Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.2
      1  1.2  ragge /*	$NetBSD: if_dge.c,v 1.2 2004/04/13 11:40:06 ragge Exp $	*/
      2  1.1  ragge 
      3  1.1  ragge /*
      4  1.1  ragge  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  1.1  ragge  * All rights reserved.
      6  1.1  ragge  *
      7  1.1  ragge  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  1.1  ragge  *
      9  1.1  ragge  * Redistribution and use in source and binary forms, with or without
     10  1.1  ragge  * modification, are permitted provided that the following conditions
     11  1.1  ragge  * are met:
     12  1.1  ragge  * 1. Redistributions of source code must retain the above copyright
     13  1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     14  1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  ragge  *    documentation and/or other materials provided with the distribution.
     17  1.1  ragge  * 3. All advertising materials mentioning features or use of this software
     18  1.1  ragge  *    must display the following acknowledgement:
     19  1.1  ragge  *	This product includes software developed for the NetBSD Project by
     20  1.1  ragge  *	SUNET, Swedish University Computer Network.
     21  1.1  ragge  * 4. The name of SUNET may not be used to endorse or promote products
     22  1.1  ragge  *    derived from this software without specific prior written permission.
     23  1.1  ragge  *
     24  1.1  ragge  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  1.1  ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  1.1  ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  1.1  ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  1.1  ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  1.1  ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  1.1  ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  1.1  ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  1.1  ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  1.1  ragge  * POSSIBILITY OF SUCH DAMAGE.
     35  1.1  ragge  */
     36  1.1  ragge 
     37  1.1  ragge /*
     38  1.1  ragge  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  1.1  ragge  * All rights reserved.
     40  1.1  ragge  *
     41  1.1  ragge  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  1.1  ragge  *
     43  1.1  ragge  * Redistribution and use in source and binary forms, with or without
     44  1.1  ragge  * modification, are permitted provided that the following conditions
     45  1.1  ragge  * are met:
     46  1.1  ragge  * 1. Redistributions of source code must retain the above copyright
     47  1.1  ragge  *    notice, this list of conditions and the following disclaimer.
     48  1.1  ragge  * 2. Redistributions in binary form must reproduce the above copyright
     49  1.1  ragge  *    notice, this list of conditions and the following disclaimer in the
     50  1.1  ragge  *    documentation and/or other materials provided with the distribution.
     51  1.1  ragge  * 3. All advertising materials mentioning features or use of this software
     52  1.1  ragge  *    must display the following acknowledgement:
     53  1.1  ragge  *	This product includes software developed for the NetBSD Project by
     54  1.1  ragge  *	Wasabi Systems, Inc.
     55  1.1  ragge  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  1.1  ragge  *    or promote products derived from this software without specific prior
     57  1.1  ragge  *    written permission.
     58  1.1  ragge  *
     59  1.1  ragge  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  1.1  ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  1.1  ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  1.1  ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  1.1  ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  1.1  ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  1.1  ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  1.1  ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  1.1  ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  1.1  ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  1.1  ragge  * POSSIBILITY OF SUCH DAMAGE.
     70  1.1  ragge  */
     71  1.1  ragge 
     72  1.1  ragge /*
     73  1.1  ragge  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  1.1  ragge  *
     75  1.1  ragge  * TODO (in no specific order):
     76  1.1  ragge  *	HW VLAN support.
     77  1.1  ragge  *	TSE offloading (needs kernel changes...)
     78  1.1  ragge  *	RAIDC (receive interrupt delay adaptation)
     79  1.1  ragge  *	Use memory > 4GB.
     80  1.1  ragge  */
     81  1.1  ragge 
     82  1.1  ragge #include <sys/cdefs.h>
     83  1.2  ragge __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.2 2004/04/13 11:40:06 ragge Exp $");
     84  1.1  ragge 
     85  1.1  ragge #include "bpfilter.h"
     86  1.1  ragge #include "rnd.h"
     87  1.1  ragge 
     88  1.1  ragge #include <sys/param.h>
     89  1.1  ragge #include <sys/systm.h>
     90  1.1  ragge #include <sys/callout.h>
     91  1.1  ragge #include <sys/mbuf.h>
     92  1.1  ragge #include <sys/malloc.h>
     93  1.1  ragge #include <sys/kernel.h>
     94  1.1  ragge #include <sys/socket.h>
     95  1.1  ragge #include <sys/ioctl.h>
     96  1.1  ragge #include <sys/errno.h>
     97  1.1  ragge #include <sys/device.h>
     98  1.1  ragge #include <sys/queue.h>
     99  1.1  ragge 
    100  1.1  ragge #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101  1.1  ragge 
    102  1.1  ragge #if NRND > 0
    103  1.1  ragge #include <sys/rnd.h>
    104  1.1  ragge #endif
    105  1.1  ragge 
    106  1.1  ragge #include <net/if.h>
    107  1.1  ragge #include <net/if_dl.h>
    108  1.1  ragge #include <net/if_media.h>
    109  1.1  ragge #include <net/if_ether.h>
    110  1.1  ragge 
    111  1.1  ragge #if NBPFILTER > 0
    112  1.1  ragge #include <net/bpf.h>
    113  1.1  ragge #endif
    114  1.1  ragge 
    115  1.1  ragge #include <netinet/in.h>			/* XXX for struct ip */
    116  1.1  ragge #include <netinet/in_systm.h>		/* XXX for struct ip */
    117  1.1  ragge #include <netinet/ip.h>			/* XXX for struct ip */
    118  1.1  ragge #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    119  1.1  ragge 
    120  1.1  ragge #include <machine/bus.h>
    121  1.1  ragge #include <machine/intr.h>
    122  1.1  ragge #include <machine/endian.h>
    123  1.1  ragge 
    124  1.1  ragge #include <dev/mii/mii.h>
    125  1.1  ragge #include <dev/mii/miivar.h>
    126  1.1  ragge #include <dev/mii/mii_bitbang.h>
    127  1.1  ragge 
    128  1.1  ragge #include <dev/pci/pcireg.h>
    129  1.1  ragge #include <dev/pci/pcivar.h>
    130  1.1  ragge #include <dev/pci/pcidevs.h>
    131  1.1  ragge 
    132  1.1  ragge #include <dev/pci/if_dgereg.h>
    133  1.1  ragge 
    134  1.1  ragge #define DGE_EVENT_COUNTERS
    135  1.1  ragge #define DGE_DEBUG
    136  1.1  ragge 
    137  1.1  ragge #ifdef DGE_DEBUG
    138  1.1  ragge #define	DGE_DEBUG_LINK		0x01
    139  1.1  ragge #define	DGE_DEBUG_TX		0x02
    140  1.1  ragge #define	DGE_DEBUG_RX		0x04
    141  1.1  ragge #define	DGE_DEBUG_CKSUM		0x08
    142  1.1  ragge int	dge_debug = 0;
    143  1.1  ragge 
    144  1.1  ragge #define	DPRINTF(x, y)	if (dge_debug & (x)) printf y
    145  1.1  ragge #else
    146  1.1  ragge #define	DPRINTF(x, y)	/* nothing */
    147  1.1  ragge #endif /* DGE_DEBUG */
    148  1.1  ragge 
    149  1.1  ragge /*
    150  1.1  ragge  * Transmit descriptor list size. We allow up to 100 DMA segments per
    151  1.1  ragge  * packet (Intel reports of jumbo frame packets with as
    152  1.1  ragge  * many as 80 DMA segments when using 16k buffers).
    153  1.1  ragge  */
    154  1.1  ragge #define	DGE_NTXSEGS		100
    155  1.1  ragge #define	DGE_IFQUEUELEN		20000
    156  1.1  ragge #define	DGE_TXQUEUELEN		2048
    157  1.1  ragge #define	DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    158  1.1  ragge #define	DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    159  1.1  ragge #define	DGE_NTXDESC		1024
    160  1.1  ragge #define	DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    161  1.1  ragge #define	DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    162  1.1  ragge #define	DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    163  1.1  ragge 
    164  1.1  ragge /*
    165  1.1  ragge  * Receive descriptor list size.
    166  1.1  ragge  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    167  1.1  ragge  * be chained.  Due to the nature of the card (high-speed), keep this
    168  1.1  ragge  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    169  1.1  ragge  * which at full speed will be received in just under 3ms.
    170  1.1  ragge  */
    171  1.1  ragge #define	DGE_NRXDESC		2048
    172  1.1  ragge #define	DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    173  1.1  ragge #define	DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    174  1.1  ragge /*
    175  1.1  ragge  * # of descriptors between head and written descriptors.
    176  1.1  ragge  * This is to work-around two erratas.
    177  1.1  ragge  */
    178  1.1  ragge #define DGE_RXSPACE		10
    179  1.1  ragge #define	DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    180  1.1  ragge /*
    181  1.1  ragge  * Receive descriptor fetch threshholds. These are values recommended
    182  1.1  ragge  * by Intel, do not touch them unless you know what you are doing.
    183  1.1  ragge  */
    184  1.1  ragge #define	RXDCTL_PTHRESH_VAL	128
    185  1.1  ragge #define	RXDCTL_HTHRESH_VAL	16
    186  1.1  ragge #define	RXDCTL_WTHRESH_VAL	16
    187  1.1  ragge 
    188  1.1  ragge 
    189  1.1  ragge /*
    190  1.1  ragge  * Tweakable parameters; default values.
    191  1.1  ragge  */
    192  1.1  ragge #define	FCRTH	0x30000	/* Send XOFF water mark */
    193  1.1  ragge #define	FCRTL	0x28000	/* Send XON water mark */
    194  1.1  ragge #define	RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    195  1.1  ragge #define	TIDV	0x20	/* Interrupt delay after send, .8192us units */
    196  1.1  ragge 
    197  1.1  ragge /*
    198  1.1  ragge  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    199  1.1  ragge  * a single clump that maps to a single DMA segment to make serveral things
    200  1.1  ragge  * easier.
    201  1.1  ragge  */
    202  1.1  ragge struct dge_control_data {
    203  1.1  ragge 	/*
    204  1.1  ragge 	 * The transmit descriptors.
    205  1.1  ragge 	 */
    206  1.1  ragge 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    207  1.1  ragge 
    208  1.1  ragge 	/*
    209  1.1  ragge 	 * The receive descriptors.
    210  1.1  ragge 	 */
    211  1.1  ragge 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    212  1.1  ragge };
    213  1.1  ragge 
    214  1.1  ragge #define	DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    215  1.1  ragge #define	DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    216  1.1  ragge #define	DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    217  1.1  ragge 
    218  1.1  ragge /*
    219  1.2  ragge  * The DGE interface have a higher max MTU size than normal jumbo frames.
    220  1.2  ragge  */
    221  1.2  ragge #define DGE_MAX_MTU     16288   /* Max MTU size for this interface */
    222  1.2  ragge 
    223  1.2  ragge /*
    224  1.1  ragge  * Software state for transmit jobs.
    225  1.1  ragge  */
    226  1.1  ragge struct dge_txsoft {
    227  1.1  ragge 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    228  1.1  ragge 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    229  1.1  ragge 	int txs_firstdesc;		/* first descriptor in packet */
    230  1.1  ragge 	int txs_lastdesc;		/* last descriptor in packet */
    231  1.1  ragge 	int txs_ndesc;			/* # of descriptors used */
    232  1.1  ragge };
    233  1.1  ragge 
    234  1.1  ragge /*
    235  1.1  ragge  * Software state for receive buffers.  Each descriptor gets a
    236  1.1  ragge  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    237  1.1  ragge  * more than one buffer, we chain them together.
    238  1.1  ragge  */
    239  1.1  ragge struct dge_rxsoft {
    240  1.1  ragge 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    241  1.1  ragge 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    242  1.1  ragge };
    243  1.1  ragge 
    244  1.1  ragge /*
    245  1.1  ragge  * Software state per device.
    246  1.1  ragge  */
    247  1.1  ragge struct dge_softc {
    248  1.1  ragge 	struct device sc_dev;		/* generic device information */
    249  1.1  ragge 	bus_space_tag_t sc_st;		/* bus space tag */
    250  1.1  ragge 	bus_space_handle_t sc_sh;	/* bus space handle */
    251  1.1  ragge 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    252  1.1  ragge 	struct ethercom sc_ethercom;	/* ethernet common data */
    253  1.1  ragge 	void *sc_sdhook;		/* shutdown hook */
    254  1.1  ragge 
    255  1.1  ragge 	int sc_flags;			/* flags; see below */
    256  1.1  ragge 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    257  1.1  ragge 	int sc_pcix_offset;		/* PCIX capability register offset */
    258  1.1  ragge 
    259  1.1  ragge 	pci_chipset_tag_t sc_pc;
    260  1.1  ragge 	pcitag_t sc_pt;
    261  1.1  ragge 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    262  1.1  ragge 
    263  1.1  ragge 	void *sc_ih;			/* interrupt cookie */
    264  1.1  ragge 
    265  1.1  ragge 	struct ifmedia sc_media;
    266  1.1  ragge 
    267  1.1  ragge 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    268  1.1  ragge #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    269  1.1  ragge 
    270  1.1  ragge 	int		sc_align_tweak;
    271  1.1  ragge 
    272  1.1  ragge 	/*
    273  1.1  ragge 	 * Software state for the transmit and receive descriptors.
    274  1.1  ragge 	 */
    275  1.1  ragge 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    276  1.1  ragge 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    277  1.1  ragge 
    278  1.1  ragge 	/*
    279  1.1  ragge 	 * Control data structures.
