if_dge.c revision 1.5.2.5 1 1.5.2.5 skrll /* $NetBSD: if_dge.c,v 1.5.2.5 2004/09/24 10:53:28 skrll Exp $ */
2 1.5.2.2 skrll
3 1.5.2.2 skrll /*
4 1.5.2.2 skrll * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 1.5.2.2 skrll * All rights reserved.
6 1.5.2.2 skrll *
7 1.5.2.2 skrll * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 1.5.2.2 skrll *
9 1.5.2.2 skrll * Redistribution and use in source and binary forms, with or without
10 1.5.2.2 skrll * modification, are permitted provided that the following conditions
11 1.5.2.2 skrll * are met:
12 1.5.2.2 skrll * 1. Redistributions of source code must retain the above copyright
13 1.5.2.2 skrll * notice, this list of conditions and the following disclaimer.
14 1.5.2.2 skrll * 2. Redistributions in binary form must reproduce the above copyright
15 1.5.2.2 skrll * notice, this list of conditions and the following disclaimer in the
16 1.5.2.2 skrll * documentation and/or other materials provided with the distribution.
17 1.5.2.2 skrll * 3. All advertising materials mentioning features or use of this software
18 1.5.2.2 skrll * must display the following acknowledgement:
19 1.5.2.2 skrll * This product includes software developed for the NetBSD Project by
20 1.5.2.2 skrll * SUNET, Swedish University Computer Network.
21 1.5.2.2 skrll * 4. The name of SUNET may not be used to endorse or promote products
22 1.5.2.2 skrll * derived from this software without specific prior written permission.
23 1.5.2.2 skrll *
24 1.5.2.2 skrll * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 1.5.2.2 skrll * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.5.2.2 skrll * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.5.2.2 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.5.2.2 skrll * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.5.2.2 skrll * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.5.2.2 skrll * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.5.2.2 skrll * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.5.2.2 skrll * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.5.2.2 skrll * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.5.2.2 skrll * POSSIBILITY OF SUCH DAMAGE.
35 1.5.2.2 skrll */
36 1.5.2.2 skrll
37 1.5.2.2 skrll /*
38 1.5.2.2 skrll * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 1.5.2.2 skrll * All rights reserved.
40 1.5.2.2 skrll *
41 1.5.2.2 skrll * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 1.5.2.2 skrll *
43 1.5.2.2 skrll * Redistribution and use in source and binary forms, with or without
44 1.5.2.2 skrll * modification, are permitted provided that the following conditions
45 1.5.2.2 skrll * are met:
46 1.5.2.2 skrll * 1. Redistributions of source code must retain the above copyright
47 1.5.2.2 skrll * notice, this list of conditions and the following disclaimer.
48 1.5.2.2 skrll * 2. Redistributions in binary form must reproduce the above copyright
49 1.5.2.2 skrll * notice, this list of conditions and the following disclaimer in the
50 1.5.2.2 skrll * documentation and/or other materials provided with the distribution.
51 1.5.2.2 skrll * 3. All advertising materials mentioning features or use of this software
52 1.5.2.2 skrll * must display the following acknowledgement:
53 1.5.2.2 skrll * This product includes software developed for the NetBSD Project by
54 1.5.2.2 skrll * Wasabi Systems, Inc.
55 1.5.2.2 skrll * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 1.5.2.2 skrll * or promote products derived from this software without specific prior
57 1.5.2.2 skrll * written permission.
58 1.5.2.2 skrll *
59 1.5.2.2 skrll * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 1.5.2.2 skrll * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 1.5.2.2 skrll * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 1.5.2.2 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 1.5.2.2 skrll * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 1.5.2.2 skrll * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 1.5.2.2 skrll * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 1.5.2.2 skrll * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 1.5.2.2 skrll * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 1.5.2.2 skrll * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 1.5.2.2 skrll * POSSIBILITY OF SUCH DAMAGE.
70 1.5.2.2 skrll */
71 1.5.2.2 skrll
72 1.5.2.2 skrll /*
73 1.5.2.2 skrll * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 1.5.2.2 skrll *
75 1.5.2.2 skrll * TODO (in no specific order):
76 1.5.2.2 skrll * HW VLAN support.
77 1.5.2.2 skrll * TSE offloading (needs kernel changes...)
78 1.5.2.2 skrll * RAIDC (receive interrupt delay adaptation)
79 1.5.2.2 skrll * Use memory > 4GB.
80 1.5.2.2 skrll */
81 1.5.2.2 skrll
82 1.5.2.2 skrll #include <sys/cdefs.h>
83 1.5.2.5 skrll __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.5.2.5 2004/09/24 10:53:28 skrll Exp $");
84 1.5.2.2 skrll
85 1.5.2.2 skrll #include "bpfilter.h"
86 1.5.2.2 skrll #include "rnd.h"
87 1.5.2.2 skrll
88 1.5.2.2 skrll #include <sys/param.h>
89 1.5.2.2 skrll #include <sys/systm.h>
90 1.5.2.2 skrll #include <sys/callout.h>
91 1.5.2.2 skrll #include <sys/mbuf.h>
92 1.5.2.2 skrll #include <sys/malloc.h>
93 1.5.2.2 skrll #include <sys/kernel.h>
94 1.5.2.2 skrll #include <sys/socket.h>
95 1.5.2.2 skrll #include <sys/ioctl.h>
96 1.5.2.2 skrll #include <sys/errno.h>
97 1.5.2.2 skrll #include <sys/device.h>
98 1.5.2.2 skrll #include <sys/queue.h>
99 1.5.2.2 skrll
100 1.5.2.2 skrll #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101 1.5.2.2 skrll
102 1.5.2.2 skrll #if NRND > 0
103 1.5.2.2 skrll #include <sys/rnd.h>
104 1.5.2.2 skrll #endif
105 1.5.2.2 skrll
106 1.5.2.2 skrll #include <net/if.h>
107 1.5.2.2 skrll #include <net/if_dl.h>
108 1.5.2.2 skrll #include <net/if_media.h>
109 1.5.2.2 skrll #include <net/if_ether.h>
110 1.5.2.2 skrll
111 1.5.2.2 skrll #if NBPFILTER > 0
112 1.5.2.2 skrll #include <net/bpf.h>
113 1.5.2.2 skrll #endif
114 1.5.2.2 skrll
115 1.5.2.2 skrll #include <netinet/in.h> /* XXX for struct ip */
116 1.5.2.2 skrll #include <netinet/in_systm.h> /* XXX for struct ip */
117 1.5.2.2 skrll #include <netinet/ip.h> /* XXX for struct ip */
118 1.5.2.2 skrll #include <netinet/tcp.h> /* XXX for struct tcphdr */
119 1.5.2.2 skrll
120 1.5.2.2 skrll #include <machine/bus.h>
121 1.5.2.2 skrll #include <machine/intr.h>
122 1.5.2.2 skrll #include <machine/endian.h>
123 1.5.2.2 skrll
124 1.5.2.2 skrll #include <dev/mii/mii.h>
125 1.5.2.2 skrll #include <dev/mii/miivar.h>
126 1.5.2.2 skrll #include <dev/mii/mii_bitbang.h>
127 1.5.2.2 skrll
128 1.5.2.2 skrll #include <dev/pci/pcireg.h>
129 1.5.2.2 skrll #include <dev/pci/pcivar.h>
130 1.5.2.2 skrll #include <dev/pci/pcidevs.h>
131 1.5.2.2 skrll
132 1.5.2.2 skrll #include <dev/pci/if_dgereg.h>
133 1.5.2.2 skrll
134 1.5.2.2 skrll /*
135 1.5.2.2 skrll * The receive engine may sometimes become off-by-one when writing back
136 1.5.2.2 skrll * chained descriptors. Avoid this by allocating a large chunk of
137 1.5.2.2 skrll * memory and use if instead (to avoid chained descriptors).
138 1.5.2.2 skrll * This only happens with chained descriptors under heavy load.
139 1.5.2.2 skrll */
140 1.5.2.2 skrll #define DGE_OFFBYONE_RXBUG
141 1.5.2.2 skrll
142 1.5.2.2 skrll #define DGE_EVENT_COUNTERS
143 1.5.2.2 skrll #define DGE_DEBUG
144 1.5.2.2 skrll
145 1.5.2.2 skrll #ifdef DGE_DEBUG
146 1.5.2.2 skrll #define DGE_DEBUG_LINK 0x01
147 1.5.2.2 skrll #define DGE_DEBUG_TX 0x02
148 1.5.2.2 skrll #define DGE_DEBUG_RX 0x04
149 1.5.2.2 skrll #define DGE_DEBUG_CKSUM 0x08
150 1.5.2.2 skrll int dge_debug = 0;
151 1.5.2.2 skrll
152 1.5.2.2 skrll #define DPRINTF(x, y) if (dge_debug & (x)) printf y
153 1.5.2.2 skrll #else
154 1.5.2.2 skrll #define DPRINTF(x, y) /* nothing */
155 1.5.2.2 skrll #endif /* DGE_DEBUG */
156 1.5.2.2 skrll
157 1.5.2.2 skrll /*
158 1.5.2.2 skrll * Transmit descriptor list size. We allow up to 100 DMA segments per
159 1.5.2.2 skrll * packet (Intel reports of jumbo frame packets with as
160 1.5.2.2 skrll * many as 80 DMA segments when using 16k buffers).
161 1.5.2.2 skrll */
162 1.5.2.2 skrll #define DGE_NTXSEGS 100
163 1.5.2.2 skrll #define DGE_IFQUEUELEN 20000
164 1.5.2.2 skrll #define DGE_TXQUEUELEN 2048
165 1.5.2.2 skrll #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
166 1.5.2.2 skrll #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
167 1.5.2.2 skrll #define DGE_NTXDESC 1024
168 1.5.2.2 skrll #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
169 1.5.2.2 skrll #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
170 1.5.2.2 skrll #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
171 1.5.2.2 skrll
172 1.5.2.2 skrll /*
173 1.5.2.2 skrll * Receive descriptor list size.
174 1.5.2.2 skrll * Packet is of size MCLBYTES, and for jumbo packets buffers may
175 1.5.2.2 skrll * be chained. Due to the nature of the card (high-speed), keep this
176 1.5.2.2 skrll * ring large. With 2k buffers the ring can store 400 jumbo packets,
177 1.5.2.2 skrll * which at full speed will be received in just under 3ms.
178 1.5.2.2 skrll */
179 1.5.2.2 skrll #define DGE_NRXDESC 2048
180 1.5.2.2 skrll #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
181 1.5.2.2 skrll #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
182 1.5.2.2 skrll /*
183 1.5.2.2 skrll * # of descriptors between head and written descriptors.
184 1.5.2.2 skrll * This is to work-around two erratas.
185 1.5.2.2 skrll */
186 1.5.2.2 skrll #define DGE_RXSPACE 10
187 1.5.2.2 skrll #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
188 1.5.2.2 skrll /*
189 1.5.2.2 skrll * Receive descriptor fetch threshholds. These are values recommended
190 1.5.2.2 skrll * by Intel, do not touch them unless you know what you are doing.
191 1.5.2.2 skrll */
192 1.5.2.2 skrll #define RXDCTL_PTHRESH_VAL 128
193 1.5.2.2 skrll #define RXDCTL_HTHRESH_VAL 16
194 1.5.2.2 skrll #define RXDCTL_WTHRESH_VAL 16
195 1.5.2.2 skrll
196 1.5.2.2 skrll
197 1.5.2.2 skrll /*
198 1.5.2.2 skrll * Tweakable parameters; default values.
199 1.5.2.2 skrll */
200 1.5.2.2 skrll #define FCRTH 0x30000 /* Send XOFF water mark */
201 1.5.2.2 skrll #define FCRTL 0x28000 /* Send XON water mark */
202 1.5.2.2 skrll #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
203 1.5.2.2 skrll #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
204 1.5.2.2 skrll
205 1.5.2.2 skrll /*
206 1.5.2.2 skrll * Control structures are DMA'd to the i82597 chip. We allocate them in
207 1.5.2.2 skrll * a single clump that maps to a single DMA segment to make serveral things
208 1.5.2.2 skrll * easier.
209 1.5.2.2 skrll */
210 1.5.2.2 skrll struct dge_control_data {
211 1.5.2.2 skrll /*
212 1.5.2.2 skrll * The transmit descriptors.
213 1.5.2.2 skrll */
214 1.5.2.2 skrll struct dge_tdes wcd_txdescs[DGE_NTXDESC];
215 1.5.2.2 skrll
216 1.5.2.2 skrll /*
217 1.5.2.2 skrll * The receive descriptors.
218 1.5.2.2 skrll */
219 1.5.2.2 skrll struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
220 1.5.2.2 skrll };
221 1.5.2.2 skrll
222 1.5.2.2 skrll #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
223 1.5.2.2 skrll #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
224 1.5.2.2 skrll #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
225 1.5.2.2 skrll
226 1.5.2.2 skrll /*
227 1.5.2.2 skrll * The DGE interface have a higher max MTU size than normal jumbo frames.
228 1.5.2.2 skrll */
229 1.5.2.2 skrll #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
230 1.5.2.2 skrll
231 1.5.2.2 skrll /*
232 1.5.2.2 skrll * Software state for transmit jobs.
233 1.5.2.2 skrll */
234 1.5.2.2 skrll struct dge_txsoft {
235 1.5.2.2 skrll struct mbuf *txs_mbuf; /* head of our mbuf chain */
236 1.5.2.2 skrll bus_dmamap_t txs_dmamap; /* our DMA map */
237 1.5.2.2 skrll int txs_firstdesc; /* first descriptor in packet */
238 1.5.2.2 skrll int txs_lastdesc; /* last descriptor in packet */
239 1.5.2.2 skrll int txs_ndesc; /* # of descriptors used */
240 1.5.2.2 skrll };
241 1.5.2.2 skrll
242 1.5.2.2 skrll /*
243 1.5.2.2 skrll * Software state for receive buffers. Each descriptor gets a
244 1.5.2.2 skrll * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
245 1.5.2.2 skrll * more than one buffer, we chain them together.
246 1.5.2.2 skrll */
247 1.5.2.2 skrll struct dge_rxsoft {
248 1.5.2.2 skrll struct mbuf *rxs_mbuf; /* head of our mbuf chain */
249 1.5.2.2 skrll bus_dmamap_t rxs_dmamap; /* our DMA map */
250 1.5.2.2 skrll };
251 1.5.2.2 skrll
252 1.5.2.2 skrll /*
253 1.5.2.2 skrll * Software state per device.
254 1.5.2.2 skrll */
255 1.5.2.2 skrll struct dge_softc {
256 1.5.2.2 skrll struct device sc_dev; /* generic device information */
257 1.5.2.2 skrll bus_space_tag_t sc_st; /* bus space tag */
258 1.5.2.2 skrll bus_space_handle_t sc_sh; /* bus space handle */
259 1.5.2.2 skrll bus_dma_tag_t sc_dmat; /* bus DMA tag */
260 1.5.2.2 skrll struct ethercom sc_ethercom; /* ethernet common data */
261 1.5.2.2 skrll void *sc_sdhook; /* shutdown hook */
262 1.5.2.2 skrll
263 1.5.2.2 skrll int sc_flags; /* flags; see below */
264 1.5.2.2 skrll int sc_bus_speed; /* PCI/PCIX bus speed */
265 1.5.2.2 skrll int sc_pcix_offset; /* PCIX capability register offset */
266 1.5.2.2 skrll
267 1.5.2.2 skrll pci_chipset_tag_t sc_pc;
268 1.5.2.2 skrll pcitag_t sc_pt;
269 1.5.2.2 skrll int sc_mmrbc; /* Max PCIX memory read byte count */
270 1.5.2.2 skrll
271 1.5.2.2 skrll void *sc_ih; /* interrupt cookie */
272 1.5.2.2 skrll
273 1.5.2.2 skrll struct ifmedia sc_media;
274 1.5.2.2 skrll
275 1.5.2.2 skrll bus_dmamap_t sc_cddmamap; /* control data DMA map */
276 1.5.2.2 skrll #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
277 1.5.2.2 skrll
278 1.5.2.2 skrll int sc_align_tweak;
279 1.5.2.2 skrll
280 1.5.2.2 skrll /*
281 1.5.2.2 skrll * Software state for the transmit and receive descriptors.
282 1.5.2.2 skrll */
283 1.5.2.2 skrll struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
284 1.5.2.2 skrll struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
285 1.5.2.2 skrll
286 1.5.2.2 skrll /*
287 1.5.2.2 skrll * Control data structures.
