Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.21.10.1
      1  1.21.10.1      haad /*	$NetBSD: if_dge.c,v 1.21.10.1 2008/12/13 01:14:35 haad Exp $ */
      2        1.1     ragge 
      3        1.1     ragge /*
      4        1.1     ragge  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5        1.1     ragge  * All rights reserved.
      6        1.1     ragge  *
      7        1.1     ragge  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8        1.1     ragge  *
      9        1.1     ragge  * Redistribution and use in source and binary forms, with or without
     10        1.1     ragge  * modification, are permitted provided that the following conditions
     11        1.1     ragge  * are met:
     12        1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     13        1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     14        1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     15        1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     16        1.1     ragge  *    documentation and/or other materials provided with the distribution.
     17        1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     18        1.1     ragge  *    must display the following acknowledgement:
     19        1.1     ragge  *	This product includes software developed for the NetBSD Project by
     20        1.1     ragge  *	SUNET, Swedish University Computer Network.
     21        1.1     ragge  * 4. The name of SUNET may not be used to endorse or promote products
     22        1.1     ragge  *    derived from this software without specific prior written permission.
     23        1.1     ragge  *
     24        1.1     ragge  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25        1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26        1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27        1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28        1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29        1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30        1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31        1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32        1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33        1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34        1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     35        1.1     ragge  */
     36        1.1     ragge 
     37        1.1     ragge /*
     38        1.1     ragge  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39        1.1     ragge  * All rights reserved.
     40        1.1     ragge  *
     41        1.1     ragge  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42        1.1     ragge  *
     43        1.1     ragge  * Redistribution and use in source and binary forms, with or without
     44        1.1     ragge  * modification, are permitted provided that the following conditions
     45        1.1     ragge  * are met:
     46        1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     47        1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     48        1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     50        1.1     ragge  *    documentation and/or other materials provided with the distribution.
     51        1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     52        1.1     ragge  *    must display the following acknowledgement:
     53        1.1     ragge  *	This product includes software developed for the NetBSD Project by
     54        1.1     ragge  *	Wasabi Systems, Inc.
     55        1.1     ragge  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56        1.1     ragge  *    or promote products derived from this software without specific prior
     57        1.1     ragge  *    written permission.
     58        1.1     ragge  *
     59        1.1     ragge  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60        1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61        1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62        1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63        1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64        1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65        1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66        1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67        1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68        1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69        1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     70        1.1     ragge  */
     71        1.1     ragge 
     72        1.1     ragge /*
     73        1.1     ragge  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74        1.1     ragge  *
     75        1.1     ragge  * TODO (in no specific order):
     76        1.1     ragge  *	HW VLAN support.
     77        1.1     ragge  *	TSE offloading (needs kernel changes...)
     78        1.1     ragge  *	RAIDC (receive interrupt delay adaptation)
     79        1.1     ragge  *	Use memory > 4GB.
     80        1.1     ragge  */
     81        1.1     ragge 
     82        1.1     ragge #include <sys/cdefs.h>
     83  1.21.10.1      haad __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.21.10.1 2008/12/13 01:14:35 haad Exp $");
     84        1.1     ragge 
     85        1.1     ragge #include "bpfilter.h"
     86        1.1     ragge #include "rnd.h"
     87        1.1     ragge 
     88        1.1     ragge #include <sys/param.h>
     89        1.1     ragge #include <sys/systm.h>
     90       1.10     perry #include <sys/callout.h>
     91        1.1     ragge #include <sys/mbuf.h>
     92        1.1     ragge #include <sys/malloc.h>
     93        1.1     ragge #include <sys/kernel.h>
     94        1.1     ragge #include <sys/socket.h>
     95        1.1     ragge #include <sys/ioctl.h>
     96        1.1     ragge #include <sys/errno.h>
     97        1.1     ragge #include <sys/device.h>
     98        1.1     ragge #include <sys/queue.h>
     99        1.1     ragge 
    100        1.1     ragge #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101        1.1     ragge 
    102        1.1     ragge #if NRND > 0
    103        1.1     ragge #include <sys/rnd.h>
    104        1.1     ragge #endif
    105        1.1     ragge 
    106        1.1     ragge #include <net/if.h>
    107       1.10     perry #include <net/if_dl.h>
    108        1.1     ragge #include <net/if_media.h>
    109        1.1     ragge #include <net/if_ether.h>
    110        1.1     ragge 
    111       1.10     perry #if NBPFILTER > 0
    112        1.1     ragge #include <net/bpf.h>
    113        1.1     ragge #endif
    114        1.1     ragge 
    115        1.1     ragge #include <netinet/in.h>			/* XXX for struct ip */
    116        1.1     ragge #include <netinet/in_systm.h>		/* XXX for struct ip */
    117        1.1     ragge #include <netinet/ip.h>			/* XXX for struct ip */
    118        1.1     ragge #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    119        1.1     ragge 
    120       1.17        ad #include <sys/bus.h>
    121       1.17        ad #include <sys/intr.h>
    122        1.1     ragge #include <machine/endian.h>
    123        1.1     ragge 
    124        1.1     ragge #include <dev/mii/mii.h>
    125        1.1     ragge #include <dev/mii/miivar.h>
    126        1.1     ragge #include <dev/mii/mii_bitbang.h>
    127        1.1     ragge 
    128        1.1     ragge #include <dev/pci/pcireg.h>
    129        1.1     ragge #include <dev/pci/pcivar.h>
    130        1.1     ragge #include <dev/pci/pcidevs.h>
    131        1.1     ragge 
    132        1.1     ragge #include <dev/pci/if_dgereg.h>
    133        1.1     ragge 
    134        1.3     ragge /*
    135        1.3     ragge  * The receive engine may sometimes become off-by-one when writing back
    136        1.3     ragge  * chained descriptors.	 Avoid this by allocating a large chunk of
    137        1.3     ragge  * memory and use if instead (to avoid chained descriptors).
    138        1.3     ragge  * This only happens with chained descriptors under heavy load.
    139        1.3     ragge  */
    140        1.3     ragge #define DGE_OFFBYONE_RXBUG
    141        1.3     ragge 
    142        1.1     ragge #define DGE_EVENT_COUNTERS
    143        1.1     ragge #define DGE_DEBUG
    144        1.1     ragge 
    145        1.1     ragge #ifdef DGE_DEBUG
    146        1.3     ragge #define DGE_DEBUG_LINK		0x01
    147        1.3     ragge #define DGE_DEBUG_TX		0x02
    148        1.3     ragge #define DGE_DEBUG_RX		0x04
    149        1.3     ragge #define DGE_DEBUG_CKSUM		0x08
    150        1.1     ragge int	dge_debug = 0;
    151        1.1     ragge 
    152        1.3     ragge #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    153        1.1     ragge #else
    154        1.3     ragge #define DPRINTF(x, y)	/* nothing */
    155        1.1     ragge #endif /* DGE_DEBUG */
    156        1.1     ragge 
    157        1.1     ragge /*
    158        1.1     ragge  * Transmit descriptor list size. We allow up to 100 DMA segments per
    159        1.1     ragge  * packet (Intel reports of jumbo frame packets with as
    160        1.1     ragge  * many as 80 DMA segments when using 16k buffers).
    161        1.1     ragge  */
    162        1.3     ragge #define DGE_NTXSEGS		100
    163        1.3     ragge #define DGE_IFQUEUELEN		20000
    164        1.3     ragge #define DGE_TXQUEUELEN		2048
    165        1.3     ragge #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    166        1.3     ragge #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    167        1.3     ragge #define DGE_NTXDESC		1024
    168        1.3     ragge #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    169        1.3     ragge #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    170        1.3     ragge #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    171        1.1     ragge 
    172        1.1     ragge /*
    173        1.1     ragge  * Receive descriptor list size.
    174        1.1     ragge  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    175        1.3     ragge  * be chained.	Due to the nature of the card (high-speed), keep this
    176        1.1     ragge  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    177        1.1     ragge  * which at full speed will be received in just under 3ms.
    178        1.1     ragge  */
    179        1.3     ragge #define DGE_NRXDESC		2048
    180        1.3     ragge #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    181        1.3     ragge #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    182        1.1     ragge /*
    183        1.1     ragge  * # of descriptors between head and written descriptors.
    184        1.1     ragge  * This is to work-around two erratas.
    185        1.1     ragge  */
    186        1.1     ragge #define DGE_RXSPACE		10
    187        1.3     ragge #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    188        1.1     ragge /*
    189        1.1     ragge  * Receive descriptor fetch threshholds. These are values recommended
    190        1.1     ragge  * by Intel, do not touch them unless you know what you are doing.
    191        1.1     ragge  */
    192        1.3     ragge #define RXDCTL_PTHRESH_VAL	128
    193        1.3     ragge #define RXDCTL_HTHRESH_VAL	16
    194        1.3     ragge #define RXDCTL_WTHRESH_VAL	16
    195        1.1     ragge 
    196        1.1     ragge 
    197        1.1     ragge /*
    198        1.1     ragge  * Tweakable parameters; default values.
    199        1.1     ragge  */
    200        1.3     ragge #define FCRTH	0x30000 /* Send XOFF water mark */
    201        1.3     ragge #define FCRTL	0x28000 /* Send XON water mark */
    202        1.3     ragge #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    203        1.3     ragge #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    204        1.1     ragge 
    205        1.1     ragge /*
    206        1.1     ragge  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    207        1.1     ragge  * a single clump that maps to a single DMA segment to make serveral things
    208        1.1     ragge  * easier.
    209        1.1     ragge  */
    210        1.1     ragge struct dge_control_data {
    211        1.1     ragge 	/*
    212        1.1     ragge 	 * The transmit descriptors.
    213        1.1     ragge 	 */
    214        1.1     ragge 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    215        1.1     ragge 
    216        1.1     ragge 	/*
    217        1.1     ragge 	 * The receive descriptors.
    218        1.1     ragge 	 */
    219        1.1     ragge 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    220        1.1     ragge };
    221        1.1     ragge 
    222        1.3     ragge #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    223        1.3     ragge #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    224        1.3     ragge #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    225        1.1     ragge 
    226        1.1     ragge /*
    227        1.2     ragge  * The DGE interface have a higher max MTU size than normal jumbo frames.
    228        1.2     ragge  */
    229        1.3     ragge #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    230        1.2     ragge 
    231        1.2     ragge /*
    232        1.1     ragge  * Software state for transmit jobs.
    233        1.1     ragge  */
    234        1.1     ragge struct dge_txsoft {
    235        1.1     ragge 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    236        1.1     ragge 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    237        1.1     ragge 	int txs_firstdesc;		/* first descriptor in packet */
    238        1.1     ragge 	int txs_lastdesc;		/* last descriptor in packet */
    239        1.1     ragge 	int txs_ndesc;			/* # of descriptors used */
    240        1.1     ragge };
    241        1.1     ragge 
    242        1.1     ragge /*
    243        1.3     ragge  * Software state for receive buffers.	Each descriptor gets a
    244        1.3     ragge  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    245        1.1     ragge  * more than one buffer, we chain them together.
    246        1.1     ragge  */
    247        1.1     ragge struct dge_rxsoft {
    248        1.1     ragge 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    249        1.1     ragge 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    250        1.1     ragge };
    251        1.1     ragge 
    252        1.1     ragge /*
    253        1.1     ragge  * Software state per device.
    254        1.1     ragge  */
    255        1.1     ragge struct dge_softc {
    256        1.1     ragge 	struct device sc_dev;		/* generic device information */
    257        1.1     ragge 	bus_space_tag_t sc_st;		/* bus space tag */
    258        1.1     ragge 	bus_space_handle_t sc_sh;	/* bus space handle */
    259        1.1     ragge 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    260        1.1     ragge 	struct ethercom sc_ethercom;	/* ethernet common data */
    261        1.1     ragge 	void *sc_sdhook;		/* shutdown hook */
    262        1.1     ragge 
    263        1.1     ragge 	int sc_flags;			/* flags; see below */
    264        1.1     ragge 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    265        1.1     ragge 	int sc_pcix_offset;		/* PCIX capability register offset */
    266        1.1     ragge 
    267        1.1     ragge 	pci_chipset_tag_t sc_pc;
    268        1.1     ragge 	pcitag_t sc_pt;
    269        1.1     ragge 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    270        1.1     ragge 
    271        1.1     ragge 	void *sc_ih;			/* interrupt cookie */
    272        1.1     ragge 
    273        1.1     ragge 	struct ifmedia sc_media;
    274        1.1     ragge 
    275        1.1     ragge 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    276        1.3     ragge #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    277        1.1     ragge 
    278        1.1     ragge 	int		sc_align_tweak;
    279        1.1     ragge 
    280        1.1     ragge 	/*
    281        1.1     ragge 	 * Software state for the transmit and receive descriptors.
    282        1.1     ragge 	 */
    283        1.1     ragge 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    284        1.1     ragge 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    285        1.1     ragge 
    286        1.1     ragge 	/*
    287        1.1     ragge 	 * Control data structures.
