if_dge.c revision 1.57 1 1.57 thorpej /* $NetBSD: if_dge.c,v 1.57 2020/01/30 05:24:53 thorpej Exp $ */
2 1.1 ragge
3 1.1 ragge /*
4 1.1 ragge * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 1.1 ragge * All rights reserved.
6 1.1 ragge *
7 1.1 ragge * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 1.1 ragge *
9 1.1 ragge * Redistribution and use in source and binary forms, with or without
10 1.1 ragge * modification, are permitted provided that the following conditions
11 1.1 ragge * are met:
12 1.1 ragge * 1. Redistributions of source code must retain the above copyright
13 1.1 ragge * notice, this list of conditions and the following disclaimer.
14 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 ragge * notice, this list of conditions and the following disclaimer in the
16 1.1 ragge * documentation and/or other materials provided with the distribution.
17 1.1 ragge * 3. All advertising materials mentioning features or use of this software
18 1.1 ragge * must display the following acknowledgement:
19 1.1 ragge * This product includes software developed for the NetBSD Project by
20 1.1 ragge * SUNET, Swedish University Computer Network.
21 1.1 ragge * 4. The name of SUNET may not be used to endorse or promote products
22 1.1 ragge * derived from this software without specific prior written permission.
23 1.1 ragge *
24 1.1 ragge * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 ragge * POSSIBILITY OF SUCH DAMAGE.
35 1.1 ragge */
36 1.1 ragge
37 1.1 ragge /*
38 1.1 ragge * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 1.1 ragge * All rights reserved.
40 1.1 ragge *
41 1.1 ragge * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 1.1 ragge *
43 1.1 ragge * Redistribution and use in source and binary forms, with or without
44 1.1 ragge * modification, are permitted provided that the following conditions
45 1.1 ragge * are met:
46 1.1 ragge * 1. Redistributions of source code must retain the above copyright
47 1.1 ragge * notice, this list of conditions and the following disclaimer.
48 1.1 ragge * 2. Redistributions in binary form must reproduce the above copyright
49 1.1 ragge * notice, this list of conditions and the following disclaimer in the
50 1.1 ragge * documentation and/or other materials provided with the distribution.
51 1.1 ragge * 3. All advertising materials mentioning features or use of this software
52 1.1 ragge * must display the following acknowledgement:
53 1.1 ragge * This product includes software developed for the NetBSD Project by
54 1.1 ragge * Wasabi Systems, Inc.
55 1.1 ragge * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 1.1 ragge * or promote products derived from this software without specific prior
57 1.1 ragge * written permission.
58 1.1 ragge *
59 1.1 ragge * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 1.1 ragge * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 1.1 ragge * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 1.1 ragge * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 1.1 ragge * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 1.1 ragge * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 1.1 ragge * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 1.1 ragge * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 1.1 ragge * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 1.1 ragge * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 1.1 ragge * POSSIBILITY OF SUCH DAMAGE.
70 1.1 ragge */
71 1.1 ragge
72 1.1 ragge /*
73 1.1 ragge * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 1.1 ragge *
75 1.1 ragge * TODO (in no specific order):
76 1.1 ragge * HW VLAN support.
77 1.1 ragge * TSE offloading (needs kernel changes...)
78 1.1 ragge * RAIDC (receive interrupt delay adaptation)
79 1.1 ragge * Use memory > 4GB.
80 1.1 ragge */
81 1.1 ragge
82 1.1 ragge #include <sys/cdefs.h>
83 1.57 thorpej __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.57 2020/01/30 05:24:53 thorpej Exp $");
84 1.34 tls
85 1.1 ragge
86 1.1 ragge
87 1.1 ragge #include <sys/param.h>
88 1.1 ragge #include <sys/systm.h>
89 1.10 perry #include <sys/callout.h>
90 1.1 ragge #include <sys/mbuf.h>
91 1.1 ragge #include <sys/malloc.h>
92 1.1 ragge #include <sys/kernel.h>
93 1.1 ragge #include <sys/socket.h>
94 1.1 ragge #include <sys/ioctl.h>
95 1.1 ragge #include <sys/errno.h>
96 1.1 ragge #include <sys/device.h>
97 1.1 ragge #include <sys/queue.h>
98 1.40 riastrad #include <sys/rndsource.h>
99 1.1 ragge
100 1.1 ragge #include <net/if.h>
101 1.10 perry #include <net/if_dl.h>
102 1.1 ragge #include <net/if_media.h>
103 1.1 ragge #include <net/if_ether.h>
104 1.1 ragge #include <net/bpf.h>
105 1.1 ragge
106 1.1 ragge #include <netinet/in.h> /* XXX for struct ip */
107 1.1 ragge #include <netinet/in_systm.h> /* XXX for struct ip */
108 1.1 ragge #include <netinet/ip.h> /* XXX for struct ip */
109 1.1 ragge #include <netinet/tcp.h> /* XXX for struct tcphdr */
110 1.1 ragge
111 1.17 ad #include <sys/bus.h>
112 1.17 ad #include <sys/intr.h>
113 1.1 ragge #include <machine/endian.h>
114 1.1 ragge
115 1.1 ragge #include <dev/mii/mii.h>
116 1.1 ragge #include <dev/mii/miivar.h>
117 1.1 ragge #include <dev/mii/mii_bitbang.h>
118 1.1 ragge
119 1.1 ragge #include <dev/pci/pcireg.h>
120 1.1 ragge #include <dev/pci/pcivar.h>
121 1.1 ragge #include <dev/pci/pcidevs.h>
122 1.1 ragge
123 1.1 ragge #include <dev/pci/if_dgereg.h>
124 1.1 ragge
125 1.3 ragge /*
126 1.3 ragge * The receive engine may sometimes become off-by-one when writing back
127 1.3 ragge * chained descriptors. Avoid this by allocating a large chunk of
128 1.3 ragge * memory and use if instead (to avoid chained descriptors).
129 1.3 ragge * This only happens with chained descriptors under heavy load.
130 1.3 ragge */
131 1.3 ragge #define DGE_OFFBYONE_RXBUG
132 1.3 ragge
133 1.1 ragge #define DGE_EVENT_COUNTERS
134 1.1 ragge #define DGE_DEBUG
135 1.1 ragge
136 1.1 ragge #ifdef DGE_DEBUG
137 1.3 ragge #define DGE_DEBUG_LINK 0x01
138 1.3 ragge #define DGE_DEBUG_TX 0x02
139 1.3 ragge #define DGE_DEBUG_RX 0x04
140 1.3 ragge #define DGE_DEBUG_CKSUM 0x08
141 1.1 ragge int dge_debug = 0;
142 1.1 ragge
143 1.3 ragge #define DPRINTF(x, y) if (dge_debug & (x)) printf y
144 1.1 ragge #else
145 1.3 ragge #define DPRINTF(x, y) /* nothing */
146 1.1 ragge #endif /* DGE_DEBUG */
147 1.1 ragge
148 1.1 ragge /*
149 1.1 ragge * Transmit descriptor list size. We allow up to 100 DMA segments per
150 1.1 ragge * packet (Intel reports of jumbo frame packets with as
151 1.1 ragge * many as 80 DMA segments when using 16k buffers).
152 1.1 ragge */
153 1.3 ragge #define DGE_NTXSEGS 100
154 1.3 ragge #define DGE_IFQUEUELEN 20000
155 1.3 ragge #define DGE_TXQUEUELEN 2048
156 1.3 ragge #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
157 1.3 ragge #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
158 1.3 ragge #define DGE_NTXDESC 1024
159 1.3 ragge #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
160 1.3 ragge #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
161 1.3 ragge #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
162 1.1 ragge
163 1.1 ragge /*
164 1.1 ragge * Receive descriptor list size.
165 1.1 ragge * Packet is of size MCLBYTES, and for jumbo packets buffers may
166 1.3 ragge * be chained. Due to the nature of the card (high-speed), keep this
167 1.1 ragge * ring large. With 2k buffers the ring can store 400 jumbo packets,
168 1.1 ragge * which at full speed will be received in just under 3ms.
169 1.1 ragge */
170 1.3 ragge #define DGE_NRXDESC 2048
171 1.3 ragge #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
172 1.3 ragge #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
173 1.1 ragge /*
174 1.1 ragge * # of descriptors between head and written descriptors.
175 1.1 ragge * This is to work-around two erratas.
176 1.1 ragge */
177 1.1 ragge #define DGE_RXSPACE 10
178 1.3 ragge #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
179 1.1 ragge /*
180 1.1 ragge * Receive descriptor fetch threshholds. These are values recommended
181 1.1 ragge * by Intel, do not touch them unless you know what you are doing.
182 1.1 ragge */
183 1.3 ragge #define RXDCTL_PTHRESH_VAL 128
184 1.3 ragge #define RXDCTL_HTHRESH_VAL 16
185 1.3 ragge #define RXDCTL_WTHRESH_VAL 16
186 1.1 ragge
187 1.1 ragge
188 1.1 ragge /*
189 1.1 ragge * Tweakable parameters; default values.
190 1.1 ragge */
191 1.3 ragge #define FCRTH 0x30000 /* Send XOFF water mark */
192 1.3 ragge #define FCRTL 0x28000 /* Send XON water mark */
193 1.3 ragge #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
194 1.3 ragge #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
195 1.1 ragge
196 1.1 ragge /*
197 1.1 ragge * Control structures are DMA'd to the i82597 chip. We allocate them in
198 1.1 ragge * a single clump that maps to a single DMA segment to make serveral things
199 1.1 ragge * easier.
200 1.1 ragge */
201 1.1 ragge struct dge_control_data {
202 1.1 ragge /*
203 1.1 ragge * The transmit descriptors.
204 1.1 ragge */
205 1.1 ragge struct dge_tdes wcd_txdescs[DGE_NTXDESC];
206 1.1 ragge
207 1.1 ragge /*
208 1.1 ragge * The receive descriptors.
209 1.1 ragge */
210 1.1 ragge struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
211 1.1 ragge };
212 1.1 ragge
213 1.3 ragge #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
214 1.3 ragge #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
215 1.3 ragge #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
216 1.1 ragge
217 1.1 ragge /*
218 1.2 ragge * The DGE interface have a higher max MTU size than normal jumbo frames.
219 1.2 ragge */
220 1.3 ragge #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
221 1.2 ragge
222 1.2 ragge /*
223 1.1 ragge * Software state for transmit jobs.
224 1.1 ragge */
225 1.1 ragge struct dge_txsoft {
226 1.1 ragge struct mbuf *txs_mbuf; /* head of our mbuf chain */
227 1.1 ragge bus_dmamap_t txs_dmamap; /* our DMA map */
228 1.1 ragge int txs_firstdesc; /* first descriptor in packet */
229 1.1 ragge int txs_lastdesc; /* last descriptor in packet */
230 1.1 ragge int txs_ndesc; /* # of descriptors used */
231 1.1 ragge };
232 1.1 ragge
233 1.1 ragge /*
234 1.3 ragge * Software state for receive buffers. Each descriptor gets a
235 1.3 ragge * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
236 1.1 ragge * more than one buffer, we chain them together.
237 1.1 ragge */
238 1.1 ragge struct dge_rxsoft {
239 1.1 ragge struct mbuf *rxs_mbuf; /* head of our mbuf chain */
240 1.1 ragge bus_dmamap_t rxs_dmamap; /* our DMA map */
241 1.1 ragge };
242 1.1 ragge
243 1.1 ragge /*
244 1.1 ragge * Software state per device.
245 1.1 ragge */
246 1.1 ragge struct dge_softc {
247 1.35 chs device_t sc_dev; /* generic device information */
248 1.1 ragge bus_space_tag_t sc_st; /* bus space tag */
249 1.1 ragge bus_space_handle_t sc_sh; /* bus space handle */
250 1.1 ragge bus_dma_tag_t sc_dmat; /* bus DMA tag */
251 1.1 ragge struct ethercom sc_ethercom; /* ethernet common data */
252 1.1 ragge
253 1.1 ragge int sc_flags; /* flags; see below */
254 1.1 ragge int sc_bus_speed; /* PCI/PCIX bus speed */
255 1.1 ragge int sc_pcix_offset; /* PCIX capability register offset */
256 1.1 ragge
257 1.42 pgoyette const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
258 1.1 ragge pci_chipset_tag_t sc_pc;
259 1.1 ragge pcitag_t sc_pt;
260 1.1 ragge int sc_mmrbc; /* Max PCIX memory read byte count */
261 1.1 ragge
262 1.1 ragge void *sc_ih; /* interrupt cookie */
263 1.1 ragge
264 1.1 ragge struct ifmedia sc_media;
265 1.1 ragge
266 1.1 ragge bus_dmamap_t sc_cddmamap; /* control data DMA map */
267 1.3 ragge #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
268 1.1 ragge
269 1.1 ragge int sc_align_tweak;
270 1.1 ragge
271 1.1 ragge /*
272 1.1 ragge * Software state for the transmit and receive descriptors.
273 1.1 ragge */
274 1.1 ragge struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
275 1.1 ragge struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
276 1.1 ragge
277 1.1 ragge /*
278 1.1 ragge * Control data structures.
