Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.58.10.1
      1  1.58.10.1   thorpej /*	$NetBSD: if_dge.c,v 1.58.10.1 2021/05/13 00:47:31 thorpej Exp $ */
      2        1.1     ragge 
      3        1.1     ragge /*
      4        1.1     ragge  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5        1.1     ragge  * All rights reserved.
      6        1.1     ragge  *
      7        1.1     ragge  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8        1.1     ragge  *
      9        1.1     ragge  * Redistribution and use in source and binary forms, with or without
     10        1.1     ragge  * modification, are permitted provided that the following conditions
     11        1.1     ragge  * are met:
     12        1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     13        1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     14        1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     15        1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     16        1.1     ragge  *    documentation and/or other materials provided with the distribution.
     17        1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     18        1.1     ragge  *    must display the following acknowledgement:
     19        1.1     ragge  *	This product includes software developed for the NetBSD Project by
     20        1.1     ragge  *	SUNET, Swedish University Computer Network.
     21        1.1     ragge  * 4. The name of SUNET may not be used to endorse or promote products
     22        1.1     ragge  *    derived from this software without specific prior written permission.
     23        1.1     ragge  *
     24        1.1     ragge  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25        1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26        1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27        1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28        1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29        1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30        1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31        1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32        1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33        1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34        1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     35        1.1     ragge  */
     36        1.1     ragge 
     37        1.1     ragge /*
     38        1.1     ragge  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39        1.1     ragge  * All rights reserved.
     40        1.1     ragge  *
     41        1.1     ragge  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42        1.1     ragge  *
     43        1.1     ragge  * Redistribution and use in source and binary forms, with or without
     44        1.1     ragge  * modification, are permitted provided that the following conditions
     45        1.1     ragge  * are met:
     46        1.1     ragge  * 1. Redistributions of source code must retain the above copyright
     47        1.1     ragge  *    notice, this list of conditions and the following disclaimer.
     48        1.1     ragge  * 2. Redistributions in binary form must reproduce the above copyright
     49        1.1     ragge  *    notice, this list of conditions and the following disclaimer in the
     50        1.1     ragge  *    documentation and/or other materials provided with the distribution.
     51        1.1     ragge  * 3. All advertising materials mentioning features or use of this software
     52        1.1     ragge  *    must display the following acknowledgement:
     53        1.1     ragge  *	This product includes software developed for the NetBSD Project by
     54        1.1     ragge  *	Wasabi Systems, Inc.
     55        1.1     ragge  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56        1.1     ragge  *    or promote products derived from this software without specific prior
     57        1.1     ragge  *    written permission.
     58        1.1     ragge  *
     59        1.1     ragge  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60        1.1     ragge  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61        1.1     ragge  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62        1.1     ragge  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63        1.1     ragge  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64        1.1     ragge  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65        1.1     ragge  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66        1.1     ragge  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67        1.1     ragge  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68        1.1     ragge  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69        1.1     ragge  * POSSIBILITY OF SUCH DAMAGE.
     70        1.1     ragge  */
     71        1.1     ragge 
     72        1.1     ragge /*
     73        1.1     ragge  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74        1.1     ragge  *
     75        1.1     ragge  * TODO (in no specific order):
     76        1.1     ragge  *	HW VLAN support.
     77        1.1     ragge  *	TSE offloading (needs kernel changes...)
     78        1.1     ragge  *	RAIDC (receive interrupt delay adaptation)
     79        1.1     ragge  *	Use memory > 4GB.
     80        1.1     ragge  */
     81        1.1     ragge 
     82        1.1     ragge #include <sys/cdefs.h>
     83  1.58.10.1   thorpej __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.58.10.1 2021/05/13 00:47:31 thorpej Exp $");
     84       1.34       tls 
     85        1.1     ragge 
     86        1.1     ragge 
     87        1.1     ragge #include <sys/param.h>
     88        1.1     ragge #include <sys/systm.h>
     89       1.10     perry #include <sys/callout.h>
     90        1.1     ragge #include <sys/mbuf.h>
     91        1.1     ragge #include <sys/malloc.h>
     92        1.1     ragge #include <sys/kernel.h>
     93        1.1     ragge #include <sys/socket.h>
     94        1.1     ragge #include <sys/ioctl.h>
     95        1.1     ragge #include <sys/errno.h>
     96        1.1     ragge #include <sys/device.h>
     97        1.1     ragge #include <sys/queue.h>
     98       1.40  riastrad #include <sys/rndsource.h>
     99        1.1     ragge 
    100        1.1     ragge #include <net/if.h>
    101       1.10     perry #include <net/if_dl.h>
    102        1.1     ragge #include <net/if_media.h>
    103        1.1     ragge #include <net/if_ether.h>
    104        1.1     ragge #include <net/bpf.h>
    105        1.1     ragge 
    106        1.1     ragge #include <netinet/in.h>			/* XXX for struct ip */
    107        1.1     ragge #include <netinet/in_systm.h>		/* XXX for struct ip */
    108        1.1     ragge #include <netinet/ip.h>			/* XXX for struct ip */
    109        1.1     ragge #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    110        1.1     ragge 
    111       1.17        ad #include <sys/bus.h>
    112       1.17        ad #include <sys/intr.h>
    113        1.1     ragge #include <machine/endian.h>
    114        1.1     ragge 
    115        1.1     ragge #include <dev/mii/mii.h>
    116        1.1     ragge #include <dev/mii/miivar.h>
    117        1.1     ragge #include <dev/mii/mii_bitbang.h>
    118        1.1     ragge 
    119        1.1     ragge #include <dev/pci/pcireg.h>
    120        1.1     ragge #include <dev/pci/pcivar.h>
    121        1.1     ragge #include <dev/pci/pcidevs.h>
    122        1.1     ragge 
    123        1.1     ragge #include <dev/pci/if_dgereg.h>
    124        1.1     ragge 
    125        1.3     ragge /*
    126        1.3     ragge  * The receive engine may sometimes become off-by-one when writing back
    127        1.3     ragge  * chained descriptors.	 Avoid this by allocating a large chunk of
    128        1.3     ragge  * memory and use if instead (to avoid chained descriptors).
    129        1.3     ragge  * This only happens with chained descriptors under heavy load.
    130        1.3     ragge  */
    131        1.3     ragge #define DGE_OFFBYONE_RXBUG
    132        1.3     ragge 
    133        1.1     ragge #define DGE_EVENT_COUNTERS
    134        1.1     ragge #define DGE_DEBUG
    135        1.1     ragge 
    136        1.1     ragge #ifdef DGE_DEBUG
    137        1.3     ragge #define DGE_DEBUG_LINK		0x01
    138        1.3     ragge #define DGE_DEBUG_TX		0x02
    139        1.3     ragge #define DGE_DEBUG_RX		0x04
    140        1.3     ragge #define DGE_DEBUG_CKSUM		0x08
    141        1.1     ragge int	dge_debug = 0;
    142        1.1     ragge 
    143        1.3     ragge #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    144        1.1     ragge #else
    145        1.3     ragge #define DPRINTF(x, y)	/* nothing */
    146        1.1     ragge #endif /* DGE_DEBUG */
    147        1.1     ragge 
    148        1.1     ragge /*
    149        1.1     ragge  * Transmit descriptor list size. We allow up to 100 DMA segments per
    150        1.1     ragge  * packet (Intel reports of jumbo frame packets with as
    151        1.1     ragge  * many as 80 DMA segments when using 16k buffers).
    152        1.1     ragge  */
    153        1.3     ragge #define DGE_NTXSEGS		100
    154        1.3     ragge #define DGE_IFQUEUELEN		20000
    155        1.3     ragge #define DGE_TXQUEUELEN		2048
    156        1.3     ragge #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    157        1.3     ragge #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    158        1.3     ragge #define DGE_NTXDESC		1024
    159        1.3     ragge #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    160        1.3     ragge #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    161        1.3     ragge #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    162        1.1     ragge 
    163        1.1     ragge /*
    164        1.1     ragge  * Receive descriptor list size.
    165        1.1     ragge  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    166        1.3     ragge  * be chained.	Due to the nature of the card (high-speed), keep this
    167        1.1     ragge  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    168        1.1     ragge  * which at full speed will be received in just under 3ms.
    169        1.1     ragge  */
    170        1.3     ragge #define DGE_NRXDESC		2048
    171        1.3     ragge #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    172        1.3     ragge #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    173        1.1     ragge /*
    174        1.1     ragge  * # of descriptors between head and written descriptors.
    175        1.1     ragge  * This is to work-around two erratas.
    176        1.1     ragge  */
    177        1.1     ragge #define DGE_RXSPACE		10
    178        1.3     ragge #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    179        1.1     ragge /*
    180        1.1     ragge  * Receive descriptor fetch threshholds. These are values recommended
    181        1.1     ragge  * by Intel, do not touch them unless you know what you are doing.
    182        1.1     ragge  */
    183        1.3     ragge #define RXDCTL_PTHRESH_VAL	128
    184        1.3     ragge #define RXDCTL_HTHRESH_VAL	16
    185        1.3     ragge #define RXDCTL_WTHRESH_VAL	16
    186        1.1     ragge 
    187        1.1     ragge 
    188        1.1     ragge /*
    189        1.1     ragge  * Tweakable parameters; default values.
    190        1.1     ragge  */
    191        1.3     ragge #define FCRTH	0x30000 /* Send XOFF water mark */
    192        1.3     ragge #define FCRTL	0x28000 /* Send XON water mark */
    193        1.3     ragge #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    194        1.3     ragge #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    195        1.1     ragge 
    196        1.1     ragge /*
    197        1.1     ragge  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    198        1.1     ragge  * a single clump that maps to a single DMA segment to make serveral things
    199        1.1     ragge  * easier.
    200        1.1     ragge  */
    201        1.1     ragge struct dge_control_data {
    202        1.1     ragge 	/*
    203        1.1     ragge 	 * The transmit descriptors.
    204        1.1     ragge 	 */
    205        1.1     ragge 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    206        1.1     ragge 
    207        1.1     ragge 	/*
    208        1.1     ragge 	 * The receive descriptors.
    209        1.1     ragge 	 */
    210        1.1     ragge 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    211        1.1     ragge };
    212        1.1     ragge 
    213        1.3     ragge #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    214        1.3     ragge #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    215        1.3     ragge #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    216        1.1     ragge 
    217        1.1     ragge /*
    218        1.2     ragge  * The DGE interface have a higher max MTU size than normal jumbo frames.
    219        1.2     ragge  */
    220        1.3     ragge #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    221        1.2     ragge 
    222        1.2     ragge /*
    223        1.1     ragge  * Software state for transmit jobs.
    224        1.1     ragge  */
    225        1.1     ragge struct dge_txsoft {
    226        1.1     ragge 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    227        1.1     ragge 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    228        1.1     ragge 	int txs_firstdesc;		/* first descriptor in packet */
    229        1.1     ragge 	int txs_lastdesc;		/* last descriptor in packet */
    230        1.1     ragge 	int txs_ndesc;			/* # of descriptors used */
    231        1.1     ragge };
    232        1.1     ragge 
    233        1.1     ragge /*
    234        1.3     ragge  * Software state for receive buffers.	Each descriptor gets a
    235        1.3     ragge  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    236        1.1     ragge  * more than one buffer, we chain them together.
    237        1.1     ragge  */
    238        1.1     ragge struct dge_rxsoft {
    239        1.1     ragge 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    240        1.1     ragge 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    241        1.1     ragge };
    242        1.1     ragge 
    243        1.1     ragge /*
    244        1.1     ragge  * Software state per device.