288 1.5.2.2 skrll */
289 1.5.2.2 skrll struct dge_control_data *sc_control_data;
290 1.5.2.2 skrll #define sc_txdescs sc_control_data->wcd_txdescs
291 1.5.2.2 skrll #define sc_rxdescs sc_control_data->wcd_rxdescs
292 1.5.2.2 skrll
293 1.5.2.2 skrll #ifdef DGE_EVENT_COUNTERS
294 1.5.2.2 skrll /* Event counters. */
295 1.5.2.2 skrll struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
296 1.5.2.2 skrll struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
297 1.5.2.2 skrll struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
298 1.5.2.2 skrll struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
299 1.5.2.2 skrll struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
300 1.5.2.2 skrll struct evcnt sc_ev_rxintr; /* Rx interrupts */
301 1.5.2.2 skrll struct evcnt sc_ev_linkintr; /* Link interrupts */
302 1.5.2.2 skrll
303 1.5.2.2 skrll struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
304 1.5.2.2 skrll struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
305 1.5.2.2 skrll struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
306 1.5.2.2 skrll struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
307 1.5.2.2 skrll
308 1.5.2.2 skrll struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
309 1.5.2.2 skrll struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
310 1.5.2.2 skrll struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
311 1.5.2.2 skrll
312 1.5.2.2 skrll struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
313 1.5.2.2 skrll struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
314 1.5.2.2 skrll #endif /* DGE_EVENT_COUNTERS */
315 1.5.2.2 skrll
316 1.5.2.2 skrll int sc_txfree; /* number of free Tx descriptors */
317 1.5.2.2 skrll int sc_txnext; /* next ready Tx descriptor */
318 1.5.2.2 skrll
319 1.5.2.2 skrll int sc_txsfree; /* number of free Tx jobs */
320 1.5.2.2 skrll int sc_txsnext; /* next free Tx job */
321 1.5.2.2 skrll int sc_txsdirty; /* dirty Tx jobs */
322 1.5.2.2 skrll
323 1.5.2.2 skrll uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
324 1.5.2.2 skrll uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
325 1.5.2.2 skrll
326 1.5.2.2 skrll int sc_rxptr; /* next ready Rx descriptor/queue ent */
327 1.5.2.2 skrll int sc_rxdiscard;
328 1.5.2.2 skrll int sc_rxlen;
329 1.5.2.2 skrll struct mbuf *sc_rxhead;
330 1.5.2.2 skrll struct mbuf *sc_rxtail;
331 1.5.2.2 skrll struct mbuf **sc_rxtailp;
332 1.5.2.2 skrll
333 1.5.2.2 skrll uint32_t sc_ctrl0; /* prototype CTRL0 register */
334 1.5.2.2 skrll uint32_t sc_icr; /* prototype interrupt bits */
335 1.5.2.2 skrll uint32_t sc_tctl; /* prototype TCTL register */
336 1.5.2.2 skrll uint32_t sc_rctl; /* prototype RCTL register */
337 1.5.2.2 skrll
338 1.5.2.2 skrll int sc_mchash_type; /* multicast filter offset */
339 1.5.2.2 skrll
340 1.5.2.2 skrll uint16_t sc_eeprom[EEPROM_SIZE];
341 1.5.2.2 skrll
342 1.5.2.2 skrll #if NRND > 0
343 1.5.2.2 skrll rndsource_element_t rnd_source; /* random source */
344 1.5.2.2 skrll #endif
345 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
346 1.5.2.2 skrll caddr_t sc_bugbuf;
347 1.5.2.2 skrll SLIST_HEAD(, rxbugentry) sc_buglist;
348 1.5.2.2 skrll bus_dmamap_t sc_bugmap;
349 1.5.2.2 skrll struct rxbugentry *sc_entry;
350 1.5.2.2 skrll #endif
351 1.5.2.2 skrll };
352 1.5.2.2 skrll
353 1.5.2.2 skrll #define DGE_RXCHAIN_RESET(sc) \
354 1.5.2.2 skrll do { \
355 1.5.2.2 skrll (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
356 1.5.2.2 skrll *(sc)->sc_rxtailp = NULL; \
357 1.5.2.2 skrll (sc)->sc_rxlen = 0; \
358 1.5.2.2 skrll } while (/*CONSTCOND*/0)
359 1.5.2.2 skrll
360 1.5.2.2 skrll #define DGE_RXCHAIN_LINK(sc, m) \
361 1.5.2.2 skrll do { \
362 1.5.2.2 skrll *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
363 1.5.2.2 skrll (sc)->sc_rxtailp = &(m)->m_next; \
364 1.5.2.2 skrll } while (/*CONSTCOND*/0)
365 1.5.2.2 skrll
366 1.5.2.2 skrll /* sc_flags */
367 1.5.2.2 skrll #define DGE_F_BUS64 0x20 /* bus is 64-bit */
368 1.5.2.2 skrll #define DGE_F_PCIX 0x40 /* bus is PCI-X */
369 1.5.2.2 skrll
370 1.5.2.2 skrll #ifdef DGE_EVENT_COUNTERS
371 1.5.2.2 skrll #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
372 1.5.2.2 skrll #else
373 1.5.2.2 skrll #define DGE_EVCNT_INCR(ev) /* nothing */
374 1.5.2.2 skrll #endif
375 1.5.2.2 skrll
376 1.5.2.2 skrll #define CSR_READ(sc, reg) \
377 1.5.2.2 skrll bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 1.5.2.2 skrll #define CSR_WRITE(sc, reg, val) \
379 1.5.2.2 skrll bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380 1.5.2.2 skrll
381 1.5.2.2 skrll #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
382 1.5.2.2 skrll #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
383 1.5.2.2 skrll
384 1.5.2.2 skrll #define DGE_CDTXSYNC(sc, x, n, ops) \
385 1.5.2.2 skrll do { \
386 1.5.2.2 skrll int __x, __n; \
387 1.5.2.2 skrll \
388 1.5.2.2 skrll __x = (x); \
389 1.5.2.2 skrll __n = (n); \
390 1.5.2.2 skrll \
391 1.5.2.2 skrll /* If it will wrap around, sync to the end of the ring. */ \
392 1.5.2.2 skrll if ((__x + __n) > DGE_NTXDESC) { \
393 1.5.2.2 skrll bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
394 1.5.2.2 skrll DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
395 1.5.2.2 skrll (DGE_NTXDESC - __x), (ops)); \
396 1.5.2.2 skrll __n -= (DGE_NTXDESC - __x); \
397 1.5.2.2 skrll __x = 0; \
398 1.5.2.2 skrll } \
399 1.5.2.2 skrll \
400 1.5.2.2 skrll /* Now sync whatever is left. */ \
401 1.5.2.2 skrll bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
402 1.5.2.2 skrll DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
403 1.5.2.2 skrll } while (/*CONSTCOND*/0)
404 1.5.2.2 skrll
405 1.5.2.2 skrll #define DGE_CDRXSYNC(sc, x, ops) \
406 1.5.2.2 skrll do { \
407 1.5.2.2 skrll bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
408 1.5.2.2 skrll DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
409 1.5.2.2 skrll } while (/*CONSTCOND*/0)
410 1.5.2.2 skrll
411 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
412 1.5.2.2 skrll #define DGE_INIT_RXDESC(sc, x) \
413 1.5.2.2 skrll do { \
414 1.5.2.2 skrll struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
415 1.5.2.2 skrll struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
416 1.5.2.2 skrll struct mbuf *__m = __rxs->rxs_mbuf; \
417 1.5.2.2 skrll \
418 1.5.2.2 skrll __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
419 1.5.2.2 skrll (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
420 1.5.2.2 skrll __rxd->dr_baddrh = 0; \
421 1.5.2.2 skrll __rxd->dr_len = 0; \
422 1.5.2.2 skrll __rxd->dr_cksum = 0; \
423 1.5.2.2 skrll __rxd->dr_status = 0; \
424 1.5.2.2 skrll __rxd->dr_errors = 0; \
425 1.5.2.2 skrll __rxd->dr_special = 0; \
426 1.5.2.2 skrll DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
427 1.5.2.2 skrll \
428 1.5.2.2 skrll CSR_WRITE((sc), DGE_RDT, (x)); \
429 1.5.2.2 skrll } while (/*CONSTCOND*/0)
430 1.5.2.2 skrll #else
431 1.5.2.2 skrll #define DGE_INIT_RXDESC(sc, x) \
432 1.5.2.2 skrll do { \
433 1.5.2.2 skrll struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
434 1.5.2.2 skrll struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
435 1.5.2.2 skrll struct mbuf *__m = __rxs->rxs_mbuf; \
436 1.5.2.2 skrll \
437 1.5.2.2 skrll /* \
438 1.5.2.2 skrll * Note: We scoot the packet forward 2 bytes in the buffer \
439 1.5.2.2 skrll * so that the payload after the Ethernet header is aligned \
440 1.5.2.2 skrll * to a 4-byte boundary. \
441 1.5.2.2 skrll * \
442 1.5.2.2 skrll * XXX BRAINDAMAGE ALERT! \
443 1.5.2.2 skrll * The stupid chip uses the same size for every buffer, which \
444 1.5.2.2 skrll * is set in the Receive Control register. We are using the 2K \
445 1.5.2.2 skrll * size option, but what we REALLY want is (2K - 2)! For this \
446 1.5.2.2 skrll * reason, we can't "scoot" packets longer than the standard \
447 1.5.2.2 skrll * Ethernet MTU. On strict-alignment platforms, if the total \
448 1.5.2.2 skrll * size exceeds (2K - 2) we set align_tweak to 0 and let \
449 1.5.2.2 skrll * the upper layer copy the headers. \
450 1.5.2.2 skrll */ \
451 1.5.2.2 skrll __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
452 1.5.2.2 skrll \
453 1.5.2.2 skrll __rxd->dr_baddrl = \
454 1.5.2.2 skrll htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
455 1.5.2.2 skrll (sc)->sc_align_tweak); \
456 1.5.2.2 skrll __rxd->dr_baddrh = 0; \
457 1.5.2.2 skrll __rxd->dr_len = 0; \
458 1.5.2.2 skrll __rxd->dr_cksum = 0; \
459 1.5.2.2 skrll __rxd->dr_status = 0; \
460 1.5.2.2 skrll __rxd->dr_errors = 0; \
461 1.5.2.2 skrll __rxd->dr_special = 0; \
462 1.5.2.2 skrll DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
463 1.5.2.2 skrll \
464 1.5.2.2 skrll CSR_WRITE((sc), DGE_RDT, (x)); \
465 1.5.2.2 skrll } while (/*CONSTCOND*/0)
466 1.5.2.2 skrll #endif
467 1.5.2.2 skrll
468 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
469 1.5.2.2 skrll /*
470 1.5.2.2 skrll * Allocation constants. Much memory may be used for this.
471 1.5.2.2 skrll */
472 1.5.2.2 skrll #ifndef DGE_BUFFER_SIZE
473 1.5.2.2 skrll #define DGE_BUFFER_SIZE DGE_MAX_MTU
474 1.5.2.2 skrll #endif
475 1.5.2.2 skrll #define DGE_NBUFFERS (4*DGE_NRXDESC)
476 1.5.2.2 skrll #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
477 1.5.2.2 skrll
478 1.5.2.2 skrll struct rxbugentry {
479 1.5.2.2 skrll SLIST_ENTRY(rxbugentry) rb_entry;
480 1.5.2.2 skrll int rb_slot;
481 1.5.2.2 skrll };
482 1.5.2.2 skrll
483 1.5.2.2 skrll static int
484 1.5.2.2 skrll dge_alloc_rcvmem(struct dge_softc *sc)
485 1.5.2.2 skrll {
486 1.5.2.2 skrll caddr_t ptr, kva;
487 1.5.2.2 skrll bus_dma_segment_t seg;
488 1.5.2.2 skrll int i, rseg, state, error;
489 1.5.2.2 skrll struct rxbugentry *entry;
490 1.5.2.2 skrll
491 1.5.2.2 skrll state = error = 0;
492 1.5.2.2 skrll
493 1.5.2.2 skrll if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
494 1.5.2.2 skrll &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
495 1.5.2.2 skrll printf("%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
496 1.5.2.2 skrll return ENOBUFS;
497 1.5.2.2 skrll }
498 1.5.2.2 skrll
499 1.5.2.2 skrll state = 1;
500 1.5.2.2 skrll if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, &kva,
501 1.5.2.2 skrll BUS_DMA_NOWAIT)) {
502 1.5.2.2 skrll printf("%s: can't map DMA buffers (%d bytes)\n",
503 1.5.2.2 skrll sc->sc_dev.dv_xname, (int)DGE_RXMEM);
504 1.5.2.2 skrll error = ENOBUFS;
505 1.5.2.2 skrll goto out;
506 1.5.2.2 skrll }
507 1.5.2.2 skrll
508 1.5.2.2 skrll state = 2;
509 1.5.2.2 skrll if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
510 1.5.2.2 skrll BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
511 1.5.2.2 skrll printf("%s: can't create DMA map\n", sc->sc_dev.dv_xname);
512 1.5.2.2 skrll error = ENOBUFS;
513 1.5.2.2 skrll goto out;
514 1.5.2.2 skrll }
515 1.5.2.2 skrll
516 1.5.2.2 skrll state = 3;
517 1.5.2.2 skrll if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
518 1.5.2.2 skrll kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
519 1.5.2.2 skrll printf("%s: can't load DMA map\n", sc->sc_dev.dv_xname);
520 1.5.2.2 skrll error = ENOBUFS;
521 1.5.2.2 skrll goto out;
522 1.5.2.2 skrll }
523 1.5.2.2 skrll
524 1.5.2.2 skrll state = 4;
525 1.5.2.2 skrll sc->sc_bugbuf = (caddr_t)kva;
526 1.5.2.2 skrll SLIST_INIT(&sc->sc_buglist);
527 1.5.2.2 skrll
528 1.5.2.2 skrll /*
529 1.5.2.2 skrll * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
530 1.5.2.2 skrll * in an array.
531 1.5.2.2 skrll */
532 1.5.2.2 skrll ptr = sc->sc_bugbuf;
533 1.5.2.2 skrll if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
534 1.5.2.2 skrll M_DEVBUF, M_NOWAIT)) == NULL) {
535 1.5.2.2 skrll error = ENOBUFS;
536 1.5.2.2 skrll goto out;
537 1.5.2.2 skrll }
538 1.5.2.2 skrll sc->sc_entry = entry;
539 1.5.2.2 skrll for (i = 0; i < DGE_NBUFFERS; i++) {
540 1.5.2.2 skrll entry[i].rb_slot = i;
541 1.5.2.2 skrll SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
542 1.5.2.2 skrll }
543 1.5.2.2 skrll out:
544 1.5.2.2 skrll if (error != 0) {
545 1.5.2.2 skrll switch (state) {
546 1.5.2.2 skrll case 4:
547 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
548 1.5.2.2 skrll case 3:
549 1.5.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
550 1.5.2.2 skrll case 2:
551 1.5.2.2 skrll bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
552 1.5.2.2 skrll case 1:
553 1.5.2.2 skrll bus_dmamem_free(sc->sc_dmat, &seg, rseg);
554 1.5.2.2 skrll break;
555 1.5.2.2 skrll default:
556 1.5.2.2 skrll break;
557 1.5.2.2 skrll }
558 1.5.2.2 skrll }
559 1.5.2.2 skrll
560 1.5.2.2 skrll return error;
561 1.5.2.2 skrll }
562 1.5.2.2 skrll
563 1.5.2.2 skrll /*
564 1.5.2.2 skrll * Allocate a jumbo buffer.
565 1.5.2.2 skrll */
566 1.5.2.2 skrll static void *
567 1.5.2.2 skrll dge_getbuf(struct dge_softc *sc)
568 1.5.2.2 skrll {
569 1.5.2.2 skrll struct rxbugentry *entry;
570 1.5.2.2 skrll
571 1.5.2.2 skrll entry = SLIST_FIRST(&sc->sc_buglist);
572 1.5.2.2 skrll
573 1.5.2.2 skrll if (entry == NULL) {
574 1.5.2.2 skrll printf("%s: no free RX buffers\n", sc->sc_dev.dv_xname);
575 1.5.2.2 skrll return(NULL);
576 1.5.2.2 skrll }
577 1.5.2.2 skrll
578 1.5.2.2 skrll SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
579 1.5.2.2 skrll return sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
580 1.5.2.2 skrll }
581 1.5.2.2 skrll
582 1.5.2.2 skrll /*
583 1.5.2.2 skrll * Release a jumbo buffer.
