     ragge 	else
   1881       1.1     ragge 		sc->sc_align_tweak = 2;
   1882       1.1     ragge #endif /* __NO_STRICT_ALIGNMENT */
   1883       1.1     ragge 
   1884       1.1     ragge 	/* Cancel any pending I/O. */
   1885       1.1     ragge 	dge_stop(ifp, 0);
   1886       1.1     ragge 
   1887       1.1     ragge 	/* Reset the chip to a known state. */
   1888       1.1     ragge 	dge_reset(sc);
   1889       1.1     ragge 
   1890       1.1     ragge 	/* Initialize the transmit descriptor ring. */
   1891       1.1     ragge 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1892       1.1     ragge 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1893       1.1     ragge 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1894       1.1     ragge 	sc->sc_txfree = DGE_NTXDESC;
   1895       1.1     ragge 	sc->sc_txnext = 0;
   1896       1.1     ragge 
   1897       1.1     ragge 	sc->sc_txctx_ipcs = 0xffffffff;
   1898       1.1     ragge 	sc->sc_txctx_tucs = 0xffffffff;
   1899       1.1     ragge 
   1900       1.1     ragge 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1901       1.1     ragge 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1902       1.1     ragge 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1903       1.1     ragge 	CSR_WRITE(sc, DGE_TDH, 0);
   1904       1.1     ragge 	CSR_WRITE(sc, DGE_TDT, 0);
   1905       1.1     ragge 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1906       1.1     ragge 
   1907       1.1     ragge #if 0
   1908       1.1     ragge 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1909       1.1     ragge 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1910       1.1     ragge #endif
   1911       1.1     ragge 	CSR_WRITE(sc, DGE_RXDCTL,
   1912       1.1     ragge 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1913       1.1     ragge 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1914       1.1     ragge 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1915       1.1     ragge 
   1916       1.1     ragge 	/* Initialize the transmit job descriptors. */
   1917       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1918       1.1     ragge 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1919       1.1     ragge 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1920       1.1     ragge 	sc->sc_txsnext = 0;
   1921       1.1     ragge 	sc->sc_txsdirty = 0;
   1922       1.1     ragge 
   1923       1.1     ragge 	/*
   1924       1.1     ragge 	 * Initialize the receive descriptor and receive job
   1925       1.1     ragge 	 * descriptor rings.
   1926       1.1     ragge 	 */
   1927       1.1     ragge 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1928       1.1     ragge 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1929       1.1     ragge 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1930       1.1     ragge 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1931       1.1     ragge 	CSR_WRITE(sc, DGE_RDT, 0);
   1932       1.1     ragge 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1933       1.1     ragge 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1934       1.1     ragge 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1935       1.1     ragge 
   1936       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1937       1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1938       1.1     ragge 		if (rxs->rxs_mbuf == NULL) {
   1939       1.1     ragge 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1940       1.1     ragge 				printf("%s: unable to allocate or map rx "
   1941       1.1     ragge 				    "buffer %d, error = %d\n",
   1942       1.1     ragge 				    sc->sc_dev.dv_xname, i, error);
   1943       1.1     ragge 				/*
   1944       1.1     ragge 				 * XXX Should attempt to run with fewer receive
   1945       1.1     ragge 				 * XXX buffers instead of just failing.
   1946       1.1     ragge 				 */
   1947       1.1     ragge 				dge_rxdrain(sc);
   1948       1.1     ragge 				goto out;
   1949       1.1     ragge 			}
   1950       1.1     ragge 		}
   1951       1.1     ragge 		DGE_INIT_RXDESC(sc, i);
   1952       1.1     ragge 	}
   1953       1.1     ragge 	sc->sc_rxptr = DGE_RXSPACE;
   1954       1.1     ragge 	sc->sc_rxdiscard = 0;
   1955       1.1     ragge 	DGE_RXCHAIN_RESET(sc);
   1956       1.1     ragge 
   1957       1.1     ragge 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1958       1.1     ragge 		sc->sc_ctrl0 |= CTRL0_JFE;
   1959       1.1     ragge 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1960       1.1     ragge 	}
   1961       1.1     ragge 
   1962       1.1     ragge 	/* Write the control registers. */
   1963       1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1964       1.1     ragge 
   1965       1.1     ragge 	/*
   1966       1.1     ragge 	 * Set up checksum offload parameters.
