Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.29.2.1
      1  1.29.2.1  uebayasi /*	$NetBSD: if_dge.c,v 1.29.2.1 2010/04/30 14:43:34 uebayasi Exp $ */
      2       1.1     ragge 
      3       1.1     ragge /*
      4       1.1     ragge  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5       1.1     ragge  * All rights reserved.
      6       1.1     ragge  *
      7       1.1     ragge  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8       1.1     ragge  *
      9       1.1     ragge  * Redistribution and use in source and binary forms, with or without
     10       1.1     ragge  * modification, are permitted provided that the following conditions
     11       1.1     ragge  * are met:
     12       1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     13       1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     14       1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     16       1.1     ragge  *    documentation and/or other materials provided with the distribution.
     17       1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     18       1.1     ragge  *    must display the following acknowledgement:
     19       1.1     ragge  *	This product includes software developed for the NetBSD Project by
     20       1.1     ragge  *	SUNET, Swedish University Computer Network.
     21       1.1     ragge  * 4. The name of SUNET may not be used to endorse or promote products
     22       1.1     ragge  *    derived from this software without specific prior written permission.
     23       1.1     ragge  *
     24       1.1     ragge  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25       1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26       1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27       1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28       1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29       1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30       1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31       1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32       1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33       1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34       1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     35       1.1     ragge  */
     36       1.1     ragge 
     37       1.1     ragge /*
     38       1.1     ragge  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39       1.1     ragge  * All rights reserved.
     40       1.1     ragge  *
     41       1.1     ragge  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42       1.1     ragge  *
     43       1.1     ragge  * Redistribution and use in source and binary forms, with or without
     44       1.1     ragge  * modification, are permitted provided that the following conditions
     45       1.1     ragge  * are met:
     46       1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     47       1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     48       1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     49       1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     50       1.1     ragge  *    documentation and/or other materials provided with the distribution.
     51       1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     52       1.1     ragge  *    must display the following acknowledgement:
     53       1.1     ragge  *	This product includes software developed for the NetBSD Project by
     54       1.1     ragge  *	Wasabi Systems, Inc.
     55       1.1     ragge  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56       1.1     ragge  *    or promote products derived from this software without specific prior
     57       1.1     ragge  *    written permission.
     58       1.1     ragge  *
     59       1.1     ragge  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60       1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61       1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62       1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63       1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64       1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65       1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66       1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67       1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68       1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69       1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     70       1.1     ragge  */
     71       1.1     ragge 
     72       1.1     ragge /*
     73       1.1     ragge  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74       1.1     ragge  *
     75       1.1     ragge  * TODO (in no specific order):
     76       1.1     ragge  *	HW VLAN support.
     77       1.1     ragge  *	TSE offloading (needs kernel changes...)
     78       1.1     ragge  *	RAIDC (receive interrupt delay adaptation)
     79       1.1     ragge  *	Use memory > 4GB.
     80       1.1     ragge  */
     81       1.1     ragge 
     82       1.1     ragge #include <sys/cdefs.h>
     83  1.29.2.1  uebayasi __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.29.2.1 2010/04/30 14:43:34 uebayasi Exp $");
     84       1.1     ragge 
     85       1.1     ragge #include "rnd.h"
     86       1.1     ragge 
     87       1.1     ragge #include <sys/param.h>
     88       1.1     ragge #include <sys/systm.h>
     89      1.10     perry #include <sys/callout.h>
     90       1.1     ragge #include <sys/mbuf.h>
     91       1.1     ragge #include <sys/malloc.h>
     92       1.1     ragge #include <sys/kernel.h>
     93       1.1     ragge #include <sys/socket.h>
     94       1.1     ragge #include <sys/ioctl.h>
     95       1.1     ragge #include <sys/errno.h>
     96       1.1     ragge #include <sys/device.h>
     97       1.1     ragge #include <sys/queue.h>
     98       1.1     ragge 
     99       1.1     ragge #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    100       1.1     ragge 
    101       1.1     ragge #if NRND > 0
    102       1.1     ragge #include <sys/rnd.h>
    103       1.1     ragge #endif
    104       1.1     ragge 
    105       1.1     ragge #include <net/if.h>
    106      1.10     perry #include <net/if_dl.h>
    107       1.1     ragge #include <net/if_media.h>
    108       1.1     ragge #include <net/if_ether.h>
    109       1.1     ragge 
    110       1.1     ragge #include <net/bpf.h>
    111       1.1     ragge 
    112       1.1     ragge #include <netinet/in.h>			/* XXX for struct ip */
    113       1.1     ragge #include <netinet/in_systm.h>		/* XXX for struct ip */
    114       1.1     ragge #include <netinet/ip.h>			/* XXX for struct ip */
    115       1.1     ragge #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    116       1.1     ragge 
    117      1.17        ad #include <sys/bus.h>
    118      1.17        ad #include <sys/intr.h>
    119       1.1     ragge #include <machine/endian.h>
    120       1.1     ragge 
    121       1.1     ragge #include <dev/mii/mii.h>
    122       1.1     ragge #include <dev/mii/miivar.h>
    123       1.1     ragge #include <dev/mii/mii_bitbang.h>
    124       1.1     ragge 
    125       1.1     ragge #include <dev/pci/pcireg.h>
    126       1.1     ragge #include <dev/pci/pcivar.h>
    127       1.1     ragge #include <dev/pci/pcidevs.h>
    128       1.1     ragge 
    129       1.1     ragge #include <dev/pci/if_dgereg.h>
    130       1.1     ragge 
    131       1.3     ragge /*
    132       1.3     ragge  * The receive engine may sometimes become off-by-one when writing back
    133       1.3     ragge  * chained descriptors.	 Avoid this by allocating a large chunk of
    134       1.3     ragge  * memory and use if instead (to avoid chained descriptors).
    135       1.3     ragge  * This only happens with chained descriptors under heavy load.
    136       1.3     ragge  */
    137       1.3     ragge #define DGE_OFFBYONE_RXBUG
    138       1.3     ragge 
    139       1.1     ragge #define DGE_EVENT_COUNTERS
    140       1.1     ragge #define DGE_DEBUG
    141       1.1     ragge 
    142       1.1     ragge #ifdef DGE_DEBUG
    143       1.3     ragge #define DGE_DEBUG_LINK		0x01
    144       1.3     ragge #define DGE_DEBUG_TX		0x02
    145       1.3     ragge #define DGE_DEBUG_RX		0x04
    146       1.3     ragge #define DGE_DEBUG_CKSUM		0x08
    147       1.1     ragge int	dge_debug = 0;
    148       1.1     ragge 
    149       1.3     ragge #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    150       1.1     ragge #else
    151       1.3     ragge #define DPRINTF(x, y)	/* nothing */
    152       1.1     ragge #endif /* DGE_DEBUG */
    153       1.1     ragge 
    154       1.1     ragge /*
    155       1.1     ragge  * Transmit descriptor list size. We allow up to 100 DMA segments per
    156       1.1     ragge  * packet (Intel reports of jumbo frame packets with as
    157       1.1     ragge  * many as 80 DMA segments when using 16k buffers).
    158       1.1     ragge  */
    159       1.3     ragge #define DGE_NTXSEGS		100
    160       1.3     ragge #define DGE_IFQUEUELEN		20000
    161       1.3     ragge #define DGE_TXQUEUELEN		2048
    162       1.3     ragge #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    163       1.3     ragge #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    164       1.3     ragge #define DGE_NTXDESC		1024
    165       1.3     ragge #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    166       1.3     ragge #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    167       1.3     ragge #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    168       1.1     ragge 
    169       1.1     ragge /*
    170       1.1     ragge  * Receive descriptor list size.
    171       1.1     ragge  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    172       1.3     ragge  * be chained.	Due to the nature of the card (high-speed), keep this
    173       1.1     ragge  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    174       1.1     ragge  * which at full speed will be received in just under 3ms.
    175       1.1     ragge  */
    176       1.3     ragge #define DGE_NRXDESC		2048
    177       1.3     ragge #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    178       1.3     ragge #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    179       1.1     ragge /*
    180       1.1     ragge  * # of descriptors between head and written descriptors.
    181       1.1     ragge  * This is to work-around two erratas.
    182       1.1     ragge  */
    183       1.1     ragge #define DGE_RXSPACE		10
    184       1.3     ragge #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    185       1.1     ragge /*
    186       1.1     ragge  * Receive descriptor fetch threshholds. These are values recommended
    187       1.1     ragge  * by Intel, do not touch them unless you know what you are doing.
    188       1.1     ragge  */
    189       1.3     ragge #define RXDCTL_PTHRESH_VAL	128
    190       1.3     ragge #define RXDCTL_HTHRESH_VAL	16
    191       1.3     ragge #define RXDCTL_WTHRESH_VAL	16
    192       1.1     ragge 
    193       1.1     ragge 
    194       1.1     ragge /*
    195       1.1     ragge  * Tweakable parameters; default values.
    196       1.1     ragge  */
    197       1.3     ragge #define FCRTH	0x30000 /* Send XOFF water mark */
    198       1.3     ragge #define FCRTL	0x28000 /* Send XON water mark */
    199       1.3     ragge #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    200       1.3     ragge #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    201       1.1     ragge 
    202       1.1     ragge /*
    203       1.1     ragge  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    204       1.1     ragge  * a single clump that maps to a single DMA segment to make serveral things
    205       1.1     ragge  * easier.
    206       1.1     ragge  */
    207       1.1     ragge struct dge_control_data {
    208       1.1     ragge 	/*
    209       1.1     ragge 	 * The transmit descriptors.
    210       1.1     ragge 	 */
    211       1.1     ragge 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    212       1.1     ragge 
    213       1.1     ragge 	/*
    214       1.1     ragge 	 * The receive descriptors.
    215       1.1     ragge 	 */
    216       1.1     ragge 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    217       1.1     ragge };
    218       1.1     ragge 
    219       1.3     ragge #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    220       1.3     ragge #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    221       1.3     ragge #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    222       1.1     ragge 
    223       1.1     ragge /*
    224       1.2     ragge  * The DGE interface have a higher max MTU size than normal jumbo frames.
    225       1.2     ragge  */
    226       1.3     ragge #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    227       1.2     ragge 
    228       1.2     ragge /*
    229       1.1     ragge  * Software state for transmit jobs.
    230       1.1     ragge  */
    231       1.1     ragge struct dge_txsoft {
    232       1.1     ragge 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    233       1.1     ragge 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    234       1.1     ragge 	int txs_firstdesc;		/* first descriptor in packet */
    235       1.1     ragge 	int txs_lastdesc;		/* last descriptor in packet */
    236       1.1     ragge 	int txs_ndesc;			/* # of descriptors used */
    237       1.1     ragge };
    238       1.1     ragge 
    239       1.1     ragge /*
    240       1.3     ragge  * Software state for receive buffers.	Each descriptor gets a
    241       1.3     ragge  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    242       1.1     ragge  * more than one buffer, we chain them together.
    243       1.1     ragge  */
    244       1.1     ragge struct dge_rxsoft {
    245       1.1     ragge 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    246       1.1     ragge 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    247       1.1     ragge };
    248       1.1     ragge 
    249       1.1     ragge /*
    250       1.1     ragge  * Software state per device.
    251       1.1     ragge  */
    252       1.1     ragge struct dge_softc {
    253       1.1     ragge 	struct device sc_dev;		/* generic device information */
    254       1.1     ragge 	bus_space_tag_t sc_st;		/* bus space tag */
    255       1.1     ragge 	bus_space_handle_t sc_sh;	/* bus space handle */
    256       1.1     ragge 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    257       1.1     ragge 	struct ethercom sc_ethercom;	/* ethernet common data */
    258       1.1     ragge 
    259       1.1     ragge 	int sc_flags;			/* flags; see below */
    260       1.1     ragge 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    261       1.1     ragge 	int sc_pcix_offset;		/* PCIX capability register offset */
    262       1.1     ragge 
    263       1.1     ragge 	pci_chipset_tag_t sc_pc;
    264       1.1     ragge 	pcitag_t sc_pt;
    265       1.1     ragge 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    266       1.1     ragge 
    267       1.1     ragge 	void *sc_ih;			/* interrupt cookie */
    268       1.1     ragge 
    269       1.1     ragge 	struct ifmedia sc_media;
    270       1.1     ragge 
    271       1.1     ragge 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    272       1.3     ragge #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    273       1.1     ragge 
    274       1.1     ragge 	int		sc_align_tweak;
    275       1.1     ragge 
    276       1.1     ragge 	/*
    277       1.1     ragge 	 * Software state for the transmit and receive descriptors.
    278       1.1     ragge 	 */
    279       1.1     ragge 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    280       1.1     ragge 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    281       1.1     ragge 
    282       1.1     ragge 	/*
    283       1.1     ragge 	 * Control data structures.