    245        1.1     ragge  */
    246        1.1     ragge struct dge_softc {
    247       1.35       chs 	device_t sc_dev;		/* generic device information */
    248        1.1     ragge 	bus_space_tag_t sc_st;		/* bus space tag */
    249        1.1     ragge 	bus_space_handle_t sc_sh;	/* bus space handle */
    250        1.1     ragge 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    251        1.1     ragge 	struct ethercom sc_ethercom;	/* ethernet common data */
    252        1.1     ragge 
    253        1.1     ragge 	int sc_flags;			/* flags; see below */
    254        1.1     ragge 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    255        1.1     ragge 	int sc_pcix_offset;		/* PCIX capability register offset */
    256        1.1     ragge 
    257       1.42  pgoyette 	const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
    258        1.1     ragge 	pci_chipset_tag_t sc_pc;
    259        1.1     ragge 	pcitag_t sc_pt;
    260        1.1     ragge 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    261        1.1     ragge 
    262        1.1     ragge 	void *sc_ih;			/* interrupt cookie */
    263        1.1     ragge 
    264        1.1     ragge 	struct ifmedia sc_media;
    265        1.1     ragge 
    266        1.1     ragge 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    267        1.3     ragge #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    268        1.1     ragge 
    269        1.1     ragge 	int		sc_align_tweak;
    270        1.1     ragge 
    271        1.1     ragge 	/*
    272        1.1     ragge 	 * Software state for the transmit and receive descriptors.
    273        1.1     ragge 	 */
    274        1.1     ragge 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    275        1.1     ragge 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    276        1.1     ragge 
    277        1.1     ragge 	/*
    278        1.1     ragge 	 * Control data structures.
    279        1.1     ragge 	 */
    280        1.1     ragge 	struct dge_control_data *sc_control_data;
    281        1.3     ragge #define sc_txdescs	sc_control_data->wcd_txdescs
    282        1.3     ragge #define sc_rxdescs	sc_control_data->wcd_rxdescs
    283        1.1     ragge 
    284        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    285        1.1     ragge 	/* Event counters. */
    286        1.1     ragge 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    287        1.1     ragge 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    288        1.3     ragge 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    289        1.1     ragge 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    290        1.1     ragge 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    291        1.1     ragge 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    292        1.1     ragge 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    293        1.1     ragge 
    294        1.1     ragge 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    295        1.1     ragge 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    296        1.1     ragge 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    297        1.1     ragge 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    298        1.1     ragge 
    299        1.1     ragge 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    300        1.1     ragge 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    301        1.1     ragge 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    302        1.1     ragge 
    303        1.1     ragge 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    304        1.1     ragge 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    305        1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    306        1.1     ragge 
    307        1.1     ragge 	int	sc_txfree;		/* number of free Tx descriptors */
    308        1.1     ragge 	int	sc_txnext;		/* next ready Tx descriptor */
    309        1.1     ragge 
    310        1.1     ragge 	int	sc_txsfree;		/* number of free Tx jobs */
    311        1.1     ragge 	int	sc_txsnext;		/* next free Tx job */
    312        1.1     ragge 	int	sc_txsdirty;		/* dirty Tx jobs */
    313        1.1     ragge 
    314        1.1     ragge 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    315        1.1     ragge 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    316        1.1     ragge 
    317        1.1     ragge 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    318        1.1     ragge 	int	sc_rxdiscard;
    319        1.1     ragge 	int	sc_rxlen;
    320        1.1     ragge 	struct mbuf *sc_rxhead;
    321        1.1     ragge 	struct mbuf *sc_rxtail;
    322        1.1     ragge 	struct mbuf **sc_rxtailp;
    323        1.1     ragge 
    324        1.1     ragge 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    325        1.1     ragge 	uint32_t sc_icr;		/* prototype interrupt bits */
    326        1.1     ragge 	uint32_t sc_tctl;		/* prototype TCTL register */
    327        1.1     ragge 	uint32_t sc_rctl;		/* prototype RCTL register */
    328        1.1     ragge 
    329        1.1     ragge 	int sc_mchash_type;		/* multicast filter offset */
    330        1.1     ragge 
    331        1.1     ragge 	uint16_t sc_eeprom[EEPROM_SIZE];
    332        1.1     ragge 
    333       1.32       tls 	krndsource_t rnd_source; /* random source */
    334        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    335       1.15  christos 	void *sc_bugbuf;
    336        1.3     ragge 	SLIST_HEAD(, rxbugentry) sc_buglist;
    337        1.3     ragge 	bus_dmamap_t sc_bugmap;
    338        1.3     ragge 	struct rxbugentry *sc_entry;
    339        1.1     ragge #endif
    340        1.1     ragge };
    341        1.1     ragge 
    342        1.3     ragge #define DGE_RXCHAIN_RESET(sc)						\
    343        1.1     ragge do {									\
    344        1.1     ragge 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    345        1.1     ragge 	*(sc)->sc_rxtailp = NULL;					\
    346        1.1     ragge 	(sc)->sc_rxlen = 0;						\
    347        1.1     ragge } while (/*CONSTCOND*/0)
    348        1.1     ragge 
    349        1.3     ragge #define DGE_RXCHAIN_LINK(sc, m)						\
    350        1.1     ragge do {									\
    351        1.1     ragge 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    352        1.1     ragge 	(sc)->sc_rxtailp = &(m)->m_next;				\
    353        1.1     ragge } while (/*CONSTCOND*/0)
    354        1.1     ragge 
    355        1.1     ragge /* sc_flags */
    356        1.3     ragge #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    357        1.3     ragge #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    358        1.1     ragge 
    359        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    360        1.3     ragge #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    361        1.1     ragge #else
    362        1.3     ragge #define DGE_EVCNT_INCR(ev)	/* nothing */
    363        1.1     ragge #endif
    364        1.1     ragge 
    365        1.3     ragge #define CSR_READ(sc, reg)						\
    366        1.1     ragge 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    367        1.3     ragge #define CSR_WRITE(sc, reg, val)						\
    368        1.1     ragge 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    369        1.1     ragge 
    370        1.3     ragge #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    371        1.3     ragge #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    372        1.1     ragge 
    373        1.3     ragge #define DGE_CDTXSYNC(sc, x, n, ops)					\
    374        1.1     ragge do {									\
    375        1.1     ragge 	int __x, __n;							\
    376        1.1     ragge 									\
    377        1.1     ragge 	__x = (x);							\
    378        1.1     ragge 	__n = (n);							\
    379        1.1     ragge 									\
    380        1.1     ragge 	/* If it will wrap around, sync to the end of the ring. */	\
    381        1.5   thorpej 	if ((__x + __n) > DGE_NTXDESC) {				\
    382        1.1     ragge 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    383        1.1     ragge 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    384        1.5   thorpej 		    (DGE_NTXDESC - __x), (ops));			\
    385        1.1     ragge 		__n -= (DGE_NTXDESC - __x);				\
    386        1.1     ragge 		__x = 0;						\
    387        1.1     ragge 	}								\
    388        1.1     ragge 									\
    389        1.1     ragge 	/* Now sync whatever is left. */				\
    390        1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    391        1.1     ragge 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    392        1.1     ragge } while (/*CONSTCOND*/0)
    393        1.1     ragge 
    394        1.3     ragge #define DGE_CDRXSYNC(sc, x, ops)						\
    395        1.1     ragge do {									\
    396        1.1     ragge 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    397        1.1     ragge 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    398        1.1     ragge } while (/*CONSTCOND*/0)
    399        1.1     ragge 
    400        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    401        1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    402        1.3     ragge do {									\
    403        1.3     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    404        1.3     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    405        1.3     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    406       1.58   thorpej 	const bus_addr_t __rxaddr = sc->sc_bugmap->dm_segs[0].ds_addr +	\
    407       1.58   thorpej 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf);		\
    408        1.3     ragge 									\
    409       1.58   thorpej 	__rxd->dr_baddrl = htole32(__rxaddr);				\
    410       1.58   thorpej 	__rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32);		\
    411        1.3     ragge 	__rxd->dr_len = 0;						\
    412        1.3     ragge 	__rxd->dr_cksum = 0;						\
    413        1.3     ragge 	__rxd->dr_status = 0;						\
    414        1.3     ragge 	__rxd->dr_errors = 0;						\
    415        1.3     ragge 	__rxd->dr_special = 0;						\
    416       1.53   msaitoh 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    417        1.3     ragge 									\
    418        1.3     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    419        1.3     ragge } while (/*CONSTCOND*/0)
    420        1.3     ragge #else
    421        1.3     ragge #define DGE_INIT_RXDESC(sc, x)						\
    422        1.1     ragge do {									\
    423        1.1     ragge 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    424        1.1     ragge 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    425        1.1     ragge 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    426        1.1     ragge 									\
    427        1.1     ragge 	/*								\
    428        1.1     ragge 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    429        1.1     ragge 	 * so that the payload after the Ethernet header is aligned	\
    430        1.1     ragge 	 * to a 4-byte boundary.					\
    431        1.1     ragge 	 *								\
    432        1.1     ragge 	 * XXX BRAINDAMAGE ALERT!					\
    433        1.1     ragge 	 * The stupid chip uses the same size for every buffer, which	\
    434        1.3     ragge 	 * is set in the Receive Control register.  We are using the 2K \
    435        1.1     ragge 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    436        1.1     ragge 	 * reason, we can't "scoot" packets longer than the standard	\
    437        1.1     ragge 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    438        1.1     ragge 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    439        1.1     ragge 	 * the upper layer copy the headers.				\
    440        1.1     ragge 	 */								\
    441        1.1     ragge 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    442        1.1     ragge 									\
    443       1.58   thorpej 	const bus_addr_t __rxaddr =					\
    444       1.58   thorpej 	    __rxs->rxs_dmamap->dm_segs[0].ds_addr +			\
    445       1.58   thorpej 	    (sc)->sc_align_tweak;					\
    446       1.58   thorpej 									\
    447       1.58   thorpej 	__rxd->dr_baddrl = htole32(__rxaddr);				\
    448       1.58   thorpej 	__rxd->dr_baddrh = htole32(((uint64_t)__rxaddr) >> 32);		\
    449        1.1     ragge 	__rxd->dr_len = 0;						\
    450        1.1     ragge 	__rxd->dr_cksum = 0;						\
    451        1.1     ragge 	__rxd->dr_status = 0;						\
    452        1.1     ragge 	__rxd->dr_errors = 0;						\
    453        1.1     ragge 	__rxd->dr_special = 0;						\
    454       1.53   msaitoh 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); \
    455        1.1     ragge 									\
    456        1.1     ragge 	CSR_WRITE((sc), DGE_RDT, (x));					\
    457        1.1     ragge } while (/*CONSTCOND*/0)
    458        1.3     ragge #endif
    459        1.3     ragge 
    460        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    461        1.3     ragge /*
    462        1.3     ragge  * Allocation constants.  Much memory may be used for this.
