Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.40
      1  1.40  riastrad /*	$NetBSD: if_dge.c,v 1.40 2015/04/13 16:33:25 riastradh Exp $ */
      2   1.1     ragge 
      3   1.1     ragge /*
      4   1.1     ragge  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5   1.1     ragge  * All rights reserved.
      6   1.1     ragge  *
      7   1.1     ragge  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8   1.1     ragge  *
      9   1.1     ragge  * Redistribution and use in source and binary forms, with or without
     10   1.1     ragge  * modification, are permitted provided that the following conditions
     11   1.1     ragge  * are met:
     12   1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     13   1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     14   1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     16   1.1     ragge  *    documentation and/or other materials provided with the distribution.
     17   1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     18   1.1     ragge  *    must display the following acknowledgement:
     19   1.1     ragge  *	This product includes software developed for the NetBSD Project by
     20   1.1     ragge  *	SUNET, Swedish University Computer Network.
     21   1.1     ragge  * 4. The name of SUNET may not be used to endorse or promote products
     22   1.1     ragge  *    derived from this software without specific prior written permission.
     23   1.1     ragge  *
     24   1.1     ragge  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25   1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26   1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27   1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28   1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29   1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30   1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31   1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32   1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33   1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34   1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     35   1.1     ragge  */
     36   1.1     ragge 
     37   1.1     ragge /*
     38   1.1     ragge  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39   1.1     ragge  * All rights reserved.
     40   1.1     ragge  *
     41   1.1     ragge  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42   1.1     ragge  *
     43   1.1     ragge  * Redistribution and use in source and binary forms, with or without
     44   1.1     ragge  * modification, are permitted provided that the following conditions
     45   1.1     ragge  * are met:
     46   1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     47   1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     48   1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     49   1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     50   1.1     ragge  *    documentation and/or other materials provided with the distribution.
     51   1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     52   1.1     ragge  *    must display the following acknowledgement:
     53   1.1     ragge  *	This product includes software developed for the NetBSD Project by
     54   1.1     ragge  *	Wasabi Systems, Inc.
     55   1.1     ragge  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56   1.1     ragge  *    or promote products derived from this software without specific prior
     57   1.1     ragge  *    written permission.
     58   1.1     ragge  *
     59   1.1     ragge  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60   1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61   1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62   1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63   1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64   1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65   1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66   1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67   1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68   1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69   1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     70   1.1     ragge  */
     71   1.1     ragge 
     72   1.1     ragge /*
     73   1.1     ragge  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74   1.1     ragge  *
     75   1.1     ragge  * TODO (in no specific order):
     76   1.1     ragge  *	HW VLAN support.
     77   1.1     ragge  *	TSE offloading (needs kernel changes...)
     78   1.1     ragge  *	RAIDC (receive interrupt delay adaptation)
     79   1.1     ragge  *	Use memory > 4GB.
     80   1.1     ragge  */
     81   1.1     ragge 
     82   1.1     ragge #include <sys/cdefs.h>
     83  1.40  riastrad __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.40 2015/04/13 16:33:25 riastradh Exp $");
     84  1.34       tls 
     85   1.1     ragge 
     86   1.1     ragge 
     87   1.1     ragge #include <sys/param.h>
     88   1.1     ragge #include <sys/systm.h>
     89  1.10     perry #include <sys/callout.h>
     90   1.1     ragge #include <sys/mbuf.h>
     91   1.1     ragge #include <sys/malloc.h>
     92   1.1     ragge #include <sys/kernel.h>
     93   1.1     ragge #include <sys/socket.h>
     94   1.1     ragge #include <sys/ioctl.h>
     95   1.1     ragge #include <sys/errno.h>
     96   1.1     ragge #include <sys/device.h>
     97   1.1     ragge #include <sys/queue.h>
     98   1.1     ragge 
     99  1.40  riastrad #include <sys/rndsource.h>
    100   1.1     ragge 
    101   1.1     ragge #include <net/if.h>
    102  1.10     perry #include <net/if_dl.h>
    103   1.1     ragge #include <net/if_media.h>
    104   1.1     ragge #include <net/if_ether.h>
    105   1.1     ragge 
    106   1.1     ragge #include <net/bpf.h>
    107   1.1     ragge 
    108   1.1     ragge #include <netinet/in.h>			/* XXX for struct ip */
    109   1.1     ragge #include <netinet/in_systm.h>		/* XXX for struct ip */
    110   1.1     ragge #include <netinet/ip.h>			/* XXX for struct ip */
    111   1.1     ragge #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    112   1.1     ragge 
    113  1.17        ad #include <sys/bus.h>
    114  1.17        ad #include <sys/intr.h>
    115   1.1     ragge #include <machine/endian.h>
    116   1.1     ragge 
    117   1.1     ragge #include <dev/mii/mii.h>
    118   1.1     ragge #include <dev/mii/miivar.h>
    119   1.1     ragge #include <dev/mii/mii_bitbang.h>
    120   1.1     ragge 
    121   1.1     ragge #include <dev/pci/pcireg.h>
    122   1.1     ragge #include <dev/pci/pcivar.h>
    123   1.1     ragge #include <dev/pci/pcidevs.h>
    124   1.1     ragge 
    125   1.1     ragge #include <dev/pci/if_dgereg.h>
    126   1.1     ragge 
    127   1.3     ragge /*
    128   1.3     ragge  * The receive engine may sometimes become off-by-one when writing back
    129   1.3     ragge  * chained descriptors.	 Avoid this by allocating a large chunk of
    130   1.3     ragge  * memory and use if instead (to avoid chained descriptors).
    131   1.3     ragge  * This only happens with chained descriptors under heavy load.
    132   1.3     ragge  */
    133   1.3     ragge #define DGE_OFFBYONE_RXBUG
    134   1.3     ragge 
    135   1.1     ragge #define DGE_EVENT_COUNTERS
    136   1.1     ragge #define DGE_DEBUG
    137   1.1     ragge 
    138   1.1     ragge #ifdef DGE_DEBUG
    139   1.3     ragge #define DGE_DEBUG_LINK		0x01
    140   1.3     ragge #define DGE_DEBUG_TX		0x02
    141   1.3     ragge #define DGE_DEBUG_RX		0x04
    142   1.3     ragge #define DGE_DEBUG_CKSUM		0x08
    143   1.1     ragge int	dge_debug = 0;
    144   1.1     ragge 
    145   1.3     ragge #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    146   1.1     ragge #else
    147   1.3     ragge #define DPRINTF(x, y)	/* nothing */
    148   1.1     ragge #endif /* DGE_DEBUG */
    149   1.1     ragge 
    150   1.1     ragge /*
    151   1.1     ragge  * Transmit descriptor list size. We allow up to 100 DMA segments per
    152   1.1     ragge  * packet (Intel reports of jumbo frame packets with as
    153   1.1     ragge  * many as 80 DMA segments when using 16k buffers).
    154   1.1     ragge  */
    155   1.3     ragge #define DGE_NTXSEGS		100
    156   1.3     ragge #define DGE_IFQUEUELEN		20000
    157   1.3     ragge #define DGE_TXQUEUELEN		2048
    158   1.3     ragge #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    159   1.3     ragge #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    160   1.3     ragge #define DGE_NTXDESC		1024
    161   1.3     ragge #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    162   1.3     ragge #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    163   1.3     ragge #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    164   1.1     ragge 
    165   1.1     ragge /*
    166   1.1     ragge  * Receive descriptor list size.
    167   1.1     ragge  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    168   1.3     ragge  * be chained.	Due to the nature of the card (high-speed), keep this
    169   1.1     ragge  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    170   1.1     ragge  * which at full speed will be received in just under 3ms.
    171   1.1     ragge  */
    172   1.3     ragge #define DGE_NRXDESC		2048
    173   1.3     ragge #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    174   1.3     ragge #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    175   1.1     ragge /*
    176   1.1     ragge  * # of descriptors between head and written descriptors.
    177   1.1     ragge  * This is to work-around two erratas.
    178   1.1     ragge  */
    179   1.1     ragge #define DGE_RXSPACE		10
    180   1.3     ragge #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    181   1.1     ragge /*
    182   1.1     ragge  * Receive descriptor fetch threshholds. These are values recommended
    183   1.1     ragge  * by Intel, do not touch them unless you know what you are doing.
    184   1.1     ragge  */
    185   1.3     ragge #define RXDCTL_PTHRESH_VAL	128
    186   1.3     ragge #define RXDCTL_HTHRESH_VAL	16
    187   1.3     ragge #define RXDCTL_WTHRESH_VAL	16
    188   1.1     ragge 
    189   1.1     ragge 
    190   1.1     ragge /*
    191   1.1     ragge  * Tweakable parameters; default values.
    192   1.1     ragge  */
    193   1.3     ragge #define FCRTH	0x30000 /* Send XOFF water mark */
    194   1.3     ragge #define FCRTL	0x28000 /* Send XON water mark */
    195   1.3     ragge #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    196   1.3     ragge #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    197   1.1     ragge 
    198   1.1     ragge /*
    199   1.1     ragge  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    200   1.1     ragge  * a single clump that maps to a single DMA segment to make serveral things
    201   1.1     ragge  * easier.
    202   1.1     ragge  */
    203   1.1     ragge struct dge_control_data {
    204   1.1     ragge 	/*
    205   1.1     ragge 	 * The transmit descriptors.
    206   1.1     ragge 	 */
    207   1.1     ragge 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    208   1.1     ragge 
    209   1.1     ragge 	/*
    210   1.1     ragge 	 * The receive descriptors.
    211   1.1     ragge 	 */
    212   1.1     ragge 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    213   1.1     ragge };
    214   1.1     ragge 
    215   1.3     ragge #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    216   1.3     ragge #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    217   1.3     ragge #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    218   1.1     ragge 
    219   1.1     ragge /*
    220   1.2     ragge  * The DGE interface have a higher max MTU size than normal jumbo frames.
    221   1.2     ragge  */
    222   1.3     ragge #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    223   1.2     ragge 
    224   1.2     ragge /*
    225   1.1     ragge  * Software state for transmit jobs.
    226   1.1     ragge  */
    227   1.1     ragge struct dge_txsoft {
    228   1.1     ragge 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    229   1.1     ragge 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    230   1.1     ragge 	int txs_firstdesc;		/* first descriptor in packet */
    231   1.1     ragge 	int txs_lastdesc;		/* last descriptor in packet */
    232   1.1     ragge 	int txs_ndesc;			/* # of descriptors used */
    233   1.1     ragge };
    234   1.1     ragge 
    235   1.1     ragge /*
    236   1.3     ragge  * Software state for receive buffers.	Each descriptor gets a
    237   1.3     ragge  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    238   1.1     ragge  * more than one buffer, we chain them together.
    239   1.1     ragge  */
    240   1.1     ragge struct dge_rxsoft {
    241   1.1     ragge 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    242   1.1     ragge 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    243   1.1     ragge };
    244   1.1     ragge 
    245   1.1     ragge /*
    246   1.1     ragge  * Software state per device.
    247   1.1     ragge  */
    248   1.1     ragge struct dge_softc {
    249  1.35       chs 	device_t sc_dev;		/* generic device information */
    250   1.1     ragge 	bus_space_tag_t sc_st;		/* bus space tag */
    251   1.1     ragge 	bus_space_handle_t sc_sh;	/* bus space handle */
    252   1.1     ragge 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    253   1.1     ragge 	struct ethercom sc_ethercom;	/* ethernet common data */
    254   1.1     ragge 
    255   1.1     ragge 	int sc_flags;			/* flags; see below */
    256   1.1     ragge 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    257   1.1     ragge 	int sc_pcix_offset;		/* PCIX capability register offset */
    258   1.1     ragge 
    259   1.1     ragge 	pci_chipset_tag_t sc_pc;
    260   1.1     ragge 	pcitag_t sc_pt;
    261   1.1     ragge 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    262   1.1     ragge 
    263   1.1     ragge 	void *sc_ih;			/* interrupt cookie */
    264   1.1     ragge 
    265   1.1     ragge 	struct ifmedia sc_media;
    266   1.1     ragge 
    267   1.1     ragge 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    268   1.3     ragge #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    269   1.1     ragge 
    270   1.1     ragge 	int		sc_align_tweak;
    271   1.1     ragge 
    272   1.1     ragge 	/*
    273   1.1     ragge 	 * Software state for the transmit and receive descriptors.
    274   1.1     ragge 	 */
    275   1.1     ragge 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    276   1.1     ragge 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    277   1.1     ragge 
    278   1.1     ragge 	/*
    279   1.1     ragge 	 * Control data structures.