    280  1.1  ragge 	 */
    281  1.1  ragge 	struct dge_control_data *sc_control_data;
    282  1.1  ragge #define	sc_txdescs	sc_control_data->wcd_txdescs
    283  1.1  ragge #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    284  1.1  ragge 
    285  1.1  ragge #ifdef DGE_EVENT_COUNTERS
    286  1.1  ragge 	/* Event counters. */
    287  1.1  ragge 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    288  1.1  ragge 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    289  1.1  ragge 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    290  1.1  ragge 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    291  1.1  ragge 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    292  1.1  ragge 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    293  1.1  ragge 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    294  1.1  ragge 
    295  1.1  ragge 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    296  1.1  ragge 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    297  1.1  ragge 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    298  1.1  ragge 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    299  1.1  ragge 
    300  1.1  ragge 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    301  1.1  ragge 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    302  1.1  ragge 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    303  1.1  ragge 
    304  1.1  ragge 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    305  1.1  ragge 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    306  1.1  ragge #endif /* DGE_EVENT_COUNTERS */
    307  1.1  ragge 
    308  1.1  ragge 	int	sc_txfree;		/* number of free Tx descriptors */
    309  1.1  ragge 	int	sc_txnext;		/* next ready Tx descriptor */
    310  1.1  ragge 
    311  1.1  ragge 	int	sc_txsfree;		/* number of free Tx jobs */
    312  1.1  ragge 	int	sc_txsnext;		/* next free Tx job */
    313  1.1  ragge 	int	sc_txsdirty;		/* dirty Tx jobs */
    314  1.1  ragge 
    315  1.1  ragge 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    316  1.1  ragge 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    317  1.1  ragge 
    318  1.1  ragge 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    319  1.1  ragge 	int	sc_rxdiscard;
    320  1.1  ragge 	int	sc_rxlen;
    321  1.1  ragge 	struct mbuf *sc_rxhead;
    322  1.1  ragge 	struct mbuf *sc_rxtail;
    323  1.1  ragge 	struct mbuf **sc_rxtailp;
    324  1.1  ragge 
    325  1.1  ragge 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    326  1.1  ragge 	uint32_t sc_icr;		/* prototype interrupt bits */
    327  1.1  ragge 	uint32_t sc_tctl;		/* prototype TCTL register */
    328  1.1  ragge 	uint32_t sc_rctl;		/* prototype RCTL register */
    329  1.1  ragge 
    330  1.1  ragge 	int sc_mchash_type;		/* multicast filter offset */
    331  1.1  ragge 
    332  1.1  ragge 	uint16_t sc_eeprom[EEPROM_SIZE];
    333  1.1  ragge 
    334  1.1  ragge #if NRND > 0
    335  1.1  ragge 	rndsource_element_t rnd_source;	/* random source */
    336  1.1  ragge #endif
    337  1.1  ragge };
    338  1.1  ragge 
    339  1.1  ragge #define	DGE_RXCHAIN_RESET(sc)						\
    340  1.1  ragge do {									\
    341  1.1  ragge 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    342  1.1  ragge 	*(sc)->sc_rxtailp = NULL;					\
    343  1.1  ragge 	(sc)->sc_rxlen = 0;						\
    344  1.1  ragge } while (/*CONSTCOND*/0)
    345  1.1  ragge 
    346  1.1  ragge #define	DGE_RXCHAIN_LINK(sc, m)						\
    347  1.1  ragge do {									\
    348  1.1  ragge 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    349  1.1  ragge 	(sc)->sc_rxtailp = &(m)->m_next;				\
    350  1.1  ragge } while (/*CONSTCOND*/0)
    351  1.1  ragge 
    352  1.1  ragge /* sc_flags */
    353  1.1  ragge #define	DGE_F_BUS64		0x20	/* bus is 64-bit */
    354  1.1  ragge #define	DGE_F_PCIX		0x40	/* bus is PCI-X */
    355  1.1  ragge 
    356  1.1  ragge #ifdef DGE_EVENT_COUNTERS
    357  1.1  ragge #define	DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    358  1.1  ragge #else
    359  1.1  ragge #define	DGE_EVCNT_INCR(ev)	/* nothing */
    360  1.1  ragge #endif
    361  1.1  ragge 
    362  1.1  ragge #define	CSR_READ(sc, reg)						\
    363  1.1  ragge 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    364  1.1  ragge #define	CSR_WRITE(sc, reg, val)						\
    365  1.1  ragge 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    366  1.1  ragge 
    367  1.1  ragge #define	DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    368  1.1  ragge #define	DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    369  1.1  ragge 
    370  1.1  ragge #define	DGE_CDTXSYNC(sc, x, n, ops)					\
    371  1.1  ragge do {									\
    372  1.1  ragge 	int __x, __n;							\
    373  1.1  ragge 									\
    374  1.1  ragge 	__x = (x);							\
    375  1.1  ragge 	__n = (n);							\
    376  1.1  ragge 									\
    377  1.1  ragge 	/* If it will wrap around, sync to the end of the ring. */	\
    378  1.1  ragge 	if ((__x + __n) > DGE_NTXDESC) {					\
    379  1.1  ragge 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    380  1.1  ragge 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    381  1.1  ragge 		    (DGE_NTXDESC - __x), (ops));				\
    382  1.1  ragge 		__n -= (DGE_NTXDESC - __x);				\
    383  1.1  ragge 		__x = 0;						\
    384  1.1  ragge 	}								\
    385  1.1  ragge 									\
    386  1.1  ragge 	/* Now sync whatever is left. */				\
    387  1.1  ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    388  1.1  ragge 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    389  1.1  ragge } while (/*CONSTCOND*/0)
    390  1.1  ragge 
    391  1.1  ragge #define	DGE_CDRXSYNC(sc, x, ops)						\
    392  1.1  ragge do {									\
    393  1.1  ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    394  1.1  ragge 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    395  1.1  ragge } while (/*CONSTCOND*/0)
    396  1.1  ragge 
    397  1.1  ragge #define	DGE_INIT_RXDESC(sc, x)						\
    398  1.1  ragge do {									\
    399  1.1  ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    400  1.1  ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    401  1.1  ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    402  1.1  ragge 									\
    403  1.1  ragge 	/*								\
    404  1.1  ragge 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    405  1.1  ragge 	 * so that the payload after the Ethernet header is aligned	\
    406  1.1  ragge 	 * to a 4-byte boundary.					\
    407  1.1  ragge 	 *								\
    408  1.1  ragge 	 * XXX BRAINDAMAGE ALERT!					\
    409  1.1  ragge 	 * The stupid chip uses the same size for every buffer, which	\
    410  1.1  ragge 	 * is set in the Receive Control register.  We are using the 2K	\
    411  1.1  ragge 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    412  1.1  ragge 	 * reason, we can't "scoot" packets longer than the standard	\
    413  1.1  ragge 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    414  1.1  ragge 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    415  1.1  ragge 	 * the upper layer copy the headers.				\
    416  1.1  ragge 	 */								\
    417  1.1  ragge 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    418  1.1  ragge 									\
    419  1.1  ragge 	__rxd->dr_baddrl =					\
    420  1.1  ragge 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 		\
    421  1.1  ragge 		(sc)->sc_align_tweak);					\
    422  1.1  ragge 	__rxd->dr_baddrh = 0;					\
    423  1.1  ragge 	__rxd->dr_len = 0;						\
    424  1.1  ragge 	__rxd->dr_cksum = 0;						\
    425  1.1  ragge 	__rxd->dr_status = 0;						\
    426  1.1  ragge 	__rxd->dr_errors = 0;						\
    427  1.1  ragge 	__rxd->dr_special = 0;						\
    428  1.1  ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    429  1.1  ragge 									\
    430  1.1  ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    431  1.1  ragge } while (/*CONSTCOND*/0)
    432  1.1  ragge 
    433  1.1  ragge static void	dge_start(struct ifnet *);
    434  1.1  ragge static void	dge_watchdog(struct ifnet *);
    435  1.1  ragge static int	dge_ioctl(struct ifnet *, u_long, caddr_t);
    436  1.1  ragge static int	dge_init(struct ifnet *);
    437  1.1  ragge static void	dge_stop(struct ifnet *, int);
    438  1.1  ragge 
    439  1.1  ragge static void	dge_shutdown(void *);
    440  1.1  ragge 
    441  1.1  ragge static void	dge_reset(struct dge_softc *);
    442  1.1  ragge static void	dge_rxdrain(struct dge_softc *);
    443  1.1  ragge static int	dge_add_rxbuf(struct dge_softc *, int);
    444  1.1  ragge 
    445  1.1  ragge static void	dge_set_filter(struct dge_softc *);
    446  1.1  ragge 
    447  1.1  ragge static int	dge_intr(void *);
    448  1.1  ragge static void	dge_txintr(struct dge_softc *);
    449  1.1  ragge static void	dge_rxintr(struct dge_softc *);
    450  1.1  ragge static void	dge_linkintr(struct dge_softc *, uint32_t);
    451  1.1  ragge 
    452  1.1  ragge static int	dge_match(struct device *, struct cfdata *, void *);
    453  1.1  ragge static void	dge_attach(struct device *, struct device *, void *);
    454  1.1  ragge 
    455  1.1  ragge static int	dge_read_eeprom(struct dge_softc *sc);
    456  1.1  ragge static int	dge_eeprom_clockin(struct dge_softc *sc);
    457  1.1  ragge static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    458  1.1  ragge static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    459  1.1  ragge static int	dge_xgmii_mediachange(struct ifnet *);
    460  1.1  ragge static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    461  1.1  ragge static void	dge_xgmii_reset(struct dge_softc *);
    462  1.1  ragge static void	dge_xgmii_writereg(struct device *, int, int, int);
    463  1.1  ragge 
    464  1.1  ragge 
    465  1.1  ragge CFATTACH_DECL(dge, sizeof(struct dge_softc),
    466  1.1  ragge     dge_match, dge_attach, NULL, NULL);
    467  1.1  ragge 
    468  1.1  ragge #ifdef DGE_EVENT_COUNTERS
    469  1.1  ragge #if DGE_NTXSEGS > 100
    470  1.1  ragge #error Update dge_txseg_evcnt_names
    471  1.1  ragge #endif
    472  1.1  ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    473  1.1  ragge #endif /* DGE_EVENT_COUNTERS */
    474  1.1  ragge 
    475  1.1  ragge static int
    476  1.1  ragge dge_match(struct device *parent, struct cfdata *cf, void *aux)
    477  1.1  ragge {
    478  1.1  ragge 	struct pci_attach_args *pa = aux;
    479  1.1  ragge 
    480  1.1  ragge 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    481  1.1  ragge 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    482  1.1  ragge 		return (1);
    483  1.1  ragge 
    484  1.1  ragge 	return (0);
    485  1.1  ragge }
    486  1.1  ragge 
    487  1.1  ragge static void
    488  1.1  ragge dge_attach(struct device *parent, struct device *self, void *aux)
    489  1.1  ragge {
    490  1.1  ragge 	struct dge_softc *sc = (void *) self;
    491  1.1  ragge 	struct pci_attach_args *pa = aux;
    492  1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    493  1.1  ragge 	pci_chipset_tag_t pc = pa->pa_pc;
    494  1.1  ragge 	pci_intr_handle_t ih;
    495  1.1  ragge 	const char *intrstr = NULL;
    496  1.1  ragge 	bus_dma_segment_t seg;
    497  1.1  ragge 	int i, rseg, error;
    498  1.1  ragge 	uint8_t enaddr[ETHER_ADDR_LEN];
    499  1.1  ragge 	pcireg_t preg, memtype;
    500  1.1  ragge 	uint32_t reg;
    501  1.1  ragge 
    502  1.1  ragge 	sc->sc_dmat = pa->pa_dmat;
    503  1.1  ragge 	sc->sc_pc = pa->pa_pc;
    504  1.1  ragge 	sc->sc_pt = pa->pa_tag;
    505  1.1  ragge 
    506  1.1  ragge 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    507  1.1  ragge 	aprint_naive(": Ethernet controller\n");
    508  1.1  ragge 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    509  1.1  ragge 
    510  1.1  ragge 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    511  1.1  ragge         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    512  1.1  ragge             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    513  1.1  ragge                 aprint_error("%s: unable to map device registers\n",
    514  1.1  ragge                     sc->sc_dev.dv_xname);
    515  1.1  ragge                 return;
    516  1.1  ragge         }
    517  1.1  ragge 
    518  1.1  ragge 	/* Enable bus mastering */
    519  1.1  ragge 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    520  1.1  ragge 	preg |= PCI_COMMAND_MASTER_ENABLE;
    521  1.1  ragge 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    522  1.1  ragge 
    523  1.1  ragge 	/*
    524  1.1  ragge 	 * Map and establish our interrupt.
    525  1.1  ragge 	 */
    526  1.1  ragge 	if (pci_intr_map(pa, &ih)) {
    527  1.1  ragge 		aprint_error("%s: unable to map interrupt\n",
    528  1.1  ragge 		    sc->sc_dev.dv_xname);
    529  1.1  ragge 		return;
    530  1.1  ragge 	}
    531  1.1  ragge 	intrstr = pci_intr_string(pc, ih);
    532  1.1  ragge 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    533  1.1  ragge 	if (sc->sc_ih == NULL) {
    534  1.1  ragge 		aprint_error("%s: unable to establish interrupt",
    535  1.1  ragge 		    sc->sc_dev.dv_xname);
    536  1.1  ragge 		if (intrstr != NULL)
    537  1.1  ragge 			aprint_normal(" at %s", intrstr);
    538  1.1  ragge 		aprint_normal("\n");
    539  1.1  ragge 		return;
    540  1.1  ragge 	}
    541  1.1  ragge 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    542  1.1  ragge 
    543  1.1  ragge 	/*
    544  1.1  ragge 	 * Determine a few things about the bus we're connected to.