279 1.1 ragge */
280 1.1 ragge struct dge_control_data *sc_control_data;
281 1.3 ragge #define sc_txdescs sc_control_data->wcd_txdescs
282 1.3 ragge #define sc_rxdescs sc_control_data->wcd_rxdescs
283 1.1 ragge
284 1.1 ragge #ifdef DGE_EVENT_COUNTERS
285 1.1 ragge /* Event counters. */
286 1.1 ragge struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
287 1.1 ragge struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
288 1.3 ragge struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
289 1.1 ragge struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
290 1.1 ragge struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
291 1.1 ragge struct evcnt sc_ev_rxintr; /* Rx interrupts */
292 1.1 ragge struct evcnt sc_ev_linkintr; /* Link interrupts */
293 1.1 ragge
294 1.1 ragge struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
295 1.1 ragge struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
296 1.1 ragge struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
297 1.1 ragge struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
298 1.1 ragge
299 1.1 ragge struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
300 1.1 ragge struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
301 1.1 ragge struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
302 1.1 ragge
303 1.1 ragge struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
304 1.1 ragge struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
305 1.1 ragge #endif /* DGE_EVENT_COUNTERS */
306 1.1 ragge
307 1.1 ragge int sc_txfree; /* number of free Tx descriptors */
308 1.1 ragge int sc_txnext; /* next ready Tx descriptor */
309 1.1 ragge
310 1.1 ragge int sc_txsfree; /* number of free Tx jobs */
311 1.1 ragge int sc_txsnext; /* next free Tx job */
312 1.1 ragge int sc_txsdirty; /* dirty Tx jobs */
313 1.1 ragge
314 1.1 ragge uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
315 1.1 ragge uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
316 1.1 ragge
317 1.1 ragge int sc_rxptr; /* next ready Rx descriptor/queue ent */
318 1.1 ragge int sc_rxdiscard;
319 1.1 ragge int sc_rxlen;
320 1.1 ragge struct mbuf *sc_rxhead;
321 1.1 ragge struct mbuf *sc_rxtail;
322 1.1 ragge struct mbuf **sc_rxtailp;
323 1.1 ragge
324 1.1 ragge uint32_t sc_ctrl0; /* prototype CTRL0 register */
325 1.1 ragge uint32_t sc_icr; /* prototype interrupt bits */
326 1.1 ragge uint32_t sc_tctl; /* prototype TCTL register */
327 1.1 ragge uint32_t sc_rctl; /* prototype RCTL register */
328 1.1 ragge
329 1.1 ragge int sc_mchash_type; /* multicast filter offset */
330 1.1 ragge
331 1.1 ragge uint16_t sc_eeprom[EEPROM_SIZE];
332 1.1 ragge
333 1.32 tls krndsource_t rnd_source; /* random source */
334 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG
335 1.15 christos void *sc_bugbuf;
336 1.3 ragge SLIST_HEAD(, rxbugentry) sc_buglist;
337 1.3 ragge bus_dmamap_t sc_bugmap;
338 1.3 ragge struct rxbugentry *sc_entry;
339 1.1 ragge #endif
340 1.1 ragge };
341 1.1 ragge
342 1.3 ragge #define DGE_RXCHAIN_RESET(sc) \
343 1.1 ragge do { \
344 1.1 ragge (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
345 1.1 ragge *(sc)->sc_rxtailp = NULL; \
346 1.1 ragge (sc)->sc_rxlen = 0; \
347 1.1 ragge } while (/*CONSTCOND*/0)
348 1.1 ragge
349 1.3 ragge #define DGE_RXCHAIN_LINK(sc, m) \
350 1.1 ragge do { \
351 1.1 ragge *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
352 1.1 ragge (sc)->sc_rxtailp = &(m)->m_next; \
353 1.1 ragge } while (/*CONSTCOND*/0)
354 1.1 ragge
355 1.1 ragge /* sc_flags */
356 1.3 ragge #define DGE_F_BUS64 0x20 /* bus is 64-bit */
357 1.3 ragge #define DGE_F_PCIX 0x40 /* bus is PCI-X */
358 1.1 ragge
359 1.1 ragge #ifdef DGE_EVENT_COUNTERS
360 1.3 ragge #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
361 1.1 ragge #else
362 1.3 ragge #define DGE_EVCNT_INCR(ev) /* nothing */
363 1.1 ragge #endif
364 1.1 ragge
365 1.3 ragge #define CSR_READ(sc, reg) \
366 1.1 ragge bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
367 1.3 ragge #define CSR_WRITE(sc, reg, val) \
368 1.1 ragge bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
369 1.1 ragge
370 1.3 ragge #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
371 1.3 ragge #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
372 1.1 ragge
373 1.3 ragge #define DGE_CDTXSYNC(sc, x, n, ops) \
374 1.1 ragge do { \
375 1.1 ragge int __x, __n; \
376 1.1 ragge \
377 1.1 ragge __x = (x); \
378 1.1 ragge __n = (n); \
379 1.1 ragge \
380 1.1 ragge /* If it will wrap around, sync to the end of the ring. */ \
381 1.5 thorpej if ((__x + __n) > DGE_NTXDESC) { \
382 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
383 1.1 ragge DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
384 1.5 thorpej (DGE_NTXDESC - __x), (ops)); \
385 1.1 ragge __n -= (DGE_NTXDESC - __x); \
386 1.1 ragge __x = 0; \
387 1.1 ragge } \
388 1.1 ragge \
389 1.1 ragge /* Now sync whatever is left. */ \
390 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
391 1.1 ragge DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
392 1.1 ragge } while (/*CONSTCOND*/0)
393 1.1 ragge
394 1.3 ragge #define DGE_CDRXSYNC(sc, x, ops) \
395 1.1 ragge do { \
396 1.1 ragge bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
397 1.1 ragge DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
398 1.1 ragge } while (/*CONSTCOND*/0)
399 1.1 ragge
400 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG
401 1.3 ragge #define DGE_INIT_RXDESC(sc, x) \
402 1.3 ragge do { \
403 1.3 ragge struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
404 1.3 ragge struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
405 1.3 ragge struct mbuf *__m = __rxs->rxs_mbuf; \
406 1.3 ragge \
407 1.3 ragge __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
408 1.3 ragge (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
409 1.3 ragge __rxd->dr_baddrh = 0; \
410 1.3 ragge __rxd->dr_len = 0; \
411 1.3 ragge __rxd->dr_cksum = 0; \
412 1.3 ragge __rxd->dr_status = 0; \
413 1.3 ragge __rxd->dr_errors = 0; \
414 1.3 ragge __rxd->dr_special = 0; \
415 1.53 msaitoh DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
416 1.3 ragge \
417 1.3 ragge CSR_WRITE((sc), DGE_RDT, (x)); \
418 1.3 ragge } while (/*CONSTCOND*/0)
419 1.3 ragge #else
420 1.3 ragge #define DGE_INIT_RXDESC(sc, x) \
421 1.1 ragge do { \
422 1.1 ragge struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
423 1.1 ragge struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
424 1.1 ragge struct mbuf *__m = __rxs->rxs_mbuf; \
425 1.1 ragge \
426 1.1 ragge /* \
427 1.1 ragge * Note: We scoot the packet forward 2 bytes in the buffer \
428 1.1 ragge * so that the payload after the Ethernet header is aligned \
429 1.1 ragge * to a 4-byte boundary. \
430 1.1 ragge * \
431 1.1 ragge * XXX BRAINDAMAGE ALERT! \
432 1.1 ragge * The stupid chip uses the same size for every buffer, which \
433 1.3 ragge * is set in the Receive Control register. We are using the 2K \
434 1.1 ragge * size option, but what we REALLY want is (2K - 2)! For this \
435 1.1 ragge * reason, we can't "scoot" packets longer than the standard \
436 1.1 ragge * Ethernet MTU. On strict-alignment platforms, if the total \
437 1.1 ragge * size exceeds (2K - 2) we set align_tweak to 0 and let \
438 1.1 ragge * the upper layer copy the headers. \
439 1.1 ragge */ \
440 1.1 ragge __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
441 1.1 ragge \
442 1.5 thorpej __rxd->dr_baddrl = \
443 1.3 ragge htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
444 1.1 ragge (sc)->sc_align_tweak); \
445 1.5 thorpej __rxd->dr_baddrh = 0; \
446 1.1 ragge __rxd->dr_len = 0; \
447 1.1 ragge __rxd->dr_cksum = 0; \
448 1.1 ragge __rxd->dr_status = 0; \
449 1.1 ragge __rxd->dr_errors = 0; \
450 1.1 ragge __rxd->dr_special = 0; \
451 1.53 msaitoh DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
452 1.1 ragge \
453 1.1 ragge CSR_WRITE((sc), DGE_RDT, (x)); \
454 1.1 ragge } while (/*CONSTCOND*/0)
455 1.3 ragge #endif
456 1.3 ragge
457 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG
458 1.3 ragge /*
459 1.3 ragge * Allocation constants. Much memory may be used for this.
460 1.3 ragge */
461 1.3 ragge #ifndef DGE_BUFFER_SIZE
462 1.3 ragge #define DGE_BUFFER_SIZE DGE_MAX_MTU
463 1.3 ragge #endif
464 1.3 ragge #define DGE_NBUFFERS (4*DGE_NRXDESC)
465 1.3 ragge #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
466 1.3 ragge
467 1.3 ragge struct rxbugentry {
468 1.3 ragge SLIST_ENTRY(rxbugentry) rb_entry;
469 1.3 ragge int rb_slot;
470 1.3 ragge };
471 1.3 ragge
472 1.3 ragge static int
473 1.3 ragge dge_alloc_rcvmem(struct dge_softc *sc)
474 1.3 ragge {
475 1.36 christos char *kva;
476 1.3 ragge bus_dma_segment_t seg;
477 1.3 ragge int i, rseg, state, error;
478 1.3 ragge struct rxbugentry *entry;
479 1.3 ragge
480 1.3 ragge state = error = 0;
481 1.3 ragge
482 1.3 ragge if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
483 1.3 ragge &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
484 1.35 chs aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
485 1.3 ragge return ENOBUFS;
486 1.3 ragge }
487 1.3 ragge
488 1.3 ragge state = 1;
489 1.15 christos if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
490 1.3 ragge BUS_DMA_NOWAIT)) {
491 1.52 msaitoh aprint_error_dev(sc->sc_dev,
492 1.52 msaitoh "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
493 1.3 ragge error = ENOBUFS;
494 1.3 ragge goto out;
495 1.3 ragge }
496 1.3 ragge
497 1.3 ragge state = 2;
498 1.3 ragge if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
499 1.3 ragge BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
500 1.35 chs aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
501 1.3 ragge error = ENOBUFS;
502 1.3 ragge goto out;
503 1.3 ragge }
504 1.3 ragge
505 1.3 ragge state = 3;
506 1.3 ragge if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
507 1.3 ragge kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
508 1.35 chs aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
509 1.3 ragge error = ENOBUFS;
510 1.3 ragge goto out;
511 1.3 ragge }
512 1.3 ragge
513 1.3 ragge state = 4;
514 1.15 christos sc->sc_bugbuf = (void *)kva;
515 1.3 ragge SLIST_INIT(&sc->sc_buglist);
516 1.3 ragge
517 1.3 ragge /*
518 1.3 ragge * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
519 1.3 ragge * in an array.
520 1.3 ragge */
521 1.56 chs entry = malloc(sizeof(*entry) * DGE_NBUFFERS, M_DEVBUF, M_WAITOK);
522 1.3 ragge sc->sc_entry = entry;
523 1.3 ragge for (i = 0; i < DGE_NBUFFERS; i++) {
524 1.3 ragge entry[i].rb_slot = i;
525 1.3 ragge SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
526 1.3 ragge }
527 1.3 ragge out:
528 1.3 ragge if (error != 0) {
529 1.3 ragge switch (state) {
530 1.3 ragge case 4:
531 1.3 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
532 1.51 mrg /* FALLTHROUGH */
533 1.3 ragge case 3:
534 1.3 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
535 1.51 mrg /* FALLTHROUGH */
536 1.3 ragge case 2:
537 1.3 ragge bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
538 1.51 mrg /* FALLTHROUGH */
539 1.3 ragge case 1:
540 1.3 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
541 1.3 ragge break;
542 1.3 ragge default:
543 1.3 ragge break;
544 1.3 ragge }
545 1.3 ragge }
546 1.3 ragge
547 1.3 ragge return error;
548 1.3 ragge }
549 1.3 ragge
550 1.3 ragge /*
551 1.3 ragge * Allocate a jumbo buffer.
552 1.3 ragge */
553 1.3 ragge static void *
554 1.3 ragge dge_getbuf(struct dge_softc *sc)
555 1.3 ragge {
556 1.3 ragge struct rxbugentry *entry;
557 1.3 ragge
558 1.3 ragge entry = SLIST_FIRST(&sc->sc_buglist);
559 1.3 ragge
560 1.3 ragge if (entry == NULL) {
561 1.35 chs printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
562 1.52 msaitoh return NULL;
563 1.3 ragge }
564 1.3 ragge
565 1.3 ragge SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
566 1.15 christos return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
567 1.3 ragge }
568 1.3 ragge
569 1.3 ragge /*
570 1.3 ragge * Release a jumbo buffer.