    280   1.1     ragge 	 */
    281   1.1     ragge 	struct dge_control_data *sc_control_data;
    282   1.3     ragge #define sc_txdescs	sc_control_data->wcd_txdescs
    283   1.3     ragge #define sc_rxdescs	sc_control_data->wcd_rxdescs
    284   1.1     ragge 
    285   1.1     ragge #ifdef DGE_EVENT_COUNTERS
    286   1.1     ragge 	/* Event counters. */
    287   1.1     ragge 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    288   1.1     ragge 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    289   1.3     ragge 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    290   1.1     ragge 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    291   1.1     ragge 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    292   1.1     ragge 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    293   1.1     ragge 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    294   1.1     ragge 
    295   1.1     ragge 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    296   1.1     ragge 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    297   1.1     ragge 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    298   1.1     ragge 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    299   1.1     ragge 
    300   1.1     ragge 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    301   1.1     ragge 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    302   1.1     ragge 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    303   1.1     ragge 
    304   1.1     ragge 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    305   1.1     ragge 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    306   1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    307   1.1     ragge 
    308   1.1     ragge 	int	sc_txfree;		/* number of free Tx descriptors */
    309   1.1     ragge 	int	sc_txnext;		/* next ready Tx descriptor */
    310   1.1     ragge 
    311   1.1     ragge 	int	sc_txsfree;		/* number of free Tx jobs */
    312   1.1     ragge 	int	sc_txsnext;		/* next free Tx job */
    313   1.1     ragge 	int	sc_txsdirty;		/* dirty Tx jobs */
    314   1.1     ragge 
    315   1.1     ragge 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    316   1.1     ragge 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    317   1.1     ragge 
    318   1.1     ragge 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    319   1.1     ragge 	int	sc_rxdiscard;
    320   1.1     ragge 	int	sc_rxlen;
    321   1.1     ragge 	struct mbuf *sc_rxhead;
    322   1.1     ragge 	struct mbuf *sc_rxtail;
    323   1.1     ragge 	struct mbuf **sc_rxtailp;
    324   1.1     ragge 
    325   1.1     ragge 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    326   1.1     ragge 	uint32_t sc_icr;		/* prototype interrupt bits */
    327   1.1     ragge 	uint32_t sc_tctl;		/* prototype TCTL register */
    328   1.1     ragge 	uint32_t sc_rctl;		/* prototype RCTL register */
    329   1.1     ragge 
    330   1.1     ragge 	int sc_mchash_type;		/* multicast filter offset */
    331   1.1     ragge 
    332   1.1     ragge 	uint16_t sc_eeprom[EEPROM_SIZE];
    333   1.1     ragge 
    334  1.32       tls 	krndsource_t rnd_source; /* random source */
    335   1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    336  1.15  christos 	void *sc_bugbuf;
    337   1.3     ragge 	SLIST_HEAD(, rxbugentry) sc_buglist;
    338   1.3     ragge 	bus_dmamap_t sc_bugmap;
    339   1.3     ragge 	struct rxbugentry *sc_entry;
    340   1.1     ragge #endif
    341   1.1     ragge };
    342   1.1     ragge 
    343   1.3     ragge #define DGE_RXCHAIN_RESET(sc)						\
    344   1.1     ragge do {									\
    345   1.1     ragge 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    346   1.1     ragge 	*(sc)->sc_rxtailp = NULL;					\
    347   1.1     ragge 	(sc)->sc_rxlen = 0;						\
    348   1.1     ragge } while (/*CONSTCOND*/0)
    349   1.1     ragge 
    350   1.3     ragge #define DGE_RXCHAIN_LINK(sc, m)						\
    351   1.1     ragge do {									\
    352   1.1     ragge 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    353   1.1     ragge 	(sc)->sc_rxtailp = &(m)->m_next;				\
    354   1.1     ragge } while (/*CONSTCOND*/0)
    355   1.1     ragge 
    356   1.1     ragge /* sc_flags */
    357   1.3     ragge #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    358   1.3     ragge #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    359   1.1     ragge 
    360   1.1     ragge #ifdef DGE_EVENT_COUNTERS
    361   1.3     ragge #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    362   1.1     ragge #else
    363   1.3     ragge #define DGE_EVCNT_INCR(ev)	/* nothing */
    364   1.1     ragge #endif
    365   1.1     ragge 
    366   1.3     ragge #define CSR_READ(sc, reg)						\
    367   1.1     ragge 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    368   1.3     ragge #define CSR_WRITE(sc, reg, val)						\
    369   1.1     ragge 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    370   1.1     ragge 
    371   1.3     ragge #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    372   1.3     ragge #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    373   1.1     ragge 
    374   1.3     ragge #define DGE_CDTXSYNC(sc, x, n, ops)					\
    375   1.1     ragge do {									\
    376   1.1     ragge 	int __x, __n;							\
    377   1.1     ragge 									\
    378   1.1     ragge 	__x = (x);							\
    379   1.1     ragge 	__n = (n);							\
    380   1.1     ragge 									\
    381   1.1     ragge 	/* If it will wrap around, sync to the end of the ring. */	\
    382   1.5   thorpej 	if ((__x + __n) > DGE_NTXDESC) {				\
    383   1.1     ragge 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    384   1.1     ragge 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    385   1.5   thorpej 		    (DGE_NTXDESC - __x), (ops));			\
    386   1.1     ragge 		__n -= (DGE_NTXDESC - __x);				\
    387   1.1     ragge 		__x = 0;						\
    388   1.1     ragge 	}								\
    389   1.1     ragge 									\
    390   1.1     ragge 	/* Now sync whatever is left. */				\
    391   1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    392   1.1     ragge 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    393   1.1     ragge } while (/*CONSTCOND*/0)
    394   1.1     ragge 
    395   1.3     ragge #define DGE_CDRXSYNC(sc, x, ops)						\
    396   1.1     ragge do {									\
    397   1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    398   1.1     ragge 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    399   1.1     ragge } while (/*CONSTCOND*/0)
    400   1.1     ragge 
    401   1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    402   1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    403   1.3     ragge do {									\
    404   1.3     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    405   1.3     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    406   1.3     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    407   1.3     ragge 									\
    408   1.3     ragge 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    409   1.3     ragge 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    410   1.3     ragge 	__rxd->dr_baddrh = 0;						\
    411   1.3     ragge 	__rxd->dr_len = 0;						\
    412   1.3     ragge 	__rxd->dr_cksum = 0;						\
    413   1.3     ragge 	__rxd->dr_status = 0;						\
    414   1.3     ragge 	__rxd->dr_errors = 0;						\
    415   1.3     ragge 	__rxd->dr_special = 0;						\
    416   1.3     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    417   1.3     ragge 									\
    418   1.3     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    419   1.3     ragge } while (/*CONSTCOND*/0)
    420   1.3     ragge #else
    421   1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    422   1.1     ragge do {									\
    423   1.1     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    424   1.1     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    425   1.1     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    426   1.1     ragge 									\
    427   1.1     ragge 	/*								\
    428   1.1     ragge 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    429   1.1     ragge 	 * so that the payload after the Ethernet header is aligned	\
    430   1.1     ragge 	 * to a 4-byte boundary.					\
    431   1.1     ragge 	 *								\
    432   1.1     ragge 	 * XXX BRAINDAMAGE ALERT!					\
    433   1.1     ragge 	 * The stupid chip uses the same size for every buffer, which	\
    434   1.3     ragge 	 * is set in the Receive Control register.  We are using the 2K \
    435   1.1     ragge 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    436   1.1     ragge 	 * reason, we can't "scoot" packets longer than the standard	\
    437   1.1     ragge 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    438   1.1     ragge 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    439   1.1     ragge 	 * the upper layer copy the headers.				\
    440   1.1     ragge 	 */								\
    441   1.1     ragge 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    442   1.1     ragge 									\
    443   1.5   thorpej 	__rxd->dr_baddrl =						\
    444   1.3     ragge 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    445   1.1     ragge 		(sc)->sc_align_tweak);					\
    446   1.5   thorpej 	__rxd->dr_baddrh = 0;						\
    447   1.1     ragge 	__rxd->dr_len = 0;						\
    448   1.1     ragge 	__rxd->dr_cksum = 0;						\
    449   1.1     ragge 	__rxd->dr_status = 0;						\
    450   1.1     ragge 	__rxd->dr_errors = 0;						\
    451   1.1     ragge 	__rxd->dr_special = 0;						\
    452   1.1     ragge 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    453   1.1     ragge 									\
    454   1.1     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    455   1.1     ragge } while (/*CONSTCOND*/0)
    456   1.3     ragge #endif
    457   1.3     ragge 
    458   1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    459   1.3     ragge /*
    460   1.3     ragge  * Allocation constants.  Much memory may be used for this.
    461   1.3     ragge  */
    462   1.3     ragge #ifndef DGE_BUFFER_SIZE
    463   1.3     ragge #define DGE_BUFFER_SIZE DGE_MAX_MTU
    464   1.3     ragge #endif
    465   1.3     ragge #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    466   1.3     ragge #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    467   1.3     ragge 
    468   1.3     ragge struct rxbugentry {
    469   1.3     ragge 	SLIST_ENTRY(rxbugentry) rb_entry;
    470   1.3     ragge 	int rb_slot;
    471   1.3     ragge };
    472   1.3     ragge 
    473   1.3     ragge static int
    474   1.3     ragge dge_alloc_rcvmem(struct dge_softc *sc)
    475   1.3     ragge {
    476  1.36  christos 	char *kva;
    477   1.3     ragge 	bus_dma_segment_t seg;
    478   1.3     ragge 	int i, rseg, state, error;
    479   1.3     ragge 	struct rxbugentry *entry;
    480   1.3     ragge 
    481   1.3     ragge 	state = error = 0;
    482   1.3     ragge 
    483   1.3     ragge 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    484   1.3     ragge 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    485  1.35       chs 		aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
    486   1.3     ragge 		return ENOBUFS;
    487   1.3     ragge 	}
    488   1.3     ragge 
    489   1.3     ragge 	state = 1;
    490  1.15  christos 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    491   1.3     ragge 	    BUS_DMA_NOWAIT)) {
    492  1.35       chs 		aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
    493  1.21    cegger 		    (int)DGE_RXMEM);
    494   1.3     ragge 		error = ENOBUFS;
    495   1.3     ragge 		goto out;
    496   1.3     ragge 	}
    497   1.3     ragge 
    498   1.3     ragge 	state = 2;
    499   1.3     ragge 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    500   1.3     ragge 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    501  1.35       chs 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
    502   1.3     ragge 		error = ENOBUFS;
    503   1.3     ragge 		goto out;
    504   1.3     ragge 	}
    505   1.3     ragge 
    506   1.3     ragge 	state = 3;
    507   1.3     ragge 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    508   1.3     ragge 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    509  1.35       chs 		aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
    510   1.3     ragge 		error = ENOBUFS;
    511   1.3     ragge 		goto out;
    512   1.3     ragge 	}
    513   1.3     ragge 
    514   1.3     ragge 	state = 4;
    515  1.15  christos 	sc->sc_bugbuf = (void *)kva;
    516   1.3     ragge 	SLIST_INIT(&sc->sc_buglist);
    517   1.3     ragge 
    518   1.3     ragge 	/*
    519   1.3     ragge 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    520   1.3     ragge 	 * in an array.
    521   1.3     ragge 	 */
    522   1.3     ragge 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    523   1.3     ragge 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    524   1.3     ragge 		error = ENOBUFS;
    525   1.3     ragge 		goto out;
    526   1.3     ragge 	}
    527   1.3     ragge 	sc->sc_entry = entry;
    528   1.3     ragge 	for (i = 0; i < DGE_NBUFFERS; i++) {
    529   1.3     ragge 		entry[i].rb_slot = i;
    530   1.3     ragge 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    531   1.3     ragge 	}
    532   1.3     ragge out:
    533   1.3     ragge 	if (error != 0) {
    534   1.3     ragge 		switch (state) {
    535   1.3     ragge 		case 4:
    536   1.3     ragge 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    537   1.3     ragge 		case 3:
    538   1.3     ragge 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    539   1.3     ragge 		case 2:
    540   1.3     ragge 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    541   1.3     ragge 		case 1:
    542   1.3     ragge 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    543   1.3     ragge 			break;
    544   1.3     ragge 		default:
    545   1.3     ragge 			break;
    546   1.3     ragge 		}
    547   1.3     ragge 	}
    548   1.3     ragge 
    549   1.3     ragge 	return error;
    550   1.3     ragge }
    551   1.3     ragge 
    552   1.3     ragge /*
    553   1.3     ragge  * Allocate a jumbo buffer.
    554   1.3     ragge  */
    555   1.3     ragge static void *
    556   1.3     ragge dge_getbuf(struct dge_softc *sc)
    557   1.3     ragge {
    558   1.3     ragge 	struct rxbugentry *entry;
    559   1.3     ragge 
    560   1.3     ragge 	entry = SLIST_FIRST(&sc->sc_buglist);
    561   1.3     ragge 
    562   1.3     ragge 	if (entry == NULL) {
    563  1.35       chs 		printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
    564   1.3     ragge 		return(NULL);
    565   1.3     ragge 	}
    566   1.3     ragge 
    567   1.3     ragge 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    568  1.15  christos 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    569   1.3     ragge }
    570   1.3     ragge 
    571   1.3     ragge /*
    572   1.3     ragge  * Release a jumbo buffer.