584 1.5.2.2 skrll */
585 1.5.2.2 skrll static void
586 1.5.2.2 skrll dge_freebuf(struct mbuf *m, caddr_t buf, size_t size, void *arg)
587 1.5.2.2 skrll {
588 1.5.2.2 skrll struct rxbugentry *entry;
589 1.5.2.2 skrll struct dge_softc *sc;
590 1.5.2.2 skrll int i, s;
591 1.5.2.2 skrll
592 1.5.2.2 skrll /* Extract the softc struct pointer. */
593 1.5.2.2 skrll sc = (struct dge_softc *)arg;
594 1.5.2.2 skrll
595 1.5.2.2 skrll if (sc == NULL)
596 1.5.2.2 skrll panic("dge_freebuf: can't find softc pointer!");
597 1.5.2.2 skrll
598 1.5.2.2 skrll /* calculate the slot this buffer belongs to */
599 1.5.2.2 skrll
600 1.5.2.2 skrll i = (buf - sc->sc_bugbuf) / DGE_BUFFER_SIZE;
601 1.5.2.2 skrll
602 1.5.2.2 skrll if ((i < 0) || (i >= DGE_NBUFFERS))
603 1.5.2.2 skrll panic("dge_freebuf: asked to free buffer %d!", i);
604 1.5.2.2 skrll
605 1.5.2.2 skrll s = splvm();
606 1.5.2.2 skrll entry = sc->sc_entry + i;
607 1.5.2.2 skrll SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
608 1.5.2.2 skrll
609 1.5.2.2 skrll if (__predict_true(m != NULL))
610 1.5.2.2 skrll pool_cache_put(&mbpool_cache, m);
611 1.5.2.2 skrll splx(s);
612 1.5.2.2 skrll }
613 1.5.2.2 skrll #endif
614 1.5.2.2 skrll
615 1.5.2.2 skrll static void dge_start(struct ifnet *);
616 1.5.2.2 skrll static void dge_watchdog(struct ifnet *);
617 1.5.2.2 skrll static int dge_ioctl(struct ifnet *, u_long, caddr_t);
618 1.5.2.2 skrll static int dge_init(struct ifnet *);
619 1.5.2.2 skrll static void dge_stop(struct ifnet *, int);
620 1.5.2.2 skrll
621 1.5.2.2 skrll static void dge_shutdown(void *);
622 1.5.2.2 skrll
623 1.5.2.2 skrll static void dge_reset(struct dge_softc *);
624 1.5.2.2 skrll static void dge_rxdrain(struct dge_softc *);
625 1.5.2.2 skrll static int dge_add_rxbuf(struct dge_softc *, int);
626 1.5.2.2 skrll
627 1.5.2.2 skrll static void dge_set_filter(struct dge_softc *);
628 1.5.2.2 skrll
629 1.5.2.2 skrll static int dge_intr(void *);
630 1.5.2.2 skrll static void dge_txintr(struct dge_softc *);
631 1.5.2.2 skrll static void dge_rxintr(struct dge_softc *);
632 1.5.2.2 skrll static void dge_linkintr(struct dge_softc *, uint32_t);
633 1.5.2.2 skrll
634 1.5.2.2 skrll static int dge_match(struct device *, struct cfdata *, void *);
635 1.5.2.2 skrll static void dge_attach(struct device *, struct device *, void *);
636 1.5.2.2 skrll
637 1.5.2.2 skrll static int dge_read_eeprom(struct dge_softc *sc);
638 1.5.2.2 skrll static int dge_eeprom_clockin(struct dge_softc *sc);
639 1.5.2.2 skrll static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
640 1.5.2.2 skrll static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
641 1.5.2.2 skrll static int dge_xgmii_mediachange(struct ifnet *);
642 1.5.2.2 skrll static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
643 1.5.2.2 skrll static void dge_xgmii_reset(struct dge_softc *);
644 1.5.2.2 skrll static void dge_xgmii_writereg(struct device *, int, int, int);
645 1.5.2.2 skrll
646 1.5.2.2 skrll
647 1.5.2.2 skrll CFATTACH_DECL(dge, sizeof(struct dge_softc),
648 1.5.2.2 skrll dge_match, dge_attach, NULL, NULL);
649 1.5.2.2 skrll
650 1.5.2.2 skrll #ifdef DGE_EVENT_COUNTERS
651 1.5.2.2 skrll #if DGE_NTXSEGS > 100
652 1.5.2.2 skrll #error Update dge_txseg_evcnt_names
653 1.5.2.2 skrll #endif
654 1.5.2.2 skrll static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
655 1.5.2.2 skrll #endif /* DGE_EVENT_COUNTERS */
656 1.5.2.2 skrll
657 1.5.2.2 skrll static int
658 1.5.2.2 skrll dge_match(struct device *parent, struct cfdata *cf, void *aux)
659 1.5.2.2 skrll {
660 1.5.2.2 skrll struct pci_attach_args *pa = aux;
661 1.5.2.2 skrll
662 1.5.2.2 skrll if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
663 1.5.2.2 skrll PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
664 1.5.2.2 skrll return (1);
665 1.5.2.2 skrll
666 1.5.2.2 skrll return (0);
667 1.5.2.2 skrll }
668 1.5.2.2 skrll
669 1.5.2.2 skrll static void
670 1.5.2.2 skrll dge_attach(struct device *parent, struct device *self, void *aux)
671 1.5.2.2 skrll {
672 1.5.2.2 skrll struct dge_softc *sc = (void *) self;
673 1.5.2.2 skrll struct pci_attach_args *pa = aux;
674 1.5.2.2 skrll struct ifnet *ifp = &sc->sc_ethercom.ec_if;
675 1.5.2.2 skrll pci_chipset_tag_t pc = pa->pa_pc;
676 1.5.2.2 skrll pci_intr_handle_t ih;
677 1.5.2.2 skrll const char *intrstr = NULL;
678 1.5.2.2 skrll bus_dma_segment_t seg;
679 1.5.2.2 skrll int i, rseg, error;
680 1.5.2.2 skrll uint8_t enaddr[ETHER_ADDR_LEN];
681 1.5.2.2 skrll pcireg_t preg, memtype;
682 1.5.2.2 skrll uint32_t reg;
683 1.5.2.2 skrll
684 1.5.2.2 skrll sc->sc_dmat = pa->pa_dmat;
685 1.5.2.2 skrll sc->sc_pc = pa->pa_pc;
686 1.5.2.2 skrll sc->sc_pt = pa->pa_tag;
687 1.5.2.2 skrll
688 1.5.2.2 skrll preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
689 1.5.2.2 skrll aprint_naive(": Ethernet controller\n");
690 1.5.2.2 skrll aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
691 1.5.2.2 skrll
692 1.5.2.2 skrll memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
693 1.5.2.2 skrll if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
694 1.5.2.2 skrll &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
695 1.5.2.2 skrll aprint_error("%s: unable to map device registers\n",
696 1.5.2.2 skrll sc->sc_dev.dv_xname);
697 1.5.2.2 skrll return;
698 1.5.2.2 skrll }
699 1.5.2.2 skrll
700 1.5.2.2 skrll /* Enable bus mastering */
701 1.5.2.2 skrll preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
702 1.5.2.2 skrll preg |= PCI_COMMAND_MASTER_ENABLE;
703 1.5.2.2 skrll pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
704 1.5.2.2 skrll
705 1.5.2.2 skrll /*
706 1.5.2.2 skrll * Map and establish our interrupt.
707 1.5.2.2 skrll */
708 1.5.2.2 skrll if (pci_intr_map(pa, &ih)) {
709 1.5.2.2 skrll aprint_error("%s: unable to map interrupt\n",
710 1.5.2.2 skrll sc->sc_dev.dv_xname);
711 1.5.2.2 skrll return;
712 1.5.2.2 skrll }
713 1.5.2.2 skrll intrstr = pci_intr_string(pc, ih);
714 1.5.2.2 skrll sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
715 1.5.2.2 skrll if (sc->sc_ih == NULL) {
716 1.5.2.2 skrll aprint_error("%s: unable to establish interrupt",
717 1.5.2.2 skrll sc->sc_dev.dv_xname);
718 1.5.2.2 skrll if (intrstr != NULL)
719 1.5.2.2 skrll aprint_normal(" at %s", intrstr);
720 1.5.2.2 skrll aprint_normal("\n");
721 1.5.2.2 skrll return;
722 1.5.2.2 skrll }
723 1.5.2.2 skrll aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
724 1.5.2.2 skrll
725 1.5.2.2 skrll /*
726 1.5.2.2 skrll * Determine a few things about the bus we're connected to.
727 1.5.2.2 skrll */
728 1.5.2.2 skrll reg = CSR_READ(sc, DGE_STATUS);
729 1.5.2.2 skrll if (reg & STATUS_BUS64)
730 1.5.2.2 skrll sc->sc_flags |= DGE_F_BUS64;
731 1.5.2.2 skrll
732 1.5.2.2 skrll sc->sc_flags |= DGE_F_PCIX;
733 1.5.2.2 skrll if (pci_get_capability(pa->pa_pc, pa->pa_tag,
734 1.5.2.2 skrll PCI_CAP_PCIX,
735 1.5.2.2 skrll &sc->sc_pcix_offset, NULL) == 0)
736 1.5.2.2 skrll aprint_error("%s: unable to find PCIX "
737 1.5.2.2 skrll "capability\n", sc->sc_dev.dv_xname);
738 1.5.2.2 skrll
739 1.5.2.2 skrll if (sc->sc_flags & DGE_F_PCIX) {
740 1.5.2.2 skrll switch (reg & STATUS_PCIX_MSK) {
741 1.5.2.2 skrll case STATUS_PCIX_66:
742 1.5.2.2 skrll sc->sc_bus_speed = 66;
743 1.5.2.2 skrll break;
744 1.5.2.2 skrll case STATUS_PCIX_100:
745 1.5.2.2 skrll sc->sc_bus_speed = 100;
746 1.5.2.2 skrll break;
747 1.5.2.2 skrll case STATUS_PCIX_133:
748 1.5.2.2 skrll sc->sc_bus_speed = 133;
749 1.5.2.2 skrll break;
750 1.5.2.2 skrll default:
751 1.5.2.2 skrll aprint_error(
752 1.5.2.2 skrll "%s: unknown PCIXSPD %d; assuming 66MHz\n",
753 1.5.2.2 skrll sc->sc_dev.dv_xname,
754 1.5.2.2 skrll reg & STATUS_PCIX_MSK);
755 1.5.2.2 skrll sc->sc_bus_speed = 66;
756 1.5.2.2 skrll }
757 1.5.2.2 skrll } else
758 1.5.2.2 skrll sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
759 1.5.2.2 skrll aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
760 1.5.2.2 skrll (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
761 1.5.2.2 skrll (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
762 1.5.2.2 skrll
763 1.5.2.2 skrll /*
764 1.5.2.2 skrll * Allocate the control data structures, and create and load the
765 1.5.2.2 skrll * DMA map for it.
766 1.5.2.2 skrll */
767 1.5.2.2 skrll if ((error = bus_dmamem_alloc(sc->sc_dmat,
768 1.5.2.2 skrll sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
769 1.5.2.2 skrll 0)) != 0) {
770 1.5.2.2 skrll aprint_error(
771 1.5.2.2 skrll "%s: unable to allocate control data, error = %d\n",
772 1.5.2.2 skrll sc->sc_dev.dv_xname, error);
773 1.5.2.2 skrll goto fail_0;
774 1.5.2.2 skrll }
775 1.5.2.2 skrll
776 1.5.2.2 skrll if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
777 1.5.2.2 skrll sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
778 1.5.2.2 skrll 0)) != 0) {
779 1.5.2.2 skrll aprint_error("%s: unable to map control data, error = %d\n",
780 1.5.2.2 skrll sc->sc_dev.dv_xname, error);
781 1.5.2.2 skrll goto fail_1;
782 1.5.2.2 skrll }
783 1.5.2.2 skrll
784 1.5.2.2 skrll if ((error = bus_dmamap_create(sc->sc_dmat,
785 1.5.2.2 skrll sizeof(struct dge_control_data), 1,
786 1.5.2.2 skrll sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
787 1.5.2.2 skrll aprint_error("%s: unable to create control data DMA map, "
788 1.5.2.2 skrll "error = %d\n", sc->sc_dev.dv_xname, error);
789 1.5.2.2 skrll goto fail_2;
790 1.5.2.2 skrll }
791 1.5.2.2 skrll
792 1.5.2.2 skrll if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
793 1.5.2.2 skrll sc->sc_control_data, sizeof(struct dge_control_data), NULL,
794 1.5.2.2 skrll 0)) != 0) {
795 1.5.2.2 skrll aprint_error(
796 1.5.2.2 skrll "%s: unable to load control data DMA map, error = %d\n",
797 1.5.2.2 skrll sc->sc_dev.dv_xname, error);
798 1.5.2.2 skrll goto fail_3;
799 1.5.2.2 skrll }
800 1.5.2.2 skrll
801 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
802 1.5.2.2 skrll if (dge_alloc_rcvmem(sc) != 0)
803 1.5.2.2 skrll return; /* Already complained */
804 1.5.2.2 skrll #endif
805 1.5.2.2 skrll /*
806 1.5.2.2 skrll * Create the transmit buffer DMA maps.
807 1.5.2.2 skrll */
808 1.5.2.2 skrll for (i = 0; i < DGE_TXQUEUELEN; i++) {
809 1.5.2.2 skrll if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
810 1.5.2.2 skrll DGE_NTXSEGS, MCLBYTES, 0, 0,
811 1.5.2.2 skrll &sc->sc_txsoft[i].txs_dmamap)) != 0) {
812 1.5.2.2 skrll aprint_error("%s: unable to create Tx DMA map %d, "
813 1.5.2.2 skrll "error = %d\n", sc->sc_dev.dv_xname, i, error);
814 1.5.2.2 skrll goto fail_4;
815 1.5.2.2 skrll }
816 1.5.2.2 skrll }
817 1.5.2.2 skrll
818 1.5.2.2 skrll /*
819 1.5.2.2 skrll * Create the receive buffer DMA maps.
820 1.5.2.2 skrll */
821 1.5.2.2 skrll for (i = 0; i < DGE_NRXDESC; i++) {
822 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
823 1.5.2.2 skrll if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
824 1.5.2.2 skrll DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
825 1.5.2.2 skrll #else
826 1.5.2.2 skrll if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
827 1.5.2.2 skrll MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
828 1.5.2.2 skrll #endif
829 1.5.2.2 skrll aprint_error("%s: unable to create Rx DMA map %d, "
830 1.5.2.2 skrll "error = %d\n", sc->sc_dev.dv_xname, i, error);
831 1.5.2.2 skrll goto fail_5;
832 1.5.2.2 skrll }
833 1.5.2.2 skrll sc->sc_rxsoft[i].rxs_mbuf = NULL;
834 1.5.2.2 skrll }
835 1.5.2.2 skrll
836 1.5.2.2 skrll /*
837 1.5.2.2 skrll * Set bits in ctrl0 register.
838 1.5.2.2 skrll * Should get the software defined pins out of EEPROM?
839 1.5.2.2 skrll */
840 1.5.2.2 skrll sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
841 1.5.2.2 skrll sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
842 1.5.2.2 skrll CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
843 1.5.2.2 skrll
844 1.5.2.2 skrll /*
845 1.5.2.2 skrll * Reset the chip to a known state.
846 1.5.2.2 skrll */
847 1.5.2.2 skrll dge_reset(sc);
848 1.5.2.2 skrll
849 1.5.2.2 skrll /*
850 1.5.2.2 skrll * Reset the PHY.
851 1.5.2.2 skrll */
852 1.5.2.2 skrll dge_xgmii_reset(sc);
853 1.5.2.2 skrll
854 1.5.2.2 skrll /*
855 1.5.2.2 skrll * Read in EEPROM data.
856 1.5.2.2 skrll */
857 1.5.2.2 skrll if (dge_read_eeprom(sc)) {
858 1.5.2.2 skrll aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
859 1.5.2.2 skrll return;
860 1.5.2.2 skrll }
861 1.5.2.2 skrll
862 1.5.2.2 skrll /*
863 1.5.2.2 skrll * Get the ethernet address.
864 1.5.2.2 skrll */
865 1.5.2.2 skrll enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
866 1.5.2.2 skrll enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
867 1.5.2.2 skrll enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
868 1.5.2.2 skrll enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
869 1.5.2.2 skrll enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
870 1.5.2.2 skrll enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
871 1.5.2.2 skrll
872 1.5.2.2 skrll aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
873 1.5.2.2 skrll ether_sprintf(enaddr));
874 1.5.2.2 skrll
875 1.5.2.2 skrll /*
876 1.5.2.2 skrll * Setup media stuff.
877 1.5.2.2 skrll */
878 1.5.2.2 skrll ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
879 1.5.2.2 skrll dge_xgmii_mediastatus);
880 1.5.2.2 skrll ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
881 1.5.2.2 skrll ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
882 1.5.2.2 skrll
883 1.5.2.2 skrll ifp = &sc->sc_ethercom.ec_if;
884 1.5.2.2 skrll strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
885 1.5.2.2 skrll ifp->if_softc = sc;
886 1.5.2.2 skrll ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
887 1.5.2.2 skrll ifp->if_ioctl = dge_ioctl;
888 1.5.2.2 skrll ifp->if_start = dge_start;
889 1.5.2.2 skrll ifp->if_watchdog = dge_watchdog;
890 1.5.2.2 skrll ifp->if_init = dge_init;
891 1.5.2.2 skrll ifp->if_stop = dge_stop;
892 1.5.2.2 skrll IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
893 1.5.2.2 skrll IFQ_SET_READY(&ifp->if_snd);
894 1.5.2.2 skrll
895 1.5.2.2 skrll sc->sc_ethercom.ec_capabilities |=
896 1.5.2.2 skrll ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
897 1.5.2.2 skrll
898 1.5.2.2 skrll /*
899 1.5.2.2 skrll * We can perform TCPv4 and UDPv4 checkums in-bound.