    284       1.1     ragge 	 */
    285       1.1     ragge 	struct dge_control_data *sc_control_data;
    286       1.3     ragge #define sc_txdescs	sc_control_data->wcd_txdescs
    287       1.3     ragge #define sc_rxdescs	sc_control_data->wcd_rxdescs
    288       1.1     ragge 
    289       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    290       1.1     ragge 	/* Event counters. */
    291       1.1     ragge 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    292       1.1     ragge 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    293       1.3     ragge 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    294       1.1     ragge 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    295       1.1     ragge 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    296       1.1     ragge 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    297       1.1     ragge 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    298       1.1     ragge 
    299       1.1     ragge 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    300       1.1     ragge 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    301       1.1     ragge 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    302       1.1     ragge 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    303       1.1     ragge 
    304       1.1     ragge 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    305       1.1     ragge 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    306       1.1     ragge 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    307       1.1     ragge 
    308       1.1     ragge 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    309       1.1     ragge 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    310       1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    311       1.1     ragge 
    312       1.1     ragge 	int	sc_txfree;		/* number of free Tx descriptors */
    313       1.1     ragge 	int	sc_txnext;		/* next ready Tx descriptor */
    314       1.1     ragge 
    315       1.1     ragge 	int	sc_txsfree;		/* number of free Tx jobs */
    316       1.1     ragge 	int	sc_txsnext;		/* next free Tx job */
    317       1.1     ragge 	int	sc_txsdirty;		/* dirty Tx jobs */
    318       1.1     ragge 
    319       1.1     ragge 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    320       1.1     ragge 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    321       1.1     ragge 
    322       1.1     ragge 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    323       1.1     ragge 	int	sc_rxdiscard;
    324       1.1     ragge 	int	sc_rxlen;
    325       1.1     ragge 	struct mbuf *sc_rxhead;
    326       1.1     ragge 	struct mbuf *sc_rxtail;
    327       1.1     ragge 	struct mbuf **sc_rxtailp;
    328       1.1     ragge 
    329       1.1     ragge 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    330       1.1     ragge 	uint32_t sc_icr;		/* prototype interrupt bits */
    331       1.1     ragge 	uint32_t sc_tctl;		/* prototype TCTL register */
    332       1.1     ragge 	uint32_t sc_rctl;		/* prototype RCTL register */
    333       1.1     ragge 
    334       1.1     ragge 	int sc_mchash_type;		/* multicast filter offset */
    335       1.1     ragge 
    336       1.1     ragge 	uint16_t sc_eeprom[EEPROM_SIZE];
    337       1.1     ragge 
    338       1.1     ragge #if NRND > 0
    339       1.3     ragge 	rndsource_element_t rnd_source; /* random source */
    340       1.3     ragge #endif
    341       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    342      1.15  christos 	void *sc_bugbuf;
    343       1.3     ragge 	SLIST_HEAD(, rxbugentry) sc_buglist;
    344       1.3     ragge 	bus_dmamap_t sc_bugmap;
    345       1.3     ragge 	struct rxbugentry *sc_entry;
    346       1.1     ragge #endif
    347       1.1     ragge };
    348       1.1     ragge 
    349       1.3     ragge #define DGE_RXCHAIN_RESET(sc)						\
    350       1.1     ragge do {									\
    351       1.1     ragge 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    352       1.1     ragge 	*(sc)->sc_rxtailp = NULL;					\
    353       1.1     ragge 	(sc)->sc_rxlen = 0;						\
    354       1.1     ragge } while (/*CONSTCOND*/0)
    355       1.1     ragge 
    356       1.3     ragge #define DGE_RXCHAIN_LINK(sc, m)						\
    357       1.1     ragge do {									\
    358       1.1     ragge 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    359       1.1     ragge 	(sc)->sc_rxtailp = &(m)->m_next;				\
    360       1.1     ragge } while (/*CONSTCOND*/0)
    361       1.1     ragge 
    362       1.1     ragge /* sc_flags */
    363       1.3     ragge #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    364       1.3     ragge #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    365       1.1     ragge 
    366       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    367       1.3     ragge #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    368       1.1     ragge #else
    369       1.3     ragge #define DGE_EVCNT_INCR(ev)	/* nothing */
    370       1.1     ragge #endif
    371       1.1     ragge 
    372       1.3     ragge #define CSR_READ(sc, reg)						\
    373       1.1     ragge 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    374       1.3     ragge #define CSR_WRITE(sc, reg, val)						\
    375       1.1     ragge 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    376       1.1     ragge 
    377       1.3     ragge #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    378       1.3     ragge #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    379       1.1     ragge 
    380       1.3     ragge #define DGE_CDTXSYNC(sc, x, n, ops)					\
    381       1.1     ragge do {									\
    382       1.1     ragge 	int __x, __n;							\
    383       1.1     ragge 									\
    384       1.1     ragge 	__x = (x);							\
    385       1.1     ragge 	__n = (n);							\
    386       1.1     ragge 									\
    387       1.1     ragge 	/* If it will wrap around, sync to the end of the ring. */	\
    388       1.5   thorpej 	if ((__x + __n) > DGE_NTXDESC) {				\
    389       1.1     ragge 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    390       1.1     ragge 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    391       1.5   thorpej 		    (DGE_NTXDESC - __x), (ops));			\
    392       1.1     ragge 		__n -= (DGE_NTXDESC - __x);				\
    393       1.1     ragge 		__x = 0;						\
    394       1.1     ragge 	}								\
    395       1.1     ragge 									\
    396       1.1     ragge 	/* Now sync whatever is left. */				\
    397       1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    398       1.1     ragge 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    399       1.1     ragge } while (/*CONSTCOND*/0)
    400       1.1     ragge 
    401       1.3     ragge #define DGE_CDRXSYNC(sc, x, ops)						\
    402       1.1     ragge do {									\
    403       1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    404       1.1     ragge 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    405       1.1     ragge } while (/*CONSTCOND*/0)
    406       1.1     ragge 
    407       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    408       1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    409       1.3     ragge do {									\
    410       1.3     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    411       1.3     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    412       1.3     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    413       1.3     ragge 									\
    414       1.3     ragge 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    415       1.3     ragge 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    416       1.3     ragge 	__rxd->dr_baddrh = 0;						\
    417       1.3     ragge 	__rxd->dr_len = 0;						\
    418       1.3     ragge 	__rxd->dr_cksum = 0;						\
    419       1.3     ragge 	__rxd->dr_status = 0;						\
    420       1.3     ragge 	__rxd->dr_errors = 0;						\
    421       1.3     ragge 	__rxd->dr_special = 0;						\
    422       1.3     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    423       1.3     ragge 									\
    424       1.3     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    425       1.3     ragge } while (/*CONSTCOND*/0)
    426       1.3     ragge #else
    427       1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    428       1.1     ragge do {									\
    429       1.1     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    430       1.1     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    431       1.1     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    432       1.1     ragge 									\
    433       1.1     ragge 	/*								\
    434       1.1     ragge 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    435       1.1     ragge 	 * so that the payload after the Ethernet header is aligned	\
    436       1.1     ragge 	 * to a 4-byte boundary.					\
    437       1.1     ragge 	 *								\
    438       1.1     ragge 	 * XXX BRAINDAMAGE ALERT!					\
    439       1.1     ragge 	 * The stupid chip uses the same size for every buffer, which	\
    440       1.3     ragge 	 * is set in the Receive Control register.  We are using the 2K \
    441       1.1     ragge 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    442       1.1     ragge 	 * reason, we can't "scoot" packets longer than the standard	\
    443       1.1     ragge 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    444       1.1     ragge 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    445       1.1     ragge 	 * the upper layer copy the headers.				\
    446       1.1     ragge 	 */								\
    447       1.1     ragge 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    448       1.1     ragge 									\
    449       1.5   thorpej 	__rxd->dr_baddrl =						\
    450       1.3     ragge 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    451       1.1     ragge 		(sc)->sc_align_tweak);					\
    452       1.5   thorpej 	__rxd->dr_baddrh = 0;						\
    453       1.1     ragge 	__rxd->dr_len = 0;						\
    454       1.1     ragge 	__rxd->dr_cksum = 0;						\
    455       1.1     ragge 	__rxd->dr_status = 0;						\
    456       1.1     ragge 	__rxd->dr_errors = 0;						\
    457       1.1     ragge 	__rxd->dr_special = 0;						\
    458       1.1     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    459       1.1     ragge 									\
    460       1.1     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    461       1.1     ragge } while (/*CONSTCOND*/0)
    462       1.3     ragge #endif
    463       1.3     ragge 
    464       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    465       1.3     ragge /*
    466       1.3     ragge  * Allocation constants.  Much memory may be used for this.
    467       1.3     ragge  */
    468       1.3     ragge #ifndef DGE_BUFFER_SIZE
    469       1.3     ragge #define DGE_BUFFER_SIZE DGE_MAX_MTU
    470       1.3     ragge #endif
    471       1.3     ragge #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    472       1.3     ragge #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    473       1.3     ragge 
    474       1.3     ragge struct rxbugentry {
    475       1.3     ragge 	SLIST_ENTRY(rxbugentry) rb_entry;
    476       1.3     ragge 	int rb_slot;
    477       1.3     ragge };
    478       1.3     ragge 
    479       1.3     ragge static int
    480       1.3     ragge dge_alloc_rcvmem(struct dge_softc *sc)
    481       1.3     ragge {
    482      1.15  christos 	char *ptr, *kva;
    483       1.3     ragge 	bus_dma_segment_t seg;
    484       1.3     ragge 	int i, rseg, state, error;
    485       1.3     ragge 	struct rxbugentry *entry;
    486       1.3     ragge 
    487       1.3     ragge 	state = error = 0;
    488       1.3     ragge 
    489       1.3     ragge 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    490       1.3     ragge 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    491      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
    492       1.3     ragge 		return ENOBUFS;
    493       1.3     ragge 	}
    494       1.3     ragge 
    495       1.3     ragge 	state = 1;
    496      1.15  christos 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    497       1.3     ragge 	    BUS_DMA_NOWAIT)) {
    498      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
    499      1.21    cegger 		    (int)DGE_RXMEM);
    500       1.3     ragge 		error = ENOBUFS;
    501       1.3     ragge 		goto out;
    502       1.3     ragge 	}
    503       1.3     ragge 
    504       1.3     ragge 	state = 2;
    505       1.3     ragge 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    506       1.3     ragge 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    507      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
    508       1.3     ragge 		error = ENOBUFS;
    509       1.3     ragge 		goto out;
    510       1.3     ragge 	}
    511       1.3     ragge 
    512       1.3     ragge 	state = 3;
    513       1.3     ragge 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    514       1.3     ragge 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    515      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
    516       1.3     ragge 		error = ENOBUFS;
    517       1.3     ragge 		goto out;
    518       1.3     ragge 	}
    519       1.3     ragge 
    520       1.3     ragge 	state = 4;
    521      1.15  christos 	sc->sc_bugbuf = (void *)kva;
    522       1.3     ragge 	SLIST_INIT(&sc->sc_buglist);
    523       1.3     ragge 
    524       1.3     ragge 	/*
    525       1.3     ragge 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    526       1.3     ragge 	 * in an array.
    527       1.3     ragge 	 */
    528       1.3     ragge 	ptr = sc->sc_bugbuf;
    529       1.3     ragge 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    530       1.3     ragge 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    531       1.3     ragge 		error = ENOBUFS;
    532       1.3     ragge 		goto out;
    533       1.3     ragge 	}
    534       1.3     ragge 	sc->sc_entry = entry;
    535       1.3     ragge 	for (i = 0; i < DGE_NBUFFERS; i++) {
    536       1.3     ragge 		entry[i].rb_slot = i;
    537       1.3     ragge 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    538       1.3     ragge 	}
    539       1.3     ragge out:
    540       1.3     ragge 	if (error != 0) {
    541       1.3     ragge 		switch (state) {
    542       1.3     ragge 		case 4:
    543       1.3     ragge 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    544       1.3     ragge 		case 3:
    545       1.3     ragge 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    546       1.3     ragge 		case 2:
    547       1.3     ragge 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    548       1.3     ragge 		case 1:
    549       1.3     ragge 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    550       1.3     ragge 			break;
    551       1.3     ragge 		default:
    552       1.3     ragge 			break;
    553       1.3     ragge 		}
    554       1.3     ragge 	}
    555       1.3     ragge 
    556       1.3     ragge 	return error;
    557       1.3     ragge }
    558       1.3     ragge 
    559       1.3     ragge /*
    560       1.3     ragge  * Allocate a jumbo buffer.
    561       1.3     ragge  */
    562       1.3     ragge static void *
    563       1.3     ragge dge_getbuf(struct dge_softc *sc)
    564       1.3     ragge {
    565       1.3     ragge 	struct rxbugentry *entry;
    566       1.3     ragge 
    567       1.3     ragge 	entry = SLIST_FIRST(&sc->sc_buglist);
    568       1.3     ragge 
    569       1.3     ragge 	if (entry == NULL) {
    570      1.21    cegger 		printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
    571       1.3     ragge 		return(NULL);
    572       1.3     ragge 	}
    573       1.3     ragge 
    574       1.3     ragge 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    575      1.15  christos 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    576       1.3     ragge }
    577       1.3     ragge 
    578       1.3     ragge /*
    579       1.3     ragge  * Release a jumbo buffer.