    573   1.3     ragge  */
    574   1.3     ragge static void
    575  1.15  christos dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    576   1.3     ragge {
    577   1.3     ragge 	struct rxbugentry *entry;
    578   1.3     ragge 	struct dge_softc *sc;
    579   1.3     ragge 	int i, s;
    580   1.3     ragge 
    581   1.3     ragge 	/* Extract the softc struct pointer. */
    582   1.3     ragge 	sc = (struct dge_softc *)arg;
    583   1.3     ragge 
    584   1.3     ragge 	if (sc == NULL)
    585   1.3     ragge 		panic("dge_freebuf: can't find softc pointer!");
    586   1.3     ragge 
    587   1.3     ragge 	/* calculate the slot this buffer belongs to */
    588   1.3     ragge 
    589  1.15  christos 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    590   1.3     ragge 
    591   1.3     ragge 	if ((i < 0) || (i >= DGE_NBUFFERS))
    592   1.3     ragge 		panic("dge_freebuf: asked to free buffer %d!", i);
    593   1.3     ragge 
    594   1.3     ragge 	s = splvm();
    595   1.3     ragge 	entry = sc->sc_entry + i;
    596   1.3     ragge 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    597   1.3     ragge 
    598   1.3     ragge 	if (__predict_true(m != NULL))
    599  1.18        ad 		pool_cache_put(mb_cache, m);
    600   1.3     ragge 	splx(s);
    601   1.3     ragge }
    602   1.3     ragge #endif
    603   1.1     ragge 
    604   1.1     ragge static void	dge_start(struct ifnet *);
    605   1.1     ragge static void	dge_watchdog(struct ifnet *);
    606  1.15  christos static int	dge_ioctl(struct ifnet *, u_long, void *);
    607   1.1     ragge static int	dge_init(struct ifnet *);
    608   1.1     ragge static void	dge_stop(struct ifnet *, int);
    609   1.1     ragge 
    610  1.27   tsutsui static bool	dge_shutdown(device_t, int);
    611   1.1     ragge 
    612   1.1     ragge static void	dge_reset(struct dge_softc *);
    613   1.1     ragge static void	dge_rxdrain(struct dge_softc *);
    614   1.1     ragge static int	dge_add_rxbuf(struct dge_softc *, int);
    615   1.1     ragge 
    616   1.1     ragge static void	dge_set_filter(struct dge_softc *);
    617   1.1     ragge 
    618   1.1     ragge static int	dge_intr(void *);
    619   1.1     ragge static void	dge_txintr(struct dge_softc *);
    620   1.1     ragge static void	dge_rxintr(struct dge_softc *);
    621   1.1     ragge static void	dge_linkintr(struct dge_softc *, uint32_t);
    622   1.1     ragge 
    623  1.25    cegger static int	dge_match(device_t, cfdata_t, void *);
    624  1.25    cegger static void	dge_attach(device_t, device_t, void *);
    625   1.1     ragge 
    626   1.1     ragge static int	dge_read_eeprom(struct dge_softc *sc);
    627   1.1     ragge static int	dge_eeprom_clockin(struct dge_softc *sc);
    628   1.1     ragge static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    629   1.1     ragge static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    630   1.1     ragge static int	dge_xgmii_mediachange(struct ifnet *);
    631   1.1     ragge static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    632   1.1     ragge static void	dge_xgmii_reset(struct dge_softc *);
    633  1.39       chs static void	dge_xgmii_writereg(struct dge_softc *, int, int, int);
    634   1.1     ragge 
    635   1.1     ragge 
    636  1.35       chs CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
    637   1.1     ragge     dge_match, dge_attach, NULL, NULL);
    638   1.1     ragge 
    639   1.1     ragge #ifdef DGE_EVENT_COUNTERS
    640   1.1     ragge #if DGE_NTXSEGS > 100
    641   1.1     ragge #error Update dge_txseg_evcnt_names
    642   1.1     ragge #endif
    643   1.1     ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    644   1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    645   1.1     ragge 
    646   1.1     ragge static int
    647  1.25    cegger dge_match(device_t parent, cfdata_t cf, void *aux)
    648   1.1     ragge {
    649   1.1     ragge 	struct pci_attach_args *pa = aux;
    650   1.1     ragge 
    651   1.1     ragge 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    652   1.1     ragge 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    653   1.1     ragge 		return (1);
    654   1.1     ragge 
    655   1.1     ragge 	return (0);
    656   1.1     ragge }
    657   1.1     ragge 
    658   1.1     ragge static void
    659  1.25    cegger dge_attach(device_t parent, device_t self, void *aux)
    660   1.1     ragge {
    661  1.26    cegger 	struct dge_softc *sc = device_private(self);
    662   1.1     ragge 	struct pci_attach_args *pa = aux;
    663   1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    664   1.1     ragge 	pci_chipset_tag_t pc = pa->pa_pc;
    665   1.1     ragge 	pci_intr_handle_t ih;
    666   1.1     ragge 	const char *intrstr = NULL;
    667   1.1     ragge 	bus_dma_segment_t seg;
    668   1.1     ragge 	int i, rseg, error;
    669   1.1     ragge 	uint8_t enaddr[ETHER_ADDR_LEN];
    670   1.1     ragge 	pcireg_t preg, memtype;
    671   1.1     ragge 	uint32_t reg;
    672  1.37  christos 	char intrbuf[PCI_INTRSTR_LEN];
    673   1.1     ragge 
    674  1.35       chs 	sc->sc_dev = self;
    675   1.1     ragge 	sc->sc_dmat = pa->pa_dmat;
    676   1.1     ragge 	sc->sc_pc = pa->pa_pc;
    677   1.1     ragge 	sc->sc_pt = pa->pa_tag;
    678   1.1     ragge 
    679  1.33  drochner 	pci_aprint_devinfo_fancy(pa, "Ethernet controller",
    680  1.33  drochner 		"Intel i82597EX 10GbE-LR Ethernet", 1);
    681   1.1     ragge 
    682   1.1     ragge 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    683   1.1     ragge         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    684   1.1     ragge             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    685  1.35       chs                 aprint_error_dev(sc->sc_dev, "unable to map device registers\n");
    686   1.1     ragge                 return;
    687   1.1     ragge         }
    688   1.1     ragge 
    689   1.1     ragge 	/* Enable bus mastering */
    690   1.1     ragge 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    691   1.1     ragge 	preg |= PCI_COMMAND_MASTER_ENABLE;
    692   1.1     ragge 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    693   1.1     ragge 
    694   1.1     ragge 	/*
    695   1.1     ragge 	 * Map and establish our interrupt.
    696   1.1     ragge 	 */
    697   1.1     ragge 	if (pci_intr_map(pa, &ih)) {
    698  1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    699   1.1     ragge 		return;
    700   1.1     ragge 	}
    701  1.37  christos 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    702   1.1     ragge 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    703   1.1     ragge 	if (sc->sc_ih == NULL) {
    704  1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    705   1.1     ragge 		if (intrstr != NULL)
    706  1.28     njoly 			aprint_error(" at %s", intrstr);
    707  1.28     njoly 		aprint_error("\n");
    708   1.1     ragge 		return;
    709   1.1     ragge 	}
    710  1.35       chs 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    711   1.1     ragge 
    712   1.1     ragge 	/*
    713   1.1     ragge 	 * Determine a few things about the bus we're connected to.
    714   1.1     ragge 	 */
    715   1.1     ragge 	reg = CSR_READ(sc, DGE_STATUS);
    716   1.1     ragge 	if (reg & STATUS_BUS64)
    717   1.1     ragge 		sc->sc_flags |= DGE_F_BUS64;
    718   1.1     ragge 
    719   1.1     ragge 	sc->sc_flags |= DGE_F_PCIX;
    720   1.1     ragge 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    721   1.1     ragge 			       PCI_CAP_PCIX,
    722   1.1     ragge 			       &sc->sc_pcix_offset, NULL) == 0)
    723  1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to find PCIX "
    724  1.21    cegger 		    "capability\n");
    725   1.1     ragge 
    726   1.1     ragge 	if (sc->sc_flags & DGE_F_PCIX) {
    727   1.1     ragge 		switch (reg & STATUS_PCIX_MSK) {
    728   1.1     ragge 		case STATUS_PCIX_66:
    729   1.1     ragge 			sc->sc_bus_speed = 66;
    730   1.1     ragge 			break;
    731   1.1     ragge 		case STATUS_PCIX_100:
    732   1.1     ragge 			sc->sc_bus_speed = 100;
    733   1.1     ragge 			break;
    734   1.1     ragge 		case STATUS_PCIX_133:
    735   1.1     ragge 			sc->sc_bus_speed = 133;
    736   1.1     ragge 			break;
    737   1.1     ragge 		default:
    738  1.35       chs 			aprint_error_dev(sc->sc_dev,
    739  1.21    cegger 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    740   1.1     ragge 			    reg & STATUS_PCIX_MSK);
    741   1.1     ragge 			sc->sc_bus_speed = 66;
    742   1.1     ragge 		}
    743   1.1     ragge 	} else
    744   1.1     ragge 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    745  1.35       chs 	aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
    746   1.1     ragge 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    747   1.1     ragge 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    748   1.1     ragge 
    749   1.1     ragge 	/*
    750   1.1     ragge 	 * Allocate the control data structures, and create and load the
    751   1.1     ragge 	 * DMA map for it.
    752   1.1     ragge 	 */
    753   1.1     ragge 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    754   1.1     ragge 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    755   1.1     ragge 	    0)) != 0) {
    756  1.35       chs 		aprint_error_dev(sc->sc_dev,
    757  1.21    cegger 		    "unable to allocate control data, error = %d\n",
    758  1.21    cegger 		    error);
    759   1.1     ragge 		goto fail_0;
    760   1.1     ragge 	}
    761   1.1     ragge 
    762   1.1     ragge 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    763  1.15  christos 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    764   1.1     ragge 	    0)) != 0) {
    765  1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
    766  1.21    cegger 		    error);
    767   1.1     ragge 		goto fail_1;
    768   1.1     ragge 	}
    769   1.1     ragge 
    770   1.1     ragge 	if ((error = bus_dmamap_create(sc->sc_dmat,
    771   1.1     ragge 	    sizeof(struct dge_control_data), 1,
    772   1.1     ragge 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    773  1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
    774  1.21    cegger 		    "error = %d\n", error);
    775   1.1     ragge 		goto fail_2;
    776   1.1     ragge 	}
    777   1.1     ragge 
    778   1.1     ragge 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    779   1.1     ragge 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    780   1.1     ragge 	    0)) != 0) {
    781  1.35       chs 		aprint_error_dev(sc->sc_dev,
    782  1.21    cegger 		    "unable to load control data DMA map, error = %d\n",
    783  1.21    cegger 		    error);
    784   1.1     ragge 		goto fail_3;
    785   1.1     ragge 	}
    786   1.1     ragge 
    787  1.10     perry #ifdef DGE_OFFBYONE_RXBUG
    788   1.3     ragge 	if (dge_alloc_rcvmem(sc) != 0)
    789   1.3     ragge 		return; /* Already complained */
    790   1.3     ragge #endif
    791   1.1     ragge 	/*
    792   1.1     ragge 	 * Create the transmit buffer DMA maps.
    793   1.1     ragge 	 */
    794   1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    795   1.2     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    796   1.1     ragge 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    797   1.1     ragge 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    798  1.35       chs 			aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
    799  1.21    cegger 			    "error = %d\n", i, error);
    800   1.1     ragge 			goto fail_4;
    801   1.1     ragge 		}
    802   1.1     ragge 	}
    803   1.1     ragge 
    804   1.1     ragge 	/*
    805   1.1     ragge 	 * Create the receive buffer DMA maps.
    806   1.1     ragge 	 */
    807   1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    808   1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    809   1.3     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    810   1.3     ragge 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    811   1.3     ragge #else
    812   1.1     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    813   1.1     ragge 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    814   1.3     ragge #endif
    815  1.35       chs 			aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
    816  1.21    cegger 			    "error = %d\n", i, error);
    817   1.1     ragge 			goto fail_5;
    818   1.1     ragge 		}
    819   1.1     ragge 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    820   1.1     ragge 	}
    821   1.1     ragge 
    822   1.1     ragge 	/*
    823   1.1     ragge 	 * Set bits in ctrl0 register.
    824   1.1     ragge 	 * Should get the software defined pins out of EEPROM?
    825   1.1     ragge 	 */
    826   1.1     ragge 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    827   1.1     ragge 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    828   1.1     ragge 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    829   1.1     ragge 
    830   1.1     ragge 	/*
    831   1.1     ragge 	 * Reset the chip to a known state.
    832   1.1     ragge 	 */
    833   1.1     ragge 	dge_reset(sc);
    834   1.1     ragge 
    835   1.1     ragge 	/*
    836   1.1     ragge 	 * Reset the PHY.
    837   1.1     ragge 	 */
    838   1.1     ragge 	dge_xgmii_reset(sc);
    839   1.1     ragge 
    840   1.1     ragge 	/*
    841   1.1     ragge 	 * Read in EEPROM data.
    842   1.1     ragge 	 */
    843   1.1     ragge 	if (dge_read_eeprom(sc)) {
    844  1.35       chs 		aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
    845   1.1     ragge 		return;
    846   1.1     ragge 	}
    847   1.1     ragge 
    848   1.1     ragge 	/*
    849   1.1     ragge 	 * Get the ethernet address.
    850   1.1     ragge 	 */
    851   1.1     ragge 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    852   1.1     ragge 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    853   1.1     ragge 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    854   1.1     ragge 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    855   1.1     ragge 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    856   1.1     ragge 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    857   1.1     ragge 
    858  1.35       chs 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    859   1.1     ragge 	    ether_sprintf(enaddr));
    860   1.1     ragge 
    861   1.1     ragge 	/*
    862   1.1     ragge 	 * Setup media stuff.
    863   1.1     ragge 	 */
    864   1.1     ragge         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    865   1.1     ragge             dge_xgmii_mediastatus);
    866   1.1     ragge         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    867   1.1     ragge         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    868   1.1     ragge 
    869   1.1     ragge 	ifp = &sc->sc_ethercom.ec_if;
    870  1.35       chs 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    871   1.1     ragge 	ifp->if_softc = sc;
    872   1.1     ragge 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    873   1.1     ragge 	ifp->if_ioctl = dge_ioctl;
    874   1.1     ragge 	ifp->if_start = dge_start;
    875   1.1     ragge 	ifp->if_watchdog = dge_watchdog;
    876   1.1     ragge 	ifp->if_init = dge_init;
    877   1.1     ragge 	ifp->if_stop = dge_stop;
    878   1.1     ragge 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    879   1.1     ragge 	IFQ_SET_READY(&ifp->if_snd);
    880   1.1     ragge 
    881   1.1     ragge 	sc->sc_ethercom.ec_capabilities |=
    882   1.1     ragge 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    883   1.1     ragge 
    884   1.1     ragge 	/*
    885   1.1     ragge 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    886   1.1     ragge 	 */
    887   1.1     ragge 	ifp->if_capabilities |=
    888  1.11      yamt 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    889  1.11      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    890  1.11      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    891   1.1     ragge 
    892   1.1     ragge 	/*
    893   1.1     ragge 	 * Attach the interface.