    288        1.1     ragge 	 */
    289        1.1     ragge 	struct dge_control_data *sc_control_data;
    290        1.3     ragge #define sc_txdescs	sc_control_data->wcd_txdescs
    291        1.3     ragge #define sc_rxdescs	sc_control_data->wcd_rxdescs
    292        1.1     ragge 
    293        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    294        1.1     ragge 	/* Event counters. */
    295        1.1     ragge 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    296        1.1     ragge 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    297        1.3     ragge 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    298        1.1     ragge 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    299        1.1     ragge 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    300        1.1     ragge 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    301        1.1     ragge 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    302        1.1     ragge 
    303        1.1     ragge 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    304        1.1     ragge 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    305        1.1     ragge 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    306        1.1     ragge 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    307        1.1     ragge 
    308        1.1     ragge 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    309        1.1     ragge 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    310        1.1     ragge 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    311        1.1     ragge 
    312        1.1     ragge 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    313        1.1     ragge 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    314        1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    315        1.1     ragge 
    316        1.1     ragge 	int	sc_txfree;		/* number of free Tx descriptors */
    317        1.1     ragge 	int	sc_txnext;		/* next ready Tx descriptor */
    318        1.1     ragge 
    319        1.1     ragge 	int	sc_txsfree;		/* number of free Tx jobs */
    320        1.1     ragge 	int	sc_txsnext;		/* next free Tx job */
    321        1.1     ragge 	int	sc_txsdirty;		/* dirty Tx jobs */
    322        1.1     ragge 
    323        1.1     ragge 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    324        1.1     ragge 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    325        1.1     ragge 
    326        1.1     ragge 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    327        1.1     ragge 	int	sc_rxdiscard;
    328        1.1     ragge 	int	sc_rxlen;
    329        1.1     ragge 	struct mbuf *sc_rxhead;
    330        1.1     ragge 	struct mbuf *sc_rxtail;
    331        1.1     ragge 	struct mbuf **sc_rxtailp;
    332        1.1     ragge 
    333        1.1     ragge 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    334        1.1     ragge 	uint32_t sc_icr;		/* prototype interrupt bits */
    335        1.1     ragge 	uint32_t sc_tctl;		/* prototype TCTL register */
    336        1.1     ragge 	uint32_t sc_rctl;		/* prototype RCTL register */
    337        1.1     ragge 
    338        1.1     ragge 	int sc_mchash_type;		/* multicast filter offset */
    339        1.1     ragge 
    340        1.1     ragge 	uint16_t sc_eeprom[EEPROM_SIZE];
    341        1.1     ragge 
    342        1.1     ragge #if NRND > 0
    343        1.3     ragge 	rndsource_element_t rnd_source; /* random source */
    344        1.3     ragge #endif
    345        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    346       1.15  christos 	void *sc_bugbuf;
    347        1.3     ragge 	SLIST_HEAD(, rxbugentry) sc_buglist;
    348        1.3     ragge 	bus_dmamap_t sc_bugmap;
    349        1.3     ragge 	struct rxbugentry *sc_entry;
    350        1.1     ragge #endif
    351        1.1     ragge };
    352        1.1     ragge 
    353        1.3     ragge #define DGE_RXCHAIN_RESET(sc)						\
    354        1.1     ragge do {									\
    355        1.1     ragge 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    356        1.1     ragge 	*(sc)->sc_rxtailp = NULL;					\
    357        1.1     ragge 	(sc)->sc_rxlen = 0;						\
    358        1.1     ragge } while (/*CONSTCOND*/0)
    359        1.1     ragge 
    360        1.3     ragge #define DGE_RXCHAIN_LINK(sc, m)						\
    361        1.1     ragge do {									\
    362        1.1     ragge 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    363        1.1     ragge 	(sc)->sc_rxtailp = &(m)->m_next;				\
    364        1.1     ragge } while (/*CONSTCOND*/0)
    365        1.1     ragge 
    366        1.1     ragge /* sc_flags */
    367        1.3     ragge #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    368        1.3     ragge #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    369        1.1     ragge 
    370        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    371        1.3     ragge #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    372        1.1     ragge #else
    373        1.3     ragge #define DGE_EVCNT_INCR(ev)	/* nothing */
    374        1.1     ragge #endif
    375        1.1     ragge 
    376        1.3     ragge #define CSR_READ(sc, reg)						\
    377        1.1     ragge 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    378        1.3     ragge #define CSR_WRITE(sc, reg, val)						\
    379        1.1     ragge 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    380        1.1     ragge 
    381        1.3     ragge #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    382        1.3     ragge #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    383        1.1     ragge 
    384        1.3     ragge #define DGE_CDTXSYNC(sc, x, n, ops)					\
    385        1.1     ragge do {									\
    386        1.1     ragge 	int __x, __n;							\
    387        1.1     ragge 									\
    388        1.1     ragge 	__x = (x);							\
    389        1.1     ragge 	__n = (n);							\
    390        1.1     ragge 									\
    391        1.1     ragge 	/* If it will wrap around, sync to the end of the ring. */	\
    392        1.5   thorpej 	if ((__x + __n) > DGE_NTXDESC) {				\
    393        1.1     ragge 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    394        1.1     ragge 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    395        1.5   thorpej 		    (DGE_NTXDESC - __x), (ops));			\
    396        1.1     ragge 		__n -= (DGE_NTXDESC - __x);				\
    397        1.1     ragge 		__x = 0;						\
    398        1.1     ragge 	}								\
    399        1.1     ragge 									\
    400        1.1     ragge 	/* Now sync whatever is left. */				\
    401        1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    402        1.1     ragge 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    403        1.1     ragge } while (/*CONSTCOND*/0)
    404        1.1     ragge 
    405        1.3     ragge #define DGE_CDRXSYNC(sc, x, ops)						\
    406        1.1     ragge do {									\
    407        1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    408        1.1     ragge 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    409        1.1     ragge } while (/*CONSTCOND*/0)
    410        1.1     ragge 
    411        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    412        1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    413        1.3     ragge do {									\
    414        1.3     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    415        1.3     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    416        1.3     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    417        1.3     ragge 									\
    418        1.3     ragge 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    419        1.3     ragge 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    420        1.3     ragge 	__rxd->dr_baddrh = 0;						\
    421        1.3     ragge 	__rxd->dr_len = 0;						\
    422        1.3     ragge 	__rxd->dr_cksum = 0;						\
    423        1.3     ragge 	__rxd->dr_status = 0;						\
    424        1.3     ragge 	__rxd->dr_errors = 0;						\
    425        1.3     ragge 	__rxd->dr_special = 0;						\
    426        1.3     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    427        1.3     ragge 									\
    428        1.3     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    429        1.3     ragge } while (/*CONSTCOND*/0)
    430        1.3     ragge #else
    431        1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    432        1.1     ragge do {									\
    433        1.1     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    434        1.1     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    435        1.1     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    436        1.1     ragge 									\
    437        1.1     ragge 	/*								\
    438        1.1     ragge 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    439        1.1     ragge 	 * so that the payload after the Ethernet header is aligned	\
    440        1.1     ragge 	 * to a 4-byte boundary.					\
    441        1.1     ragge 	 *								\
    442        1.1     ragge 	 * XXX BRAINDAMAGE ALERT!					\
    443        1.1     ragge 	 * The stupid chip uses the same size for every buffer, which	\
    444        1.3     ragge 	 * is set in the Receive Control register.  We are using the 2K \
    445        1.1     ragge 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    446        1.1     ragge 	 * reason, we can't "scoot" packets longer than the standard	\
    447        1.1     ragge 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    448        1.1     ragge 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    449        1.1     ragge 	 * the upper layer copy the headers.				\
    450        1.1     ragge 	 */								\
    451        1.1     ragge 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    452        1.1     ragge 									\
    453        1.5   thorpej 	__rxd->dr_baddrl =						\
    454        1.3     ragge 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    455        1.1     ragge 		(sc)->sc_align_tweak);					\
    456        1.5   thorpej 	__rxd->dr_baddrh = 0;						\
    457        1.1     ragge 	__rxd->dr_len = 0;						\
    458        1.1     ragge 	__rxd->dr_cksum = 0;						\
    459        1.1     ragge 	__rxd->dr_status = 0;						\
    460        1.1     ragge 	__rxd->dr_errors = 0;						\
    461        1.1     ragge 	__rxd->dr_special = 0;						\
    462        1.1     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    463        1.1     ragge 									\
    464        1.1     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    465        1.1     ragge } while (/*CONSTCOND*/0)
    466        1.3     ragge #endif
    467        1.3     ragge 
    468        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    469        1.3     ragge /*
    470        1.3     ragge  * Allocation constants.  Much memory may be used for this.
    471        1.3     ragge  */
    472        1.3     ragge #ifndef DGE_BUFFER_SIZE
    473        1.3     ragge #define DGE_BUFFER_SIZE DGE_MAX_MTU
    474        1.3     ragge #endif
    475        1.3     ragge #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    476        1.3     ragge #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    477        1.3     ragge 
    478        1.3     ragge struct rxbugentry {
    479        1.3     ragge 	SLIST_ENTRY(rxbugentry) rb_entry;
    480        1.3     ragge 	int rb_slot;
    481        1.3     ragge };
    482        1.3     ragge 
    483        1.3     ragge static int
    484        1.3     ragge dge_alloc_rcvmem(struct dge_softc *sc)
    485        1.3     ragge {
    486       1.15  christos 	char *ptr, *kva;
    487        1.3     ragge 	bus_dma_segment_t seg;
    488        1.3     ragge 	int i, rseg, state, error;
    489        1.3     ragge 	struct rxbugentry *entry;
    490        1.3     ragge 
    491        1.3     ragge 	state = error = 0;
    492        1.3     ragge 
    493        1.3     ragge 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    494        1.3     ragge 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    495       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
    496        1.3     ragge 		return ENOBUFS;
    497        1.3     ragge 	}
    498        1.3     ragge 
    499        1.3     ragge 	state = 1;
    500       1.15  christos 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    501        1.3     ragge 	    BUS_DMA_NOWAIT)) {
    502       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
    503       1.21    cegger 		    (int)DGE_RXMEM);
    504        1.3     ragge 		error = ENOBUFS;
    505        1.3     ragge 		goto out;
    506        1.3     ragge 	}
    507        1.3     ragge 
    508        1.3     ragge 	state = 2;
    509        1.3     ragge 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    510        1.3     ragge 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    511       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
    512        1.3     ragge 		error = ENOBUFS;
    513        1.3     ragge 		goto out;
    514        1.3     ragge 	}
    515        1.3     ragge 
    516        1.3     ragge 	state = 3;
    517        1.3     ragge 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    518        1.3     ragge 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    519       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
    520        1.3     ragge 		error = ENOBUFS;
    521        1.3     ragge 		goto out;
    522        1.3     ragge 	}
    523        1.3     ragge 
    524        1.3     ragge 	state = 4;
    525       1.15  christos 	sc->sc_bugbuf = (void *)kva;
    526        1.3     ragge 	SLIST_INIT(&sc->sc_buglist);
    527        1.3     ragge 
    528        1.3     ragge 	/*
    529        1.3     ragge 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    530        1.3     ragge 	 * in an array.
    531        1.3     ragge 	 */
    532        1.3     ragge 	ptr = sc->sc_bugbuf;
    533        1.3     ragge 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    534        1.3     ragge 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    535        1.3     ragge 		error = ENOBUFS;
    536        1.3     ragge 		goto out;
    537        1.3     ragge 	}
    538        1.3     ragge 	sc->sc_entry = entry;
    539        1.3     ragge 	for (i = 0; i < DGE_NBUFFERS; i++) {
    540        1.3     ragge 		entry[i].rb_slot = i;
    541        1.3     ragge 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    542        1.3     ragge 	}
    543        1.3     ragge out:
    544        1.3     ragge 	if (error != 0) {
    545        1.3     ragge 		switch (state) {
    546        1.3     ragge 		case 4:
    547        1.3     ragge 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    548        1.3     ragge 		case 3:
    549        1.3     ragge 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    550        1.3     ragge 		case 2:
    551        1.3     ragge 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    552        1.3     ragge 		case 1:
    553        1.3     ragge 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    554        1.3     ragge 			break;
    555        1.3     ragge 		default:
    556        1.3     ragge 			break;
    557        1.3     ragge 		}
    558        1.3     ragge 	}
    559        1.3     ragge 
    560        1.3     ragge 	return error;
    561        1.3     ragge }
    562        1.3     ragge 
    563        1.3     ragge /*
    564        1.3     ragge  * Allocate a jumbo buffer.
    565        1.3     ragge  */
    566        1.3     ragge static void *
    567        1.3     ragge dge_getbuf(struct dge_softc *sc)
    568        1.3     ragge {
    569        1.3     ragge 	struct rxbugentry *entry;
    570        1.3     ragge 
    571        1.3     ragge 	entry = SLIST_FIRST(&sc->sc_buglist);
    572        1.3     ragge 
    573        1.3     ragge 	if (entry == NULL) {
    574       1.21    cegger 		printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
    575        1.3     ragge 		return(NULL);
    576        1.3     ragge 	}
    577        1.3     ragge 
    578        1.3     ragge 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    579       1.15  christos 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    580        1.3     ragge }
    581        1.3     ragge 
    582        1.3     ragge /*
    583        1.3     ragge  * Release a jumbo buffer.