    545  1.1  ragge 	 */
    546  1.1  ragge 	reg = CSR_READ(sc, DGE_STATUS);
    547  1.1  ragge 	if (reg & STATUS_BUS64)
    548  1.1  ragge 		sc->sc_flags |= DGE_F_BUS64;
    549  1.1  ragge 
    550  1.1  ragge 	sc->sc_flags |= DGE_F_PCIX;
    551  1.1  ragge 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    552  1.1  ragge 			       PCI_CAP_PCIX,
    553  1.1  ragge 			       &sc->sc_pcix_offset, NULL) == 0)
    554  1.1  ragge 		aprint_error("%s: unable to find PCIX "
    555  1.1  ragge 		    "capability\n", sc->sc_dev.dv_xname);
    556  1.1  ragge 
    557  1.1  ragge 	if (sc->sc_flags & DGE_F_PCIX) {
    558  1.1  ragge 		switch (reg & STATUS_PCIX_MSK) {
    559  1.1  ragge 		case STATUS_PCIX_66:
    560  1.1  ragge 			sc->sc_bus_speed = 66;
    561  1.1  ragge 			break;
    562  1.1  ragge 		case STATUS_PCIX_100:
    563  1.1  ragge 			sc->sc_bus_speed = 100;
    564  1.1  ragge 			break;
    565  1.1  ragge 		case STATUS_PCIX_133:
    566  1.1  ragge 			sc->sc_bus_speed = 133;
    567  1.1  ragge 			break;
    568  1.1  ragge 		default:
    569  1.1  ragge 			aprint_error(
    570  1.1  ragge 			    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    571  1.1  ragge 			    sc->sc_dev.dv_xname,
    572  1.1  ragge 			    reg & STATUS_PCIX_MSK);
    573  1.1  ragge 			sc->sc_bus_speed = 66;
    574  1.1  ragge 		}
    575  1.1  ragge 	} else
    576  1.1  ragge 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    577  1.1  ragge 	aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    578  1.1  ragge 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    579  1.1  ragge 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    580  1.1  ragge 
    581  1.1  ragge 	/*
    582  1.1  ragge 	 * Allocate the control data structures, and create and load the
    583  1.1  ragge 	 * DMA map for it.
    584  1.1  ragge 	 */
    585  1.1  ragge 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    586  1.1  ragge 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    587  1.1  ragge 	    0)) != 0) {
    588  1.1  ragge 		aprint_error(
    589  1.1  ragge 		    "%s: unable to allocate control data, error = %d\n",
    590  1.1  ragge 		    sc->sc_dev.dv_xname, error);
    591  1.1  ragge 		goto fail_0;
    592  1.1  ragge 	}
    593  1.1  ragge 
    594  1.1  ragge 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    595  1.1  ragge 	    sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
    596  1.1  ragge 	    0)) != 0) {
    597  1.1  ragge 		aprint_error("%s: unable to map control data, error = %d\n",
    598  1.1  ragge 		    sc->sc_dev.dv_xname, error);
    599  1.1  ragge 		goto fail_1;
    600  1.1  ragge 	}
    601  1.1  ragge 
    602  1.1  ragge 	if ((error = bus_dmamap_create(sc->sc_dmat,
    603  1.1  ragge 	    sizeof(struct dge_control_data), 1,
    604  1.1  ragge 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    605  1.1  ragge 		aprint_error("%s: unable to create control data DMA map, "
    606  1.1  ragge 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    607  1.1  ragge 		goto fail_2;
    608  1.1  ragge 	}
    609  1.1  ragge 
    610  1.1  ragge 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    611  1.1  ragge 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    612  1.1  ragge 	    0)) != 0) {
    613  1.1  ragge 		aprint_error(
    614  1.1  ragge 		    "%s: unable to load control data DMA map, error = %d\n",
    615  1.1  ragge 		    sc->sc_dev.dv_xname, error);
    616  1.1  ragge 		goto fail_3;
    617  1.1  ragge 	}
    618  1.1  ragge 
    619  1.1  ragge 	/*
    620  1.1  ragge 	 * Create the transmit buffer DMA maps.
    621  1.1  ragge 	 */
    622  1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    623  1.2  ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    624  1.1  ragge 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    625  1.1  ragge 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    626  1.1  ragge 			aprint_error("%s: unable to create Tx DMA map %d, "
    627  1.1  ragge 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    628  1.1  ragge 			goto fail_4;
    629  1.1  ragge 		}
    630  1.1  ragge 	}
    631  1.1  ragge 
    632  1.1  ragge 	/*
    633  1.1  ragge 	 * Create the receive buffer DMA maps.
    634  1.1  ragge 	 */
    635  1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    636  1.1  ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    637  1.1  ragge 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    638  1.1  ragge 			aprint_error("%s: unable to create Rx DMA map %d, "
    639  1.1  ragge 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    640  1.1  ragge 			goto fail_5;
    641  1.1  ragge 		}
    642  1.1  ragge 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    643  1.1  ragge 	}
    644  1.1  ragge 
    645  1.1  ragge 	/*
    646  1.1  ragge 	 * Set bits in ctrl0 register.
    647  1.1  ragge 	 * Should get the software defined pins out of EEPROM?
    648  1.1  ragge 	 */
    649  1.1  ragge 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    650  1.1  ragge 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    651  1.1  ragge 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    652  1.1  ragge 
    653  1.1  ragge 	/*
    654  1.1  ragge 	 * Reset the chip to a known state.
    655  1.1  ragge 	 */
    656  1.1  ragge 	dge_reset(sc);
    657  1.1  ragge 
    658  1.1  ragge 	/*
    659  1.1  ragge 	 * Reset the PHY.
    660  1.1  ragge 	 */
    661  1.1  ragge 	dge_xgmii_reset(sc);
    662  1.1  ragge 
    663  1.1  ragge 	/*
    664  1.1  ragge 	 * Read in EEPROM data.
    665  1.1  ragge 	 */
    666  1.1  ragge 	if (dge_read_eeprom(sc)) {
    667  1.1  ragge 		aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
    668  1.1  ragge 		return;
    669  1.1  ragge 	}
    670  1.1  ragge 
    671  1.1  ragge 	/*
    672  1.1  ragge 	 * Get the ethernet address.
    673  1.1  ragge 	 */
    674  1.1  ragge 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    675  1.1  ragge 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    676  1.1  ragge 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    677  1.1  ragge 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    678  1.1  ragge 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    679  1.1  ragge 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    680  1.1  ragge 
    681  1.1  ragge 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    682  1.1  ragge 	    ether_sprintf(enaddr));
    683  1.1  ragge 
    684  1.1  ragge 	/*
    685  1.1  ragge 	 * Setup media stuff.
    686  1.1  ragge 	 */
    687  1.1  ragge         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    688  1.1  ragge             dge_xgmii_mediastatus);
    689  1.1  ragge         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    690  1.1  ragge         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    691  1.1  ragge 
    692  1.1  ragge 	ifp = &sc->sc_ethercom.ec_if;
    693  1.1  ragge 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    694  1.1  ragge 	ifp->if_softc = sc;
    695  1.1  ragge 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    696  1.1  ragge 	ifp->if_ioctl = dge_ioctl;
    697  1.1  ragge 	ifp->if_start = dge_start;
    698  1.1  ragge 	ifp->if_watchdog = dge_watchdog;
    699  1.1  ragge 	ifp->if_init = dge_init;
    700  1.1  ragge 	ifp->if_stop = dge_stop;
    701  1.1  ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    702  1.1  ragge 	IFQ_SET_READY(&ifp->if_snd);
    703  1.1  ragge 
    704  1.1  ragge 	sc->sc_ethercom.ec_capabilities |=
    705  1.1  ragge 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    706  1.1  ragge 
    707  1.1  ragge 	/*
    708  1.1  ragge 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    709  1.1  ragge 	 */
    710  1.1  ragge 	ifp->if_capabilities |=
    711  1.1  ragge 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    712  1.1  ragge 
    713  1.1  ragge 	/*
    714  1.1  ragge 	 * Attach the interface.
    715  1.1  ragge 	 */
    716  1.1  ragge 	if_attach(ifp);
    717  1.1  ragge 	ether_ifattach(ifp, enaddr);
    718  1.1  ragge #if NRND > 0
    719  1.1  ragge 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    720  1.1  ragge 	    RND_TYPE_NET, 0);
    721  1.1  ragge #endif
    722  1.1  ragge 
    723  1.1  ragge #ifdef DGE_EVENT_COUNTERS
    724  1.1  ragge 	/* Fix segment event naming */
    725  1.1  ragge 	if (dge_txseg_evcnt_names == NULL) {
    726  1.1  ragge 		dge_txseg_evcnt_names =
    727  1.1  ragge 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    728  1.1  ragge 		for (i = 0; i < DGE_NTXSEGS; i++)
    729  1.1  ragge 			sprintf((*dge_txseg_evcnt_names)[i], "txseg%d", i);
    730  1.1  ragge 	}
    731  1.1  ragge 
    732  1.1  ragge 	/* Attach event counters. */
    733  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    734  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    735  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    736  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    737  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    738  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    739  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    740  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txdw");
    741  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    742  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txqe");
    743  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    744  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    745  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    746  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    747  1.1  ragge 
    748  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    749  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    750  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    751  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    752  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    753  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    754  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    755  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    756  1.1  ragge 
    757  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    758  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    759  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    760  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    761  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    762  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    763  1.1  ragge 
    764  1.1  ragge 	for (i = 0; i < DGE_NTXSEGS; i++)
    765  1.1  ragge 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    766  1.1  ragge 		    NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
    767  1.1  ragge 
    768  1.1  ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    769  1.1  ragge 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    770  1.1  ragge 
    771  1.1  ragge #endif /* DGE_EVENT_COUNTERS */
    772  1.1  ragge 
    773  1.1  ragge 	/*
    774  1.1  ragge 	 * Make sure the interface is shutdown during reboot.
    775  1.1  ragge 	 */
    776  1.1  ragge 	sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
    777  1.1  ragge 	if (sc->sc_sdhook == NULL)
    778  1.1  ragge 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    779  1.1  ragge 		    sc->sc_dev.dv_xname);
    780  1.1  ragge 	return;
    781  1.1  ragge 
    782  1.1  ragge 	/*
    783  1.1  ragge 	 * Free any resources we've allocated during the failed attach
    784  1.1  ragge 	 * attempt.  Do this in reverse order and fall through.
    785  1.1  ragge 	 */
    786  1.1  ragge  fail_5:
    787  1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    788  1.1  ragge 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    789  1.1  ragge 			bus_dmamap_destroy(sc->sc_dmat,
    790  1.1  ragge 			    sc->sc_rxsoft[i].rxs_dmamap);
    791  1.1  ragge 	}
    792  1.1  ragge  fail_4:
    793  1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    794  1.1  ragge 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    795  1.1  ragge 			bus_dmamap_destroy(sc->sc_dmat,
    796  1.1  ragge 			    sc->sc_txsoft[i].txs_dmamap);
    797  1.1  ragge 	}
    798  1.1  ragge 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    799  1.1  ragge  fail_3:
    800  1.1  ragge 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    801  1.1  ragge  fail_2:
    802  1.1  ragge 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    803  1.1  ragge 	    sizeof(struct dge_control_data));
    804  1.1  ragge  fail_1:
    805  1.1  ragge 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    806  1.1  ragge  fail_0:
    807  1.1  ragge 	return;
    808  1.1  ragge }
    809  1.1  ragge 
    810  1.1  ragge /*
    811  1.1  ragge  * dge_shutdown:
    812  1.1  ragge  *
    813  1.1  ragge  *	Make sure the interface is stopped at reboot time.
    814  1.1  ragge  */
    815  1.1  ragge static void
    816  1.1  ragge dge_shutdown(void *arg)
    817  1.1  ragge {
    818  1.1  ragge 	struct dge_softc *sc = arg;
    819  1.1  ragge 
    820  1.1  ragge 	dge_stop(&sc->sc_ethercom.ec_if, 1);
    821  1.1  ragge }
    822  1.1  ragge 
    823  1.1  ragge /*
    824  1.1  ragge  * dge_tx_cksum:
    825  1.1  ragge  *
    826  1.1  ragge  *	Set up TCP/IP checksumming parameters for the
    827  1.1  ragge  *	specified packet.
    828  1.1  ragge  */
    829  1.1  ragge static int
    830  1.1  ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
    831  1.1  ragge {
    832  1.1  ragge 	struct mbuf *m0 = txs->txs_mbuf;
    833  1.1  ragge 	struct dge_ctdes *t;
    834  1.1  ragge 	uint32_t ipcs, tucs;
    835  1.1  ragge 	struct ip *ip;
    836  1.1  ragge 	struct ether_header *eh;
    837  1.1  ragge 	int offset, iphl;
    838  1.1  ragge 	uint8_t fields = 0;
    839  1.1  ragge 
    840  1.1  ragge 	/*
    841  1.1  ragge 	 * XXX It would be nice if the mbuf pkthdr had offset
    842  1.1  ragge 	 * fields for the protocol headers.