    580       1.3     ragge  */
    581       1.3     ragge static void
    582      1.15  christos dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    583       1.3     ragge {
    584       1.3     ragge 	struct rxbugentry *entry;
    585       1.3     ragge 	struct dge_softc *sc;
    586       1.3     ragge 	int i, s;
    587       1.3     ragge 
    588       1.3     ragge 	/* Extract the softc struct pointer. */
    589       1.3     ragge 	sc = (struct dge_softc *)arg;
    590       1.3     ragge 
    591       1.3     ragge 	if (sc == NULL)
    592       1.3     ragge 		panic("dge_freebuf: can't find softc pointer!");
    593       1.3     ragge 
    594       1.3     ragge 	/* calculate the slot this buffer belongs to */
    595       1.3     ragge 
    596      1.15  christos 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    597       1.3     ragge 
    598       1.3     ragge 	if ((i < 0) || (i >= DGE_NBUFFERS))
    599       1.3     ragge 		panic("dge_freebuf: asked to free buffer %d!", i);
    600       1.3     ragge 
    601       1.3     ragge 	s = splvm();
    602       1.3     ragge 	entry = sc->sc_entry + i;
    603       1.3     ragge 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    604       1.3     ragge 
    605       1.3     ragge 	if (__predict_true(m != NULL))
    606      1.18        ad 		pool_cache_put(mb_cache, m);
    607       1.3     ragge 	splx(s);
    608       1.3     ragge }
    609       1.3     ragge #endif
    610       1.1     ragge 
    611       1.1     ragge static void	dge_start(struct ifnet *);
    612       1.1     ragge static void	dge_watchdog(struct ifnet *);
    613      1.15  christos static int	dge_ioctl(struct ifnet *, u_long, void *);
    614       1.1     ragge static int	dge_init(struct ifnet *);
    615       1.1     ragge static void	dge_stop(struct ifnet *, int);
    616       1.1     ragge 
    617      1.27   tsutsui static bool	dge_shutdown(device_t, int);
    618       1.1     ragge 
    619       1.1     ragge static void	dge_reset(struct dge_softc *);
    620       1.1     ragge static void	dge_rxdrain(struct dge_softc *);
    621       1.1     ragge static int	dge_add_rxbuf(struct dge_softc *, int);
    622       1.1     ragge 
    623       1.1     ragge static void	dge_set_filter(struct dge_softc *);
    624       1.1     ragge 
    625       1.1     ragge static int	dge_intr(void *);
    626       1.1     ragge static void	dge_txintr(struct dge_softc *);
    627       1.1     ragge static void	dge_rxintr(struct dge_softc *);
    628       1.1     ragge static void	dge_linkintr(struct dge_softc *, uint32_t);
    629       1.1     ragge 
    630      1.25    cegger static int	dge_match(device_t, cfdata_t, void *);
    631      1.25    cegger static void	dge_attach(device_t, device_t, void *);
    632       1.1     ragge 
    633       1.1     ragge static int	dge_read_eeprom(struct dge_softc *sc);
    634       1.1     ragge static int	dge_eeprom_clockin(struct dge_softc *sc);
    635       1.1     ragge static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    636       1.1     ragge static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    637       1.1     ragge static int	dge_xgmii_mediachange(struct ifnet *);
    638       1.1     ragge static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    639       1.1     ragge static void	dge_xgmii_reset(struct dge_softc *);
    640      1.25    cegger static void	dge_xgmii_writereg(device_t, int, int, int);
    641       1.1     ragge 
    642       1.1     ragge 
    643       1.1     ragge CFATTACH_DECL(dge, sizeof(struct dge_softc),
    644       1.1     ragge     dge_match, dge_attach, NULL, NULL);
    645       1.1     ragge 
    646       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    647       1.1     ragge #if DGE_NTXSEGS > 100
    648       1.1     ragge #error Update dge_txseg_evcnt_names
    649       1.1     ragge #endif
    650       1.1     ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    651       1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    652       1.1     ragge 
    653       1.1     ragge static int
    654      1.25    cegger dge_match(device_t parent, cfdata_t cf, void *aux)
    655       1.1     ragge {
    656       1.1     ragge 	struct pci_attach_args *pa = aux;
    657       1.1     ragge 
    658       1.1     ragge 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    659       1.1     ragge 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    660       1.1     ragge 		return (1);
    661       1.1     ragge 
    662       1.1     ragge 	return (0);
    663       1.1     ragge }
    664       1.1     ragge 
    665       1.1     ragge static void
    666      1.25    cegger dge_attach(device_t parent, device_t self, void *aux)
    667       1.1     ragge {
    668      1.26    cegger 	struct dge_softc *sc = device_private(self);
    669       1.1     ragge 	struct pci_attach_args *pa = aux;
    670       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    671       1.1     ragge 	pci_chipset_tag_t pc = pa->pa_pc;
    672       1.1     ragge 	pci_intr_handle_t ih;
    673       1.1     ragge 	const char *intrstr = NULL;
    674       1.1     ragge 	bus_dma_segment_t seg;
    675       1.1     ragge 	int i, rseg, error;
    676       1.1     ragge 	uint8_t enaddr[ETHER_ADDR_LEN];
    677       1.1     ragge 	pcireg_t preg, memtype;
    678       1.1     ragge 	uint32_t reg;
    679       1.1     ragge 
    680       1.1     ragge 	sc->sc_dmat = pa->pa_dmat;
    681       1.1     ragge 	sc->sc_pc = pa->pa_pc;
    682       1.1     ragge 	sc->sc_pt = pa->pa_tag;
    683       1.1     ragge 
    684       1.1     ragge 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    685       1.1     ragge 	aprint_naive(": Ethernet controller\n");
    686       1.1     ragge 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    687       1.1     ragge 
    688       1.1     ragge 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    689       1.1     ragge         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    690       1.1     ragge             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    691      1.21    cegger                 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    692       1.1     ragge                 return;
    693       1.1     ragge         }
    694       1.1     ragge 
    695       1.1     ragge 	/* Enable bus mastering */
    696       1.1     ragge 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    697       1.1     ragge 	preg |= PCI_COMMAND_MASTER_ENABLE;
    698       1.1     ragge 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    699       1.1     ragge 
    700       1.1     ragge 	/*
    701       1.1     ragge 	 * Map and establish our interrupt.
    702       1.1     ragge 	 */
    703       1.1     ragge 	if (pci_intr_map(pa, &ih)) {
    704      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    705       1.1     ragge 		return;
    706       1.1     ragge 	}
    707       1.1     ragge 	intrstr = pci_intr_string(pc, ih);
    708       1.1     ragge 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    709       1.1     ragge 	if (sc->sc_ih == NULL) {
    710      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    711       1.1     ragge 		if (intrstr != NULL)
    712      1.28     njoly 			aprint_error(" at %s", intrstr);
    713      1.28     njoly 		aprint_error("\n");
    714       1.1     ragge 		return;
    715       1.1     ragge 	}
    716      1.21    cegger 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    717       1.1     ragge 
    718       1.1     ragge 	/*
    719       1.1     ragge 	 * Determine a few things about the bus we're connected to.
    720       1.1     ragge 	 */
    721       1.1     ragge 	reg = CSR_READ(sc, DGE_STATUS);
    722       1.1     ragge 	if (reg & STATUS_BUS64)
    723       1.1     ragge 		sc->sc_flags |= DGE_F_BUS64;
    724       1.1     ragge 
    725       1.1     ragge 	sc->sc_flags |= DGE_F_PCIX;
    726       1.1     ragge 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    727       1.1     ragge 			       PCI_CAP_PCIX,
    728       1.1     ragge 			       &sc->sc_pcix_offset, NULL) == 0)
    729      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
    730      1.21    cegger 		    "capability\n");
    731       1.1     ragge 
    732       1.1     ragge 	if (sc->sc_flags & DGE_F_PCIX) {
    733       1.1     ragge 		switch (reg & STATUS_PCIX_MSK) {
    734       1.1     ragge 		case STATUS_PCIX_66:
    735       1.1     ragge 			sc->sc_bus_speed = 66;
    736       1.1     ragge 			break;
    737       1.1     ragge 		case STATUS_PCIX_100:
    738       1.1     ragge 			sc->sc_bus_speed = 100;
    739       1.1     ragge 			break;
    740       1.1     ragge 		case STATUS_PCIX_133:
    741       1.1     ragge 			sc->sc_bus_speed = 133;
    742       1.1     ragge 			break;
    743       1.1     ragge 		default:
    744      1.21    cegger 			aprint_error_dev(&sc->sc_dev,
    745      1.21    cegger 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    746       1.1     ragge 			    reg & STATUS_PCIX_MSK);
    747       1.1     ragge 			sc->sc_bus_speed = 66;
    748       1.1     ragge 		}
    749       1.1     ragge 	} else
    750       1.1     ragge 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    751      1.21    cegger 	aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
    752       1.1     ragge 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    753       1.1     ragge 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    754       1.1     ragge 
    755       1.1     ragge 	/*
    756       1.1     ragge 	 * Allocate the control data structures, and create and load the
    757       1.1     ragge 	 * DMA map for it.
    758       1.1     ragge 	 */
    759       1.1     ragge 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    760       1.1     ragge 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    761       1.1     ragge 	    0)) != 0) {
    762      1.21    cegger 		aprint_error_dev(&sc->sc_dev,
    763      1.21    cegger 		    "unable to allocate control data, error = %d\n",
    764      1.21    cegger 		    error);
    765       1.1     ragge 		goto fail_0;
    766       1.1     ragge 	}
    767       1.1     ragge 
    768       1.1     ragge 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    769      1.15  christos 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    770       1.1     ragge 	    0)) != 0) {
    771      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    772      1.21    cegger 		    error);
    773       1.1     ragge 		goto fail_1;
    774       1.1     ragge 	}
    775       1.1     ragge 
    776       1.1     ragge 	if ((error = bus_dmamap_create(sc->sc_dmat,
    777       1.1     ragge 	    sizeof(struct dge_control_data), 1,
    778       1.1     ragge 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    779      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    780      1.21    cegger 		    "error = %d\n", error);
    781       1.1     ragge 		goto fail_2;
    782       1.1     ragge 	}
    783       1.1     ragge 
    784       1.1     ragge 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    785       1.1     ragge 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    786       1.1     ragge 	    0)) != 0) {
    787      1.21    cegger 		aprint_error_dev(&sc->sc_dev,
    788      1.21    cegger 		    "unable to load control data DMA map, error = %d\n",
    789      1.21    cegger 		    error);
    790       1.1     ragge 		goto fail_3;
    791       1.1     ragge 	}
    792       1.1     ragge 
    793      1.10     perry #ifdef DGE_OFFBYONE_RXBUG
    794       1.3     ragge 	if (dge_alloc_rcvmem(sc) != 0)
    795       1.3     ragge 		return; /* Already complained */
    796       1.3     ragge #endif
    797       1.1     ragge 	/*
    798       1.1     ragge 	 * Create the transmit buffer DMA maps.
    799       1.1     ragge 	 */
    800       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    801       1.2     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    802       1.1     ragge 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    803       1.1     ragge 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    804      1.21    cegger 			aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
    805      1.21    cegger 			    "error = %d\n", i, error);
    806       1.1     ragge 			goto fail_4;
    807       1.1     ragge 		}
    808       1.1     ragge 	}
    809       1.1     ragge 
    810       1.1     ragge 	/*
    811       1.1     ragge 	 * Create the receive buffer DMA maps.
    812       1.1     ragge 	 */
    813       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    814       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    815       1.3     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    816       1.3     ragge 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    817       1.3     ragge #else
    818       1.1     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    819       1.1     ragge 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    820       1.3     ragge #endif
    821      1.21    cegger 			aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
    822      1.21    cegger 			    "error = %d\n", i, error);
    823       1.1     ragge 			goto fail_5;
    824       1.1     ragge 		}
    825       1.1     ragge 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    826       1.1     ragge 	}
    827       1.1     ragge 
    828       1.1     ragge 	/*
    829       1.1     ragge 	 * Set bits in ctrl0 register.
    830       1.1     ragge 	 * Should get the software defined pins out of EEPROM?
    831       1.1     ragge 	 */
    832       1.1     ragge 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    833       1.1     ragge 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    834       1.1     ragge 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    835       1.1     ragge 
    836       1.1     ragge 	/*
    837       1.1     ragge 	 * Reset the chip to a known state.
    838       1.1     ragge 	 */
    839       1.1     ragge 	dge_reset(sc);
    840       1.1     ragge 
    841       1.1     ragge 	/*
    842       1.1     ragge 	 * Reset the PHY.
    843       1.1     ragge 	 */
    844       1.1     ragge 	dge_xgmii_reset(sc);
    845       1.1     ragge 
    846       1.1     ragge 	/*
    847       1.1     ragge 	 * Read in EEPROM data.
    848       1.1     ragge 	 */
    849       1.1     ragge 	if (dge_read_eeprom(sc)) {
    850      1.21    cegger 		aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
    851       1.1     ragge 		return;
    852       1.1     ragge 	}
    853       1.1     ragge 
    854       1.1     ragge 	/*
    855       1.1     ragge 	 * Get the ethernet address.
    856       1.1     ragge 	 */
    857       1.1     ragge 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    858       1.1     ragge 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    859       1.1     ragge 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    860       1.1     ragge 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    861       1.1     ragge 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    862       1.1     ragge 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    863       1.1     ragge 
    864      1.21    cegger 	aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
    865       1.1     ragge 	    ether_sprintf(enaddr));
    866       1.1     ragge 
    867       1.1     ragge 	/*
    868       1.1     ragge 	 * Setup media stuff.
    869       1.1     ragge 	 */
    870       1.1     ragge         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    871       1.1     ragge             dge_xgmii_mediastatus);
    872       1.1     ragge         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    873       1.1     ragge         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    874       1.1     ragge 
    875       1.1     ragge 	ifp = &sc->sc_ethercom.ec_if;
    876      1.21    cegger 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    877       1.1     ragge 	ifp->if_softc = sc;
    878       1.1     ragge 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    879       1.1     ragge 	ifp->if_ioctl = dge_ioctl;
    880       1.1     ragge 	ifp->if_start = dge_start;
    881       1.1     ragge 	ifp->if_watchdog = dge_watchdog;
    882       1.1     ragge 	ifp->if_init = dge_init;
    883       1.1     ragge 	ifp->if_stop = dge_stop;
    884       1.1     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    885       1.1     ragge 	IFQ_SET_READY(&ifp->if_snd);
    886       1.1     ragge 
    887       1.1     ragge 	sc->sc_ethercom.ec_capabilities |=
    888       1.1     ragge 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    889       1.1     ragge 
    890       1.1     ragge 	/*
    891       1.1     ragge 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    892       1.1     ragge 	 */
    893       1.1     ragge 	ifp->if_capabilities |=
    894      1.11      yamt 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    895      1.11      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    896      1.11      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    897       1.1     ragge 
    898       1.1     ragge 	/*
    899       1.1     ragge 	 * Attach the interface.