    584        1.3     ragge  */
    585        1.3     ragge static void
    586       1.15  christos dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    587        1.3     ragge {
    588        1.3     ragge 	struct rxbugentry *entry;
    589        1.3     ragge 	struct dge_softc *sc;
    590        1.3     ragge 	int i, s;
    591        1.3     ragge 
    592        1.3     ragge 	/* Extract the softc struct pointer. */
    593        1.3     ragge 	sc = (struct dge_softc *)arg;
    594        1.3     ragge 
    595        1.3     ragge 	if (sc == NULL)
    596        1.3     ragge 		panic("dge_freebuf: can't find softc pointer!");
    597        1.3     ragge 
    598        1.3     ragge 	/* calculate the slot this buffer belongs to */
    599        1.3     ragge 
    600       1.15  christos 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    601        1.3     ragge 
    602        1.3     ragge 	if ((i < 0) || (i >= DGE_NBUFFERS))
    603        1.3     ragge 		panic("dge_freebuf: asked to free buffer %d!", i);
    604        1.3     ragge 
    605        1.3     ragge 	s = splvm();
    606        1.3     ragge 	entry = sc->sc_entry + i;
    607        1.3     ragge 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    608        1.3     ragge 
    609        1.3     ragge 	if (__predict_true(m != NULL))
    610       1.18        ad 		pool_cache_put(mb_cache, m);
    611        1.3     ragge 	splx(s);
    612        1.3     ragge }
    613        1.3     ragge #endif
    614        1.1     ragge 
    615        1.1     ragge static void	dge_start(struct ifnet *);
    616        1.1     ragge static void	dge_watchdog(struct ifnet *);
    617       1.15  christos static int	dge_ioctl(struct ifnet *, u_long, void *);
    618        1.1     ragge static int	dge_init(struct ifnet *);
    619        1.1     ragge static void	dge_stop(struct ifnet *, int);
    620        1.1     ragge 
    621        1.1     ragge static void	dge_shutdown(void *);
    622        1.1     ragge 
    623        1.1     ragge static void	dge_reset(struct dge_softc *);
    624        1.1     ragge static void	dge_rxdrain(struct dge_softc *);
    625        1.1     ragge static int	dge_add_rxbuf(struct dge_softc *, int);
    626        1.1     ragge 
    627        1.1     ragge static void	dge_set_filter(struct dge_softc *);
    628        1.1     ragge 
    629        1.1     ragge static int	dge_intr(void *);
    630        1.1     ragge static void	dge_txintr(struct dge_softc *);
    631        1.1     ragge static void	dge_rxintr(struct dge_softc *);
    632        1.1     ragge static void	dge_linkintr(struct dge_softc *, uint32_t);
    633        1.1     ragge 
    634        1.1     ragge static int	dge_match(struct device *, struct cfdata *, void *);
    635        1.1     ragge static void	dge_attach(struct device *, struct device *, void *);
    636        1.1     ragge 
    637        1.1     ragge static int	dge_read_eeprom(struct dge_softc *sc);
    638        1.1     ragge static int	dge_eeprom_clockin(struct dge_softc *sc);
    639        1.1     ragge static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    640        1.1     ragge static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    641        1.1     ragge static int	dge_xgmii_mediachange(struct ifnet *);
    642        1.1     ragge static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    643        1.1     ragge static void	dge_xgmii_reset(struct dge_softc *);
    644        1.1     ragge static void	dge_xgmii_writereg(struct device *, int, int, int);
    645        1.1     ragge 
    646        1.1     ragge 
    647        1.1     ragge CFATTACH_DECL(dge, sizeof(struct dge_softc),
    648        1.1     ragge     dge_match, dge_attach, NULL, NULL);
    649        1.1     ragge 
    650        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    651        1.1     ragge #if DGE_NTXSEGS > 100
    652        1.1     ragge #error Update dge_txseg_evcnt_names
    653        1.1     ragge #endif
    654        1.1     ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    655        1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    656        1.1     ragge 
    657        1.1     ragge static int
    658       1.14  christos dge_match(struct device *parent, struct cfdata *cf, void *aux)
    659        1.1     ragge {
    660        1.1     ragge 	struct pci_attach_args *pa = aux;
    661        1.1     ragge 
    662        1.1     ragge 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    663        1.1     ragge 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    664        1.1     ragge 		return (1);
    665        1.1     ragge 
    666        1.1     ragge 	return (0);
    667        1.1     ragge }
    668        1.1     ragge 
    669        1.1     ragge static void
    670       1.14  christos dge_attach(struct device *parent, struct device *self, void *aux)
    671        1.1     ragge {
    672        1.1     ragge 	struct dge_softc *sc = (void *) self;
    673        1.1     ragge 	struct pci_attach_args *pa = aux;
    674        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    675        1.1     ragge 	pci_chipset_tag_t pc = pa->pa_pc;
    676        1.1     ragge 	pci_intr_handle_t ih;
    677        1.1     ragge 	const char *intrstr = NULL;
    678        1.1     ragge 	bus_dma_segment_t seg;
    679        1.1     ragge 	int i, rseg, error;
    680        1.1     ragge 	uint8_t enaddr[ETHER_ADDR_LEN];
    681        1.1     ragge 	pcireg_t preg, memtype;
    682        1.1     ragge 	uint32_t reg;
    683        1.1     ragge 
    684        1.1     ragge 	sc->sc_dmat = pa->pa_dmat;
    685        1.1     ragge 	sc->sc_pc = pa->pa_pc;
    686        1.1     ragge 	sc->sc_pt = pa->pa_tag;
    687        1.1     ragge 
    688        1.1     ragge 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    689        1.1     ragge 	aprint_naive(": Ethernet controller\n");
    690        1.1     ragge 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    691        1.1     ragge 
    692        1.1     ragge 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    693        1.1     ragge         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    694        1.1     ragge             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    695       1.21    cegger                 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    696        1.1     ragge                 return;
    697        1.1     ragge         }
    698        1.1     ragge 
    699        1.1     ragge 	/* Enable bus mastering */
    700        1.1     ragge 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    701        1.1     ragge 	preg |= PCI_COMMAND_MASTER_ENABLE;
    702        1.1     ragge 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    703        1.1     ragge 
    704        1.1     ragge 	/*
    705        1.1     ragge 	 * Map and establish our interrupt.
    706        1.1     ragge 	 */
    707        1.1     ragge 	if (pci_intr_map(pa, &ih)) {
    708       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    709        1.1     ragge 		return;
    710        1.1     ragge 	}
    711        1.1     ragge 	intrstr = pci_intr_string(pc, ih);
    712        1.1     ragge 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    713        1.1     ragge 	if (sc->sc_ih == NULL) {
    714       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    715        1.1     ragge 		if (intrstr != NULL)
    716        1.1     ragge 			aprint_normal(" at %s", intrstr);
    717        1.1     ragge 		aprint_normal("\n");
    718        1.1     ragge 		return;
    719        1.1     ragge 	}
    720       1.21    cegger 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    721        1.1     ragge 
    722        1.1     ragge 	/*
    723        1.1     ragge 	 * Determine a few things about the bus we're connected to.
    724        1.1     ragge 	 */
    725        1.1     ragge 	reg = CSR_READ(sc, DGE_STATUS);
    726        1.1     ragge 	if (reg & STATUS_BUS64)
    727        1.1     ragge 		sc->sc_flags |= DGE_F_BUS64;
    728        1.1     ragge 
    729        1.1     ragge 	sc->sc_flags |= DGE_F_PCIX;
    730        1.1     ragge 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    731        1.1     ragge 			       PCI_CAP_PCIX,
    732        1.1     ragge 			       &sc->sc_pcix_offset, NULL) == 0)
    733       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
    734       1.21    cegger 		    "capability\n");
    735        1.1     ragge 
    736        1.1     ragge 	if (sc->sc_flags & DGE_F_PCIX) {
    737        1.1     ragge 		switch (reg & STATUS_PCIX_MSK) {
    738        1.1     ragge 		case STATUS_PCIX_66:
    739        1.1     ragge 			sc->sc_bus_speed = 66;
    740        1.1     ragge 			break;
    741        1.1     ragge 		case STATUS_PCIX_100:
    742        1.1     ragge 			sc->sc_bus_speed = 100;
    743        1.1     ragge 			break;
    744        1.1     ragge 		case STATUS_PCIX_133:
    745        1.1     ragge 			sc->sc_bus_speed = 133;
    746        1.1     ragge 			break;
    747        1.1     ragge 		default:
    748       1.21    cegger 			aprint_error_dev(&sc->sc_dev,
    749       1.21    cegger 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    750        1.1     ragge 			    reg & STATUS_PCIX_MSK);
    751        1.1     ragge 			sc->sc_bus_speed = 66;
    752        1.1     ragge 		}
    753        1.1     ragge 	} else
    754        1.1     ragge 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    755       1.21    cegger 	aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
    756        1.1     ragge 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    757        1.1     ragge 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    758        1.1     ragge 
    759        1.1     ragge 	/*
    760        1.1     ragge 	 * Allocate the control data structures, and create and load the
    761        1.1     ragge 	 * DMA map for it.
    762        1.1     ragge 	 */
    763        1.1     ragge 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    764        1.1     ragge 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    765        1.1     ragge 	    0)) != 0) {
    766       1.21    cegger 		aprint_error_dev(&sc->sc_dev,
    767       1.21    cegger 		    "unable to allocate control data, error = %d\n",
    768       1.21    cegger 		    error);
    769        1.1     ragge 		goto fail_0;
    770        1.1     ragge 	}
    771        1.1     ragge 
    772        1.1     ragge 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    773       1.15  christos 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    774        1.1     ragge 	    0)) != 0) {
    775       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    776       1.21    cegger 		    error);
    777        1.1     ragge 		goto fail_1;
    778        1.1     ragge 	}
    779        1.1     ragge 
    780        1.1     ragge 	if ((error = bus_dmamap_create(sc->sc_dmat,
    781        1.1     ragge 	    sizeof(struct dge_control_data), 1,
    782        1.1     ragge 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    783       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    784       1.21    cegger 		    "error = %d\n", error);
    785        1.1     ragge 		goto fail_2;
    786        1.1     ragge 	}
    787        1.1     ragge 
    788        1.1     ragge 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    789        1.1     ragge 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    790        1.1     ragge 	    0)) != 0) {
    791       1.21    cegger 		aprint_error_dev(&sc->sc_dev,
    792       1.21    cegger 		    "unable to load control data DMA map, error = %d\n",
    793       1.21    cegger 		    error);
    794        1.1     ragge 		goto fail_3;
    795        1.1     ragge 	}
    796        1.1     ragge 
    797       1.10     perry #ifdef DGE_OFFBYONE_RXBUG
    798        1.3     ragge 	if (dge_alloc_rcvmem(sc) != 0)
    799        1.3     ragge 		return; /* Already complained */
    800        1.3     ragge #endif
    801        1.1     ragge 	/*
    802        1.1     ragge 	 * Create the transmit buffer DMA maps.
    803        1.1     ragge 	 */
    804        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    805        1.2     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    806        1.1     ragge 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    807        1.1     ragge 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    808       1.21    cegger 			aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
    809       1.21    cegger 			    "error = %d\n", i, error);
    810        1.1     ragge 			goto fail_4;
    811        1.1     ragge 		}
    812        1.1     ragge 	}
    813        1.1     ragge 
    814        1.1     ragge 	/*
    815        1.1     ragge 	 * Create the receive buffer DMA maps.
    816        1.1     ragge 	 */
    817        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    818        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    819        1.3     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    820        1.3     ragge 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    821        1.3     ragge #else
    822        1.1     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    823        1.1     ragge 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    824        1.3     ragge #endif
    825       1.21    cegger 			aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
    826       1.21    cegger 			    "error = %d\n", i, error);
    827        1.1     ragge 			goto fail_5;
    828        1.1     ragge 		}
    829        1.1     ragge 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    830        1.1     ragge 	}
    831        1.1     ragge 
    832        1.1     ragge 	/*
    833        1.1     ragge 	 * Set bits in ctrl0 register.
    834        1.1     ragge 	 * Should get the software defined pins out of EEPROM?
    835        1.1     ragge 	 */
    836        1.1     ragge 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    837        1.1     ragge 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    838        1.1     ragge 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    839        1.1     ragge 
    840        1.1     ragge 	/*
    841        1.1     ragge 	 * Reset the chip to a known state.
    842        1.1     ragge 	 */
    843        1.1     ragge 	dge_reset(sc);
    844        1.1     ragge 
    845        1.1     ragge 	/*
    846        1.1     ragge 	 * Reset the PHY.
    847        1.1     ragge 	 */
    848        1.1     ragge 	dge_xgmii_reset(sc);
    849        1.1     ragge 
    850        1.1     ragge 	/*
    851        1.1     ragge 	 * Read in EEPROM data.
    852        1.1     ragge 	 */
    853        1.1     ragge 	if (dge_read_eeprom(sc)) {
    854       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
    855        1.1     ragge 		return;
    856        1.1     ragge 	}
    857        1.1     ragge 
    858        1.1     ragge 	/*
    859        1.1     ragge 	 * Get the ethernet address.
    860        1.1     ragge 	 */
    861        1.1     ragge 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    862        1.1     ragge 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    863        1.1     ragge 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    864        1.1     ragge 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    865        1.1     ragge 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    866        1.1     ragge 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    867        1.1     ragge 
    868       1.21    cegger 	aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
    869        1.1     ragge 	    ether_sprintf(enaddr));
    870        1.1     ragge 
    871        1.1     ragge 	/*
    872        1.1     ragge 	 * Setup media stuff.
    873        1.1     ragge 	 */
    874        1.1     ragge         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    875        1.1     ragge             dge_xgmii_mediastatus);
    876        1.1     ragge         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    877        1.1     ragge         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    878        1.1     ragge 
    879        1.1     ragge 	ifp = &sc->sc_ethercom.ec_if;
    880       1.21    cegger 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    881        1.1     ragge 	ifp->if_softc = sc;
    882        1.1     ragge 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    883        1.1     ragge 	ifp->if_ioctl = dge_ioctl;
    884        1.1     ragge 	ifp->if_start = dge_start;
    885        1.1     ragge 	ifp->if_watchdog = dge_watchdog;
    886        1.1     ragge 	ifp->if_init = dge_init;
    887        1.1     ragge 	ifp->if_stop = dge_stop;
    888        1.1     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    889        1.1     ragge 	IFQ_SET_READY(&ifp->if_snd);
    890        1.1     ragge 
    891        1.1     ragge 	sc->sc_ethercom.ec_capabilities |=
    892        1.1     ragge 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    893        1.1     ragge 
    894        1.1     ragge 	/*
    895        1.1     ragge 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    896        1.1     ragge 	 */
    897        1.1     ragge 	ifp->if_capabilities |=
    898       1.11      yamt 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    899       1.11      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    900       1.11      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    901        1.1     ragge 
    902        1.1     ragge 	/*
    903        1.1     ragge 	 * Attach the interface.