    843  1.1  ragge 	 */
    844  1.1  ragge 
    845  1.1  ragge 	eh = mtod(m0, struct ether_header *);
    846  1.1  ragge 	switch (htons(eh->ether_type)) {
    847  1.1  ragge 	case ETHERTYPE_IP:
    848  1.1  ragge 		iphl = sizeof(struct ip);
    849  1.1  ragge 		offset = ETHER_HDR_LEN;
    850  1.1  ragge 		break;
    851  1.1  ragge 
    852  1.1  ragge 	case ETHERTYPE_VLAN:
    853  1.1  ragge 		iphl = sizeof(struct ip);
    854  1.1  ragge 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    855  1.1  ragge 		break;
    856  1.1  ragge 
    857  1.1  ragge 	default:
    858  1.1  ragge 		/*
    859  1.1  ragge 		 * Don't support this protocol or encapsulation.
    860  1.1  ragge 		 */
    861  1.1  ragge 		*fieldsp = 0;
    862  1.1  ragge 		return (0);
    863  1.1  ragge 	}
    864  1.1  ragge 
    865  1.1  ragge 	if (m0->m_len < (offset + iphl)) {
    866  1.1  ragge 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
    867  1.1  ragge 			printf("%s: dge_tx_cksum: mbuf allocation failed, "
    868  1.1  ragge 			    "packet dropped\n", sc->sc_dev.dv_xname);
    869  1.1  ragge 			return (ENOMEM);
    870  1.1  ragge 		}
    871  1.1  ragge 		m0 = txs->txs_mbuf;
    872  1.1  ragge 	}
    873  1.1  ragge 
    874  1.1  ragge 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
    875  1.1  ragge 	iphl = ip->ip_hl << 2;
    876  1.1  ragge 
    877  1.1  ragge 	/*
    878  1.1  ragge 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
    879  1.1  ragge 	 * offload feature, if we load the context descriptor, we
    880  1.1  ragge 	 * MUST provide valid values for IPCSS and TUCSS fields.
    881  1.1  ragge 	 */
    882  1.1  ragge 
    883  1.1  ragge 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    884  1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    885  1.1  ragge 		fields |= TDESC_POPTS_IXSM;
    886  1.1  ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
    887  1.1  ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
    888  1.1  ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
    889  1.1  ragge 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
    890  1.1  ragge 		/* Use the cached value. */
    891  1.1  ragge 		ipcs = sc->sc_txctx_ipcs;
    892  1.1  ragge 	} else {
    893  1.1  ragge 		/* Just initialize it to the likely value anyway. */
    894  1.1  ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
    895  1.1  ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
    896  1.1  ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
    897  1.1  ragge 	}
    898  1.1  ragge 	DPRINTF(DGE_DEBUG_CKSUM,
    899  1.1  ragge 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
    900  1.1  ragge 	    sc->sc_dev.dv_xname, offset, ipcs));
    901  1.1  ragge 
    902  1.1  ragge 	offset += iphl;
    903  1.1  ragge 
    904  1.1  ragge 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    905  1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
    906  1.1  ragge 		fields |= TDESC_POPTS_TXSM;
    907  1.1  ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
    908  1.1  ragge 		    DGE_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
    909  1.1  ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
    910  1.1  ragge 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
    911  1.1  ragge 		/* Use the cached value. */
    912  1.1  ragge 		tucs = sc->sc_txctx_tucs;
    913  1.1  ragge 	} else {
    914  1.1  ragge 		/* Just initialize it to a valid TCP context. */
    915  1.1  ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
    916  1.1  ragge 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
    917  1.1  ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
    918  1.1  ragge 	}
    919  1.1  ragge 
    920  1.1  ragge 	DPRINTF(DGE_DEBUG_CKSUM,
    921  1.1  ragge 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
    922  1.1  ragge 	    sc->sc_dev.dv_xname, offset, tucs));
    923  1.1  ragge 
    924  1.1  ragge 	if (sc->sc_txctx_ipcs == ipcs &&
    925  1.1  ragge 	    sc->sc_txctx_tucs == tucs) {
    926  1.1  ragge 		/* Cached context is fine. */
    927  1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
    928  1.1  ragge 	} else {
    929  1.1  ragge 		/* Fill in the context descriptor. */
    930  1.1  ragge #ifdef DGE_EVENT_COUNTERS
    931  1.1  ragge 		if (sc->sc_txctx_ipcs == 0xffffffff &&
    932  1.1  ragge 		    sc->sc_txctx_tucs == 0xffffffff)
    933  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
    934  1.1  ragge 		else
    935  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
    936  1.1  ragge #endif
    937  1.1  ragge 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
    938  1.1  ragge 		t->dc_tcpip_ipcs = htole32(ipcs);
    939  1.1  ragge 		t->dc_tcpip_tucs = htole32(tucs);
    940  1.1  ragge 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
    941  1.1  ragge 		t->dc_tcpip_seg = 0;
    942  1.1  ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
    943  1.1  ragge 
    944  1.1  ragge 		sc->sc_txctx_ipcs = ipcs;
    945  1.1  ragge 		sc->sc_txctx_tucs = tucs;
    946  1.1  ragge 
    947  1.1  ragge 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
    948  1.1  ragge 		txs->txs_ndesc++;
    949  1.1  ragge 	}
    950  1.1  ragge 
    951  1.1  ragge 	*fieldsp = fields;
    952  1.1  ragge 
    953  1.1  ragge 	return (0);
    954  1.1  ragge }
    955  1.1  ragge 
    956  1.1  ragge /*
    957  1.1  ragge  * dge_start:		[ifnet interface function]
    958  1.1  ragge  *
    959  1.1  ragge  *	Start packet transmission on the interface.
    960  1.1  ragge  */
    961  1.1  ragge static void
    962  1.1  ragge dge_start(struct ifnet *ifp)
    963  1.1  ragge {
    964  1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
    965  1.1  ragge 	struct mbuf *m0;
    966  1.1  ragge 	struct dge_txsoft *txs;
    967  1.1  ragge 	bus_dmamap_t dmamap;
    968  1.1  ragge 	int error, nexttx, lasttx = -1, ofree, seg;
    969  1.1  ragge 	uint32_t cksumcmd;
    970  1.1  ragge 	uint8_t cksumfields;
    971  1.1  ragge 
    972  1.1  ragge 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    973  1.1  ragge 		return;
    974  1.1  ragge 
    975  1.1  ragge 	/*
    976  1.1  ragge 	 * Remember the previous number of free descriptors.
    977  1.1  ragge 	 */
    978  1.1  ragge 	ofree = sc->sc_txfree;
    979  1.1  ragge 
    980  1.1  ragge 	/*
    981  1.1  ragge 	 * Loop through the send queue, setting up transmit descriptors
    982  1.1  ragge 	 * until we drain the queue, or use up all available transmit
    983  1.1  ragge 	 * descriptors.
    984  1.1  ragge 	 */
    985  1.1  ragge 	for (;;) {
    986  1.1  ragge 		/* Grab a packet off the queue. */
    987  1.1  ragge 		IFQ_POLL(&ifp->if_snd, m0);
    988  1.1  ragge 		if (m0 == NULL)
    989  1.1  ragge 			break;
    990  1.1  ragge 
    991  1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
    992  1.1  ragge 		    ("%s: TX: have packet to transmit: %p\n",
    993  1.1  ragge 		    sc->sc_dev.dv_xname, m0));
    994  1.1  ragge 
    995  1.1  ragge 		/* Get a work queue entry. */
    996  1.1  ragge 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
    997  1.1  ragge 			dge_txintr(sc);
    998  1.1  ragge 			if (sc->sc_txsfree == 0) {
    999  1.1  ragge 				DPRINTF(DGE_DEBUG_TX,
   1000  1.1  ragge 				    ("%s: TX: no free job descriptors\n",
   1001  1.1  ragge 					sc->sc_dev.dv_xname));
   1002  1.1  ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1003  1.1  ragge 				break;
   1004  1.1  ragge 			}
   1005  1.1  ragge 		}
   1006  1.1  ragge 
   1007  1.1  ragge 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1008  1.1  ragge 		dmamap = txs->txs_dmamap;
   1009  1.1  ragge 
   1010  1.1  ragge 		/*
   1011  1.1  ragge 		 * Load the DMA map.  If this fails, the packet either
   1012  1.1  ragge 		 * didn't fit in the allotted number of segments, or we
   1013  1.1  ragge 		 * were short on resources.  For the too-many-segments
   1014  1.1  ragge 		 * case, we simply report an error and drop the packet,
   1015  1.1  ragge 		 * since we can't sanely copy a jumbo packet to a single
   1016  1.1  ragge 		 * buffer.
   1017  1.1  ragge 		 */
   1018  1.1  ragge 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1019  1.1  ragge 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1020  1.1  ragge 		if (error) {
   1021  1.1  ragge 			if (error == EFBIG) {
   1022  1.1  ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1023  1.1  ragge 				printf("%s: Tx packet consumes too many "
   1024  1.1  ragge 				    "DMA segments, dropping...\n",
   1025  1.1  ragge 				    sc->sc_dev.dv_xname);
   1026  1.1  ragge 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1027  1.1  ragge 				m_freem(m0);
   1028  1.1  ragge 				continue;
   1029  1.1  ragge 			}
   1030  1.1  ragge 			/*
   1031  1.1  ragge 			 * Short on resources, just stop for now.
   1032  1.1  ragge 			 */
   1033  1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1034  1.1  ragge 			    ("%s: TX: dmamap load failed: %d\n",
   1035  1.1  ragge 			    sc->sc_dev.dv_xname, error));
   1036  1.1  ragge 			break;
   1037  1.1  ragge 		}
   1038  1.1  ragge 
   1039  1.1  ragge 		/*
   1040  1.1  ragge 		 * Ensure we have enough descriptors free to describe
   1041  1.1  ragge 		 * the packet.  Note, we always reserve one descriptor
   1042  1.1  ragge 		 * at the end of the ring due to the semantics of the
   1043  1.1  ragge 		 * TDT register, plus one more in the event we need
   1044  1.1  ragge 		 * to re-load checksum offload context.
   1045  1.1  ragge 		 */
   1046  1.1  ragge 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1047  1.1  ragge 			/*
   1048  1.1  ragge 			 * Not enough free descriptors to transmit this
   1049  1.1  ragge 			 * packet.  We haven't committed anything yet,
   1050  1.1  ragge 			 * so just unload the DMA map, put the packet
   1051  1.1  ragge 			 * pack on the queue, and punt.  Notify the upper
   1052  1.1  ragge 			 * layer that there are no more slots left.
   1053  1.1  ragge 			 */
   1054  1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1055  1.1  ragge 			    ("%s: TX: need %d descriptors, have %d\n",
   1056  1.1  ragge 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1057  1.1  ragge 			    sc->sc_txfree - 1));
   1058  1.1  ragge 			ifp->if_flags |= IFF_OACTIVE;
   1059  1.1  ragge 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1060  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1061  1.1  ragge 			break;
   1062  1.1  ragge 		}
   1063  1.1  ragge 
   1064  1.1  ragge 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1065  1.1  ragge 
   1066  1.1  ragge 		/*
   1067  1.1  ragge 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1068  1.1  ragge 		 */
   1069  1.1  ragge 
   1070  1.1  ragge 		/* Sync the DMA map. */
   1071  1.1  ragge 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1072  1.1  ragge 		    BUS_DMASYNC_PREWRITE);
   1073  1.1  ragge 
   1074  1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1075  1.1  ragge 		    ("%s: TX: packet has %d DMA segments\n",
   1076  1.1  ragge 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1077  1.1  ragge 
   1078  1.1  ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1079  1.1  ragge 
   1080  1.1  ragge 		/*
   1081  1.1  ragge 		 * Store a pointer to the packet so that we can free it
   1082  1.1  ragge 		 * later.
   1083  1.1  ragge 		 *
   1084  1.1  ragge 		 * Initially, we consider the number of descriptors the
   1085  1.1  ragge 		 * packet uses the number of DMA segments.  This may be
   1086  1.1  ragge 		 * incremented by 1 if we do checksum offload (a descriptor
   1087  1.1  ragge 		 * is used to set the checksum context).
   1088  1.1  ragge 		 */
   1089  1.1  ragge 		txs->txs_mbuf = m0;
   1090  1.1  ragge 		txs->txs_firstdesc = sc->sc_txnext;
   1091  1.1  ragge 		txs->txs_ndesc = dmamap->dm_nsegs;
   1092  1.1  ragge 
   1093  1.1  ragge 		/*
   1094  1.1  ragge 		 * Set up checksum offload parameters for
   1095  1.1  ragge 		 * this packet.
   1096  1.1  ragge 		 */
   1097  1.1  ragge 		if (m0->m_pkthdr.csum_flags &
   1098  1.1  ragge 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1099  1.1  ragge 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1100  1.1  ragge 				/* Error message already displayed. */
   1101  1.1  ragge 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1102  1.1  ragge 				continue;
   1103  1.1  ragge 			}
   1104  1.1  ragge 		} else {
   1105  1.1  ragge 			cksumfields = 0;
   1106  1.1  ragge 		}
   1107  1.1  ragge 
   1108  1.1  ragge 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1109  1.1  ragge 
   1110  1.1  ragge 		/*
   1111  1.1  ragge 		 * Initialize the transmit descriptor.