571 1.3 ragge */
572 1.3 ragge static void
573 1.15 christos dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
574 1.3 ragge {
575 1.3 ragge struct rxbugentry *entry;
576 1.3 ragge struct dge_softc *sc;
577 1.3 ragge int i, s;
578 1.3 ragge
579 1.3 ragge /* Extract the softc struct pointer. */
580 1.3 ragge sc = (struct dge_softc *)arg;
581 1.3 ragge
582 1.3 ragge if (sc == NULL)
583 1.3 ragge panic("dge_freebuf: can't find softc pointer!");
584 1.3 ragge
585 1.3 ragge /* calculate the slot this buffer belongs to */
586 1.3 ragge
587 1.15 christos i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
588 1.3 ragge
589 1.3 ragge if ((i < 0) || (i >= DGE_NBUFFERS))
590 1.3 ragge panic("dge_freebuf: asked to free buffer %d!", i);
591 1.3 ragge
592 1.3 ragge s = splvm();
593 1.3 ragge entry = sc->sc_entry + i;
594 1.3 ragge SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
595 1.3 ragge
596 1.3 ragge if (__predict_true(m != NULL))
597 1.18 ad pool_cache_put(mb_cache, m);
598 1.3 ragge splx(s);
599 1.3 ragge }
600 1.3 ragge #endif
601 1.1 ragge
602 1.1 ragge static void dge_start(struct ifnet *);
603 1.1 ragge static void dge_watchdog(struct ifnet *);
604 1.15 christos static int dge_ioctl(struct ifnet *, u_long, void *);
605 1.1 ragge static int dge_init(struct ifnet *);
606 1.1 ragge static void dge_stop(struct ifnet *, int);
607 1.1 ragge
608 1.27 tsutsui static bool dge_shutdown(device_t, int);
609 1.1 ragge
610 1.1 ragge static void dge_reset(struct dge_softc *);
611 1.1 ragge static void dge_rxdrain(struct dge_softc *);
612 1.1 ragge static int dge_add_rxbuf(struct dge_softc *, int);
613 1.1 ragge
614 1.1 ragge static void dge_set_filter(struct dge_softc *);
615 1.1 ragge
616 1.1 ragge static int dge_intr(void *);
617 1.1 ragge static void dge_txintr(struct dge_softc *);
618 1.1 ragge static void dge_rxintr(struct dge_softc *);
619 1.1 ragge static void dge_linkintr(struct dge_softc *, uint32_t);
620 1.1 ragge
621 1.25 cegger static int dge_match(device_t, cfdata_t, void *);
622 1.25 cegger static void dge_attach(device_t, device_t, void *);
623 1.1 ragge
624 1.1 ragge static int dge_read_eeprom(struct dge_softc *sc);
625 1.1 ragge static int dge_eeprom_clockin(struct dge_softc *sc);
626 1.1 ragge static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
627 1.1 ragge static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
628 1.1 ragge static int dge_xgmii_mediachange(struct ifnet *);
629 1.1 ragge static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
630 1.1 ragge static void dge_xgmii_reset(struct dge_softc *);
631 1.39 chs static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
632 1.1 ragge
633 1.1 ragge
634 1.35 chs CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
635 1.1 ragge dge_match, dge_attach, NULL, NULL);
636 1.1 ragge
637 1.1 ragge #ifdef DGE_EVENT_COUNTERS
638 1.1 ragge #if DGE_NTXSEGS > 100
639 1.1 ragge #error Update dge_txseg_evcnt_names
640 1.1 ragge #endif
641 1.1 ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
642 1.1 ragge #endif /* DGE_EVENT_COUNTERS */
643 1.1 ragge
644 1.42 pgoyette /*
645 1.42 pgoyette * Devices supported by this driver.
646 1.42 pgoyette */
647 1.42 pgoyette static const struct dge_product {
648 1.52 msaitoh pci_vendor_id_t dgep_vendor;
649 1.52 msaitoh pci_product_id_t dgep_product;
650 1.52 msaitoh const char *dgep_name;
651 1.52 msaitoh int dgep_flags;
652 1.52 msaitoh #define DGEP_F_10G_LR 0x01
653 1.52 msaitoh #define DGEP_F_10G_SR 0x02
654 1.42 pgoyette } dge_products[] = {
655 1.52 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
656 1.52 msaitoh "Intel i82597EX 10GbE-LR Ethernet",
657 1.52 msaitoh DGEP_F_10G_LR },
658 1.52 msaitoh
659 1.52 msaitoh { PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
660 1.52 msaitoh "Intel i82597EX 10GbE-SR Ethernet",
661 1.52 msaitoh DGEP_F_10G_SR },
662 1.52 msaitoh
663 1.52 msaitoh { 0, 0,
664 1.52 msaitoh NULL,
665 1.52 msaitoh 0 },
666 1.42 pgoyette };
667 1.42 pgoyette
668 1.42 pgoyette static const struct dge_product *
669 1.42 pgoyette dge_lookup(const struct pci_attach_args *pa)
670 1.42 pgoyette {
671 1.42 pgoyette const struct dge_product *dgep;
672 1.42 pgoyette
673 1.42 pgoyette for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
674 1.42 pgoyette if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
675 1.42 pgoyette PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
676 1.42 pgoyette return dgep;
677 1.42 pgoyette }
678 1.42 pgoyette return NULL;
679 1.42 pgoyette }
680 1.42 pgoyette
681 1.1 ragge static int
682 1.25 cegger dge_match(device_t parent, cfdata_t cf, void *aux)
683 1.1 ragge {
684 1.1 ragge struct pci_attach_args *pa = aux;
685 1.1 ragge
686 1.43 pgoyette if (dge_lookup(pa) != NULL)
687 1.52 msaitoh return 1;
688 1.1 ragge
689 1.52 msaitoh return 0;
690 1.1 ragge }
691 1.1 ragge
692 1.1 ragge static void
693 1.25 cegger dge_attach(device_t parent, device_t self, void *aux)
694 1.1 ragge {
695 1.26 cegger struct dge_softc *sc = device_private(self);
696 1.1 ragge struct pci_attach_args *pa = aux;
697 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
698 1.1 ragge pci_chipset_tag_t pc = pa->pa_pc;
699 1.1 ragge pci_intr_handle_t ih;
700 1.1 ragge const char *intrstr = NULL;
701 1.1 ragge bus_dma_segment_t seg;
702 1.1 ragge int i, rseg, error;
703 1.1 ragge uint8_t enaddr[ETHER_ADDR_LEN];
704 1.1 ragge pcireg_t preg, memtype;
705 1.1 ragge uint32_t reg;
706 1.37 christos char intrbuf[PCI_INTRSTR_LEN];
707 1.42 pgoyette const struct dge_product *dgep;
708 1.42 pgoyette
709 1.42 pgoyette sc->sc_dgep = dgep = dge_lookup(pa);
710 1.42 pgoyette if (dgep == NULL) {
711 1.42 pgoyette printf("\n");
712 1.42 pgoyette panic("dge_attach: impossible");
713 1.42 pgoyette }
714 1.1 ragge
715 1.35 chs sc->sc_dev = self;
716 1.1 ragge sc->sc_dmat = pa->pa_dmat;
717 1.1 ragge sc->sc_pc = pa->pa_pc;
718 1.1 ragge sc->sc_pt = pa->pa_tag;
719 1.1 ragge
720 1.33 drochner pci_aprint_devinfo_fancy(pa, "Ethernet controller",
721 1.42 pgoyette dgep->dgep_name, 1);
722 1.1 ragge
723 1.1 ragge memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
724 1.52 msaitoh if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
725 1.52 msaitoh &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
726 1.52 msaitoh aprint_error_dev(sc->sc_dev,
727 1.45 msaitoh "unable to map device registers\n");
728 1.52 msaitoh return;
729 1.52 msaitoh }
730 1.1 ragge
731 1.1 ragge /* Enable bus mastering */
732 1.1 ragge preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
733 1.1 ragge preg |= PCI_COMMAND_MASTER_ENABLE;
734 1.1 ragge pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
735 1.1 ragge
736 1.1 ragge /*
737 1.1 ragge * Map and establish our interrupt.
738 1.1 ragge */
739 1.1 ragge if (pci_intr_map(pa, &ih)) {
740 1.35 chs aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
741 1.1 ragge return;
742 1.1 ragge }
743 1.37 christos intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
744 1.50 jdolecek sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
745 1.50 jdolecek device_xname(self));
746 1.1 ragge if (sc->sc_ih == NULL) {
747 1.35 chs aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
748 1.1 ragge if (intrstr != NULL)
749 1.28 njoly aprint_error(" at %s", intrstr);
750 1.28 njoly aprint_error("\n");
751 1.1 ragge return;
752 1.1 ragge }
753 1.35 chs aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
754 1.1 ragge
755 1.1 ragge /*
756 1.1 ragge * Determine a few things about the bus we're connected to.
757 1.1 ragge */
758 1.1 ragge reg = CSR_READ(sc, DGE_STATUS);
759 1.1 ragge if (reg & STATUS_BUS64)
760 1.1 ragge sc->sc_flags |= DGE_F_BUS64;
761 1.1 ragge
762 1.1 ragge sc->sc_flags |= DGE_F_PCIX;
763 1.1 ragge if (pci_get_capability(pa->pa_pc, pa->pa_tag,
764 1.1 ragge PCI_CAP_PCIX,
765 1.1 ragge &sc->sc_pcix_offset, NULL) == 0)
766 1.35 chs aprint_error_dev(sc->sc_dev, "unable to find PCIX "
767 1.21 cegger "capability\n");
768 1.1 ragge
769 1.1 ragge if (sc->sc_flags & DGE_F_PCIX) {
770 1.1 ragge switch (reg & STATUS_PCIX_MSK) {
771 1.1 ragge case STATUS_PCIX_66:
772 1.1 ragge sc->sc_bus_speed = 66;
773 1.1 ragge break;
774 1.1 ragge case STATUS_PCIX_100:
775 1.1 ragge sc->sc_bus_speed = 100;
776 1.1 ragge break;
777 1.1 ragge case STATUS_PCIX_133:
778 1.1 ragge sc->sc_bus_speed = 133;
779 1.1 ragge break;
780 1.1 ragge default:
781 1.35 chs aprint_error_dev(sc->sc_dev,
782 1.21 cegger "unknown PCIXSPD %d; assuming 66MHz\n",
783 1.1 ragge reg & STATUS_PCIX_MSK);
784 1.1 ragge sc->sc_bus_speed = 66;
785 1.1 ragge }
786 1.1 ragge } else
787 1.1 ragge sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
788 1.35 chs aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
789 1.1 ragge (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
790 1.1 ragge (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
791 1.1 ragge
792 1.1 ragge /*
793 1.1 ragge * Allocate the control data structures, and create and load the
794 1.1 ragge * DMA map for it.
795 1.1 ragge */
796 1.1 ragge if ((error = bus_dmamem_alloc(sc->sc_dmat,
797 1.1 ragge sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
798 1.1 ragge 0)) != 0) {
799 1.35 chs aprint_error_dev(sc->sc_dev,
800 1.21 cegger "unable to allocate control data, error = %d\n",
801 1.21 cegger error);
802 1.1 ragge goto fail_0;
803 1.1 ragge }
804 1.1 ragge
805 1.1 ragge if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
806 1.15 christos sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
807 1.1 ragge 0)) != 0) {
808 1.52 msaitoh aprint_error_dev(sc->sc_dev,
809 1.52 msaitoh "unable to map control data, error = %d\n", error);
810 1.1 ragge goto fail_1;
811 1.1 ragge }
812 1.1 ragge
813 1.1 ragge if ((error = bus_dmamap_create(sc->sc_dmat,
814 1.1 ragge sizeof(struct dge_control_data), 1,
815 1.1 ragge sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
816 1.52 msaitoh aprint_error_dev(sc->sc_dev, "unable to create control data "
817 1.52 msaitoh "DMA map, error = %d\n", error);
818 1.1 ragge goto fail_2;
819 1.1 ragge }
820 1.1 ragge
821 1.1 ragge if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
822 1.1 ragge sc->sc_control_data, sizeof(struct dge_control_data), NULL,
823 1.1 ragge 0)) != 0) {
824 1.35 chs aprint_error_dev(sc->sc_dev,
825 1.21 cegger "unable to load control data DMA map, error = %d\n",
826 1.21 cegger error);
827 1.1 ragge goto fail_3;
828 1.1 ragge }
829 1.1 ragge
830 1.10 perry #ifdef DGE_OFFBYONE_RXBUG
831 1.3 ragge if (dge_alloc_rcvmem(sc) != 0)
832 1.3 ragge return; /* Already complained */
833 1.3 ragge #endif
834 1.1 ragge /*
835 1.1 ragge * Create the transmit buffer DMA maps.
836 1.1 ragge */
837 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) {
838 1.2 ragge if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
839 1.1 ragge DGE_NTXSEGS, MCLBYTES, 0, 0,
840 1.1 ragge &sc->sc_txsoft[i].txs_dmamap)) != 0) {
841 1.35 chs aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
842 1.21 cegger "error = %d\n", i, error);
843 1.1 ragge goto fail_4;
844 1.1 ragge }
845 1.1 ragge }
846 1.1 ragge
847 1.1 ragge /*
848 1.1 ragge * Create the receive buffer DMA maps.
849 1.1 ragge */
850 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
851 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG
852 1.3 ragge if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
853 1.3 ragge DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
854 1.3 ragge #else
855 1.1 ragge if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
856 1.1 ragge MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
857 1.3 ragge #endif
858 1.52 msaitoh aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
859 1.52 msaitoh "map %d, error = %d\n", i, error);
860 1.1 ragge goto fail_5;
861 1.1 ragge }
862 1.1 ragge sc->sc_rxsoft[i].rxs_mbuf = NULL;
863 1.1 ragge }
864 1.1 ragge
865 1.1 ragge /*
866 1.1 ragge * Set bits in ctrl0 register.
867 1.1 ragge * Should get the software defined pins out of EEPROM?
868 1.1 ragge */
869 1.1 ragge sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
870 1.1 ragge sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
871 1.1 ragge CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
872 1.1 ragge
873 1.1 ragge /*
874 1.1 ragge * Reset the chip to a known state.
875 1.1 ragge */
876 1.1 ragge dge_reset(sc);
877 1.1 ragge
878 1.1 ragge /*
879 1.1 ragge * Reset the PHY.
880 1.1 ragge */
881 1.1 ragge dge_xgmii_reset(sc);
882 1.1 ragge
883 1.1 ragge /*
884 1.1 ragge * Read in EEPROM data.
885 1.1 ragge */
886 1.1 ragge if (dge_read_eeprom(sc)) {
887 1.35 chs aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
888 1.1 ragge return;
889 1.1 ragge }
890 1.1 ragge
891 1.1 ragge /*
892 1.1 ragge * Get the ethernet address.
893 1.1 ragge */
894 1.1 ragge enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
895 1.1 ragge enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
896 1.1 ragge enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
897 1.1 ragge enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
898 1.1 ragge enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
899 1.1 ragge enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
900 1.1 ragge
901 1.35 chs aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
902 1.1 ragge ether_sprintf(enaddr));
903 1.1 ragge
904 1.1 ragge /*
905 1.1 ragge * Setup media stuff.