    904        1.1     ragge 	 */
    905        1.1     ragge 	if_attach(ifp);
    906        1.1     ragge 	ether_ifattach(ifp, enaddr);
    907        1.1     ragge #if NRND > 0
    908       1.21    cegger 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    909        1.1     ragge 	    RND_TYPE_NET, 0);
    910        1.1     ragge #endif
    911        1.1     ragge 
    912        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    913        1.1     ragge 	/* Fix segment event naming */
    914        1.1     ragge 	if (dge_txseg_evcnt_names == NULL) {
    915        1.1     ragge 		dge_txseg_evcnt_names =
    916        1.1     ragge 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    917        1.1     ragge 		for (i = 0; i < DGE_NTXSEGS; i++)
    918        1.4    itojun 			snprintf((*dge_txseg_evcnt_names)[i],
    919        1.4    itojun 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    920        1.1     ragge 	}
    921        1.1     ragge 
    922        1.1     ragge 	/* Attach event counters. */
    923        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    924       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txsstall");
    925        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    926       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txdstall");
    927        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    928       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
    929        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    930       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txdw");
    931        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    932       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txqe");
    933        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    934       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "rxintr");
    935        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    936       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "linkintr");
    937        1.1     ragge 
    938        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    939       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "rxipsum");
    940        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    941       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "rxtusum");
    942        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    943       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txipsum");
    944        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    945       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txtusum");
    946        1.1     ragge 
    947        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    948       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txctx init");
    949        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    950       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txctx hit");
    951        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    952       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txctx miss");
    953        1.1     ragge 
    954        1.1     ragge 	for (i = 0; i < DGE_NTXSEGS; i++)
    955        1.1     ragge 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    956       1.21    cegger 		    NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    957        1.1     ragge 
    958        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    959       1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txdrop");
    960        1.1     ragge 
    961        1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    962        1.1     ragge 
    963        1.1     ragge 	/*
    964        1.1     ragge 	 * Make sure the interface is shutdown during reboot.
    965        1.1     ragge 	 */
    966        1.1     ragge 	sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
    967        1.1     ragge 	if (sc->sc_sdhook == NULL)
    968       1.21    cegger 		aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish shutdown hook\n");
    969        1.1     ragge 	return;
    970        1.1     ragge 
    971        1.1     ragge 	/*
    972        1.1     ragge 	 * Free any resources we've allocated during the failed attach
    973        1.1     ragge 	 * attempt.  Do this in reverse order and fall through.
    974        1.1     ragge 	 */
    975        1.1     ragge  fail_5:
    976        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    977        1.1     ragge 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    978        1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    979        1.1     ragge 			    sc->sc_rxsoft[i].rxs_dmamap);
    980        1.1     ragge 	}
    981        1.1     ragge  fail_4:
    982        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    983        1.1     ragge 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    984        1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    985        1.1     ragge 			    sc->sc_txsoft[i].txs_dmamap);
    986        1.1     ragge 	}
    987        1.1     ragge 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    988        1.1     ragge  fail_3:
    989        1.1     ragge 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    990        1.1     ragge  fail_2:
    991       1.15  christos 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    992        1.1     ragge 	    sizeof(struct dge_control_data));
    993        1.1     ragge  fail_1:
    994        1.1     ragge 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    995        1.1     ragge  fail_0:
    996        1.1     ragge 	return;
    997        1.1     ragge }
    998        1.1     ragge 
    999        1.1     ragge /*
   1000        1.1     ragge  * dge_shutdown:
   1001        1.1     ragge  *
   1002        1.1     ragge  *	Make sure the interface is stopped at reboot time.
   1003        1.1     ragge  */
   1004        1.1     ragge static void
   1005        1.1     ragge dge_shutdown(void *arg)
   1006        1.1     ragge {
   1007        1.1     ragge 	struct dge_softc *sc = arg;
   1008        1.1     ragge 
   1009        1.1     ragge 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1010        1.1     ragge }
   1011        1.1     ragge 
   1012        1.1     ragge /*
   1013        1.1     ragge  * dge_tx_cksum:
   1014        1.1     ragge  *
   1015        1.1     ragge  *	Set up TCP/IP checksumming parameters for the
   1016        1.1     ragge  *	specified packet.
   1017        1.1     ragge  */
   1018        1.1     ragge static int
   1019        1.1     ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1020        1.1     ragge {
   1021        1.1     ragge 	struct mbuf *m0 = txs->txs_mbuf;
   1022        1.1     ragge 	struct dge_ctdes *t;
   1023        1.1     ragge 	uint32_t ipcs, tucs;
   1024        1.1     ragge 	struct ether_header *eh;
   1025        1.1     ragge 	int offset, iphl;
   1026        1.1     ragge 	uint8_t fields = 0;
   1027        1.1     ragge 
   1028        1.1     ragge 	/*
   1029        1.1     ragge 	 * XXX It would be nice if the mbuf pkthdr had offset
   1030        1.1     ragge 	 * fields for the protocol headers.
   1031        1.1     ragge 	 */
   1032        1.1     ragge 
   1033        1.1     ragge 	eh = mtod(m0, struct ether_header *);
   1034        1.1     ragge 	switch (htons(eh->ether_type)) {
   1035        1.1     ragge 	case ETHERTYPE_IP:
   1036        1.1     ragge 		offset = ETHER_HDR_LEN;
   1037        1.1     ragge 		break;
   1038        1.1     ragge 
   1039        1.1     ragge 	case ETHERTYPE_VLAN:
   1040        1.1     ragge 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1041        1.1     ragge 		break;
   1042        1.1     ragge 
   1043        1.1     ragge 	default:
   1044        1.1     ragge 		/*
   1045        1.1     ragge 		 * Don't support this protocol or encapsulation.
   1046        1.1     ragge 		 */
   1047        1.1     ragge 		*fieldsp = 0;
   1048        1.1     ragge 		return (0);
   1049        1.1     ragge 	}
   1050        1.1     ragge 
   1051        1.9   thorpej 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1052        1.1     ragge 
   1053        1.1     ragge 	/*
   1054        1.1     ragge 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1055        1.1     ragge 	 * offload feature, if we load the context descriptor, we
   1056        1.1     ragge 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1057        1.1     ragge 	 */
   1058        1.1     ragge 
   1059        1.1     ragge 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1060        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1061        1.1     ragge 		fields |= TDESC_POPTS_IXSM;
   1062        1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1063        1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1064        1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1065        1.1     ragge 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1066        1.1     ragge 		/* Use the cached value. */
   1067        1.1     ragge 		ipcs = sc->sc_txctx_ipcs;
   1068        1.1     ragge 	} else {
   1069        1.1     ragge 		/* Just initialize it to the likely value anyway. */
   1070        1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1071        1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1072        1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1073        1.1     ragge 	}
   1074        1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1075       1.10     perry 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1076       1.21    cegger 	    device_xname(&sc->sc_dev), offset, ipcs));
   1077        1.1     ragge 
   1078        1.1     ragge 	offset += iphl;
   1079        1.1     ragge 
   1080        1.1     ragge 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1081        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1082        1.1     ragge 		fields |= TDESC_POPTS_TXSM;
   1083        1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1084        1.9   thorpej 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1085        1.8      heas 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1086        1.1     ragge 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1087        1.1     ragge 		/* Use the cached value. */
   1088        1.1     ragge 		tucs = sc->sc_txctx_tucs;
   1089        1.1     ragge 	} else {
   1090        1.1     ragge 		/* Just initialize it to a valid TCP context. */
   1091        1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1092        1.1     ragge 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1093        1.1     ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1094        1.1     ragge 	}
   1095        1.1     ragge 
   1096        1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1097        1.1     ragge 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1098       1.21    cegger 	    device_xname(&sc->sc_dev), offset, tucs));
   1099        1.1     ragge 
   1100        1.1     ragge 	if (sc->sc_txctx_ipcs == ipcs &&
   1101        1.1     ragge 	    sc->sc_txctx_tucs == tucs) {
   1102        1.1     ragge 		/* Cached context is fine. */
   1103        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1104        1.1     ragge 	} else {
   1105        1.1     ragge 		/* Fill in the context descriptor. */
   1106        1.1     ragge #ifdef DGE_EVENT_COUNTERS
   1107        1.1     ragge 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1108        1.1     ragge 		    sc->sc_txctx_tucs == 0xffffffff)
   1109        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1110        1.1     ragge 		else
   1111        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1112        1.1     ragge #endif
   1113        1.1     ragge 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1114        1.1     ragge 		t->dc_tcpip_ipcs = htole32(ipcs);
   1115        1.1     ragge 		t->dc_tcpip_tucs = htole32(tucs);
   1116        1.1     ragge 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1117        1.1     ragge 		t->dc_tcpip_seg = 0;
   1118        1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1119        1.1     ragge 
   1120        1.1     ragge 		sc->sc_txctx_ipcs = ipcs;
   1121        1.1     ragge 		sc->sc_txctx_tucs = tucs;
   1122        1.1     ragge 
   1123        1.1     ragge 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1124        1.1     ragge 		txs->txs_ndesc++;
   1125        1.1     ragge 	}
   1126        1.1     ragge 
   1127        1.1     ragge 	*fieldsp = fields;
   1128        1.1     ragge 
   1129        1.1     ragge 	return (0);
   1130        1.1     ragge }
   1131        1.1     ragge 
   1132        1.1     ragge /*
   1133        1.1     ragge  * dge_start:		[ifnet interface function]
   1134        1.1     ragge  *
   1135        1.1     ragge  *	Start packet transmission on the interface.
   1136        1.1     ragge  */
   1137        1.1     ragge static void
   1138        1.1     ragge dge_start(struct ifnet *ifp)
   1139        1.1     ragge {
   1140        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1141        1.1     ragge 	struct mbuf *m0;
   1142        1.1     ragge 	struct dge_txsoft *txs;
   1143        1.1     ragge 	bus_dmamap_t dmamap;
   1144        1.1     ragge 	int error, nexttx, lasttx = -1, ofree, seg;
   1145        1.1     ragge 	uint32_t cksumcmd;
   1146        1.1     ragge 	uint8_t cksumfields;
   1147        1.1     ragge 
   1148        1.1     ragge 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1149        1.1     ragge 		return;
   1150        1.1     ragge 
   1151        1.1     ragge 	/*
   1152        1.1     ragge 	 * Remember the previous number of free descriptors.
   1153        1.1     ragge 	 */
   1154        1.1     ragge 	ofree = sc->sc_txfree;
   1155        1.1     ragge 
   1156        1.1     ragge 	/*
   1157        1.1     ragge 	 * Loop through the send queue, setting up transmit descriptors
   1158        1.1     ragge 	 * until we drain the queue, or use up all available transmit
   1159        1.1     ragge 	 * descriptors.
   1160        1.1     ragge 	 */
   1161        1.1     ragge 	for (;;) {
   1162        1.1     ragge 		/* Grab a packet off the queue. */
   1163        1.1     ragge 		IFQ_POLL(&ifp->if_snd, m0);
   1164        1.1     ragge 		if (m0 == NULL)
   1165        1.1     ragge 			break;
   1166        1.1     ragge 
   1167        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1168        1.1     ragge 		    ("%s: TX: have packet to transmit: %p\n",
   1169       1.21    cegger 		    device_xname(&sc->sc_dev), m0));
   1170        1.1     ragge 
   1171        1.1     ragge 		/* Get a work queue entry. */
   1172        1.1     ragge 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1173        1.1     ragge 			dge_txintr(sc);
   1174        1.1     ragge 			if (sc->sc_txsfree == 0) {
   1175        1.1     ragge 				DPRINTF(DGE_DEBUG_TX,
   1176        1.1     ragge 				    ("%s: TX: no free job descriptors\n",
   1177       1.21    cegger 					device_xname(&sc->sc_dev)));
   1178        1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1179        1.1     ragge 				break;
   1180        1.1     ragge 			}
   1181        1.1     ragge 		}
   1182        1.1     ragge 
   1183        1.1     ragge 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1184        1.1     ragge 		dmamap = txs->txs_dmamap;
   1185        1.1     ragge 
   1186        1.1     ragge 		/*
   1187        1.1     ragge 		 * Load the DMA map.  If this fails, the packet either
   1188        1.1     ragge 		 * didn't fit in the allotted number of segments, or we
   1189        1.1     ragge 		 * were short on resources.  For the too-many-segments
   1190        1.1     ragge 		 * case, we simply report an error and drop the packet,
   1191        1.1     ragge 		 * since we can't sanely copy a jumbo packet to a single
   1192        1.1     ragge 		 * buffer.
   1193        1.1     ragge 		 */
   1194        1.1     ragge 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1195        1.1     ragge 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1196        1.1     ragge 		if (error) {
   1197        1.1     ragge 			if (error == EFBIG) {
   1198        1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1199        1.1     ragge 				printf("%s: Tx packet consumes too many "
   1200        1.1     ragge 				    "DMA segments, dropping...\n",
   1201       1.21    cegger 				    device_xname(&sc->sc_dev));
   1202        1.1     ragge 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1203        1.1     ragge 				m_freem(m0);
   1204        1.1     ragge 				continue;
   1205        1.1     ragge 			}
   1206        1.1     ragge 			/*
   1207        1.1     ragge 			 * Short on resources, just stop for now.
   1208        1.1     ragge 			 */
   1209        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1210        1.1     ragge 			    ("%s: TX: dmamap load failed: %d\n",
   1211       1.21    cegger 			    device_xname(&sc->sc_dev), error));
   1212        1.1     ragge 			break;
   1213        1.1     ragge 		}
   1214        1.1     ragge 
   1215        1.1     ragge 		/*
   1216        1.1     ragge 		 * Ensure we have enough descriptors free to describe
   1217        1.1     ragge 		 * the packet.  Note, we always reserve one descriptor
   1218        1.1     ragge 		 * at the end of the ring due to the semantics of the
   1219        1.1     ragge 		 * TDT register, plus one more in the event we need
   1220        1.1     ragge 		 * to re-load checksum offload context.
   1221        1.1     ragge 		 */
   1222        1.1     ragge 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1223        1.1     ragge 			/*
   1224        1.1     ragge 			 * Not enough free descriptors to transmit this
   1225        1.1     ragge 			 * packet.  We haven't committed anything yet,
   1226        1.1     ragge 			 * so just unload the DMA map, put the packet
   1227        1.1     ragge 			 * pack on the queue, and punt.  Notify the upper
   1228        1.1     ragge 			 * layer that there are no more slots left.