   1967       1.1     ragge 	 */
   1968       1.1     ragge 	reg = CSR_READ(sc, DGE_RXCSUM);
   1969      1.11      yamt 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1970       1.1     ragge 		reg |= RXCSUM_IPOFL;
   1971       1.1     ragge 	else
   1972       1.1     ragge 		reg &= ~RXCSUM_IPOFL;
   1973      1.11      yamt 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1974       1.1     ragge 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1975       1.1     ragge 	else {
   1976       1.1     ragge 		reg &= ~RXCSUM_TUOFL;
   1977      1.11      yamt 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   1978       1.1     ragge 			reg &= ~RXCSUM_IPOFL;
   1979       1.1     ragge 	}
   1980       1.1     ragge 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1981       1.1     ragge 
   1982       1.1     ragge 	/*
   1983       1.1     ragge 	 * Set up the interrupt registers.
   1984       1.1     ragge 	 */
   1985       1.1     ragge 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1986       1.1     ragge 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1987       1.1     ragge 	    ICR_RXO | ICR_RXT0;
   1988       1.1     ragge 
   1989       1.1     ragge 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1990       1.1     ragge 
   1991       1.1     ragge 	/*
   1992       1.1     ragge 	 * Set up the transmit control register.
   1993       1.1     ragge 	 */
   1994       1.1     ragge 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1995       1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1996       1.1     ragge 
   1997       1.1     ragge 	/*
   1998       1.1     ragge 	 * Set up the receive control register; we actually program
   1999       1.1     ragge 	 * the register when we set the receive filter.  Use multicast
   2000       1.1     ragge 	 * address offset type 0.
   2001       1.1     ragge 	 */
   2002       1.1     ragge 	sc->sc_mchash_type = 0;
   2003       1.1     ragge 
   2004      1.10     perry 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2005       1.1     ragge 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2006       1.1     ragge 
   2007       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2008       1.3     ragge 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2009       1.3     ragge #else
   2010       1.1     ragge 	switch(MCLBYTES) {
   2011       1.1     ragge 	case 2048:
   2012       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2013       1.1     ragge 		break;
   2014       1.1     ragge 	case 4096:
   2015       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2016       1.1     ragge 		break;
   2017       1.1     ragge 	case 8192:
   2018       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2019       1.1     ragge 		break;
   2020       1.1     ragge 	case 16384:
   2021       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2022       1.1     ragge 		break;
   2023       1.1     ragge 	default:
   2024       1.1     ragge 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2025       1.1     ragge 	}
   2026       1.3     ragge #endif
   2027       1.1     ragge 
   2028       1.1     ragge 	/* Set the receive filter. */
   2029       1.1     ragge 	/* Also sets RCTL */
   2030       1.1     ragge 	dge_set_filter(sc);
   2031       1.1     ragge 
   2032       1.1     ragge 	/* ...all done! */
   2033      1.10     perry 	ifp->if_flags |= IFF_RUNNING;
   2034       1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   2035       1.1     ragge 
   2036       1.1     ragge  out:
   2037       1.1     ragge 	if (error)
   2038       1.1     ragge 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2039       1.1     ragge 	return (error);
   2040       1.1     ragge }
   2041       1.1     ragge 
   2042       1.1     ragge /*
   2043       1.1     ragge  * dge_rxdrain:
   2044       1.1     ragge  *
   2045       1.1     ragge  *	Drain the receive queue.
   2046       1.1     ragge  */
   2047       1.1     ragge static void
   2048       1.1     ragge dge_rxdrain(struct dge_softc *sc)
   2049       1.1     ragge {
   2050       1.1     ragge 	struct dge_rxsoft *rxs;
   2051       1.1     ragge 	int i;
   2052       1.1     ragge 
   2053       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   2054       1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   2055       1.1     ragge 		if (rxs->rxs_mbuf != NULL) {
   2056       1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2057       1.1     ragge 			m_freem(rxs->rxs_mbuf);
   2058       1.1     ragge 			rxs->rxs_mbuf = NULL;
   2059       1.1     ragge 		}
   2060       1.1     ragge 	}
   2061       1.1     ragge }
   2062       1.1     ragge 
   2063       1.1     ragge /*
   2064       1.1     ragge  * dge_stop:		[ifnet interface function]
   2065       1.1     ragge  *
   2066       1.1     ragge  *	Stop transmission on the interface.