   1112  1.1  ragge 		 */
   1113  1.1  ragge 		for (nexttx = sc->sc_txnext, seg = 0;
   1114  1.1  ragge 		     seg < dmamap->dm_nsegs;
   1115  1.1  ragge 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1116  1.1  ragge 			/*
   1117  1.1  ragge 			 * Note: we currently only use 32-bit DMA
   1118  1.1  ragge 			 * addresses.
   1119  1.1  ragge 			 */
   1120  1.1  ragge 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1121  1.1  ragge 			sc->sc_txdescs[nexttx].dt_baddrl =
   1122  1.1  ragge 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1123  1.1  ragge 			sc->sc_txdescs[nexttx].dt_ctl =
   1124  1.1  ragge 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1125  1.1  ragge 			sc->sc_txdescs[nexttx].dt_status = 0;
   1126  1.1  ragge 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1127  1.1  ragge 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1128  1.1  ragge 			lasttx = nexttx;
   1129  1.1  ragge 
   1130  1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1131  1.1  ragge 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1132  1.1  ragge 			    sc->sc_dev.dv_xname, nexttx,
   1133  1.1  ragge 			    le32toh(dmamap->dm_segs[seg].ds_addr),
   1134  1.1  ragge 			    le32toh(dmamap->dm_segs[seg].ds_len)));
   1135  1.1  ragge 		}
   1136  1.1  ragge 
   1137  1.1  ragge 		KASSERT(lasttx != -1);
   1138  1.1  ragge 
   1139  1.1  ragge 		/*
   1140  1.1  ragge 		 * Set up the command byte on the last descriptor of
   1141  1.1  ragge 		 * the packet.  If we're in the interrupt delay window,
   1142  1.1  ragge 		 * delay the interrupt.
   1143  1.1  ragge 		 */
   1144  1.1  ragge 		sc->sc_txdescs[lasttx].dt_ctl |=
   1145  1.1  ragge 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1146  1.1  ragge 
   1147  1.1  ragge 		txs->txs_lastdesc = lasttx;
   1148  1.1  ragge 
   1149  1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1150  1.1  ragge 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1151  1.1  ragge 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1152  1.1  ragge 
   1153  1.1  ragge 		/* Sync the descriptors we're using. */
   1154  1.1  ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1155  1.1  ragge 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1156  1.1  ragge 
   1157  1.1  ragge 		/* Give the packet to the chip. */
   1158  1.1  ragge 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1159  1.1  ragge 
   1160  1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1161  1.1  ragge 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1162  1.1  ragge 
   1163  1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1164  1.1  ragge 		    ("%s: TX: finished transmitting packet, job %d\n",
   1165  1.1  ragge 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1166  1.1  ragge 
   1167  1.1  ragge 		/* Advance the tx pointer. */
   1168  1.1  ragge 		sc->sc_txfree -= txs->txs_ndesc;
   1169  1.1  ragge 		sc->sc_txnext = nexttx;
   1170  1.1  ragge 
   1171  1.1  ragge 		sc->sc_txsfree--;
   1172  1.1  ragge 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1173  1.1  ragge 
   1174  1.1  ragge #if NBPFILTER > 0
   1175  1.1  ragge 		/* Pass the packet to any BPF listeners. */
   1176  1.1  ragge 		if (ifp->if_bpf)
   1177  1.1  ragge 			bpf_mtap(ifp->if_bpf, m0);
   1178  1.1  ragge #endif /* NBPFILTER > 0 */
   1179  1.1  ragge 	}
   1180  1.1  ragge 
   1181  1.1  ragge 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1182  1.1  ragge 		/* No more slots; notify upper layer. */
   1183  1.1  ragge 		ifp->if_flags |= IFF_OACTIVE;
   1184  1.1  ragge 	}
   1185  1.1  ragge 
   1186  1.1  ragge 	if (sc->sc_txfree != ofree) {
   1187  1.1  ragge 		/* Set a watchdog timer in case the chip flakes out. */
   1188  1.1  ragge 		ifp->if_timer = 5;
   1189  1.1  ragge 	}
   1190  1.1  ragge }
   1191  1.1  ragge 
   1192  1.1  ragge /*
   1193  1.1  ragge  * dge_watchdog:		[ifnet interface function]
   1194  1.1  ragge  *
   1195  1.1  ragge  *	Watchdog timer handler.
   1196  1.1  ragge  */
   1197  1.1  ragge static void
   1198  1.1  ragge dge_watchdog(struct ifnet *ifp)
   1199  1.1  ragge {
   1200  1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1201  1.1  ragge 
   1202  1.1  ragge 	/*
   1203  1.1  ragge 	 * Since we're using delayed interrupts, sweep up
   1204  1.1  ragge 	 * before we report an error.
   1205  1.1  ragge 	 */
   1206  1.1  ragge 	dge_txintr(sc);
   1207  1.1  ragge 
   1208  1.1  ragge 	if (sc->sc_txfree != DGE_NTXDESC) {
   1209  1.1  ragge 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1210  1.1  ragge 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1211  1.1  ragge 		    sc->sc_txnext);
   1212  1.1  ragge 		ifp->if_oerrors++;
   1213  1.1  ragge 
   1214  1.1  ragge 		/* Reset the interface. */
   1215  1.1  ragge 		(void) dge_init(ifp);
   1216  1.1  ragge 	}
   1217  1.1  ragge 
   1218  1.1  ragge 	/* Try to get more packets going. */
   1219  1.1  ragge 	dge_start(ifp);
   1220  1.1  ragge }
   1221  1.1  ragge 
   1222  1.1  ragge /*
   1223  1.1  ragge  * dge_ioctl:		[ifnet interface function]
   1224  1.1  ragge  *
   1225  1.1  ragge  *	Handle control requests from the operator.
   1226  1.1  ragge  */
   1227  1.1  ragge static int
   1228  1.1  ragge dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1229  1.1  ragge {
   1230  1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1231  1.1  ragge 	struct ifreq *ifr = (struct ifreq *) data;
   1232  1.1  ragge 	pcireg_t preg;
   1233  1.1  ragge 	int s, error, mmrbc;
   1234  1.1  ragge 
   1235  1.1  ragge 	s = splnet();
   1236  1.1  ragge 
   1237  1.1  ragge 	switch (cmd) {
   1238  1.1  ragge 	case SIOCSIFMEDIA:
   1239  1.1  ragge 	case SIOCGIFMEDIA:
   1240  1.1  ragge 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1241  1.1  ragge 		break;
   1242  1.1  ragge 
   1243  1.2  ragge 	case SIOCSIFMTU:
   1244  1.2  ragge 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) {
   1245  1.2  ragge 			error = EINVAL;
   1246  1.2  ragge 		} else {
   1247  1.2  ragge 			error = 0;
   1248  1.2  ragge 			ifp->if_mtu = ifr->ifr_mtu;
   1249  1.2  ragge 			if (ifp->if_flags & IFF_UP)
   1250  1.2  ragge 				error = (*ifp->if_init)(ifp);
   1251  1.2  ragge 		}
   1252  1.2  ragge 		break;
   1253  1.2  ragge 
   1254  1.1  ragge         case SIOCSIFFLAGS:
   1255  1.1  ragge 		/* extract link flags */
   1256  1.1  ragge 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1257  1.1  ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1258  1.1  ragge 			mmrbc = PCIX_MMRBC_512;
   1259  1.1  ragge 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1260  1.1  ragge 		    (ifp->if_flags & IFF_LINK1) != 0)
   1261  1.1  ragge 			mmrbc = PCIX_MMRBC_1024;
   1262  1.1  ragge 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1263  1.1  ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1264  1.1  ragge 			mmrbc = PCIX_MMRBC_2048;
   1265  1.1  ragge 		else
   1266  1.1  ragge 			mmrbc = PCIX_MMRBC_4096;
   1267  1.1  ragge 		if (mmrbc != sc->sc_mmrbc) {
   1268  1.1  ragge 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1269  1.1  ragge 			preg &= ~PCIX_MMRBC_MSK;
   1270  1.1  ragge 			preg |= mmrbc;
   1271  1.1  ragge 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1272  1.1  ragge 			sc->sc_mmrbc = mmrbc;
   1273  1.1  ragge 		}
   1274  1.1  ragge                 /* FALLTHROUGH */
   1275  1.1  ragge 	default:
   1276  1.1  ragge 		error = ether_ioctl(ifp, cmd, data);
   1277  1.1  ragge 		if (error == ENETRESET) {
   1278  1.1  ragge 			/*
   1279  1.1  ragge 			 * Multicast list has changed; set the hardware filter
   1280  1.1  ragge 			 * accordingly.
   1281  1.1  ragge 			 */
   1282  1.1  ragge 			dge_set_filter(sc);
   1283  1.1  ragge 			error = 0;
   1284  1.1  ragge 		}
   1285  1.1  ragge 		break;
   1286  1.1  ragge 	}
   1287  1.1  ragge 
   1288  1.1  ragge 	/* Try to get more packets going. */
   1289  1.1  ragge 	dge_start(ifp);
   1290  1.1  ragge 
   1291  1.1  ragge 	splx(s);
   1292  1.1  ragge 	return (error);
   1293  1.1  ragge }
   1294  1.1  ragge 
   1295  1.1  ragge /*
   1296  1.1  ragge  * dge_intr:
   1297  1.1  ragge  *
   1298  1.1  ragge  *	Interrupt service routine.
   1299  1.1  ragge  */
   1300  1.1  ragge static int
   1301  1.1  ragge dge_intr(void *arg)
   1302  1.1  ragge {
   1303  1.1  ragge 	struct dge_softc *sc = arg;
   1304  1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1305  1.1  ragge 	uint32_t icr;
   1306  1.1  ragge 	int wantinit, handled = 0;
   1307  1.1  ragge 
   1308  1.1  ragge 	for (wantinit = 0; wantinit == 0;) {
   1309  1.1  ragge 		icr = CSR_READ(sc, DGE_ICR);
   1310  1.1  ragge 		if ((icr & sc->sc_icr) == 0)
   1311  1.1  ragge 			break;
   1312  1.1  ragge 
   1313  1.1  ragge #if 0 /*NRND > 0*/
   1314  1.1  ragge 		if (RND_ENABLED(&sc->rnd_source))
   1315  1.1  ragge 			rnd_add_uint32(&sc->rnd_source, icr);
   1316  1.1  ragge #endif
   1317  1.1  ragge 
   1318  1.1  ragge 		handled = 1;
   1319  1.1  ragge 
   1320  1.1  ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1321  1.1  ragge 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1322  1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1323  1.1  ragge 			    ("%s: RX: got Rx intr 0x%08x\n",
   1324  1.1  ragge 			    sc->sc_dev.dv_xname,
   1325  1.1  ragge 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1326  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1327  1.1  ragge 		}
   1328  1.1  ragge #endif
   1329  1.1  ragge 		dge_rxintr(sc);
   1330  1.1  ragge 
   1331  1.1  ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1332  1.1  ragge 		if (icr & ICR_TXDW) {
   1333  1.1  ragge 			DPRINTF(DGE_DEBUG_TX,
   1334  1.1  ragge 			    ("%s: TX: got TXDW interrupt\n",
   1335  1.1  ragge 			    sc->sc_dev.dv_xname));
   1336  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1337  1.1  ragge 		}
   1338  1.1  ragge 		if (icr & ICR_TXQE)
   1339  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1340  1.1  ragge #endif
   1341  1.1  ragge 		dge_txintr(sc);
   1342  1.1  ragge 
   1343  1.1  ragge 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1344  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1345  1.1  ragge 			dge_linkintr(sc, icr);
   1346  1.1  ragge 		}
   1347  1.1  ragge 
   1348  1.1  ragge 		if (icr & ICR_RXO) {
   1349  1.1  ragge 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1350  1.1  ragge 			wantinit = 1;
   1351  1.1  ragge 		}
   1352  1.1  ragge 	}
   1353  1.1  ragge 
   1354  1.1  ragge 	if (handled) {
   1355  1.1  ragge 		if (wantinit)
   1356  1.1  ragge 			dge_init(ifp);
   1357  1.1  ragge 
   1358  1.1  ragge 		/* Try to get more packets going. */
   1359  1.1  ragge 		dge_start(ifp);
   1360  1.1  ragge 	}
   1361  1.1  ragge 
   1362  1.1  ragge 	return (handled);
   1363  1.1  ragge }
   1364  1.1  ragge 
   1365  1.1  ragge /*
   1366  1.1  ragge  * dge_txintr:
   1367  1.1  ragge  *
   1368  1.1  ragge  *	Helper; handle transmit interrupts.
   1369  1.1  ragge  */
   1370  1.1  ragge static void
   1371  1.1  ragge dge_txintr(struct dge_softc *sc)
   1372  1.1  ragge {
   1373  1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1374  1.1  ragge 	struct dge_txsoft *txs;
   1375  1.1  ragge 	uint8_t status;
   1376  1.1  ragge 	int i;
   1377  1.1  ragge 
   1378  1.1  ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1379  1.1  ragge 
   1380  1.1  ragge 	/*
   1381  1.1  ragge 	 * Go through the Tx list and free mbufs for those
   1382  1.1  ragge 	 * frames which have been transmitted.