    894   1.1     ragge 	 */
    895   1.1     ragge 	if_attach(ifp);
    896   1.1     ragge 	ether_ifattach(ifp, enaddr);
    897  1.35       chs 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    898  1.38       tls 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    899   1.1     ragge 
    900   1.1     ragge #ifdef DGE_EVENT_COUNTERS
    901   1.1     ragge 	/* Fix segment event naming */
    902   1.1     ragge 	if (dge_txseg_evcnt_names == NULL) {
    903   1.1     ragge 		dge_txseg_evcnt_names =
    904   1.1     ragge 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    905   1.1     ragge 		for (i = 0; i < DGE_NTXSEGS; i++)
    906   1.4    itojun 			snprintf((*dge_txseg_evcnt_names)[i],
    907   1.4    itojun 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    908   1.1     ragge 	}
    909   1.1     ragge 
    910   1.1     ragge 	/* Attach event counters. */
    911   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    912  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txsstall");
    913   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    914  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txdstall");
    915   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    916  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txforceintr");
    917   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    918  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txdw");
    919   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    920  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txqe");
    921   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    922  1.35       chs 	    NULL, device_xname(sc->sc_dev), "rxintr");
    923   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    924  1.35       chs 	    NULL, device_xname(sc->sc_dev), "linkintr");
    925   1.1     ragge 
    926   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    927  1.35       chs 	    NULL, device_xname(sc->sc_dev), "rxipsum");
    928   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    929  1.35       chs 	    NULL, device_xname(sc->sc_dev), "rxtusum");
    930   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    931  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txipsum");
    932   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    933  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txtusum");
    934   1.1     ragge 
    935   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    936  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txctx init");
    937   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    938  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txctx hit");
    939   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    940  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txctx miss");
    941   1.1     ragge 
    942   1.1     ragge 	for (i = 0; i < DGE_NTXSEGS; i++)
    943   1.1     ragge 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    944  1.35       chs 		    NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    945   1.1     ragge 
    946   1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    947  1.35       chs 	    NULL, device_xname(sc->sc_dev), "txdrop");
    948   1.1     ragge 
    949   1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    950   1.1     ragge 
    951   1.1     ragge 	/*
    952   1.1     ragge 	 * Make sure the interface is shutdown during reboot.
    953   1.1     ragge 	 */
    954  1.27   tsutsui 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
    955  1.27   tsutsui 		pmf_class_network_register(self, ifp);
    956  1.27   tsutsui 	else
    957  1.27   tsutsui 		aprint_error_dev(self, "couldn't establish power handler\n");
    958  1.27   tsutsui 
    959   1.1     ragge 	return;
    960   1.1     ragge 
    961   1.1     ragge 	/*
    962   1.1     ragge 	 * Free any resources we've allocated during the failed attach
    963   1.1     ragge 	 * attempt.  Do this in reverse order and fall through.
    964   1.1     ragge 	 */
    965   1.1     ragge  fail_5:
    966   1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    967   1.1     ragge 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    968   1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    969   1.1     ragge 			    sc->sc_rxsoft[i].rxs_dmamap);
    970   1.1     ragge 	}
    971   1.1     ragge  fail_4:
    972   1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    973   1.1     ragge 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    974   1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
    975   1.1     ragge 			    sc->sc_txsoft[i].txs_dmamap);
    976   1.1     ragge 	}
    977   1.1     ragge 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    978   1.1     ragge  fail_3:
    979   1.1     ragge 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    980   1.1     ragge  fail_2:
    981  1.15  christos 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    982   1.1     ragge 	    sizeof(struct dge_control_data));
    983   1.1     ragge  fail_1:
    984   1.1     ragge 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    985   1.1     ragge  fail_0:
    986   1.1     ragge 	return;
    987   1.1     ragge }
    988   1.1     ragge 
    989   1.1     ragge /*
    990   1.1     ragge  * dge_shutdown:
    991   1.1     ragge  *
    992   1.1     ragge  *	Make sure the interface is stopped at reboot time.
    993   1.1     ragge  */
    994  1.27   tsutsui static bool
    995  1.27   tsutsui dge_shutdown(device_t self, int howto)
    996   1.1     ragge {
    997  1.27   tsutsui 	struct dge_softc *sc;
    998   1.1     ragge 
    999  1.27   tsutsui 	sc = device_private(self);
   1000   1.1     ragge 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1001  1.27   tsutsui 
   1002  1.27   tsutsui 	return true;
   1003   1.1     ragge }
   1004   1.1     ragge 
   1005   1.1     ragge /*
   1006   1.1     ragge  * dge_tx_cksum:
   1007   1.1     ragge  *
   1008   1.1     ragge  *	Set up TCP/IP checksumming parameters for the
   1009   1.1     ragge  *	specified packet.
   1010   1.1     ragge  */
   1011   1.1     ragge static int
   1012   1.1     ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1013   1.1     ragge {
   1014   1.1     ragge 	struct mbuf *m0 = txs->txs_mbuf;
   1015   1.1     ragge 	struct dge_ctdes *t;
   1016   1.1     ragge 	uint32_t ipcs, tucs;
   1017   1.1     ragge 	struct ether_header *eh;
   1018   1.1     ragge 	int offset, iphl;
   1019   1.1     ragge 	uint8_t fields = 0;
   1020   1.1     ragge 
   1021   1.1     ragge 	/*
   1022   1.1     ragge 	 * XXX It would be nice if the mbuf pkthdr had offset
   1023   1.1     ragge 	 * fields for the protocol headers.
   1024   1.1     ragge 	 */
   1025   1.1     ragge 
   1026   1.1     ragge 	eh = mtod(m0, struct ether_header *);
   1027   1.1     ragge 	switch (htons(eh->ether_type)) {
   1028   1.1     ragge 	case ETHERTYPE_IP:
   1029   1.1     ragge 		offset = ETHER_HDR_LEN;
   1030   1.1     ragge 		break;
   1031   1.1     ragge 
   1032   1.1     ragge 	case ETHERTYPE_VLAN:
   1033   1.1     ragge 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1034   1.1     ragge 		break;
   1035   1.1     ragge 
   1036   1.1     ragge 	default:
   1037   1.1     ragge 		/*
   1038   1.1     ragge 		 * Don't support this protocol or encapsulation.
   1039   1.1     ragge 		 */
   1040   1.1     ragge 		*fieldsp = 0;
   1041   1.1     ragge 		return (0);
   1042   1.1     ragge 	}
   1043   1.1     ragge 
   1044   1.9   thorpej 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1045   1.1     ragge 
   1046   1.1     ragge 	/*
   1047   1.1     ragge 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1048   1.1     ragge 	 * offload feature, if we load the context descriptor, we
   1049   1.1     ragge 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1050   1.1     ragge 	 */
   1051   1.1     ragge 
   1052   1.1     ragge 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1053   1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1054   1.1     ragge 		fields |= TDESC_POPTS_IXSM;
   1055   1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1056   1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1057   1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1058   1.1     ragge 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1059   1.1     ragge 		/* Use the cached value. */
   1060   1.1     ragge 		ipcs = sc->sc_txctx_ipcs;
   1061   1.1     ragge 	} else {
   1062   1.1     ragge 		/* Just initialize it to the likely value anyway. */
   1063   1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1064   1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1065   1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1066   1.1     ragge 	}
   1067   1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1068  1.10     perry 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1069  1.35       chs 	    device_xname(sc->sc_dev), offset, ipcs));
   1070   1.1     ragge 
   1071   1.1     ragge 	offset += iphl;
   1072   1.1     ragge 
   1073   1.1     ragge 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1074   1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1075   1.1     ragge 		fields |= TDESC_POPTS_TXSM;
   1076   1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1077   1.9   thorpej 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1078   1.8      heas 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1079   1.1     ragge 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1080   1.1     ragge 		/* Use the cached value. */
   1081   1.1     ragge 		tucs = sc->sc_txctx_tucs;
   1082   1.1     ragge 	} else {
   1083   1.1     ragge 		/* Just initialize it to a valid TCP context. */
   1084   1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1085   1.1     ragge 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1086   1.1     ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1087   1.1     ragge 	}
   1088   1.1     ragge 
   1089   1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1090   1.1     ragge 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1091  1.35       chs 	    device_xname(sc->sc_dev), offset, tucs));
   1092   1.1     ragge 
   1093   1.1     ragge 	if (sc->sc_txctx_ipcs == ipcs &&
   1094   1.1     ragge 	    sc->sc_txctx_tucs == tucs) {
   1095   1.1     ragge 		/* Cached context is fine. */
   1096   1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1097   1.1     ragge 	} else {
   1098   1.1     ragge 		/* Fill in the context descriptor. */
   1099   1.1     ragge #ifdef DGE_EVENT_COUNTERS
   1100   1.1     ragge 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1101   1.1     ragge 		    sc->sc_txctx_tucs == 0xffffffff)
   1102   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1103   1.1     ragge 		else
   1104   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1105   1.1     ragge #endif
   1106   1.1     ragge 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1107   1.1     ragge 		t->dc_tcpip_ipcs = htole32(ipcs);
   1108   1.1     ragge 		t->dc_tcpip_tucs = htole32(tucs);
   1109   1.1     ragge 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1110   1.1     ragge 		t->dc_tcpip_seg = 0;
   1111   1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1112   1.1     ragge 
   1113   1.1     ragge 		sc->sc_txctx_ipcs = ipcs;
   1114   1.1     ragge 		sc->sc_txctx_tucs = tucs;
   1115   1.1     ragge 
   1116   1.1     ragge 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1117   1.1     ragge 		txs->txs_ndesc++;
   1118   1.1     ragge 	}
   1119   1.1     ragge 
   1120   1.1     ragge 	*fieldsp = fields;
   1121   1.1     ragge 
   1122   1.1     ragge 	return (0);
   1123   1.1     ragge }
   1124   1.1     ragge 
   1125   1.1     ragge /*
   1126   1.1     ragge  * dge_start:		[ifnet interface function]
   1127   1.1     ragge  *
   1128   1.1     ragge  *	Start packet transmission on the interface.
   1129   1.1     ragge  */
   1130   1.1     ragge static void
   1131   1.1     ragge dge_start(struct ifnet *ifp)
   1132   1.1     ragge {
   1133   1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1134   1.1     ragge 	struct mbuf *m0;
   1135   1.1     ragge 	struct dge_txsoft *txs;
   1136   1.1     ragge 	bus_dmamap_t dmamap;
   1137   1.1     ragge 	int error, nexttx, lasttx = -1, ofree, seg;
   1138   1.1     ragge 	uint32_t cksumcmd;
   1139   1.1     ragge 	uint8_t cksumfields;
   1140   1.1     ragge 
   1141   1.1     ragge 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1142   1.1     ragge 		return;
   1143   1.1     ragge 
   1144   1.1     ragge 	/*
   1145   1.1     ragge 	 * Remember the previous number of free descriptors.
   1146   1.1     ragge 	 */
   1147   1.1     ragge 	ofree = sc->sc_txfree;
   1148   1.1     ragge 
   1149   1.1     ragge 	/*
   1150   1.1     ragge 	 * Loop through the send queue, setting up transmit descriptors
   1151   1.1     ragge 	 * until we drain the queue, or use up all available transmit
   1152   1.1     ragge 	 * descriptors.
   1153   1.1     ragge 	 */
   1154   1.1     ragge 	for (;;) {
   1155   1.1     ragge 		/* Grab a packet off the queue. */
   1156   1.1     ragge 		IFQ_POLL(&ifp->if_snd, m0);
   1157   1.1     ragge 		if (m0 == NULL)
   1158   1.1     ragge 			break;
   1159   1.1     ragge 
   1160   1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1161   1.1     ragge 		    ("%s: TX: have packet to transmit: %p\n",
   1162  1.35       chs 		    device_xname(sc->sc_dev), m0));
   1163   1.1     ragge 
   1164   1.1     ragge 		/* Get a work queue entry. */
   1165   1.1     ragge 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1166   1.1     ragge 			dge_txintr(sc);
   1167   1.1     ragge 			if (sc->sc_txsfree == 0) {
   1168   1.1     ragge 				DPRINTF(DGE_DEBUG_TX,
   1169   1.1     ragge 				    ("%s: TX: no free job descriptors\n",
   1170  1.35       chs 					device_xname(sc->sc_dev)));
   1171   1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1172   1.1     ragge 				break;
   1173   1.1     ragge 			}
   1174   1.1     ragge 		}
   1175   1.1     ragge 
   1176   1.1     ragge 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1177   1.1     ragge 		dmamap = txs->txs_dmamap;
   1178   1.1     ragge 
   1179   1.1     ragge 		/*
   1180   1.1     ragge 		 * Load the DMA map.  If this fails, the packet either
   1181   1.1     ragge 		 * didn't fit in the allotted number of segments, or we
   1182   1.1     ragge 		 * were short on resources.  For the too-many-segments
   1183   1.1     ragge 		 * case, we simply report an error and drop the packet,
   1184   1.1     ragge 		 * since we can't sanely copy a jumbo packet to a single
   1185   1.1     ragge 		 * buffer.
   1186   1.1     ragge 		 */
   1187   1.1     ragge 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1188   1.1     ragge 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1189   1.1     ragge 		if (error) {
   1190   1.1     ragge 			if (error == EFBIG) {
   1191   1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1192   1.1     ragge 				printf("%s: Tx packet consumes too many "
   1193   1.1     ragge 				    "DMA segments, dropping...\n",
   1194  1.35       chs 				    device_xname(sc->sc_dev));
   1195   1.1     ragge 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1196   1.1     ragge 				m_freem(m0);
   1197   1.1     ragge 				continue;
   1198   1.1     ragge 			}
   1199   1.1     ragge 			/*
   1200   1.1     ragge 			 * Short on resources, just stop for now.
   1201   1.1     ragge 			 */
   1202   1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1203   1.1     ragge 			    ("%s: TX: dmamap load failed: %d\n",
   1204  1.35       chs 			    device_xname(sc->sc_dev), error));
   1205   1.1     ragge 			break;
   1206   1.1     ragge 		}
   1207   1.1     ragge 
   1208   1.1     ragge 		/*
   1209   1.1     ragge 		 * Ensure we have enough descriptors free to describe
   1210   1.1     ragge 		 * the packet.  Note, we always reserve one descriptor
   1211   1.1     ragge 		 * at the end of the ring due to the semantics of the
   1212   1.1     ragge 		 * TDT register, plus one more in the event we need
   1213   1.1     ragge 		 * to re-load checksum offload context.