   2067       1.1     ragge  */
   2068       1.1     ragge static void
   2069       1.1     ragge dge_stop(struct ifnet *ifp, int disable)
   2070       1.1     ragge {
   2071       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2072       1.1     ragge 	struct dge_txsoft *txs;
   2073       1.1     ragge 	int i;
   2074       1.1     ragge 
   2075       1.1     ragge 	/* Stop the transmit and receive processes. */
   2076       1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, 0);
   2077       1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, 0);
   2078       1.1     ragge 
   2079       1.1     ragge 	/* Release any queued transmit buffers. */
   2080       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2081       1.1     ragge 		txs = &sc->sc_txsoft[i];
   2082       1.1     ragge 		if (txs->txs_mbuf != NULL) {
   2083       1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2084       1.1     ragge 			m_freem(txs->txs_mbuf);
   2085       1.1     ragge 			txs->txs_mbuf = NULL;
   2086       1.1     ragge 		}
   2087       1.1     ragge 	}
   2088       1.1     ragge 
   2089       1.1     ragge 	if (disable)
   2090       1.1     ragge 		dge_rxdrain(sc);
   2091       1.1     ragge 
   2092       1.1     ragge 	/* Mark the interface as down and cancel the watchdog timer. */
   2093       1.1     ragge 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2094       1.1     ragge 	ifp->if_timer = 0;
   2095       1.1     ragge }
   2096       1.1     ragge 
   2097       1.1     ragge /*
   2098       1.1     ragge  * dge_add_rxbuf:
   2099       1.1     ragge  *
   2100       1.1     ragge  *	Add a receive buffer to the indiciated descriptor.
   2101       1.1     ragge  */
   2102       1.1     ragge static int
   2103       1.1     ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
   2104       1.1     ragge {
   2105       1.1     ragge 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2106       1.1     ragge 	struct mbuf *m;
   2107       1.1     ragge 	int error;
   2108       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2109      1.15  christos 	void *buf;
   2110       1.3     ragge #endif
   2111       1.1     ragge 
   2112       1.1     ragge 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2113       1.1     ragge 	if (m == NULL)
   2114       1.1     ragge 		return (ENOBUFS);
   2115       1.1     ragge 
   2116       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2117       1.3     ragge 	if ((buf = dge_getbuf(sc)) == NULL)
   2118       1.3     ragge 		return ENOBUFS;
   2119       1.3     ragge 
   2120       1.3     ragge 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2121       1.3     ragge 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2122       1.6      yamt 	m->m_flags |= M_EXT_RW;
   2123       1.3     ragge 
   2124       1.3     ragge 	if (rxs->rxs_mbuf != NULL)
   2125       1.3     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2126       1.3     ragge 	rxs->rxs_mbuf = m;
   2127       1.3     ragge 
   2128       1.3     ragge 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2129       1.3     ragge 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2130       1.3     ragge #else
   2131       1.1     ragge 	MCLGET(m, M_DONTWAIT);
   2132       1.1     ragge 	if ((m->m_flags & M_EXT) == 0) {
   2133       1.1     ragge 		m_freem(m);
   2134       1.1     ragge 		return (ENOBUFS);
   2135       1.1     ragge 	}
   2136       1.1     ragge 
   2137       1.1     ragge 	if (rxs->rxs_mbuf != NULL)
   2138       1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2139       1.1     ragge 
   2140       1.1     ragge 	rxs->rxs_mbuf = m;
   2141       1.1     ragge 
   2142       1.1     ragge 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2143       1.1     ragge 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2144       1.1     ragge 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2145       1.3     ragge #endif
   2146       1.1     ragge 	if (error) {
   2147       1.1     ragge 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2148       1.1     ragge 		    sc->sc_dev.dv_xname, idx, error);
   2149       1.1     ragge 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2150       1.1     ragge 	}
   2151       1.1     ragge 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2152       1.1     ragge 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2153       1.1     ragge 
   2154       1.1     ragge 	return (0);
   2155       1.1     ragge }
   2156       1.1     ragge 
   2157       1.1     ragge /*
   2158       1.1     ragge  * dge_set_ral:
   2159       1.1     ragge  *
   2160       1.1     ragge  *	Set an entry in the receive address list.