906 1.1 ragge */
907 1.55 msaitoh sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
908 1.52 msaitoh ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
909 1.52 msaitoh dge_xgmii_mediastatus);
910 1.42 pgoyette if (dgep->dgep_flags & DGEP_F_10G_SR) {
911 1.53 msaitoh ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
912 1.53 msaitoh ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
913 1.42 pgoyette } else { /* XXX default is LR */
914 1.53 msaitoh ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
915 1.53 msaitoh ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
916 1.42 pgoyette }
917 1.1 ragge
918 1.1 ragge ifp = &sc->sc_ethercom.ec_if;
919 1.35 chs strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
920 1.1 ragge ifp->if_softc = sc;
921 1.1 ragge ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
922 1.1 ragge ifp->if_ioctl = dge_ioctl;
923 1.1 ragge ifp->if_start = dge_start;
924 1.1 ragge ifp->if_watchdog = dge_watchdog;
925 1.1 ragge ifp->if_init = dge_init;
926 1.1 ragge ifp->if_stop = dge_stop;
927 1.49 riastrad IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
928 1.1 ragge IFQ_SET_READY(&ifp->if_snd);
929 1.1 ragge
930 1.1 ragge sc->sc_ethercom.ec_capabilities |=
931 1.1 ragge ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
932 1.1 ragge
933 1.1 ragge /*
934 1.1 ragge * We can perform TCPv4 and UDPv4 checkums in-bound.
935 1.1 ragge */
936 1.1 ragge ifp->if_capabilities |=
937 1.11 yamt IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
938 1.11 yamt IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
939 1.11 yamt IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
940 1.1 ragge
941 1.1 ragge /*
942 1.1 ragge * Attach the interface.
943 1.1 ragge */
944 1.1 ragge if_attach(ifp);
945 1.46 ozaki if_deferred_start_init(ifp, NULL);
946 1.1 ragge ether_ifattach(ifp, enaddr);
947 1.35 chs rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
948 1.38 tls RND_TYPE_NET, RND_FLAG_DEFAULT);
949 1.1 ragge
950 1.1 ragge #ifdef DGE_EVENT_COUNTERS
951 1.1 ragge /* Fix segment event naming */
952 1.1 ragge if (dge_txseg_evcnt_names == NULL) {
953 1.1 ragge dge_txseg_evcnt_names =
954 1.1 ragge malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
955 1.1 ragge for (i = 0; i < DGE_NTXSEGS; i++)
956 1.4 itojun snprintf((*dge_txseg_evcnt_names)[i],
957 1.4 itojun sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
958 1.1 ragge }
959 1.1 ragge
960 1.1 ragge /* Attach event counters. */
961 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
962 1.35 chs NULL, device_xname(sc->sc_dev), "txsstall");
963 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
964 1.35 chs NULL, device_xname(sc->sc_dev), "txdstall");
965 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
966 1.35 chs NULL, device_xname(sc->sc_dev), "txforceintr");
967 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
968 1.35 chs NULL, device_xname(sc->sc_dev), "txdw");
969 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
970 1.35 chs NULL, device_xname(sc->sc_dev), "txqe");
971 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
972 1.35 chs NULL, device_xname(sc->sc_dev), "rxintr");
973 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
974 1.35 chs NULL, device_xname(sc->sc_dev), "linkintr");
975 1.1 ragge
976 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
977 1.35 chs NULL, device_xname(sc->sc_dev), "rxipsum");
978 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
979 1.35 chs NULL, device_xname(sc->sc_dev), "rxtusum");
980 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
981 1.35 chs NULL, device_xname(sc->sc_dev), "txipsum");
982 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
983 1.35 chs NULL, device_xname(sc->sc_dev), "txtusum");
984 1.1 ragge
985 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
986 1.35 chs NULL, device_xname(sc->sc_dev), "txctx init");
987 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
988 1.35 chs NULL, device_xname(sc->sc_dev), "txctx hit");
989 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
990 1.35 chs NULL, device_xname(sc->sc_dev), "txctx miss");
991 1.1 ragge
992 1.1 ragge for (i = 0; i < DGE_NTXSEGS; i++)
993 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
994 1.35 chs NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
995 1.1 ragge
996 1.1 ragge evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
997 1.35 chs NULL, device_xname(sc->sc_dev), "txdrop");
998 1.1 ragge
999 1.1 ragge #endif /* DGE_EVENT_COUNTERS */
1000 1.1 ragge
1001 1.1 ragge /*
1002 1.1 ragge * Make sure the interface is shutdown during reboot.
1003 1.1 ragge */
1004 1.27 tsutsui if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
1005 1.27 tsutsui pmf_class_network_register(self, ifp);
1006 1.27 tsutsui else
1007 1.27 tsutsui aprint_error_dev(self, "couldn't establish power handler\n");
1008 1.27 tsutsui
1009 1.1 ragge return;
1010 1.1 ragge
1011 1.1 ragge /*
1012 1.1 ragge * Free any resources we've allocated during the failed attach
1013 1.1 ragge * attempt. Do this in reverse order and fall through.
1014 1.1 ragge */
1015 1.1 ragge fail_5:
1016 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
1017 1.1 ragge if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1018 1.1 ragge bus_dmamap_destroy(sc->sc_dmat,
1019 1.1 ragge sc->sc_rxsoft[i].rxs_dmamap);
1020 1.1 ragge }
1021 1.1 ragge fail_4:
1022 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) {
1023 1.1 ragge if (sc->sc_txsoft[i].txs_dmamap != NULL)
1024 1.1 ragge bus_dmamap_destroy(sc->sc_dmat,
1025 1.1 ragge sc->sc_txsoft[i].txs_dmamap);
1026 1.1 ragge }
1027 1.1 ragge bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
1028 1.1 ragge fail_3:
1029 1.1 ragge bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
1030 1.1 ragge fail_2:
1031 1.15 christos bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
1032 1.1 ragge sizeof(struct dge_control_data));
1033 1.1 ragge fail_1:
1034 1.1 ragge bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1035 1.1 ragge fail_0:
1036 1.1 ragge return;
1037 1.1 ragge }
1038 1.1 ragge
1039 1.1 ragge /*
1040 1.1 ragge * dge_shutdown:
1041 1.1 ragge *
1042 1.1 ragge * Make sure the interface is stopped at reboot time.
1043 1.1 ragge */
1044 1.27 tsutsui static bool
1045 1.27 tsutsui dge_shutdown(device_t self, int howto)
1046 1.1 ragge {
1047 1.27 tsutsui struct dge_softc *sc;
1048 1.1 ragge
1049 1.27 tsutsui sc = device_private(self);
1050 1.1 ragge dge_stop(&sc->sc_ethercom.ec_if, 1);
1051 1.27 tsutsui
1052 1.27 tsutsui return true;
1053 1.1 ragge }
1054 1.1 ragge
1055 1.1 ragge /*
1056 1.1 ragge * dge_tx_cksum:
1057 1.1 ragge *
1058 1.1 ragge * Set up TCP/IP checksumming parameters for the
1059 1.1 ragge * specified packet.
1060 1.1 ragge */
1061 1.1 ragge static int
1062 1.1 ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1063 1.1 ragge {
1064 1.1 ragge struct mbuf *m0 = txs->txs_mbuf;
1065 1.1 ragge struct dge_ctdes *t;
1066 1.1 ragge uint32_t ipcs, tucs;
1067 1.1 ragge struct ether_header *eh;
1068 1.1 ragge int offset, iphl;
1069 1.1 ragge uint8_t fields = 0;
1070 1.1 ragge
1071 1.1 ragge /*
1072 1.1 ragge * XXX It would be nice if the mbuf pkthdr had offset
1073 1.1 ragge * fields for the protocol headers.
1074 1.1 ragge */
1075 1.1 ragge
1076 1.1 ragge eh = mtod(m0, struct ether_header *);
1077 1.1 ragge switch (htons(eh->ether_type)) {
1078 1.1 ragge case ETHERTYPE_IP:
1079 1.1 ragge offset = ETHER_HDR_LEN;
1080 1.1 ragge break;
1081 1.1 ragge
1082 1.1 ragge case ETHERTYPE_VLAN:
1083 1.1 ragge offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1084 1.1 ragge break;
1085 1.1 ragge
1086 1.1 ragge default:
1087 1.1 ragge /*
1088 1.1 ragge * Don't support this protocol or encapsulation.
1089 1.1 ragge */
1090 1.1 ragge *fieldsp = 0;
1091 1.52 msaitoh return 0;
1092 1.1 ragge }
1093 1.1 ragge
1094 1.9 thorpej iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1095 1.1 ragge
1096 1.1 ragge /*
1097 1.1 ragge * NOTE: Even if we're not using the IP or TCP/UDP checksum
1098 1.1 ragge * offload feature, if we load the context descriptor, we
1099 1.1 ragge * MUST provide valid values for IPCSS and TUCSS fields.
1100 1.1 ragge */
1101 1.1 ragge
1102 1.1 ragge if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1103 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1104 1.1 ragge fields |= TDESC_POPTS_IXSM;
1105 1.1 ragge ipcs = DGE_TCPIP_IPCSS(offset) |
1106 1.1 ragge DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1107 1.1 ragge DGE_TCPIP_IPCSE(offset + iphl - 1);
1108 1.1 ragge } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1109 1.1 ragge /* Use the cached value. */
1110 1.1 ragge ipcs = sc->sc_txctx_ipcs;
1111 1.1 ragge } else {
1112 1.1 ragge /* Just initialize it to the likely value anyway. */
1113 1.1 ragge ipcs = DGE_TCPIP_IPCSS(offset) |
1114 1.1 ragge DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1115 1.1 ragge DGE_TCPIP_IPCSE(offset + iphl - 1);
1116 1.1 ragge }
1117 1.1 ragge DPRINTF(DGE_DEBUG_CKSUM,
1118 1.10 perry ("%s: CKSUM: offset %d ipcs 0x%x\n",
1119 1.35 chs device_xname(sc->sc_dev), offset, ipcs));
1120 1.1 ragge
1121 1.1 ragge offset += iphl;
1122 1.1 ragge
1123 1.53 msaitoh if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1124 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1125 1.1 ragge fields |= TDESC_POPTS_TXSM;
1126 1.1 ragge tucs = DGE_TCPIP_TUCSS(offset) |
1127 1.9 thorpej DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1128 1.8 heas DGE_TCPIP_TUCSE(0) /* rest of packet */;
1129 1.1 ragge } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1130 1.1 ragge /* Use the cached value. */
1131 1.1 ragge tucs = sc->sc_txctx_tucs;
1132 1.1 ragge } else {
1133 1.1 ragge /* Just initialize it to a valid TCP context. */
1134 1.1 ragge tucs = DGE_TCPIP_TUCSS(offset) |
1135 1.1 ragge DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1136 1.1 ragge DGE_TCPIP_TUCSE(0) /* rest of packet */;
1137 1.1 ragge }
1138 1.1 ragge
1139 1.1 ragge DPRINTF(DGE_DEBUG_CKSUM,
1140 1.1 ragge ("%s: CKSUM: offset %d tucs 0x%x\n",
1141 1.35 chs device_xname(sc->sc_dev), offset, tucs));
1142 1.1 ragge
1143 1.1 ragge if (sc->sc_txctx_ipcs == ipcs &&
1144 1.1 ragge sc->sc_txctx_tucs == tucs) {
1145 1.1 ragge /* Cached context is fine. */
1146 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1147 1.1 ragge } else {
1148 1.1 ragge /* Fill in the context descriptor. */
1149 1.1 ragge #ifdef DGE_EVENT_COUNTERS
1150 1.1 ragge if (sc->sc_txctx_ipcs == 0xffffffff &&
1151 1.1 ragge sc->sc_txctx_tucs == 0xffffffff)
1152 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1153 1.1 ragge else
1154 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1155 1.1 ragge #endif
1156 1.1 ragge t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1157 1.1 ragge t->dc_tcpip_ipcs = htole32(ipcs);
1158 1.1 ragge t->dc_tcpip_tucs = htole32(tucs);
1159 1.1 ragge t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1160 1.1 ragge t->dc_tcpip_seg = 0;
1161 1.1 ragge DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1162 1.1 ragge
1163 1.1 ragge sc->sc_txctx_ipcs = ipcs;
1164 1.1 ragge sc->sc_txctx_tucs = tucs;
1165 1.1 ragge
1166 1.1 ragge sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1167 1.1 ragge txs->txs_ndesc++;
1168 1.1 ragge }
1169 1.1 ragge
1170 1.1 ragge *fieldsp = fields;
1171 1.1 ragge
1172 1.52 msaitoh return 0;
1173 1.1 ragge }
1174 1.1 ragge
1175 1.1 ragge /*
1176 1.1 ragge * dge_start: [ifnet interface function]
1177 1.1 ragge *
1178 1.1 ragge * Start packet transmission on the interface.
1179 1.1 ragge */
1180 1.1 ragge static void
1181 1.1 ragge dge_start(struct ifnet *ifp)
1182 1.1 ragge {
1183 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1184 1.1 ragge struct mbuf *m0;
1185 1.1 ragge struct dge_txsoft *txs;
1186 1.1 ragge bus_dmamap_t dmamap;
1187 1.1 ragge int error, nexttx, lasttx = -1, ofree, seg;
1188 1.1 ragge uint32_t cksumcmd;
1189 1.1 ragge uint8_t cksumfields;
1190 1.1 ragge
1191 1.53 msaitoh if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1192 1.1 ragge return;
1193 1.1 ragge
1194 1.1 ragge /*
1195 1.1 ragge * Remember the previous number of free descriptors.
1196 1.1 ragge */
1197 1.1 ragge ofree = sc->sc_txfree;
1198 1.1 ragge
1199 1.1 ragge /*
1200 1.1 ragge * Loop through the send queue, setting up transmit descriptors
1201 1.1 ragge * until we drain the queue, or use up all available transmit
1202 1.1 ragge * descriptors.