    900       1.1     ragge 	 */
    901       1.1     ragge 	if_attach(ifp);
    902       1.1     ragge 	ether_ifattach(ifp, enaddr);
    903       1.1     ragge #if NRND > 0
    904      1.21    cegger 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    905       1.1     ragge 	    RND_TYPE_NET, 0);
    906       1.1     ragge #endif
    907       1.1     ragge 
    908       1.1     ragge #ifdef DGE_EVENT_COUNTERS
    909       1.1     ragge 	/* Fix segment event naming */
    910       1.1     ragge 	if (dge_txseg_evcnt_names == NULL) {
    911       1.1     ragge 		dge_txseg_evcnt_names =
    912       1.1     ragge 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    913       1.1     ragge 		for (i = 0; i < DGE_NTXSEGS; i++)
    914       1.4    itojun 			snprintf((*dge_txseg_evcnt_names)[i],
    915       1.4    itojun 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    916       1.1     ragge 	}
    917       1.1     ragge 
    918       1.1     ragge 	/* Attach event counters. */
    919       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    920      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txsstall");
    921       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    922      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txdstall");
    923       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    924      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
    925       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    926      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txdw");
    927       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    928      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txqe");
    929       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    930      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "rxintr");
    931       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    932      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "linkintr");
    933       1.1     ragge 
    934       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    935      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "rxipsum");
    936       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    937      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "rxtusum");
    938       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    939      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txipsum");
    940       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    941      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txtusum");
    942       1.1     ragge 
    943       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    944      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txctx init");
    945       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    946      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txctx hit");
    947       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    948      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txctx miss");
    949       1.1     ragge 
    950       1.1     ragge 	for (i = 0; i < DGE_NTXSEGS; i++)
    951       1.1     ragge 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    952      1.21    cegger 		    NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    953       1.1     ragge 
    954       1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    955      1.21    cegger 	    NULL, device_xname(&sc->sc_dev), "txdrop");
    956       1.1     ragge 
    957       1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    958       1.1     ragge 
    959       1.1     ragge 	/*
    960       1.1     ragge 	 * Make sure the interface is shutdown during reboot.
    961       1.1     ragge 	 */
    962      1.27   tsutsui 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
    963      1.27   tsutsui 		pmf_class_network_register(self, ifp);
    964      1.27   tsutsui 	else
    965      1.27   tsutsui 		aprint_error_dev(self, "couldn't establish power handler\n");
    966      1.27   tsutsui 
    967       1.1     ragge 	return;
    968       1.1     ragge 
    969       1.1     ragge 	/*
    970       1.1     ragge 	 * Free any resources we've allocated during the failed attach
    971       1.1     ragge 	 * attempt.  Do this in reverse order and fall through.
    972       1.1     ragge 	 */
    973       1.1     ragge  fail_5:
    974       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    975       1.1     ragge 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    976       1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    977       1.1     ragge 			    sc->sc_rxsoft[i].rxs_dmamap);
    978       1.1     ragge 	}
    979       1.1     ragge  fail_4:
    980       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    981       1.1     ragge 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    982       1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    983       1.1     ragge 			    sc->sc_txsoft[i].txs_dmamap);
    984       1.1     ragge 	}
    985       1.1     ragge 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    986       1.1     ragge  fail_3:
    987       1.1     ragge 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    988       1.1     ragge  fail_2:
    989      1.15  christos 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    990       1.1     ragge 	    sizeof(struct dge_control_data));
    991       1.1     ragge  fail_1:
    992       1.1     ragge 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    993       1.1     ragge  fail_0:
    994       1.1     ragge 	return;
    995       1.1     ragge }
    996       1.1     ragge 
    997       1.1     ragge /*
    998       1.1     ragge  * dge_shutdown:
    999       1.1     ragge  *
   1000       1.1     ragge  *	Make sure the interface is stopped at reboot time.
   1001       1.1     ragge  */
   1002      1.27   tsutsui static bool
   1003      1.27   tsutsui dge_shutdown(device_t self, int howto)
   1004       1.1     ragge {
   1005      1.27   tsutsui 	struct dge_softc *sc;
   1006       1.1     ragge 
   1007      1.27   tsutsui 	sc = device_private(self);
   1008       1.1     ragge 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1009      1.27   tsutsui 
   1010      1.27   tsutsui 	return true;
   1011       1.1     ragge }
   1012       1.1     ragge 
   1013       1.1     ragge /*
   1014       1.1     ragge  * dge_tx_cksum:
   1015       1.1     ragge  *
   1016       1.1     ragge  *	Set up TCP/IP checksumming parameters for the
   1017       1.1     ragge  *	specified packet.
   1018       1.1     ragge  */
   1019       1.1     ragge static int
   1020       1.1     ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1021       1.1     ragge {
   1022       1.1     ragge 	struct mbuf *m0 = txs->txs_mbuf;
   1023       1.1     ragge 	struct dge_ctdes *t;
   1024       1.1     ragge 	uint32_t ipcs, tucs;
   1025       1.1     ragge 	struct ether_header *eh;
   1026       1.1     ragge 	int offset, iphl;
   1027       1.1     ragge 	uint8_t fields = 0;
   1028       1.1     ragge 
   1029       1.1     ragge 	/*
   1030       1.1     ragge 	 * XXX It would be nice if the mbuf pkthdr had offset
   1031       1.1     ragge 	 * fields for the protocol headers.
   1032       1.1     ragge 	 */
   1033       1.1     ragge 
   1034       1.1     ragge 	eh = mtod(m0, struct ether_header *);
   1035       1.1     ragge 	switch (htons(eh->ether_type)) {
   1036       1.1     ragge 	case ETHERTYPE_IP:
   1037       1.1     ragge 		offset = ETHER_HDR_LEN;
   1038       1.1     ragge 		break;
   1039       1.1     ragge 
   1040       1.1     ragge 	case ETHERTYPE_VLAN:
   1041       1.1     ragge 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1042       1.1     ragge 		break;
   1043       1.1     ragge 
   1044       1.1     ragge 	default:
   1045       1.1     ragge 		/*
   1046       1.1     ragge 		 * Don't support this protocol or encapsulation.
   1047       1.1     ragge 		 */
   1048       1.1     ragge 		*fieldsp = 0;
   1049       1.1     ragge 		return (0);
   1050       1.1     ragge 	}
   1051       1.1     ragge 
   1052       1.9   thorpej 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1053       1.1     ragge 
   1054       1.1     ragge 	/*
   1055       1.1     ragge 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1056       1.1     ragge 	 * offload feature, if we load the context descriptor, we
   1057       1.1     ragge 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1058       1.1     ragge 	 */
   1059       1.1     ragge 
   1060       1.1     ragge 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1061       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1062       1.1     ragge 		fields |= TDESC_POPTS_IXSM;
   1063       1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1064       1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1065       1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1066       1.1     ragge 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1067       1.1     ragge 		/* Use the cached value. */
   1068       1.1     ragge 		ipcs = sc->sc_txctx_ipcs;
   1069       1.1     ragge 	} else {
   1070       1.1     ragge 		/* Just initialize it to the likely value anyway. */
   1071       1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1072       1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1073       1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1074       1.1     ragge 	}
   1075       1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1076      1.10     perry 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1077      1.21    cegger 	    device_xname(&sc->sc_dev), offset, ipcs));
   1078       1.1     ragge 
   1079       1.1     ragge 	offset += iphl;
   1080       1.1     ragge 
   1081       1.1     ragge 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1082       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1083       1.1     ragge 		fields |= TDESC_POPTS_TXSM;
   1084       1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1085       1.9   thorpej 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1086       1.8      heas 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1087       1.1     ragge 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1088       1.1     ragge 		/* Use the cached value. */
   1089       1.1     ragge 		tucs = sc->sc_txctx_tucs;
   1090       1.1     ragge 	} else {
   1091       1.1     ragge 		/* Just initialize it to a valid TCP context. */
   1092       1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1093       1.1     ragge 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1094       1.1     ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1095       1.1     ragge 	}
   1096       1.1     ragge 
   1097       1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1098       1.1     ragge 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1099      1.21    cegger 	    device_xname(&sc->sc_dev), offset, tucs));
   1100       1.1     ragge 
   1101       1.1     ragge 	if (sc->sc_txctx_ipcs == ipcs &&
   1102       1.1     ragge 	    sc->sc_txctx_tucs == tucs) {
   1103       1.1     ragge 		/* Cached context is fine. */
   1104       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1105       1.1     ragge 	} else {
   1106       1.1     ragge 		/* Fill in the context descriptor. */
   1107       1.1     ragge #ifdef DGE_EVENT_COUNTERS
   1108       1.1     ragge 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1109       1.1     ragge 		    sc->sc_txctx_tucs == 0xffffffff)
   1110       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1111       1.1     ragge 		else
   1112       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1113       1.1     ragge #endif
   1114       1.1     ragge 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1115       1.1     ragge 		t->dc_tcpip_ipcs = htole32(ipcs);
   1116       1.1     ragge 		t->dc_tcpip_tucs = htole32(tucs);
   1117       1.1     ragge 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1118       1.1     ragge 		t->dc_tcpip_seg = 0;
   1119       1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1120       1.1     ragge 
   1121       1.1     ragge 		sc->sc_txctx_ipcs = ipcs;
   1122       1.1     ragge 		sc->sc_txctx_tucs = tucs;
   1123       1.1     ragge 
   1124       1.1     ragge 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1125       1.1     ragge 		txs->txs_ndesc++;
   1126       1.1     ragge 	}
   1127       1.1     ragge 
   1128       1.1     ragge 	*fieldsp = fields;
   1129       1.1     ragge 
   1130       1.1     ragge 	return (0);
   1131       1.1     ragge }
   1132       1.1     ragge 
   1133       1.1     ragge /*
   1134       1.1     ragge  * dge_start:		[ifnet interface function]
   1135       1.1     ragge  *
   1136       1.1     ragge  *	Start packet transmission on the interface.
   1137       1.1     ragge  */
   1138       1.1     ragge static void
   1139       1.1     ragge dge_start(struct ifnet *ifp)
   1140       1.1     ragge {
   1141       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1142       1.1     ragge 	struct mbuf *m0;
   1143       1.1     ragge 	struct dge_txsoft *txs;
   1144       1.1     ragge 	bus_dmamap_t dmamap;
   1145       1.1     ragge 	int error, nexttx, lasttx = -1, ofree, seg;
   1146       1.1     ragge 	uint32_t cksumcmd;
   1147       1.1     ragge 	uint8_t cksumfields;
   1148       1.1     ragge 
   1149       1.1     ragge 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1150       1.1     ragge 		return;
   1151       1.1     ragge 
   1152       1.1     ragge 	/*
   1153       1.1     ragge 	 * Remember the previous number of free descriptors.
   1154       1.1     ragge 	 */
   1155       1.1     ragge 	ofree = sc->sc_txfree;
   1156       1.1     ragge 
   1157       1.1     ragge 	/*
   1158       1.1     ragge 	 * Loop through the send queue, setting up transmit descriptors
   1159       1.1     ragge 	 * until we drain the queue, or use up all available transmit
   1160       1.1     ragge 	 * descriptors.
   1161       1.1     ragge 	 */
   1162       1.1     ragge 	for (;;) {
   1163       1.1     ragge 		/* Grab a packet off the queue. */
   1164       1.1     ragge 		IFQ_POLL(&ifp->if_snd, m0);
   1165       1.1     ragge 		if (m0 == NULL)
   1166       1.1     ragge 			break;
   1167       1.1     ragge 
   1168       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1169       1.1     ragge 		    ("%s: TX: have packet to transmit: %p\n",
   1170      1.21    cegger 		    device_xname(&sc->sc_dev), m0));
   1171       1.1     ragge 
   1172       1.1     ragge 		/* Get a work queue entry. */
   1173       1.1     ragge 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1174       1.1     ragge 			dge_txintr(sc);
   1175       1.1     ragge 			if (sc->sc_txsfree == 0) {
   1176       1.1     ragge 				DPRINTF(DGE_DEBUG_TX,
   1177       1.1     ragge 				    ("%s: TX: no free job descriptors\n",
   1178      1.21    cegger 					device_xname(&sc->sc_dev)));
   1179       1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1180       1.1     ragge 				break;
   1181       1.1     ragge 			}
   1182       1.1     ragge 		}
   1183       1.1     ragge 
   1184       1.1     ragge 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1185       1.1     ragge 		dmamap = txs->txs_dmamap;
   1186       1.1     ragge 
   1187       1.1     ragge 		/*
   1188       1.1     ragge 		 * Load the DMA map.  If this fails, the packet either
   1189       1.1     ragge 		 * didn't fit in the allotted number of segments, or we
   1190       1.1     ragge 		 * were short on resources.  For the too-many-segments
   1191       1.1     ragge 		 * case, we simply report an error and drop the packet,
   1192       1.1     ragge 		 * since we can't sanely copy a jumbo packet to a single
   1193       1.1     ragge 		 * buffer.
   1194       1.1     ragge 		 */
   1195       1.1     ragge 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1196       1.1     ragge 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1197       1.1     ragge 		if (error) {
   1198       1.1     ragge 			if (error == EFBIG) {
   1199       1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1200       1.1     ragge 				printf("%s: Tx packet consumes too many "
   1201       1.1     ragge 				    "DMA segments, dropping...\n",
   1202      1.21    cegger 				    device_xname(&sc->sc_dev));
   1203       1.1     ragge 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1204       1.1     ragge 				m_freem(m0);
   1205       1.1     ragge 				continue;
   1206       1.1     ragge 			}
   1207       1.1     ragge 			/*
   1208       1.1     ragge 			 * Short on resources, just stop for now.
   1209       1.1     ragge 			 */
   1210       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1211       1.1     ragge 			    ("%s: TX: dmamap load failed: %d\n",
   1212      1.21    cegger 			    device_xname(&sc->sc_dev), error));
   1213       1.1     ragge 			break;
   1214       1.1     ragge 		}
   1215       1.1     ragge 
   1216       1.1     ragge 		/*
   1217       1.1     ragge 		 * Ensure we have enough descriptors free to describe
   1218       1.1     ragge 		 * the packet.  Note, we always reserve one descriptor
   1219       1.1     ragge 		 * at the end of the ring due to the semantics of the
   1220       1.1     ragge 		 * TDT register, plus one more in the event we need
   1221       1.1     ragge 		 * to re-load checksum offload context.
   1222       1.1     ragge 		 */
   1223       1.1     ragge 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1224       1.1     ragge 			/*
   1225       1.1     ragge 			 * Not enough free descriptors to transmit this
   1226       1.1     ragge 			 * packet.  We haven't committed anything yet,
   1227       1.1     ragge 			 * so just unload the DMA map, put the packet
   1228       1.1     ragge 			 * pack on the queue, and punt.  Notify the upper
   1229       1.1     ragge 			 * layer that there are no more slots left.