   2161       1.1     ragge  */
   2162       1.1     ragge static void
   2163       1.1     ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2164       1.1     ragge {
   2165       1.1     ragge 	uint32_t ral_lo, ral_hi;
   2166       1.1     ragge 
   2167       1.1     ragge 	if (enaddr != NULL) {
   2168       1.1     ragge 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2169       1.1     ragge 		    (enaddr[3] << 24);
   2170       1.1     ragge 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2171       1.1     ragge 		ral_hi |= RAH_AV;
   2172       1.1     ragge 	} else {
   2173       1.1     ragge 		ral_lo = 0;
   2174       1.1     ragge 		ral_hi = 0;
   2175       1.1     ragge 	}
   2176       1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2177       1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2178       1.1     ragge }
   2179       1.1     ragge 
   2180       1.1     ragge /*
   2181       1.1     ragge  * dge_mchash:
   2182       1.1     ragge  *
   2183       1.1     ragge  *	Compute the hash of the multicast address for the 4096-bit
   2184       1.1     ragge  *	multicast filter.
   2185       1.1     ragge  */
   2186       1.1     ragge static uint32_t
   2187       1.1     ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2188       1.1     ragge {
   2189       1.1     ragge 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2190       1.1     ragge 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2191       1.1     ragge 	uint32_t hash;
   2192       1.1     ragge 
   2193       1.1     ragge 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2194       1.1     ragge 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2195       1.1     ragge 
   2196       1.1     ragge 	return (hash & 0xfff);
   2197       1.1     ragge }
   2198       1.1     ragge 
   2199       1.1     ragge /*
   2200       1.1     ragge  * dge_set_filter:
   2201       1.1     ragge  *
   2202       1.1     ragge  *	Set up the receive filter.
   2203       1.1     ragge  */
   2204       1.1     ragge static void
   2205       1.1     ragge dge_set_filter(struct dge_softc *sc)
   2206       1.1     ragge {
   2207       1.1     ragge 	struct ethercom *ec = &sc->sc_ethercom;
   2208       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2209       1.1     ragge 	struct ether_multi *enm;
   2210       1.1     ragge 	struct ether_multistep step;
   2211       1.1     ragge 	uint32_t hash, reg, bit;
   2212       1.1     ragge 	int i;
   2213       1.1     ragge 
   2214       1.1     ragge 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2215       1.1     ragge 
   2216       1.1     ragge 	if (ifp->if_flags & IFF_BROADCAST)
   2217       1.1     ragge 		sc->sc_rctl |= RCTL_BAM;
   2218       1.1     ragge 	if (ifp->if_flags & IFF_PROMISC) {
   2219       1.1     ragge 		sc->sc_rctl |= RCTL_UPE;
   2220       1.1     ragge 		goto allmulti;
   2221       1.1     ragge 	}
   2222       1.1     ragge 
   2223       1.1     ragge 	/*
   2224       1.1     ragge 	 * Set the station address in the first RAL slot, and
   2225       1.1     ragge 	 * clear the remaining slots.
   2226       1.1     ragge 	 */
   2227  1.15.2.2        ad 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2228       1.1     ragge 	for (i = 1; i < RA_TABSIZE; i++)
   2229       1.1     ragge 		dge_set_ral(sc, NULL, i);
   2230       1.1     ragge 
   2231       1.1     ragge 	/* Clear out the multicast table. */
   2232       1.1     ragge 	for (i = 0; i < MC_TABSIZE; i++)
   2233       1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2234       1.1     ragge 
   2235       1.1     ragge 	ETHER_FIRST_MULTI(step, ec, enm);
   2236       1.1     ragge 	while (enm != NULL) {
   2237       1.1     ragge 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2238       1.1     ragge 			/*
   2239       1.1     ragge 			 * We must listen to a range of multicast addresses.