   1229        1.1     ragge 			 */
   1230        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1231        1.1     ragge 			    ("%s: TX: need %d descriptors, have %d\n",
   1232       1.21    cegger 			    device_xname(&sc->sc_dev), dmamap->dm_nsegs,
   1233        1.1     ragge 			    sc->sc_txfree - 1));
   1234        1.1     ragge 			ifp->if_flags |= IFF_OACTIVE;
   1235        1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1236        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1237        1.1     ragge 			break;
   1238        1.1     ragge 		}
   1239        1.1     ragge 
   1240        1.1     ragge 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1241        1.1     ragge 
   1242        1.1     ragge 		/*
   1243        1.1     ragge 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1244        1.1     ragge 		 */
   1245        1.1     ragge 
   1246        1.1     ragge 		/* Sync the DMA map. */
   1247        1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1248        1.1     ragge 		    BUS_DMASYNC_PREWRITE);
   1249        1.1     ragge 
   1250        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1251        1.1     ragge 		    ("%s: TX: packet has %d DMA segments\n",
   1252       1.21    cegger 		    device_xname(&sc->sc_dev), dmamap->dm_nsegs));
   1253        1.1     ragge 
   1254        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1255        1.1     ragge 
   1256        1.1     ragge 		/*
   1257        1.1     ragge 		 * Store a pointer to the packet so that we can free it
   1258        1.1     ragge 		 * later.
   1259        1.1     ragge 		 *
   1260        1.1     ragge 		 * Initially, we consider the number of descriptors the
   1261        1.1     ragge 		 * packet uses the number of DMA segments.  This may be
   1262        1.1     ragge 		 * incremented by 1 if we do checksum offload (a descriptor
   1263        1.1     ragge 		 * is used to set the checksum context).
   1264        1.1     ragge 		 */
   1265        1.1     ragge 		txs->txs_mbuf = m0;
   1266        1.1     ragge 		txs->txs_firstdesc = sc->sc_txnext;
   1267        1.1     ragge 		txs->txs_ndesc = dmamap->dm_nsegs;
   1268        1.1     ragge 
   1269        1.1     ragge 		/*
   1270        1.1     ragge 		 * Set up checksum offload parameters for
   1271        1.1     ragge 		 * this packet.
   1272        1.1     ragge 		 */
   1273        1.1     ragge 		if (m0->m_pkthdr.csum_flags &
   1274        1.1     ragge 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1275        1.1     ragge 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1276        1.1     ragge 				/* Error message already displayed. */
   1277        1.1     ragge 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1278        1.1     ragge 				continue;
   1279        1.1     ragge 			}
   1280        1.1     ragge 		} else {
   1281        1.1     ragge 			cksumfields = 0;
   1282        1.1     ragge 		}
   1283        1.1     ragge 
   1284        1.1     ragge 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1285        1.1     ragge 
   1286        1.1     ragge 		/*
   1287        1.1     ragge 		 * Initialize the transmit descriptor.
   1288        1.1     ragge 		 */
   1289        1.1     ragge 		for (nexttx = sc->sc_txnext, seg = 0;
   1290        1.1     ragge 		     seg < dmamap->dm_nsegs;
   1291        1.1     ragge 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1292        1.1     ragge 			/*
   1293        1.1     ragge 			 * Note: we currently only use 32-bit DMA
   1294        1.1     ragge 			 * addresses.
   1295        1.1     ragge 			 */
   1296        1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1297        1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrl =
   1298        1.1     ragge 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1299        1.1     ragge 			sc->sc_txdescs[nexttx].dt_ctl =
   1300        1.1     ragge 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1301        1.1     ragge 			sc->sc_txdescs[nexttx].dt_status = 0;
   1302        1.1     ragge 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1303        1.1     ragge 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1304        1.1     ragge 			lasttx = nexttx;
   1305        1.1     ragge 
   1306        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1307        1.1     ragge 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1308       1.21    cegger 			    device_xname(&sc->sc_dev), nexttx,
   1309        1.1     ragge 			    le32toh(dmamap->dm_segs[seg].ds_addr),
   1310        1.1     ragge 			    le32toh(dmamap->dm_segs[seg].ds_len)));
   1311        1.1     ragge 		}
   1312        1.1     ragge 
   1313        1.1     ragge 		KASSERT(lasttx != -1);
   1314        1.1     ragge 
   1315        1.1     ragge 		/*
   1316        1.1     ragge 		 * Set up the command byte on the last descriptor of
   1317        1.1     ragge 		 * the packet.  If we're in the interrupt delay window,
   1318        1.1     ragge 		 * delay the interrupt.
   1319        1.1     ragge 		 */
   1320        1.1     ragge 		sc->sc_txdescs[lasttx].dt_ctl |=
   1321        1.1     ragge 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1322        1.1     ragge 
   1323        1.1     ragge 		txs->txs_lastdesc = lasttx;
   1324        1.1     ragge 
   1325        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1326       1.21    cegger 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
   1327        1.1     ragge 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1328        1.1     ragge 
   1329        1.1     ragge 		/* Sync the descriptors we're using. */
   1330        1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1331        1.1     ragge 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1332        1.1     ragge 
   1333        1.1     ragge 		/* Give the packet to the chip. */
   1334        1.1     ragge 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1335        1.1     ragge 
   1336        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1337       1.21    cegger 		    ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
   1338        1.1     ragge 
   1339        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1340        1.1     ragge 		    ("%s: TX: finished transmitting packet, job %d\n",
   1341       1.21    cegger 		    device_xname(&sc->sc_dev), sc->sc_txsnext));
   1342        1.1     ragge 
   1343        1.1     ragge 		/* Advance the tx pointer. */
   1344        1.1     ragge 		sc->sc_txfree -= txs->txs_ndesc;
   1345        1.1     ragge 		sc->sc_txnext = nexttx;
   1346        1.1     ragge 
   1347        1.1     ragge 		sc->sc_txsfree--;
   1348        1.1     ragge 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1349        1.1     ragge 
   1350        1.1     ragge #if NBPFILTER > 0
   1351        1.1     ragge 		/* Pass the packet to any BPF listeners. */
   1352        1.1     ragge 		if (ifp->if_bpf)
   1353        1.1     ragge 			bpf_mtap(ifp->if_bpf, m0);
   1354        1.1     ragge #endif /* NBPFILTER > 0 */
   1355        1.1     ragge 	}
   1356        1.1     ragge 
   1357        1.1     ragge 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1358        1.1     ragge 		/* No more slots; notify upper layer. */
   1359        1.1     ragge 		ifp->if_flags |= IFF_OACTIVE;
   1360        1.1     ragge 	}
   1361        1.1     ragge 
   1362        1.1     ragge 	if (sc->sc_txfree != ofree) {
   1363        1.1     ragge 		/* Set a watchdog timer in case the chip flakes out. */
   1364        1.1     ragge 		ifp->if_timer = 5;
   1365        1.1     ragge 	}
   1366        1.1     ragge }
   1367        1.1     ragge 
   1368        1.1     ragge /*
   1369        1.1     ragge  * dge_watchdog:		[ifnet interface function]
   1370        1.1     ragge  *
   1371        1.1     ragge  *	Watchdog timer handler.
   1372        1.1     ragge  */
   1373        1.1     ragge static void
   1374        1.1     ragge dge_watchdog(struct ifnet *ifp)
   1375        1.1     ragge {
   1376        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1377        1.1     ragge 
   1378        1.1     ragge 	/*
   1379        1.1     ragge 	 * Since we're using delayed interrupts, sweep up
   1380        1.1     ragge 	 * before we report an error.
   1381        1.1     ragge 	 */
   1382        1.1     ragge 	dge_txintr(sc);
   1383        1.1     ragge 
   1384        1.1     ragge 	if (sc->sc_txfree != DGE_NTXDESC) {
   1385        1.1     ragge 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1386       1.21    cegger 		    device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1387        1.1     ragge 		    sc->sc_txnext);
   1388        1.1     ragge 		ifp->if_oerrors++;
   1389        1.1     ragge 
   1390        1.1     ragge 		/* Reset the interface. */
   1391        1.1     ragge 		(void) dge_init(ifp);
   1392        1.1     ragge 	}
   1393        1.1     ragge 
   1394        1.1     ragge 	/* Try to get more packets going. */
   1395        1.1     ragge 	dge_start(ifp);
   1396        1.1     ragge }
   1397        1.1     ragge 
   1398        1.1     ragge /*
   1399        1.1     ragge  * dge_ioctl:		[ifnet interface function]
   1400        1.1     ragge  *
   1401        1.1     ragge  *	Handle control requests from the operator.
   1402        1.1     ragge  */
   1403        1.1     ragge static int
   1404       1.15  christos dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1405        1.1     ragge {
   1406        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1407        1.1     ragge 	struct ifreq *ifr = (struct ifreq *) data;
   1408        1.1     ragge 	pcireg_t preg;
   1409        1.1     ragge 	int s, error, mmrbc;
   1410        1.1     ragge 
   1411        1.1     ragge 	s = splnet();
   1412        1.1     ragge 
   1413        1.1     ragge 	switch (cmd) {
   1414        1.1     ragge 	case SIOCSIFMEDIA:
   1415        1.1     ragge 	case SIOCGIFMEDIA:
   1416        1.1     ragge 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1417        1.1     ragge 		break;
   1418        1.1     ragge 
   1419        1.2     ragge 	case SIOCSIFMTU:
   1420       1.19    dyoung 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1421        1.2     ragge 			error = EINVAL;
   1422       1.19    dyoung 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1423       1.19    dyoung 			break;
   1424       1.19    dyoung 		else if (ifp->if_flags & IFF_UP)
   1425       1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1426       1.19    dyoung 		else
   1427        1.2     ragge 			error = 0;
   1428        1.2     ragge 		break;
   1429        1.2     ragge 
   1430        1.1     ragge         case SIOCSIFFLAGS:
   1431  1.21.10.1      haad 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1432  1.21.10.1      haad 			break;
   1433        1.1     ragge 		/* extract link flags */
   1434        1.1     ragge 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1435        1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1436        1.1     ragge 			mmrbc = PCIX_MMRBC_512;
   1437        1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1438        1.1     ragge 		    (ifp->if_flags & IFF_LINK1) != 0)
   1439        1.1     ragge 			mmrbc = PCIX_MMRBC_1024;
   1440        1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1441        1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1442        1.1     ragge 			mmrbc = PCIX_MMRBC_2048;
   1443        1.1     ragge 		else
   1444        1.1     ragge 			mmrbc = PCIX_MMRBC_4096;
   1445        1.1     ragge 		if (mmrbc != sc->sc_mmrbc) {
   1446        1.1     ragge 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1447        1.1     ragge 			preg &= ~PCIX_MMRBC_MSK;
   1448        1.1     ragge 			preg |= mmrbc;
   1449        1.1     ragge 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1450        1.1     ragge 			sc->sc_mmrbc = mmrbc;
   1451        1.1     ragge 		}
   1452        1.1     ragge                 /* FALLTHROUGH */
   1453        1.1     ragge 	default:
   1454       1.19    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1455       1.19    dyoung 			break;
   1456       1.19    dyoung 
   1457       1.19    dyoung 		error = 0;
   1458       1.19    dyoung 
   1459       1.19    dyoung 		if (cmd == SIOCSIFCAP)
   1460       1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1461       1.19    dyoung 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1462       1.19    dyoung 			;
   1463       1.19    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1464        1.1     ragge 			/*
   1465        1.1     ragge 			 * Multicast list has changed; set the hardware filter
   1466        1.1     ragge 			 * accordingly.
   1467        1.1     ragge 			 */
   1468       1.19    dyoung 			dge_set_filter(sc);
   1469        1.1     ragge 		}
   1470        1.1     ragge 		break;
   1471        1.1     ragge 	}
   1472        1.1     ragge 
   1473        1.1     ragge 	/* Try to get more packets going. */
   1474        1.1     ragge 	dge_start(ifp);
   1475        1.1     ragge 
   1476        1.1     ragge 	splx(s);
   1477        1.1     ragge 	return (error);
   1478        1.1     ragge }
   1479        1.1     ragge 
   1480        1.1     ragge /*
   1481        1.1     ragge  * dge_intr:
   1482        1.1     ragge  *
   1483        1.1     ragge  *	Interrupt service routine.
   1484        1.1     ragge  */
   1485        1.1     ragge static int
   1486        1.1     ragge dge_intr(void *arg)
   1487        1.1     ragge {
   1488        1.1     ragge 	struct dge_softc *sc = arg;
   1489        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1490        1.1     ragge 	uint32_t icr;
   1491        1.1     ragge 	int wantinit, handled = 0;
   1492        1.1     ragge 
   1493        1.1     ragge 	for (wantinit = 0; wantinit == 0;) {
   1494        1.1     ragge 		icr = CSR_READ(sc, DGE_ICR);
   1495        1.1     ragge 		if ((icr & sc->sc_icr) == 0)
   1496        1.1     ragge 			break;
   1497        1.1     ragge 
   1498        1.1     ragge #if 0 /*NRND > 0*/
   1499        1.1     ragge 		if (RND_ENABLED(&sc->rnd_source))
   1500        1.1     ragge 			rnd_add_uint32(&sc->rnd_source, icr);
   1501        1.1     ragge #endif
   1502        1.1     ragge 
   1503        1.1     ragge 		handled = 1;
   1504        1.1     ragge 
   1505        1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1506        1.1     ragge 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1507        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1508        1.1     ragge 			    ("%s: RX: got Rx intr 0x%08x\n",
   1509       1.21    cegger 			    device_xname(&sc->sc_dev),
   1510        1.1     ragge 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1511        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1512        1.1     ragge 		}
   1513        1.1     ragge #endif
   1514        1.1     ragge 		dge_rxintr(sc);
   1515        1.1     ragge 
   1516        1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1517        1.1     ragge 		if (icr & ICR_TXDW) {
   1518        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1519        1.1     ragge 			    ("%s: TX: got TXDW interrupt\n",
   1520       1.21    cegger 			    device_xname(&sc->sc_dev)));
   1521        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1522        1.1     ragge 		}
   1523        1.1     ragge 		if (icr & ICR_TXQE)
   1524        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1525        1.1     ragge #endif
   1526        1.1     ragge 		dge_txintr(sc);
   1527        1.1     ragge 
   1528        1.1     ragge 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1529        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1530        1.1     ragge 			dge_linkintr(sc, icr);
   1531        1.1     ragge 		}
   1532        1.1     ragge 
   1533        1.1     ragge 		if (icr & ICR_RXO) {
   1534       1.21    cegger 			printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
   1535        1.1     ragge 			wantinit = 1;
   1536        1.1     ragge 		}
   1537        1.1     ragge 	}
   1538        1.1     ragge 
   1539        1.1     ragge 	if (handled) {
   1540        1.1     ragge 		if (wantinit)
   1541        1.1     ragge 			dge_init(ifp);
   1542        1.1     ragge 
   1543        1.1     ragge 		/* Try to get more packets going. */
   1544        1.1     ragge 		dge_start(ifp);
   1545        1.1     ragge 	}
   1546        1.1     ragge 
   1547        1.1     ragge 	return (handled);
   1548        1.1     ragge }
   1549        1.1     ragge 
   1550        1.1     ragge /*
   1551        1.1     ragge  * dge_txintr:
   1552        1.1     ragge  *
   1553        1.1     ragge  *	Helper; handle transmit interrupts.