   1230       1.1     ragge 			 */
   1231       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1232       1.1     ragge 			    ("%s: TX: need %d descriptors, have %d\n",
   1233      1.21    cegger 			    device_xname(&sc->sc_dev), dmamap->dm_nsegs,
   1234       1.1     ragge 			    sc->sc_txfree - 1));
   1235       1.1     ragge 			ifp->if_flags |= IFF_OACTIVE;
   1236       1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1237       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1238       1.1     ragge 			break;
   1239       1.1     ragge 		}
   1240       1.1     ragge 
   1241       1.1     ragge 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1242       1.1     ragge 
   1243       1.1     ragge 		/*
   1244       1.1     ragge 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1245       1.1     ragge 		 */
   1246       1.1     ragge 
   1247       1.1     ragge 		/* Sync the DMA map. */
   1248       1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1249       1.1     ragge 		    BUS_DMASYNC_PREWRITE);
   1250       1.1     ragge 
   1251       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1252       1.1     ragge 		    ("%s: TX: packet has %d DMA segments\n",
   1253      1.21    cegger 		    device_xname(&sc->sc_dev), dmamap->dm_nsegs));
   1254       1.1     ragge 
   1255       1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1256       1.1     ragge 
   1257       1.1     ragge 		/*
   1258       1.1     ragge 		 * Store a pointer to the packet so that we can free it
   1259       1.1     ragge 		 * later.
   1260       1.1     ragge 		 *
   1261       1.1     ragge 		 * Initially, we consider the number of descriptors the
   1262       1.1     ragge 		 * packet uses the number of DMA segments.  This may be
   1263       1.1     ragge 		 * incremented by 1 if we do checksum offload (a descriptor
   1264       1.1     ragge 		 * is used to set the checksum context).
   1265       1.1     ragge 		 */
   1266       1.1     ragge 		txs->txs_mbuf = m0;
   1267       1.1     ragge 		txs->txs_firstdesc = sc->sc_txnext;
   1268       1.1     ragge 		txs->txs_ndesc = dmamap->dm_nsegs;
   1269       1.1     ragge 
   1270       1.1     ragge 		/*
   1271       1.1     ragge 		 * Set up checksum offload parameters for
   1272       1.1     ragge 		 * this packet.
   1273       1.1     ragge 		 */
   1274       1.1     ragge 		if (m0->m_pkthdr.csum_flags &
   1275       1.1     ragge 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1276       1.1     ragge 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1277       1.1     ragge 				/* Error message already displayed. */
   1278       1.1     ragge 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1279       1.1     ragge 				continue;
   1280       1.1     ragge 			}
   1281       1.1     ragge 		} else {
   1282       1.1     ragge 			cksumfields = 0;
   1283       1.1     ragge 		}
   1284       1.1     ragge 
   1285       1.1     ragge 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1286       1.1     ragge 
   1287       1.1     ragge 		/*
   1288       1.1     ragge 		 * Initialize the transmit descriptor.
   1289       1.1     ragge 		 */
   1290       1.1     ragge 		for (nexttx = sc->sc_txnext, seg = 0;
   1291       1.1     ragge 		     seg < dmamap->dm_nsegs;
   1292       1.1     ragge 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1293       1.1     ragge 			/*
   1294       1.1     ragge 			 * Note: we currently only use 32-bit DMA
   1295       1.1     ragge 			 * addresses.
   1296       1.1     ragge 			 */
   1297       1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1298       1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrl =
   1299       1.1     ragge 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1300       1.1     ragge 			sc->sc_txdescs[nexttx].dt_ctl =
   1301       1.1     ragge 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1302       1.1     ragge 			sc->sc_txdescs[nexttx].dt_status = 0;
   1303       1.1     ragge 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1304       1.1     ragge 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1305       1.1     ragge 			lasttx = nexttx;
   1306       1.1     ragge 
   1307       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1308       1.1     ragge 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1309      1.21    cegger 			    device_xname(&sc->sc_dev), nexttx,
   1310      1.23       abs 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
   1311      1.23       abs 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
   1312       1.1     ragge 		}
   1313       1.1     ragge 
   1314       1.1     ragge 		KASSERT(lasttx != -1);
   1315       1.1     ragge 
   1316       1.1     ragge 		/*
   1317       1.1     ragge 		 * Set up the command byte on the last descriptor of
   1318       1.1     ragge 		 * the packet.  If we're in the interrupt delay window,
   1319       1.1     ragge 		 * delay the interrupt.
   1320       1.1     ragge 		 */
   1321       1.1     ragge 		sc->sc_txdescs[lasttx].dt_ctl |=
   1322       1.1     ragge 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1323       1.1     ragge 
   1324       1.1     ragge 		txs->txs_lastdesc = lasttx;
   1325       1.1     ragge 
   1326       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1327      1.21    cegger 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
   1328       1.1     ragge 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1329       1.1     ragge 
   1330       1.1     ragge 		/* Sync the descriptors we're using. */
   1331       1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1332       1.1     ragge 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1333       1.1     ragge 
   1334       1.1     ragge 		/* Give the packet to the chip. */
   1335       1.1     ragge 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1336       1.1     ragge 
   1337       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1338      1.21    cegger 		    ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
   1339       1.1     ragge 
   1340       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1341       1.1     ragge 		    ("%s: TX: finished transmitting packet, job %d\n",
   1342      1.21    cegger 		    device_xname(&sc->sc_dev), sc->sc_txsnext));
   1343       1.1     ragge 
   1344       1.1     ragge 		/* Advance the tx pointer. */
   1345       1.1     ragge 		sc->sc_txfree -= txs->txs_ndesc;
   1346       1.1     ragge 		sc->sc_txnext = nexttx;
   1347       1.1     ragge 
   1348       1.1     ragge 		sc->sc_txsfree--;
   1349       1.1     ragge 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1350       1.1     ragge 
   1351       1.1     ragge 		/* Pass the packet to any BPF listeners. */
   1352  1.29.2.1  uebayasi 		bpf_mtap(ifp, m0);
   1353       1.1     ragge 	}
   1354       1.1     ragge 
   1355       1.1     ragge 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1356       1.1     ragge 		/* No more slots; notify upper layer. */
   1357       1.1     ragge 		ifp->if_flags |= IFF_OACTIVE;
   1358       1.1     ragge 	}
   1359       1.1     ragge 
   1360       1.1     ragge 	if (sc->sc_txfree != ofree) {
   1361       1.1     ragge 		/* Set a watchdog timer in case the chip flakes out. */
   1362       1.1     ragge 		ifp->if_timer = 5;
   1363       1.1     ragge 	}
   1364       1.1     ragge }
   1365       1.1     ragge 
   1366       1.1     ragge /*
   1367       1.1     ragge  * dge_watchdog:		[ifnet interface function]
   1368       1.1     ragge  *
   1369       1.1     ragge  *	Watchdog timer handler.
   1370       1.1     ragge  */
   1371       1.1     ragge static void
   1372       1.1     ragge dge_watchdog(struct ifnet *ifp)
   1373       1.1     ragge {
   1374       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1375       1.1     ragge 
   1376       1.1     ragge 	/*
   1377       1.1     ragge 	 * Since we're using delayed interrupts, sweep up
   1378       1.1     ragge 	 * before we report an error.
   1379       1.1     ragge 	 */
   1380       1.1     ragge 	dge_txintr(sc);
   1381       1.1     ragge 
   1382       1.1     ragge 	if (sc->sc_txfree != DGE_NTXDESC) {
   1383       1.1     ragge 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1384      1.21    cegger 		    device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1385       1.1     ragge 		    sc->sc_txnext);
   1386       1.1     ragge 		ifp->if_oerrors++;
   1387       1.1     ragge 
   1388       1.1     ragge 		/* Reset the interface. */
   1389       1.1     ragge 		(void) dge_init(ifp);
   1390       1.1     ragge 	}
   1391       1.1     ragge 
   1392       1.1     ragge 	/* Try to get more packets going. */
   1393       1.1     ragge 	dge_start(ifp);
   1394       1.1     ragge }
   1395       1.1     ragge 
   1396       1.1     ragge /*
   1397       1.1     ragge  * dge_ioctl:		[ifnet interface function]
   1398       1.1     ragge  *
   1399       1.1     ragge  *	Handle control requests from the operator.
   1400       1.1     ragge  */
   1401       1.1     ragge static int
   1402      1.15  christos dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1403       1.1     ragge {
   1404       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1405       1.1     ragge 	struct ifreq *ifr = (struct ifreq *) data;
   1406       1.1     ragge 	pcireg_t preg;
   1407       1.1     ragge 	int s, error, mmrbc;
   1408       1.1     ragge 
   1409       1.1     ragge 	s = splnet();
   1410       1.1     ragge 
   1411       1.1     ragge 	switch (cmd) {
   1412       1.1     ragge 	case SIOCSIFMEDIA:
   1413       1.1     ragge 	case SIOCGIFMEDIA:
   1414       1.1     ragge 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1415       1.1     ragge 		break;
   1416       1.1     ragge 
   1417       1.2     ragge 	case SIOCSIFMTU:
   1418      1.19    dyoung 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1419       1.2     ragge 			error = EINVAL;
   1420      1.19    dyoung 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1421      1.19    dyoung 			break;
   1422      1.19    dyoung 		else if (ifp->if_flags & IFF_UP)
   1423      1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1424      1.19    dyoung 		else
   1425       1.2     ragge 			error = 0;
   1426       1.2     ragge 		break;
   1427       1.2     ragge 
   1428       1.1     ragge         case SIOCSIFFLAGS:
   1429      1.22    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1430      1.22    dyoung 			break;
   1431       1.1     ragge 		/* extract link flags */
   1432       1.1     ragge 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1433       1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1434       1.1     ragge 			mmrbc = PCIX_MMRBC_512;
   1435       1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1436       1.1     ragge 		    (ifp->if_flags & IFF_LINK1) != 0)
   1437       1.1     ragge 			mmrbc = PCIX_MMRBC_1024;
   1438       1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1439       1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1440       1.1     ragge 			mmrbc = PCIX_MMRBC_2048;
   1441       1.1     ragge 		else
   1442       1.1     ragge 			mmrbc = PCIX_MMRBC_4096;
   1443       1.1     ragge 		if (mmrbc != sc->sc_mmrbc) {
   1444       1.1     ragge 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1445       1.1     ragge 			preg &= ~PCIX_MMRBC_MSK;
   1446       1.1     ragge 			preg |= mmrbc;
   1447       1.1     ragge 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1448       1.1     ragge 			sc->sc_mmrbc = mmrbc;
   1449       1.1     ragge 		}
   1450       1.1     ragge                 /* FALLTHROUGH */
   1451       1.1     ragge 	default:
   1452      1.19    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1453      1.19    dyoung 			break;
   1454      1.19    dyoung 
   1455      1.19    dyoung 		error = 0;
   1456      1.19    dyoung 
   1457      1.19    dyoung 		if (cmd == SIOCSIFCAP)
   1458      1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1459      1.19    dyoung 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1460      1.19    dyoung 			;
   1461      1.19    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1462       1.1     ragge 			/*
   1463       1.1     ragge 			 * Multicast list has changed; set the hardware filter
   1464       1.1     ragge 			 * accordingly.
   1465       1.1     ragge 			 */
   1466      1.19    dyoung 			dge_set_filter(sc);
   1467       1.1     ragge 		}
   1468       1.1     ragge 		break;
   1469       1.1     ragge 	}
   1470       1.1     ragge 
   1471       1.1     ragge 	/* Try to get more packets going. */
   1472       1.1     ragge 	dge_start(ifp);
   1473       1.1     ragge 
   1474       1.1     ragge 	splx(s);
   1475       1.1     ragge 	return (error);
   1476       1.1     ragge }
   1477       1.1     ragge 
   1478       1.1     ragge /*
   1479       1.1     ragge  * dge_intr:
   1480       1.1     ragge  *
   1481       1.1     ragge  *	Interrupt service routine.
   1482       1.1     ragge  */
   1483       1.1     ragge static int
   1484       1.1     ragge dge_intr(void *arg)
   1485       1.1     ragge {
   1486       1.1     ragge 	struct dge_softc *sc = arg;
   1487       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1488       1.1     ragge 	uint32_t icr;
   1489       1.1     ragge 	int wantinit, handled = 0;
   1490       1.1     ragge 
   1491       1.1     ragge 	for (wantinit = 0; wantinit == 0;) {
   1492       1.1     ragge 		icr = CSR_READ(sc, DGE_ICR);
   1493       1.1     ragge 		if ((icr & sc->sc_icr) == 0)
   1494       1.1     ragge 			break;
   1495       1.1     ragge 
   1496       1.1     ragge #if 0 /*NRND > 0*/
   1497       1.1     ragge 		if (RND_ENABLED(&sc->rnd_source))
   1498       1.1     ragge 			rnd_add_uint32(&sc->rnd_source, icr);
   1499       1.1     ragge #endif
   1500       1.1     ragge 
   1501       1.1     ragge 		handled = 1;
   1502       1.1     ragge 
   1503       1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1504       1.1     ragge 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1505       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1506       1.1     ragge 			    ("%s: RX: got Rx intr 0x%08x\n",
   1507      1.21    cegger 			    device_xname(&sc->sc_dev),
   1508       1.1     ragge 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1509       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1510       1.1     ragge 		}
   1511       1.1     ragge #endif
   1512       1.1     ragge 		dge_rxintr(sc);
   1513       1.1     ragge 
   1514       1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1515       1.1     ragge 		if (icr & ICR_TXDW) {
   1516       1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1517       1.1     ragge 			    ("%s: TX: got TXDW interrupt\n",
   1518      1.21    cegger 			    device_xname(&sc->sc_dev)));
   1519       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1520       1.1     ragge 		}
   1521       1.1     ragge 		if (icr & ICR_TXQE)
   1522       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1523       1.1     ragge #endif
   1524       1.1     ragge 		dge_txintr(sc);
   1525       1.1     ragge 
   1526       1.1     ragge 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1527       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1528       1.1     ragge 			dge_linkintr(sc, icr);
   1529       1.1     ragge 		}
   1530       1.1     ragge 
   1531       1.1     ragge 		if (icr & ICR_RXO) {
   1532      1.21    cegger 			printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
   1533       1.1     ragge 			wantinit = 1;
   1534       1.1     ragge 		}
   1535       1.1     ragge 	}
   1536       1.1     ragge 
   1537       1.1     ragge 	if (handled) {
   1538       1.1     ragge 		if (wantinit)
   1539       1.1     ragge 			dge_init(ifp);
   1540       1.1     ragge 
   1541       1.1     ragge 		/* Try to get more packets going. */
   1542       1.1     ragge 		dge_start(ifp);
   1543       1.1     ragge 	}
   1544       1.1     ragge 
   1545       1.1     ragge 	return (handled);
   1546       1.1     ragge }
   1547       1.1     ragge 
   1548       1.1     ragge /*
   1549       1.1     ragge  * dge_txintr:
   1550       1.1     ragge  *
   1551       1.1     ragge  *	Helper; handle transmit interrupts.