   2240       1.1     ragge 			 * For now, just accept all multicasts, rather than
   2241       1.1     ragge 			 * trying to set only those filter bits needed to match
   2242       1.1     ragge 			 * the range.  (At this time, the only use of address
   2243       1.1     ragge 			 * ranges is for IP multicast routing, for which the
   2244       1.1     ragge 			 * range is big enough to require all bits set.)
   2245       1.1     ragge 			 */
   2246       1.1     ragge 			goto allmulti;
   2247       1.1     ragge 		}
   2248       1.1     ragge 
   2249       1.1     ragge 		hash = dge_mchash(sc, enm->enm_addrlo);
   2250       1.1     ragge 
   2251       1.1     ragge 		reg = (hash >> 5) & 0x7f;
   2252       1.1     ragge 		bit = hash & 0x1f;
   2253       1.1     ragge 
   2254       1.1     ragge 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2255       1.1     ragge 		hash |= 1U << bit;
   2256       1.1     ragge 
   2257       1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2258       1.1     ragge 
   2259       1.1     ragge 		ETHER_NEXT_MULTI(step, enm);
   2260       1.1     ragge 	}
   2261       1.1     ragge 
   2262       1.1     ragge 	ifp->if_flags &= ~IFF_ALLMULTI;
   2263       1.1     ragge 	goto setit;
   2264       1.1     ragge 
   2265       1.1     ragge  allmulti:
   2266       1.1     ragge 	ifp->if_flags |= IFF_ALLMULTI;
   2267       1.1     ragge 	sc->sc_rctl |= RCTL_MPE;
   2268       1.1     ragge 
   2269       1.1     ragge  setit:
   2270       1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2271       1.1     ragge }
   2272       1.1     ragge 
   2273       1.1     ragge /*
   2274       1.1     ragge  * Read in the EEPROM info and verify checksum.
   2275       1.1     ragge  */
   2276       1.1     ragge int
   2277       1.1     ragge dge_read_eeprom(struct dge_softc *sc)
   2278       1.1     ragge {
   2279       1.1     ragge 	uint16_t cksum;
   2280       1.1     ragge 	int i;
   2281       1.1     ragge 
   2282       1.1     ragge 	cksum = 0;
   2283       1.1     ragge 	for (i = 0; i < EEPROM_SIZE; i++) {
   2284       1.1     ragge 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2285       1.1     ragge 		cksum += sc->sc_eeprom[i];
   2286       1.1     ragge 	}
   2287       1.1     ragge 	return cksum != EEPROM_CKSUM;
   2288       1.1     ragge }
   2289       1.1     ragge 
   2290       1.1     ragge 
   2291       1.1     ragge /*
   2292       1.1     ragge  * Read a 16-bit word from address addr in the serial EEPROM.
   2293       1.1     ragge  */
   2294       1.1     ragge uint16_t
   2295       1.1     ragge dge_eeprom_word(struct dge_softc *sc, int addr)
   2296       1.1     ragge {
   2297       1.1     ragge 	uint32_t reg;
   2298       1.1     ragge 	uint16_t rval = 0;
   2299       1.1     ragge 	int i;
   2300       1.1     ragge 
   2301       1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2302       1.1     ragge 
   2303       1.1     ragge 	/* Lower clock pulse (and data in to chip) */
   2304       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2305       1.1     ragge 	/* Select chip */
   2306       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2307       1.1     ragge 
   2308       1.1     ragge 	/* Send read command */
   2309       1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2310       1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2311       1.1     ragge 	dge_eeprom_clockout(sc, 0);
   2312       1.1     ragge 
   2313       1.1     ragge 	/* Send address */
   2314       1.1     ragge 	for (i = 5; i >= 0; i--)
   2315       1.1     ragge 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2316       1.1     ragge 
   2317       1.1     ragge 	/* Read data */
   2318       1.1     ragge 	for (i = 0; i < 16; i++) {
   2319       1.1     ragge 		rval <<= 1;
   2320       1.1     ragge 		rval |= dge_eeprom_clockin(sc);
   2321       1.1     ragge 	}
   2322       1.1     ragge 
   2323       1.1     ragge 	/* Deselect chip */
   2324       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2325       1.1     ragge 
   2326       1.1     ragge 	return rval;
   2327       1.1     ragge }
   2328       1.1     ragge 
   2329       1.1     ragge /*
   2330       1.1     ragge  * Clock out a single bit to the EEPROM.