   1214   1.1     ragge 		 */
   1215   1.1     ragge 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1216   1.1     ragge 			/*
   1217   1.1     ragge 			 * Not enough free descriptors to transmit this
   1218   1.1     ragge 			 * packet.  We haven't committed anything yet,
   1219   1.1     ragge 			 * so just unload the DMA map, put the packet
   1220   1.1     ragge 			 * pack on the queue, and punt.  Notify the upper
   1221   1.1     ragge 			 * layer that there are no more slots left.
   1222   1.1     ragge 			 */
   1223   1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1224   1.1     ragge 			    ("%s: TX: need %d descriptors, have %d\n",
   1225  1.35       chs 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   1226   1.1     ragge 			    sc->sc_txfree - 1));
   1227   1.1     ragge 			ifp->if_flags |= IFF_OACTIVE;
   1228   1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1229   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1230   1.1     ragge 			break;
   1231   1.1     ragge 		}
   1232   1.1     ragge 
   1233   1.1     ragge 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1234   1.1     ragge 
   1235   1.1     ragge 		/*
   1236   1.1     ragge 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1237   1.1     ragge 		 */
   1238   1.1     ragge 
   1239   1.1     ragge 		/* Sync the DMA map. */
   1240   1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1241   1.1     ragge 		    BUS_DMASYNC_PREWRITE);
   1242   1.1     ragge 
   1243   1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1244   1.1     ragge 		    ("%s: TX: packet has %d DMA segments\n",
   1245  1.35       chs 		    device_xname(sc->sc_dev), dmamap->dm_nsegs));
   1246   1.1     ragge 
   1247   1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1248   1.1     ragge 
   1249   1.1     ragge 		/*
   1250   1.1     ragge 		 * Store a pointer to the packet so that we can free it
   1251   1.1     ragge 		 * later.
   1252   1.1     ragge 		 *
   1253   1.1     ragge 		 * Initially, we consider the number of descriptors the
   1254   1.1     ragge 		 * packet uses the number of DMA segments.  This may be
   1255   1.1     ragge 		 * incremented by 1 if we do checksum offload (a descriptor
   1256   1.1     ragge 		 * is used to set the checksum context).
   1257   1.1     ragge 		 */
   1258   1.1     ragge 		txs->txs_mbuf = m0;
   1259   1.1     ragge 		txs->txs_firstdesc = sc->sc_txnext;
   1260   1.1     ragge 		txs->txs_ndesc = dmamap->dm_nsegs;
   1261   1.1     ragge 
   1262   1.1     ragge 		/*
   1263   1.1     ragge 		 * Set up checksum offload parameters for
   1264   1.1     ragge 		 * this packet.
   1265   1.1     ragge 		 */
   1266   1.1     ragge 		if (m0->m_pkthdr.csum_flags &
   1267   1.1     ragge 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1268   1.1     ragge 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1269   1.1     ragge 				/* Error message already displayed. */
   1270   1.1     ragge 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1271   1.1     ragge 				continue;
   1272   1.1     ragge 			}
   1273   1.1     ragge 		} else {
   1274   1.1     ragge 			cksumfields = 0;
   1275   1.1     ragge 		}
   1276   1.1     ragge 
   1277   1.1     ragge 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1278   1.1     ragge 
   1279   1.1     ragge 		/*
   1280   1.1     ragge 		 * Initialize the transmit descriptor.
   1281   1.1     ragge 		 */
   1282   1.1     ragge 		for (nexttx = sc->sc_txnext, seg = 0;
   1283   1.1     ragge 		     seg < dmamap->dm_nsegs;
   1284   1.1     ragge 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1285   1.1     ragge 			/*
   1286   1.1     ragge 			 * Note: we currently only use 32-bit DMA
   1287   1.1     ragge 			 * addresses.
   1288   1.1     ragge 			 */
   1289   1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1290   1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrl =
   1291   1.1     ragge 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1292   1.1     ragge 			sc->sc_txdescs[nexttx].dt_ctl =
   1293   1.1     ragge 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1294   1.1     ragge 			sc->sc_txdescs[nexttx].dt_status = 0;
   1295   1.1     ragge 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1296   1.1     ragge 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1297   1.1     ragge 			lasttx = nexttx;
   1298   1.1     ragge 
   1299   1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1300   1.1     ragge 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1301  1.35       chs 			    device_xname(sc->sc_dev), nexttx,
   1302  1.23       abs 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
   1303  1.23       abs 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
   1304   1.1     ragge 		}
   1305   1.1     ragge 
   1306   1.1     ragge 		KASSERT(lasttx != -1);
   1307   1.1     ragge 
   1308   1.1     ragge 		/*
   1309   1.1     ragge 		 * Set up the command byte on the last descriptor of
   1310   1.1     ragge 		 * the packet.  If we're in the interrupt delay window,
   1311   1.1     ragge 		 * delay the interrupt.
   1312   1.1     ragge 		 */
   1313   1.1     ragge 		sc->sc_txdescs[lasttx].dt_ctl |=
   1314   1.1     ragge 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1315   1.1     ragge 
   1316   1.1     ragge 		txs->txs_lastdesc = lasttx;
   1317   1.1     ragge 
   1318   1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1319  1.35       chs 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
   1320   1.1     ragge 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1321   1.1     ragge 
   1322   1.1     ragge 		/* Sync the descriptors we're using. */
   1323   1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1324   1.1     ragge 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1325   1.1     ragge 
   1326   1.1     ragge 		/* Give the packet to the chip. */
   1327   1.1     ragge 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1328   1.1     ragge 
   1329   1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1330  1.35       chs 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   1331   1.1     ragge 
   1332   1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1333   1.1     ragge 		    ("%s: TX: finished transmitting packet, job %d\n",
   1334  1.35       chs 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   1335   1.1     ragge 
   1336   1.1     ragge 		/* Advance the tx pointer. */
   1337   1.1     ragge 		sc->sc_txfree -= txs->txs_ndesc;
   1338   1.1     ragge 		sc->sc_txnext = nexttx;
   1339   1.1     ragge 
   1340   1.1     ragge 		sc->sc_txsfree--;
   1341   1.1     ragge 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1342   1.1     ragge 
   1343   1.1     ragge 		/* Pass the packet to any BPF listeners. */
   1344  1.30     joerg 		bpf_mtap(ifp, m0);
   1345   1.1     ragge 	}
   1346   1.1     ragge 
   1347   1.1     ragge 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1348   1.1     ragge 		/* No more slots; notify upper layer. */
   1349   1.1     ragge 		ifp->if_flags |= IFF_OACTIVE;
   1350   1.1     ragge 	}
   1351   1.1     ragge 
   1352   1.1     ragge 	if (sc->sc_txfree != ofree) {
   1353   1.1     ragge 		/* Set a watchdog timer in case the chip flakes out. */
   1354   1.1     ragge 		ifp->if_timer = 5;
   1355   1.1     ragge 	}
   1356   1.1     ragge }
   1357   1.1     ragge 
   1358   1.1     ragge /*
   1359   1.1     ragge  * dge_watchdog:		[ifnet interface function]
   1360   1.1     ragge  *
   1361   1.1     ragge  *	Watchdog timer handler.
   1362   1.1     ragge  */
   1363   1.1     ragge static void
   1364   1.1     ragge dge_watchdog(struct ifnet *ifp)
   1365   1.1     ragge {
   1366   1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1367   1.1     ragge 
   1368   1.1     ragge 	/*
   1369   1.1     ragge 	 * Since we're using delayed interrupts, sweep up
   1370   1.1     ragge 	 * before we report an error.
   1371   1.1     ragge 	 */
   1372   1.1     ragge 	dge_txintr(sc);
   1373   1.1     ragge 
   1374   1.1     ragge 	if (sc->sc_txfree != DGE_NTXDESC) {
   1375   1.1     ragge 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1376  1.35       chs 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1377   1.1     ragge 		    sc->sc_txnext);
   1378   1.1     ragge 		ifp->if_oerrors++;
   1379   1.1     ragge 
   1380   1.1     ragge 		/* Reset the interface. */
   1381   1.1     ragge 		(void) dge_init(ifp);
   1382   1.1     ragge 	}
   1383   1.1     ragge 
   1384   1.1     ragge 	/* Try to get more packets going. */
   1385   1.1     ragge 	dge_start(ifp);
   1386   1.1     ragge }
   1387   1.1     ragge 
   1388   1.1     ragge /*
   1389   1.1     ragge  * dge_ioctl:		[ifnet interface function]
   1390   1.1     ragge  *
   1391   1.1     ragge  *	Handle control requests from the operator.
   1392   1.1     ragge  */
   1393   1.1     ragge static int
   1394  1.15  christos dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1395   1.1     ragge {
   1396   1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1397   1.1     ragge 	struct ifreq *ifr = (struct ifreq *) data;
   1398   1.1     ragge 	pcireg_t preg;
   1399   1.1     ragge 	int s, error, mmrbc;
   1400   1.1     ragge 
   1401   1.1     ragge 	s = splnet();
   1402   1.1     ragge 
   1403   1.1     ragge 	switch (cmd) {
   1404   1.1     ragge 	case SIOCSIFMEDIA:
   1405   1.1     ragge 	case SIOCGIFMEDIA:
   1406   1.1     ragge 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1407   1.1     ragge 		break;
   1408   1.1     ragge 
   1409   1.2     ragge 	case SIOCSIFMTU:
   1410  1.19    dyoung 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1411   1.2     ragge 			error = EINVAL;
   1412  1.19    dyoung 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1413  1.19    dyoung 			break;
   1414  1.19    dyoung 		else if (ifp->if_flags & IFF_UP)
   1415  1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1416  1.19    dyoung 		else
   1417   1.2     ragge 			error = 0;
   1418   1.2     ragge 		break;
   1419   1.2     ragge 
   1420   1.1     ragge         case SIOCSIFFLAGS:
   1421  1.22    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1422  1.22    dyoung 			break;
   1423   1.1     ragge 		/* extract link flags */
   1424   1.1     ragge 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1425   1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1426   1.1     ragge 			mmrbc = PCIX_MMRBC_512;
   1427   1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1428   1.1     ragge 		    (ifp->if_flags & IFF_LINK1) != 0)
   1429   1.1     ragge 			mmrbc = PCIX_MMRBC_1024;
   1430   1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1431   1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1432   1.1     ragge 			mmrbc = PCIX_MMRBC_2048;
   1433   1.1     ragge 		else
   1434   1.1     ragge 			mmrbc = PCIX_MMRBC_4096;
   1435   1.1     ragge 		if (mmrbc != sc->sc_mmrbc) {
   1436   1.1     ragge 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1437   1.1     ragge 			preg &= ~PCIX_MMRBC_MSK;
   1438   1.1     ragge 			preg |= mmrbc;
   1439   1.1     ragge 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1440   1.1     ragge 			sc->sc_mmrbc = mmrbc;
   1441   1.1     ragge 		}
   1442   1.1     ragge                 /* FALLTHROUGH */
   1443   1.1     ragge 	default:
   1444  1.19    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1445  1.19    dyoung 			break;
   1446  1.19    dyoung 
   1447  1.19    dyoung 		error = 0;
   1448  1.19    dyoung 
   1449  1.19    dyoung 		if (cmd == SIOCSIFCAP)
   1450  1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1451  1.19    dyoung 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1452  1.19    dyoung 			;
   1453  1.19    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1454   1.1     ragge 			/*
   1455   1.1     ragge 			 * Multicast list has changed; set the hardware filter
   1456   1.1     ragge 			 * accordingly.
   1457   1.1     ragge 			 */
   1458  1.19    dyoung 			dge_set_filter(sc);
   1459   1.1     ragge 		}
   1460   1.1     ragge 		break;
   1461   1.1     ragge 	}
   1462   1.1     ragge 
   1463   1.1     ragge 	/* Try to get more packets going. */
   1464   1.1     ragge 	dge_start(ifp);
   1465   1.1     ragge 
   1466   1.1     ragge 	splx(s);
   1467   1.1     ragge 	return (error);
   1468   1.1     ragge }
   1469   1.1     ragge 
   1470   1.1     ragge /*
   1471   1.1     ragge  * dge_intr:
   1472   1.1     ragge  *
   1473   1.1     ragge  *	Interrupt service routine.
   1474   1.1     ragge  */
   1475   1.1     ragge static int
   1476   1.1     ragge dge_intr(void *arg)
   1477   1.1     ragge {
   1478   1.1     ragge 	struct dge_softc *sc = arg;
   1479   1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1480   1.1     ragge 	uint32_t icr;
   1481   1.1     ragge 	int wantinit, handled = 0;
   1482   1.1     ragge 
   1483   1.1     ragge 	for (wantinit = 0; wantinit == 0;) {
   1484   1.1     ragge 		icr = CSR_READ(sc, DGE_ICR);
   1485   1.1     ragge 		if ((icr & sc->sc_icr) == 0)
   1486   1.1     ragge 			break;
   1487   1.1     ragge 
   1488  1.34       tls 		rnd_add_uint32(&sc->rnd_source, icr);
   1489   1.1     ragge 
   1490   1.1     ragge 		handled = 1;
   1491   1.1     ragge 
   1492   1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1493   1.1     ragge 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1494   1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1495   1.1     ragge 			    ("%s: RX: got Rx intr 0x%08x\n",
   1496  1.35       chs 			    device_xname(sc->sc_dev),
   1497   1.1     ragge 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1498   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1499   1.1     ragge 		}
   1500   1.1     ragge #endif
   1501   1.1     ragge 		dge_rxintr(sc);
   1502   1.1     ragge 
   1503   1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1504   1.1     ragge 		if (icr & ICR_TXDW) {
   1505   1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1506   1.1     ragge 			    ("%s: TX: got TXDW interrupt\n",
   1507  1.35       chs 			    device_xname(sc->sc_dev)));
   1508   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1509   1.1     ragge 		}
   1510   1.1     ragge 		if (icr & ICR_TXQE)
   1511   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1512   1.1     ragge #endif
   1513   1.1     ragge 		dge_txintr(sc);
   1514   1.1     ragge 
   1515   1.1     ragge 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1516   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1517   1.1     ragge 			dge_linkintr(sc, icr);
   1518   1.1     ragge 		}
   1519   1.1     ragge 
   1520   1.1     ragge 		if (icr & ICR_RXO) {
   1521  1.35       chs 			printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
   1522   1.1     ragge 			wantinit = 1;
   1523   1.1     ragge 		}
   1524   1.1     ragge 	}
   1525   1.1     ragge 
   1526   1.1     ragge 	if (handled) {
   1527   1.1     ragge 		if (wantinit)
   1528   1.1     ragge 			dge_init(ifp);
   1529   1.1     ragge 
   1530   1.1     ragge 		/* Try to get more packets going. */
   1531   1.1     ragge 		dge_start(ifp);
   1532   1.1     ragge 	}
   1533   1.1     ragge 
   1534   1.1     ragge 	return (handled);
   1535   1.1     ragge }
   1536   1.1     ragge 
   1537   1.1     ragge /*
   1538   1.1     ragge  * dge_txintr:
   1539   1.1     ragge  *
   1540   1.1     ragge  *	Helper; handle transmit interrupts.