   1552       1.1     ragge  */
   1553       1.1     ragge static void
   1554       1.1     ragge dge_txintr(struct dge_softc *sc)
   1555       1.1     ragge {
   1556       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1557       1.1     ragge 	struct dge_txsoft *txs;
   1558       1.1     ragge 	uint8_t status;
   1559       1.1     ragge 	int i;
   1560       1.1     ragge 
   1561       1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1562       1.1     ragge 
   1563       1.1     ragge 	/*
   1564       1.1     ragge 	 * Go through the Tx list and free mbufs for those
   1565       1.1     ragge 	 * frames which have been transmitted.
   1566       1.1     ragge 	 */
   1567       1.1     ragge 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1568       1.1     ragge 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1569       1.1     ragge 		txs = &sc->sc_txsoft[i];
   1570       1.1     ragge 
   1571       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1572      1.21    cegger 		    ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
   1573       1.1     ragge 
   1574       1.1     ragge 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1575       1.1     ragge 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1576       1.1     ragge 
   1577       1.1     ragge 		status =
   1578       1.1     ragge 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1579       1.1     ragge 		if ((status & TDESC_STA_DD) == 0) {
   1580       1.1     ragge 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1581       1.1     ragge 			    BUS_DMASYNC_PREREAD);
   1582       1.1     ragge 			break;
   1583       1.1     ragge 		}
   1584       1.1     ragge 
   1585       1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1586       1.1     ragge 		    ("%s: TX: job %d done: descs %d..%d\n",
   1587      1.21    cegger 		    device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
   1588       1.1     ragge 		    txs->txs_lastdesc));
   1589       1.1     ragge 
   1590       1.1     ragge 		ifp->if_opackets++;
   1591       1.1     ragge 		sc->sc_txfree += txs->txs_ndesc;
   1592       1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1593       1.1     ragge 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1594       1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1595       1.1     ragge 		m_freem(txs->txs_mbuf);
   1596       1.1     ragge 		txs->txs_mbuf = NULL;
   1597       1.1     ragge 	}
   1598       1.1     ragge 
   1599       1.1     ragge 	/* Update the dirty transmit buffer pointer. */
   1600       1.1     ragge 	sc->sc_txsdirty = i;
   1601       1.1     ragge 	DPRINTF(DGE_DEBUG_TX,
   1602      1.21    cegger 	    ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
   1603       1.1     ragge 
   1604       1.1     ragge 	/*
   1605       1.1     ragge 	 * If there are no more pending transmissions, cancel the watchdog
   1606       1.1     ragge 	 * timer.
   1607       1.1     ragge 	 */
   1608       1.1     ragge 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1609       1.1     ragge 		ifp->if_timer = 0;
   1610       1.1     ragge }
   1611       1.1     ragge 
   1612       1.1     ragge /*
   1613       1.1     ragge  * dge_rxintr:
   1614       1.1     ragge  *
   1615       1.1     ragge  *	Helper; handle receive interrupts.
   1616       1.1     ragge  */
   1617       1.1     ragge static void
   1618       1.1     ragge dge_rxintr(struct dge_softc *sc)
   1619       1.1     ragge {
   1620       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1621       1.1     ragge 	struct dge_rxsoft *rxs;
   1622       1.1     ragge 	struct mbuf *m;
   1623       1.1     ragge 	int i, len;
   1624       1.1     ragge 	uint8_t status, errors;
   1625       1.1     ragge 
   1626       1.1     ragge 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1627       1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1628       1.1     ragge 
   1629       1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1630       1.1     ragge 		    ("%s: RX: checking descriptor %d\n",
   1631      1.21    cegger 		    device_xname(&sc->sc_dev), i));
   1632       1.1     ragge 
   1633       1.1     ragge 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1634       1.1     ragge 
   1635       1.1     ragge 		status = sc->sc_rxdescs[i].dr_status;
   1636       1.1     ragge 		errors = sc->sc_rxdescs[i].dr_errors;
   1637       1.1     ragge 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1638       1.1     ragge 
   1639       1.1     ragge 		if ((status & RDESC_STS_DD) == 0) {
   1640       1.1     ragge 			/*
   1641       1.1     ragge 			 * We have processed all of the receive descriptors.
   1642       1.1     ragge 			 */
   1643       1.1     ragge 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1644       1.1     ragge 			break;
   1645       1.1     ragge 		}
   1646       1.1     ragge 
   1647       1.1     ragge 		if (__predict_false(sc->sc_rxdiscard)) {
   1648       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1649       1.1     ragge 			    ("%s: RX: discarding contents of descriptor %d\n",
   1650      1.21    cegger 			    device_xname(&sc->sc_dev), i));
   1651       1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1652       1.1     ragge 			if (status & RDESC_STS_EOP) {
   1653       1.1     ragge 				/* Reset our state. */
   1654       1.1     ragge 				DPRINTF(DGE_DEBUG_RX,
   1655       1.1     ragge 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1656      1.21    cegger 				    device_xname(&sc->sc_dev)));
   1657       1.1     ragge 				sc->sc_rxdiscard = 0;
   1658       1.1     ragge 			}
   1659       1.1     ragge 			continue;
   1660       1.1     ragge 		}
   1661       1.1     ragge 
   1662       1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1663       1.1     ragge 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1664       1.1     ragge 
   1665       1.1     ragge 		m = rxs->rxs_mbuf;
   1666       1.1     ragge 
   1667       1.1     ragge 		/*
   1668       1.1     ragge 		 * Add a new receive buffer to the ring.
   1669       1.1     ragge 		 */
   1670       1.1     ragge 		if (dge_add_rxbuf(sc, i) != 0) {
   1671       1.1     ragge 			/*
   1672       1.1     ragge 			 * Failed, throw away what we've done so
   1673       1.1     ragge 			 * far, and discard the rest of the packet.
   1674       1.1     ragge 			 */
   1675       1.1     ragge 			ifp->if_ierrors++;
   1676       1.1     ragge 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1677       1.1     ragge 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1678       1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1679       1.1     ragge 			if ((status & RDESC_STS_EOP) == 0)
   1680       1.1     ragge 				sc->sc_rxdiscard = 1;
   1681       1.1     ragge 			if (sc->sc_rxhead != NULL)
   1682       1.1     ragge 				m_freem(sc->sc_rxhead);
   1683       1.1     ragge 			DGE_RXCHAIN_RESET(sc);
   1684       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1685       1.1     ragge 			    ("%s: RX: Rx buffer allocation failed, "
   1686      1.21    cegger 			    "dropping packet%s\n", device_xname(&sc->sc_dev),
   1687       1.1     ragge 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1688       1.1     ragge 			continue;
   1689       1.1     ragge 		}
   1690       1.1     ragge 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1691       1.1     ragge 
   1692       1.1     ragge 		DGE_RXCHAIN_LINK(sc, m);
   1693       1.1     ragge 
   1694       1.1     ragge 		m->m_len = len;
   1695       1.1     ragge 
   1696       1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1697       1.1     ragge 		    ("%s: RX: buffer at %p len %d\n",
   1698      1.21    cegger 		    device_xname(&sc->sc_dev), m->m_data, len));
   1699       1.1     ragge 
   1700       1.1     ragge 		/*
   1701       1.1     ragge 		 * If this is not the end of the packet, keep
   1702       1.1     ragge 		 * looking.
   1703       1.1     ragge 		 */
   1704       1.1     ragge 		if ((status & RDESC_STS_EOP) == 0) {
   1705       1.1     ragge 			sc->sc_rxlen += len;
   1706       1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1707       1.1     ragge 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1708      1.21    cegger 			    device_xname(&sc->sc_dev), sc->sc_rxlen));
   1709       1.1     ragge 			continue;
   1710       1.1     ragge 		}
   1711       1.1     ragge 
   1712       1.1     ragge 		/*
   1713       1.1     ragge 		 * Okay, we have the entire packet now...
   1714       1.1     ragge 		 */
   1715       1.1     ragge 		*sc->sc_rxtailp = NULL;
   1716       1.1     ragge 		m = sc->sc_rxhead;
   1717       1.1     ragge 		len += sc->sc_rxlen;
   1718       1.1     ragge 
   1719       1.1     ragge 		DGE_RXCHAIN_RESET(sc);
   1720       1.1     ragge 
   1721       1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1722       1.1     ragge 		    ("%s: RX: have entire packet, len -> %d\n",
   1723      1.21    cegger 		    device_xname(&sc->sc_dev), len));
   1724       1.1     ragge 
   1725       1.1     ragge 		/*
   1726       1.1     ragge 		 * If an error occurred, update stats and drop the packet.
   1727       1.1     ragge 		 */
   1728       1.1     ragge 		if (errors &
   1729       1.1     ragge 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1730       1.1     ragge 			ifp->if_ierrors++;
   1731       1.1     ragge 			if (errors & RDESC_ERR_SE)
   1732       1.1     ragge 				printf("%s: symbol error\n",
   1733      1.21    cegger 				    device_xname(&sc->sc_dev));
   1734       1.1     ragge 			else if (errors & RDESC_ERR_P)
   1735       1.1     ragge 				printf("%s: parity error\n",
   1736      1.21    cegger 				    device_xname(&sc->sc_dev));
   1737       1.1     ragge 			else if (errors & RDESC_ERR_CE)
   1738       1.1     ragge 				printf("%s: CRC error\n",
   1739      1.21    cegger 				    device_xname(&sc->sc_dev));
   1740       1.1     ragge 			m_freem(m);
   1741       1.1     ragge 			continue;
   1742       1.1     ragge 		}
   1743       1.1     ragge 
   1744       1.1     ragge 		/*
   1745       1.1     ragge 		 * No errors.  Receive the packet.
   1746       1.1     ragge 		 */
   1747       1.1     ragge 		m->m_pkthdr.rcvif = ifp;
   1748       1.1     ragge 		m->m_pkthdr.len = len;
   1749       1.1     ragge 
   1750       1.1     ragge 		/*
   1751       1.1     ragge 		 * Set up checksum info for this packet.
   1752       1.1     ragge 		 */
   1753       1.1     ragge 		if (status & RDESC_STS_IPCS) {
   1754       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1755       1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1756       1.1     ragge 			if (errors & RDESC_ERR_IPE)
   1757       1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1758       1.1     ragge 		}
   1759       1.1     ragge 		if (status & RDESC_STS_TCPCS) {
   1760       1.1     ragge 			/*
   1761       1.1     ragge 			 * Note: we don't know if this was TCP or UDP,
   1762       1.1     ragge 			 * so we just set both bits, and expect the
   1763       1.1     ragge 			 * upper layers to deal.
   1764       1.1     ragge 			 */
   1765       1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1766       1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1767       1.1     ragge 			if (errors & RDESC_ERR_TCPE)
   1768       1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1769       1.1     ragge 		}
   1770       1.1     ragge 
   1771       1.1     ragge 		ifp->if_ipackets++;
   1772       1.1     ragge 
   1773       1.1     ragge 		/* Pass this up to any BPF listeners. */
   1774  1.29.2.1  uebayasi 		bpf_mtap(ifp, m);
   1775       1.1     ragge 
   1776       1.1     ragge 		/* Pass it on. */
   1777       1.1     ragge 		(*ifp->if_input)(ifp, m);
   1778       1.1     ragge 	}
   1779       1.1     ragge 
   1780       1.1     ragge 	/* Update the receive pointer. */
   1781       1.1     ragge 	sc->sc_rxptr = i;
   1782       1.1     ragge 
   1783       1.1     ragge 	DPRINTF(DGE_DEBUG_RX,
   1784      1.21    cegger 	    ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
   1785       1.1     ragge }
   1786       1.1     ragge 
   1787       1.1     ragge /*
   1788       1.1     ragge  * dge_linkintr:
   1789       1.1     ragge  *
   1790       1.1     ragge  *	Helper; handle link interrupts.
   1791       1.1     ragge  */
   1792       1.1     ragge static void
   1793       1.1     ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1794       1.1     ragge {
   1795       1.1     ragge 	uint32_t status;
   1796       1.1     ragge 
   1797       1.1     ragge 	if (icr & ICR_LSC) {
   1798       1.1     ragge 		status = CSR_READ(sc, DGE_STATUS);
   1799       1.1     ragge 		if (status & STATUS_LINKUP) {
   1800       1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1801      1.21    cegger 			    device_xname(&sc->sc_dev)));
   1802       1.1     ragge 		} else {
   1803       1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1804      1.21    cegger 			    device_xname(&sc->sc_dev)));
   1805       1.1     ragge 		}
   1806       1.1     ragge 	} else if (icr & ICR_RXSEQ) {
   1807       1.1     ragge 		DPRINTF(DGE_DEBUG_LINK,
   1808       1.1     ragge 		    ("%s: LINK: Receive sequence error\n",
   1809      1.21    cegger 		    device_xname(&sc->sc_dev)));
   1810       1.1     ragge 	}
   1811       1.1     ragge 	/* XXX - fix errata */
   1812       1.1     ragge }
   1813       1.1     ragge 
   1814       1.1     ragge /*
   1815       1.1     ragge  * dge_reset:
   1816       1.1     ragge  *
   1817       1.1     ragge  *	Reset the i82597 chip.