   1383  1.1  ragge 	 */
   1384  1.1  ragge 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1385  1.1  ragge 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1386  1.1  ragge 		txs = &sc->sc_txsoft[i];
   1387  1.1  ragge 
   1388  1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1389  1.1  ragge 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1390  1.1  ragge 
   1391  1.1  ragge 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1392  1.1  ragge 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1393  1.1  ragge 
   1394  1.1  ragge 		status =
   1395  1.1  ragge 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1396  1.1  ragge 		if ((status & TDESC_STA_DD) == 0) {
   1397  1.1  ragge 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1398  1.1  ragge 			    BUS_DMASYNC_PREREAD);
   1399  1.1  ragge 			break;
   1400  1.1  ragge 		}
   1401  1.1  ragge 
   1402  1.1  ragge 		DPRINTF(DGE_DEBUG_TX,
   1403  1.1  ragge 		    ("%s: TX: job %d done: descs %d..%d\n",
   1404  1.1  ragge 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1405  1.1  ragge 		    txs->txs_lastdesc));
   1406  1.1  ragge 
   1407  1.1  ragge 		ifp->if_opackets++;
   1408  1.1  ragge 		sc->sc_txfree += txs->txs_ndesc;
   1409  1.1  ragge 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1410  1.1  ragge 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1411  1.1  ragge 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1412  1.1  ragge 		m_freem(txs->txs_mbuf);
   1413  1.1  ragge 		txs->txs_mbuf = NULL;
   1414  1.1  ragge 	}
   1415  1.1  ragge 
   1416  1.1  ragge 	/* Update the dirty transmit buffer pointer. */
   1417  1.1  ragge 	sc->sc_txsdirty = i;
   1418  1.1  ragge 	DPRINTF(DGE_DEBUG_TX,
   1419  1.1  ragge 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1420  1.1  ragge 
   1421  1.1  ragge 	/*
   1422  1.1  ragge 	 * If there are no more pending transmissions, cancel the watchdog
   1423  1.1  ragge 	 * timer.
   1424  1.1  ragge 	 */
   1425  1.1  ragge 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1426  1.1  ragge 		ifp->if_timer = 0;
   1427  1.1  ragge }
   1428  1.1  ragge 
   1429  1.1  ragge /*
   1430  1.1  ragge  * dge_rxintr:
   1431  1.1  ragge  *
   1432  1.1  ragge  *	Helper; handle receive interrupts.
   1433  1.1  ragge  */
   1434  1.1  ragge static void
   1435  1.1  ragge dge_rxintr(struct dge_softc *sc)
   1436  1.1  ragge {
   1437  1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1438  1.1  ragge 	struct dge_rxsoft *rxs;
   1439  1.1  ragge 	struct mbuf *m;
   1440  1.1  ragge 	int i, len;
   1441  1.1  ragge 	uint8_t status, errors;
   1442  1.1  ragge 
   1443  1.1  ragge 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1444  1.1  ragge 		rxs = &sc->sc_rxsoft[i];
   1445  1.1  ragge 
   1446  1.1  ragge 		DPRINTF(DGE_DEBUG_RX,
   1447  1.1  ragge 		    ("%s: RX: checking descriptor %d\n",
   1448  1.1  ragge 		    sc->sc_dev.dv_xname, i));
   1449  1.1  ragge 
   1450  1.1  ragge 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1451  1.1  ragge 
   1452  1.1  ragge 		status = sc->sc_rxdescs[i].dr_status;
   1453  1.1  ragge 		errors = sc->sc_rxdescs[i].dr_errors;
   1454  1.1  ragge 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1455  1.1  ragge 
   1456  1.1  ragge 		if ((status & RDESC_STS_DD) == 0) {
   1457  1.1  ragge 			/*
   1458  1.1  ragge 			 * We have processed all of the receive descriptors.
   1459  1.1  ragge 			 */
   1460  1.1  ragge 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1461  1.1  ragge 			break;
   1462  1.1  ragge 		}
   1463  1.1  ragge 
   1464  1.1  ragge 		if (__predict_false(sc->sc_rxdiscard)) {
   1465  1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1466  1.1  ragge 			    ("%s: RX: discarding contents of descriptor %d\n",
   1467  1.1  ragge 			    sc->sc_dev.dv_xname, i));
   1468  1.1  ragge 			DGE_INIT_RXDESC(sc, i);
   1469  1.1  ragge 			if (status & RDESC_STS_EOP) {
   1470  1.1  ragge 				/* Reset our state. */
   1471  1.1  ragge 				DPRINTF(DGE_DEBUG_RX,
   1472  1.1  ragge 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1473  1.1  ragge 				    sc->sc_dev.dv_xname));
   1474  1.1  ragge 				sc->sc_rxdiscard = 0;
   1475  1.1  ragge 			}
   1476  1.1  ragge 			continue;
   1477  1.1  ragge 		}
   1478  1.1  ragge 
   1479  1.1  ragge 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1480  1.1  ragge 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1481  1.1  ragge 
   1482  1.1  ragge 		m = rxs->rxs_mbuf;
   1483  1.1  ragge 
   1484  1.1  ragge 		/*
   1485  1.1  ragge 		 * Add a new receive buffer to the ring.
   1486  1.1  ragge 		 */
   1487  1.1  ragge 		if (dge_add_rxbuf(sc, i) != 0) {
   1488  1.1  ragge 			/*
   1489  1.1  ragge 			 * Failed, throw away what we've done so
   1490  1.1  ragge 			 * far, and discard the rest of the packet.
   1491  1.1  ragge 			 */
   1492  1.1  ragge 			ifp->if_ierrors++;
   1493  1.1  ragge 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1494  1.1  ragge 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1495  1.1  ragge 			DGE_INIT_RXDESC(sc, i);
   1496  1.1  ragge 			if ((status & RDESC_STS_EOP) == 0)
   1497  1.1  ragge 				sc->sc_rxdiscard = 1;
   1498  1.1  ragge 			if (sc->sc_rxhead != NULL)
   1499  1.1  ragge 				m_freem(sc->sc_rxhead);
   1500  1.1  ragge 			DGE_RXCHAIN_RESET(sc);
   1501  1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1502  1.1  ragge 			    ("%s: RX: Rx buffer allocation failed, "
   1503  1.1  ragge 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1504  1.1  ragge 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1505  1.1  ragge 			continue;
   1506  1.1  ragge 		}
   1507  1.1  ragge 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1508  1.1  ragge 
   1509  1.1  ragge 		DGE_RXCHAIN_LINK(sc, m);
   1510  1.1  ragge 
   1511  1.1  ragge 		m->m_len = len;
   1512  1.1  ragge 
   1513  1.1  ragge 		DPRINTF(DGE_DEBUG_RX,
   1514  1.1  ragge 		    ("%s: RX: buffer at %p len %d\n",
   1515  1.1  ragge 		    sc->sc_dev.dv_xname, m->m_data, len));
   1516  1.1  ragge 
   1517  1.1  ragge 		/*
   1518  1.1  ragge 		 * If this is not the end of the packet, keep
   1519  1.1  ragge 		 * looking.
   1520  1.1  ragge 		 */
   1521  1.1  ragge 		if ((status & RDESC_STS_EOP) == 0) {
   1522  1.1  ragge 			sc->sc_rxlen += len;
   1523  1.1  ragge 			DPRINTF(DGE_DEBUG_RX,
   1524  1.1  ragge 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1525  1.1  ragge 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1526  1.1  ragge 			continue;
   1527  1.1  ragge 		}
   1528  1.1  ragge 
   1529  1.1  ragge 		/*
   1530  1.1  ragge 		 * Okay, we have the entire packet now...
   1531  1.1  ragge 		 */
   1532  1.1  ragge 		*sc->sc_rxtailp = NULL;
   1533  1.1  ragge 		m = sc->sc_rxhead;
   1534  1.1  ragge 		len += sc->sc_rxlen;
   1535  1.1  ragge 
   1536  1.1  ragge 		DGE_RXCHAIN_RESET(sc);
   1537  1.1  ragge 
   1538  1.1  ragge 		DPRINTF(DGE_DEBUG_RX,
   1539  1.1  ragge 		    ("%s: RX: have entire packet, len -> %d\n",
   1540  1.1  ragge 		    sc->sc_dev.dv_xname, len));
   1541  1.1  ragge 
   1542  1.1  ragge 		/*
   1543  1.1  ragge 		 * If an error occurred, update stats and drop the packet.
   1544  1.1  ragge 		 */
   1545  1.1  ragge 		if (errors &
   1546  1.1  ragge 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1547  1.1  ragge 			ifp->if_ierrors++;
   1548  1.1  ragge 			if (errors & RDESC_ERR_SE)
   1549  1.1  ragge 				printf("%s: symbol error\n",
   1550  1.1  ragge 				    sc->sc_dev.dv_xname);
   1551  1.1  ragge 			else if (errors & RDESC_ERR_P)
   1552  1.1  ragge 				printf("%s: parity error\n",
   1553  1.1  ragge 				    sc->sc_dev.dv_xname);
   1554  1.1  ragge 			else if (errors & RDESC_ERR_CE)
   1555  1.1  ragge 				printf("%s: CRC error\n",
   1556  1.1  ragge 				    sc->sc_dev.dv_xname);
   1557  1.1  ragge 			m_freem(m);
   1558  1.1  ragge 			continue;
   1559  1.1  ragge 		}
   1560  1.1  ragge 
   1561  1.1  ragge 		/*
   1562  1.1  ragge 		 * No errors.  Receive the packet.
   1563  1.1  ragge 		 */
   1564  1.1  ragge 		m->m_pkthdr.rcvif = ifp;
   1565  1.1  ragge 		m->m_pkthdr.len = len;
   1566  1.1  ragge 
   1567  1.1  ragge 		/*
   1568  1.1  ragge 		 * Set up checksum info for this packet.
   1569  1.1  ragge 		 */
   1570  1.1  ragge 		if (status & RDESC_STS_IPCS) {
   1571  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1572  1.1  ragge 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1573  1.1  ragge 			if (errors & RDESC_ERR_IPE)
   1574  1.1  ragge 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1575  1.1  ragge 		}
   1576  1.1  ragge 		if (status & RDESC_STS_TCPCS) {
   1577  1.1  ragge 			/*
   1578  1.1  ragge 			 * Note: we don't know if this was TCP or UDP,
   1579  1.1  ragge 			 * so we just set both bits, and expect the
   1580  1.1  ragge 			 * upper layers to deal.
   1581  1.1  ragge 			 */
   1582  1.1  ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1583  1.1  ragge 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1584  1.1  ragge 			if (errors & RDESC_ERR_TCPE)
   1585  1.1  ragge 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1586  1.1  ragge 		}
   1587  1.1  ragge 
   1588  1.1  ragge 		ifp->if_ipackets++;
   1589  1.1  ragge 
   1590  1.1  ragge #if NBPFILTER > 0
   1591  1.1  ragge 		/* Pass this up to any BPF listeners. */
   1592  1.1  ragge 		if (ifp->if_bpf)
   1593  1.1  ragge 			bpf_mtap(ifp->if_bpf, m);
   1594  1.1  ragge #endif /* NBPFILTER > 0 */
   1595  1.1  ragge 
   1596  1.1  ragge 		/* Pass it on. */
   1597  1.1  ragge 		(*ifp->if_input)(ifp, m);
   1598  1.1  ragge 	}
   1599  1.1  ragge 
   1600  1.1  ragge 	/* Update the receive pointer. */
   1601  1.1  ragge 	sc->sc_rxptr = i;
   1602  1.1  ragge 
   1603  1.1  ragge 	DPRINTF(DGE_DEBUG_RX,
   1604  1.1  ragge 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1605  1.1  ragge }
   1606  1.1  ragge 
   1607  1.1  ragge /*
   1608  1.1  ragge  * dge_linkintr:
   1609  1.1  ragge  *
   1610  1.1  ragge  *	Helper; handle link interrupts.
   1611  1.1  ragge  */
   1612  1.1  ragge static void
   1613  1.1  ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1614  1.1  ragge {
   1615  1.1  ragge 	uint32_t status;
   1616  1.1  ragge 
   1617  1.1  ragge 	if (icr & ICR_LSC) {
   1618  1.1  ragge 		status = CSR_READ(sc, DGE_STATUS);
   1619  1.1  ragge 		if (status & STATUS_LINKUP) {
   1620  1.1  ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1621  1.1  ragge 			    sc->sc_dev.dv_xname));
   1622  1.1  ragge 		} else {
   1623  1.1  ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1624  1.1  ragge 			    sc->sc_dev.dv_xname));
   1625  1.1  ragge 		}
   1626  1.1  ragge 	} else if (icr & ICR_RXSEQ) {
   1627  1.1  ragge 		DPRINTF(DGE_DEBUG_LINK,
   1628  1.1  ragge 		    ("%s: LINK: Receive sequence error\n",
   1629  1.1  ragge 		    sc->sc_dev.dv_xname));
   1630  1.1  ragge 	}
   1631  1.1  ragge 	/* XXX - fix errata */
   1632  1.1  ragge }
   1633  1.1  ragge 
   1634  1.1  ragge /*
   1635  1.1  ragge  * dge_reset:
   1636  1.1  ragge  *
   1637  1.1  ragge  *	Reset the i82597 chip.
   1638  1.1  ragge  */
   1639  1.1  ragge static void
   1640  1.1  ragge dge_reset(struct dge_softc *sc)
   1641  1.1  ragge {
   1642  1.1  ragge 	int i;
   1643  1.1  ragge 
   1644  1.1  ragge 	/*
   1645  1.1  ragge 	 * Do a chip reset.