   1554        1.1     ragge  */
   1555        1.1     ragge static void
   1556        1.1     ragge dge_txintr(struct dge_softc *sc)
   1557        1.1     ragge {
   1558        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1559        1.1     ragge 	struct dge_txsoft *txs;
   1560        1.1     ragge 	uint8_t status;
   1561        1.1     ragge 	int i;
   1562        1.1     ragge 
   1563        1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1564        1.1     ragge 
   1565        1.1     ragge 	/*
   1566        1.1     ragge 	 * Go through the Tx list and free mbufs for those
   1567        1.1     ragge 	 * frames which have been transmitted.
   1568        1.1     ragge 	 */
   1569        1.1     ragge 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1570        1.1     ragge 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1571        1.1     ragge 		txs = &sc->sc_txsoft[i];
   1572        1.1     ragge 
   1573        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1574       1.21    cegger 		    ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
   1575        1.1     ragge 
   1576        1.1     ragge 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1577        1.1     ragge 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1578        1.1     ragge 
   1579        1.1     ragge 		status =
   1580        1.1     ragge 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1581        1.1     ragge 		if ((status & TDESC_STA_DD) == 0) {
   1582        1.1     ragge 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1583        1.1     ragge 			    BUS_DMASYNC_PREREAD);
   1584        1.1     ragge 			break;
   1585        1.1     ragge 		}
   1586        1.1     ragge 
   1587        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1588        1.1     ragge 		    ("%s: TX: job %d done: descs %d..%d\n",
   1589       1.21    cegger 		    device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
   1590        1.1     ragge 		    txs->txs_lastdesc));
   1591        1.1     ragge 
   1592        1.1     ragge 		ifp->if_opackets++;
   1593        1.1     ragge 		sc->sc_txfree += txs->txs_ndesc;
   1594        1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1595        1.1     ragge 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1596        1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1597        1.1     ragge 		m_freem(txs->txs_mbuf);
   1598        1.1     ragge 		txs->txs_mbuf = NULL;
   1599        1.1     ragge 	}
   1600        1.1     ragge 
   1601        1.1     ragge 	/* Update the dirty transmit buffer pointer. */
   1602        1.1     ragge 	sc->sc_txsdirty = i;
   1603        1.1     ragge 	DPRINTF(DGE_DEBUG_TX,
   1604       1.21    cegger 	    ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
   1605        1.1     ragge 
   1606        1.1     ragge 	/*
   1607        1.1     ragge 	 * If there are no more pending transmissions, cancel the watchdog
   1608        1.1     ragge 	 * timer.
   1609        1.1     ragge 	 */
   1610        1.1     ragge 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1611        1.1     ragge 		ifp->if_timer = 0;
   1612        1.1     ragge }
   1613        1.1     ragge 
   1614        1.1     ragge /*
   1615        1.1     ragge  * dge_rxintr:
   1616        1.1     ragge  *
   1617        1.1     ragge  *	Helper; handle receive interrupts.
   1618        1.1     ragge  */
   1619        1.1     ragge static void
   1620        1.1     ragge dge_rxintr(struct dge_softc *sc)
   1621        1.1     ragge {
   1622        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1623        1.1     ragge 	struct dge_rxsoft *rxs;
   1624        1.1     ragge 	struct mbuf *m;
   1625        1.1     ragge 	int i, len;
   1626        1.1     ragge 	uint8_t status, errors;
   1627        1.1     ragge 
   1628        1.1     ragge 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1629        1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1630        1.1     ragge 
   1631        1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1632        1.1     ragge 		    ("%s: RX: checking descriptor %d\n",
   1633       1.21    cegger 		    device_xname(&sc->sc_dev), i));
   1634        1.1     ragge 
   1635        1.1     ragge 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1636        1.1     ragge 
   1637        1.1     ragge 		status = sc->sc_rxdescs[i].dr_status;
   1638        1.1     ragge 		errors = sc->sc_rxdescs[i].dr_errors;
   1639        1.1     ragge 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1640        1.1     ragge 
   1641        1.1     ragge 		if ((status & RDESC_STS_DD) == 0) {
   1642        1.1     ragge 			/*
   1643        1.1     ragge 			 * We have processed all of the receive descriptors.
   1644        1.1     ragge 			 */
   1645        1.1     ragge 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1646        1.1     ragge 			break;
   1647        1.1     ragge 		}
   1648        1.1     ragge 
   1649        1.1     ragge 		if (__predict_false(sc->sc_rxdiscard)) {
   1650        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1651        1.1     ragge 			    ("%s: RX: discarding contents of descriptor %d\n",
   1652       1.21    cegger 			    device_xname(&sc->sc_dev), i));
   1653        1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1654        1.1     ragge 			if (status & RDESC_STS_EOP) {
   1655        1.1     ragge 				/* Reset our state. */
   1656        1.1     ragge 				DPRINTF(DGE_DEBUG_RX,
   1657        1.1     ragge 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1658       1.21    cegger 				    device_xname(&sc->sc_dev)));
   1659        1.1     ragge 				sc->sc_rxdiscard = 0;
   1660        1.1     ragge 			}
   1661        1.1     ragge 			continue;
   1662        1.1     ragge 		}
   1663        1.1     ragge 
   1664        1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1665        1.1     ragge 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1666        1.1     ragge 
   1667        1.1     ragge 		m = rxs->rxs_mbuf;
   1668        1.1     ragge 
   1669        1.1     ragge 		/*
   1670        1.1     ragge 		 * Add a new receive buffer to the ring.
   1671        1.1     ragge 		 */
   1672        1.1     ragge 		if (dge_add_rxbuf(sc, i) != 0) {
   1673        1.1     ragge 			/*
   1674        1.1     ragge 			 * Failed, throw away what we've done so
   1675        1.1     ragge 			 * far, and discard the rest of the packet.
   1676        1.1     ragge 			 */
   1677        1.1     ragge 			ifp->if_ierrors++;
   1678        1.1     ragge 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1679        1.1     ragge 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1680        1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1681        1.1     ragge 			if ((status & RDESC_STS_EOP) == 0)
   1682        1.1     ragge 				sc->sc_rxdiscard = 1;
   1683        1.1     ragge 			if (sc->sc_rxhead != NULL)
   1684        1.1     ragge 				m_freem(sc->sc_rxhead);
   1685        1.1     ragge 			DGE_RXCHAIN_RESET(sc);
   1686        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1687        1.1     ragge 			    ("%s: RX: Rx buffer allocation failed, "
   1688       1.21    cegger 			    "dropping packet%s\n", device_xname(&sc->sc_dev),
   1689        1.1     ragge 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1690        1.1     ragge 			continue;
   1691        1.1     ragge 		}
   1692        1.1     ragge 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1693        1.1     ragge 
   1694        1.1     ragge 		DGE_RXCHAIN_LINK(sc, m);
   1695        1.1     ragge 
   1696        1.1     ragge 		m->m_len = len;
   1697        1.1     ragge 
   1698        1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1699        1.1     ragge 		    ("%s: RX: buffer at %p len %d\n",
   1700       1.21    cegger 		    device_xname(&sc->sc_dev), m->m_data, len));
   1701        1.1     ragge 
   1702        1.1     ragge 		/*
   1703        1.1     ragge 		 * If this is not the end of the packet, keep
   1704        1.1     ragge 		 * looking.
   1705        1.1     ragge 		 */
   1706        1.1     ragge 		if ((status & RDESC_STS_EOP) == 0) {
   1707        1.1     ragge 			sc->sc_rxlen += len;
   1708        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1709        1.1     ragge 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1710       1.21    cegger 			    device_xname(&sc->sc_dev), sc->sc_rxlen));
   1711        1.1     ragge 			continue;
   1712        1.1     ragge 		}
   1713        1.1     ragge 
   1714        1.1     ragge 		/*
   1715        1.1     ragge 		 * Okay, we have the entire packet now...
   1716        1.1     ragge 		 */
   1717        1.1     ragge 		*sc->sc_rxtailp = NULL;
   1718        1.1     ragge 		m = sc->sc_rxhead;
   1719        1.1     ragge 		len += sc->sc_rxlen;
   1720        1.1     ragge 
   1721        1.1     ragge 		DGE_RXCHAIN_RESET(sc);
   1722        1.1     ragge 
   1723        1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1724        1.1     ragge 		    ("%s: RX: have entire packet, len -> %d\n",
   1725       1.21    cegger 		    device_xname(&sc->sc_dev), len));
   1726        1.1     ragge 
   1727        1.1     ragge 		/*
   1728        1.1     ragge 		 * If an error occurred, update stats and drop the packet.
   1729        1.1     ragge 		 */
   1730        1.1     ragge 		if (errors &
   1731        1.1     ragge 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1732        1.1     ragge 			ifp->if_ierrors++;
   1733        1.1     ragge 			if (errors & RDESC_ERR_SE)
   1734        1.1     ragge 				printf("%s: symbol error\n",
   1735       1.21    cegger 				    device_xname(&sc->sc_dev));
   1736        1.1     ragge 			else if (errors & RDESC_ERR_P)
   1737        1.1     ragge 				printf("%s: parity error\n",
   1738       1.21    cegger 				    device_xname(&sc->sc_dev));
   1739        1.1     ragge 			else if (errors & RDESC_ERR_CE)
   1740        1.1     ragge 				printf("%s: CRC error\n",
   1741       1.21    cegger 				    device_xname(&sc->sc_dev));
   1742        1.1     ragge 			m_freem(m);
   1743        1.1     ragge 			continue;
   1744        1.1     ragge 		}
   1745        1.1     ragge 
   1746        1.1     ragge 		/*
   1747        1.1     ragge 		 * No errors.  Receive the packet.
   1748        1.1     ragge 		 */
   1749        1.1     ragge 		m->m_pkthdr.rcvif = ifp;
   1750        1.1     ragge 		m->m_pkthdr.len = len;
   1751        1.1     ragge 
   1752        1.1     ragge 		/*
   1753        1.1     ragge 		 * Set up checksum info for this packet.
   1754        1.1     ragge 		 */
   1755        1.1     ragge 		if (status & RDESC_STS_IPCS) {
   1756        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1757        1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1758        1.1     ragge 			if (errors & RDESC_ERR_IPE)
   1759        1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1760        1.1     ragge 		}
   1761        1.1     ragge 		if (status & RDESC_STS_TCPCS) {
   1762        1.1     ragge 			/*
   1763        1.1     ragge 			 * Note: we don't know if this was TCP or UDP,
   1764        1.1     ragge 			 * so we just set both bits, and expect the
   1765        1.1     ragge 			 * upper layers to deal.
   1766        1.1     ragge 			 */
   1767        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1768        1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1769        1.1     ragge 			if (errors & RDESC_ERR_TCPE)
   1770        1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1771        1.1     ragge 		}
   1772        1.1     ragge 
   1773        1.1     ragge 		ifp->if_ipackets++;
   1774        1.1     ragge 
   1775        1.1     ragge #if NBPFILTER > 0
   1776        1.1     ragge 		/* Pass this up to any BPF listeners. */
   1777        1.1     ragge 		if (ifp->if_bpf)
   1778        1.1     ragge 			bpf_mtap(ifp->if_bpf, m);
   1779        1.1     ragge #endif /* NBPFILTER > 0 */
   1780        1.1     ragge 
   1781        1.1     ragge 		/* Pass it on. */
   1782        1.1     ragge 		(*ifp->if_input)(ifp, m);
   1783        1.1     ragge 	}
   1784        1.1     ragge 
   1785        1.1     ragge 	/* Update the receive pointer. */
   1786        1.1     ragge 	sc->sc_rxptr = i;
   1787        1.1     ragge 
   1788        1.1     ragge 	DPRINTF(DGE_DEBUG_RX,
   1789       1.21    cegger 	    ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
   1790        1.1     ragge }
   1791        1.1     ragge 
   1792        1.1     ragge /*
   1793        1.1     ragge  * dge_linkintr:
   1794        1.1     ragge  *
   1795        1.1     ragge  *	Helper; handle link interrupts.