   1818       1.1     ragge  */
   1819       1.1     ragge static void
   1820       1.1     ragge dge_reset(struct dge_softc *sc)
   1821       1.1     ragge {
   1822       1.1     ragge 	int i;
   1823       1.1     ragge 
   1824       1.1     ragge 	/*
   1825       1.1     ragge 	 * Do a chip reset.
   1826       1.1     ragge 	 */
   1827       1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1828       1.1     ragge 
   1829       1.1     ragge 	delay(10000);
   1830       1.1     ragge 
   1831       1.1     ragge 	for (i = 0; i < 1000; i++) {
   1832       1.1     ragge 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1833       1.1     ragge 			break;
   1834       1.1     ragge 		delay(20);
   1835       1.1     ragge 	}
   1836       1.1     ragge 
   1837       1.1     ragge 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1838       1.1     ragge 		printf("%s: WARNING: reset failed to complete\n",
   1839      1.21    cegger 		    device_xname(&sc->sc_dev));
   1840       1.1     ragge         /*
   1841       1.1     ragge          * Reset the EEPROM logic.
   1842       1.1     ragge          * This will cause the chip to reread its default values,
   1843       1.1     ragge 	 * which doesn't happen otherwise (errata).
   1844       1.1     ragge          */
   1845       1.1     ragge         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1846       1.1     ragge         delay(10000);
   1847       1.1     ragge }
   1848       1.1     ragge 
   1849       1.1     ragge /*
   1850       1.1     ragge  * dge_init:		[ifnet interface function]
   1851       1.1     ragge  *
   1852       1.1     ragge  *	Initialize the interface.  Must be called at splnet().
   1853       1.1     ragge  */
   1854       1.1     ragge static int
   1855       1.1     ragge dge_init(struct ifnet *ifp)
   1856       1.1     ragge {
   1857       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1858       1.1     ragge 	struct dge_rxsoft *rxs;
   1859       1.1     ragge 	int i, error = 0;
   1860       1.1     ragge 	uint32_t reg;
   1861       1.1     ragge 
   1862       1.1     ragge 	/*
   1863       1.1     ragge 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1864       1.1     ragge 	 * There is a small but measurable benefit to avoiding the adjusment
   1865       1.1     ragge 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1866       1.1     ragge 	 * on such platforms.  One possibility is that the DMA itself is
   1867       1.1     ragge 	 * slightly more efficient if the front of the entire packet (instead
   1868       1.1     ragge 	 * of the front of the headers) is aligned.
   1869       1.1     ragge 	 *
   1870       1.1     ragge 	 * Note we must always set align_tweak to 0 if we are using
   1871       1.1     ragge 	 * jumbo frames.
   1872       1.1     ragge 	 */
   1873       1.1     ragge #ifdef __NO_STRICT_ALIGNMENT
   1874       1.1     ragge 	sc->sc_align_tweak = 0;
   1875       1.1     ragge #else
   1876       1.1     ragge 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1877       1.1     ragge 		sc->sc_align_tweak = 0;
   1878       1.1     ragge 	else
   1879       1.1     ragge 		sc->sc_align_tweak = 2;
   1880       1.1     ragge #endif /* __NO_STRICT_ALIGNMENT */
   1881       1.1     ragge 
   1882       1.1     ragge 	/* Cancel any pending I/O. */
   1883       1.1     ragge 	dge_stop(ifp, 0);
   1884       1.1     ragge 
   1885       1.1     ragge 	/* Reset the chip to a known state. */
   1886       1.1     ragge 	dge_reset(sc);
   1887       1.1     ragge 
   1888       1.1     ragge 	/* Initialize the transmit descriptor ring. */
   1889       1.1     ragge 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1890       1.1     ragge 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1891       1.1     ragge 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1892       1.1     ragge 	sc->sc_txfree = DGE_NTXDESC;
   1893       1.1     ragge 	sc->sc_txnext = 0;
   1894       1.1     ragge 
   1895       1.1     ragge 	sc->sc_txctx_ipcs = 0xffffffff;
   1896       1.1     ragge 	sc->sc_txctx_tucs = 0xffffffff;
   1897       1.1     ragge 
   1898       1.1     ragge 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1899       1.1     ragge 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1900       1.1     ragge 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1901       1.1     ragge 	CSR_WRITE(sc, DGE_TDH, 0);
   1902       1.1     ragge 	CSR_WRITE(sc, DGE_TDT, 0);
   1903       1.1     ragge 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1904       1.1     ragge 
   1905       1.1     ragge #if 0
   1906       1.1     ragge 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1907       1.1     ragge 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1908       1.1     ragge #endif
   1909       1.1     ragge 	CSR_WRITE(sc, DGE_RXDCTL,
   1910       1.1     ragge 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1911       1.1     ragge 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1912       1.1     ragge 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1913       1.1     ragge 
   1914       1.1     ragge 	/* Initialize the transmit job descriptors. */
   1915       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1916       1.1     ragge 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1917       1.1     ragge 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1918       1.1     ragge 	sc->sc_txsnext = 0;
   1919       1.1     ragge 	sc->sc_txsdirty = 0;
   1920       1.1     ragge 
   1921       1.1     ragge 	/*
   1922       1.1     ragge 	 * Initialize the receive descriptor and receive job
   1923       1.1     ragge 	 * descriptor rings.
   1924       1.1     ragge 	 */
   1925       1.1     ragge 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1926       1.1     ragge 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1927       1.1     ragge 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1928       1.1     ragge 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1929       1.1     ragge 	CSR_WRITE(sc, DGE_RDT, 0);
   1930       1.1     ragge 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1931       1.1     ragge 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1932       1.1     ragge 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1933       1.1     ragge 
   1934       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1935       1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1936       1.1     ragge 		if (rxs->rxs_mbuf == NULL) {
   1937       1.1     ragge 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1938       1.1     ragge 				printf("%s: unable to allocate or map rx "
   1939       1.1     ragge 				    "buffer %d, error = %d\n",
   1940      1.21    cegger 				    device_xname(&sc->sc_dev), i, error);
   1941       1.1     ragge 				/*
   1942       1.1     ragge 				 * XXX Should attempt to run with fewer receive
   1943       1.1     ragge 				 * XXX buffers instead of just failing.
   1944       1.1     ragge 				 */
   1945       1.1     ragge 				dge_rxdrain(sc);
   1946       1.1     ragge 				goto out;
   1947       1.1     ragge 			}
   1948       1.1     ragge 		}
   1949       1.1     ragge 		DGE_INIT_RXDESC(sc, i);
   1950       1.1     ragge 	}
   1951       1.1     ragge 	sc->sc_rxptr = DGE_RXSPACE;
   1952       1.1     ragge 	sc->sc_rxdiscard = 0;
   1953       1.1     ragge 	DGE_RXCHAIN_RESET(sc);
   1954       1.1     ragge 
   1955       1.1     ragge 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1956       1.1     ragge 		sc->sc_ctrl0 |= CTRL0_JFE;
   1957       1.1     ragge 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1958       1.1     ragge 	}
   1959       1.1     ragge 
   1960       1.1     ragge 	/* Write the control registers. */
   1961       1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1962       1.1     ragge 
   1963       1.1     ragge 	/*
   1964       1.1     ragge 	 * Set up checksum offload parameters.
   1965       1.1     ragge 	 */
   1966       1.1     ragge 	reg = CSR_READ(sc, DGE_RXCSUM);
   1967      1.11      yamt 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1968       1.1     ragge 		reg |= RXCSUM_IPOFL;
   1969       1.1     ragge 	else
   1970       1.1     ragge 		reg &= ~RXCSUM_IPOFL;
   1971      1.11      yamt 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1972       1.1     ragge 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1973       1.1     ragge 	else {
   1974       1.1     ragge 		reg &= ~RXCSUM_TUOFL;
   1975      1.11      yamt 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   1976       1.1     ragge 			reg &= ~RXCSUM_IPOFL;
   1977       1.1     ragge 	}
   1978       1.1     ragge 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1979       1.1     ragge 
   1980       1.1     ragge 	/*
   1981       1.1     ragge 	 * Set up the interrupt registers.
   1982       1.1     ragge 	 */
   1983       1.1     ragge 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1984       1.1     ragge 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1985       1.1     ragge 	    ICR_RXO | ICR_RXT0;
   1986       1.1     ragge 
   1987       1.1     ragge 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1988       1.1     ragge 
   1989       1.1     ragge 	/*
   1990       1.1     ragge 	 * Set up the transmit control register.
   1991       1.1     ragge 	 */
   1992       1.1     ragge 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1993       1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1994       1.1     ragge 
   1995       1.1     ragge 	/*
   1996       1.1     ragge 	 * Set up the receive control register; we actually program
   1997       1.1     ragge 	 * the register when we set the receive filter.  Use multicast
   1998       1.1     ragge 	 * address offset type 0.
   1999       1.1     ragge 	 */
   2000       1.1     ragge 	sc->sc_mchash_type = 0;
   2001       1.1     ragge 
   2002      1.10     perry 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2003       1.1     ragge 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2004       1.1     ragge 
   2005       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2006       1.3     ragge 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2007       1.3     ragge #else
   2008       1.1     ragge 	switch(MCLBYTES) {
   2009       1.1     ragge 	case 2048:
   2010       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2011       1.1     ragge 		break;
   2012       1.1     ragge 	case 4096:
   2013       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2014       1.1     ragge 		break;
   2015       1.1     ragge 	case 8192:
   2016       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2017       1.1     ragge 		break;
   2018       1.1     ragge 	case 16384:
   2019       1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2020       1.1     ragge 		break;
   2021       1.1     ragge 	default:
   2022       1.1     ragge 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2023       1.1     ragge 	}
   2024       1.3     ragge #endif
   2025       1.1     ragge 
   2026       1.1     ragge 	/* Set the receive filter. */
   2027       1.1     ragge 	/* Also sets RCTL */
   2028       1.1     ragge 	dge_set_filter(sc);
   2029       1.1     ragge 
   2030       1.1     ragge 	/* ...all done! */
   2031      1.10     perry 	ifp->if_flags |= IFF_RUNNING;
   2032       1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   2033       1.1     ragge 
   2034       1.1     ragge  out:
   2035       1.1     ragge 	if (error)
   2036      1.21    cegger 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   2037       1.1     ragge 	return (error);
   2038       1.1     ragge }
   2039       1.1     ragge 
   2040       1.1     ragge /*
   2041       1.1     ragge  * dge_rxdrain:
   2042       1.1     ragge  *
   2043       1.1     ragge  *	Drain the receive queue.
   2044       1.1     ragge  */
   2045       1.1     ragge static void
   2046       1.1     ragge dge_rxdrain(struct dge_softc *sc)
   2047       1.1     ragge {
   2048       1.1     ragge 	struct dge_rxsoft *rxs;
   2049       1.1     ragge 	int i;
   2050       1.1     ragge 
   2051       1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   2052       1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   2053       1.1     ragge 		if (rxs->rxs_mbuf != NULL) {
   2054       1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2055       1.1     ragge 			m_freem(rxs->rxs_mbuf);
   2056       1.1     ragge 			rxs->rxs_mbuf = NULL;
   2057       1.1     ragge 		}
   2058       1.1     ragge 	}
   2059       1.1     ragge }
   2060       1.1     ragge 
   2061       1.1     ragge /*
   2062       1.1     ragge  * dge_stop:		[ifnet interface function]
   2063       1.1     ragge  *
   2064       1.1     ragge  *	Stop transmission on the interface.
   2065       1.1     ragge  */
   2066       1.1     ragge static void
   2067       1.1     ragge dge_stop(struct ifnet *ifp, int disable)
   2068       1.1     ragge {
   2069       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2070       1.1     ragge 	struct dge_txsoft *txs;
   2071       1.1     ragge 	int i;
   2072       1.1     ragge 
   2073       1.1     ragge 	/* Stop the transmit and receive processes. */
   2074       1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, 0);
   2075       1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, 0);
   2076       1.1     ragge 
   2077       1.1     ragge 	/* Release any queued transmit buffers. */
   2078       1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2079       1.1     ragge 		txs = &sc->sc_txsoft[i];
   2080       1.1     ragge 		if (txs->txs_mbuf != NULL) {
   2081       1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2082       1.1     ragge 			m_freem(txs->txs_mbuf);
   2083       1.1     ragge 			txs->txs_mbuf = NULL;
   2084       1.1     ragge 		}
   2085       1.1     ragge 	}
   2086       1.1     ragge 
   2087       1.1     ragge 	/* Mark the interface as down and cancel the watchdog timer. */
   2088       1.1     ragge 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2089       1.1     ragge 	ifp->if_timer = 0;
   2090      1.20    dyoung 
   2091      1.20    dyoung 	if (disable)
   2092      1.20    dyoung 		dge_rxdrain(sc);
   2093       1.1     ragge }
   2094       1.1     ragge 
   2095       1.1     ragge /*
   2096       1.1     ragge  * dge_add_rxbuf:
   2097       1.1     ragge  *
   2098       1.1     ragge  *	Add a receive buffer to the indiciated descriptor.