    463        1.3     ragge  */
    464        1.3     ragge #ifndef DGE_BUFFER_SIZE
    465        1.3     ragge #define DGE_BUFFER_SIZE DGE_MAX_MTU
    466        1.3     ragge #endif
    467        1.3     ragge #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    468        1.3     ragge #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    469        1.3     ragge 
    470        1.3     ragge struct rxbugentry {
    471        1.3     ragge 	SLIST_ENTRY(rxbugentry) rb_entry;
    472        1.3     ragge 	int rb_slot;
    473        1.3     ragge };
    474        1.3     ragge 
    475        1.3     ragge static int
    476        1.3     ragge dge_alloc_rcvmem(struct dge_softc *sc)
    477        1.3     ragge {
    478       1.36  christos 	char *kva;
    479        1.3     ragge 	bus_dma_segment_t seg;
    480        1.3     ragge 	int i, rseg, state, error;
    481        1.3     ragge 	struct rxbugentry *entry;
    482        1.3     ragge 
    483        1.3     ragge 	state = error = 0;
    484        1.3     ragge 
    485        1.3     ragge 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    486        1.3     ragge 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    487       1.35       chs 		aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
    488        1.3     ragge 		return ENOBUFS;
    489        1.3     ragge 	}
    490        1.3     ragge 
    491        1.3     ragge 	state = 1;
    492       1.15  christos 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    493        1.3     ragge 	    BUS_DMA_NOWAIT)) {
    494       1.52   msaitoh 		aprint_error_dev(sc->sc_dev,
    495       1.52   msaitoh 		    "can't map DMA buffers (%d bytes)\n", (int)DGE_RXMEM);
    496        1.3     ragge 		error = ENOBUFS;
    497        1.3     ragge 		goto out;
    498        1.3     ragge 	}
    499        1.3     ragge 
    500        1.3     ragge 	state = 2;
    501        1.3     ragge 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    502        1.3     ragge 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    503       1.35       chs 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
    504        1.3     ragge 		error = ENOBUFS;
    505        1.3     ragge 		goto out;
    506        1.3     ragge 	}
    507        1.3     ragge 
    508        1.3     ragge 	state = 3;
    509        1.3     ragge 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    510        1.3     ragge 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    511       1.35       chs 		aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
    512        1.3     ragge 		error = ENOBUFS;
    513        1.3     ragge 		goto out;
    514        1.3     ragge 	}
    515        1.3     ragge 
    516        1.3     ragge 	state = 4;
    517       1.15  christos 	sc->sc_bugbuf = (void *)kva;
    518        1.3     ragge 	SLIST_INIT(&sc->sc_buglist);
    519        1.3     ragge 
    520        1.3     ragge 	/*
    521        1.3     ragge 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    522        1.3     ragge 	 * in an array.
    523        1.3     ragge 	 */
    524       1.56       chs 	entry = malloc(sizeof(*entry) * DGE_NBUFFERS, M_DEVBUF, M_WAITOK);
    525        1.3     ragge 	sc->sc_entry = entry;
    526        1.3     ragge 	for (i = 0; i < DGE_NBUFFERS; i++) {
    527        1.3     ragge 		entry[i].rb_slot = i;
    528        1.3     ragge 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    529        1.3     ragge 	}
    530        1.3     ragge out:
    531        1.3     ragge 	if (error != 0) {
    532        1.3     ragge 		switch (state) {
    533        1.3     ragge 		case 4:
    534        1.3     ragge 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    535       1.51       mrg 			/* FALLTHROUGH */
    536        1.3     ragge 		case 3:
    537        1.3     ragge 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    538       1.51       mrg 			/* FALLTHROUGH */
    539        1.3     ragge 		case 2:
    540        1.3     ragge 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    541       1.51       mrg 			/* FALLTHROUGH */
    542        1.3     ragge 		case 1:
    543        1.3     ragge 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    544        1.3     ragge 			break;
    545        1.3     ragge 		default:
    546        1.3     ragge 			break;
    547        1.3     ragge 		}
    548        1.3     ragge 	}
    549        1.3     ragge 
    550        1.3     ragge 	return error;
    551        1.3     ragge }
    552        1.3     ragge 
    553        1.3     ragge /*
    554        1.3     ragge  * Allocate a jumbo buffer.
    555        1.3     ragge  */
    556        1.3     ragge static void *
    557        1.3     ragge dge_getbuf(struct dge_softc *sc)
    558        1.3     ragge {
    559        1.3     ragge 	struct rxbugentry *entry;
    560        1.3     ragge 
    561        1.3     ragge 	entry = SLIST_FIRST(&sc->sc_buglist);
    562        1.3     ragge 
    563        1.3     ragge 	if (entry == NULL) {
    564       1.35       chs 		printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
    565       1.52   msaitoh 		return NULL;
    566        1.3     ragge 	}
    567        1.3     ragge 
    568        1.3     ragge 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    569       1.15  christos 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    570        1.3     ragge }
    571        1.3     ragge 
    572        1.3     ragge /*
    573        1.3     ragge  * Release a jumbo buffer.
    574        1.3     ragge  */
    575        1.3     ragge static void
    576       1.15  christos dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    577        1.3     ragge {
    578        1.3     ragge 	struct rxbugentry *entry;
    579        1.3     ragge 	struct dge_softc *sc;
    580        1.3     ragge 	int i, s;
    581        1.3     ragge 
    582        1.3     ragge 	/* Extract the softc struct pointer. */
    583        1.3     ragge 	sc = (struct dge_softc *)arg;
    584        1.3     ragge 
    585        1.3     ragge 	if (sc == NULL)
    586        1.3     ragge 		panic("dge_freebuf: can't find softc pointer!");
    587        1.3     ragge 
    588        1.3     ragge 	/* calculate the slot this buffer belongs to */
    589        1.3     ragge 
    590       1.15  christos 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    591        1.3     ragge 
    592        1.3     ragge 	if ((i < 0) || (i >= DGE_NBUFFERS))
    593        1.3     ragge 		panic("dge_freebuf: asked to free buffer %d!", i);
    594        1.3     ragge 
    595        1.3     ragge 	s = splvm();
    596        1.3     ragge 	entry = sc->sc_entry + i;
    597        1.3     ragge 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    598        1.3     ragge 
    599        1.3     ragge 	if (__predict_true(m != NULL))
    600       1.18        ad 		pool_cache_put(mb_cache, m);
    601        1.3     ragge 	splx(s);
    602        1.3     ragge }
    603        1.3     ragge #endif
    604        1.1     ragge 
    605        1.1     ragge static void	dge_start(struct ifnet *);
    606        1.1     ragge static void	dge_watchdog(struct ifnet *);
    607       1.15  christos static int	dge_ioctl(struct ifnet *, u_long, void *);
    608        1.1     ragge static int	dge_init(struct ifnet *);
    609        1.1     ragge static void	dge_stop(struct ifnet *, int);
    610        1.1     ragge 
    611       1.27   tsutsui static bool	dge_shutdown(device_t, int);
    612        1.1     ragge 
    613        1.1     ragge static void	dge_reset(struct dge_softc *);
    614        1.1     ragge static void	dge_rxdrain(struct dge_softc *);
    615        1.1     ragge static int	dge_add_rxbuf(struct dge_softc *, int);
    616        1.1     ragge 
    617        1.1     ragge static void	dge_set_filter(struct dge_softc *);
    618        1.1     ragge 
    619        1.1     ragge static int	dge_intr(void *);
    620        1.1     ragge static void	dge_txintr(struct dge_softc *);
    621        1.1     ragge static void	dge_rxintr(struct dge_softc *);
    622        1.1     ragge static void	dge_linkintr(struct dge_softc *, uint32_t);
    623        1.1     ragge 
    624       1.25    cegger static int	dge_match(device_t, cfdata_t, void *);
    625       1.25    cegger static void	dge_attach(device_t, device_t, void *);
    626        1.1     ragge 
    627        1.1     ragge static int	dge_read_eeprom(struct dge_softc *sc);
    628        1.1     ragge static int	dge_eeprom_clockin(struct dge_softc *sc);
    629        1.1     ragge static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    630        1.1     ragge static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    631        1.1     ragge static int	dge_xgmii_mediachange(struct ifnet *);
    632        1.1     ragge static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    633        1.1     ragge static void	dge_xgmii_reset(struct dge_softc *);
    634       1.39       chs static void	dge_xgmii_writereg(struct dge_softc *, int, int, int);
    635        1.1     ragge 
    636        1.1     ragge 
    637       1.35       chs CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
    638        1.1     ragge     dge_match, dge_attach, NULL, NULL);
    639        1.1     ragge 
    640        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    641        1.1     ragge #if DGE_NTXSEGS > 100
    642        1.1     ragge #error Update dge_txseg_evcnt_names
    643        1.1     ragge #endif
    644        1.1     ragge static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    645        1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    646        1.1     ragge 
    647       1.42  pgoyette /*
    648       1.42  pgoyette  * Devices supported by this driver.
    649       1.42  pgoyette  */
    650  1.58.10.1   thorpej struct dge_product {
    651  1.58.10.1   thorpej 	const char *name;
    652  1.58.10.1   thorpej 	int flags;
    653       1.52   msaitoh #define DGEP_F_10G_LR	  0x01
    654       1.52   msaitoh #define DGEP_F_10G_SR	  0x02
    655       1.42  pgoyette };
    656       1.42  pgoyette 
    657  1.58.10.1   thorpej static const struct dge_product i82597EX_lr = {
    658  1.58.10.1   thorpej 	.name = "Intel i82597EX 10GbE-LR Ethernet",
    659  1.58.10.1   thorpej 	.flags = DGEP_F_10G_LR
    660  1.58.10.1   thorpej };
    661       1.42  pgoyette 
    662  1.58.10.1   thorpej static const struct dge_product i82597EX_sr = {
    663  1.58.10.1   thorpej 	.name = "Intel i82597EX 10GbE-SR Ethernet",
    664  1.58.10.1   thorpej 	.flags = DGEP_F_10G_SR
    665  1.58.10.1   thorpej };
    666  1.58.10.1   thorpej 
    667  1.58.10.1   thorpej static const struct device_compatible_entry compat_data[] = {
    668  1.58.10.1   thorpej 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    669  1.58.10.1   thorpej 		PCI_PRODUCT_INTEL_82597EX),
    670  1.58.10.1   thorpej 	  .data = &i82597EX_lr },
    671  1.58.10.1   thorpej 
    672  1.58.10.1   thorpej 	{ .id = PCI_ID_CODE(PCI_VENDOR_INTEL,
    673  1.58.10.1   thorpej 		PCI_PRODUCT_INTEL_82597EX_SR),
    674  1.58.10.1   thorpej 	  .data = &i82597EX_sr },
    675  1.58.10.1   thorpej 
    676  1.58.10.1   thorpej 	PCI_COMPAT_EOL
    677  1.58.10.1   thorpej };
    678       1.42  pgoyette 
    679        1.1     ragge static int
    680       1.25    cegger dge_match(device_t parent, cfdata_t cf, void *aux)
    681        1.1     ragge {
    682        1.1     ragge 	struct pci_attach_args *pa = aux;
    683        1.1     ragge 
    684  1.58.10.1   thorpej 	return pci_compatible_match(pa, compat_data);
    685        1.1     ragge }
    686        1.1     ragge 
    687        1.1     ragge static void
    688       1.25    cegger dge_attach(device_t parent, device_t self, void *aux)
    689        1.1     ragge {
    690       1.26    cegger 	struct dge_softc *sc = device_private(self);
    691        1.1     ragge 	struct pci_attach_args *pa = aux;
    692        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    693        1.1     ragge 	pci_chipset_tag_t pc = pa->pa_pc;
    694        1.1     ragge 	pci_intr_handle_t ih;
    695        1.1     ragge 	const char *intrstr = NULL;
    696        1.1     ragge 	bus_dma_segment_t seg;
    697        1.1     ragge 	int i, rseg, error;
    698        1.1     ragge 	uint8_t enaddr[ETHER_ADDR_LEN];
    699        1.1     ragge 	pcireg_t preg, memtype;
    700        1.1     ragge 	uint32_t reg;
    701       1.37  christos 	char intrbuf[PCI_INTRSTR_LEN];
    702  1.58.10.1   thorpej 	const struct device_compatible_entry *dce;
    703       1.42  pgoyette 	const struct dge_product *dgep;
    704       1.42  pgoyette 
    705  1.58.10.1   thorpej 	dce = pci_compatible_lookup(pa, compat_data);
    706  1.58.10.1   thorpej 	KASSERT(dce != NULL);
    707  1.58.10.1   thorpej 	sc->sc_dgep = dgep = dce->data;
    708        1.1     ragge 
    709       1.35       chs 	sc->sc_dev = self;
    710        1.1     ragge 	sc->sc_pc = pa->pa_pc;
    711        1.1     ragge 	sc->sc_pt = pa->pa_tag;
    712        1.1     ragge 
    713       1.58   thorpej 	if (pci_dma64_available(pa))
    714       1.58   thorpej 		sc->sc_dmat = pa->pa_dmat64;
    715       1.58   thorpej 	else
    716       1.58   thorpej 		sc->sc_dmat = pa->pa_dmat;
    717       1.58   thorpej 
    718       1.33  drochner 	pci_aprint_devinfo_fancy(pa, "Ethernet controller",
    719  1.58.10.1   thorpej 		dgep->name, 1);
    720        1.1     ragge 
    721        1.1     ragge 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    722       1.52   msaitoh 	if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    723       1.52   msaitoh 	    &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    724       1.52   msaitoh 		aprint_error_dev(sc->sc_dev,
    725       1.45   msaitoh 		    "unable to map device registers\n");
    726       1.52   msaitoh 		return;
    727       1.52   msaitoh 	}
    728        1.1     ragge 
    729        1.1     ragge 	/* Enable bus mastering */
    730        1.1     ragge 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    731        1.1     ragge 	preg |= PCI_COMMAND_MASTER_ENABLE;
    732        1.1     ragge 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    733        1.1     ragge 
    734        1.1     ragge 	/*
    735        1.1     ragge 	 * Map and establish our interrupt.