   1796        1.1     ragge  */
   1797        1.1     ragge static void
   1798        1.1     ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1799        1.1     ragge {
   1800        1.1     ragge 	uint32_t status;
   1801        1.1     ragge 
   1802        1.1     ragge 	if (icr & ICR_LSC) {
   1803        1.1     ragge 		status = CSR_READ(sc, DGE_STATUS);
   1804        1.1     ragge 		if (status & STATUS_LINKUP) {
   1805        1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1806       1.21    cegger 			    device_xname(&sc->sc_dev)));
   1807        1.1     ragge 		} else {
   1808        1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1809       1.21    cegger 			    device_xname(&sc->sc_dev)));
   1810        1.1     ragge 		}
   1811        1.1     ragge 	} else if (icr & ICR_RXSEQ) {
   1812        1.1     ragge 		DPRINTF(DGE_DEBUG_LINK,
   1813        1.1     ragge 		    ("%s: LINK: Receive sequence error\n",
   1814       1.21    cegger 		    device_xname(&sc->sc_dev)));
   1815        1.1     ragge 	}
   1816        1.1     ragge 	/* XXX - fix errata */
   1817        1.1     ragge }
   1818        1.1     ragge 
   1819        1.1     ragge /*
   1820        1.1     ragge  * dge_reset:
   1821        1.1     ragge  *
   1822        1.1     ragge  *	Reset the i82597 chip.
   1823        1.1     ragge  */
   1824        1.1     ragge static void
   1825        1.1     ragge dge_reset(struct dge_softc *sc)
   1826        1.1     ragge {
   1827        1.1     ragge 	int i;
   1828        1.1     ragge 
   1829        1.1     ragge 	/*
   1830        1.1     ragge 	 * Do a chip reset.
   1831        1.1     ragge 	 */
   1832        1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1833        1.1     ragge 
   1834        1.1     ragge 	delay(10000);
   1835        1.1     ragge 
   1836        1.1     ragge 	for (i = 0; i < 1000; i++) {
   1837        1.1     ragge 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1838        1.1     ragge 			break;
   1839        1.1     ragge 		delay(20);
   1840        1.1     ragge 	}
   1841        1.1     ragge 
   1842        1.1     ragge 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1843        1.1     ragge 		printf("%s: WARNING: reset failed to complete\n",
   1844       1.21    cegger 		    device_xname(&sc->sc_dev));
   1845        1.1     ragge         /*
   1846        1.1     ragge          * Reset the EEPROM logic.
   1847        1.1     ragge          * This will cause the chip to reread its default values,
   1848        1.1     ragge 	 * which doesn't happen otherwise (errata).
   1849        1.1     ragge          */
   1850        1.1     ragge         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1851        1.1     ragge         delay(10000);
   1852        1.1     ragge }
   1853        1.1     ragge 
   1854        1.1     ragge /*
   1855        1.1     ragge  * dge_init:		[ifnet interface function]
   1856        1.1     ragge  *
   1857        1.1     ragge  *	Initialize the interface.  Must be called at splnet().
   1858        1.1     ragge  */
   1859        1.1     ragge static int
   1860        1.1     ragge dge_init(struct ifnet *ifp)
   1861        1.1     ragge {
   1862        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1863        1.1     ragge 	struct dge_rxsoft *rxs;
   1864        1.1     ragge 	int i, error = 0;
   1865        1.1     ragge 	uint32_t reg;
   1866        1.1     ragge 
   1867        1.1     ragge 	/*
   1868        1.1     ragge 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1869        1.1     ragge 	 * There is a small but measurable benefit to avoiding the adjusment
   1870        1.1     ragge 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1871        1.1     ragge 	 * on such platforms.  One possibility is that the DMA itself is
   1872        1.1     ragge 	 * slightly more efficient if the front of the entire packet (instead
   1873        1.1     ragge 	 * of the front of the headers) is aligned.
   1874        1.1     ragge 	 *
   1875        1.1     ragge 	 * Note we must always set align_tweak to 0 if we are using
   1876        1.1     ragge 	 * jumbo frames.
   1877        1.1     ragge 	 */
   1878        1.1     ragge #ifdef __NO_STRICT_ALIGNMENT
   1879        1.1     ragge 	sc->sc_align_tweak = 0;
   1880        1.1     ragge #else
   1881        1.1     ragge 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1882        1.1     ragge 		sc->sc_align_tweak = 0;
   1883        1.1     ragge 	else
   1884        1.1     ragge 		sc->sc_align_tweak = 2;
   1885        1.1     ragge #endif /* __NO_STRICT_ALIGNMENT */
   1886        1.1     ragge 
   1887        1.1     ragge 	/* Cancel any pending I/O. */
   1888        1.1     ragge 	dge_stop(ifp, 0);
   1889        1.1     ragge 
   1890        1.1     ragge 	/* Reset the chip to a known state. */
   1891        1.1     ragge 	dge_reset(sc);
   1892        1.1     ragge 
   1893        1.1     ragge 	/* Initialize the transmit descriptor ring. */
   1894        1.1     ragge 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1895        1.1     ragge 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1896        1.1     ragge 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1897        1.1     ragge 	sc->sc_txfree = DGE_NTXDESC;
   1898        1.1     ragge 	sc->sc_txnext = 0;
   1899        1.1     ragge 
   1900        1.1     ragge 	sc->sc_txctx_ipcs = 0xffffffff;
   1901        1.1     ragge 	sc->sc_txctx_tucs = 0xffffffff;
   1902        1.1     ragge 
   1903        1.1     ragge 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1904        1.1     ragge 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1905        1.1     ragge 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1906        1.1     ragge 	CSR_WRITE(sc, DGE_TDH, 0);
   1907        1.1     ragge 	CSR_WRITE(sc, DGE_TDT, 0);
   1908        1.1     ragge 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1909        1.1     ragge 
   1910        1.1     ragge #if 0
   1911        1.1     ragge 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1912        1.1     ragge 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1913        1.1     ragge #endif
   1914        1.1     ragge 	CSR_WRITE(sc, DGE_RXDCTL,
   1915        1.1     ragge 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1916        1.1     ragge 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1917        1.1     ragge 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1918        1.1     ragge 
   1919        1.1     ragge 	/* Initialize the transmit job descriptors. */
   1920        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1921        1.1     ragge 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1922        1.1     ragge 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1923        1.1     ragge 	sc->sc_txsnext = 0;
   1924        1.1     ragge 	sc->sc_txsdirty = 0;
   1925        1.1     ragge 
   1926        1.1     ragge 	/*
   1927        1.1     ragge 	 * Initialize the receive descriptor and receive job
   1928        1.1     ragge 	 * descriptor rings.
   1929        1.1     ragge 	 */
   1930        1.1     ragge 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1931        1.1     ragge 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1932        1.1     ragge 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1933        1.1     ragge 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1934        1.1     ragge 	CSR_WRITE(sc, DGE_RDT, 0);
   1935        1.1     ragge 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1936        1.1     ragge 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1937        1.1     ragge 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1938        1.1     ragge 
   1939        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1940        1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1941        1.1     ragge 		if (rxs->rxs_mbuf == NULL) {
   1942        1.1     ragge 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1943        1.1     ragge 				printf("%s: unable to allocate or map rx "
   1944        1.1     ragge 				    "buffer %d, error = %d\n",
   1945       1.21    cegger 				    device_xname(&sc->sc_dev), i, error);
   1946        1.1     ragge 				/*
   1947        1.1     ragge 				 * XXX Should attempt to run with fewer receive
   1948        1.1     ragge 				 * XXX buffers instead of just failing.
   1949        1.1     ragge 				 */
   1950        1.1     ragge 				dge_rxdrain(sc);
   1951        1.1     ragge 				goto out;
   1952        1.1     ragge 			}
   1953        1.1     ragge 		}
   1954        1.1     ragge 		DGE_INIT_RXDESC(sc, i);
   1955        1.1     ragge 	}
   1956        1.1     ragge 	sc->sc_rxptr = DGE_RXSPACE;
   1957        1.1     ragge 	sc->sc_rxdiscard = 0;
   1958        1.1     ragge 	DGE_RXCHAIN_RESET(sc);
   1959        1.1     ragge 
   1960        1.1     ragge 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1961        1.1     ragge 		sc->sc_ctrl0 |= CTRL0_JFE;
   1962        1.1     ragge 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1963        1.1     ragge 	}
   1964        1.1     ragge 
   1965        1.1     ragge 	/* Write the control registers. */
   1966        1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1967        1.1     ragge 
   1968        1.1     ragge 	/*
   1969        1.1     ragge 	 * Set up checksum offload parameters.
   1970        1.1     ragge 	 */
   1971        1.1     ragge 	reg = CSR_READ(sc, DGE_RXCSUM);
   1972       1.11      yamt 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1973        1.1     ragge 		reg |= RXCSUM_IPOFL;
   1974        1.1     ragge 	else
   1975        1.1     ragge 		reg &= ~RXCSUM_IPOFL;
   1976       1.11      yamt 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1977        1.1     ragge 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1978        1.1     ragge 	else {
   1979        1.1     ragge 		reg &= ~RXCSUM_TUOFL;
   1980       1.11      yamt 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   1981        1.1     ragge 			reg &= ~RXCSUM_IPOFL;
   1982        1.1     ragge 	}
   1983        1.1     ragge 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1984        1.1     ragge 
   1985        1.1     ragge 	/*
   1986        1.1     ragge 	 * Set up the interrupt registers.
   1987        1.1     ragge 	 */
   1988        1.1     ragge 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1989        1.1     ragge 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1990        1.1     ragge 	    ICR_RXO | ICR_RXT0;
   1991        1.1     ragge 
   1992        1.1     ragge 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1993        1.1     ragge 
   1994        1.1     ragge 	/*
   1995        1.1     ragge 	 * Set up the transmit control register.
   1996        1.1     ragge 	 */
   1997        1.1     ragge 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1998        1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1999        1.1     ragge 
   2000        1.1     ragge 	/*
   2001        1.1     ragge 	 * Set up the receive control register; we actually program
   2002        1.1     ragge 	 * the register when we set the receive filter.  Use multicast
   2003        1.1     ragge 	 * address offset type 0.
   2004        1.1     ragge 	 */
   2005        1.1     ragge 	sc->sc_mchash_type = 0;
   2006        1.1     ragge 
   2007       1.10     perry 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2008        1.1     ragge 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2009        1.1     ragge 
   2010        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2011        1.3     ragge 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2012        1.3     ragge #else
   2013        1.1     ragge 	switch(MCLBYTES) {
   2014        1.1     ragge 	case 2048:
   2015        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2016        1.1     ragge 		break;
   2017        1.1     ragge 	case 4096:
   2018        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2019        1.1     ragge 		break;
   2020        1.1     ragge 	case 8192:
   2021        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2022        1.1     ragge 		break;
   2023        1.1     ragge 	case 16384:
   2024        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2025        1.1     ragge 		break;
   2026        1.1     ragge 	default:
   2027        1.1     ragge 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2028        1.1     ragge 	}
   2029        1.3     ragge #endif
   2030        1.1     ragge 
   2031        1.1     ragge 	/* Set the receive filter. */
   2032        1.1     ragge 	/* Also sets RCTL */
   2033        1.1     ragge 	dge_set_filter(sc);
   2034        1.1     ragge 
   2035        1.1     ragge 	/* ...all done! */
   2036       1.10     perry 	ifp->if_flags |= IFF_RUNNING;
   2037        1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   2038        1.1     ragge 
   2039        1.1     ragge  out:
   2040        1.1     ragge 	if (error)
   2041       1.21    cegger 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   2042        1.1     ragge 	return (error);
   2043        1.1     ragge }
   2044        1.1     ragge 
   2045        1.1     ragge /*
   2046        1.1     ragge  * dge_rxdrain:
   2047        1.1     ragge  *
   2048        1.1     ragge  *	Drain the receive queue.
   2049        1.1     ragge  */
   2050        1.1     ragge static void
   2051        1.1     ragge dge_rxdrain(struct dge_softc *sc)
   2052        1.1     ragge {
   2053        1.1     ragge 	struct dge_rxsoft *rxs;
   2054        1.1     ragge 	int i;
   2055        1.1     ragge 
   2056        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   2057        1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   2058        1.1     ragge 		if (rxs->rxs_mbuf != NULL) {
   2059        1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2060        1.1     ragge 			m_freem(rxs->rxs_mbuf);
   2061        1.1     ragge 			rxs->rxs_mbuf = NULL;
   2062        1.1     ragge 		}
   2063        1.1     ragge 	}
   2064        1.1     ragge }
   2065        1.1     ragge 
   2066        1.1     ragge /*
   2067        1.1     ragge  * dge_stop:		[ifnet interface function]
   2068        1.1     ragge  *
   2069        1.1     ragge  *	Stop transmission on the interface.
   2070        1.1     ragge  */
   2071        1.1     ragge static void
   2072        1.1     ragge dge_stop(struct ifnet *ifp, int disable)
   2073        1.1     ragge {
   2074        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2075        1.1     ragge 	struct dge_txsoft *txs;
   2076        1.1     ragge 	int i;
   2077        1.1     ragge 
   2078        1.1     ragge 	/* Stop the transmit and receive processes. */
   2079        1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, 0);
   2080        1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, 0);
   2081        1.1     ragge 
   2082        1.1     ragge 	/* Release any queued transmit buffers. */
   2083        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2084        1.1     ragge 		txs = &sc->sc_txsoft[i];
   2085        1.1     ragge 		if (txs->txs_mbuf != NULL) {
   2086        1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2087        1.1     ragge 			m_freem(txs->txs_mbuf);
   2088        1.1     ragge 			txs->txs_mbuf = NULL;
   2089        1.1     ragge 		}
   2090        1.1     ragge 	}
   2091        1.1     ragge 
   2092        1.1     ragge 	/* Mark the interface as down and cancel the watchdog timer. */
   2093        1.1     ragge 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2094        1.1     ragge 	ifp->if_timer = 0;
   2095       1.20    dyoung 
   2096       1.20    dyoung 	if (disable)
   2097       1.20    dyoung 		dge_rxdrain(sc);
   2098        1.1     ragge }
   2099        1.1     ragge 
   2100        1.1     ragge /*
   2101        1.1     ragge  * dge_add_rxbuf:
   2102        1.1     ragge  *
   2103        1.1     ragge  *	Add a receive buffer to the indiciated descriptor.