   1646  1.1  ragge 	 */
   1647  1.1  ragge 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1648  1.1  ragge 
   1649  1.1  ragge 	delay(10000);
   1650  1.1  ragge 
   1651  1.1  ragge 	for (i = 0; i < 1000; i++) {
   1652  1.1  ragge 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1653  1.1  ragge 			break;
   1654  1.1  ragge 		delay(20);
   1655  1.1  ragge 	}
   1656  1.1  ragge 
   1657  1.1  ragge 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1658  1.1  ragge 		printf("%s: WARNING: reset failed to complete\n",
   1659  1.1  ragge 		    sc->sc_dev.dv_xname);
   1660  1.1  ragge         /*
   1661  1.1  ragge          * Reset the EEPROM logic.
   1662  1.1  ragge          * This will cause the chip to reread its default values,
   1663  1.1  ragge 	 * which doesn't happen otherwise (errata).
   1664  1.1  ragge          */
   1665  1.1  ragge         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1666  1.1  ragge         delay(10000);
   1667  1.1  ragge }
   1668  1.1  ragge 
   1669  1.1  ragge /*
   1670  1.1  ragge  * dge_init:		[ifnet interface function]
   1671  1.1  ragge  *
   1672  1.1  ragge  *	Initialize the interface.  Must be called at splnet().
   1673  1.1  ragge  */
   1674  1.1  ragge static int
   1675  1.1  ragge dge_init(struct ifnet *ifp)
   1676  1.1  ragge {
   1677  1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1678  1.1  ragge 	struct dge_rxsoft *rxs;
   1679  1.1  ragge 	int i, error = 0;
   1680  1.1  ragge 	uint32_t reg;
   1681  1.1  ragge 
   1682  1.1  ragge 	/*
   1683  1.1  ragge 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1684  1.1  ragge 	 * There is a small but measurable benefit to avoiding the adjusment
   1685  1.1  ragge 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1686  1.1  ragge 	 * on such platforms.  One possibility is that the DMA itself is
   1687  1.1  ragge 	 * slightly more efficient if the front of the entire packet (instead
   1688  1.1  ragge 	 * of the front of the headers) is aligned.
   1689  1.1  ragge 	 *
   1690  1.1  ragge 	 * Note we must always set align_tweak to 0 if we are using
   1691  1.1  ragge 	 * jumbo frames.
   1692  1.1  ragge 	 */
   1693  1.1  ragge #ifdef __NO_STRICT_ALIGNMENT
   1694  1.1  ragge 	sc->sc_align_tweak = 0;
   1695  1.1  ragge #else
   1696  1.1  ragge 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1697  1.1  ragge 		sc->sc_align_tweak = 0;
   1698  1.1  ragge 	else
   1699  1.1  ragge 		sc->sc_align_tweak = 2;
   1700  1.1  ragge #endif /* __NO_STRICT_ALIGNMENT */
   1701  1.1  ragge 
   1702  1.1  ragge 	/* Cancel any pending I/O. */
   1703  1.1  ragge 	dge_stop(ifp, 0);
   1704  1.1  ragge 
   1705  1.1  ragge 	/* Reset the chip to a known state. */
   1706  1.1  ragge 	dge_reset(sc);
   1707  1.1  ragge 
   1708  1.1  ragge 	/* Initialize the transmit descriptor ring. */
   1709  1.1  ragge 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1710  1.1  ragge 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1711  1.1  ragge 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1712  1.1  ragge 	sc->sc_txfree = DGE_NTXDESC;
   1713  1.1  ragge 	sc->sc_txnext = 0;
   1714  1.1  ragge 
   1715  1.1  ragge 	sc->sc_txctx_ipcs = 0xffffffff;
   1716  1.1  ragge 	sc->sc_txctx_tucs = 0xffffffff;
   1717  1.1  ragge 
   1718  1.1  ragge 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1719  1.1  ragge 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1720  1.1  ragge 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1721  1.1  ragge 	CSR_WRITE(sc, DGE_TDH, 0);
   1722  1.1  ragge 	CSR_WRITE(sc, DGE_TDT, 0);
   1723  1.1  ragge 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1724  1.1  ragge 
   1725  1.1  ragge #if 0
   1726  1.1  ragge 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1727  1.1  ragge 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1728  1.1  ragge #endif
   1729  1.1  ragge 	CSR_WRITE(sc, DGE_RXDCTL,
   1730  1.1  ragge 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1731  1.1  ragge 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1732  1.1  ragge 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1733  1.1  ragge 
   1734  1.1  ragge 	/* Initialize the transmit job descriptors. */
   1735  1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1736  1.1  ragge 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1737  1.1  ragge 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1738  1.1  ragge 	sc->sc_txsnext = 0;
   1739  1.1  ragge 	sc->sc_txsdirty = 0;
   1740  1.1  ragge 
   1741  1.1  ragge 	/*
   1742  1.1  ragge 	 * Initialize the receive descriptor and receive job
   1743  1.1  ragge 	 * descriptor rings.
   1744  1.1  ragge 	 */
   1745  1.1  ragge 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1746  1.1  ragge 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1747  1.1  ragge 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1748  1.1  ragge 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1749  1.1  ragge 	CSR_WRITE(sc, DGE_RDT, 0);
   1750  1.1  ragge 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1751  1.1  ragge 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1752  1.1  ragge 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1753  1.1  ragge 
   1754  1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1755  1.1  ragge 		rxs = &sc->sc_rxsoft[i];
   1756  1.1  ragge 		if (rxs->rxs_mbuf == NULL) {
   1757  1.1  ragge 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1758  1.1  ragge 				printf("%s: unable to allocate or map rx "
   1759  1.1  ragge 				    "buffer %d, error = %d\n",
   1760  1.1  ragge 				    sc->sc_dev.dv_xname, i, error);
   1761  1.1  ragge 				/*
   1762  1.1  ragge 				 * XXX Should attempt to run with fewer receive
   1763  1.1  ragge 				 * XXX buffers instead of just failing.
   1764  1.1  ragge 				 */
   1765  1.1  ragge 				dge_rxdrain(sc);
   1766  1.1  ragge 				goto out;
   1767  1.1  ragge 			}
   1768  1.1  ragge 		}
   1769  1.1  ragge 		DGE_INIT_RXDESC(sc, i);
   1770  1.1  ragge 	}
   1771  1.1  ragge 	sc->sc_rxptr = DGE_RXSPACE;
   1772  1.1  ragge 	sc->sc_rxdiscard = 0;
   1773  1.1  ragge 	DGE_RXCHAIN_RESET(sc);
   1774  1.1  ragge 
   1775  1.1  ragge 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1776  1.1  ragge 		sc->sc_ctrl0 |= CTRL0_JFE;
   1777  1.1  ragge 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1778  1.1  ragge 	}
   1779  1.1  ragge 
   1780  1.1  ragge 	/* Write the control registers. */
   1781  1.1  ragge 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1782  1.1  ragge 
   1783  1.1  ragge 	/*
   1784  1.1  ragge 	 * Set up checksum offload parameters.
   1785  1.1  ragge 	 */
   1786  1.1  ragge 	reg = CSR_READ(sc, DGE_RXCSUM);
   1787  1.1  ragge 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1788  1.1  ragge 		reg |= RXCSUM_IPOFL;
   1789  1.1  ragge 	else
   1790  1.1  ragge 		reg &= ~RXCSUM_IPOFL;
   1791  1.1  ragge 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1792  1.1  ragge 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1793  1.1  ragge 	else {
   1794  1.1  ragge 		reg &= ~RXCSUM_TUOFL;
   1795  1.1  ragge 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   1796  1.1  ragge 			reg &= ~RXCSUM_IPOFL;
   1797  1.1  ragge 	}
   1798  1.1  ragge 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1799  1.1  ragge 
   1800  1.1  ragge 	/*
   1801  1.1  ragge 	 * Set up the interrupt registers.
   1802  1.1  ragge 	 */
   1803  1.1  ragge 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1804  1.1  ragge 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1805  1.1  ragge 	    ICR_RXO | ICR_RXT0;
   1806  1.1  ragge 
   1807  1.1  ragge 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1808  1.1  ragge 
   1809  1.1  ragge 	/*
   1810  1.1  ragge 	 * Set up the transmit control register.
   1811  1.1  ragge 	 */
   1812  1.1  ragge 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1813  1.1  ragge 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1814  1.1  ragge 
   1815  1.1  ragge 	/*
   1816  1.1  ragge 	 * Set up the receive control register; we actually program
   1817  1.1  ragge 	 * the register when we set the receive filter.  Use multicast
   1818  1.1  ragge 	 * address offset type 0.
   1819  1.1  ragge 	 */
   1820  1.1  ragge 	sc->sc_mchash_type = 0;
   1821  1.1  ragge 
   1822  1.1  ragge 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   1823  1.1  ragge 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   1824  1.1  ragge 
   1825  1.1  ragge 	switch(MCLBYTES) {
   1826  1.1  ragge 	case 2048:
   1827  1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_2k;
   1828  1.1  ragge 		break;
   1829  1.1  ragge 	case 4096:
   1830  1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_4k;
   1831  1.1  ragge 		break;
   1832  1.1  ragge 	case 8192:
   1833  1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_8k;
   1834  1.1  ragge 		break;
   1835  1.1  ragge 	case 16384:
   1836  1.1  ragge 		sc->sc_rctl |= RCTL_BSIZE_16k;
   1837  1.1  ragge 		break;
   1838  1.1  ragge 	default:
   1839  1.1  ragge 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   1840  1.1  ragge 	}
   1841  1.1  ragge 
   1842  1.1  ragge 	/* Set the receive filter. */
   1843  1.1  ragge 	/* Also sets RCTL */
   1844  1.1  ragge 	dge_set_filter(sc);
   1845  1.1  ragge 
   1846  1.1  ragge 	/* ...all done! */
   1847  1.1  ragge 	ifp->if_flags |= IFF_RUNNING;
   1848  1.1  ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1849  1.1  ragge 
   1850  1.1  ragge  out:
   1851  1.1  ragge 	if (error)
   1852  1.1  ragge 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1853  1.1  ragge 	return (error);
   1854  1.1  ragge }
   1855  1.1  ragge 
   1856  1.1  ragge /*
   1857  1.1  ragge  * dge_rxdrain:
   1858  1.1  ragge  *
   1859  1.1  ragge  *	Drain the receive queue.
   1860  1.1  ragge  */
   1861  1.1  ragge static void
   1862  1.1  ragge dge_rxdrain(struct dge_softc *sc)
   1863  1.1  ragge {
   1864  1.1  ragge 	struct dge_rxsoft *rxs;
   1865  1.1  ragge 	int i;
   1866  1.1  ragge 
   1867  1.1  ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1868  1.1  ragge 		rxs = &sc->sc_rxsoft[i];
   1869  1.1  ragge 		if (rxs->rxs_mbuf != NULL) {
   1870  1.1  ragge 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1871  1.1  ragge 			m_freem(rxs->rxs_mbuf);
   1872  1.1  ragge 			rxs->rxs_mbuf = NULL;
   1873  1.1  ragge 		}
   1874  1.1  ragge 	}
   1875  1.1  ragge }
   1876  1.1  ragge 
   1877  1.1  ragge /*
   1878  1.1  ragge  * dge_stop:		[ifnet interface function]
   1879  1.1  ragge  *
   1880  1.1  ragge  *	Stop transmission on the interface.
   1881  1.1  ragge  */
   1882  1.1  ragge static void
   1883  1.1  ragge dge_stop(struct ifnet *ifp, int disable)
   1884  1.1  ragge {
   1885  1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   1886  1.1  ragge 	struct dge_txsoft *txs;
   1887  1.1  ragge 	int i;
   1888  1.1  ragge 
   1889  1.1  ragge 	/* Stop the transmit and receive processes. */
   1890  1.1  ragge 	CSR_WRITE(sc, DGE_TCTL, 0);
   1891  1.1  ragge 	CSR_WRITE(sc, DGE_RCTL, 0);
   1892  1.1  ragge 
   1893  1.1  ragge 	/* Release any queued transmit buffers. */
   1894  1.1  ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   1895  1.1  ragge 		txs = &sc->sc_txsoft[i];
   1896  1.1  ragge 		if (txs->txs_mbuf != NULL) {
   1897  1.1  ragge 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1898  1.1  ragge 			m_freem(txs->txs_mbuf);
   1899  1.1  ragge 			txs->txs_mbuf = NULL;
   1900  1.1  ragge 		}
   1901  1.1  ragge 	}
   1902  1.1  ragge 
   1903  1.1  ragge 	if (disable)
   1904  1.1  ragge 		dge_rxdrain(sc);
   1905  1.1  ragge 
   1906  1.1  ragge 	/* Mark the interface as down and cancel the watchdog timer. */
   1907  1.1  ragge 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1908  1.1  ragge 	ifp->if_timer = 0;
   1909  1.1  ragge }
   1910  1.1  ragge 
   1911  1.1  ragge /*
   1912  1.1  ragge  * dge_add_rxbuf:
   1913  1.1  ragge  *
   1914  1.1  ragge  *	Add a receive buffer to the indiciated descriptor.