    736        1.1     ragge 	 */
    737        1.1     ragge 	if (pci_intr_map(pa, &ih)) {
    738       1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    739        1.1     ragge 		return;
    740        1.1     ragge 	}
    741       1.37  christos 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    742       1.50  jdolecek 	sc->sc_ih = pci_intr_establish_xname(pc, ih, IPL_NET, dge_intr, sc,
    743       1.50  jdolecek 	    device_xname(self));
    744        1.1     ragge 	if (sc->sc_ih == NULL) {
    745       1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    746        1.1     ragge 		if (intrstr != NULL)
    747       1.28     njoly 			aprint_error(" at %s", intrstr);
    748       1.28     njoly 		aprint_error("\n");
    749        1.1     ragge 		return;
    750        1.1     ragge 	}
    751       1.35       chs 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    752        1.1     ragge 
    753        1.1     ragge 	/*
    754        1.1     ragge 	 * Determine a few things about the bus we're connected to.
    755        1.1     ragge 	 */
    756        1.1     ragge 	reg = CSR_READ(sc, DGE_STATUS);
    757        1.1     ragge 	if (reg & STATUS_BUS64)
    758        1.1     ragge 		sc->sc_flags |= DGE_F_BUS64;
    759        1.1     ragge 
    760        1.1     ragge 	sc->sc_flags |= DGE_F_PCIX;
    761        1.1     ragge 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    762        1.1     ragge 			       PCI_CAP_PCIX,
    763        1.1     ragge 			       &sc->sc_pcix_offset, NULL) == 0)
    764       1.35       chs 		aprint_error_dev(sc->sc_dev, "unable to find PCIX "
    765       1.21    cegger 		    "capability\n");
    766        1.1     ragge 
    767        1.1     ragge 	if (sc->sc_flags & DGE_F_PCIX) {
    768        1.1     ragge 		switch (reg & STATUS_PCIX_MSK) {
    769        1.1     ragge 		case STATUS_PCIX_66:
    770        1.1     ragge 			sc->sc_bus_speed = 66;
    771        1.1     ragge 			break;
    772        1.1     ragge 		case STATUS_PCIX_100:
    773        1.1     ragge 			sc->sc_bus_speed = 100;
    774        1.1     ragge 			break;
    775        1.1     ragge 		case STATUS_PCIX_133:
    776        1.1     ragge 			sc->sc_bus_speed = 133;
    777        1.1     ragge 			break;
    778        1.1     ragge 		default:
    779       1.35       chs 			aprint_error_dev(sc->sc_dev,
    780       1.21    cegger 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    781        1.1     ragge 			    reg & STATUS_PCIX_MSK);
    782        1.1     ragge 			sc->sc_bus_speed = 66;
    783        1.1     ragge 		}
    784        1.1     ragge 	} else
    785        1.1     ragge 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    786       1.35       chs 	aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
    787        1.1     ragge 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    788        1.1     ragge 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    789        1.1     ragge 
    790        1.1     ragge 	/*
    791        1.1     ragge 	 * Allocate the control data structures, and create and load the
    792        1.1     ragge 	 * DMA map for it.
    793        1.1     ragge 	 */
    794        1.1     ragge 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    795        1.1     ragge 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    796        1.1     ragge 	    0)) != 0) {
    797       1.35       chs 		aprint_error_dev(sc->sc_dev,
    798       1.21    cegger 		    "unable to allocate control data, error = %d\n",
    799       1.21    cegger 		    error);
    800        1.1     ragge 		goto fail_0;
    801        1.1     ragge 	}
    802        1.1     ragge 
    803        1.1     ragge 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    804       1.15  christos 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    805        1.1     ragge 	    0)) != 0) {
    806       1.52   msaitoh 		aprint_error_dev(sc->sc_dev,
    807       1.52   msaitoh 		    "unable to map control data, error = %d\n", error);
    808        1.1     ragge 		goto fail_1;
    809        1.1     ragge 	}
    810        1.1     ragge 
    811        1.1     ragge 	if ((error = bus_dmamap_create(sc->sc_dmat,
    812        1.1     ragge 	    sizeof(struct dge_control_data), 1,
    813        1.1     ragge 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    814       1.52   msaitoh 		aprint_error_dev(sc->sc_dev, "unable to create control data "
    815       1.52   msaitoh 		    "DMA map, error = %d\n", error);
    816        1.1     ragge 		goto fail_2;
    817        1.1     ragge 	}
    818        1.1     ragge 
    819        1.1     ragge 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    820        1.1     ragge 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    821        1.1     ragge 	    0)) != 0) {
    822       1.35       chs 		aprint_error_dev(sc->sc_dev,
    823       1.21    cegger 		    "unable to load control data DMA map, error = %d\n",
    824       1.21    cegger 		    error);
    825        1.1     ragge 		goto fail_3;
    826        1.1     ragge 	}
    827        1.1     ragge 
    828       1.10     perry #ifdef DGE_OFFBYONE_RXBUG
    829        1.3     ragge 	if (dge_alloc_rcvmem(sc) != 0)
    830        1.3     ragge 		return; /* Already complained */
    831        1.3     ragge #endif
    832        1.1     ragge 	/*
    833        1.1     ragge 	 * Create the transmit buffer DMA maps.
    834        1.1     ragge 	 */
    835        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    836        1.2     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    837        1.1     ragge 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    838        1.1     ragge 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    839       1.35       chs 			aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
    840       1.21    cegger 			    "error = %d\n", i, error);
    841        1.1     ragge 			goto fail_4;
    842        1.1     ragge 		}
    843        1.1     ragge 	}
    844        1.1     ragge 
    845        1.1     ragge 	/*
    846        1.1     ragge 	 * Create the receive buffer DMA maps.
    847        1.1     ragge 	 */
    848        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
    849        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
    850        1.3     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    851        1.3     ragge 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    852        1.3     ragge #else
    853        1.1     ragge 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    854        1.1     ragge 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    855        1.3     ragge #endif
    856       1.52   msaitoh 			aprint_error_dev(sc->sc_dev, "unable to create Rx DMA "
    857       1.52   msaitoh 			    "map %d, error = %d\n", i, error);
    858        1.1     ragge 			goto fail_5;
    859        1.1     ragge 		}
    860        1.1     ragge 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    861        1.1     ragge 	}
    862        1.1     ragge 
    863        1.1     ragge 	/*
    864        1.1     ragge 	 * Set bits in ctrl0 register.
    865        1.1     ragge 	 * Should get the software defined pins out of EEPROM?
    866        1.1     ragge 	 */
    867        1.1     ragge 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    868        1.1     ragge 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    869        1.1     ragge 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    870        1.1     ragge 
    871        1.1     ragge 	/*
    872        1.1     ragge 	 * Reset the chip to a known state.
    873        1.1     ragge 	 */
    874        1.1     ragge 	dge_reset(sc);
    875        1.1     ragge 
    876        1.1     ragge 	/*
    877        1.1     ragge 	 * Reset the PHY.
    878        1.1     ragge 	 */
    879        1.1     ragge 	dge_xgmii_reset(sc);
    880        1.1     ragge 
    881        1.1     ragge 	/*
    882        1.1     ragge 	 * Read in EEPROM data.
    883        1.1     ragge 	 */
    884        1.1     ragge 	if (dge_read_eeprom(sc)) {
    885       1.35       chs 		aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
    886        1.1     ragge 		return;
    887        1.1     ragge 	}
    888        1.1     ragge 
    889        1.1     ragge 	/*
    890        1.1     ragge 	 * Get the ethernet address.
    891        1.1     ragge 	 */
    892        1.1     ragge 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    893        1.1     ragge 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    894        1.1     ragge 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    895        1.1     ragge 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    896        1.1     ragge 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    897        1.1     ragge 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    898        1.1     ragge 
    899       1.35       chs 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    900        1.1     ragge 	    ether_sprintf(enaddr));
    901        1.1     ragge 
    902        1.1     ragge 	/*
    903        1.1     ragge 	 * Setup media stuff.
    904        1.1     ragge 	 */
    905       1.55   msaitoh 	sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
    906       1.52   msaitoh 	ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    907       1.52   msaitoh 	    dge_xgmii_mediastatus);
    908  1.58.10.1   thorpej 	if (dgep->flags & DGEP_F_10G_SR) {
    909       1.53   msaitoh 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_SR, 0, NULL);
    910       1.53   msaitoh 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_SR);
    911       1.42  pgoyette 	} else { /* XXX default is LR */
    912       1.53   msaitoh 		ifmedia_add(&sc->sc_media, IFM_ETHER | IFM_10G_LR, 0, NULL);
    913       1.53   msaitoh 		ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10G_LR);
    914       1.42  pgoyette 	}
    915        1.1     ragge 
    916        1.1     ragge 	ifp = &sc->sc_ethercom.ec_if;
    917       1.35       chs 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    918        1.1     ragge 	ifp->if_softc = sc;
    919        1.1     ragge 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    920        1.1     ragge 	ifp->if_ioctl = dge_ioctl;
    921        1.1     ragge 	ifp->if_start = dge_start;
    922        1.1     ragge 	ifp->if_watchdog = dge_watchdog;
    923        1.1     ragge 	ifp->if_init = dge_init;
    924        1.1     ragge 	ifp->if_stop = dge_stop;
    925       1.49  riastrad 	IFQ_SET_MAXLEN(&ifp->if_snd, uimax(DGE_IFQUEUELEN, IFQ_MAXLEN));
    926        1.1     ragge 	IFQ_SET_READY(&ifp->if_snd);
    927        1.1     ragge 
    928        1.1     ragge 	sc->sc_ethercom.ec_capabilities |=
    929        1.1     ragge 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    930        1.1     ragge 
    931        1.1     ragge 	/*
    932        1.1     ragge 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    933        1.1     ragge 	 */
    934        1.1     ragge 	ifp->if_capabilities |=
    935       1.11      yamt 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    936       1.11      yamt 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    937       1.11      yamt 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    938        1.1     ragge 
    939        1.1     ragge 	/*
    940        1.1     ragge 	 * Attach the interface.