1203 1.1 ragge */
1204 1.1 ragge for (;;) {
1205 1.1 ragge /* Grab a packet off the queue. */
1206 1.1 ragge IFQ_POLL(&ifp->if_snd, m0);
1207 1.1 ragge if (m0 == NULL)
1208 1.1 ragge break;
1209 1.1 ragge
1210 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1211 1.1 ragge ("%s: TX: have packet to transmit: %p\n",
1212 1.35 chs device_xname(sc->sc_dev), m0));
1213 1.1 ragge
1214 1.1 ragge /* Get a work queue entry. */
1215 1.1 ragge if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1216 1.1 ragge dge_txintr(sc);
1217 1.1 ragge if (sc->sc_txsfree == 0) {
1218 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1219 1.1 ragge ("%s: TX: no free job descriptors\n",
1220 1.35 chs device_xname(sc->sc_dev)));
1221 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1222 1.1 ragge break;
1223 1.1 ragge }
1224 1.1 ragge }
1225 1.1 ragge
1226 1.1 ragge txs = &sc->sc_txsoft[sc->sc_txsnext];
1227 1.1 ragge dmamap = txs->txs_dmamap;
1228 1.1 ragge
1229 1.1 ragge /*
1230 1.1 ragge * Load the DMA map. If this fails, the packet either
1231 1.1 ragge * didn't fit in the allotted number of segments, or we
1232 1.1 ragge * were short on resources. For the too-many-segments
1233 1.1 ragge * case, we simply report an error and drop the packet,
1234 1.1 ragge * since we can't sanely copy a jumbo packet to a single
1235 1.1 ragge * buffer.
1236 1.1 ragge */
1237 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1238 1.53 msaitoh BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1239 1.1 ragge if (error) {
1240 1.1 ragge if (error == EFBIG) {
1241 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1242 1.1 ragge printf("%s: Tx packet consumes too many "
1243 1.1 ragge "DMA segments, dropping...\n",
1244 1.35 chs device_xname(sc->sc_dev));
1245 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m0);
1246 1.1 ragge m_freem(m0);
1247 1.1 ragge continue;
1248 1.1 ragge }
1249 1.1 ragge /*
1250 1.1 ragge * Short on resources, just stop for now.
1251 1.1 ragge */
1252 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1253 1.1 ragge ("%s: TX: dmamap load failed: %d\n",
1254 1.35 chs device_xname(sc->sc_dev), error));
1255 1.1 ragge break;
1256 1.1 ragge }
1257 1.1 ragge
1258 1.1 ragge /*
1259 1.1 ragge * Ensure we have enough descriptors free to describe
1260 1.1 ragge * the packet. Note, we always reserve one descriptor
1261 1.1 ragge * at the end of the ring due to the semantics of the
1262 1.1 ragge * TDT register, plus one more in the event we need
1263 1.1 ragge * to re-load checksum offload context.
1264 1.1 ragge */
1265 1.1 ragge if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1266 1.1 ragge /*
1267 1.1 ragge * Not enough free descriptors to transmit this
1268 1.1 ragge * packet. We haven't committed anything yet,
1269 1.1 ragge * so just unload the DMA map, put the packet
1270 1.1 ragge * pack on the queue, and punt. Notify the upper
1271 1.1 ragge * layer that there are no more slots left.
1272 1.1 ragge */
1273 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1274 1.1 ragge ("%s: TX: need %d descriptors, have %d\n",
1275 1.35 chs device_xname(sc->sc_dev), dmamap->dm_nsegs,
1276 1.1 ragge sc->sc_txfree - 1));
1277 1.1 ragge ifp->if_flags |= IFF_OACTIVE;
1278 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmamap);
1279 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1280 1.1 ragge break;
1281 1.1 ragge }
1282 1.1 ragge
1283 1.1 ragge IFQ_DEQUEUE(&ifp->if_snd, m0);
1284 1.1 ragge
1285 1.1 ragge /*
1286 1.1 ragge * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1287 1.1 ragge */
1288 1.1 ragge
1289 1.1 ragge /* Sync the DMA map. */
1290 1.1 ragge bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1291 1.1 ragge BUS_DMASYNC_PREWRITE);
1292 1.1 ragge
1293 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1294 1.1 ragge ("%s: TX: packet has %d DMA segments\n",
1295 1.35 chs device_xname(sc->sc_dev), dmamap->dm_nsegs));
1296 1.1 ragge
1297 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1298 1.1 ragge
1299 1.1 ragge /*
1300 1.1 ragge * Store a pointer to the packet so that we can free it
1301 1.1 ragge * later.
1302 1.1 ragge *
1303 1.1 ragge * Initially, we consider the number of descriptors the
1304 1.1 ragge * packet uses the number of DMA segments. This may be
1305 1.1 ragge * incremented by 1 if we do checksum offload (a descriptor
1306 1.1 ragge * is used to set the checksum context).
1307 1.1 ragge */
1308 1.1 ragge txs->txs_mbuf = m0;
1309 1.1 ragge txs->txs_firstdesc = sc->sc_txnext;
1310 1.1 ragge txs->txs_ndesc = dmamap->dm_nsegs;
1311 1.1 ragge
1312 1.1 ragge /*
1313 1.1 ragge * Set up checksum offload parameters for
1314 1.1 ragge * this packet.
1315 1.1 ragge */
1316 1.1 ragge if (m0->m_pkthdr.csum_flags &
1317 1.53 msaitoh (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
1318 1.1 ragge if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1319 1.1 ragge /* Error message already displayed. */
1320 1.1 ragge bus_dmamap_unload(sc->sc_dmat, dmamap);
1321 1.1 ragge continue;
1322 1.1 ragge }
1323 1.1 ragge } else {
1324 1.1 ragge cksumfields = 0;
1325 1.1 ragge }
1326 1.1 ragge
1327 1.1 ragge cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1328 1.1 ragge
1329 1.1 ragge /*
1330 1.1 ragge * Initialize the transmit descriptor.
1331 1.1 ragge */
1332 1.1 ragge for (nexttx = sc->sc_txnext, seg = 0;
1333 1.1 ragge seg < dmamap->dm_nsegs;
1334 1.1 ragge seg++, nexttx = DGE_NEXTTX(nexttx)) {
1335 1.1 ragge /*
1336 1.1 ragge * Note: we currently only use 32-bit DMA
1337 1.1 ragge * addresses.
1338 1.1 ragge */
1339 1.1 ragge sc->sc_txdescs[nexttx].dt_baddrh = 0;
1340 1.1 ragge sc->sc_txdescs[nexttx].dt_baddrl =
1341 1.1 ragge htole32(dmamap->dm_segs[seg].ds_addr);
1342 1.1 ragge sc->sc_txdescs[nexttx].dt_ctl =
1343 1.1 ragge htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1344 1.1 ragge sc->sc_txdescs[nexttx].dt_status = 0;
1345 1.1 ragge sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1346 1.1 ragge sc->sc_txdescs[nexttx].dt_vlan = 0;
1347 1.1 ragge lasttx = nexttx;
1348 1.1 ragge
1349 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1350 1.1 ragge ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1351 1.35 chs device_xname(sc->sc_dev), nexttx,
1352 1.23 abs (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1353 1.23 abs (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1354 1.1 ragge }
1355 1.1 ragge
1356 1.1 ragge KASSERT(lasttx != -1);
1357 1.1 ragge
1358 1.1 ragge /*
1359 1.1 ragge * Set up the command byte on the last descriptor of
1360 1.1 ragge * the packet. If we're in the interrupt delay window,
1361 1.1 ragge * delay the interrupt.
1362 1.1 ragge */
1363 1.1 ragge sc->sc_txdescs[lasttx].dt_ctl |=
1364 1.1 ragge htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1365 1.1 ragge
1366 1.1 ragge txs->txs_lastdesc = lasttx;
1367 1.1 ragge
1368 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1369 1.35 chs ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1370 1.1 ragge lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1371 1.1 ragge
1372 1.1 ragge /* Sync the descriptors we're using. */
1373 1.1 ragge DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1374 1.53 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1375 1.1 ragge
1376 1.1 ragge /* Give the packet to the chip. */
1377 1.1 ragge CSR_WRITE(sc, DGE_TDT, nexttx);
1378 1.1 ragge
1379 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1380 1.35 chs ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1381 1.1 ragge
1382 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1383 1.1 ragge ("%s: TX: finished transmitting packet, job %d\n",
1384 1.35 chs device_xname(sc->sc_dev), sc->sc_txsnext));
1385 1.1 ragge
1386 1.1 ragge /* Advance the tx pointer. */
1387 1.1 ragge sc->sc_txfree -= txs->txs_ndesc;
1388 1.1 ragge sc->sc_txnext = nexttx;
1389 1.1 ragge
1390 1.1 ragge sc->sc_txsfree--;
1391 1.1 ragge sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1392 1.1 ragge
1393 1.1 ragge /* Pass the packet to any BPF listeners. */
1394 1.48 msaitoh bpf_mtap(ifp, m0, BPF_D_OUT);
1395 1.1 ragge }
1396 1.1 ragge
1397 1.1 ragge if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1398 1.1 ragge /* No more slots; notify upper layer. */
1399 1.1 ragge ifp->if_flags |= IFF_OACTIVE;
1400 1.1 ragge }
1401 1.1 ragge
1402 1.1 ragge if (sc->sc_txfree != ofree) {
1403 1.1 ragge /* Set a watchdog timer in case the chip flakes out. */
1404 1.1 ragge ifp->if_timer = 5;
1405 1.1 ragge }
1406 1.1 ragge }
1407 1.1 ragge
1408 1.1 ragge /*
1409 1.1 ragge * dge_watchdog: [ifnet interface function]
1410 1.1 ragge *
1411 1.1 ragge * Watchdog timer handler.
1412 1.1 ragge */
1413 1.1 ragge static void
1414 1.1 ragge dge_watchdog(struct ifnet *ifp)
1415 1.1 ragge {
1416 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1417 1.1 ragge
1418 1.1 ragge /*
1419 1.1 ragge * Since we're using delayed interrupts, sweep up
1420 1.1 ragge * before we report an error.
1421 1.1 ragge */
1422 1.1 ragge dge_txintr(sc);
1423 1.1 ragge
1424 1.1 ragge if (sc->sc_txfree != DGE_NTXDESC) {
1425 1.1 ragge printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1426 1.35 chs device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1427 1.1 ragge sc->sc_txnext);
1428 1.57 thorpej if_statinc(ifp, if_oerrors);
1429 1.1 ragge
1430 1.1 ragge /* Reset the interface. */
1431 1.1 ragge (void) dge_init(ifp);
1432 1.1 ragge }
1433 1.1 ragge
1434 1.1 ragge /* Try to get more packets going. */
1435 1.1 ragge dge_start(ifp);
1436 1.1 ragge }
1437 1.1 ragge
1438 1.1 ragge /*
1439 1.1 ragge * dge_ioctl: [ifnet interface function]
1440 1.1 ragge *
1441 1.1 ragge * Handle control requests from the operator.
1442 1.1 ragge */
1443 1.1 ragge static int
1444 1.15 christos dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1445 1.1 ragge {
1446 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1447 1.1 ragge struct ifreq *ifr = (struct ifreq *) data;
1448 1.1 ragge pcireg_t preg;
1449 1.1 ragge int s, error, mmrbc;
1450 1.1 ragge
1451 1.1 ragge s = splnet();
1452 1.1 ragge
1453 1.1 ragge switch (cmd) {
1454 1.2 ragge case SIOCSIFMTU:
1455 1.19 dyoung if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1456 1.2 ragge error = EINVAL;
1457 1.19 dyoung else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1458 1.19 dyoung break;
1459 1.19 dyoung else if (ifp->if_flags & IFF_UP)
1460 1.19 dyoung error = (*ifp->if_init)(ifp);
1461 1.19 dyoung else
1462 1.2 ragge error = 0;
1463 1.2 ragge break;
1464 1.2 ragge
1465 1.52 msaitoh case SIOCSIFFLAGS:
1466 1.22 dyoung if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1467 1.22 dyoung break;
1468 1.1 ragge /* extract link flags */
1469 1.1 ragge if ((ifp->if_flags & IFF_LINK0) == 0 &&
1470 1.1 ragge (ifp->if_flags & IFF_LINK1) == 0)
1471 1.1 ragge mmrbc = PCIX_MMRBC_512;
1472 1.1 ragge else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1473 1.1 ragge (ifp->if_flags & IFF_LINK1) != 0)
1474 1.1 ragge mmrbc = PCIX_MMRBC_1024;
1475 1.1 ragge else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1476 1.1 ragge (ifp->if_flags & IFF_LINK1) == 0)
1477 1.1 ragge mmrbc = PCIX_MMRBC_2048;
1478 1.1 ragge else
1479 1.1 ragge mmrbc = PCIX_MMRBC_4096;
1480 1.1 ragge if (mmrbc != sc->sc_mmrbc) {
1481 1.1 ragge preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1482 1.1 ragge preg &= ~PCIX_MMRBC_MSK;
1483 1.1 ragge preg |= mmrbc;
1484 1.1 ragge pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1485 1.1 ragge sc->sc_mmrbc = mmrbc;
1486 1.1 ragge }
1487 1.52 msaitoh /* FALLTHROUGH */
1488 1.1 ragge default:
1489 1.19 dyoung if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1490 1.19 dyoung break;
1491 1.19 dyoung
1492 1.19 dyoung error = 0;
1493 1.19 dyoung
1494 1.19 dyoung if (cmd == SIOCSIFCAP)
1495 1.19 dyoung error = (*ifp->if_init)(ifp);
1496 1.19 dyoung else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1497 1.19 dyoung ;
1498 1.19 dyoung else if (ifp->if_flags & IFF_RUNNING) {
1499 1.1 ragge /*
1500 1.1 ragge * Multicast list has changed; set the hardware filter
1501 1.1 ragge * accordingly.
1502 1.1 ragge */
1503 1.19 dyoung dge_set_filter(sc);
1504 1.1 ragge }
1505 1.1 ragge break;
1506 1.1 ragge }
1507 1.1 ragge
1508 1.1 ragge /* Try to get more packets going. */
1509 1.1 ragge dge_start(ifp);
1510 1.1 ragge
1511 1.1 ragge splx(s);
1512 1.52 msaitoh return error;
1513 1.1 ragge }
1514 1.1 ragge
1515 1.1 ragge /*
1516 1.1 ragge * dge_intr:
1517 1.1 ragge *
1518 1.1 ragge * Interrupt service routine.