900 1.5.2.2 skrll */
901 1.5.2.2 skrll ifp->if_capabilities |=
902 1.5.2.2 skrll IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
903 1.5.2.2 skrll
904 1.5.2.2 skrll /*
905 1.5.2.2 skrll * Attach the interface.
906 1.5.2.2 skrll */
907 1.5.2.2 skrll if_attach(ifp);
908 1.5.2.2 skrll ether_ifattach(ifp, enaddr);
909 1.5.2.2 skrll #if NRND > 0
910 1.5.2.2 skrll rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
911 1.5.2.2 skrll RND_TYPE_NET, 0);
912 1.5.2.2 skrll #endif
913 1.5.2.2 skrll
914 1.5.2.2 skrll #ifdef DGE_EVENT_COUNTERS
915 1.5.2.2 skrll /* Fix segment event naming */
916 1.5.2.2 skrll if (dge_txseg_evcnt_names == NULL) {
917 1.5.2.2 skrll dge_txseg_evcnt_names =
918 1.5.2.2 skrll malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
919 1.5.2.2 skrll for (i = 0; i < DGE_NTXSEGS; i++)
920 1.5.2.2 skrll snprintf((*dge_txseg_evcnt_names)[i],
921 1.5.2.2 skrll sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
922 1.5.2.2 skrll }
923 1.5.2.2 skrll
924 1.5.2.2 skrll /* Attach event counters. */
925 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
926 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txsstall");
927 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
928 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txdstall");
929 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
930 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txforceintr");
931 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
932 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txdw");
933 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
934 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txqe");
935 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
936 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "rxintr");
937 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
938 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "linkintr");
939 1.5.2.2 skrll
940 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
941 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "rxipsum");
942 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
943 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "rxtusum");
944 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
945 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txipsum");
946 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
947 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txtusum");
948 1.5.2.2 skrll
949 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
950 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txctx init");
951 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
952 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txctx hit");
953 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
954 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txctx miss");
955 1.5.2.2 skrll
956 1.5.2.2 skrll for (i = 0; i < DGE_NTXSEGS; i++)
957 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
958 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
959 1.5.2.2 skrll
960 1.5.2.2 skrll evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
961 1.5.2.2 skrll NULL, sc->sc_dev.dv_xname, "txdrop");
962 1.5.2.2 skrll
963 1.5.2.2 skrll #endif /* DGE_EVENT_COUNTERS */
964 1.5.2.2 skrll
965 1.5.2.2 skrll /*
966 1.5.2.2 skrll * Make sure the interface is shutdown during reboot.
967 1.5.2.2 skrll */
968 1.5.2.2 skrll sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
969 1.5.2.2 skrll if (sc->sc_sdhook == NULL)
970 1.5.2.2 skrll aprint_error("%s: WARNING: unable to establish shutdown hook\n",
971 1.5.2.2 skrll sc->sc_dev.dv_xname);
972 1.5.2.2 skrll return;
973 1.5.2.2 skrll
974 1.5.2.2 skrll /*
975 1.5.2.2 skrll * Free any resources we've allocated during the failed attach
976 1.5.2.2 skrll * attempt. Do this in reverse order and fall through.
977 1.5.2.2 skrll */
978 1.5.2.2 skrll fail_5:
979 1.5.2.2 skrll for (i = 0; i < DGE_NRXDESC; i++) {
980 1.5.2.2 skrll if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
981 1.5.2.2 skrll bus_dmamap_destroy(sc->sc_dmat,
982 1.5.2.2 skrll sc->sc_rxsoft[i].rxs_dmamap);
983 1.5.2.2 skrll }
984 1.5.2.2 skrll fail_4:
985 1.5.2.2 skrll for (i = 0; i < DGE_TXQUEUELEN; i++) {
986 1.5.2.2 skrll if (sc->sc_txsoft[i].txs_dmamap != NULL)
987 1.5.2.2 skrll bus_dmamap_destroy(sc->sc_dmat,
988 1.5.2.2 skrll sc->sc_txsoft[i].txs_dmamap);
989 1.5.2.2 skrll }
990 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
991 1.5.2.2 skrll fail_3:
992 1.5.2.2 skrll bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
993 1.5.2.2 skrll fail_2:
994 1.5.2.2 skrll bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
995 1.5.2.2 skrll sizeof(struct dge_control_data));
996 1.5.2.2 skrll fail_1:
997 1.5.2.2 skrll bus_dmamem_free(sc->sc_dmat, &seg, rseg);
998 1.5.2.2 skrll fail_0:
999 1.5.2.2 skrll return;
1000 1.5.2.2 skrll }
1001 1.5.2.2 skrll
1002 1.5.2.2 skrll /*
1003 1.5.2.2 skrll * dge_shutdown:
1004 1.5.2.2 skrll *
1005 1.5.2.2 skrll * Make sure the interface is stopped at reboot time.
1006 1.5.2.2 skrll */
1007 1.5.2.2 skrll static void
1008 1.5.2.2 skrll dge_shutdown(void *arg)
1009 1.5.2.2 skrll {
1010 1.5.2.2 skrll struct dge_softc *sc = arg;
1011 1.5.2.2 skrll
1012 1.5.2.2 skrll dge_stop(&sc->sc_ethercom.ec_if, 1);
1013 1.5.2.2 skrll }
1014 1.5.2.2 skrll
1015 1.5.2.2 skrll /*
1016 1.5.2.2 skrll * dge_tx_cksum:
1017 1.5.2.2 skrll *
1018 1.5.2.2 skrll * Set up TCP/IP checksumming parameters for the
1019 1.5.2.2 skrll * specified packet.
1020 1.5.2.2 skrll */
1021 1.5.2.2 skrll static int
1022 1.5.2.2 skrll dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1023 1.5.2.2 skrll {
1024 1.5.2.2 skrll struct mbuf *m0 = txs->txs_mbuf;
1025 1.5.2.2 skrll struct dge_ctdes *t;
1026 1.5.2.2 skrll uint32_t ipcs, tucs;
1027 1.5.2.2 skrll struct ip *ip;
1028 1.5.2.2 skrll struct ether_header *eh;
1029 1.5.2.2 skrll int offset, iphl;
1030 1.5.2.2 skrll uint8_t fields = 0;
1031 1.5.2.2 skrll
1032 1.5.2.2 skrll /*
1033 1.5.2.2 skrll * XXX It would be nice if the mbuf pkthdr had offset
1034 1.5.2.2 skrll * fields for the protocol headers.
1035 1.5.2.2 skrll */
1036 1.5.2.2 skrll
1037 1.5.2.2 skrll eh = mtod(m0, struct ether_header *);
1038 1.5.2.2 skrll switch (htons(eh->ether_type)) {
1039 1.5.2.2 skrll case ETHERTYPE_IP:
1040 1.5.2.2 skrll iphl = sizeof(struct ip);
1041 1.5.2.2 skrll offset = ETHER_HDR_LEN;
1042 1.5.2.2 skrll break;
1043 1.5.2.2 skrll
1044 1.5.2.2 skrll case ETHERTYPE_VLAN:
1045 1.5.2.2 skrll iphl = sizeof(struct ip);
1046 1.5.2.2 skrll offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1047 1.5.2.2 skrll break;
1048 1.5.2.2 skrll
1049 1.5.2.2 skrll default:
1050 1.5.2.2 skrll /*
1051 1.5.2.2 skrll * Don't support this protocol or encapsulation.
1052 1.5.2.2 skrll */
1053 1.5.2.2 skrll *fieldsp = 0;
1054 1.5.2.2 skrll return (0);
1055 1.5.2.2 skrll }
1056 1.5.2.2 skrll
1057 1.5.2.2 skrll if (m0->m_len < (offset + iphl)) {
1058 1.5.2.2 skrll if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
1059 1.5.2.2 skrll printf("%s: dge_tx_cksum: mbuf allocation failed, "
1060 1.5.2.2 skrll "packet dropped\n", sc->sc_dev.dv_xname);
1061 1.5.2.2 skrll return (ENOMEM);
1062 1.5.2.2 skrll }
1063 1.5.2.2 skrll m0 = txs->txs_mbuf;
1064 1.5.2.2 skrll }
1065 1.5.2.2 skrll
1066 1.5.2.2 skrll ip = (struct ip *) (mtod(m0, caddr_t) + offset);
1067 1.5.2.2 skrll iphl = ip->ip_hl << 2;
1068 1.5.2.2 skrll
1069 1.5.2.2 skrll /*
1070 1.5.2.2 skrll * NOTE: Even if we're not using the IP or TCP/UDP checksum
1071 1.5.2.2 skrll * offload feature, if we load the context descriptor, we
1072 1.5.2.2 skrll * MUST provide valid values for IPCSS and TUCSS fields.
1073 1.5.2.2 skrll */
1074 1.5.2.2 skrll
1075 1.5.2.2 skrll if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1076 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1077 1.5.2.2 skrll fields |= TDESC_POPTS_IXSM;
1078 1.5.2.2 skrll ipcs = DGE_TCPIP_IPCSS(offset) |
1079 1.5.2.2 skrll DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1080 1.5.2.2 skrll DGE_TCPIP_IPCSE(offset + iphl - 1);
1081 1.5.2.2 skrll } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1082 1.5.2.2 skrll /* Use the cached value. */
1083 1.5.2.2 skrll ipcs = sc->sc_txctx_ipcs;
1084 1.5.2.2 skrll } else {
1085 1.5.2.2 skrll /* Just initialize it to the likely value anyway. */
1086 1.5.2.2 skrll ipcs = DGE_TCPIP_IPCSS(offset) |
1087 1.5.2.2 skrll DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1088 1.5.2.2 skrll DGE_TCPIP_IPCSE(offset + iphl - 1);
1089 1.5.2.2 skrll }
1090 1.5.2.2 skrll DPRINTF(DGE_DEBUG_CKSUM,
1091 1.5.2.2 skrll ("%s: CKSUM: offset %d ipcs 0x%x\n",
1092 1.5.2.2 skrll sc->sc_dev.dv_xname, offset, ipcs));
1093 1.5.2.2 skrll
1094 1.5.2.2 skrll offset += iphl;
1095 1.5.2.2 skrll
1096 1.5.2.2 skrll if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1097 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1098 1.5.2.2 skrll fields |= TDESC_POPTS_TXSM;
1099 1.5.2.2 skrll tucs = DGE_TCPIP_TUCSS(offset) |
1100 1.5.2.2 skrll DGE_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
1101 1.5.2.2 skrll DGE_TCPIP_TUCSE(0) /* rest of packet */;
1102 1.5.2.2 skrll } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1103 1.5.2.2 skrll /* Use the cached value. */
1104 1.5.2.2 skrll tucs = sc->sc_txctx_tucs;
1105 1.5.2.2 skrll } else {
1106 1.5.2.2 skrll /* Just initialize it to a valid TCP context. */
1107 1.5.2.2 skrll tucs = DGE_TCPIP_TUCSS(offset) |
1108 1.5.2.2 skrll DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1109 1.5.2.2 skrll DGE_TCPIP_TUCSE(0) /* rest of packet */;
1110 1.5.2.2 skrll }
1111 1.5.2.2 skrll
1112 1.5.2.2 skrll DPRINTF(DGE_DEBUG_CKSUM,
1113 1.5.2.2 skrll ("%s: CKSUM: offset %d tucs 0x%x\n",
1114 1.5.2.2 skrll sc->sc_dev.dv_xname, offset, tucs));
1115 1.5.2.2 skrll
1116 1.5.2.2 skrll if (sc->sc_txctx_ipcs == ipcs &&
1117 1.5.2.2 skrll sc->sc_txctx_tucs == tucs) {
1118 1.5.2.2 skrll /* Cached context is fine. */
1119 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1120 1.5.2.2 skrll } else {
1121 1.5.2.2 skrll /* Fill in the context descriptor. */
1122 1.5.2.2 skrll #ifdef DGE_EVENT_COUNTERS
1123 1.5.2.2 skrll if (sc->sc_txctx_ipcs == 0xffffffff &&
1124 1.5.2.2 skrll sc->sc_txctx_tucs == 0xffffffff)
1125 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1126 1.5.2.2 skrll else
1127 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1128 1.5.2.2 skrll #endif
1129 1.5.2.2 skrll t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1130 1.5.2.2 skrll t->dc_tcpip_ipcs = htole32(ipcs);
1131 1.5.2.2 skrll t->dc_tcpip_tucs = htole32(tucs);
1132 1.5.2.2 skrll t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1133 1.5.2.2 skrll t->dc_tcpip_seg = 0;
1134 1.5.2.2 skrll DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1135 1.5.2.2 skrll
1136 1.5.2.2 skrll sc->sc_txctx_ipcs = ipcs;
1137 1.5.2.2 skrll sc->sc_txctx_tucs = tucs;
1138 1.5.2.2 skrll
1139 1.5.2.2 skrll sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1140 1.5.2.2 skrll txs->txs_ndesc++;
1141 1.5.2.2 skrll }
1142 1.5.2.2 skrll
1143 1.5.2.2 skrll *fieldsp = fields;
1144 1.5.2.2 skrll
1145 1.5.2.2 skrll return (0);
1146 1.5.2.2 skrll }
1147 1.5.2.2 skrll
1148 1.5.2.2 skrll /*
1149 1.5.2.2 skrll * dge_start: [ifnet interface function]
1150 1.5.2.2 skrll *
1151 1.5.2.2 skrll * Start packet transmission on the interface.
1152 1.5.2.2 skrll */
1153 1.5.2.2 skrll static void
1154 1.5.2.2 skrll dge_start(struct ifnet *ifp)
1155 1.5.2.2 skrll {
1156 1.5.2.2 skrll struct dge_softc *sc = ifp->if_softc;
1157 1.5.2.2 skrll struct mbuf *m0;
1158 1.5.2.2 skrll struct dge_txsoft *txs;
1159 1.5.2.2 skrll bus_dmamap_t dmamap;
1160 1.5.2.2 skrll int error, nexttx, lasttx = -1, ofree, seg;
1161 1.5.2.2 skrll uint32_t cksumcmd;
1162 1.5.2.2 skrll uint8_t cksumfields;
1163 1.5.2.2 skrll
1164 1.5.2.2 skrll if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1165 1.5.2.2 skrll return;
1166 1.5.2.2 skrll
1167 1.5.2.2 skrll /*
1168 1.5.2.2 skrll * Remember the previous number of free descriptors.
1169 1.5.2.2 skrll */
1170 1.5.2.2 skrll ofree = sc->sc_txfree;
1171 1.5.2.2 skrll
1172 1.5.2.2 skrll /*
1173 1.5.2.2 skrll * Loop through the send queue, setting up transmit descriptors
1174 1.5.2.2 skrll * until we drain the queue, or use up all available transmit
1175 1.5.2.2 skrll * descriptors.
1176 1.5.2.2 skrll */
1177 1.5.2.2 skrll for (;;) {
1178 1.5.2.2 skrll /* Grab a packet off the queue. */
1179 1.5.2.2 skrll IFQ_POLL(&ifp->if_snd, m0);
1180 1.5.2.2 skrll if (m0 == NULL)
1181 1.5.2.2 skrll break;
1182 1.5.2.2 skrll
1183 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1184 1.5.2.2 skrll ("%s: TX: have packet to transmit: %p\n",
1185 1.5.2.2 skrll sc->sc_dev.dv_xname, m0));
1186 1.5.2.2 skrll
1187 1.5.2.2 skrll /* Get a work queue entry. */
1188 1.5.2.2 skrll if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1189 1.5.2.2 skrll dge_txintr(sc);
1190 1.5.2.2 skrll if (sc->sc_txsfree == 0) {
1191 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1192 1.5.2.2 skrll ("%s: TX: no free job descriptors\n",
1193 1.5.2.2 skrll sc->sc_dev.dv_xname));
1194 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1195 1.5.2.2 skrll break;
1196 1.5.2.2 skrll }
1197 1.5.2.2 skrll }
1198 1.5.2.2 skrll
1199 1.5.2.2 skrll txs = &sc->sc_txsoft[sc->sc_txsnext];
1200 1.5.2.2 skrll dmamap = txs->txs_dmamap;
1201 1.5.2.2 skrll
1202 1.5.2.2 skrll /*
1203 1.5.2.2 skrll * Load the DMA map. If this fails, the packet either
1204 1.5.2.2 skrll * didn't fit in the allotted number of segments, or we
1205 1.5.2.2 skrll * were short on resources. For the too-many-segments
1206 1.5.2.2 skrll * case, we simply report an error and drop the packet,
1207 1.5.2.2 skrll * since we can't sanely copy a jumbo packet to a single
1208 1.5.2.2 skrll * buffer.