    941        1.1     ragge 	 */
    942        1.1     ragge 	if_attach(ifp);
    943       1.46     ozaki 	if_deferred_start_init(ifp, NULL);
    944        1.1     ragge 	ether_ifattach(ifp, enaddr);
    945       1.35       chs 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    946       1.38       tls 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    947        1.1     ragge 
    948        1.1     ragge #ifdef DGE_EVENT_COUNTERS
    949        1.1     ragge 	/* Fix segment event naming */
    950        1.1     ragge 	if (dge_txseg_evcnt_names == NULL) {
    951        1.1     ragge 		dge_txseg_evcnt_names =
    952        1.1     ragge 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    953        1.1     ragge 		for (i = 0; i < DGE_NTXSEGS; i++)
    954        1.4    itojun 			snprintf((*dge_txseg_evcnt_names)[i],
    955        1.4    itojun 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    956        1.1     ragge 	}
    957        1.1     ragge 
    958        1.1     ragge 	/* Attach event counters. */
    959        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    960       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txsstall");
    961        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    962       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txdstall");
    963        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    964       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txforceintr");
    965        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    966       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txdw");
    967        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    968       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txqe");
    969        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    970       1.35       chs 	    NULL, device_xname(sc->sc_dev), "rxintr");
    971        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    972       1.35       chs 	    NULL, device_xname(sc->sc_dev), "linkintr");
    973        1.1     ragge 
    974        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    975       1.35       chs 	    NULL, device_xname(sc->sc_dev), "rxipsum");
    976        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    977       1.35       chs 	    NULL, device_xname(sc->sc_dev), "rxtusum");
    978        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    979       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txipsum");
    980        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    981       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txtusum");
    982        1.1     ragge 
    983        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    984       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txctx init");
    985        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    986       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txctx hit");
    987        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    988       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txctx miss");
    989        1.1     ragge 
    990        1.1     ragge 	for (i = 0; i < DGE_NTXSEGS; i++)
    991        1.1     ragge 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    992       1.35       chs 		    NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    993        1.1     ragge 
    994        1.1     ragge 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    995       1.35       chs 	    NULL, device_xname(sc->sc_dev), "txdrop");
    996        1.1     ragge 
    997        1.1     ragge #endif /* DGE_EVENT_COUNTERS */
    998        1.1     ragge 
    999        1.1     ragge 	/*
   1000        1.1     ragge 	 * Make sure the interface is shutdown during reboot.
   1001        1.1     ragge 	 */
   1002       1.27   tsutsui 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
   1003       1.27   tsutsui 		pmf_class_network_register(self, ifp);
   1004       1.27   tsutsui 	else
   1005       1.27   tsutsui 		aprint_error_dev(self, "couldn't establish power handler\n");
   1006       1.27   tsutsui 
   1007        1.1     ragge 	return;
   1008        1.1     ragge 
   1009        1.1     ragge 	/*
   1010        1.1     ragge 	 * Free any resources we've allocated during the failed attach
   1011        1.1     ragge 	 * attempt.  Do this in reverse order and fall through.
   1012        1.1     ragge 	 */
   1013        1.1     ragge  fail_5:
   1014        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1015        1.1     ragge 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
   1016        1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
   1017        1.1     ragge 			    sc->sc_rxsoft[i].rxs_dmamap);
   1018        1.1     ragge 	}
   1019        1.1     ragge  fail_4:
   1020        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   1021        1.1     ragge 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
   1022        1.1     ragge 			bus_dmamap_destroy(sc->sc_dmat,
   1023        1.1     ragge 			    sc->sc_txsoft[i].txs_dmamap);
   1024        1.1     ragge 	}
   1025        1.1     ragge 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
   1026        1.1     ragge  fail_3:
   1027        1.1     ragge 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
   1028        1.1     ragge  fail_2:
   1029       1.15  christos 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
   1030        1.1     ragge 	    sizeof(struct dge_control_data));
   1031        1.1     ragge  fail_1:
   1032        1.1     ragge 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
   1033        1.1     ragge  fail_0:
   1034        1.1     ragge 	return;
   1035        1.1     ragge }
   1036        1.1     ragge 
   1037        1.1     ragge /*
   1038        1.1     ragge  * dge_shutdown:
   1039        1.1     ragge  *
   1040        1.1     ragge  *	Make sure the interface is stopped at reboot time.
   1041        1.1     ragge  */
   1042       1.27   tsutsui static bool
   1043       1.27   tsutsui dge_shutdown(device_t self, int howto)
   1044        1.1     ragge {
   1045       1.27   tsutsui 	struct dge_softc *sc;
   1046        1.1     ragge 
   1047       1.27   tsutsui 	sc = device_private(self);
   1048        1.1     ragge 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1049       1.27   tsutsui 
   1050       1.27   tsutsui 	return true;
   1051        1.1     ragge }
   1052        1.1     ragge 
   1053        1.1     ragge /*
   1054        1.1     ragge  * dge_tx_cksum:
   1055        1.1     ragge  *
   1056        1.1     ragge  *	Set up TCP/IP checksumming parameters for the
   1057        1.1     ragge  *	specified packet.
   1058        1.1     ragge  */
   1059        1.1     ragge static int
   1060        1.1     ragge dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1061        1.1     ragge {
   1062        1.1     ragge 	struct mbuf *m0 = txs->txs_mbuf;
   1063        1.1     ragge 	struct dge_ctdes *t;
   1064        1.1     ragge 	uint32_t ipcs, tucs;
   1065        1.1     ragge 	struct ether_header *eh;
   1066        1.1     ragge 	int offset, iphl;
   1067        1.1     ragge 	uint8_t fields = 0;
   1068        1.1     ragge 
   1069        1.1     ragge 	/*
   1070        1.1     ragge 	 * XXX It would be nice if the mbuf pkthdr had offset
   1071        1.1     ragge 	 * fields for the protocol headers.
   1072        1.1     ragge 	 */
   1073        1.1     ragge 
   1074        1.1     ragge 	eh = mtod(m0, struct ether_header *);
   1075        1.1     ragge 	switch (htons(eh->ether_type)) {
   1076        1.1     ragge 	case ETHERTYPE_IP:
   1077        1.1     ragge 		offset = ETHER_HDR_LEN;
   1078        1.1     ragge 		break;
   1079        1.1     ragge 
   1080        1.1     ragge 	case ETHERTYPE_VLAN:
   1081        1.1     ragge 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1082        1.1     ragge 		break;
   1083        1.1     ragge 
   1084        1.1     ragge 	default:
   1085        1.1     ragge 		/*
   1086        1.1     ragge 		 * Don't support this protocol or encapsulation.
   1087        1.1     ragge 		 */
   1088        1.1     ragge 		*fieldsp = 0;
   1089       1.52   msaitoh 		return 0;
   1090        1.1     ragge 	}
   1091        1.1     ragge 
   1092        1.9   thorpej 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1093        1.1     ragge 
   1094        1.1     ragge 	/*
   1095        1.1     ragge 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1096        1.1     ragge 	 * offload feature, if we load the context descriptor, we
   1097        1.1     ragge 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1098        1.1     ragge 	 */
   1099        1.1     ragge 
   1100        1.1     ragge 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1101        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1102        1.1     ragge 		fields |= TDESC_POPTS_IXSM;
   1103        1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1104        1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1105        1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1106        1.1     ragge 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1107        1.1     ragge 		/* Use the cached value. */
   1108        1.1     ragge 		ipcs = sc->sc_txctx_ipcs;
   1109        1.1     ragge 	} else {
   1110        1.1     ragge 		/* Just initialize it to the likely value anyway. */
   1111        1.1     ragge 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1112        1.1     ragge 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1113        1.1     ragge 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1114        1.1     ragge 	}
   1115        1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1116       1.10     perry 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1117       1.35       chs 	    device_xname(sc->sc_dev), offset, ipcs));
   1118        1.1     ragge 
   1119        1.1     ragge 	offset += iphl;
   1120        1.1     ragge 
   1121       1.53   msaitoh 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
   1122        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1123        1.1     ragge 		fields |= TDESC_POPTS_TXSM;
   1124        1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1125        1.9   thorpej 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1126        1.8      heas 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1127        1.1     ragge 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1128        1.1     ragge 		/* Use the cached value. */
   1129        1.1     ragge 		tucs = sc->sc_txctx_tucs;
   1130        1.1     ragge 	} else {
   1131        1.1     ragge 		/* Just initialize it to a valid TCP context. */
   1132        1.1     ragge 		tucs = DGE_TCPIP_TUCSS(offset) |
   1133        1.1     ragge 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1134        1.1     ragge 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1135        1.1     ragge 	}
   1136        1.1     ragge 
   1137        1.1     ragge 	DPRINTF(DGE_DEBUG_CKSUM,
   1138        1.1     ragge 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1139       1.35       chs 	    device_xname(sc->sc_dev), offset, tucs));
   1140        1.1     ragge 
   1141        1.1     ragge 	if (sc->sc_txctx_ipcs == ipcs &&
   1142        1.1     ragge 	    sc->sc_txctx_tucs == tucs) {
   1143        1.1     ragge 		/* Cached context is fine. */
   1144        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1145        1.1     ragge 	} else {
   1146        1.1     ragge 		/* Fill in the context descriptor. */
   1147        1.1     ragge #ifdef DGE_EVENT_COUNTERS
   1148        1.1     ragge 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1149        1.1     ragge 		    sc->sc_txctx_tucs == 0xffffffff)
   1150        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1151        1.1     ragge 		else
   1152        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1153        1.1     ragge #endif
   1154        1.1     ragge 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1155        1.1     ragge 		t->dc_tcpip_ipcs = htole32(ipcs);
   1156        1.1     ragge 		t->dc_tcpip_tucs = htole32(tucs);
   1157        1.1     ragge 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1158        1.1     ragge 		t->dc_tcpip_seg = 0;
   1159        1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1160        1.1     ragge 
   1161        1.1     ragge 		sc->sc_txctx_ipcs = ipcs;
   1162        1.1     ragge 		sc->sc_txctx_tucs = tucs;
   1163        1.1     ragge 
   1164        1.1     ragge 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1165        1.1     ragge 		txs->txs_ndesc++;
   1166        1.1     ragge 	}
   1167        1.1     ragge 
   1168        1.1     ragge 	*fieldsp = fields;
   1169        1.1     ragge 
   1170       1.52   msaitoh 	return 0;
   1171        1.1     ragge }
   1172        1.1     ragge 
   1173        1.1     ragge /*
   1174        1.1     ragge  * dge_start:		[ifnet interface function]
   1175        1.1     ragge  *
   1176        1.1     ragge  *	Start packet transmission on the interface.
   1177        1.1     ragge  */
   1178        1.1     ragge static void
   1179        1.1     ragge dge_start(struct ifnet *ifp)
   1180        1.1     ragge {
   1181        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1182        1.1     ragge 	struct mbuf *m0;
   1183        1.1     ragge 	struct dge_txsoft *txs;
   1184        1.1     ragge 	bus_dmamap_t dmamap;
   1185        1.1     ragge 	int error, nexttx, lasttx = -1, ofree, seg;
   1186        1.1     ragge 	uint32_t cksumcmd;
   1187        1.1     ragge 	uint8_t cksumfields;
   1188        1.1     ragge 
   1189       1.53   msaitoh 	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
   1190        1.1     ragge 		return;
   1191        1.1     ragge 
   1192        1.1     ragge 	/*
   1193        1.1     ragge 	 * Remember the previous number of free descriptors.
   1194        1.1     ragge 	 */
   1195        1.1     ragge 	ofree = sc->sc_txfree;
   1196        1.1     ragge 
   1197        1.1     ragge 	/*
   1198        1.1     ragge 	 * Loop through the send queue, setting up transmit descriptors
   1199        1.1     ragge 	 * until we drain the queue, or use up all available transmit
   1200        1.1     ragge 	 * descriptors.