1519 1.1 ragge */
1520 1.1 ragge static int
1521 1.1 ragge dge_intr(void *arg)
1522 1.1 ragge {
1523 1.1 ragge struct dge_softc *sc = arg;
1524 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1525 1.1 ragge uint32_t icr;
1526 1.1 ragge int wantinit, handled = 0;
1527 1.1 ragge
1528 1.1 ragge for (wantinit = 0; wantinit == 0;) {
1529 1.1 ragge icr = CSR_READ(sc, DGE_ICR);
1530 1.1 ragge if ((icr & sc->sc_icr) == 0)
1531 1.1 ragge break;
1532 1.1 ragge
1533 1.34 tls rnd_add_uint32(&sc->rnd_source, icr);
1534 1.1 ragge
1535 1.1 ragge handled = 1;
1536 1.1 ragge
1537 1.1 ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1538 1.53 msaitoh if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
1539 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1540 1.1 ragge ("%s: RX: got Rx intr 0x%08x\n",
1541 1.35 chs device_xname(sc->sc_dev),
1542 1.53 msaitoh icr & (ICR_RXDMT0 | ICR_RXT0)));
1543 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1544 1.1 ragge }
1545 1.1 ragge #endif
1546 1.1 ragge dge_rxintr(sc);
1547 1.1 ragge
1548 1.1 ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1549 1.1 ragge if (icr & ICR_TXDW) {
1550 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1551 1.1 ragge ("%s: TX: got TXDW interrupt\n",
1552 1.35 chs device_xname(sc->sc_dev)));
1553 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1554 1.1 ragge }
1555 1.1 ragge if (icr & ICR_TXQE)
1556 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1557 1.1 ragge #endif
1558 1.1 ragge dge_txintr(sc);
1559 1.1 ragge
1560 1.53 msaitoh if (icr & (ICR_LSC | ICR_RXSEQ)) {
1561 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1562 1.1 ragge dge_linkintr(sc, icr);
1563 1.1 ragge }
1564 1.1 ragge
1565 1.1 ragge if (icr & ICR_RXO) {
1566 1.52 msaitoh printf("%s: Receive overrun\n",
1567 1.52 msaitoh device_xname(sc->sc_dev));
1568 1.1 ragge wantinit = 1;
1569 1.1 ragge }
1570 1.1 ragge }
1571 1.1 ragge
1572 1.1 ragge if (handled) {
1573 1.1 ragge if (wantinit)
1574 1.1 ragge dge_init(ifp);
1575 1.1 ragge
1576 1.1 ragge /* Try to get more packets going. */
1577 1.46 ozaki if_schedule_deferred_start(ifp);
1578 1.1 ragge }
1579 1.1 ragge
1580 1.52 msaitoh return handled;
1581 1.1 ragge }
1582 1.1 ragge
1583 1.1 ragge /*
1584 1.1 ragge * dge_txintr:
1585 1.1 ragge *
1586 1.1 ragge * Helper; handle transmit interrupts.
1587 1.1 ragge */
1588 1.1 ragge static void
1589 1.1 ragge dge_txintr(struct dge_softc *sc)
1590 1.1 ragge {
1591 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1592 1.1 ragge struct dge_txsoft *txs;
1593 1.1 ragge uint8_t status;
1594 1.1 ragge int i;
1595 1.1 ragge
1596 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
1597 1.1 ragge
1598 1.1 ragge /*
1599 1.1 ragge * Go through the Tx list and free mbufs for those
1600 1.1 ragge * frames which have been transmitted.
1601 1.1 ragge */
1602 1.1 ragge for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1603 1.1 ragge i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1604 1.1 ragge txs = &sc->sc_txsoft[i];
1605 1.1 ragge
1606 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1607 1.35 chs ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1608 1.1 ragge
1609 1.1 ragge DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1610 1.53 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1611 1.1 ragge
1612 1.1 ragge status =
1613 1.1 ragge sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1614 1.1 ragge if ((status & TDESC_STA_DD) == 0) {
1615 1.1 ragge DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1616 1.1 ragge BUS_DMASYNC_PREREAD);
1617 1.1 ragge break;
1618 1.1 ragge }
1619 1.1 ragge
1620 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1621 1.1 ragge ("%s: TX: job %d done: descs %d..%d\n",
1622 1.35 chs device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1623 1.1 ragge txs->txs_lastdesc));
1624 1.1 ragge
1625 1.57 thorpej if_statinc(ifp, if_opackets);
1626 1.1 ragge sc->sc_txfree += txs->txs_ndesc;
1627 1.1 ragge bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1628 1.1 ragge 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1629 1.1 ragge bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1630 1.1 ragge m_freem(txs->txs_mbuf);
1631 1.1 ragge txs->txs_mbuf = NULL;
1632 1.1 ragge }
1633 1.1 ragge
1634 1.1 ragge /* Update the dirty transmit buffer pointer. */
1635 1.1 ragge sc->sc_txsdirty = i;
1636 1.1 ragge DPRINTF(DGE_DEBUG_TX,
1637 1.35 chs ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1638 1.1 ragge
1639 1.1 ragge /*
1640 1.1 ragge * If there are no more pending transmissions, cancel the watchdog
1641 1.1 ragge * timer.
1642 1.1 ragge */
1643 1.1 ragge if (sc->sc_txsfree == DGE_TXQUEUELEN)
1644 1.1 ragge ifp->if_timer = 0;
1645 1.1 ragge }
1646 1.1 ragge
1647 1.1 ragge /*
1648 1.1 ragge * dge_rxintr:
1649 1.1 ragge *
1650 1.1 ragge * Helper; handle receive interrupts.
1651 1.1 ragge */
1652 1.1 ragge static void
1653 1.1 ragge dge_rxintr(struct dge_softc *sc)
1654 1.1 ragge {
1655 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1656 1.1 ragge struct dge_rxsoft *rxs;
1657 1.1 ragge struct mbuf *m;
1658 1.1 ragge int i, len;
1659 1.1 ragge uint8_t status, errors;
1660 1.1 ragge
1661 1.1 ragge for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1662 1.1 ragge rxs = &sc->sc_rxsoft[i];
1663 1.1 ragge
1664 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1665 1.1 ragge ("%s: RX: checking descriptor %d\n",
1666 1.35 chs device_xname(sc->sc_dev), i));
1667 1.1 ragge
1668 1.53 msaitoh DGE_CDRXSYNC(sc, i,
1669 1.53 msaitoh BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1670 1.1 ragge
1671 1.1 ragge status = sc->sc_rxdescs[i].dr_status;
1672 1.1 ragge errors = sc->sc_rxdescs[i].dr_errors;
1673 1.1 ragge len = le16toh(sc->sc_rxdescs[i].dr_len);
1674 1.1 ragge
1675 1.1 ragge if ((status & RDESC_STS_DD) == 0) {
1676 1.52 msaitoh /* We have processed all of the receive descriptors. */
1677 1.1 ragge DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1678 1.1 ragge break;
1679 1.1 ragge }
1680 1.1 ragge
1681 1.1 ragge if (__predict_false(sc->sc_rxdiscard)) {
1682 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1683 1.1 ragge ("%s: RX: discarding contents of descriptor %d\n",
1684 1.35 chs device_xname(sc->sc_dev), i));
1685 1.1 ragge DGE_INIT_RXDESC(sc, i);
1686 1.1 ragge if (status & RDESC_STS_EOP) {
1687 1.1 ragge /* Reset our state. */
1688 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1689 1.1 ragge ("%s: RX: resetting rxdiscard -> 0\n",
1690 1.35 chs device_xname(sc->sc_dev)));
1691 1.1 ragge sc->sc_rxdiscard = 0;
1692 1.1 ragge }
1693 1.1 ragge continue;
1694 1.1 ragge }
1695 1.1 ragge
1696 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1697 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1698 1.1 ragge
1699 1.1 ragge m = rxs->rxs_mbuf;
1700 1.1 ragge
1701 1.1 ragge /*
1702 1.1 ragge * Add a new receive buffer to the ring.
1703 1.1 ragge */
1704 1.1 ragge if (dge_add_rxbuf(sc, i) != 0) {
1705 1.1 ragge /*
1706 1.1 ragge * Failed, throw away what we've done so
1707 1.1 ragge * far, and discard the rest of the packet.
1708 1.1 ragge */
1709 1.57 thorpej if_statinc(ifp, if_ierrors);
1710 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1711 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1712 1.1 ragge DGE_INIT_RXDESC(sc, i);
1713 1.1 ragge if ((status & RDESC_STS_EOP) == 0)
1714 1.1 ragge sc->sc_rxdiscard = 1;
1715 1.1 ragge if (sc->sc_rxhead != NULL)
1716 1.1 ragge m_freem(sc->sc_rxhead);
1717 1.1 ragge DGE_RXCHAIN_RESET(sc);
1718 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1719 1.1 ragge ("%s: RX: Rx buffer allocation failed, "
1720 1.35 chs "dropping packet%s\n", device_xname(sc->sc_dev),
1721 1.1 ragge sc->sc_rxdiscard ? " (discard)" : ""));
1722 1.1 ragge continue;
1723 1.1 ragge }
1724 1.1 ragge DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1725 1.1 ragge
1726 1.1 ragge DGE_RXCHAIN_LINK(sc, m);
1727 1.1 ragge
1728 1.1 ragge m->m_len = len;
1729 1.1 ragge
1730 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1731 1.1 ragge ("%s: RX: buffer at %p len %d\n",
1732 1.35 chs device_xname(sc->sc_dev), m->m_data, len));
1733 1.1 ragge
1734 1.1 ragge /*
1735 1.1 ragge * If this is not the end of the packet, keep
1736 1.1 ragge * looking.
1737 1.1 ragge */
1738 1.1 ragge if ((status & RDESC_STS_EOP) == 0) {
1739 1.1 ragge sc->sc_rxlen += len;
1740 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1741 1.1 ragge ("%s: RX: not yet EOP, rxlen -> %d\n",
1742 1.35 chs device_xname(sc->sc_dev), sc->sc_rxlen));
1743 1.1 ragge continue;
1744 1.1 ragge }
1745 1.1 ragge
1746 1.1 ragge /*
1747 1.1 ragge * Okay, we have the entire packet now...
1748 1.1 ragge */
1749 1.1 ragge *sc->sc_rxtailp = NULL;
1750 1.1 ragge m = sc->sc_rxhead;
1751 1.1 ragge len += sc->sc_rxlen;
1752 1.1 ragge
1753 1.1 ragge DGE_RXCHAIN_RESET(sc);
1754 1.1 ragge
1755 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1756 1.1 ragge ("%s: RX: have entire packet, len -> %d\n",
1757 1.35 chs device_xname(sc->sc_dev), len));
1758 1.1 ragge
1759 1.1 ragge /*
1760 1.1 ragge * If an error occurred, update stats and drop the packet.
1761 1.1 ragge */
1762 1.53 msaitoh if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
1763 1.53 msaitoh RDESC_ERR_RXE)) {
1764 1.57 thorpej if_statinc(ifp, if_ierrors);
1765 1.1 ragge if (errors & RDESC_ERR_SE)
1766 1.1 ragge printf("%s: symbol error\n",
1767 1.35 chs device_xname(sc->sc_dev));
1768 1.1 ragge else if (errors & RDESC_ERR_P)
1769 1.1 ragge printf("%s: parity error\n",
1770 1.35 chs device_xname(sc->sc_dev));
1771 1.1 ragge else if (errors & RDESC_ERR_CE)
1772 1.1 ragge printf("%s: CRC error\n",
1773 1.35 chs device_xname(sc->sc_dev));
1774 1.1 ragge m_freem(m);
1775 1.1 ragge continue;
1776 1.1 ragge }
1777 1.1 ragge
1778 1.1 ragge /*
1779 1.1 ragge * No errors. Receive the packet.
1780 1.1 ragge */
1781 1.44 ozaki m_set_rcvif(m, ifp);
1782 1.1 ragge m->m_pkthdr.len = len;
1783 1.1 ragge
1784 1.1 ragge /*
1785 1.1 ragge * Set up checksum info for this packet.
1786 1.1 ragge */
1787 1.1 ragge if (status & RDESC_STS_IPCS) {
1788 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1789 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1790 1.1 ragge if (errors & RDESC_ERR_IPE)
1791 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1792 1.1 ragge }
1793 1.1 ragge if (status & RDESC_STS_TCPCS) {
1794 1.1 ragge /*
1795 1.1 ragge * Note: we don't know if this was TCP or UDP,
1796 1.1 ragge * so we just set both bits, and expect the
1797 1.1 ragge * upper layers to deal.
1798 1.1 ragge */
1799 1.1 ragge DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1800 1.53 msaitoh m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
1801 1.1 ragge if (errors & RDESC_ERR_TCPE)
1802 1.1 ragge m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1803 1.1 ragge }
1804 1.1 ragge
1805 1.1 ragge /* Pass it on. */
1806 1.41 ozaki if_percpuq_enqueue(ifp->if_percpuq, m);
1807 1.1 ragge }
1808 1.1 ragge
1809 1.1 ragge /* Update the receive pointer. */
1810 1.1 ragge sc->sc_rxptr = i;
1811 1.1 ragge
1812 1.1 ragge DPRINTF(DGE_DEBUG_RX,
1813 1.35 chs ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1814 1.1 ragge }
1815 1.1 ragge
1816 1.1 ragge /*
1817 1.1 ragge * dge_linkintr:
1818 1.1 ragge *
1819 1.1 ragge * Helper; handle link interrupts.