   1541   1.1     ragge  */
   1542   1.1     ragge static void
   1543   1.1     ragge dge_txintr(struct dge_softc *sc)
   1544   1.1     ragge {
   1545   1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1546   1.1     ragge 	struct dge_txsoft *txs;
   1547   1.1     ragge 	uint8_t status;
   1548   1.1     ragge 	int i;
   1549   1.1     ragge 
   1550   1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1551   1.1     ragge 
   1552   1.1     ragge 	/*
   1553   1.1     ragge 	 * Go through the Tx list and free mbufs for those
   1554   1.1     ragge 	 * frames which have been transmitted.
   1555   1.1     ragge 	 */
   1556   1.1     ragge 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1557   1.1     ragge 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1558   1.1     ragge 		txs = &sc->sc_txsoft[i];
   1559   1.1     ragge 
   1560   1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1561  1.35       chs 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
   1562   1.1     ragge 
   1563   1.1     ragge 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1564   1.1     ragge 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1565   1.1     ragge 
   1566   1.1     ragge 		status =
   1567   1.1     ragge 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1568   1.1     ragge 		if ((status & TDESC_STA_DD) == 0) {
   1569   1.1     ragge 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1570   1.1     ragge 			    BUS_DMASYNC_PREREAD);
   1571   1.1     ragge 			break;
   1572   1.1     ragge 		}
   1573   1.1     ragge 
   1574   1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1575   1.1     ragge 		    ("%s: TX: job %d done: descs %d..%d\n",
   1576  1.35       chs 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
   1577   1.1     ragge 		    txs->txs_lastdesc));
   1578   1.1     ragge 
   1579   1.1     ragge 		ifp->if_opackets++;
   1580   1.1     ragge 		sc->sc_txfree += txs->txs_ndesc;
   1581   1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1582   1.1     ragge 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1583   1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1584   1.1     ragge 		m_freem(txs->txs_mbuf);
   1585   1.1     ragge 		txs->txs_mbuf = NULL;
   1586   1.1     ragge 	}
   1587   1.1     ragge 
   1588   1.1     ragge 	/* Update the dirty transmit buffer pointer. */
   1589   1.1     ragge 	sc->sc_txsdirty = i;
   1590   1.1     ragge 	DPRINTF(DGE_DEBUG_TX,
   1591  1.35       chs 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
   1592   1.1     ragge 
   1593   1.1     ragge 	/*
   1594   1.1     ragge 	 * If there are no more pending transmissions, cancel the watchdog
   1595   1.1     ragge 	 * timer.
   1596   1.1     ragge 	 */
   1597   1.1     ragge 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1598   1.1     ragge 		ifp->if_timer = 0;
   1599   1.1     ragge }
   1600   1.1     ragge 
   1601   1.1     ragge /*
   1602   1.1     ragge  * dge_rxintr:
   1603   1.1     ragge  *
   1604   1.1     ragge  *	Helper; handle receive interrupts.
   1605   1.1     ragge  */
   1606   1.1     ragge static void
   1607   1.1     ragge dge_rxintr(struct dge_softc *sc)
   1608   1.1     ragge {
   1609   1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1610   1.1     ragge 	struct dge_rxsoft *rxs;
   1611   1.1     ragge 	struct mbuf *m;
   1612   1.1     ragge 	int i, len;
   1613   1.1     ragge 	uint8_t status, errors;
   1614   1.1     ragge 
   1615   1.1     ragge 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1616   1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1617   1.1     ragge 
   1618   1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1619   1.1     ragge 		    ("%s: RX: checking descriptor %d\n",
   1620  1.35       chs 		    device_xname(sc->sc_dev), i));
   1621   1.1     ragge 
   1622   1.1     ragge 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1623   1.1     ragge 
   1624   1.1     ragge 		status = sc->sc_rxdescs[i].dr_status;
   1625   1.1     ragge 		errors = sc->sc_rxdescs[i].dr_errors;
   1626   1.1     ragge 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1627   1.1     ragge 
   1628   1.1     ragge 		if ((status & RDESC_STS_DD) == 0) {
   1629   1.1     ragge 			/*
   1630   1.1     ragge 			 * We have processed all of the receive descriptors.
   1631   1.1     ragge 			 */
   1632   1.1     ragge 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1633   1.1     ragge 			break;
   1634   1.1     ragge 		}
   1635   1.1     ragge 
   1636   1.1     ragge 		if (__predict_false(sc->sc_rxdiscard)) {
   1637   1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1638   1.1     ragge 			    ("%s: RX: discarding contents of descriptor %d\n",
   1639  1.35       chs 			    device_xname(sc->sc_dev), i));
   1640   1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1641   1.1     ragge 			if (status & RDESC_STS_EOP) {
   1642   1.1     ragge 				/* Reset our state. */
   1643   1.1     ragge 				DPRINTF(DGE_DEBUG_RX,
   1644   1.1     ragge 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1645  1.35       chs 				    device_xname(sc->sc_dev)));
   1646   1.1     ragge 				sc->sc_rxdiscard = 0;
   1647   1.1     ragge 			}
   1648   1.1     ragge 			continue;
   1649   1.1     ragge 		}
   1650   1.1     ragge 
   1651   1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1652   1.1     ragge 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1653   1.1     ragge 
   1654   1.1     ragge 		m = rxs->rxs_mbuf;
   1655   1.1     ragge 
   1656   1.1     ragge 		/*
   1657   1.1     ragge 		 * Add a new receive buffer to the ring.
   1658   1.1     ragge 		 */
   1659   1.1     ragge 		if (dge_add_rxbuf(sc, i) != 0) {
   1660   1.1     ragge 			/*
   1661   1.1     ragge 			 * Failed, throw away what we've done so
   1662   1.1     ragge 			 * far, and discard the rest of the packet.
   1663   1.1     ragge 			 */
   1664   1.1     ragge 			ifp->if_ierrors++;
   1665   1.1     ragge 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1666   1.1     ragge 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1667   1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1668   1.1     ragge 			if ((status & RDESC_STS_EOP) == 0)
   1669   1.1     ragge 				sc->sc_rxdiscard = 1;
   1670   1.1     ragge 			if (sc->sc_rxhead != NULL)
   1671   1.1     ragge 				m_freem(sc->sc_rxhead);
   1672   1.1     ragge 			DGE_RXCHAIN_RESET(sc);
   1673   1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1674   1.1     ragge 			    ("%s: RX: Rx buffer allocation failed, "
   1675  1.35       chs 			    "dropping packet%s\n", device_xname(sc->sc_dev),
   1676   1.1     ragge 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1677   1.1     ragge 			continue;
   1678   1.1     ragge 		}
   1679   1.1     ragge 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1680   1.1     ragge 
   1681   1.1     ragge 		DGE_RXCHAIN_LINK(sc, m);
   1682   1.1     ragge 
   1683   1.1     ragge 		m->m_len = len;
   1684   1.1     ragge 
   1685   1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1686   1.1     ragge 		    ("%s: RX: buffer at %p len %d\n",
   1687  1.35       chs 		    device_xname(sc->sc_dev), m->m_data, len));
   1688   1.1     ragge 
   1689   1.1     ragge 		/*
   1690   1.1     ragge 		 * If this is not the end of the packet, keep
   1691   1.1     ragge 		 * looking.
   1692   1.1     ragge 		 */
   1693   1.1     ragge 		if ((status & RDESC_STS_EOP) == 0) {
   1694   1.1     ragge 			sc->sc_rxlen += len;
   1695   1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1696   1.1     ragge 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1697  1.35       chs 			    device_xname(sc->sc_dev), sc->sc_rxlen));
   1698   1.1     ragge 			continue;
   1699   1.1     ragge 		}
   1700   1.1     ragge 
   1701   1.1     ragge 		/*
   1702   1.1     ragge 		 * Okay, we have the entire packet now...
   1703   1.1     ragge 		 */
   1704   1.1     ragge 		*sc->sc_rxtailp = NULL;
   1705   1.1     ragge 		m = sc->sc_rxhead;
   1706   1.1     ragge 		len += sc->sc_rxlen;
   1707   1.1     ragge 
   1708   1.1     ragge 		DGE_RXCHAIN_RESET(sc);
   1709   1.1     ragge 
   1710   1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1711   1.1     ragge 		    ("%s: RX: have entire packet, len -> %d\n",
   1712  1.35       chs 		    device_xname(sc->sc_dev), len));
   1713   1.1     ragge 
   1714   1.1     ragge 		/*
   1715   1.1     ragge 		 * If an error occurred, update stats and drop the packet.
   1716   1.1     ragge 		 */
   1717   1.1     ragge 		if (errors &
   1718   1.1     ragge 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1719   1.1     ragge 			ifp->if_ierrors++;
   1720   1.1     ragge 			if (errors & RDESC_ERR_SE)
   1721   1.1     ragge 				printf("%s: symbol error\n",
   1722  1.35       chs 				    device_xname(sc->sc_dev));
   1723   1.1     ragge 			else if (errors & RDESC_ERR_P)
   1724   1.1     ragge 				printf("%s: parity error\n",
   1725  1.35       chs 				    device_xname(sc->sc_dev));
   1726   1.1     ragge 			else if (errors & RDESC_ERR_CE)
   1727   1.1     ragge 				printf("%s: CRC error\n",
   1728  1.35       chs 				    device_xname(sc->sc_dev));
   1729   1.1     ragge 			m_freem(m);
   1730   1.1     ragge 			continue;
   1731   1.1     ragge 		}
   1732   1.1     ragge 
   1733   1.1     ragge 		/*
   1734   1.1     ragge 		 * No errors.  Receive the packet.
   1735   1.1     ragge 		 */
   1736   1.1     ragge 		m->m_pkthdr.rcvif = ifp;
   1737   1.1     ragge 		m->m_pkthdr.len = len;
   1738   1.1     ragge 
   1739   1.1     ragge 		/*
   1740   1.1     ragge 		 * Set up checksum info for this packet.
   1741   1.1     ragge 		 */
   1742   1.1     ragge 		if (status & RDESC_STS_IPCS) {
   1743   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1744   1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1745   1.1     ragge 			if (errors & RDESC_ERR_IPE)
   1746   1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1747   1.1     ragge 		}
   1748   1.1     ragge 		if (status & RDESC_STS_TCPCS) {
   1749   1.1     ragge 			/*
   1750   1.1     ragge 			 * Note: we don't know if this was TCP or UDP,
   1751   1.1     ragge 			 * so we just set both bits, and expect the
   1752   1.1     ragge 			 * upper layers to deal.
   1753   1.1     ragge 			 */
   1754   1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1755   1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1756   1.1     ragge 			if (errors & RDESC_ERR_TCPE)
   1757   1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1758   1.1     ragge 		}
   1759   1.1     ragge 
   1760   1.1     ragge 		ifp->if_ipackets++;
   1761   1.1     ragge 
   1762   1.1     ragge 		/* Pass this up to any BPF listeners. */
   1763  1.30     joerg 		bpf_mtap(ifp, m);
   1764   1.1     ragge 
   1765   1.1     ragge 		/* Pass it on. */
   1766   1.1     ragge 		(*ifp->if_input)(ifp, m);
   1767   1.1     ragge 	}
   1768   1.1     ragge 
   1769   1.1     ragge 	/* Update the receive pointer. */
   1770   1.1     ragge 	sc->sc_rxptr = i;
   1771   1.1     ragge 
   1772   1.1     ragge 	DPRINTF(DGE_DEBUG_RX,
   1773  1.35       chs 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
   1774   1.1     ragge }
   1775   1.1     ragge 
   1776   1.1     ragge /*
   1777   1.1     ragge  * dge_linkintr:
   1778   1.1     ragge  *
   1779   1.1     ragge  *	Helper; handle link interrupts.
   1780   1.1     ragge  */
   1781   1.1     ragge static void
   1782   1.1     ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1783   1.1     ragge {
   1784   1.1     ragge 	uint32_t status;
   1785   1.1     ragge 
   1786   1.1     ragge 	if (icr & ICR_LSC) {
   1787   1.1     ragge 		status = CSR_READ(sc, DGE_STATUS);
   1788   1.1     ragge 		if (status & STATUS_LINKUP) {
   1789   1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1790  1.35       chs 			    device_xname(sc->sc_dev)));
   1791   1.1     ragge 		} else {
   1792   1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1793  1.35       chs 			    device_xname(sc->sc_dev)));
   1794   1.1     ragge 		}
   1795   1.1     ragge 	} else if (icr & ICR_RXSEQ) {
   1796   1.1     ragge 		DPRINTF(DGE_DEBUG_LINK,
   1797   1.1     ragge 		    ("%s: LINK: Receive sequence error\n",
   1798  1.35       chs 		    device_xname(sc->sc_dev)));
   1799   1.1     ragge 	}
   1800   1.1     ragge 	/* XXX - fix errata */
   1801   1.1     ragge }
   1802   1.1     ragge 
   1803   1.1     ragge /*
   1804   1.1     ragge  * dge_reset:
   1805   1.1     ragge  *
   1806   1.1     ragge  *	Reset the i82597 chip.