   1201        1.1     ragge 	 */
   1202        1.1     ragge 	for (;;) {
   1203        1.1     ragge 		/* Grab a packet off the queue. */
   1204        1.1     ragge 		IFQ_POLL(&ifp->if_snd, m0);
   1205        1.1     ragge 		if (m0 == NULL)
   1206        1.1     ragge 			break;
   1207        1.1     ragge 
   1208        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1209        1.1     ragge 		    ("%s: TX: have packet to transmit: %p\n",
   1210       1.35       chs 		    device_xname(sc->sc_dev), m0));
   1211        1.1     ragge 
   1212        1.1     ragge 		/* Get a work queue entry. */
   1213        1.1     ragge 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1214        1.1     ragge 			dge_txintr(sc);
   1215        1.1     ragge 			if (sc->sc_txsfree == 0) {
   1216        1.1     ragge 				DPRINTF(DGE_DEBUG_TX,
   1217        1.1     ragge 				    ("%s: TX: no free job descriptors\n",
   1218       1.35       chs 					device_xname(sc->sc_dev)));
   1219        1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1220        1.1     ragge 				break;
   1221        1.1     ragge 			}
   1222        1.1     ragge 		}
   1223        1.1     ragge 
   1224        1.1     ragge 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1225        1.1     ragge 		dmamap = txs->txs_dmamap;
   1226        1.1     ragge 
   1227        1.1     ragge 		/*
   1228        1.1     ragge 		 * Load the DMA map.  If this fails, the packet either
   1229        1.1     ragge 		 * didn't fit in the allotted number of segments, or we
   1230        1.1     ragge 		 * were short on resources.  For the too-many-segments
   1231        1.1     ragge 		 * case, we simply report an error and drop the packet,
   1232        1.1     ragge 		 * since we can't sanely copy a jumbo packet to a single
   1233        1.1     ragge 		 * buffer.
   1234        1.1     ragge 		 */
   1235        1.1     ragge 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1236       1.53   msaitoh 		    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1237        1.1     ragge 		if (error) {
   1238        1.1     ragge 			if (error == EFBIG) {
   1239        1.1     ragge 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1240        1.1     ragge 				printf("%s: Tx packet consumes too many "
   1241        1.1     ragge 				    "DMA segments, dropping...\n",
   1242       1.35       chs 				    device_xname(sc->sc_dev));
   1243        1.1     ragge 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1244        1.1     ragge 				m_freem(m0);
   1245        1.1     ragge 				continue;
   1246        1.1     ragge 			}
   1247        1.1     ragge 			/*
   1248        1.1     ragge 			 * Short on resources, just stop for now.
   1249        1.1     ragge 			 */
   1250        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1251        1.1     ragge 			    ("%s: TX: dmamap load failed: %d\n",
   1252       1.35       chs 			    device_xname(sc->sc_dev), error));
   1253        1.1     ragge 			break;
   1254        1.1     ragge 		}
   1255        1.1     ragge 
   1256        1.1     ragge 		/*
   1257        1.1     ragge 		 * Ensure we have enough descriptors free to describe
   1258        1.1     ragge 		 * the packet.  Note, we always reserve one descriptor
   1259        1.1     ragge 		 * at the end of the ring due to the semantics of the
   1260        1.1     ragge 		 * TDT register, plus one more in the event we need
   1261        1.1     ragge 		 * to re-load checksum offload context.
   1262        1.1     ragge 		 */
   1263        1.1     ragge 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1264        1.1     ragge 			/*
   1265        1.1     ragge 			 * Not enough free descriptors to transmit this
   1266        1.1     ragge 			 * packet.  We haven't committed anything yet,
   1267        1.1     ragge 			 * so just unload the DMA map, put the packet
   1268        1.1     ragge 			 * pack on the queue, and punt.  Notify the upper
   1269        1.1     ragge 			 * layer that there are no more slots left.
   1270        1.1     ragge 			 */
   1271        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1272        1.1     ragge 			    ("%s: TX: need %d descriptors, have %d\n",
   1273       1.35       chs 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   1274        1.1     ragge 			    sc->sc_txfree - 1));
   1275        1.1     ragge 			ifp->if_flags |= IFF_OACTIVE;
   1276        1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1277        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1278        1.1     ragge 			break;
   1279        1.1     ragge 		}
   1280        1.1     ragge 
   1281        1.1     ragge 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1282        1.1     ragge 
   1283        1.1     ragge 		/*
   1284        1.1     ragge 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1285        1.1     ragge 		 */
   1286        1.1     ragge 
   1287        1.1     ragge 		/* Sync the DMA map. */
   1288        1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1289        1.1     ragge 		    BUS_DMASYNC_PREWRITE);
   1290        1.1     ragge 
   1291        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1292        1.1     ragge 		    ("%s: TX: packet has %d DMA segments\n",
   1293       1.35       chs 		    device_xname(sc->sc_dev), dmamap->dm_nsegs));
   1294        1.1     ragge 
   1295        1.1     ragge 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1296        1.1     ragge 
   1297        1.1     ragge 		/*
   1298        1.1     ragge 		 * Store a pointer to the packet so that we can free it
   1299        1.1     ragge 		 * later.
   1300        1.1     ragge 		 *
   1301        1.1     ragge 		 * Initially, we consider the number of descriptors the
   1302        1.1     ragge 		 * packet uses the number of DMA segments.  This may be
   1303        1.1     ragge 		 * incremented by 1 if we do checksum offload (a descriptor
   1304        1.1     ragge 		 * is used to set the checksum context).
   1305        1.1     ragge 		 */
   1306        1.1     ragge 		txs->txs_mbuf = m0;
   1307        1.1     ragge 		txs->txs_firstdesc = sc->sc_txnext;
   1308        1.1     ragge 		txs->txs_ndesc = dmamap->dm_nsegs;
   1309        1.1     ragge 
   1310        1.1     ragge 		/*
   1311        1.1     ragge 		 * Set up checksum offload parameters for
   1312        1.1     ragge 		 * this packet.
   1313        1.1     ragge 		 */
   1314        1.1     ragge 		if (m0->m_pkthdr.csum_flags &
   1315       1.53   msaitoh 		    (M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
   1316        1.1     ragge 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1317        1.1     ragge 				/* Error message already displayed. */
   1318        1.1     ragge 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1319        1.1     ragge 				continue;
   1320        1.1     ragge 			}
   1321        1.1     ragge 		} else {
   1322        1.1     ragge 			cksumfields = 0;
   1323        1.1     ragge 		}
   1324        1.1     ragge 
   1325        1.1     ragge 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1326        1.1     ragge 
   1327        1.1     ragge 		/*
   1328        1.1     ragge 		 * Initialize the transmit descriptor.
   1329        1.1     ragge 		 */
   1330        1.1     ragge 		for (nexttx = sc->sc_txnext, seg = 0;
   1331        1.1     ragge 		     seg < dmamap->dm_nsegs;
   1332        1.1     ragge 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1333       1.58   thorpej 			sc->sc_txdescs[nexttx].dt_baddrh =
   1334       1.58   thorpej 			    htole32(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32);
   1335        1.1     ragge 			sc->sc_txdescs[nexttx].dt_baddrl =
   1336        1.1     ragge 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1337        1.1     ragge 			sc->sc_txdescs[nexttx].dt_ctl =
   1338        1.1     ragge 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1339        1.1     ragge 			sc->sc_txdescs[nexttx].dt_status = 0;
   1340        1.1     ragge 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1341        1.1     ragge 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1342        1.1     ragge 			lasttx = nexttx;
   1343        1.1     ragge 
   1344        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1345       1.58   thorpej 			    ("%s: TX: desc %d: high 0x%08lx, low 0x%08lx, len 0x%04lx\n",
   1346       1.35       chs 			    device_xname(sc->sc_dev), nexttx,
   1347       1.58   thorpej 			    (unsigned long)(((uint64_t)dmamap->dm_segs[seg].ds_addr) >> 32),
   1348       1.58   thorpej 			    (unsigned long)((uint32_t)dmamap->dm_segs[seg].ds_addr),
   1349       1.58   thorpej 			    (unsigned long)dmamap->dm_segs[seg].ds_len));
   1350        1.1     ragge 		}
   1351        1.1     ragge 
   1352        1.1     ragge 		KASSERT(lasttx != -1);
   1353        1.1     ragge 
   1354        1.1     ragge 		/*
   1355        1.1     ragge 		 * Set up the command byte on the last descriptor of
   1356        1.1     ragge 		 * the packet.  If we're in the interrupt delay window,
   1357        1.1     ragge 		 * delay the interrupt.
   1358        1.1     ragge 		 */
   1359        1.1     ragge 		sc->sc_txdescs[lasttx].dt_ctl |=
   1360        1.1     ragge 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1361        1.1     ragge 
   1362        1.1     ragge 		txs->txs_lastdesc = lasttx;
   1363        1.1     ragge 
   1364        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1365       1.35       chs 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
   1366        1.1     ragge 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1367        1.1     ragge 
   1368        1.1     ragge 		/* Sync the descriptors we're using. */
   1369        1.1     ragge 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1370       1.53   msaitoh 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1371        1.1     ragge 
   1372        1.1     ragge 		/* Give the packet to the chip. */
   1373        1.1     ragge 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1374        1.1     ragge 
   1375        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1376       1.35       chs 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   1377        1.1     ragge 
   1378        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1379        1.1     ragge 		    ("%s: TX: finished transmitting packet, job %d\n",
   1380       1.35       chs 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   1381        1.1     ragge 
   1382        1.1     ragge 		/* Advance the tx pointer. */
   1383        1.1     ragge 		sc->sc_txfree -= txs->txs_ndesc;
   1384        1.1     ragge 		sc->sc_txnext = nexttx;
   1385        1.1     ragge 
   1386        1.1     ragge 		sc->sc_txsfree--;
   1387        1.1     ragge 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1388        1.1     ragge 
   1389        1.1     ragge 		/* Pass the packet to any BPF listeners. */
   1390       1.48   msaitoh 		bpf_mtap(ifp, m0, BPF_D_OUT);
   1391        1.1     ragge 	}
   1392        1.1     ragge 
   1393        1.1     ragge 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1394        1.1     ragge 		/* No more slots; notify upper layer. */
   1395        1.1     ragge 		ifp->if_flags |= IFF_OACTIVE;
   1396        1.1     ragge 	}
   1397        1.1     ragge 
   1398        1.1     ragge 	if (sc->sc_txfree != ofree) {
   1399        1.1     ragge 		/* Set a watchdog timer in case the chip flakes out. */
   1400        1.1     ragge 		ifp->if_timer = 5;
   1401        1.1     ragge 	}
   1402        1.1     ragge }
   1403        1.1     ragge 
   1404        1.1     ragge /*
   1405        1.1     ragge  * dge_watchdog:		[ifnet interface function]
   1406        1.1     ragge  *
   1407        1.1     ragge  *	Watchdog timer handler.
   1408        1.1     ragge  */
   1409        1.1     ragge static void
   1410        1.1     ragge dge_watchdog(struct ifnet *ifp)
   1411        1.1     ragge {
   1412        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1413        1.1     ragge 
   1414        1.1     ragge 	/*
   1415        1.1     ragge 	 * Since we're using delayed interrupts, sweep up
   1416        1.1     ragge 	 * before we report an error.