1820 1.1 ragge */
1821 1.1 ragge static void
1822 1.1 ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
1823 1.1 ragge {
1824 1.1 ragge uint32_t status;
1825 1.1 ragge
1826 1.1 ragge if (icr & ICR_LSC) {
1827 1.1 ragge status = CSR_READ(sc, DGE_STATUS);
1828 1.1 ragge if (status & STATUS_LINKUP) {
1829 1.1 ragge DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1830 1.35 chs device_xname(sc->sc_dev)));
1831 1.1 ragge } else {
1832 1.1 ragge DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1833 1.35 chs device_xname(sc->sc_dev)));
1834 1.1 ragge }
1835 1.1 ragge } else if (icr & ICR_RXSEQ) {
1836 1.1 ragge DPRINTF(DGE_DEBUG_LINK,
1837 1.1 ragge ("%s: LINK: Receive sequence error\n",
1838 1.35 chs device_xname(sc->sc_dev)));
1839 1.1 ragge }
1840 1.1 ragge /* XXX - fix errata */
1841 1.1 ragge }
1842 1.1 ragge
1843 1.1 ragge /*
1844 1.1 ragge * dge_reset:
1845 1.1 ragge *
1846 1.1 ragge * Reset the i82597 chip.
1847 1.1 ragge */
1848 1.1 ragge static void
1849 1.1 ragge dge_reset(struct dge_softc *sc)
1850 1.1 ragge {
1851 1.1 ragge int i;
1852 1.1 ragge
1853 1.1 ragge /*
1854 1.1 ragge * Do a chip reset.
1855 1.1 ragge */
1856 1.1 ragge CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1857 1.1 ragge
1858 1.1 ragge delay(10000);
1859 1.1 ragge
1860 1.1 ragge for (i = 0; i < 1000; i++) {
1861 1.1 ragge if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1862 1.1 ragge break;
1863 1.1 ragge delay(20);
1864 1.1 ragge }
1865 1.1 ragge
1866 1.1 ragge if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1867 1.1 ragge printf("%s: WARNING: reset failed to complete\n",
1868 1.35 chs device_xname(sc->sc_dev));
1869 1.52 msaitoh /*
1870 1.52 msaitoh * Reset the EEPROM logic.
1871 1.52 msaitoh * This will cause the chip to reread its default values,
1872 1.1 ragge * which doesn't happen otherwise (errata).
1873 1.52 msaitoh */
1874 1.52 msaitoh CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1875 1.52 msaitoh delay(10000);
1876 1.1 ragge }
1877 1.1 ragge
1878 1.1 ragge /*
1879 1.1 ragge * dge_init: [ifnet interface function]
1880 1.1 ragge *
1881 1.1 ragge * Initialize the interface. Must be called at splnet().
1882 1.1 ragge */
1883 1.1 ragge static int
1884 1.1 ragge dge_init(struct ifnet *ifp)
1885 1.1 ragge {
1886 1.1 ragge struct dge_softc *sc = ifp->if_softc;
1887 1.1 ragge struct dge_rxsoft *rxs;
1888 1.1 ragge int i, error = 0;
1889 1.1 ragge uint32_t reg;
1890 1.1 ragge
1891 1.1 ragge /*
1892 1.1 ragge * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1893 1.1 ragge * There is a small but measurable benefit to avoiding the adjusment
1894 1.1 ragge * of the descriptor so that the headers are aligned, for normal mtu,
1895 1.1 ragge * on such platforms. One possibility is that the DMA itself is
1896 1.1 ragge * slightly more efficient if the front of the entire packet (instead
1897 1.1 ragge * of the front of the headers) is aligned.
1898 1.1 ragge *
1899 1.1 ragge * Note we must always set align_tweak to 0 if we are using
1900 1.1 ragge * jumbo frames.
1901 1.1 ragge */
1902 1.1 ragge #ifdef __NO_STRICT_ALIGNMENT
1903 1.1 ragge sc->sc_align_tweak = 0;
1904 1.1 ragge #else
1905 1.1 ragge if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1906 1.1 ragge sc->sc_align_tweak = 0;
1907 1.1 ragge else
1908 1.1 ragge sc->sc_align_tweak = 2;
1909 1.1 ragge #endif /* __NO_STRICT_ALIGNMENT */
1910 1.1 ragge
1911 1.1 ragge /* Cancel any pending I/O. */
1912 1.1 ragge dge_stop(ifp, 0);
1913 1.1 ragge
1914 1.1 ragge /* Reset the chip to a known state. */
1915 1.1 ragge dge_reset(sc);
1916 1.1 ragge
1917 1.1 ragge /* Initialize the transmit descriptor ring. */
1918 1.1 ragge memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1919 1.1 ragge DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1920 1.53 msaitoh BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1921 1.1 ragge sc->sc_txfree = DGE_NTXDESC;
1922 1.1 ragge sc->sc_txnext = 0;
1923 1.1 ragge
1924 1.1 ragge sc->sc_txctx_ipcs = 0xffffffff;
1925 1.1 ragge sc->sc_txctx_tucs = 0xffffffff;
1926 1.1 ragge
1927 1.1 ragge CSR_WRITE(sc, DGE_TDBAH, 0);
1928 1.1 ragge CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1929 1.1 ragge CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1930 1.1 ragge CSR_WRITE(sc, DGE_TDH, 0);
1931 1.1 ragge CSR_WRITE(sc, DGE_TDT, 0);
1932 1.1 ragge CSR_WRITE(sc, DGE_TIDV, TIDV);
1933 1.1 ragge
1934 1.1 ragge #if 0
1935 1.1 ragge CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1936 1.1 ragge TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1937 1.1 ragge #endif
1938 1.1 ragge CSR_WRITE(sc, DGE_RXDCTL,
1939 1.1 ragge RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1940 1.1 ragge RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1941 1.1 ragge RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1942 1.1 ragge
1943 1.1 ragge /* Initialize the transmit job descriptors. */
1944 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++)
1945 1.1 ragge sc->sc_txsoft[i].txs_mbuf = NULL;
1946 1.1 ragge sc->sc_txsfree = DGE_TXQUEUELEN;
1947 1.1 ragge sc->sc_txsnext = 0;
1948 1.1 ragge sc->sc_txsdirty = 0;
1949 1.1 ragge
1950 1.1 ragge /*
1951 1.1 ragge * Initialize the receive descriptor and receive job
1952 1.1 ragge * descriptor rings.
1953 1.1 ragge */
1954 1.1 ragge CSR_WRITE(sc, DGE_RDBAH, 0);
1955 1.1 ragge CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1956 1.1 ragge CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1957 1.1 ragge CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1958 1.1 ragge CSR_WRITE(sc, DGE_RDT, 0);
1959 1.1 ragge CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1960 1.1 ragge CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1961 1.1 ragge CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1962 1.1 ragge
1963 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
1964 1.1 ragge rxs = &sc->sc_rxsoft[i];
1965 1.1 ragge if (rxs->rxs_mbuf == NULL) {
1966 1.1 ragge if ((error = dge_add_rxbuf(sc, i)) != 0) {
1967 1.1 ragge printf("%s: unable to allocate or map rx "
1968 1.1 ragge "buffer %d, error = %d\n",
1969 1.35 chs device_xname(sc->sc_dev), i, error);
1970 1.1 ragge /*
1971 1.1 ragge * XXX Should attempt to run with fewer receive
1972 1.1 ragge * XXX buffers instead of just failing.
1973 1.1 ragge */
1974 1.1 ragge dge_rxdrain(sc);
1975 1.1 ragge goto out;
1976 1.1 ragge }
1977 1.1 ragge }
1978 1.1 ragge DGE_INIT_RXDESC(sc, i);
1979 1.1 ragge }
1980 1.1 ragge sc->sc_rxptr = DGE_RXSPACE;
1981 1.1 ragge sc->sc_rxdiscard = 0;
1982 1.1 ragge DGE_RXCHAIN_RESET(sc);
1983 1.1 ragge
1984 1.1 ragge if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1985 1.1 ragge sc->sc_ctrl0 |= CTRL0_JFE;
1986 1.1 ragge CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1987 1.1 ragge }
1988 1.1 ragge
1989 1.1 ragge /* Write the control registers. */
1990 1.1 ragge CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1991 1.1 ragge
1992 1.1 ragge /*
1993 1.1 ragge * Set up checksum offload parameters.
1994 1.1 ragge */
1995 1.1 ragge reg = CSR_READ(sc, DGE_RXCSUM);
1996 1.11 yamt if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1997 1.1 ragge reg |= RXCSUM_IPOFL;
1998 1.1 ragge else
1999 1.1 ragge reg &= ~RXCSUM_IPOFL;
2000 1.11 yamt if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
2001 1.1 ragge reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
2002 1.1 ragge else {
2003 1.1 ragge reg &= ~RXCSUM_TUOFL;
2004 1.11 yamt if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
2005 1.1 ragge reg &= ~RXCSUM_IPOFL;
2006 1.1 ragge }
2007 1.1 ragge CSR_WRITE(sc, DGE_RXCSUM, reg);
2008 1.1 ragge
2009 1.1 ragge /*
2010 1.1 ragge * Set up the interrupt registers.
2011 1.1 ragge */
2012 1.1 ragge CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
2013 1.1 ragge sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
2014 1.1 ragge ICR_RXO | ICR_RXT0;
2015 1.1 ragge
2016 1.1 ragge CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
2017 1.1 ragge
2018 1.1 ragge /*
2019 1.1 ragge * Set up the transmit control register.
2020 1.1 ragge */
2021 1.53 msaitoh sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
2022 1.1 ragge CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2023 1.1 ragge
2024 1.1 ragge /*
2025 1.1 ragge * Set up the receive control register; we actually program
2026 1.1 ragge * the register when we set the receive filter. Use multicast
2027 1.1 ragge * address offset type 0.
2028 1.1 ragge */
2029 1.1 ragge sc->sc_mchash_type = 0;
2030 1.1 ragge
2031 1.10 perry sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2032 1.1 ragge RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2033 1.1 ragge
2034 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG
2035 1.3 ragge sc->sc_rctl |= RCTL_BSIZE_16k;
2036 1.3 ragge #else
2037 1.53 msaitoh switch (MCLBYTES) {
2038 1.1 ragge case 2048:
2039 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_2k;
2040 1.1 ragge break;
2041 1.1 ragge case 4096:
2042 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_4k;
2043 1.1 ragge break;
2044 1.1 ragge case 8192:
2045 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_8k;
2046 1.1 ragge break;
2047 1.1 ragge case 16384:
2048 1.1 ragge sc->sc_rctl |= RCTL_BSIZE_16k;
2049 1.1 ragge break;
2050 1.1 ragge default:
2051 1.1 ragge panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2052 1.1 ragge }
2053 1.3 ragge #endif
2054 1.1 ragge
2055 1.1 ragge /* Set the receive filter. */
2056 1.1 ragge /* Also sets RCTL */
2057 1.1 ragge dge_set_filter(sc);
2058 1.1 ragge
2059 1.1 ragge /* ...all done! */
2060 1.10 perry ifp->if_flags |= IFF_RUNNING;
2061 1.1 ragge ifp->if_flags &= ~IFF_OACTIVE;
2062 1.1 ragge
2063 1.1 ragge out:
2064 1.1 ragge if (error)
2065 1.35 chs printf("%s: interface not running\n", device_xname(sc->sc_dev));
2066 1.52 msaitoh return error;
2067 1.1 ragge }
2068 1.1 ragge
2069 1.1 ragge /*
2070 1.1 ragge * dge_rxdrain:
2071 1.1 ragge *
2072 1.1 ragge * Drain the receive queue.
2073 1.1 ragge */
2074 1.1 ragge static void
2075 1.1 ragge dge_rxdrain(struct dge_softc *sc)
2076 1.1 ragge {
2077 1.1 ragge struct dge_rxsoft *rxs;
2078 1.1 ragge int i;
2079 1.1 ragge
2080 1.1 ragge for (i = 0; i < DGE_NRXDESC; i++) {
2081 1.1 ragge rxs = &sc->sc_rxsoft[i];
2082 1.1 ragge if (rxs->rxs_mbuf != NULL) {
2083 1.1 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2084 1.1 ragge m_freem(rxs->rxs_mbuf);
2085 1.1 ragge rxs->rxs_mbuf = NULL;
2086 1.1 ragge }
2087 1.1 ragge }
2088 1.1 ragge }
2089 1.1 ragge
2090 1.1 ragge /*
2091 1.1 ragge * dge_stop: [ifnet interface function]
2092 1.1 ragge *
2093 1.1 ragge * Stop transmission on the interface.
2094 1.1 ragge */
2095 1.1 ragge static void
2096 1.1 ragge dge_stop(struct ifnet *ifp, int disable)
2097 1.1 ragge {
2098 1.1 ragge struct dge_softc *sc = ifp->if_softc;
2099 1.1 ragge struct dge_txsoft *txs;
2100 1.1 ragge int i;
2101 1.1 ragge
2102 1.1 ragge /* Stop the transmit and receive processes. */
2103 1.1 ragge CSR_WRITE(sc, DGE_TCTL, 0);
2104 1.1 ragge CSR_WRITE(sc, DGE_RCTL, 0);
2105 1.1 ragge
2106 1.1 ragge /* Release any queued transmit buffers. */
2107 1.1 ragge for (i = 0; i < DGE_TXQUEUELEN; i++) {
2108 1.1 ragge txs = &sc->sc_txsoft[i];
2109 1.1 ragge if (txs->txs_mbuf != NULL) {
2110 1.1 ragge bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2111 1.1 ragge m_freem(txs->txs_mbuf);
2112 1.1 ragge txs->txs_mbuf = NULL;
2113 1.1 ragge }
2114 1.1 ragge }
2115 1.1 ragge
2116 1.1 ragge /* Mark the interface as down and cancel the watchdog timer. */
2117 1.1 ragge ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2118 1.1 ragge ifp->if_timer = 0;
2119 1.20 dyoung
2120 1.20 dyoung if (disable)
2121 1.20 dyoung dge_rxdrain(sc);
2122 1.1 ragge }
2123 1.1 ragge
2124 1.1 ragge /*
2125 1.1 ragge * dge_add_rxbuf:
2126 1.1 ragge *
2127 1.1 ragge * Add a receive buffer to the indiciated descriptor.