   2099       1.1     ragge  */
   2100       1.1     ragge static int
   2101       1.1     ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
   2102       1.1     ragge {
   2103       1.1     ragge 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2104       1.1     ragge 	struct mbuf *m;
   2105       1.1     ragge 	int error;
   2106       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2107      1.15  christos 	void *buf;
   2108       1.3     ragge #endif
   2109       1.1     ragge 
   2110       1.1     ragge 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2111       1.1     ragge 	if (m == NULL)
   2112       1.1     ragge 		return (ENOBUFS);
   2113       1.1     ragge 
   2114       1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2115       1.3     ragge 	if ((buf = dge_getbuf(sc)) == NULL)
   2116       1.3     ragge 		return ENOBUFS;
   2117       1.3     ragge 
   2118       1.3     ragge 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2119       1.3     ragge 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2120       1.6      yamt 	m->m_flags |= M_EXT_RW;
   2121       1.3     ragge 
   2122       1.3     ragge 	if (rxs->rxs_mbuf != NULL)
   2123       1.3     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2124       1.3     ragge 	rxs->rxs_mbuf = m;
   2125       1.3     ragge 
   2126       1.3     ragge 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2127       1.3     ragge 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2128       1.3     ragge #else
   2129       1.1     ragge 	MCLGET(m, M_DONTWAIT);
   2130       1.1     ragge 	if ((m->m_flags & M_EXT) == 0) {
   2131       1.1     ragge 		m_freem(m);
   2132       1.1     ragge 		return (ENOBUFS);
   2133       1.1     ragge 	}
   2134       1.1     ragge 
   2135       1.1     ragge 	if (rxs->rxs_mbuf != NULL)
   2136       1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2137       1.1     ragge 
   2138       1.1     ragge 	rxs->rxs_mbuf = m;
   2139       1.1     ragge 
   2140       1.1     ragge 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2141       1.1     ragge 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2142       1.1     ragge 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2143       1.3     ragge #endif
   2144       1.1     ragge 	if (error) {
   2145       1.1     ragge 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2146      1.21    cegger 		    device_xname(&sc->sc_dev), idx, error);
   2147       1.1     ragge 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2148       1.1     ragge 	}
   2149       1.1     ragge 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2150       1.1     ragge 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2151       1.1     ragge 
   2152       1.1     ragge 	return (0);
   2153       1.1     ragge }
   2154       1.1     ragge 
   2155       1.1     ragge /*
   2156       1.1     ragge  * dge_set_ral:
   2157       1.1     ragge  *
   2158       1.1     ragge  *	Set an entry in the receive address list.
   2159       1.1     ragge  */
   2160       1.1     ragge static void
   2161       1.1     ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2162       1.1     ragge {
   2163       1.1     ragge 	uint32_t ral_lo, ral_hi;
   2164       1.1     ragge 
   2165       1.1     ragge 	if (enaddr != NULL) {
   2166       1.1     ragge 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2167       1.1     ragge 		    (enaddr[3] << 24);
   2168       1.1     ragge 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2169       1.1     ragge 		ral_hi |= RAH_AV;
   2170       1.1     ragge 	} else {
   2171       1.1     ragge 		ral_lo = 0;
   2172       1.1     ragge 		ral_hi = 0;
   2173       1.1     ragge 	}
   2174       1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2175       1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2176       1.1     ragge }
   2177       1.1     ragge 
   2178       1.1     ragge /*
   2179       1.1     ragge  * dge_mchash:
   2180       1.1     ragge  *
   2181       1.1     ragge  *	Compute the hash of the multicast address for the 4096-bit
   2182       1.1     ragge  *	multicast filter.
   2183       1.1     ragge  */
   2184       1.1     ragge static uint32_t
   2185       1.1     ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2186       1.1     ragge {
   2187       1.1     ragge 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2188       1.1     ragge 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2189       1.1     ragge 	uint32_t hash;
   2190       1.1     ragge 
   2191       1.1     ragge 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2192       1.1     ragge 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2193       1.1     ragge 
   2194       1.1     ragge 	return (hash & 0xfff);
   2195       1.1     ragge }
   2196       1.1     ragge 
   2197       1.1     ragge /*
   2198       1.1     ragge  * dge_set_filter:
   2199       1.1     ragge  *
   2200       1.1     ragge  *	Set up the receive filter.
   2201       1.1     ragge  */
   2202       1.1     ragge static void
   2203       1.1     ragge dge_set_filter(struct dge_softc *sc)
   2204       1.1     ragge {
   2205       1.1     ragge 	struct ethercom *ec = &sc->sc_ethercom;
   2206       1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2207       1.1     ragge 	struct ether_multi *enm;
   2208       1.1     ragge 	struct ether_multistep step;
   2209       1.1     ragge 	uint32_t hash, reg, bit;
   2210       1.1     ragge 	int i;
   2211       1.1     ragge 
   2212       1.1     ragge 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2213       1.1     ragge 
   2214       1.1     ragge 	if (ifp->if_flags & IFF_BROADCAST)
   2215       1.1     ragge 		sc->sc_rctl |= RCTL_BAM;
   2216       1.1     ragge 	if (ifp->if_flags & IFF_PROMISC) {
   2217       1.1     ragge 		sc->sc_rctl |= RCTL_UPE;
   2218       1.1     ragge 		goto allmulti;
   2219       1.1     ragge 	}
   2220       1.1     ragge 
   2221       1.1     ragge 	/*
   2222       1.1     ragge 	 * Set the station address in the first RAL slot, and
   2223       1.1     ragge 	 * clear the remaining slots.
   2224       1.1     ragge 	 */
   2225      1.16    dyoung 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2226       1.1     ragge 	for (i = 1; i < RA_TABSIZE; i++)
   2227       1.1     ragge 		dge_set_ral(sc, NULL, i);
   2228       1.1     ragge 
   2229       1.1     ragge 	/* Clear out the multicast table. */
   2230       1.1     ragge 	for (i = 0; i < MC_TABSIZE; i++)
   2231       1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2232       1.1     ragge 
   2233       1.1     ragge 	ETHER_FIRST_MULTI(step, ec, enm);
   2234       1.1     ragge 	while (enm != NULL) {
   2235       1.1     ragge 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2236       1.1     ragge 			/*
   2237       1.1     ragge 			 * We must listen to a range of multicast addresses.
   2238       1.1     ragge 			 * For now, just accept all multicasts, rather than
   2239       1.1     ragge 			 * trying to set only those filter bits needed to match
   2240       1.1     ragge 			 * the range.  (At this time, the only use of address
   2241       1.1     ragge 			 * ranges is for IP multicast routing, for which the
   2242       1.1     ragge 			 * range is big enough to require all bits set.)
   2243       1.1     ragge 			 */
   2244       1.1     ragge 			goto allmulti;
   2245       1.1     ragge 		}
   2246       1.1     ragge 
   2247       1.1     ragge 		hash = dge_mchash(sc, enm->enm_addrlo);
   2248       1.1     ragge 
   2249       1.1     ragge 		reg = (hash >> 5) & 0x7f;
   2250       1.1     ragge 		bit = hash & 0x1f;
   2251       1.1     ragge 
   2252       1.1     ragge 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2253       1.1     ragge 		hash |= 1U << bit;
   2254       1.1     ragge 
   2255       1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2256       1.1     ragge 
   2257       1.1     ragge 		ETHER_NEXT_MULTI(step, enm);
   2258       1.1     ragge 	}
   2259       1.1     ragge 
   2260       1.1     ragge 	ifp->if_flags &= ~IFF_ALLMULTI;
   2261       1.1     ragge 	goto setit;
   2262       1.1     ragge 
   2263       1.1     ragge  allmulti:
   2264       1.1     ragge 	ifp->if_flags |= IFF_ALLMULTI;
   2265       1.1     ragge 	sc->sc_rctl |= RCTL_MPE;
   2266       1.1     ragge 
   2267       1.1     ragge  setit:
   2268       1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2269       1.1     ragge }
   2270       1.1     ragge 
   2271       1.1     ragge /*
   2272       1.1     ragge  * Read in the EEPROM info and verify checksum.
   2273       1.1     ragge  */
   2274       1.1     ragge int
   2275       1.1     ragge dge_read_eeprom(struct dge_softc *sc)
   2276       1.1     ragge {
   2277       1.1     ragge 	uint16_t cksum;
   2278       1.1     ragge 	int i;
   2279       1.1     ragge 
   2280       1.1     ragge 	cksum = 0;
   2281       1.1     ragge 	for (i = 0; i < EEPROM_SIZE; i++) {
   2282       1.1     ragge 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2283       1.1     ragge 		cksum += sc->sc_eeprom[i];
   2284       1.1     ragge 	}
   2285       1.1     ragge 	return cksum != EEPROM_CKSUM;
   2286       1.1     ragge }
   2287       1.1     ragge 
   2288       1.1     ragge 
   2289       1.1     ragge /*
   2290       1.1     ragge  * Read a 16-bit word from address addr in the serial EEPROM.
   2291       1.1     ragge  */
   2292       1.1     ragge uint16_t
   2293       1.1     ragge dge_eeprom_word(struct dge_softc *sc, int addr)
   2294       1.1     ragge {
   2295       1.1     ragge 	uint32_t reg;
   2296       1.1     ragge 	uint16_t rval = 0;
   2297       1.1     ragge 	int i;
   2298       1.1     ragge 
   2299       1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2300       1.1     ragge 
   2301       1.1     ragge 	/* Lower clock pulse (and data in to chip) */
   2302       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2303       1.1     ragge 	/* Select chip */
   2304       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2305       1.1     ragge 
   2306       1.1     ragge 	/* Send read command */
   2307       1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2308       1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2309       1.1     ragge 	dge_eeprom_clockout(sc, 0);
   2310       1.1     ragge 
   2311       1.1     ragge 	/* Send address */
   2312       1.1     ragge 	for (i = 5; i >= 0; i--)
   2313       1.1     ragge 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2314       1.1     ragge 
   2315       1.1     ragge 	/* Read data */
   2316       1.1     ragge 	for (i = 0; i < 16; i++) {
   2317       1.1     ragge 		rval <<= 1;
   2318       1.1     ragge 		rval |= dge_eeprom_clockin(sc);
   2319       1.1     ragge 	}
   2320       1.1     ragge 
   2321       1.1     ragge 	/* Deselect chip */
   2322       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2323       1.1     ragge 
   2324       1.1     ragge 	return rval;
   2325       1.1     ragge }
   2326       1.1     ragge 
   2327       1.1     ragge /*
   2328       1.1     ragge  * Clock out a single bit to the EEPROM.
   2329       1.1     ragge  */
   2330       1.1     ragge void
   2331       1.1     ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2332       1.1     ragge {
   2333       1.1     ragge 	int reg;
   2334       1.1     ragge 
   2335       1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2336       1.1     ragge 	if (bit)
   2337       1.1     ragge 		reg |= EECD_DI;
   2338      1.10     perry 
   2339       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2340       1.1     ragge 	delay(2);
   2341       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2342       1.1     ragge 	delay(2);
   2343       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2344       1.1     ragge 	delay(2);
   2345       1.1     ragge }
   2346       1.1     ragge 
   2347       1.1     ragge /*
   2348       1.1     ragge  * Clock in a single bit from EEPROM.
   2349       1.1     ragge  */
   2350       1.1     ragge int
   2351       1.1     ragge dge_eeprom_clockin(struct dge_softc *sc)
   2352       1.1     ragge {
   2353       1.1     ragge 	int reg, rv;
   2354       1.1     ragge 
   2355       1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2356       1.1     ragge 
   2357       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2358       1.1     ragge 	delay(2);
   2359       1.1     ragge 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2360       1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2361       1.1     ragge 	delay(2);
   2362       1.1     ragge 
   2363       1.1     ragge 	return rv;
   2364       1.1     ragge }
   2365       1.1     ragge 
   2366       1.1     ragge static void
   2367       1.1     ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2368       1.1     ragge {
   2369       1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2370       1.1     ragge 
   2371       1.1     ragge 	ifmr->ifm_status = IFM_AVALID;
   2372       1.1     ragge 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2373       1.1     ragge 
   2374       1.1     ragge 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2375       1.1     ragge 		ifmr->ifm_status |= IFM_ACTIVE;
   2376       1.1     ragge }
   2377       1.1     ragge 
   2378       1.1     ragge static inline int
   2379       1.1     ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2380       1.1     ragge {
   2381       1.1     ragge         int i, mdic;
   2382       1.1     ragge 
   2383       1.1     ragge         CSR_WRITE(sc, DGE_MDIO,
   2384       1.1     ragge 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2385      1.10     perry         for (i = 0; i < 10; i++) {
   2386       1.1     ragge                 delay(10);
   2387       1.1     ragge                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2388       1.1     ragge                         break;
   2389       1.1     ragge         }
   2390       1.1     ragge         return mdic;
   2391       1.1     ragge }
   2392       1.1     ragge 
   2393       1.1     ragge 
   2394       1.1     ragge static void
   2395      1.25    cegger dge_xgmii_writereg(device_t self, int phy, int reg, int val)
   2396       1.1     ragge {
   2397      1.26    cegger 	struct dge_softc *sc = device_private(self);
   2398       1.1     ragge 	int mdic;
   2399       1.1     ragge 
   2400       1.1     ragge 	CSR_WRITE(sc, DGE_MDIRW, val);
   2401       1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2402       1.1     ragge 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2403      1.21    cegger 		    device_xname(&sc->sc_dev), phy, reg);
   2404       1.1     ragge 		return;
   2405       1.1     ragge 	}
   2406       1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2407       1.1     ragge 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2408      1.21    cegger 		    device_xname(&sc->sc_dev), phy, reg);
   2409       1.1     ragge 		return;
   2410       1.1     ragge 	}
   2411       1.1     ragge }
   2412       1.1     ragge 
   2413       1.1     ragge static void
   2414       1.1     ragge dge_xgmii_reset(struct dge_softc *sc)
   2415       1.1     ragge {
   2416       1.1     ragge 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2417       1.1     ragge }
   2418       1.1     ragge 
   2419       1.1     ragge static int
   2420      1.14  christos dge_xgmii_mediachange(struct ifnet *ifp)
   2421       1.1     ragge {
   2422       1.1     ragge 	return 0;
   2423       1.1     ragge }
   2424