   1417        1.1     ragge 	 */
   1418        1.1     ragge 	dge_txintr(sc);
   1419        1.1     ragge 
   1420        1.1     ragge 	if (sc->sc_txfree != DGE_NTXDESC) {
   1421        1.1     ragge 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1422       1.35       chs 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1423        1.1     ragge 		    sc->sc_txnext);
   1424       1.57   thorpej 		if_statinc(ifp, if_oerrors);
   1425        1.1     ragge 
   1426        1.1     ragge 		/* Reset the interface. */
   1427        1.1     ragge 		(void) dge_init(ifp);
   1428        1.1     ragge 	}
   1429        1.1     ragge 
   1430        1.1     ragge 	/* Try to get more packets going. */
   1431        1.1     ragge 	dge_start(ifp);
   1432        1.1     ragge }
   1433        1.1     ragge 
   1434        1.1     ragge /*
   1435        1.1     ragge  * dge_ioctl:		[ifnet interface function]
   1436        1.1     ragge  *
   1437        1.1     ragge  *	Handle control requests from the operator.
   1438        1.1     ragge  */
   1439        1.1     ragge static int
   1440       1.15  christos dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1441        1.1     ragge {
   1442        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1443        1.1     ragge 	struct ifreq *ifr = (struct ifreq *) data;
   1444        1.1     ragge 	pcireg_t preg;
   1445        1.1     ragge 	int s, error, mmrbc;
   1446        1.1     ragge 
   1447        1.1     ragge 	s = splnet();
   1448        1.1     ragge 
   1449        1.1     ragge 	switch (cmd) {
   1450        1.2     ragge 	case SIOCSIFMTU:
   1451       1.19    dyoung 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1452        1.2     ragge 			error = EINVAL;
   1453       1.19    dyoung 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1454       1.19    dyoung 			break;
   1455       1.19    dyoung 		else if (ifp->if_flags & IFF_UP)
   1456       1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1457       1.19    dyoung 		else
   1458        1.2     ragge 			error = 0;
   1459        1.2     ragge 		break;
   1460        1.2     ragge 
   1461       1.52   msaitoh 	case SIOCSIFFLAGS:
   1462       1.22    dyoung 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1463       1.22    dyoung 			break;
   1464        1.1     ragge 		/* extract link flags */
   1465        1.1     ragge 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1466        1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1467        1.1     ragge 			mmrbc = PCIX_MMRBC_512;
   1468        1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1469        1.1     ragge 		    (ifp->if_flags & IFF_LINK1) != 0)
   1470        1.1     ragge 			mmrbc = PCIX_MMRBC_1024;
   1471        1.1     ragge 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1472        1.1     ragge 		    (ifp->if_flags & IFF_LINK1) == 0)
   1473        1.1     ragge 			mmrbc = PCIX_MMRBC_2048;
   1474        1.1     ragge 		else
   1475        1.1     ragge 			mmrbc = PCIX_MMRBC_4096;
   1476        1.1     ragge 		if (mmrbc != sc->sc_mmrbc) {
   1477        1.1     ragge 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1478        1.1     ragge 			preg &= ~PCIX_MMRBC_MSK;
   1479        1.1     ragge 			preg |= mmrbc;
   1480        1.1     ragge 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1481        1.1     ragge 			sc->sc_mmrbc = mmrbc;
   1482        1.1     ragge 		}
   1483       1.52   msaitoh 		/* FALLTHROUGH */
   1484        1.1     ragge 	default:
   1485       1.19    dyoung 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1486       1.19    dyoung 			break;
   1487       1.19    dyoung 
   1488       1.19    dyoung 		error = 0;
   1489       1.19    dyoung 
   1490       1.19    dyoung 		if (cmd == SIOCSIFCAP)
   1491       1.19    dyoung 			error = (*ifp->if_init)(ifp);
   1492       1.19    dyoung 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1493       1.19    dyoung 			;
   1494       1.19    dyoung 		else if (ifp->if_flags & IFF_RUNNING) {
   1495        1.1     ragge 			/*
   1496        1.1     ragge 			 * Multicast list has changed; set the hardware filter
   1497        1.1     ragge 			 * accordingly.
   1498        1.1     ragge 			 */
   1499       1.19    dyoung 			dge_set_filter(sc);
   1500        1.1     ragge 		}
   1501        1.1     ragge 		break;
   1502        1.1     ragge 	}
   1503        1.1     ragge 
   1504        1.1     ragge 	/* Try to get more packets going. */
   1505        1.1     ragge 	dge_start(ifp);
   1506        1.1     ragge 
   1507        1.1     ragge 	splx(s);
   1508       1.52   msaitoh 	return error;
   1509        1.1     ragge }
   1510        1.1     ragge 
   1511        1.1     ragge /*
   1512        1.1     ragge  * dge_intr:
   1513        1.1     ragge  *
   1514        1.1     ragge  *	Interrupt service routine.
   1515        1.1     ragge  */
   1516        1.1     ragge static int
   1517        1.1     ragge dge_intr(void *arg)
   1518        1.1     ragge {
   1519        1.1     ragge 	struct dge_softc *sc = arg;
   1520        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1521        1.1     ragge 	uint32_t icr;
   1522        1.1     ragge 	int wantinit, handled = 0;
   1523        1.1     ragge 
   1524        1.1     ragge 	for (wantinit = 0; wantinit == 0;) {
   1525        1.1     ragge 		icr = CSR_READ(sc, DGE_ICR);
   1526        1.1     ragge 		if ((icr & sc->sc_icr) == 0)
   1527        1.1     ragge 			break;
   1528        1.1     ragge 
   1529       1.34       tls 		rnd_add_uint32(&sc->rnd_source, icr);
   1530        1.1     ragge 
   1531        1.1     ragge 		handled = 1;
   1532        1.1     ragge 
   1533        1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1534       1.53   msaitoh 		if (icr & (ICR_RXDMT0 | ICR_RXT0)) {
   1535        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1536        1.1     ragge 			    ("%s: RX: got Rx intr 0x%08x\n",
   1537       1.35       chs 			    device_xname(sc->sc_dev),
   1538       1.53   msaitoh 			    icr & (ICR_RXDMT0 | ICR_RXT0)));
   1539        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1540        1.1     ragge 		}
   1541        1.1     ragge #endif
   1542        1.1     ragge 		dge_rxintr(sc);
   1543        1.1     ragge 
   1544        1.1     ragge #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1545        1.1     ragge 		if (icr & ICR_TXDW) {
   1546        1.1     ragge 			DPRINTF(DGE_DEBUG_TX,
   1547        1.1     ragge 			    ("%s: TX: got TXDW interrupt\n",
   1548       1.35       chs 			    device_xname(sc->sc_dev)));
   1549        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1550        1.1     ragge 		}
   1551        1.1     ragge 		if (icr & ICR_TXQE)
   1552        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1553        1.1     ragge #endif
   1554        1.1     ragge 		dge_txintr(sc);
   1555        1.1     ragge 
   1556       1.53   msaitoh 		if (icr & (ICR_LSC | ICR_RXSEQ)) {
   1557        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1558        1.1     ragge 			dge_linkintr(sc, icr);
   1559        1.1     ragge 		}
   1560        1.1     ragge 
   1561        1.1     ragge 		if (icr & ICR_RXO) {
   1562       1.52   msaitoh 			printf("%s: Receive overrun\n",
   1563       1.52   msaitoh 			    device_xname(sc->sc_dev));
   1564        1.1     ragge 			wantinit = 1;
   1565        1.1     ragge 		}
   1566        1.1     ragge 	}
   1567        1.1     ragge 
   1568        1.1     ragge 	if (handled) {
   1569        1.1     ragge 		if (wantinit)
   1570        1.1     ragge 			dge_init(ifp);
   1571        1.1     ragge 
   1572        1.1     ragge 		/* Try to get more packets going. */
   1573       1.46     ozaki 		if_schedule_deferred_start(ifp);
   1574        1.1     ragge 	}
   1575        1.1     ragge 
   1576       1.52   msaitoh 	return handled;
   1577        1.1     ragge }
   1578        1.1     ragge 
   1579        1.1     ragge /*
   1580        1.1     ragge  * dge_txintr:
   1581        1.1     ragge  *
   1582        1.1     ragge  *	Helper; handle transmit interrupts.
   1583        1.1     ragge  */
   1584        1.1     ragge static void
   1585        1.1     ragge dge_txintr(struct dge_softc *sc)
   1586        1.1     ragge {
   1587        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1588        1.1     ragge 	struct dge_txsoft *txs;
   1589        1.1     ragge 	uint8_t status;
   1590        1.1     ragge 	int i;
   1591        1.1     ragge 
   1592        1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   1593        1.1     ragge 
   1594        1.1     ragge 	/*
   1595        1.1     ragge 	 * Go through the Tx list and free mbufs for those
   1596        1.1     ragge 	 * frames which have been transmitted.
   1597        1.1     ragge 	 */
   1598        1.1     ragge 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1599        1.1     ragge 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1600        1.1     ragge 		txs = &sc->sc_txsoft[i];
   1601        1.1     ragge 
   1602        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1603       1.35       chs 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
   1604        1.1     ragge 
   1605        1.1     ragge 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1606       1.53   msaitoh 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1607        1.1     ragge 
   1608        1.1     ragge 		status =
   1609        1.1     ragge 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1610        1.1     ragge 		if ((status & TDESC_STA_DD) == 0) {
   1611        1.1     ragge 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1612        1.1     ragge 			    BUS_DMASYNC_PREREAD);
   1613        1.1     ragge 			break;
   1614        1.1     ragge 		}
   1615        1.1     ragge 
   1616        1.1     ragge 		DPRINTF(DGE_DEBUG_TX,
   1617        1.1     ragge 		    ("%s: TX: job %d done: descs %d..%d\n",
   1618       1.35       chs 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
   1619        1.1     ragge 		    txs->txs_lastdesc));
   1620        1.1     ragge 
   1621       1.57   thorpej 		if_statinc(ifp, if_opackets);
   1622        1.1     ragge 		sc->sc_txfree += txs->txs_ndesc;
   1623        1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1624        1.1     ragge 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1625        1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1626        1.1     ragge 		m_freem(txs->txs_mbuf);
   1627        1.1     ragge 		txs->txs_mbuf = NULL;
   1628        1.1     ragge 	}
   1629        1.1     ragge 
   1630        1.1     ragge 	/* Update the dirty transmit buffer pointer. */
   1631        1.1     ragge 	sc->sc_txsdirty = i;
   1632        1.1     ragge 	DPRINTF(DGE_DEBUG_TX,
   1633       1.35       chs 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
   1634        1.1     ragge 
   1635        1.1     ragge 	/*
   1636        1.1     ragge 	 * If there are no more pending transmissions, cancel the watchdog
   1637        1.1     ragge 	 * timer.
   1638        1.1     ragge 	 */
   1639        1.1     ragge 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1640        1.1     ragge 		ifp->if_timer = 0;
   1641        1.1     ragge }
   1642        1.1     ragge 
   1643        1.1     ragge /*
   1644        1.1     ragge  * dge_rxintr:
   1645        1.1     ragge  *
   1646        1.1     ragge  *	Helper; handle receive interrupts.