   2104        1.1     ragge  */
   2105        1.1     ragge static int
   2106        1.1     ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
   2107        1.1     ragge {
   2108        1.1     ragge 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2109        1.1     ragge 	struct mbuf *m;
   2110        1.1     ragge 	int error;
   2111        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2112       1.15  christos 	void *buf;
   2113        1.3     ragge #endif
   2114        1.1     ragge 
   2115        1.1     ragge 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2116        1.1     ragge 	if (m == NULL)
   2117        1.1     ragge 		return (ENOBUFS);
   2118        1.1     ragge 
   2119        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2120        1.3     ragge 	if ((buf = dge_getbuf(sc)) == NULL)
   2121        1.3     ragge 		return ENOBUFS;
   2122        1.3     ragge 
   2123        1.3     ragge 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2124        1.3     ragge 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2125        1.6      yamt 	m->m_flags |= M_EXT_RW;
   2126        1.3     ragge 
   2127        1.3     ragge 	if (rxs->rxs_mbuf != NULL)
   2128        1.3     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2129        1.3     ragge 	rxs->rxs_mbuf = m;
   2130        1.3     ragge 
   2131        1.3     ragge 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2132        1.3     ragge 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2133        1.3     ragge #else
   2134        1.1     ragge 	MCLGET(m, M_DONTWAIT);
   2135        1.1     ragge 	if ((m->m_flags & M_EXT) == 0) {
   2136        1.1     ragge 		m_freem(m);
   2137        1.1     ragge 		return (ENOBUFS);
   2138        1.1     ragge 	}
   2139        1.1     ragge 
   2140        1.1     ragge 	if (rxs->rxs_mbuf != NULL)
   2141        1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2142        1.1     ragge 
   2143        1.1     ragge 	rxs->rxs_mbuf = m;
   2144        1.1     ragge 
   2145        1.1     ragge 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2146        1.1     ragge 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2147        1.1     ragge 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2148        1.3     ragge #endif
   2149        1.1     ragge 	if (error) {
   2150        1.1     ragge 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2151       1.21    cegger 		    device_xname(&sc->sc_dev), idx, error);
   2152        1.1     ragge 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2153        1.1     ragge 	}
   2154        1.1     ragge 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2155        1.1     ragge 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2156        1.1     ragge 
   2157        1.1     ragge 	return (0);
   2158        1.1     ragge }
   2159        1.1     ragge 
   2160        1.1     ragge /*
   2161        1.1     ragge  * dge_set_ral:
   2162        1.1     ragge  *
   2163        1.1     ragge  *	Set an entry in the receive address list.
   2164        1.1     ragge  */
   2165        1.1     ragge static void
   2166        1.1     ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2167        1.1     ragge {
   2168        1.1     ragge 	uint32_t ral_lo, ral_hi;
   2169        1.1     ragge 
   2170        1.1     ragge 	if (enaddr != NULL) {
   2171        1.1     ragge 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2172        1.1     ragge 		    (enaddr[3] << 24);
   2173        1.1     ragge 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2174        1.1     ragge 		ral_hi |= RAH_AV;
   2175        1.1     ragge 	} else {
   2176        1.1     ragge 		ral_lo = 0;
   2177        1.1     ragge 		ral_hi = 0;
   2178        1.1     ragge 	}
   2179        1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2180        1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2181        1.1     ragge }
   2182        1.1     ragge 
   2183        1.1     ragge /*
   2184        1.1     ragge  * dge_mchash:
   2185        1.1     ragge  *
   2186        1.1     ragge  *	Compute the hash of the multicast address for the 4096-bit
   2187        1.1     ragge  *	multicast filter.
   2188        1.1     ragge  */
   2189        1.1     ragge static uint32_t
   2190        1.1     ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2191        1.1     ragge {
   2192        1.1     ragge 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2193        1.1     ragge 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2194        1.1     ragge 	uint32_t hash;
   2195        1.1     ragge 
   2196        1.1     ragge 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2197        1.1     ragge 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2198        1.1     ragge 
   2199        1.1     ragge 	return (hash & 0xfff);
   2200        1.1     ragge }
   2201        1.1     ragge 
   2202        1.1     ragge /*
   2203        1.1     ragge  * dge_set_filter:
   2204        1.1     ragge  *
   2205        1.1     ragge  *	Set up the receive filter.
   2206        1.1     ragge  */
   2207        1.1     ragge static void
   2208        1.1     ragge dge_set_filter(struct dge_softc *sc)
   2209        1.1     ragge {
   2210        1.1     ragge 	struct ethercom *ec = &sc->sc_ethercom;
   2211        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2212        1.1     ragge 	struct ether_multi *enm;
   2213        1.1     ragge 	struct ether_multistep step;
   2214        1.1     ragge 	uint32_t hash, reg, bit;
   2215        1.1     ragge 	int i;
   2216        1.1     ragge 
   2217        1.1     ragge 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2218        1.1     ragge 
   2219        1.1     ragge 	if (ifp->if_flags & IFF_BROADCAST)
   2220        1.1     ragge 		sc->sc_rctl |= RCTL_BAM;
   2221        1.1     ragge 	if (ifp->if_flags & IFF_PROMISC) {
   2222        1.1     ragge 		sc->sc_rctl |= RCTL_UPE;
   2223        1.1     ragge 		goto allmulti;
   2224        1.1     ragge 	}
   2225        1.1     ragge 
   2226        1.1     ragge 	/*
   2227        1.1     ragge 	 * Set the station address in the first RAL slot, and
   2228        1.1     ragge 	 * clear the remaining slots.
   2229        1.1     ragge 	 */
   2230       1.16    dyoung 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2231        1.1     ragge 	for (i = 1; i < RA_TABSIZE; i++)
   2232        1.1     ragge 		dge_set_ral(sc, NULL, i);
   2233        1.1     ragge 
   2234        1.1     ragge 	/* Clear out the multicast table. */
   2235        1.1     ragge 	for (i = 0; i < MC_TABSIZE; i++)
   2236        1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2237        1.1     ragge 
   2238        1.1     ragge 	ETHER_FIRST_MULTI(step, ec, enm);
   2239        1.1     ragge 	while (enm != NULL) {
   2240        1.1     ragge 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2241        1.1     ragge 			/*
   2242        1.1     ragge 			 * We must listen to a range of multicast addresses.
   2243        1.1     ragge 			 * For now, just accept all multicasts, rather than
   2244        1.1     ragge 			 * trying to set only those filter bits needed to match
   2245        1.1     ragge 			 * the range.  (At this time, the only use of address
   2246        1.1     ragge 			 * ranges is for IP multicast routing, for which the
   2247        1.1     ragge 			 * range is big enough to require all bits set.)
   2248        1.1     ragge 			 */
   2249        1.1     ragge 			goto allmulti;
   2250        1.1     ragge 		}
   2251        1.1     ragge 
   2252        1.1     ragge 		hash = dge_mchash(sc, enm->enm_addrlo);
   2253        1.1     ragge 
   2254        1.1     ragge 		reg = (hash >> 5) & 0x7f;
   2255        1.1     ragge 		bit = hash & 0x1f;
   2256        1.1     ragge 
   2257        1.1     ragge 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2258        1.1     ragge 		hash |= 1U << bit;
   2259        1.1     ragge 
   2260        1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2261        1.1     ragge 
   2262        1.1     ragge 		ETHER_NEXT_MULTI(step, enm);
   2263        1.1     ragge 	}
   2264        1.1     ragge 
   2265        1.1     ragge 	ifp->if_flags &= ~IFF_ALLMULTI;
   2266        1.1     ragge 	goto setit;
   2267        1.1     ragge 
   2268        1.1     ragge  allmulti:
   2269        1.1     ragge 	ifp->if_flags |= IFF_ALLMULTI;
   2270        1.1     ragge 	sc->sc_rctl |= RCTL_MPE;
   2271        1.1     ragge 
   2272        1.1     ragge  setit:
   2273        1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2274        1.1     ragge }
   2275        1.1     ragge 
   2276        1.1     ragge /*
   2277        1.1     ragge  * Read in the EEPROM info and verify checksum.
   2278        1.1     ragge  */
   2279        1.1     ragge int
   2280        1.1     ragge dge_read_eeprom(struct dge_softc *sc)
   2281        1.1     ragge {
   2282        1.1     ragge 	uint16_t cksum;
   2283        1.1     ragge 	int i;
   2284        1.1     ragge 
   2285        1.1     ragge 	cksum = 0;
   2286        1.1     ragge 	for (i = 0; i < EEPROM_SIZE; i++) {
   2287        1.1     ragge 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2288        1.1     ragge 		cksum += sc->sc_eeprom[i];
   2289        1.1     ragge 	}
   2290        1.1     ragge 	return cksum != EEPROM_CKSUM;
   2291        1.1     ragge }
   2292        1.1     ragge 
   2293        1.1     ragge 
   2294        1.1     ragge /*
   2295        1.1     ragge  * Read a 16-bit word from address addr in the serial EEPROM.
   2296        1.1     ragge  */
   2297        1.1     ragge uint16_t
   2298        1.1     ragge dge_eeprom_word(struct dge_softc *sc, int addr)
   2299        1.1     ragge {
   2300        1.1     ragge 	uint32_t reg;
   2301        1.1     ragge 	uint16_t rval = 0;
   2302        1.1     ragge 	int i;
   2303        1.1     ragge 
   2304        1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2305        1.1     ragge 
   2306        1.1     ragge 	/* Lower clock pulse (and data in to chip) */
   2307        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2308        1.1     ragge 	/* Select chip */
   2309        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2310        1.1     ragge 
   2311        1.1     ragge 	/* Send read command */
   2312        1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2313        1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2314        1.1     ragge 	dge_eeprom_clockout(sc, 0);
   2315        1.1     ragge 
   2316        1.1     ragge 	/* Send address */
   2317        1.1     ragge 	for (i = 5; i >= 0; i--)
   2318        1.1     ragge 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2319        1.1     ragge 
   2320        1.1     ragge 	/* Read data */
   2321        1.1     ragge 	for (i = 0; i < 16; i++) {
   2322        1.1     ragge 		rval <<= 1;
   2323        1.1     ragge 		rval |= dge_eeprom_clockin(sc);
   2324        1.1     ragge 	}
   2325        1.1     ragge 
   2326        1.1     ragge 	/* Deselect chip */
   2327        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2328        1.1     ragge 
   2329        1.1     ragge 	return rval;
   2330        1.1     ragge }
   2331        1.1     ragge 
   2332        1.1     ragge /*
   2333        1.1     ragge  * Clock out a single bit to the EEPROM.
   2334        1.1     ragge  */
   2335        1.1     ragge void
   2336        1.1     ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2337        1.1     ragge {
   2338        1.1     ragge 	int reg;
   2339        1.1     ragge 
   2340        1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2341        1.1     ragge 	if (bit)
   2342        1.1     ragge 		reg |= EECD_DI;
   2343       1.10     perry 
   2344        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2345        1.1     ragge 	delay(2);
   2346        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2347        1.1     ragge 	delay(2);
   2348        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2349        1.1     ragge 	delay(2);
   2350        1.1     ragge }
   2351        1.1     ragge 
   2352        1.1     ragge /*
   2353        1.1     ragge  * Clock in a single bit from EEPROM.
   2354        1.1     ragge  */
   2355        1.1     ragge int
   2356        1.1     ragge dge_eeprom_clockin(struct dge_softc *sc)
   2357        1.1     ragge {
   2358        1.1     ragge 	int reg, rv;
   2359        1.1     ragge 
   2360        1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2361        1.1     ragge 
   2362        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2363        1.1     ragge 	delay(2);
   2364        1.1     ragge 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2365        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2366        1.1     ragge 	delay(2);
   2367        1.1     ragge 
   2368        1.1     ragge 	return rv;
   2369        1.1     ragge }
   2370        1.1     ragge 
   2371        1.1     ragge static void
   2372        1.1     ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2373        1.1     ragge {
   2374        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2375        1.1     ragge 
   2376        1.1     ragge 	ifmr->ifm_status = IFM_AVALID;
   2377        1.1     ragge 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2378        1.1     ragge 
   2379        1.1     ragge 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2380        1.1     ragge 		ifmr->ifm_status |= IFM_ACTIVE;
   2381        1.1     ragge }
   2382        1.1     ragge 
   2383        1.1     ragge static inline int
   2384        1.1     ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2385        1.1     ragge {
   2386        1.1     ragge         int i, mdic;
   2387        1.1     ragge 
   2388        1.1     ragge         CSR_WRITE(sc, DGE_MDIO,
   2389        1.1     ragge 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2390       1.10     perry         for (i = 0; i < 10; i++) {
   2391        1.1     ragge                 delay(10);
   2392        1.1     ragge                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2393        1.1     ragge                         break;
   2394        1.1     ragge         }
   2395        1.1     ragge         return mdic;
   2396        1.1     ragge }
   2397        1.1     ragge 
   2398        1.1     ragge 
   2399        1.1     ragge static void
   2400        1.1     ragge dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
   2401        1.1     ragge {
   2402        1.1     ragge 	struct dge_softc *sc = (void *) self;
   2403        1.1     ragge 	int mdic;
   2404        1.1     ragge 
   2405        1.1     ragge 	CSR_WRITE(sc, DGE_MDIRW, val);
   2406        1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2407        1.1     ragge 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2408       1.21    cegger 		    device_xname(&sc->sc_dev), phy, reg);
   2409        1.1     ragge 		return;
   2410        1.1     ragge 	}
   2411        1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2412        1.1     ragge 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2413       1.21    cegger 		    device_xname(&sc->sc_dev), phy, reg);
   2414        1.1     ragge 		return;
   2415        1.1     ragge 	}
   2416        1.1     ragge }
   2417        1.1     ragge 
   2418        1.1     ragge static void
   2419        1.1     ragge dge_xgmii_reset(struct dge_softc *sc)
   2420        1.1     ragge {
   2421        1.1     ragge 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2422        1.1     ragge }
   2423        1.1     ragge 
   2424        1.1     ragge static int
   2425       1.14  christos dge_xgmii_mediachange(struct ifnet *ifp)
   2426        1.1     ragge {
   2427        1.1     ragge 	return 0;
   2428        1.1     ragge }
   2429