2128 1.1 ragge */
2129 1.1 ragge static int
2130 1.1 ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
2131 1.1 ragge {
2132 1.1 ragge struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2133 1.1 ragge struct mbuf *m;
2134 1.1 ragge int error;
2135 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG
2136 1.15 christos void *buf;
2137 1.3 ragge #endif
2138 1.1 ragge
2139 1.1 ragge MGETHDR(m, M_DONTWAIT, MT_DATA);
2140 1.1 ragge if (m == NULL)
2141 1.52 msaitoh return ENOBUFS;
2142 1.1 ragge
2143 1.3 ragge #ifdef DGE_OFFBYONE_RXBUG
2144 1.3 ragge if ((buf = dge_getbuf(sc)) == NULL)
2145 1.3 ragge return ENOBUFS;
2146 1.3 ragge
2147 1.3 ragge m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2148 1.3 ragge MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2149 1.6 yamt m->m_flags |= M_EXT_RW;
2150 1.3 ragge
2151 1.3 ragge if (rxs->rxs_mbuf != NULL)
2152 1.3 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2153 1.3 ragge rxs->rxs_mbuf = m;
2154 1.3 ragge
2155 1.3 ragge error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2156 1.53 msaitoh DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
2157 1.3 ragge #else
2158 1.1 ragge MCLGET(m, M_DONTWAIT);
2159 1.1 ragge if ((m->m_flags & M_EXT) == 0) {
2160 1.1 ragge m_freem(m);
2161 1.52 msaitoh return ENOBUFS;
2162 1.1 ragge }
2163 1.1 ragge
2164 1.1 ragge if (rxs->rxs_mbuf != NULL)
2165 1.1 ragge bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2166 1.1 ragge
2167 1.1 ragge rxs->rxs_mbuf = m;
2168 1.1 ragge
2169 1.1 ragge m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2170 1.1 ragge error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2171 1.53 msaitoh BUS_DMA_READ | BUS_DMA_NOWAIT);
2172 1.3 ragge #endif
2173 1.1 ragge if (error) {
2174 1.1 ragge printf("%s: unable to load rx DMA map %d, error = %d\n",
2175 1.35 chs device_xname(sc->sc_dev), idx, error);
2176 1.1 ragge panic("dge_add_rxbuf"); /* XXX XXX XXX */
2177 1.1 ragge }
2178 1.1 ragge bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2179 1.1 ragge rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2180 1.1 ragge
2181 1.52 msaitoh return 0;
2182 1.1 ragge }
2183 1.1 ragge
2184 1.1 ragge /*
2185 1.1 ragge * dge_set_ral:
2186 1.1 ragge *
2187 1.1 ragge * Set an entry in the receive address list.
2188 1.1 ragge */
2189 1.1 ragge static void
2190 1.1 ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2191 1.1 ragge {
2192 1.1 ragge uint32_t ral_lo, ral_hi;
2193 1.1 ragge
2194 1.1 ragge if (enaddr != NULL) {
2195 1.1 ragge ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2196 1.1 ragge (enaddr[3] << 24);
2197 1.1 ragge ral_hi = enaddr[4] | (enaddr[5] << 8);
2198 1.1 ragge ral_hi |= RAH_AV;
2199 1.1 ragge } else {
2200 1.1 ragge ral_lo = 0;
2201 1.1 ragge ral_hi = 0;
2202 1.1 ragge }
2203 1.1 ragge CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2204 1.1 ragge CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2205 1.1 ragge }
2206 1.1 ragge
2207 1.1 ragge /*
2208 1.1 ragge * dge_mchash:
2209 1.1 ragge *
2210 1.1 ragge * Compute the hash of the multicast address for the 4096-bit
2211 1.1 ragge * multicast filter.
2212 1.1 ragge */
2213 1.1 ragge static uint32_t
2214 1.1 ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2215 1.1 ragge {
2216 1.1 ragge static const int lo_shift[4] = { 4, 3, 2, 0 };
2217 1.1 ragge static const int hi_shift[4] = { 4, 5, 6, 8 };
2218 1.1 ragge uint32_t hash;
2219 1.1 ragge
2220 1.1 ragge hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2221 1.1 ragge (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2222 1.1 ragge
2223 1.1 ragge return (hash & 0xfff);
2224 1.1 ragge }
2225 1.1 ragge
2226 1.1 ragge /*
2227 1.1 ragge * dge_set_filter:
2228 1.1 ragge *
2229 1.1 ragge * Set up the receive filter.
2230 1.1 ragge */
2231 1.1 ragge static void
2232 1.1 ragge dge_set_filter(struct dge_softc *sc)
2233 1.1 ragge {
2234 1.1 ragge struct ethercom *ec = &sc->sc_ethercom;
2235 1.1 ragge struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2236 1.1 ragge struct ether_multi *enm;
2237 1.1 ragge struct ether_multistep step;
2238 1.1 ragge uint32_t hash, reg, bit;
2239 1.1 ragge int i;
2240 1.1 ragge
2241 1.1 ragge sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2242 1.1 ragge
2243 1.1 ragge if (ifp->if_flags & IFF_BROADCAST)
2244 1.1 ragge sc->sc_rctl |= RCTL_BAM;
2245 1.1 ragge if (ifp->if_flags & IFF_PROMISC) {
2246 1.1 ragge sc->sc_rctl |= RCTL_UPE;
2247 1.1 ragge goto allmulti;
2248 1.1 ragge }
2249 1.1 ragge
2250 1.1 ragge /*
2251 1.1 ragge * Set the station address in the first RAL slot, and
2252 1.1 ragge * clear the remaining slots.
2253 1.1 ragge */
2254 1.16 dyoung dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2255 1.1 ragge for (i = 1; i < RA_TABSIZE; i++)
2256 1.1 ragge dge_set_ral(sc, NULL, i);
2257 1.1 ragge
2258 1.1 ragge /* Clear out the multicast table. */
2259 1.1 ragge for (i = 0; i < MC_TABSIZE; i++)
2260 1.1 ragge CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2261 1.1 ragge
2262 1.54 msaitoh ETHER_LOCK(ec);
2263 1.1 ragge ETHER_FIRST_MULTI(step, ec, enm);
2264 1.1 ragge while (enm != NULL) {
2265 1.1 ragge if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2266 1.1 ragge /*
2267 1.1 ragge * We must listen to a range of multicast addresses.
2268 1.1 ragge * For now, just accept all multicasts, rather than
2269 1.1 ragge * trying to set only those filter bits needed to match
2270 1.1 ragge * the range. (At this time, the only use of address
2271 1.1 ragge * ranges is for IP multicast routing, for which the
2272 1.1 ragge * range is big enough to require all bits set.)
2273 1.1 ragge */
2274 1.54 msaitoh ETHER_UNLOCK(ec);
2275 1.1 ragge goto allmulti;
2276 1.1 ragge }
2277 1.1 ragge
2278 1.1 ragge hash = dge_mchash(sc, enm->enm_addrlo);
2279 1.1 ragge
2280 1.1 ragge reg = (hash >> 5) & 0x7f;
2281 1.1 ragge bit = hash & 0x1f;
2282 1.1 ragge
2283 1.1 ragge hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2284 1.1 ragge hash |= 1U << bit;
2285 1.1 ragge
2286 1.1 ragge CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2287 1.1 ragge
2288 1.1 ragge ETHER_NEXT_MULTI(step, enm);
2289 1.1 ragge }
2290 1.54 msaitoh ETHER_UNLOCK(ec);
2291 1.1 ragge
2292 1.1 ragge ifp->if_flags &= ~IFF_ALLMULTI;
2293 1.1 ragge goto setit;
2294 1.1 ragge
2295 1.1 ragge allmulti:
2296 1.1 ragge ifp->if_flags |= IFF_ALLMULTI;
2297 1.1 ragge sc->sc_rctl |= RCTL_MPE;
2298 1.1 ragge
2299 1.1 ragge setit:
2300 1.1 ragge CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2301 1.1 ragge }
2302 1.1 ragge
2303 1.1 ragge /*
2304 1.1 ragge * Read in the EEPROM info and verify checksum.
2305 1.1 ragge */
2306 1.1 ragge int
2307 1.1 ragge dge_read_eeprom(struct dge_softc *sc)
2308 1.1 ragge {
2309 1.1 ragge uint16_t cksum;
2310 1.1 ragge int i;
2311 1.1 ragge
2312 1.1 ragge cksum = 0;
2313 1.1 ragge for (i = 0; i < EEPROM_SIZE; i++) {
2314 1.1 ragge sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2315 1.1 ragge cksum += sc->sc_eeprom[i];
2316 1.1 ragge }
2317 1.1 ragge return cksum != EEPROM_CKSUM;
2318 1.1 ragge }
2319 1.1 ragge
2320 1.1 ragge
2321 1.1 ragge /*
2322 1.1 ragge * Read a 16-bit word from address addr in the serial EEPROM.
2323 1.1 ragge */
2324 1.1 ragge uint16_t
2325 1.1 ragge dge_eeprom_word(struct dge_softc *sc, int addr)
2326 1.1 ragge {
2327 1.1 ragge uint32_t reg;
2328 1.1 ragge uint16_t rval = 0;
2329 1.1 ragge int i;
2330 1.1 ragge
2331 1.53 msaitoh reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
2332 1.1 ragge
2333 1.1 ragge /* Lower clock pulse (and data in to chip) */
2334 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2335 1.1 ragge /* Select chip */
2336 1.53 msaitoh CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
2337 1.1 ragge
2338 1.1 ragge /* Send read command */
2339 1.1 ragge dge_eeprom_clockout(sc, 1);
2340 1.1 ragge dge_eeprom_clockout(sc, 1);
2341 1.1 ragge dge_eeprom_clockout(sc, 0);
2342 1.1 ragge
2343 1.1 ragge /* Send address */
2344 1.1 ragge for (i = 5; i >= 0; i--)
2345 1.1 ragge dge_eeprom_clockout(sc, (addr >> i) & 1);
2346 1.1 ragge
2347 1.1 ragge /* Read data */
2348 1.1 ragge for (i = 0; i < 16; i++) {
2349 1.1 ragge rval <<= 1;
2350 1.1 ragge rval |= dge_eeprom_clockin(sc);
2351 1.1 ragge }
2352 1.1 ragge
2353 1.1 ragge /* Deselect chip */
2354 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2355 1.1 ragge
2356 1.1 ragge return rval;
2357 1.1 ragge }
2358 1.1 ragge
2359 1.1 ragge /*
2360 1.1 ragge * Clock out a single bit to the EEPROM.
2361 1.1 ragge */
2362 1.1 ragge void
2363 1.1 ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
2364 1.1 ragge {
2365 1.1 ragge int reg;
2366 1.1 ragge
2367 1.53 msaitoh reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
2368 1.1 ragge if (bit)
2369 1.1 ragge reg |= EECD_DI;
2370 1.10 perry
2371 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2372 1.1 ragge delay(2);
2373 1.53 msaitoh CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
2374 1.1 ragge delay(2);
2375 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg);
2376 1.1 ragge delay(2);
2377 1.1 ragge }
2378 1.1 ragge
2379 1.1 ragge /*
2380 1.1 ragge * Clock in a single bit from EEPROM.
2381 1.1 ragge */
2382 1.1 ragge int
2383 1.1 ragge dge_eeprom_clockin(struct dge_softc *sc)
2384 1.1 ragge {
2385 1.1 ragge int reg, rv;
2386 1.1 ragge
2387 1.53 msaitoh reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
2388 1.1 ragge
2389 1.53 msaitoh CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
2390 1.1 ragge delay(2);
2391 1.1 ragge rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2392 1.1 ragge CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2393 1.1 ragge delay(2);
2394 1.1 ragge
2395 1.1 ragge return rv;
2396 1.1 ragge }
2397 1.1 ragge
2398 1.1 ragge static void
2399 1.1 ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2400 1.1 ragge {
2401 1.1 ragge struct dge_softc *sc = ifp->if_softc;
2402 1.1 ragge
2403 1.1 ragge ifmr->ifm_status = IFM_AVALID;
2404 1.42 pgoyette if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
2405 1.53 msaitoh ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
2406 1.42 pgoyette } else {
2407 1.53 msaitoh ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
2408 1.42 pgoyette }
2409 1.1 ragge
2410 1.1 ragge if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2411 1.1 ragge ifmr->ifm_status |= IFM_ACTIVE;
2412 1.1 ragge }
2413 1.1 ragge
2414 1.1 ragge static inline int
2415 1.1 ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
2416 1.1 ragge {
2417 1.52 msaitoh int i, mdic;
2418 1.1 ragge
2419 1.52 msaitoh CSR_WRITE(sc, DGE_MDIO,
2420 1.1 ragge MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2421 1.52 msaitoh for (i = 0; i < 10; i++) {
2422 1.52 msaitoh delay(10);
2423 1.52 msaitoh if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2424 1.52 msaitoh break;
2425 1.52 msaitoh }
2426 1.52 msaitoh return mdic;
2427 1.1 ragge }
2428 1.1 ragge
2429 1.1 ragge static void
2430 1.39 chs dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
2431 1.1 ragge {
2432 1.1 ragge int mdic;
2433 1.1 ragge
2434 1.1 ragge CSR_WRITE(sc, DGE_MDIRW, val);
2435 1.1 ragge if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2436 1.1 ragge printf("%s: address cycle timeout; phy %d reg %d\n",
2437 1.35 chs device_xname(sc->sc_dev), phy, reg);
2438 1.1 ragge return;
2439 1.1 ragge }
2440 1.1 ragge if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2441 1.39 chs printf("%s: write cycle timeout; phy %d reg %d\n",
2442 1.35 chs device_xname(sc->sc_dev), phy, reg);
2443 1.1 ragge return;
2444 1.1 ragge }
2445 1.1 ragge }
2446 1.1 ragge
2447 1.1 ragge static void
2448 1.1 ragge dge_xgmii_reset(struct dge_softc *sc)
2449 1.1 ragge {
2450 1.39 chs dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
2451 1.1 ragge }
2452 1.1 ragge
2453 1.1 ragge static int
2454 1.14 christos dge_xgmii_mediachange(struct ifnet *ifp)
2455 1.1 ragge {
2456 1.1 ragge return 0;
2457 1.1 ragge }
2458