   1915  1.1  ragge  */
   1916  1.1  ragge static int
   1917  1.1  ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
   1918  1.1  ragge {
   1919  1.1  ragge 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1920  1.1  ragge 	struct mbuf *m;
   1921  1.1  ragge 	int error;
   1922  1.1  ragge 
   1923  1.1  ragge 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1924  1.1  ragge 	if (m == NULL)
   1925  1.1  ragge 		return (ENOBUFS);
   1926  1.1  ragge 
   1927  1.1  ragge 	MCLGET(m, M_DONTWAIT);
   1928  1.1  ragge 	if ((m->m_flags & M_EXT) == 0) {
   1929  1.1  ragge 		m_freem(m);
   1930  1.1  ragge 		return (ENOBUFS);
   1931  1.1  ragge 	}
   1932  1.1  ragge 
   1933  1.1  ragge 	if (rxs->rxs_mbuf != NULL)
   1934  1.1  ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1935  1.1  ragge 
   1936  1.1  ragge 	rxs->rxs_mbuf = m;
   1937  1.1  ragge 
   1938  1.1  ragge 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   1939  1.1  ragge 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   1940  1.1  ragge 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1941  1.1  ragge 	if (error) {
   1942  1.1  ragge 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   1943  1.1  ragge 		    sc->sc_dev.dv_xname, idx, error);
   1944  1.1  ragge 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   1945  1.1  ragge 	}
   1946  1.1  ragge 
   1947  1.1  ragge 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1948  1.1  ragge 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1949  1.1  ragge 
   1950  1.1  ragge 	return (0);
   1951  1.1  ragge }
   1952  1.1  ragge 
   1953  1.1  ragge /*
   1954  1.1  ragge  * dge_set_ral:
   1955  1.1  ragge  *
   1956  1.1  ragge  *	Set an entry in the receive address list.
   1957  1.1  ragge  */
   1958  1.1  ragge static void
   1959  1.1  ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   1960  1.1  ragge {
   1961  1.1  ragge 	uint32_t ral_lo, ral_hi;
   1962  1.1  ragge 
   1963  1.1  ragge 	if (enaddr != NULL) {
   1964  1.1  ragge 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   1965  1.1  ragge 		    (enaddr[3] << 24);
   1966  1.1  ragge 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   1967  1.1  ragge 		ral_hi |= RAH_AV;
   1968  1.1  ragge 	} else {
   1969  1.1  ragge 		ral_lo = 0;
   1970  1.1  ragge 		ral_hi = 0;
   1971  1.1  ragge 	}
   1972  1.1  ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   1973  1.1  ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   1974  1.1  ragge }
   1975  1.1  ragge 
   1976  1.1  ragge /*
   1977  1.1  ragge  * dge_mchash:
   1978  1.1  ragge  *
   1979  1.1  ragge  *	Compute the hash of the multicast address for the 4096-bit
   1980  1.1  ragge  *	multicast filter.
   1981  1.1  ragge  */
   1982  1.1  ragge static uint32_t
   1983  1.1  ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   1984  1.1  ragge {
   1985  1.1  ragge 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   1986  1.1  ragge 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   1987  1.1  ragge 	uint32_t hash;
   1988  1.1  ragge 
   1989  1.1  ragge 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   1990  1.1  ragge 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   1991  1.1  ragge 
   1992  1.1  ragge 	return (hash & 0xfff);
   1993  1.1  ragge }
   1994  1.1  ragge 
   1995  1.1  ragge /*
   1996  1.1  ragge  * dge_set_filter:
   1997  1.1  ragge  *
   1998  1.1  ragge  *	Set up the receive filter.
   1999  1.1  ragge  */
   2000  1.1  ragge static void
   2001  1.1  ragge dge_set_filter(struct dge_softc *sc)
   2002  1.1  ragge {
   2003  1.1  ragge 	struct ethercom *ec = &sc->sc_ethercom;
   2004  1.1  ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2005  1.1  ragge 	struct ether_multi *enm;
   2006  1.1  ragge 	struct ether_multistep step;
   2007  1.1  ragge 	uint32_t hash, reg, bit;
   2008  1.1  ragge 	int i;
   2009  1.1  ragge 
   2010  1.1  ragge 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2011  1.1  ragge 
   2012  1.1  ragge 	if (ifp->if_flags & IFF_BROADCAST)
   2013  1.1  ragge 		sc->sc_rctl |= RCTL_BAM;
   2014  1.1  ragge 	if (ifp->if_flags & IFF_PROMISC) {
   2015  1.1  ragge 		sc->sc_rctl |= RCTL_UPE;
   2016  1.1  ragge 		goto allmulti;
   2017  1.1  ragge 	}
   2018  1.1  ragge 
   2019  1.1  ragge 	/*
   2020  1.1  ragge 	 * Set the station address in the first RAL slot, and
   2021  1.1  ragge 	 * clear the remaining slots.
   2022  1.1  ragge 	 */
   2023  1.1  ragge 	dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2024  1.1  ragge 	for (i = 1; i < RA_TABSIZE; i++)
   2025  1.1  ragge 		dge_set_ral(sc, NULL, i);
   2026  1.1  ragge 
   2027  1.1  ragge 	/* Clear out the multicast table. */
   2028  1.1  ragge 	for (i = 0; i < MC_TABSIZE; i++)
   2029  1.1  ragge 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2030  1.1  ragge 
   2031  1.1  ragge 	ETHER_FIRST_MULTI(step, ec, enm);
   2032  1.1  ragge 	while (enm != NULL) {
   2033  1.1  ragge 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2034  1.1  ragge 			/*
   2035  1.1  ragge 			 * We must listen to a range of multicast addresses.
   2036  1.1  ragge 			 * For now, just accept all multicasts, rather than
   2037  1.1  ragge 			 * trying to set only those filter bits needed to match
   2038  1.1  ragge 			 * the range.  (At this time, the only use of address
   2039  1.1  ragge 			 * ranges is for IP multicast routing, for which the
   2040  1.1  ragge 			 * range is big enough to require all bits set.)
   2041  1.1  ragge 			 */
   2042  1.1  ragge 			goto allmulti;
   2043  1.1  ragge 		}
   2044  1.1  ragge 
   2045  1.1  ragge 		hash = dge_mchash(sc, enm->enm_addrlo);
   2046  1.1  ragge 
   2047  1.1  ragge 		reg = (hash >> 5) & 0x7f;
   2048  1.1  ragge 		bit = hash & 0x1f;
   2049  1.1  ragge 
   2050  1.1  ragge 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2051  1.1  ragge 		hash |= 1U << bit;
   2052  1.1  ragge 
   2053  1.1  ragge 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2054  1.1  ragge 
   2055  1.1  ragge 		ETHER_NEXT_MULTI(step, enm);
   2056  1.1  ragge 	}
   2057  1.1  ragge 
   2058  1.1  ragge 	ifp->if_flags &= ~IFF_ALLMULTI;
   2059  1.1  ragge 	goto setit;
   2060  1.1  ragge 
   2061  1.1  ragge  allmulti:
   2062  1.1  ragge 	ifp->if_flags |= IFF_ALLMULTI;
   2063  1.1  ragge 	sc->sc_rctl |= RCTL_MPE;
   2064  1.1  ragge 
   2065  1.1  ragge  setit:
   2066  1.1  ragge 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2067  1.1  ragge }
   2068  1.1  ragge 
   2069  1.1  ragge /*
   2070  1.1  ragge  * Read in the EEPROM info and verify checksum.
   2071  1.1  ragge  */
   2072  1.1  ragge int
   2073  1.1  ragge dge_read_eeprom(struct dge_softc *sc)
   2074  1.1  ragge {
   2075  1.1  ragge 	uint16_t cksum;
   2076  1.1  ragge 	int i;
   2077  1.1  ragge 
   2078  1.1  ragge 	cksum = 0;
   2079  1.1  ragge 	for (i = 0; i < EEPROM_SIZE; i++) {
   2080  1.1  ragge 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2081  1.1  ragge 		cksum += sc->sc_eeprom[i];
   2082  1.1  ragge 	}
   2083  1.1  ragge 	return cksum != EEPROM_CKSUM;
   2084  1.1  ragge }
   2085  1.1  ragge 
   2086  1.1  ragge 
   2087  1.1  ragge /*
   2088  1.1  ragge  * Read a 16-bit word from address addr in the serial EEPROM.
   2089  1.1  ragge  */
   2090  1.1  ragge uint16_t
   2091  1.1  ragge dge_eeprom_word(struct dge_softc *sc, int addr)
   2092  1.1  ragge {
   2093  1.1  ragge 	uint32_t reg;
   2094  1.1  ragge 	uint16_t rval = 0;
   2095  1.1  ragge 	int i;
   2096  1.1  ragge 
   2097  1.1  ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2098  1.1  ragge 
   2099  1.1  ragge 	/* Lower clock pulse (and data in to chip) */
   2100  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2101  1.1  ragge 	/* Select chip */
   2102  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2103  1.1  ragge 
   2104  1.1  ragge 	/* Send read command */
   2105  1.1  ragge 	dge_eeprom_clockout(sc, 1);
   2106  1.1  ragge 	dge_eeprom_clockout(sc, 1);
   2107  1.1  ragge 	dge_eeprom_clockout(sc, 0);
   2108  1.1  ragge 
   2109  1.1  ragge 	/* Send address */
   2110  1.1  ragge 	for (i = 5; i >= 0; i--)
   2111  1.1  ragge 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2112  1.1  ragge 
   2113  1.1  ragge 	/* Read data */
   2114  1.1  ragge 	for (i = 0; i < 16; i++) {
   2115  1.1  ragge 		rval <<= 1;
   2116  1.1  ragge 		rval |= dge_eeprom_clockin(sc);
   2117  1.1  ragge 	}
   2118  1.1  ragge 
   2119  1.1  ragge 	/* Deselect chip */
   2120  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2121  1.1  ragge 
   2122  1.1  ragge 	return rval;
   2123  1.1  ragge }
   2124  1.1  ragge 
   2125  1.1  ragge /*
   2126  1.1  ragge  * Clock out a single bit to the EEPROM.
   2127  1.1  ragge  */
   2128  1.1  ragge void
   2129  1.1  ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2130  1.1  ragge {
   2131  1.1  ragge 	int reg;
   2132  1.1  ragge 
   2133  1.1  ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2134  1.1  ragge 	if (bit)
   2135  1.1  ragge 		reg |= EECD_DI;
   2136  1.1  ragge 
   2137  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2138  1.1  ragge 	delay(2);
   2139  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2140  1.1  ragge 	delay(2);
   2141  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2142  1.1  ragge 	delay(2);
   2143  1.1  ragge }
   2144  1.1  ragge 
   2145  1.1  ragge /*
   2146  1.1  ragge  * Clock in a single bit from EEPROM.
   2147  1.1  ragge  */
   2148  1.1  ragge int
   2149  1.1  ragge dge_eeprom_clockin(struct dge_softc *sc)
   2150  1.1  ragge {
   2151  1.1  ragge 	int reg, rv;
   2152  1.1  ragge 
   2153  1.1  ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2154  1.1  ragge 
   2155  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2156  1.1  ragge 	delay(2);
   2157  1.1  ragge 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2158  1.1  ragge 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2159  1.1  ragge 	delay(2);
   2160  1.1  ragge 
   2161  1.1  ragge 	return rv;
   2162  1.1  ragge }
   2163  1.1  ragge 
   2164  1.1  ragge static void
   2165  1.1  ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2166  1.1  ragge {
   2167  1.1  ragge 	struct dge_softc *sc = ifp->if_softc;
   2168  1.1  ragge 
   2169  1.1  ragge 	ifmr->ifm_status = IFM_AVALID;
   2170  1.1  ragge 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2171  1.1  ragge 
   2172  1.1  ragge 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2173  1.1  ragge 		ifmr->ifm_status |= IFM_ACTIVE;
   2174  1.1  ragge }
   2175  1.1  ragge 
   2176  1.1  ragge static inline int
   2177  1.1  ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2178  1.1  ragge {
   2179  1.1  ragge         int i, mdic;
   2180  1.1  ragge 
   2181  1.1  ragge         CSR_WRITE(sc, DGE_MDIO,
   2182  1.1  ragge 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2183  1.1  ragge         for (i = 0; i < 10; i++) {
   2184  1.1  ragge                 delay(10);
   2185  1.1  ragge                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2186  1.1  ragge                         break;
   2187  1.1  ragge         }
   2188  1.1  ragge         return mdic;
   2189  1.1  ragge }
   2190  1.1  ragge 
   2191  1.1  ragge 
   2192  1.1  ragge static void
   2193  1.1  ragge dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
   2194  1.1  ragge {
   2195  1.1  ragge 	struct dge_softc *sc = (void *) self;
   2196  1.1  ragge 	int mdic;
   2197  1.1  ragge 
   2198  1.1  ragge 	CSR_WRITE(sc, DGE_MDIRW, val);
   2199  1.1  ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2200  1.1  ragge 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2201  1.1  ragge 		    sc->sc_dev.dv_xname, phy, reg);
   2202  1.1  ragge 		return;
   2203  1.1  ragge 	}
   2204  1.1  ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2205  1.1  ragge 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2206  1.1  ragge 		    sc->sc_dev.dv_xname, phy, reg);
   2207  1.1  ragge 		return;
   2208  1.1  ragge 	}
   2209  1.1  ragge }
   2210  1.1  ragge 
   2211  1.1  ragge static void
   2212  1.1  ragge dge_xgmii_reset(struct dge_softc *sc)
   2213  1.1  ragge {
   2214  1.1  ragge 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2215  1.1  ragge }
   2216  1.1  ragge 
   2217  1.1  ragge static int
   2218  1.1  ragge dge_xgmii_mediachange(struct ifnet *ifp)
   2219  1.1  ragge {
   2220  1.1  ragge 	return 0;
   2221  1.1  ragge }
   2222  1.1  ragge 
   2223