1209 1.5.2.2 skrll */
1210 1.5.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1211 1.5.2.2 skrll BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1212 1.5.2.2 skrll if (error) {
1213 1.5.2.2 skrll if (error == EFBIG) {
1214 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1215 1.5.2.2 skrll printf("%s: Tx packet consumes too many "
1216 1.5.2.2 skrll "DMA segments, dropping...\n",
1217 1.5.2.2 skrll sc->sc_dev.dv_xname);
1218 1.5.2.2 skrll IFQ_DEQUEUE(&ifp->if_snd, m0);
1219 1.5.2.2 skrll m_freem(m0);
1220 1.5.2.2 skrll continue;
1221 1.5.2.2 skrll }
1222 1.5.2.2 skrll /*
1223 1.5.2.2 skrll * Short on resources, just stop for now.
1224 1.5.2.2 skrll */
1225 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1226 1.5.2.2 skrll ("%s: TX: dmamap load failed: %d\n",
1227 1.5.2.2 skrll sc->sc_dev.dv_xname, error));
1228 1.5.2.2 skrll break;
1229 1.5.2.2 skrll }
1230 1.5.2.2 skrll
1231 1.5.2.2 skrll /*
1232 1.5.2.2 skrll * Ensure we have enough descriptors free to describe
1233 1.5.2.2 skrll * the packet. Note, we always reserve one descriptor
1234 1.5.2.2 skrll * at the end of the ring due to the semantics of the
1235 1.5.2.2 skrll * TDT register, plus one more in the event we need
1236 1.5.2.2 skrll * to re-load checksum offload context.
1237 1.5.2.2 skrll */
1238 1.5.2.2 skrll if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1239 1.5.2.2 skrll /*
1240 1.5.2.2 skrll * Not enough free descriptors to transmit this
1241 1.5.2.2 skrll * packet. We haven't committed anything yet,
1242 1.5.2.2 skrll * so just unload the DMA map, put the packet
1243 1.5.2.2 skrll * pack on the queue, and punt. Notify the upper
1244 1.5.2.2 skrll * layer that there are no more slots left.
1245 1.5.2.2 skrll */
1246 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1247 1.5.2.2 skrll ("%s: TX: need %d descriptors, have %d\n",
1248 1.5.2.2 skrll sc->sc_dev.dv_xname, dmamap->dm_nsegs,
1249 1.5.2.2 skrll sc->sc_txfree - 1));
1250 1.5.2.2 skrll ifp->if_flags |= IFF_OACTIVE;
1251 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, dmamap);
1252 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1253 1.5.2.2 skrll break;
1254 1.5.2.2 skrll }
1255 1.5.2.2 skrll
1256 1.5.2.2 skrll IFQ_DEQUEUE(&ifp->if_snd, m0);
1257 1.5.2.2 skrll
1258 1.5.2.2 skrll /*
1259 1.5.2.2 skrll * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1260 1.5.2.2 skrll */
1261 1.5.2.2 skrll
1262 1.5.2.2 skrll /* Sync the DMA map. */
1263 1.5.2.2 skrll bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1264 1.5.2.2 skrll BUS_DMASYNC_PREWRITE);
1265 1.5.2.2 skrll
1266 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1267 1.5.2.2 skrll ("%s: TX: packet has %d DMA segments\n",
1268 1.5.2.2 skrll sc->sc_dev.dv_xname, dmamap->dm_nsegs));
1269 1.5.2.2 skrll
1270 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1271 1.5.2.2 skrll
1272 1.5.2.2 skrll /*
1273 1.5.2.2 skrll * Store a pointer to the packet so that we can free it
1274 1.5.2.2 skrll * later.
1275 1.5.2.2 skrll *
1276 1.5.2.2 skrll * Initially, we consider the number of descriptors the
1277 1.5.2.2 skrll * packet uses the number of DMA segments. This may be
1278 1.5.2.2 skrll * incremented by 1 if we do checksum offload (a descriptor
1279 1.5.2.2 skrll * is used to set the checksum context).
1280 1.5.2.2 skrll */
1281 1.5.2.2 skrll txs->txs_mbuf = m0;
1282 1.5.2.2 skrll txs->txs_firstdesc = sc->sc_txnext;
1283 1.5.2.2 skrll txs->txs_ndesc = dmamap->dm_nsegs;
1284 1.5.2.2 skrll
1285 1.5.2.2 skrll /*
1286 1.5.2.2 skrll * Set up checksum offload parameters for
1287 1.5.2.2 skrll * this packet.
1288 1.5.2.2 skrll */
1289 1.5.2.2 skrll if (m0->m_pkthdr.csum_flags &
1290 1.5.2.2 skrll (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1291 1.5.2.2 skrll if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1292 1.5.2.2 skrll /* Error message already displayed. */
1293 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, dmamap);
1294 1.5.2.2 skrll continue;
1295 1.5.2.2 skrll }
1296 1.5.2.2 skrll } else {
1297 1.5.2.2 skrll cksumfields = 0;
1298 1.5.2.2 skrll }
1299 1.5.2.2 skrll
1300 1.5.2.2 skrll cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1301 1.5.2.2 skrll
1302 1.5.2.2 skrll /*
1303 1.5.2.2 skrll * Initialize the transmit descriptor.
1304 1.5.2.2 skrll */
1305 1.5.2.2 skrll for (nexttx = sc->sc_txnext, seg = 0;
1306 1.5.2.2 skrll seg < dmamap->dm_nsegs;
1307 1.5.2.2 skrll seg++, nexttx = DGE_NEXTTX(nexttx)) {
1308 1.5.2.2 skrll /*
1309 1.5.2.2 skrll * Note: we currently only use 32-bit DMA
1310 1.5.2.2 skrll * addresses.
1311 1.5.2.2 skrll */
1312 1.5.2.2 skrll sc->sc_txdescs[nexttx].dt_baddrh = 0;
1313 1.5.2.2 skrll sc->sc_txdescs[nexttx].dt_baddrl =
1314 1.5.2.2 skrll htole32(dmamap->dm_segs[seg].ds_addr);
1315 1.5.2.2 skrll sc->sc_txdescs[nexttx].dt_ctl =
1316 1.5.2.2 skrll htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1317 1.5.2.2 skrll sc->sc_txdescs[nexttx].dt_status = 0;
1318 1.5.2.2 skrll sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1319 1.5.2.2 skrll sc->sc_txdescs[nexttx].dt_vlan = 0;
1320 1.5.2.2 skrll lasttx = nexttx;
1321 1.5.2.2 skrll
1322 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1323 1.5.2.2 skrll ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1324 1.5.2.2 skrll sc->sc_dev.dv_xname, nexttx,
1325 1.5.2.2 skrll le32toh(dmamap->dm_segs[seg].ds_addr),
1326 1.5.2.2 skrll le32toh(dmamap->dm_segs[seg].ds_len)));
1327 1.5.2.2 skrll }
1328 1.5.2.2 skrll
1329 1.5.2.2 skrll KASSERT(lasttx != -1);
1330 1.5.2.2 skrll
1331 1.5.2.2 skrll /*
1332 1.5.2.2 skrll * Set up the command byte on the last descriptor of
1333 1.5.2.2 skrll * the packet. If we're in the interrupt delay window,
1334 1.5.2.2 skrll * delay the interrupt.
1335 1.5.2.2 skrll */
1336 1.5.2.2 skrll sc->sc_txdescs[lasttx].dt_ctl |=
1337 1.5.2.2 skrll htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1338 1.5.2.2 skrll
1339 1.5.2.2 skrll txs->txs_lastdesc = lasttx;
1340 1.5.2.2 skrll
1341 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1342 1.5.2.2 skrll ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1343 1.5.2.2 skrll lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1344 1.5.2.2 skrll
1345 1.5.2.2 skrll /* Sync the descriptors we're using. */
1346 1.5.2.2 skrll DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1347 1.5.2.2 skrll BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1348 1.5.2.2 skrll
1349 1.5.2.2 skrll /* Give the packet to the chip. */
1350 1.5.2.2 skrll CSR_WRITE(sc, DGE_TDT, nexttx);
1351 1.5.2.2 skrll
1352 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1353 1.5.2.2 skrll ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1354 1.5.2.2 skrll
1355 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1356 1.5.2.2 skrll ("%s: TX: finished transmitting packet, job %d\n",
1357 1.5.2.2 skrll sc->sc_dev.dv_xname, sc->sc_txsnext));
1358 1.5.2.2 skrll
1359 1.5.2.2 skrll /* Advance the tx pointer. */
1360 1.5.2.2 skrll sc->sc_txfree -= txs->txs_ndesc;
1361 1.5.2.2 skrll sc->sc_txnext = nexttx;
1362 1.5.2.2 skrll
1363 1.5.2.2 skrll sc->sc_txsfree--;
1364 1.5.2.2 skrll sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1365 1.5.2.2 skrll
1366 1.5.2.2 skrll #if NBPFILTER > 0
1367 1.5.2.2 skrll /* Pass the packet to any BPF listeners. */
1368 1.5.2.2 skrll if (ifp->if_bpf)
1369 1.5.2.2 skrll bpf_mtap(ifp->if_bpf, m0);
1370 1.5.2.2 skrll #endif /* NBPFILTER > 0 */
1371 1.5.2.2 skrll }
1372 1.5.2.2 skrll
1373 1.5.2.2 skrll if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1374 1.5.2.2 skrll /* No more slots; notify upper layer. */
1375 1.5.2.2 skrll ifp->if_flags |= IFF_OACTIVE;
1376 1.5.2.2 skrll }
1377 1.5.2.2 skrll
1378 1.5.2.2 skrll if (sc->sc_txfree != ofree) {
1379 1.5.2.2 skrll /* Set a watchdog timer in case the chip flakes out. */
1380 1.5.2.2 skrll ifp->if_timer = 5;
1381 1.5.2.2 skrll }
1382 1.5.2.2 skrll }
1383 1.5.2.2 skrll
1384 1.5.2.2 skrll /*
1385 1.5.2.2 skrll * dge_watchdog: [ifnet interface function]
1386 1.5.2.2 skrll *
1387 1.5.2.2 skrll * Watchdog timer handler.
1388 1.5.2.2 skrll */
1389 1.5.2.2 skrll static void
1390 1.5.2.2 skrll dge_watchdog(struct ifnet *ifp)
1391 1.5.2.2 skrll {
1392 1.5.2.2 skrll struct dge_softc *sc = ifp->if_softc;
1393 1.5.2.2 skrll
1394 1.5.2.2 skrll /*
1395 1.5.2.2 skrll * Since we're using delayed interrupts, sweep up
1396 1.5.2.2 skrll * before we report an error.
1397 1.5.2.2 skrll */
1398 1.5.2.2 skrll dge_txintr(sc);
1399 1.5.2.2 skrll
1400 1.5.2.2 skrll if (sc->sc_txfree != DGE_NTXDESC) {
1401 1.5.2.2 skrll printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1402 1.5.2.2 skrll sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1403 1.5.2.2 skrll sc->sc_txnext);
1404 1.5.2.2 skrll ifp->if_oerrors++;
1405 1.5.2.2 skrll
1406 1.5.2.2 skrll /* Reset the interface. */
1407 1.5.2.2 skrll (void) dge_init(ifp);
1408 1.5.2.2 skrll }
1409 1.5.2.2 skrll
1410 1.5.2.2 skrll /* Try to get more packets going. */
1411 1.5.2.2 skrll dge_start(ifp);
1412 1.5.2.2 skrll }
1413 1.5.2.2 skrll
1414 1.5.2.2 skrll /*
1415 1.5.2.2 skrll * dge_ioctl: [ifnet interface function]
1416 1.5.2.2 skrll *
1417 1.5.2.2 skrll * Handle control requests from the operator.
1418 1.5.2.2 skrll */
1419 1.5.2.2 skrll static int
1420 1.5.2.2 skrll dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1421 1.5.2.2 skrll {
1422 1.5.2.2 skrll struct dge_softc *sc = ifp->if_softc;
1423 1.5.2.2 skrll struct ifreq *ifr = (struct ifreq *) data;
1424 1.5.2.2 skrll pcireg_t preg;
1425 1.5.2.2 skrll int s, error, mmrbc;
1426 1.5.2.2 skrll
1427 1.5.2.2 skrll s = splnet();
1428 1.5.2.2 skrll
1429 1.5.2.2 skrll switch (cmd) {
1430 1.5.2.2 skrll case SIOCSIFMEDIA:
1431 1.5.2.2 skrll case SIOCGIFMEDIA:
1432 1.5.2.2 skrll error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1433 1.5.2.2 skrll break;
1434 1.5.2.2 skrll
1435 1.5.2.2 skrll case SIOCSIFMTU:
1436 1.5.2.2 skrll if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) {
1437 1.5.2.2 skrll error = EINVAL;
1438 1.5.2.2 skrll } else {
1439 1.5.2.2 skrll error = 0;
1440 1.5.2.2 skrll ifp->if_mtu = ifr->ifr_mtu;
1441 1.5.2.2 skrll if (ifp->if_flags & IFF_UP)
1442 1.5.2.2 skrll error = (*ifp->if_init)(ifp);
1443 1.5.2.2 skrll }
1444 1.5.2.2 skrll break;
1445 1.5.2.2 skrll
1446 1.5.2.2 skrll case SIOCSIFFLAGS:
1447 1.5.2.2 skrll /* extract link flags */
1448 1.5.2.2 skrll if ((ifp->if_flags & IFF_LINK0) == 0 &&
1449 1.5.2.2 skrll (ifp->if_flags & IFF_LINK1) == 0)
1450 1.5.2.2 skrll mmrbc = PCIX_MMRBC_512;
1451 1.5.2.2 skrll else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1452 1.5.2.2 skrll (ifp->if_flags & IFF_LINK1) != 0)
1453 1.5.2.2 skrll mmrbc = PCIX_MMRBC_1024;
1454 1.5.2.2 skrll else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1455 1.5.2.2 skrll (ifp->if_flags & IFF_LINK1) == 0)
1456 1.5.2.2 skrll mmrbc = PCIX_MMRBC_2048;
1457 1.5.2.2 skrll else
1458 1.5.2.2 skrll mmrbc = PCIX_MMRBC_4096;
1459 1.5.2.2 skrll if (mmrbc != sc->sc_mmrbc) {
1460 1.5.2.2 skrll preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1461 1.5.2.2 skrll preg &= ~PCIX_MMRBC_MSK;
1462 1.5.2.2 skrll preg |= mmrbc;
1463 1.5.2.2 skrll pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1464 1.5.2.2 skrll sc->sc_mmrbc = mmrbc;
1465 1.5.2.2 skrll }
1466 1.5.2.2 skrll /* FALLTHROUGH */
1467 1.5.2.2 skrll default:
1468 1.5.2.2 skrll error = ether_ioctl(ifp, cmd, data);
1469 1.5.2.2 skrll if (error == ENETRESET) {
1470 1.5.2.2 skrll /*
1471 1.5.2.2 skrll * Multicast list has changed; set the hardware filter
1472 1.5.2.2 skrll * accordingly.
1473 1.5.2.2 skrll */
1474 1.5.2.2 skrll dge_set_filter(sc);
1475 1.5.2.2 skrll error = 0;
1476 1.5.2.2 skrll }
1477 1.5.2.2 skrll break;
1478 1.5.2.2 skrll }
1479 1.5.2.2 skrll
1480 1.5.2.2 skrll /* Try to get more packets going. */
1481 1.5.2.2 skrll dge_start(ifp);
1482 1.5.2.2 skrll
1483 1.5.2.2 skrll splx(s);
1484 1.5.2.2 skrll return (error);
1485 1.5.2.2 skrll }
1486 1.5.2.2 skrll
1487 1.5.2.2 skrll /*
1488 1.5.2.2 skrll * dge_intr:
1489 1.5.2.2 skrll *
1490 1.5.2.2 skrll * Interrupt service routine.