   2331       1.1     ragge  */
   2332       1.1     ragge void
   2333       1.1     ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2334       1.1     ragge {
   2335       1.1     ragge 	int reg;
   2336       1.1     ragge 
   2337       1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2338       1.1     ragge 	if (bit)
   2339       1.1     ragge 		reg |= EECD_DI;
   2340      1.10     perry 
   2341       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2342       1.1     ragge 	delay(2);
   2343       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2344       1.1     ragge 	delay(2);
   2345       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2346       1.1     ragge 	delay(2);
   2347       1.1     ragge }
   2348       1.1     ragge 
   2349       1.1     ragge /*
   2350       1.1     ragge  * Clock in a single bit from EEPROM.
   2351       1.1     ragge  */
   2352       1.1     ragge int
   2353       1.1     ragge dge_eeprom_clockin(struct dge_softc *sc)
   2354       1.1     ragge {
   2355       1.1     ragge 	int reg, rv;
   2356       1.1     ragge 
   2357       1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2358       1.1     ragge 
   2359       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2360       1.1     ragge 	delay(2);
   2361       1.1     ragge 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2362       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2363       1.1     ragge 	delay(2);
   2364       1.1     ragge 
   2365       1.1     ragge 	return rv;
   2366       1.1     ragge }
   2367       1.1     ragge 
   2368       1.1     ragge static void
   2369       1.1     ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2370       1.1     ragge {
   2371       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2372       1.1     ragge 
   2373       1.1     ragge 	ifmr->ifm_status = IFM_AVALID;
   2374       1.1     ragge 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2375       1.1     ragge 
   2376       1.1     ragge 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2377       1.1     ragge 		ifmr->ifm_status |= IFM_ACTIVE;
   2378       1.1     ragge }
   2379       1.1     ragge 
   2380       1.1     ragge static inline int
   2381       1.1     ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2382       1.1     ragge {
   2383       1.1     ragge         int i, mdic;
   2384       1.1     ragge 
   2385       1.1     ragge         CSR_WRITE(sc, DGE_MDIO,
   2386       1.1     ragge 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2387      1.10     perry         for (i = 0; i < 10; i++) {
   2388       1.1     ragge                 delay(10);
   2389       1.1     ragge                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2390       1.1     ragge                         break;
   2391       1.1     ragge         }
   2392       1.1     ragge         return mdic;
   2393       1.1     ragge }
   2394       1.1     ragge 
   2395       1.1     ragge 
   2396       1.1     ragge static void
   2397       1.1     ragge dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
   2398       1.1     ragge {
   2399       1.1     ragge 	struct dge_softc *sc = (void *) self;
   2400       1.1     ragge 	int mdic;
   2401       1.1     ragge 
   2402       1.1     ragge 	CSR_WRITE(sc, DGE_MDIRW, val);
   2403       1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2404       1.1     ragge 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2405       1.1     ragge 		    sc->sc_dev.dv_xname, phy, reg);
   2406       1.1     ragge 		return;
   2407       1.1     ragge 	}
   2408       1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2409       1.1     ragge 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2410       1.1     ragge 		    sc->sc_dev.dv_xname, phy, reg);
   2411       1.1     ragge 		return;
   2412       1.1     ragge 	}
   2413       1.1     ragge }
   2414       1.1     ragge 
   2415       1.1     ragge static void
   2416       1.1     ragge dge_xgmii_reset(struct dge_softc *sc)
   2417       1.1     ragge {
   2418       1.1     ragge 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2419       1.1     ragge }
   2420       1.1     ragge 
   2421       1.1     ragge static int
   2422      1.14  christos dge_xgmii_mediachange(struct ifnet *ifp)
   2423       1.1     ragge {
   2424       1.1     ragge 	return 0;
   2425       1.1     ragge }
   2426