   1807   1.1     ragge  */
   1808   1.1     ragge static void
   1809   1.1     ragge dge_reset(struct dge_softc *sc)
   1810   1.1     ragge {
   1811   1.1     ragge 	int i;
   1812   1.1     ragge 
   1813   1.1     ragge 	/*
   1814   1.1     ragge 	 * Do a chip reset.
   1815   1.1     ragge 	 */
   1816   1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1817   1.1     ragge 
   1818   1.1     ragge 	delay(10000);
   1819   1.1     ragge 
   1820   1.1     ragge 	for (i = 0; i < 1000; i++) {
   1821   1.1     ragge 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1822   1.1     ragge 			break;
   1823   1.1     ragge 		delay(20);
   1824   1.1     ragge 	}
   1825   1.1     ragge 
   1826   1.1     ragge 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1827   1.1     ragge 		printf("%s: WARNING: reset failed to complete\n",
   1828  1.35       chs 		    device_xname(sc->sc_dev));
   1829   1.1     ragge         /*
   1830   1.1     ragge          * Reset the EEPROM logic.
   1831   1.1     ragge          * This will cause the chip to reread its default values,
   1832   1.1     ragge 	 * which doesn't happen otherwise (errata).
   1833   1.1     ragge          */
   1834   1.1     ragge         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1835   1.1     ragge         delay(10000);
   1836   1.1     ragge }
   1837   1.1     ragge 
   1838   1.1     ragge /*
   1839   1.1     ragge  * dge_init:		[ifnet interface function]
   1840   1.1     ragge  *
   1841   1.1     ragge  *	Initialize the interface.  Must be called at splnet().
   1842   1.1     ragge  */
   1843   1.1     ragge static int
   1844   1.1     ragge dge_init(struct ifnet *ifp)
   1845   1.1     ragge {
   1846   1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1847   1.1     ragge 	struct dge_rxsoft *rxs;
   1848   1.1     ragge 	int i, error = 0;
   1849   1.1     ragge 	uint32_t reg;
   1850   1.1     ragge 
   1851   1.1     ragge 	/*
   1852   1.1     ragge 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1853   1.1     ragge 	 * There is a small but measurable benefit to avoiding the adjusment
   1854   1.1     ragge 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1855   1.1     ragge 	 * on such platforms.  One possibility is that the DMA itself is
   1856   1.1     ragge 	 * slightly more efficient if the front of the entire packet (instead
   1857   1.1     ragge 	 * of the front of the headers) is aligned.
   1858   1.1     ragge 	 *
   1859   1.1     ragge 	 * Note we must always set align_tweak to 0 if we are using
   1860   1.1     ragge 	 * jumbo frames.
   1861   1.1     ragge 	 */
   1862   1.1     ragge #ifdef __NO_STRICT_ALIGNMENT
   1863   1.1     ragge 	sc->sc_align_tweak = 0;
   1864   1.1     ragge #else
   1865   1.1     ragge 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1866   1.1     ragge 		sc->sc_align_tweak = 0;
   1867   1.1     ragge 	else
   1868   1.1     ragge 		sc->sc_align_tweak = 2;
   1869   1.1     ragge #endif /* __NO_STRICT_ALIGNMENT */
   1870   1.1     ragge 
   1871   1.1     ragge 	/* Cancel any pending I/O. */
   1872   1.1     ragge 	dge_stop(ifp, 0);
   1873   1.1     ragge 
   1874   1.1     ragge 	/* Reset the chip to a known state. */
   1875   1.1     ragge 	dge_reset(sc);
   1876   1.1     ragge 
   1877   1.1     ragge 	/* Initialize the transmit descriptor ring. */
   1878   1.1     ragge 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1879   1.1     ragge 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1880   1.1     ragge 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1881   1.1     ragge 	sc->sc_txfree = DGE_NTXDESC;
   1882   1.1     ragge 	sc->sc_txnext = 0;
   1883   1.1     ragge 
   1884   1.1     ragge 	sc->sc_txctx_ipcs = 0xffffffff;
   1885   1.1     ragge 	sc->sc_txctx_tucs = 0xffffffff;
   1886   1.1     ragge 
   1887   1.1     ragge 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1888   1.1     ragge 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1889   1.1     ragge 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1890   1.1     ragge 	CSR_WRITE(sc, DGE_TDH, 0);
   1891   1.1     ragge 	CSR_WRITE(sc, DGE_TDT, 0);
   1892   1.1     ragge 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1893   1.1     ragge 
   1894   1.1     ragge #if 0
   1895   1.1     ragge 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1896   1.1     ragge 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1897   1.1     ragge #endif
   1898   1.1     ragge 	CSR_WRITE(sc, DGE_RXDCTL,
   1899   1.1     ragge 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1900   1.1     ragge 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1901   1.1     ragge 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1902   1.1     ragge 
   1903   1.1     ragge 	/* Initialize the transmit job descriptors. */
   1904   1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1905   1.1     ragge 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1906   1.1     ragge 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1907   1.1     ragge 	sc->sc_txsnext = 0;
   1908   1.1     ragge 	sc->sc_txsdirty = 0;
   1909   1.1     ragge 
   1910   1.1     ragge 	/*
   1911   1.1     ragge 	 * Initialize the receive descriptor and receive job
   1912   1.1     ragge 	 * descriptor rings.
   1913   1.1     ragge 	 */
   1914   1.1     ragge 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1915   1.1     ragge 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1916   1.1     ragge 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1917   1.1     ragge 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1918   1.1     ragge 	CSR_WRITE(sc, DGE_RDT, 0);
   1919   1.1     ragge 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1920   1.1     ragge 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1921   1.1     ragge 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1922   1.1     ragge 
   1923   1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1924   1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1925   1.1     ragge 		if (rxs->rxs_mbuf == NULL) {
   1926   1.1     ragge 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1927   1.1     ragge 				printf("%s: unable to allocate or map rx "
   1928   1.1     ragge 				    "buffer %d, error = %d\n",
   1929  1.35       chs 				    device_xname(sc->sc_dev), i, error);
   1930   1.1     ragge 				/*
   1931   1.1     ragge 				 * XXX Should attempt to run with fewer receive
   1932   1.1     ragge 				 * XXX buffers instead of just failing.
   1933   1.1     ragge 				 */
   1934   1.1     ragge 				dge_rxdrain(sc);
   1935   1.1     ragge 				goto out;
   1936   1.1     ragge 			}
   1937   1.1     ragge 		}
   1938   1.1     ragge 		DGE_INIT_RXDESC(sc, i);
   1939   1.1     ragge 	}
   1940   1.1     ragge 	sc->sc_rxptr = DGE_RXSPACE;
   1941   1.1     ragge 	sc->sc_rxdiscard = 0;
   1942   1.1     ragge 	DGE_RXCHAIN_RESET(sc);
   1943   1.1     ragge 
   1944   1.1     ragge 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1945   1.1     ragge 		sc->sc_ctrl0 |= CTRL0_JFE;
   1946   1.1     ragge 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1947   1.1     ragge 	}
   1948   1.1     ragge 
   1949   1.1     ragge 	/* Write the control registers. */
   1950   1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1951   1.1     ragge 
   1952   1.1     ragge 	/*
   1953   1.1     ragge 	 * Set up checksum offload parameters.
   1954   1.1     ragge 	 */
   1955   1.1     ragge 	reg = CSR_READ(sc, DGE_RXCSUM);
   1956  1.11      yamt 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1957   1.1     ragge 		reg |= RXCSUM_IPOFL;
   1958   1.1     ragge 	else
   1959   1.1     ragge 		reg &= ~RXCSUM_IPOFL;
   1960  1.11      yamt 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1961   1.1     ragge 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1962   1.1     ragge 	else {
   1963   1.1     ragge 		reg &= ~RXCSUM_TUOFL;
   1964  1.11      yamt 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   1965   1.1     ragge 			reg &= ~RXCSUM_IPOFL;
   1966   1.1     ragge 	}
   1967   1.1     ragge 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1968   1.1     ragge 
   1969   1.1     ragge 	/*
   1970   1.1     ragge 	 * Set up the interrupt registers.
   1971   1.1     ragge 	 */
   1972   1.1     ragge 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1973   1.1     ragge 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1974   1.1     ragge 	    ICR_RXO | ICR_RXT0;
   1975   1.1     ragge 
   1976   1.1     ragge 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1977   1.1     ragge 
   1978   1.1     ragge 	/*
   1979   1.1     ragge 	 * Set up the transmit control register.
   1980   1.1     ragge 	 */
   1981   1.1     ragge 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1982   1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1983   1.1     ragge 
   1984   1.1     ragge 	/*
   1985   1.1     ragge 	 * Set up the receive control register; we actually program
   1986   1.1     ragge 	 * the register when we set the receive filter.  Use multicast
   1987   1.1     ragge 	 * address offset type 0.
   1988   1.1     ragge 	 */
   1989   1.1     ragge 	sc->sc_mchash_type = 0;
   1990   1.1     ragge 
   1991  1.10     perry 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   1992   1.1     ragge 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   1993   1.1     ragge 
   1994   1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   1995   1.3     ragge 	sc->sc_rctl |= RCTL_BSIZE_16k;
   1996   1.3     ragge #else
   1997   1.1     ragge 	switch(MCLBYTES) {
   1998   1.1     ragge 	case 2048:
   1999   1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2000   1.1     ragge 		break;
   2001   1.1     ragge 	case 4096:
   2002   1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2003   1.1     ragge 		break;
   2004   1.1     ragge 	case 8192:
   2005   1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2006   1.1     ragge 		break;
   2007   1.1     ragge 	case 16384:
   2008   1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2009   1.1     ragge 		break;
   2010   1.1     ragge 	default:
   2011   1.1     ragge 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2012   1.1     ragge 	}
   2013   1.3     ragge #endif
   2014   1.1     ragge 
   2015   1.1     ragge 	/* Set the receive filter. */
   2016   1.1     ragge 	/* Also sets RCTL */
   2017   1.1     ragge 	dge_set_filter(sc);
   2018   1.1     ragge 
   2019   1.1     ragge 	/* ...all done! */
   2020  1.10     perry 	ifp->if_flags |= IFF_RUNNING;
   2021   1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   2022   1.1     ragge 
   2023   1.1     ragge  out:
   2024   1.1     ragge 	if (error)
   2025  1.35       chs 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2026   1.1     ragge 	return (error);
   2027   1.1     ragge }
   2028   1.1     ragge 
   2029   1.1     ragge /*
   2030   1.1     ragge  * dge_rxdrain:
   2031   1.1     ragge  *
   2032   1.1     ragge  *	Drain the receive queue.
   2033   1.1     ragge  */
   2034   1.1     ragge static void
   2035   1.1     ragge dge_rxdrain(struct dge_softc *sc)
   2036   1.1     ragge {
   2037   1.1     ragge 	struct dge_rxsoft *rxs;
   2038   1.1     ragge 	int i;
   2039   1.1     ragge 
   2040   1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   2041   1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   2042   1.1     ragge 		if (rxs->rxs_mbuf != NULL) {
   2043   1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2044   1.1     ragge 			m_freem(rxs->rxs_mbuf);
   2045   1.1     ragge 			rxs->rxs_mbuf = NULL;
   2046   1.1     ragge 		}
   2047   1.1     ragge 	}
   2048   1.1     ragge }
   2049   1.1     ragge 
   2050   1.1     ragge /*
   2051   1.1     ragge  * dge_stop:		[ifnet interface function]
   2052   1.1     ragge  *
   2053   1.1     ragge  *	Stop transmission on the interface.
   2054   1.1     ragge  */
   2055   1.1     ragge static void
   2056   1.1     ragge dge_stop(struct ifnet *ifp, int disable)
   2057   1.1     ragge {
   2058   1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2059   1.1     ragge 	struct dge_txsoft *txs;
   2060   1.1     ragge 	int i;
   2061   1.1     ragge 
   2062   1.1     ragge 	/* Stop the transmit and receive processes. */
   2063   1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, 0);
   2064   1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, 0);
   2065   1.1     ragge 
   2066   1.1     ragge 	/* Release any queued transmit buffers. */
   2067   1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2068   1.1     ragge 		txs = &sc->sc_txsoft[i];
   2069   1.1     ragge 		if (txs->txs_mbuf != NULL) {
   2070   1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2071   1.1     ragge 			m_freem(txs->txs_mbuf);
   2072   1.1     ragge 			txs->txs_mbuf = NULL;
   2073   1.1     ragge 		}
   2074   1.1     ragge 	}
   2075   1.1     ragge 
   2076   1.1     ragge 	/* Mark the interface as down and cancel the watchdog timer. */
   2077   1.1     ragge 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2078   1.1     ragge 	ifp->if_timer = 0;
   2079  1.20    dyoung 
   2080  1.20    dyoung 	if (disable)
   2081  1.20    dyoung 		dge_rxdrain(sc);
   2082   1.1     ragge }
   2083   1.1     ragge 
   2084   1.1     ragge /*
   2085   1.1     ragge  * dge_add_rxbuf:
   2086   1.1     ragge  *
   2087   1.1     ragge  *	Add a receive buffer to the indiciated descriptor.