1491 1.5.2.2 skrll */
1492 1.5.2.2 skrll static int
1493 1.5.2.2 skrll dge_intr(void *arg)
1494 1.5.2.2 skrll {
1495 1.5.2.2 skrll struct dge_softc *sc = arg;
1496 1.5.2.2 skrll struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1497 1.5.2.2 skrll uint32_t icr;
1498 1.5.2.2 skrll int wantinit, handled = 0;
1499 1.5.2.2 skrll
1500 1.5.2.2 skrll for (wantinit = 0; wantinit == 0;) {
1501 1.5.2.2 skrll icr = CSR_READ(sc, DGE_ICR);
1502 1.5.2.2 skrll if ((icr & sc->sc_icr) == 0)
1503 1.5.2.2 skrll break;
1504 1.5.2.2 skrll
1505 1.5.2.2 skrll #if 0 /*NRND > 0*/
1506 1.5.2.2 skrll if (RND_ENABLED(&sc->rnd_source))
1507 1.5.2.2 skrll rnd_add_uint32(&sc->rnd_source, icr);
1508 1.5.2.2 skrll #endif
1509 1.5.2.2 skrll
1510 1.5.2.2 skrll handled = 1;
1511 1.5.2.2 skrll
1512 1.5.2.2 skrll #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1513 1.5.2.2 skrll if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1514 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1515 1.5.2.2 skrll ("%s: RX: got Rx intr 0x%08x\n",
1516 1.5.2.2 skrll sc->sc_dev.dv_xname,
1517 1.5.2.2 skrll icr & (ICR_RXDMT0|ICR_RXT0)));
1518 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1519 1.5.2.2 skrll }
1520 1.5.2.2 skrll #endif
1521 1.5.2.2 skrll dge_rxintr(sc);
1522 1.5.2.2 skrll
1523 1.5.2.2 skrll #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1524 1.5.2.2 skrll if (icr & ICR_TXDW) {
1525 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1526 1.5.2.2 skrll ("%s: TX: got TXDW interrupt\n",
1527 1.5.2.2 skrll sc->sc_dev.dv_xname));
1528 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1529 1.5.2.2 skrll }
1530 1.5.2.2 skrll if (icr & ICR_TXQE)
1531 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1532 1.5.2.2 skrll #endif
1533 1.5.2.2 skrll dge_txintr(sc);
1534 1.5.2.2 skrll
1535 1.5.2.2 skrll if (icr & (ICR_LSC|ICR_RXSEQ)) {
1536 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1537 1.5.2.2 skrll dge_linkintr(sc, icr);
1538 1.5.2.2 skrll }
1539 1.5.2.2 skrll
1540 1.5.2.2 skrll if (icr & ICR_RXO) {
1541 1.5.2.2 skrll printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1542 1.5.2.2 skrll wantinit = 1;
1543 1.5.2.2 skrll }
1544 1.5.2.2 skrll }
1545 1.5.2.2 skrll
1546 1.5.2.2 skrll if (handled) {
1547 1.5.2.2 skrll if (wantinit)
1548 1.5.2.2 skrll dge_init(ifp);
1549 1.5.2.2 skrll
1550 1.5.2.2 skrll /* Try to get more packets going. */
1551 1.5.2.2 skrll dge_start(ifp);
1552 1.5.2.2 skrll }
1553 1.5.2.2 skrll
1554 1.5.2.2 skrll return (handled);
1555 1.5.2.2 skrll }
1556 1.5.2.2 skrll
1557 1.5.2.2 skrll /*
1558 1.5.2.2 skrll * dge_txintr:
1559 1.5.2.2 skrll *
1560 1.5.2.2 skrll * Helper; handle transmit interrupts.
1561 1.5.2.2 skrll */
1562 1.5.2.2 skrll static void
1563 1.5.2.2 skrll dge_txintr(struct dge_softc *sc)
1564 1.5.2.2 skrll {
1565 1.5.2.2 skrll struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1566 1.5.2.2 skrll struct dge_txsoft *txs;
1567 1.5.2.2 skrll uint8_t status;
1568 1.5.2.2 skrll int i;
1569 1.5.2.2 skrll
1570 1.5.2.2 skrll ifp->if_flags &= ~IFF_OACTIVE;
1571 1.5.2.2 skrll
1572 1.5.2.2 skrll /*
1573 1.5.2.2 skrll * Go through the Tx list and free mbufs for those
1574 1.5.2.2 skrll * frames which have been transmitted.
1575 1.5.2.2 skrll */
1576 1.5.2.2 skrll for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1577 1.5.2.2 skrll i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1578 1.5.2.2 skrll txs = &sc->sc_txsoft[i];
1579 1.5.2.2 skrll
1580 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1581 1.5.2.2 skrll ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1582 1.5.2.2 skrll
1583 1.5.2.2 skrll DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1584 1.5.2.2 skrll BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1585 1.5.2.2 skrll
1586 1.5.2.2 skrll status =
1587 1.5.2.2 skrll sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1588 1.5.2.2 skrll if ((status & TDESC_STA_DD) == 0) {
1589 1.5.2.2 skrll DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1590 1.5.2.2 skrll BUS_DMASYNC_PREREAD);
1591 1.5.2.2 skrll break;
1592 1.5.2.2 skrll }
1593 1.5.2.2 skrll
1594 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1595 1.5.2.2 skrll ("%s: TX: job %d done: descs %d..%d\n",
1596 1.5.2.2 skrll sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
1597 1.5.2.2 skrll txs->txs_lastdesc));
1598 1.5.2.2 skrll
1599 1.5.2.2 skrll ifp->if_opackets++;
1600 1.5.2.2 skrll sc->sc_txfree += txs->txs_ndesc;
1601 1.5.2.2 skrll bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1602 1.5.2.2 skrll 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1603 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1604 1.5.2.2 skrll m_freem(txs->txs_mbuf);
1605 1.5.2.2 skrll txs->txs_mbuf = NULL;
1606 1.5.2.2 skrll }
1607 1.5.2.2 skrll
1608 1.5.2.2 skrll /* Update the dirty transmit buffer pointer. */
1609 1.5.2.2 skrll sc->sc_txsdirty = i;
1610 1.5.2.2 skrll DPRINTF(DGE_DEBUG_TX,
1611 1.5.2.2 skrll ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
1612 1.5.2.2 skrll
1613 1.5.2.2 skrll /*
1614 1.5.2.2 skrll * If there are no more pending transmissions, cancel the watchdog
1615 1.5.2.2 skrll * timer.
1616 1.5.2.2 skrll */
1617 1.5.2.2 skrll if (sc->sc_txsfree == DGE_TXQUEUELEN)
1618 1.5.2.2 skrll ifp->if_timer = 0;
1619 1.5.2.2 skrll }
1620 1.5.2.2 skrll
1621 1.5.2.2 skrll /*
1622 1.5.2.2 skrll * dge_rxintr:
1623 1.5.2.2 skrll *
1624 1.5.2.2 skrll * Helper; handle receive interrupts.
1625 1.5.2.2 skrll */
1626 1.5.2.2 skrll static void
1627 1.5.2.2 skrll dge_rxintr(struct dge_softc *sc)
1628 1.5.2.2 skrll {
1629 1.5.2.2 skrll struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1630 1.5.2.2 skrll struct dge_rxsoft *rxs;
1631 1.5.2.2 skrll struct mbuf *m;
1632 1.5.2.2 skrll int i, len;
1633 1.5.2.2 skrll uint8_t status, errors;
1634 1.5.2.2 skrll
1635 1.5.2.2 skrll for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1636 1.5.2.2 skrll rxs = &sc->sc_rxsoft[i];
1637 1.5.2.2 skrll
1638 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1639 1.5.2.2 skrll ("%s: RX: checking descriptor %d\n",
1640 1.5.2.2 skrll sc->sc_dev.dv_xname, i));
1641 1.5.2.2 skrll
1642 1.5.2.2 skrll DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1643 1.5.2.2 skrll
1644 1.5.2.2 skrll status = sc->sc_rxdescs[i].dr_status;
1645 1.5.2.2 skrll errors = sc->sc_rxdescs[i].dr_errors;
1646 1.5.2.2 skrll len = le16toh(sc->sc_rxdescs[i].dr_len);
1647 1.5.2.2 skrll
1648 1.5.2.2 skrll if ((status & RDESC_STS_DD) == 0) {
1649 1.5.2.2 skrll /*
1650 1.5.2.2 skrll * We have processed all of the receive descriptors.
1651 1.5.2.2 skrll */
1652 1.5.2.2 skrll DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1653 1.5.2.2 skrll break;
1654 1.5.2.2 skrll }
1655 1.5.2.2 skrll
1656 1.5.2.2 skrll if (__predict_false(sc->sc_rxdiscard)) {
1657 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1658 1.5.2.2 skrll ("%s: RX: discarding contents of descriptor %d\n",
1659 1.5.2.2 skrll sc->sc_dev.dv_xname, i));
1660 1.5.2.2 skrll DGE_INIT_RXDESC(sc, i);
1661 1.5.2.2 skrll if (status & RDESC_STS_EOP) {
1662 1.5.2.2 skrll /* Reset our state. */
1663 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1664 1.5.2.2 skrll ("%s: RX: resetting rxdiscard -> 0\n",
1665 1.5.2.2 skrll sc->sc_dev.dv_xname));
1666 1.5.2.2 skrll sc->sc_rxdiscard = 0;
1667 1.5.2.2 skrll }
1668 1.5.2.2 skrll continue;
1669 1.5.2.2 skrll }
1670 1.5.2.2 skrll
1671 1.5.2.2 skrll bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1672 1.5.2.2 skrll rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1673 1.5.2.2 skrll
1674 1.5.2.2 skrll m = rxs->rxs_mbuf;
1675 1.5.2.2 skrll
1676 1.5.2.2 skrll /*
1677 1.5.2.2 skrll * Add a new receive buffer to the ring.
1678 1.5.2.2 skrll */
1679 1.5.2.2 skrll if (dge_add_rxbuf(sc, i) != 0) {
1680 1.5.2.2 skrll /*
1681 1.5.2.2 skrll * Failed, throw away what we've done so
1682 1.5.2.2 skrll * far, and discard the rest of the packet.
1683 1.5.2.2 skrll */
1684 1.5.2.2 skrll ifp->if_ierrors++;
1685 1.5.2.2 skrll bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1686 1.5.2.2 skrll rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1687 1.5.2.2 skrll DGE_INIT_RXDESC(sc, i);
1688 1.5.2.2 skrll if ((status & RDESC_STS_EOP) == 0)
1689 1.5.2.2 skrll sc->sc_rxdiscard = 1;
1690 1.5.2.2 skrll if (sc->sc_rxhead != NULL)
1691 1.5.2.2 skrll m_freem(sc->sc_rxhead);
1692 1.5.2.2 skrll DGE_RXCHAIN_RESET(sc);
1693 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1694 1.5.2.2 skrll ("%s: RX: Rx buffer allocation failed, "
1695 1.5.2.2 skrll "dropping packet%s\n", sc->sc_dev.dv_xname,
1696 1.5.2.2 skrll sc->sc_rxdiscard ? " (discard)" : ""));
1697 1.5.2.2 skrll continue;
1698 1.5.2.2 skrll }
1699 1.5.2.2 skrll DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1700 1.5.2.2 skrll
1701 1.5.2.2 skrll DGE_RXCHAIN_LINK(sc, m);
1702 1.5.2.2 skrll
1703 1.5.2.2 skrll m->m_len = len;
1704 1.5.2.2 skrll
1705 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1706 1.5.2.2 skrll ("%s: RX: buffer at %p len %d\n",
1707 1.5.2.2 skrll sc->sc_dev.dv_xname, m->m_data, len));
1708 1.5.2.2 skrll
1709 1.5.2.2 skrll /*
1710 1.5.2.2 skrll * If this is not the end of the packet, keep
1711 1.5.2.2 skrll * looking.
1712 1.5.2.2 skrll */
1713 1.5.2.2 skrll if ((status & RDESC_STS_EOP) == 0) {
1714 1.5.2.2 skrll sc->sc_rxlen += len;
1715 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1716 1.5.2.2 skrll ("%s: RX: not yet EOP, rxlen -> %d\n",
1717 1.5.2.2 skrll sc->sc_dev.dv_xname, sc->sc_rxlen));
1718 1.5.2.2 skrll continue;
1719 1.5.2.2 skrll }
1720 1.5.2.2 skrll
1721 1.5.2.2 skrll /*
1722 1.5.2.2 skrll * Okay, we have the entire packet now...
1723 1.5.2.2 skrll */
1724 1.5.2.2 skrll *sc->sc_rxtailp = NULL;
1725 1.5.2.2 skrll m = sc->sc_rxhead;
1726 1.5.2.2 skrll len += sc->sc_rxlen;
1727 1.5.2.2 skrll
1728 1.5.2.2 skrll DGE_RXCHAIN_RESET(sc);
1729 1.5.2.2 skrll
1730 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1731 1.5.2.2 skrll ("%s: RX: have entire packet, len -> %d\n",
1732 1.5.2.2 skrll sc->sc_dev.dv_xname, len));
1733 1.5.2.2 skrll
1734 1.5.2.2 skrll /*
1735 1.5.2.2 skrll * If an error occurred, update stats and drop the packet.
1736 1.5.2.2 skrll */
1737 1.5.2.2 skrll if (errors &
1738 1.5.2.2 skrll (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1739 1.5.2.2 skrll ifp->if_ierrors++;
1740 1.5.2.2 skrll if (errors & RDESC_ERR_SE)
1741 1.5.2.2 skrll printf("%s: symbol error\n",
1742 1.5.2.2 skrll sc->sc_dev.dv_xname);
1743 1.5.2.2 skrll else if (errors & RDESC_ERR_P)
1744 1.5.2.2 skrll printf("%s: parity error\n",
1745 1.5.2.2 skrll sc->sc_dev.dv_xname);
1746 1.5.2.2 skrll else if (errors & RDESC_ERR_CE)
1747 1.5.2.2 skrll printf("%s: CRC error\n",
1748 1.5.2.2 skrll sc->sc_dev.dv_xname);
1749 1.5.2.2 skrll m_freem(m);
1750 1.5.2.2 skrll continue;
1751 1.5.2.2 skrll }
1752 1.5.2.2 skrll
1753 1.5.2.2 skrll /*
1754 1.5.2.2 skrll * No errors. Receive the packet.
1755 1.5.2.2 skrll */
1756 1.5.2.2 skrll m->m_pkthdr.rcvif = ifp;
1757 1.5.2.2 skrll m->m_pkthdr.len = len;
1758 1.5.2.2 skrll
1759 1.5.2.2 skrll /*
1760 1.5.2.2 skrll * Set up checksum info for this packet.
1761 1.5.2.2 skrll */
1762 1.5.2.2 skrll if (status & RDESC_STS_IPCS) {
1763 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1764 1.5.2.2 skrll m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1765 1.5.2.2 skrll if (errors & RDESC_ERR_IPE)
1766 1.5.2.2 skrll m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1767 1.5.2.2 skrll }
1768 1.5.2.2 skrll if (status & RDESC_STS_TCPCS) {
1769 1.5.2.2 skrll /*
1770 1.5.2.2 skrll * Note: we don't know if this was TCP or UDP,
1771 1.5.2.2 skrll * so we just set both bits, and expect the
1772 1.5.2.2 skrll * upper layers to deal.
1773 1.5.2.2 skrll */
1774 1.5.2.2 skrll DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1775 1.5.2.2 skrll m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1776 1.5.2.2 skrll if (errors & RDESC_ERR_TCPE)
1777 1.5.2.2 skrll m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1778 1.5.2.2 skrll }
1779 1.5.2.2 skrll
1780 1.5.2.2 skrll ifp->if_ipackets++;
1781 1.5.2.2 skrll
1782 1.5.2.2 skrll #if NBPFILTER > 0
1783 1.5.2.2 skrll /* Pass this up to any BPF listeners. */
1784 1.5.2.2 skrll if (ifp->if_bpf)
1785 1.5.2.2 skrll bpf_mtap(ifp->if_bpf, m);
1786 1.5.2.2 skrll #endif /* NBPFILTER > 0 */
1787 1.5.2.2 skrll
1788 1.5.2.2 skrll /* Pass it on. */
1789 1.5.2.2 skrll (*ifp->if_input)(ifp, m);
1790 1.5.2.2 skrll }
1791 1.5.2.2 skrll
1792 1.5.2.2 skrll /* Update the receive pointer. */
1793 1.5.2.2 skrll sc->sc_rxptr = i;
1794 1.5.2.2 skrll
1795 1.5.2.2 skrll DPRINTF(DGE_DEBUG_RX,
1796 1.5.2.2 skrll ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
1797 1.5.2.2 skrll }
1798 1.5.2.2 skrll
1799 1.5.2.2 skrll /*
1800 1.5.2.2 skrll * dge_linkintr:
1801 1.5.2.2 skrll *
1802 1.5.2.2 skrll * Helper; handle link interrupts.
1803 1.5.2.2 skrll */
1804 1.5.2.2 skrll static void
1805 1.5.2.2 skrll dge_linkintr(struct dge_softc *sc, uint32_t icr)
1806 1.5.2.2 skrll {
1807 1.5.2.2 skrll uint32_t status;
1808 1.5.2.2 skrll
1809 1.5.2.2 skrll if (icr & ICR_LSC) {
1810 1.5.2.2 skrll status = CSR_READ(sc, DGE_STATUS);
1811 1.5.2.2 skrll if (status & STATUS_LINKUP) {
1812 1.5.2.2 skrll DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1813 1.5.2.2 skrll sc->sc_dev.dv_xname));
1814 1.5.2.2 skrll } else {
1815 1.5.2.2 skrll DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1816 1.5.2.2 skrll sc->sc_dev.dv_xname));
1817 1.5.2.2 skrll }
1818 1.5.2.2 skrll } else if (icr & ICR_RXSEQ) {
1819 1.5.2.2 skrll DPRINTF(DGE_DEBUG_LINK,
1820 1.5.2.2 skrll ("%s: LINK: Receive sequence error\n",
1821 1.5.2.2 skrll sc->sc_dev.dv_xname));
1822 1.5.2.2 skrll }
1823 1.5.2.2 skrll /* XXX - fix errata */
1824 1.5.2.2 skrll }
1825 1.5.2.2 skrll
1826 1.5.2.2 skrll /*
1827 1.5.2.2 skrll * dge_reset:
1828 1.5.2.2 skrll *
1829 1.5.2.2 skrll * Reset the i82597 chip.
1830 1.5.2.2 skrll */
1831 1.5.2.2 skrll static void
1832 1.5.2.2 skrll dge_reset(struct dge_softc *sc)
1833 1.5.2.2 skrll {
1834 1.5.2.2 skrll int i;
1835 1.5.2.2 skrll
1836 1.5.2.2 skrll /*
1837 1.5.2.2 skrll * Do a chip reset.
1838 1.5.2.2 skrll */
1839 1.5.2.2 skrll CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1840 1.5.2.2 skrll
1841 1.5.2.2 skrll delay(10000);
1842 1.5.2.2 skrll
1843 1.5.2.2 skrll for (i = 0; i < 1000; i++) {
1844 1.5.2.2 skrll if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1845 1.5.2.2 skrll break;
1846 1.5.2.2 skrll delay(20);
1847 1.5.2.2 skrll }
1848 1.5.2.2 skrll
1849 1.5.2.2 skrll if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1850 1.5.2.2 skrll printf("%s: WARNING: reset failed to complete\n",
1851 1.5.2.2 skrll sc->sc_dev.dv_xname);
1852 1.5.2.2 skrll /*
1853 1.5.2.2 skrll * Reset the EEPROM logic.
1854 1.5.2.2 skrll * This will cause the chip to reread its default values,
1855 1.5.2.2 skrll * which doesn't happen otherwise (errata).
1856 1.5.2.2 skrll */
1857 1.5.2.2 skrll CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1858 1.5.2.2 skrll delay(10000);
1859 1.5.2.2 skrll }
1860 1.5.2.2 skrll
1861 1.5.2.2 skrll /*
1862 1.5.2.2 skrll * dge_init: [ifnet interface function]
1863 1.5.2.2 skrll *
1864 1.5.2.2 skrll * Initialize the interface. Must be called at splnet().
1865 1.5.2.2 skrll */
1866 1.5.2.2 skrll static int
1867 1.5.2.2 skrll dge_init(struct ifnet *ifp)
1868 1.5.2.2 skrll {
1869 1.5.2.2 skrll struct dge_softc *sc = ifp->if_softc;
1870 1.5.2.2 skrll struct dge_rxsoft *rxs;
1871 1.5.2.2 skrll int i, error = 0;
1872 1.5.2.2 skrll uint32_t reg;
1873 1.5.2.2 skrll
1874 1.5.2.2 skrll /*
1875 1.5.2.2 skrll * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1876 1.5.2.2 skrll * There is a small but measurable benefit to avoiding the adjusment
1877 1.5.2.2 skrll * of the descriptor so that the headers are aligned, for normal mtu,
1878 1.5.2.2 skrll * on such platforms. One possibility is that the DMA itself is
1879 1.5.2.2 skrll * slightly more efficient if the front of the entire packet (instead
1880 1.5.2.2 skrll * of the front of the headers) is aligned.
1881 1.5.2.2 skrll *
1882 1.5.2.2 skrll * Note we must always set align_tweak to 0 if we are using
1883 1.5.2.2 skrll * jumbo frames.
1884 1.5.2.2 skrll */
1885 1.5.2.2 skrll #ifdef __NO_STRICT_ALIGNMENT
1886 1.5.2.2 skrll sc->sc_align_tweak = 0;
1887 1.5.2.2 skrll #else
1888 1.5.2.2 skrll if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1889 1.5.2.2 skrll sc->sc_align_tweak = 0;
1890 1.5.2.2 skrll else
1891 1.5.2.2 skrll sc->sc_align_tweak = 2;
1892 1.5.2.2 skrll #endif /* __NO_STRICT_ALIGNMENT */
1893 1.5.2.2 skrll
1894 1.5.2.2 skrll /* Cancel any pending I/O. */
1895 1.5.2.2 skrll dge_stop(ifp, 0);
1896 1.5.2.2 skrll
1897 1.5.2.2 skrll /* Reset the chip to a known state. */
1898 1.5.2.2 skrll dge_reset(sc);
1899 1.5.2.2 skrll
1900 1.5.2.2 skrll /* Initialize the transmit descriptor ring. */
1901 1.5.2.2 skrll memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1902 1.5.2.2 skrll DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1903 1.5.2.2 skrll BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1904 1.5.2.2 skrll sc->sc_txfree = DGE_NTXDESC;
1905 1.5.2.2 skrll sc->sc_txnext = 0;
1906 1.5.2.2 skrll
1907 1.5.2.2 skrll sc->sc_txctx_ipcs = 0xffffffff;
1908 1.5.2.2 skrll sc->sc_txctx_tucs = 0xffffffff;
1909 1.5.2.2 skrll
1910 1.5.2.2 skrll CSR_WRITE(sc, DGE_TDBAH, 0);
1911 1.5.2.2 skrll CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1912 1.5.2.2 skrll CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1913 1.5.2.2 skrll CSR_WRITE(sc, DGE_TDH, 0);
1914 1.5.2.2 skrll CSR_WRITE(sc, DGE_TDT, 0);
1915 1.5.2.2 skrll CSR_WRITE(sc, DGE_TIDV, TIDV);
1916 1.5.2.2 skrll
1917 1.5.2.2 skrll #if 0
1918 1.5.2.2 skrll CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1919 1.5.2.2 skrll TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1920 1.5.2.2 skrll #endif
1921 1.5.2.2 skrll CSR_WRITE(sc, DGE_RXDCTL,
1922 1.5.2.2 skrll RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1923 1.5.2.2 skrll RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1924 1.5.2.2 skrll RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1925 1.5.2.2 skrll
1926 1.5.2.2 skrll /* Initialize the transmit job descriptors. */
1927 1.5.2.2 skrll for (i = 0; i < DGE_TXQUEUELEN; i++)
1928 1.5.2.2 skrll sc->sc_txsoft[i].txs_mbuf = NULL;
1929 1.5.2.2 skrll sc->sc_txsfree = DGE_TXQUEUELEN;
1930 1.5.2.2 skrll sc->sc_txsnext = 0;
1931 1.5.2.2 skrll sc->sc_txsdirty = 0;
1932 1.5.2.2 skrll
1933 1.5.2.2 skrll /*
1934 1.5.2.2 skrll * Initialize the receive descriptor and receive job
1935 1.5.2.2 skrll * descriptor rings.
1936 1.5.2.2 skrll */
1937 1.5.2.2 skrll CSR_WRITE(sc, DGE_RDBAH, 0);
1938 1.5.2.2 skrll CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1939 1.5.2.2 skrll CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1940 1.5.2.2 skrll CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1941 1.5.2.2 skrll CSR_WRITE(sc, DGE_RDT, 0);
1942 1.5.2.2 skrll CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1943 1.5.2.2 skrll CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1944 1.5.2.2 skrll CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1945 1.5.2.2 skrll
1946 1.5.2.2 skrll for (i = 0; i < DGE_NRXDESC; i++) {
1947 1.5.2.2 skrll rxs = &sc->sc_rxsoft[i];
1948 1.5.2.2 skrll if (rxs->rxs_mbuf == NULL) {
1949 1.5.2.2 skrll if ((error = dge_add_rxbuf(sc, i)) != 0) {
1950 1.5.2.2 skrll printf("%s: unable to allocate or map rx "
1951 1.5.2.2 skrll "buffer %d, error = %d\n",
1952 1.5.2.2 skrll sc->sc_dev.dv_xname, i, error);
1953 1.5.2.2 skrll /*
1954 1.5.2.2 skrll * XXX Should attempt to run with fewer receive
1955 1.5.2.2 skrll * XXX buffers instead of just failing.
1956 1.5.2.2 skrll */
1957 1.5.2.2 skrll dge_rxdrain(sc);
1958 1.5.2.2 skrll goto out;
1959 1.5.2.2 skrll }
1960 1.5.2.2 skrll }
1961 1.5.2.2 skrll DGE_INIT_RXDESC(sc, i);
1962 1.5.2.2 skrll }
1963 1.5.2.2 skrll sc->sc_rxptr = DGE_RXSPACE;
1964 1.5.2.2 skrll sc->sc_rxdiscard = 0;
1965 1.5.2.2 skrll DGE_RXCHAIN_RESET(sc);
1966 1.5.2.2 skrll
1967 1.5.2.2 skrll if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1968 1.5.2.2 skrll sc->sc_ctrl0 |= CTRL0_JFE;
1969 1.5.2.2 skrll CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1970 1.5.2.2 skrll }
1971 1.5.2.2 skrll
1972 1.5.2.2 skrll /* Write the control registers. */
1973 1.5.2.2 skrll CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1974 1.5.2.2 skrll
1975 1.5.2.2 skrll /*
1976 1.5.2.2 skrll * Set up checksum offload parameters.
1977 1.5.2.2 skrll */
1978 1.5.2.2 skrll reg = CSR_READ(sc, DGE_RXCSUM);
1979 1.5.2.2 skrll if (ifp->if_capenable & IFCAP_CSUM_IPv4)
1980 1.5.2.2 skrll reg |= RXCSUM_IPOFL;
1981 1.5.2.2 skrll else
1982 1.5.2.2 skrll reg &= ~RXCSUM_IPOFL;
1983 1.5.2.2 skrll if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
1984 1.5.2.2 skrll reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1985 1.5.2.2 skrll else {
1986 1.5.2.2 skrll reg &= ~RXCSUM_TUOFL;
1987 1.5.2.2 skrll if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
1988 1.5.2.2 skrll reg &= ~RXCSUM_IPOFL;
1989 1.5.2.2 skrll }
1990 1.5.2.2 skrll CSR_WRITE(sc, DGE_RXCSUM, reg);
1991 1.5.2.2 skrll
1992 1.5.2.2 skrll /*
1993 1.5.2.2 skrll * Set up the interrupt registers.
1994 1.5.2.2 skrll */
1995 1.5.2.2 skrll CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1996 1.5.2.2 skrll sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1997 1.5.2.2 skrll ICR_RXO | ICR_RXT0;
1998 1.5.2.2 skrll
1999 1.5.2.2 skrll CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2000 1.5.2.2 skrll
2001 1.5.2.2 skrll /*
2002 1.5.2.2 skrll * Set up the transmit control register.
2003 1.5.2.2 skrll */
2004 1.5.2.2 skrll sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
2005 1.5.2.2 skrll CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2006 1.5.2.2 skrll
2007 1.5.2.2 skrll /*
2008 1.5.2.2 skrll * Set up the receive control register; we actually program
2009 1.5.2.2 skrll * the register when we set the receive filter. Use multicast
2010 1.5.2.2 skrll * address offset type 0.
2011 1.5.2.2 skrll */
2012 1.5.2.2 skrll sc->sc_mchash_type = 0;
2013 1.5.2.2 skrll
2014 1.5.2.2 skrll sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2015 1.5.2.2 skrll RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2016 1.5.2.2 skrll
2017 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
2018 1.5.2.2 skrll sc->sc_rctl |= RCTL_BSIZE_16k;
2019 1.5.2.2 skrll #else
2020 1.5.2.2 skrll switch(MCLBYTES) {
2021 1.5.2.2 skrll case 2048:
2022 1.5.2.2 skrll sc->sc_rctl |= RCTL_BSIZE_2k;
2023 1.5.2.2 skrll break;
2024 1.5.2.2 skrll case 4096:
2025 1.5.2.2 skrll sc->sc_rctl |= RCTL_BSIZE_4k;
2026 1.5.2.2 skrll break;
2027 1.5.2.2 skrll case 8192:
2028 1.5.2.2 skrll sc->sc_rctl |= RCTL_BSIZE_8k;
2029 1.5.2.2 skrll break;
2030 1.5.2.2 skrll case 16384:
2031 1.5.2.2 skrll sc->sc_rctl |= RCTL_BSIZE_16k;
2032 1.5.2.2 skrll break;
2033 1.5.2.2 skrll default:
2034 1.5.2.2 skrll panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2035 1.5.2.2 skrll }
2036 1.5.2.2 skrll #endif
2037 1.5.2.2 skrll
2038 1.5.2.2 skrll /* Set the receive filter. */
2039 1.5.2.2 skrll /* Also sets RCTL */
2040 1.5.2.2 skrll dge_set_filter(sc);
2041 1.5.2.2 skrll
2042 1.5.2.2 skrll /* ...all done! */
2043 1.5.2.2 skrll ifp->if_flags |= IFF_RUNNING;
2044 1.5.2.2 skrll ifp->if_flags &= ~IFF_OACTIVE;
2045 1.5.2.2 skrll
2046 1.5.2.2 skrll out:
2047 1.5.2.2 skrll if (error)
2048 1.5.2.2 skrll printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2049 1.5.2.2 skrll return (error);
2050 1.5.2.2 skrll }
2051 1.5.2.2 skrll
2052 1.5.2.2 skrll /*
2053 1.5.2.2 skrll * dge_rxdrain:
2054 1.5.2.2 skrll *
2055 1.5.2.2 skrll * Drain the receive queue.
2056 1.5.2.2 skrll */
2057 1.5.2.2 skrll static void
2058 1.5.2.2 skrll dge_rxdrain(struct dge_softc *sc)
2059 1.5.2.2 skrll {
2060 1.5.2.2 skrll struct dge_rxsoft *rxs;
2061 1.5.2.2 skrll int i;
2062 1.5.2.2 skrll
2063 1.5.2.2 skrll for (i = 0; i < DGE_NRXDESC; i++) {
2064 1.5.2.2 skrll rxs = &sc->sc_rxsoft[i];
2065 1.5.2.2 skrll if (rxs->rxs_mbuf != NULL) {
2066 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2067 1.5.2.2 skrll m_freem(rxs->rxs_mbuf);
2068 1.5.2.2 skrll rxs->rxs_mbuf = NULL;
2069 1.5.2.2 skrll }
2070 1.5.2.2 skrll }
2071 1.5.2.2 skrll }
2072 1.5.2.2 skrll
2073 1.5.2.2 skrll /*
2074 1.5.2.2 skrll * dge_stop: [ifnet interface function]
2075 1.5.2.2 skrll *
2076 1.5.2.2 skrll * Stop transmission on the interface.
2077 1.5.2.2 skrll */
2078 1.5.2.2 skrll static void
2079 1.5.2.2 skrll dge_stop(struct ifnet *ifp, int disable)
2080 1.5.2.2 skrll {
2081 1.5.2.2 skrll struct dge_softc *sc = ifp->if_softc;
2082 1.5.2.2 skrll struct dge_txsoft *txs;
2083 1.5.2.2 skrll int i;
2084 1.5.2.2 skrll
2085 1.5.2.2 skrll /* Stop the transmit and receive processes. */
2086 1.5.2.2 skrll CSR_WRITE(sc, DGE_TCTL, 0);
2087 1.5.2.2 skrll CSR_WRITE(sc, DGE_RCTL, 0);
2088 1.5.2.2 skrll
2089 1.5.2.2 skrll /* Release any queued transmit buffers. */
2090 1.5.2.2 skrll for (i = 0; i < DGE_TXQUEUELEN; i++) {
2091 1.5.2.2 skrll txs = &sc->sc_txsoft[i];
2092 1.5.2.2 skrll if (txs->txs_mbuf != NULL) {
2093 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2094 1.5.2.2 skrll m_freem(txs->txs_mbuf);
2095 1.5.2.2 skrll txs->txs_mbuf = NULL;
2096 1.5.2.2 skrll }
2097 1.5.2.2 skrll }
2098 1.5.2.2 skrll
2099 1.5.2.2 skrll if (disable)
2100 1.5.2.2 skrll dge_rxdrain(sc);
2101 1.5.2.2 skrll
2102 1.5.2.2 skrll /* Mark the interface as down and cancel the watchdog timer. */
2103 1.5.2.2 skrll ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2104 1.5.2.2 skrll ifp->if_timer = 0;
2105 1.5.2.2 skrll }
2106 1.5.2.2 skrll
2107 1.5.2.2 skrll /*
2108 1.5.2.2 skrll * dge_add_rxbuf:
2109 1.5.2.2 skrll *
2110 1.5.2.2 skrll * Add a receive buffer to the indiciated descriptor.