   2088   1.1     ragge  */
   2089   1.1     ragge static int
   2090   1.1     ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
   2091   1.1     ragge {
   2092   1.1     ragge 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2093   1.1     ragge 	struct mbuf *m;
   2094   1.1     ragge 	int error;
   2095   1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2096  1.15  christos 	void *buf;
   2097   1.3     ragge #endif
   2098   1.1     ragge 
   2099   1.1     ragge 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2100   1.1     ragge 	if (m == NULL)
   2101   1.1     ragge 		return (ENOBUFS);
   2102   1.1     ragge 
   2103   1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2104   1.3     ragge 	if ((buf = dge_getbuf(sc)) == NULL)
   2105   1.3     ragge 		return ENOBUFS;
   2106   1.3     ragge 
   2107   1.3     ragge 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2108   1.3     ragge 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2109   1.6      yamt 	m->m_flags |= M_EXT_RW;
   2110   1.3     ragge 
   2111   1.3     ragge 	if (rxs->rxs_mbuf != NULL)
   2112   1.3     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2113   1.3     ragge 	rxs->rxs_mbuf = m;
   2114   1.3     ragge 
   2115   1.3     ragge 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2116   1.3     ragge 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2117   1.3     ragge #else
   2118   1.1     ragge 	MCLGET(m, M_DONTWAIT);
   2119   1.1     ragge 	if ((m->m_flags & M_EXT) == 0) {
   2120   1.1     ragge 		m_freem(m);
   2121   1.1     ragge 		return (ENOBUFS);
   2122   1.1     ragge 	}
   2123   1.1     ragge 
   2124   1.1     ragge 	if (rxs->rxs_mbuf != NULL)
   2125   1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2126   1.1     ragge 
   2127   1.1     ragge 	rxs->rxs_mbuf = m;
   2128   1.1     ragge 
   2129   1.1     ragge 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2130   1.1     ragge 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2131   1.1     ragge 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2132   1.3     ragge #endif
   2133   1.1     ragge 	if (error) {
   2134   1.1     ragge 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2135  1.35       chs 		    device_xname(sc->sc_dev), idx, error);
   2136   1.1     ragge 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2137   1.1     ragge 	}
   2138   1.1     ragge 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2139   1.1     ragge 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2140   1.1     ragge 
   2141   1.1     ragge 	return (0);
   2142   1.1     ragge }
   2143   1.1     ragge 
   2144   1.1     ragge /*
   2145   1.1     ragge  * dge_set_ral:
   2146   1.1     ragge  *
   2147   1.1     ragge  *	Set an entry in the receive address list.
   2148   1.1     ragge  */
   2149   1.1     ragge static void
   2150   1.1     ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2151   1.1     ragge {
   2152   1.1     ragge 	uint32_t ral_lo, ral_hi;
   2153   1.1     ragge 
   2154   1.1     ragge 	if (enaddr != NULL) {
   2155   1.1     ragge 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2156   1.1     ragge 		    (enaddr[3] << 24);
   2157   1.1     ragge 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2158   1.1     ragge 		ral_hi |= RAH_AV;
   2159   1.1     ragge 	} else {
   2160   1.1     ragge 		ral_lo = 0;
   2161   1.1     ragge 		ral_hi = 0;
   2162   1.1     ragge 	}
   2163   1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2164   1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2165   1.1     ragge }
   2166   1.1     ragge 
   2167   1.1     ragge /*
   2168   1.1     ragge  * dge_mchash:
   2169   1.1     ragge  *
   2170   1.1     ragge  *	Compute the hash of the multicast address for the 4096-bit
   2171   1.1     ragge  *	multicast filter.
   2172   1.1     ragge  */
   2173   1.1     ragge static uint32_t
   2174   1.1     ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2175   1.1     ragge {
   2176   1.1     ragge 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2177   1.1     ragge 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2178   1.1     ragge 	uint32_t hash;
   2179   1.1     ragge 
   2180   1.1     ragge 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2181   1.1     ragge 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2182   1.1     ragge 
   2183   1.1     ragge 	return (hash & 0xfff);
   2184   1.1     ragge }
   2185   1.1     ragge 
   2186   1.1     ragge /*
   2187   1.1     ragge  * dge_set_filter:
   2188   1.1     ragge  *
   2189   1.1     ragge  *	Set up the receive filter.
   2190   1.1     ragge  */
   2191   1.1     ragge static void
   2192   1.1     ragge dge_set_filter(struct dge_softc *sc)
   2193   1.1     ragge {
   2194   1.1     ragge 	struct ethercom *ec = &sc->sc_ethercom;
   2195   1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2196   1.1     ragge 	struct ether_multi *enm;
   2197   1.1     ragge 	struct ether_multistep step;
   2198   1.1     ragge 	uint32_t hash, reg, bit;
   2199   1.1     ragge 	int i;
   2200   1.1     ragge 
   2201   1.1     ragge 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2202   1.1     ragge 
   2203   1.1     ragge 	if (ifp->if_flags & IFF_BROADCAST)
   2204   1.1     ragge 		sc->sc_rctl |= RCTL_BAM;
   2205   1.1     ragge 	if (ifp->if_flags & IFF_PROMISC) {
   2206   1.1     ragge 		sc->sc_rctl |= RCTL_UPE;
   2207   1.1     ragge 		goto allmulti;
   2208   1.1     ragge 	}
   2209   1.1     ragge 
   2210   1.1     ragge 	/*
   2211   1.1     ragge 	 * Set the station address in the first RAL slot, and
   2212   1.1     ragge 	 * clear the remaining slots.
   2213   1.1     ragge 	 */
   2214  1.16    dyoung 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2215   1.1     ragge 	for (i = 1; i < RA_TABSIZE; i++)
   2216   1.1     ragge 		dge_set_ral(sc, NULL, i);
   2217   1.1     ragge 
   2218   1.1     ragge 	/* Clear out the multicast table. */
   2219   1.1     ragge 	for (i = 0; i < MC_TABSIZE; i++)
   2220   1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2221   1.1     ragge 
   2222   1.1     ragge 	ETHER_FIRST_MULTI(step, ec, enm);
   2223   1.1     ragge 	while (enm != NULL) {
   2224   1.1     ragge 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2225   1.1     ragge 			/*
   2226   1.1     ragge 			 * We must listen to a range of multicast addresses.
   2227   1.1     ragge 			 * For now, just accept all multicasts, rather than
   2228   1.1     ragge 			 * trying to set only those filter bits needed to match
   2229   1.1     ragge 			 * the range.  (At this time, the only use of address
   2230   1.1     ragge 			 * ranges is for IP multicast routing, for which the
   2231   1.1     ragge 			 * range is big enough to require all bits set.)
   2232   1.1     ragge 			 */
   2233   1.1     ragge 			goto allmulti;
   2234   1.1     ragge 		}
   2235   1.1     ragge 
   2236   1.1     ragge 		hash = dge_mchash(sc, enm->enm_addrlo);
   2237   1.1     ragge 
   2238   1.1     ragge 		reg = (hash >> 5) & 0x7f;
   2239   1.1     ragge 		bit = hash & 0x1f;
   2240   1.1     ragge 
   2241   1.1     ragge 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2242   1.1     ragge 		hash |= 1U << bit;
   2243   1.1     ragge 
   2244   1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2245   1.1     ragge 
   2246   1.1     ragge 		ETHER_NEXT_MULTI(step, enm);
   2247   1.1     ragge 	}
   2248   1.1     ragge 
   2249   1.1     ragge 	ifp->if_flags &= ~IFF_ALLMULTI;
   2250   1.1     ragge 	goto setit;
   2251   1.1     ragge 
   2252   1.1     ragge  allmulti:
   2253   1.1     ragge 	ifp->if_flags |= IFF_ALLMULTI;
   2254   1.1     ragge 	sc->sc_rctl |= RCTL_MPE;
   2255   1.1     ragge 
   2256   1.1     ragge  setit:
   2257   1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2258   1.1     ragge }
   2259   1.1     ragge 
   2260   1.1     ragge /*
   2261   1.1     ragge  * Read in the EEPROM info and verify checksum.
   2262   1.1     ragge  */
   2263   1.1     ragge int
   2264   1.1     ragge dge_read_eeprom(struct dge_softc *sc)
   2265   1.1     ragge {
   2266   1.1     ragge 	uint16_t cksum;
   2267   1.1     ragge 	int i;
   2268   1.1     ragge 
   2269   1.1     ragge 	cksum = 0;
   2270   1.1     ragge 	for (i = 0; i < EEPROM_SIZE; i++) {
   2271   1.1     ragge 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2272   1.1     ragge 		cksum += sc->sc_eeprom[i];
   2273   1.1     ragge 	}
   2274   1.1     ragge 	return cksum != EEPROM_CKSUM;
   2275   1.1     ragge }
   2276   1.1     ragge 
   2277   1.1     ragge 
   2278   1.1     ragge /*
   2279   1.1     ragge  * Read a 16-bit word from address addr in the serial EEPROM.
   2280   1.1     ragge  */
   2281   1.1     ragge uint16_t
   2282   1.1     ragge dge_eeprom_word(struct dge_softc *sc, int addr)
   2283   1.1     ragge {
   2284   1.1     ragge 	uint32_t reg;
   2285   1.1     ragge 	uint16_t rval = 0;
   2286   1.1     ragge 	int i;
   2287   1.1     ragge 
   2288   1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2289   1.1     ragge 
   2290   1.1     ragge 	/* Lower clock pulse (and data in to chip) */
   2291   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2292   1.1     ragge 	/* Select chip */
   2293   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2294   1.1     ragge 
   2295   1.1     ragge 	/* Send read command */
   2296   1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2297   1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2298   1.1     ragge 	dge_eeprom_clockout(sc, 0);
   2299   1.1     ragge 
   2300   1.1     ragge 	/* Send address */
   2301   1.1     ragge 	for (i = 5; i >= 0; i--)
   2302   1.1     ragge 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2303   1.1     ragge 
   2304   1.1     ragge 	/* Read data */
   2305   1.1     ragge 	for (i = 0; i < 16; i++) {
   2306   1.1     ragge 		rval <<= 1;
   2307   1.1     ragge 		rval |= dge_eeprom_clockin(sc);
   2308   1.1     ragge 	}
   2309   1.1     ragge 
   2310   1.1     ragge 	/* Deselect chip */
   2311   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2312   1.1     ragge 
   2313   1.1     ragge 	return rval;
   2314   1.1     ragge }
   2315   1.1     ragge 
   2316   1.1     ragge /*
   2317   1.1     ragge  * Clock out a single bit to the EEPROM.
   2318   1.1     ragge  */
   2319   1.1     ragge void
   2320   1.1     ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2321   1.1     ragge {
   2322   1.1     ragge 	int reg;
   2323   1.1     ragge 
   2324   1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2325   1.1     ragge 	if (bit)
   2326   1.1     ragge 		reg |= EECD_DI;
   2327  1.10     perry 
   2328   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2329   1.1     ragge 	delay(2);
   2330   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2331   1.1     ragge 	delay(2);
   2332   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2333   1.1     ragge 	delay(2);
   2334   1.1     ragge }
   2335   1.1     ragge 
   2336   1.1     ragge /*
   2337   1.1     ragge  * Clock in a single bit from EEPROM.
   2338   1.1     ragge  */
   2339   1.1     ragge int
   2340   1.1     ragge dge_eeprom_clockin(struct dge_softc *sc)
   2341   1.1     ragge {
   2342   1.1     ragge 	int reg, rv;
   2343   1.1     ragge 
   2344   1.1     ragge 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2345   1.1     ragge 
   2346   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2347   1.1     ragge 	delay(2);
   2348   1.1     ragge 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2349   1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2350   1.1     ragge 	delay(2);
   2351   1.1     ragge 
   2352   1.1     ragge 	return rv;
   2353   1.1     ragge }
   2354   1.1     ragge 
   2355   1.1     ragge static void
   2356   1.1     ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2357   1.1     ragge {
   2358   1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2359   1.1     ragge 
   2360   1.1     ragge 	ifmr->ifm_status = IFM_AVALID;
   2361   1.1     ragge 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2362   1.1     ragge 
   2363   1.1     ragge 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2364   1.1     ragge 		ifmr->ifm_status |= IFM_ACTIVE;
   2365   1.1     ragge }
   2366   1.1     ragge 
   2367   1.1     ragge static inline int
   2368   1.1     ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2369   1.1     ragge {
   2370   1.1     ragge         int i, mdic;
   2371   1.1     ragge 
   2372   1.1     ragge         CSR_WRITE(sc, DGE_MDIO,
   2373   1.1     ragge 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2374  1.10     perry         for (i = 0; i < 10; i++) {
   2375   1.1     ragge                 delay(10);
   2376   1.1     ragge                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2377   1.1     ragge                         break;
   2378   1.1     ragge         }
   2379   1.1     ragge         return mdic;
   2380   1.1     ragge }
   2381   1.1     ragge 
   2382   1.1     ragge static void
   2383  1.39       chs dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
   2384   1.1     ragge {
   2385   1.1     ragge 	int mdic;
   2386   1.1     ragge 
   2387   1.1     ragge 	CSR_WRITE(sc, DGE_MDIRW, val);
   2388   1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2389   1.1     ragge 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2390  1.35       chs 		    device_xname(sc->sc_dev), phy, reg);
   2391   1.1     ragge 		return;
   2392   1.1     ragge 	}
   2393   1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2394  1.39       chs 		printf("%s: write cycle timeout; phy %d reg %d\n",
   2395  1.35       chs 		    device_xname(sc->sc_dev), phy, reg);
   2396   1.1     ragge 		return;
   2397   1.1     ragge 	}
   2398   1.1     ragge }
   2399   1.1     ragge 
   2400   1.1     ragge static void
   2401   1.1     ragge dge_xgmii_reset(struct dge_softc *sc)
   2402   1.1     ragge {
   2403  1.39       chs 	dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
   2404   1.1     ragge }
   2405   1.1     ragge 
   2406   1.1     ragge static int
   2407  1.14  christos dge_xgmii_mediachange(struct ifnet *ifp)
   2408   1.1     ragge {
   2409   1.1     ragge 	return 0;
   2410   1.1     ragge }
   2411