2111 1.5.2.2 skrll */
2112 1.5.2.2 skrll static int
2113 1.5.2.2 skrll dge_add_rxbuf(struct dge_softc *sc, int idx)
2114 1.5.2.2 skrll {
2115 1.5.2.2 skrll struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2116 1.5.2.2 skrll struct mbuf *m;
2117 1.5.2.2 skrll int error;
2118 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
2119 1.5.2.2 skrll caddr_t buf;
2120 1.5.2.2 skrll #endif
2121 1.5.2.2 skrll
2122 1.5.2.2 skrll MGETHDR(m, M_DONTWAIT, MT_DATA);
2123 1.5.2.2 skrll if (m == NULL)
2124 1.5.2.2 skrll return (ENOBUFS);
2125 1.5.2.2 skrll
2126 1.5.2.2 skrll #ifdef DGE_OFFBYONE_RXBUG
2127 1.5.2.2 skrll if ((buf = dge_getbuf(sc)) == NULL)
2128 1.5.2.2 skrll return ENOBUFS;
2129 1.5.2.2 skrll
2130 1.5.2.2 skrll m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2131 1.5.2.2 skrll MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2132 1.5.2.5 skrll m->m_flags |= M_EXT_RW;
2133 1.5.2.2 skrll
2134 1.5.2.2 skrll if (rxs->rxs_mbuf != NULL)
2135 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2136 1.5.2.2 skrll rxs->rxs_mbuf = m;
2137 1.5.2.2 skrll
2138 1.5.2.2 skrll error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2139 1.5.2.2 skrll DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2140 1.5.2.2 skrll #else
2141 1.5.2.2 skrll MCLGET(m, M_DONTWAIT);
2142 1.5.2.2 skrll if ((m->m_flags & M_EXT) == 0) {
2143 1.5.2.2 skrll m_freem(m);
2144 1.5.2.2 skrll return (ENOBUFS);
2145 1.5.2.2 skrll }
2146 1.5.2.2 skrll
2147 1.5.2.2 skrll if (rxs->rxs_mbuf != NULL)
2148 1.5.2.2 skrll bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2149 1.5.2.2 skrll
2150 1.5.2.2 skrll rxs->rxs_mbuf = m;
2151 1.5.2.2 skrll
2152 1.5.2.2 skrll m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2153 1.5.2.2 skrll error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2154 1.5.2.2 skrll BUS_DMA_READ|BUS_DMA_NOWAIT);
2155 1.5.2.2 skrll #endif
2156 1.5.2.2 skrll if (error) {
2157 1.5.2.2 skrll printf("%s: unable to load rx DMA map %d, error = %d\n",
2158 1.5.2.2 skrll sc->sc_dev.dv_xname, idx, error);
2159 1.5.2.2 skrll panic("dge_add_rxbuf"); /* XXX XXX XXX */
2160 1.5.2.2 skrll }
2161 1.5.2.2 skrll bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2162 1.5.2.2 skrll rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2163 1.5.2.2 skrll
2164 1.5.2.2 skrll return (0);
2165 1.5.2.2 skrll }
2166 1.5.2.2 skrll
2167 1.5.2.2 skrll /*
2168 1.5.2.2 skrll * dge_set_ral:
2169 1.5.2.2 skrll *
2170 1.5.2.2 skrll * Set an entry in the receive address list.
2171 1.5.2.2 skrll */
2172 1.5.2.2 skrll static void
2173 1.5.2.2 skrll dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2174 1.5.2.2 skrll {
2175 1.5.2.2 skrll uint32_t ral_lo, ral_hi;
2176 1.5.2.2 skrll
2177 1.5.2.2 skrll if (enaddr != NULL) {
2178 1.5.2.2 skrll ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2179 1.5.2.2 skrll (enaddr[3] << 24);
2180 1.5.2.2 skrll ral_hi = enaddr[4] | (enaddr[5] << 8);
2181 1.5.2.2 skrll ral_hi |= RAH_AV;
2182 1.5.2.2 skrll } else {
2183 1.5.2.2 skrll ral_lo = 0;
2184 1.5.2.2 skrll ral_hi = 0;
2185 1.5.2.2 skrll }
2186 1.5.2.2 skrll CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2187 1.5.2.2 skrll CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2188 1.5.2.2 skrll }
2189 1.5.2.2 skrll
2190 1.5.2.2 skrll /*
2191 1.5.2.2 skrll * dge_mchash:
2192 1.5.2.2 skrll *
2193 1.5.2.2 skrll * Compute the hash of the multicast address for the 4096-bit
2194 1.5.2.2 skrll * multicast filter.
2195 1.5.2.2 skrll */
2196 1.5.2.2 skrll static uint32_t
2197 1.5.2.2 skrll dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2198 1.5.2.2 skrll {
2199 1.5.2.2 skrll static const int lo_shift[4] = { 4, 3, 2, 0 };
2200 1.5.2.2 skrll static const int hi_shift[4] = { 4, 5, 6, 8 };
2201 1.5.2.2 skrll uint32_t hash;
2202 1.5.2.2 skrll
2203 1.5.2.2 skrll hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2204 1.5.2.2 skrll (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2205 1.5.2.2 skrll
2206 1.5.2.2 skrll return (hash & 0xfff);
2207 1.5.2.2 skrll }
2208 1.5.2.2 skrll
2209 1.5.2.2 skrll /*
2210 1.5.2.2 skrll * dge_set_filter:
2211 1.5.2.2 skrll *
2212 1.5.2.2 skrll * Set up the receive filter.
2213 1.5.2.2 skrll */
2214 1.5.2.2 skrll static void
2215 1.5.2.2 skrll dge_set_filter(struct dge_softc *sc)
2216 1.5.2.2 skrll {
2217 1.5.2.2 skrll struct ethercom *ec = &sc->sc_ethercom;
2218 1.5.2.2 skrll struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2219 1.5.2.2 skrll struct ether_multi *enm;
2220 1.5.2.2 skrll struct ether_multistep step;
2221 1.5.2.2 skrll uint32_t hash, reg, bit;
2222 1.5.2.2 skrll int i;
2223 1.5.2.2 skrll
2224 1.5.2.2 skrll sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2225 1.5.2.2 skrll
2226 1.5.2.2 skrll if (ifp->if_flags & IFF_BROADCAST)
2227 1.5.2.2 skrll sc->sc_rctl |= RCTL_BAM;
2228 1.5.2.2 skrll if (ifp->if_flags & IFF_PROMISC) {
2229 1.5.2.2 skrll sc->sc_rctl |= RCTL_UPE;
2230 1.5.2.2 skrll goto allmulti;
2231 1.5.2.2 skrll }
2232 1.5.2.2 skrll
2233 1.5.2.2 skrll /*
2234 1.5.2.2 skrll * Set the station address in the first RAL slot, and
2235 1.5.2.2 skrll * clear the remaining slots.
2236 1.5.2.2 skrll */
2237 1.5.2.2 skrll dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
2238 1.5.2.2 skrll for (i = 1; i < RA_TABSIZE; i++)
2239 1.5.2.2 skrll dge_set_ral(sc, NULL, i);
2240 1.5.2.2 skrll
2241 1.5.2.2 skrll /* Clear out the multicast table. */
2242 1.5.2.2 skrll for (i = 0; i < MC_TABSIZE; i++)
2243 1.5.2.2 skrll CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2244 1.5.2.2 skrll
2245 1.5.2.2 skrll ETHER_FIRST_MULTI(step, ec, enm);
2246 1.5.2.2 skrll while (enm != NULL) {
2247 1.5.2.2 skrll if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2248 1.5.2.2 skrll /*
2249 1.5.2.2 skrll * We must listen to a range of multicast addresses.
2250 1.5.2.2 skrll * For now, just accept all multicasts, rather than
2251 1.5.2.2 skrll * trying to set only those filter bits needed to match
2252 1.5.2.2 skrll * the range. (At this time, the only use of address
2253 1.5.2.2 skrll * ranges is for IP multicast routing, for which the
2254 1.5.2.2 skrll * range is big enough to require all bits set.)
2255 1.5.2.2 skrll */
2256 1.5.2.2 skrll goto allmulti;
2257 1.5.2.2 skrll }
2258 1.5.2.2 skrll
2259 1.5.2.2 skrll hash = dge_mchash(sc, enm->enm_addrlo);
2260 1.5.2.2 skrll
2261 1.5.2.2 skrll reg = (hash >> 5) & 0x7f;
2262 1.5.2.2 skrll bit = hash & 0x1f;
2263 1.5.2.2 skrll
2264 1.5.2.2 skrll hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2265 1.5.2.2 skrll hash |= 1U << bit;
2266 1.5.2.2 skrll
2267 1.5.2.2 skrll CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2268 1.5.2.2 skrll
2269 1.5.2.2 skrll ETHER_NEXT_MULTI(step, enm);
2270 1.5.2.2 skrll }
2271 1.5.2.2 skrll
2272 1.5.2.2 skrll ifp->if_flags &= ~IFF_ALLMULTI;
2273 1.5.2.2 skrll goto setit;
2274 1.5.2.2 skrll
2275 1.5.2.2 skrll allmulti:
2276 1.5.2.2 skrll ifp->if_flags |= IFF_ALLMULTI;
2277 1.5.2.2 skrll sc->sc_rctl |= RCTL_MPE;
2278 1.5.2.2 skrll
2279 1.5.2.2 skrll setit:
2280 1.5.2.2 skrll CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2281 1.5.2.2 skrll }
2282 1.5.2.2 skrll
2283 1.5.2.2 skrll /*
2284 1.5.2.2 skrll * Read in the EEPROM info and verify checksum.
2285 1.5.2.2 skrll */
2286 1.5.2.2 skrll int
2287 1.5.2.2 skrll dge_read_eeprom(struct dge_softc *sc)
2288 1.5.2.2 skrll {
2289 1.5.2.2 skrll uint16_t cksum;
2290 1.5.2.2 skrll int i;
2291 1.5.2.2 skrll
2292 1.5.2.2 skrll cksum = 0;
2293 1.5.2.2 skrll for (i = 0; i < EEPROM_SIZE; i++) {
2294 1.5.2.2 skrll sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2295 1.5.2.2 skrll cksum += sc->sc_eeprom[i];
2296 1.5.2.2 skrll }
2297 1.5.2.2 skrll return cksum != EEPROM_CKSUM;
2298 1.5.2.2 skrll }
2299 1.5.2.2 skrll
2300 1.5.2.2 skrll
2301 1.5.2.2 skrll /*
2302 1.5.2.2 skrll * Read a 16-bit word from address addr in the serial EEPROM.
2303 1.5.2.2 skrll */
2304 1.5.2.2 skrll uint16_t
2305 1.5.2.2 skrll dge_eeprom_word(struct dge_softc *sc, int addr)
2306 1.5.2.2 skrll {
2307 1.5.2.2 skrll uint32_t reg;
2308 1.5.2.2 skrll uint16_t rval = 0;
2309 1.5.2.2 skrll int i;
2310 1.5.2.2 skrll
2311 1.5.2.2 skrll reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2312 1.5.2.2 skrll
2313 1.5.2.2 skrll /* Lower clock pulse (and data in to chip) */
2314 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg);
2315 1.5.2.2 skrll /* Select chip */
2316 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2317 1.5.2.2 skrll
2318 1.5.2.2 skrll /* Send read command */
2319 1.5.2.2 skrll dge_eeprom_clockout(sc, 1);
2320 1.5.2.2 skrll dge_eeprom_clockout(sc, 1);
2321 1.5.2.2 skrll dge_eeprom_clockout(sc, 0);
2322 1.5.2.2 skrll
2323 1.5.2.2 skrll /* Send address */
2324 1.5.2.2 skrll for (i = 5; i >= 0; i--)
2325 1.5.2.2 skrll dge_eeprom_clockout(sc, (addr >> i) & 1);
2326 1.5.2.2 skrll
2327 1.5.2.2 skrll /* Read data */
2328 1.5.2.2 skrll for (i = 0; i < 16; i++) {
2329 1.5.2.2 skrll rval <<= 1;
2330 1.5.2.2 skrll rval |= dge_eeprom_clockin(sc);
2331 1.5.2.2 skrll }
2332 1.5.2.2 skrll
2333 1.5.2.2 skrll /* Deselect chip */
2334 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg);
2335 1.5.2.2 skrll
2336 1.5.2.2 skrll return rval;
2337 1.5.2.2 skrll }
2338 1.5.2.2 skrll
2339 1.5.2.2 skrll /*
2340 1.5.2.2 skrll * Clock out a single bit to the EEPROM.
2341 1.5.2.2 skrll */
2342 1.5.2.2 skrll void
2343 1.5.2.2 skrll dge_eeprom_clockout(struct dge_softc *sc, int bit)
2344 1.5.2.2 skrll {
2345 1.5.2.2 skrll int reg;
2346 1.5.2.2 skrll
2347 1.5.2.2 skrll reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2348 1.5.2.2 skrll if (bit)
2349 1.5.2.2 skrll reg |= EECD_DI;
2350 1.5.2.2 skrll
2351 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg);
2352 1.5.2.2 skrll delay(2);
2353 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2354 1.5.2.2 skrll delay(2);
2355 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg);
2356 1.5.2.2 skrll delay(2);
2357 1.5.2.2 skrll }
2358 1.5.2.2 skrll
2359 1.5.2.2 skrll /*
2360 1.5.2.2 skrll * Clock in a single bit from EEPROM.
2361 1.5.2.2 skrll */
2362 1.5.2.2 skrll int
2363 1.5.2.2 skrll dge_eeprom_clockin(struct dge_softc *sc)
2364 1.5.2.2 skrll {
2365 1.5.2.2 skrll int reg, rv;
2366 1.5.2.2 skrll
2367 1.5.2.2 skrll reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2368 1.5.2.2 skrll
2369 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2370 1.5.2.2 skrll delay(2);
2371 1.5.2.2 skrll rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2372 1.5.2.2 skrll CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2373 1.5.2.2 skrll delay(2);
2374 1.5.2.2 skrll
2375 1.5.2.2 skrll return rv;
2376 1.5.2.2 skrll }
2377 1.5.2.2 skrll
2378 1.5.2.2 skrll static void
2379 1.5.2.2 skrll dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2380 1.5.2.2 skrll {
2381 1.5.2.2 skrll struct dge_softc *sc = ifp->if_softc;
2382 1.5.2.2 skrll
2383 1.5.2.2 skrll ifmr->ifm_status = IFM_AVALID;
2384 1.5.2.2 skrll ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2385 1.5.2.2 skrll
2386 1.5.2.2 skrll if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2387 1.5.2.2 skrll ifmr->ifm_status |= IFM_ACTIVE;
2388 1.5.2.2 skrll }
2389 1.5.2.2 skrll
2390 1.5.2.2 skrll static inline int
2391 1.5.2.2 skrll phwait(struct dge_softc *sc, int p, int r, int d, int type)
2392 1.5.2.2 skrll {
2393 1.5.2.2 skrll int i, mdic;
2394 1.5.2.2 skrll
2395 1.5.2.2 skrll CSR_WRITE(sc, DGE_MDIO,
2396 1.5.2.2 skrll MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2397 1.5.2.2 skrll for (i = 0; i < 10; i++) {
2398 1.5.2.2 skrll delay(10);
2399 1.5.2.2 skrll if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2400 1.5.2.2 skrll break;
2401 1.5.2.2 skrll }
2402 1.5.2.2 skrll return mdic;
2403 1.5.2.2 skrll }
2404 1.5.2.2 skrll
2405 1.5.2.2 skrll
2406 1.5.2.2 skrll static void
2407 1.5.2.2 skrll dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
2408 1.5.2.2 skrll {
2409 1.5.2.2 skrll struct dge_softc *sc = (void *) self;
2410 1.5.2.2 skrll int mdic;
2411 1.5.2.2 skrll
2412 1.5.2.2 skrll CSR_WRITE(sc, DGE_MDIRW, val);
2413 1.5.2.2 skrll if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2414 1.5.2.2 skrll printf("%s: address cycle timeout; phy %d reg %d\n",
2415 1.5.2.2 skrll sc->sc_dev.dv_xname, phy, reg);
2416 1.5.2.2 skrll return;
2417 1.5.2.2 skrll }
2418 1.5.2.2 skrll if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2419 1.5.2.2 skrll printf("%s: read cycle timeout; phy %d reg %d\n",
2420 1.5.2.2 skrll sc->sc_dev.dv_xname, phy, reg);
2421 1.5.2.2 skrll return;
2422 1.5.2.2 skrll }
2423 1.5.2.2 skrll }
2424 1.5.2.2 skrll
2425 1.5.2.2 skrll static void
2426 1.5.2.2 skrll dge_xgmii_reset(struct dge_softc *sc)
2427 1.5.2.2 skrll {
2428 1.5.2.2 skrll dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2429 1.5.2.2 skrll }
2430 1.5.2.2 skrll
2431 1.5.2.2 skrll static int
2432 1.5.2.2 skrll dge_xgmii_mediachange(struct ifnet *ifp)
2433 1.5.2.2 skrll {
2434 1.5.2.2 skrll return 0;
2435 1.5.2.2 skrll }
2436