   1647        1.1     ragge  */
   1648        1.1     ragge static void
   1649        1.1     ragge dge_rxintr(struct dge_softc *sc)
   1650        1.1     ragge {
   1651        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1652        1.1     ragge 	struct dge_rxsoft *rxs;
   1653        1.1     ragge 	struct mbuf *m;
   1654        1.1     ragge 	int i, len;
   1655        1.1     ragge 	uint8_t status, errors;
   1656        1.1     ragge 
   1657        1.1     ragge 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1658        1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1659        1.1     ragge 
   1660        1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1661        1.1     ragge 		    ("%s: RX: checking descriptor %d\n",
   1662       1.35       chs 		    device_xname(sc->sc_dev), i));
   1663        1.1     ragge 
   1664       1.53   msaitoh 		DGE_CDRXSYNC(sc, i,
   1665       1.53   msaitoh 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
   1666        1.1     ragge 
   1667        1.1     ragge 		status = sc->sc_rxdescs[i].dr_status;
   1668        1.1     ragge 		errors = sc->sc_rxdescs[i].dr_errors;
   1669        1.1     ragge 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1670        1.1     ragge 
   1671        1.1     ragge 		if ((status & RDESC_STS_DD) == 0) {
   1672       1.52   msaitoh 			/* We have processed all of the receive descriptors. */
   1673        1.1     ragge 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1674        1.1     ragge 			break;
   1675        1.1     ragge 		}
   1676        1.1     ragge 
   1677        1.1     ragge 		if (__predict_false(sc->sc_rxdiscard)) {
   1678        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1679        1.1     ragge 			    ("%s: RX: discarding contents of descriptor %d\n",
   1680       1.35       chs 			    device_xname(sc->sc_dev), i));
   1681        1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1682        1.1     ragge 			if (status & RDESC_STS_EOP) {
   1683        1.1     ragge 				/* Reset our state. */
   1684        1.1     ragge 				DPRINTF(DGE_DEBUG_RX,
   1685        1.1     ragge 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1686       1.35       chs 				    device_xname(sc->sc_dev)));
   1687        1.1     ragge 				sc->sc_rxdiscard = 0;
   1688        1.1     ragge 			}
   1689        1.1     ragge 			continue;
   1690        1.1     ragge 		}
   1691        1.1     ragge 
   1692        1.1     ragge 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1693        1.1     ragge 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1694        1.1     ragge 
   1695        1.1     ragge 		m = rxs->rxs_mbuf;
   1696        1.1     ragge 
   1697        1.1     ragge 		/*
   1698        1.1     ragge 		 * Add a new receive buffer to the ring.
   1699        1.1     ragge 		 */
   1700        1.1     ragge 		if (dge_add_rxbuf(sc, i) != 0) {
   1701        1.1     ragge 			/*
   1702        1.1     ragge 			 * Failed, throw away what we've done so
   1703        1.1     ragge 			 * far, and discard the rest of the packet.
   1704        1.1     ragge 			 */
   1705       1.57   thorpej 			if_statinc(ifp, if_ierrors);
   1706        1.1     ragge 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1707        1.1     ragge 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1708        1.1     ragge 			DGE_INIT_RXDESC(sc, i);
   1709        1.1     ragge 			if ((status & RDESC_STS_EOP) == 0)
   1710        1.1     ragge 				sc->sc_rxdiscard = 1;
   1711        1.1     ragge 			if (sc->sc_rxhead != NULL)
   1712        1.1     ragge 				m_freem(sc->sc_rxhead);
   1713        1.1     ragge 			DGE_RXCHAIN_RESET(sc);
   1714        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1715        1.1     ragge 			    ("%s: RX: Rx buffer allocation failed, "
   1716       1.35       chs 			    "dropping packet%s\n", device_xname(sc->sc_dev),
   1717        1.1     ragge 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1718        1.1     ragge 			continue;
   1719        1.1     ragge 		}
   1720        1.1     ragge 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1721        1.1     ragge 
   1722        1.1     ragge 		DGE_RXCHAIN_LINK(sc, m);
   1723        1.1     ragge 
   1724        1.1     ragge 		m->m_len = len;
   1725        1.1     ragge 
   1726        1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1727        1.1     ragge 		    ("%s: RX: buffer at %p len %d\n",
   1728       1.35       chs 		    device_xname(sc->sc_dev), m->m_data, len));
   1729        1.1     ragge 
   1730        1.1     ragge 		/*
   1731        1.1     ragge 		 * If this is not the end of the packet, keep
   1732        1.1     ragge 		 * looking.
   1733        1.1     ragge 		 */
   1734        1.1     ragge 		if ((status & RDESC_STS_EOP) == 0) {
   1735        1.1     ragge 			sc->sc_rxlen += len;
   1736        1.1     ragge 			DPRINTF(DGE_DEBUG_RX,
   1737        1.1     ragge 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1738       1.35       chs 			    device_xname(sc->sc_dev), sc->sc_rxlen));
   1739        1.1     ragge 			continue;
   1740        1.1     ragge 		}
   1741        1.1     ragge 
   1742        1.1     ragge 		/*
   1743        1.1     ragge 		 * Okay, we have the entire packet now...
   1744        1.1     ragge 		 */
   1745        1.1     ragge 		*sc->sc_rxtailp = NULL;
   1746        1.1     ragge 		m = sc->sc_rxhead;
   1747        1.1     ragge 		len += sc->sc_rxlen;
   1748        1.1     ragge 
   1749        1.1     ragge 		DGE_RXCHAIN_RESET(sc);
   1750        1.1     ragge 
   1751        1.1     ragge 		DPRINTF(DGE_DEBUG_RX,
   1752        1.1     ragge 		    ("%s: RX: have entire packet, len -> %d\n",
   1753       1.35       chs 		    device_xname(sc->sc_dev), len));
   1754        1.1     ragge 
   1755        1.1     ragge 		/*
   1756        1.1     ragge 		 * If an error occurred, update stats and drop the packet.
   1757        1.1     ragge 		 */
   1758       1.53   msaitoh 		if (errors & (RDESC_ERR_CE | RDESC_ERR_SE | RDESC_ERR_P |
   1759       1.53   msaitoh 		    RDESC_ERR_RXE)) {
   1760       1.57   thorpej 			if_statinc(ifp, if_ierrors);
   1761        1.1     ragge 			if (errors & RDESC_ERR_SE)
   1762        1.1     ragge 				printf("%s: symbol error\n",
   1763       1.35       chs 				    device_xname(sc->sc_dev));
   1764        1.1     ragge 			else if (errors & RDESC_ERR_P)
   1765        1.1     ragge 				printf("%s: parity error\n",
   1766       1.35       chs 				    device_xname(sc->sc_dev));
   1767        1.1     ragge 			else if (errors & RDESC_ERR_CE)
   1768        1.1     ragge 				printf("%s: CRC error\n",
   1769       1.35       chs 				    device_xname(sc->sc_dev));
   1770        1.1     ragge 			m_freem(m);
   1771        1.1     ragge 			continue;
   1772        1.1     ragge 		}
   1773        1.1     ragge 
   1774        1.1     ragge 		/*
   1775        1.1     ragge 		 * No errors.  Receive the packet.
   1776        1.1     ragge 		 */
   1777       1.44     ozaki 		m_set_rcvif(m, ifp);
   1778        1.1     ragge 		m->m_pkthdr.len = len;
   1779        1.1     ragge 
   1780        1.1     ragge 		/*
   1781        1.1     ragge 		 * Set up checksum info for this packet.
   1782        1.1     ragge 		 */
   1783        1.1     ragge 		if (status & RDESC_STS_IPCS) {
   1784        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1785        1.1     ragge 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1786        1.1     ragge 			if (errors & RDESC_ERR_IPE)
   1787        1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1788        1.1     ragge 		}
   1789        1.1     ragge 		if (status & RDESC_STS_TCPCS) {
   1790        1.1     ragge 			/*
   1791        1.1     ragge 			 * Note: we don't know if this was TCP or UDP,
   1792        1.1     ragge 			 * so we just set both bits, and expect the
   1793        1.1     ragge 			 * upper layers to deal.
   1794        1.1     ragge 			 */
   1795        1.1     ragge 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1796       1.53   msaitoh 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4 | M_CSUM_UDPv4;
   1797        1.1     ragge 			if (errors & RDESC_ERR_TCPE)
   1798        1.1     ragge 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1799        1.1     ragge 		}
   1800        1.1     ragge 
   1801        1.1     ragge 		/* Pass it on. */
   1802       1.41     ozaki 		if_percpuq_enqueue(ifp->if_percpuq, m);
   1803        1.1     ragge 	}
   1804        1.1     ragge 
   1805        1.1     ragge 	/* Update the receive pointer. */
   1806        1.1     ragge 	sc->sc_rxptr = i;
   1807        1.1     ragge 
   1808        1.1     ragge 	DPRINTF(DGE_DEBUG_RX,
   1809       1.35       chs 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
   1810        1.1     ragge }
   1811        1.1     ragge 
   1812        1.1     ragge /*
   1813        1.1     ragge  * dge_linkintr:
   1814        1.1     ragge  *
   1815        1.1     ragge  *	Helper; handle link interrupts.
   1816        1.1     ragge  */
   1817        1.1     ragge static void
   1818        1.1     ragge dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1819        1.1     ragge {
   1820        1.1     ragge 	uint32_t status;
   1821        1.1     ragge 
   1822        1.1     ragge 	if (icr & ICR_LSC) {
   1823        1.1     ragge 		status = CSR_READ(sc, DGE_STATUS);
   1824        1.1     ragge 		if (status & STATUS_LINKUP) {
   1825        1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1826       1.35       chs 			    device_xname(sc->sc_dev)));
   1827        1.1     ragge 		} else {
   1828        1.1     ragge 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1829       1.35       chs 			    device_xname(sc->sc_dev)));
   1830        1.1     ragge 		}
   1831        1.1     ragge 	} else if (icr & ICR_RXSEQ) {
   1832        1.1     ragge 		DPRINTF(DGE_DEBUG_LINK,
   1833        1.1     ragge 		    ("%s: LINK: Receive sequence error\n",
   1834       1.35       chs 		    device_xname(sc->sc_dev)));
   1835        1.1     ragge 	}
   1836        1.1     ragge 	/* XXX - fix errata */
   1837        1.1     ragge }
   1838        1.1     ragge 
   1839        1.1     ragge /*
   1840        1.1     ragge  * dge_reset:
   1841        1.1     ragge  *
   1842        1.1     ragge  *	Reset the i82597 chip.
   1843        1.1     ragge  */
   1844        1.1     ragge static void
   1845        1.1     ragge dge_reset(struct dge_softc *sc)
   1846        1.1     ragge {
   1847        1.1     ragge 	int i;
   1848        1.1     ragge 
   1849        1.1     ragge 	/*
   1850        1.1     ragge 	 * Do a chip reset.
   1851        1.1     ragge 	 */
   1852        1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1853        1.1     ragge 
   1854        1.1     ragge 	delay(10000);
   1855        1.1     ragge 
   1856        1.1     ragge 	for (i = 0; i < 1000; i++) {
   1857        1.1     ragge 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1858        1.1     ragge 			break;
   1859        1.1     ragge 		delay(20);
   1860        1.1     ragge 	}
   1861        1.1     ragge 
   1862        1.1     ragge 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1863        1.1     ragge 		printf("%s: WARNING: reset failed to complete\n",
   1864       1.35       chs 		    device_xname(sc->sc_dev));
   1865       1.52   msaitoh 	/*
   1866       1.52   msaitoh 	 * Reset the EEPROM logic.
   1867       1.52   msaitoh 	 * This will cause the chip to reread its default values,
   1868        1.1     ragge 	 * which doesn't happen otherwise (errata).
   1869       1.52   msaitoh 	 */
   1870       1.52   msaitoh 	CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1871       1.52   msaitoh 	delay(10000);
   1872        1.1     ragge }
   1873        1.1     ragge 
   1874        1.1     ragge /*
   1875        1.1     ragge  * dge_init:		[ifnet interface function]
   1876        1.1     ragge  *
   1877        1.1     ragge  *	Initialize the interface.  Must be called at splnet().
   1878        1.1     ragge  */
   1879        1.1     ragge static int
   1880        1.1     ragge dge_init(struct ifnet *ifp)
   1881        1.1     ragge {
   1882        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   1883        1.1     ragge 	struct dge_rxsoft *rxs;
   1884        1.1     ragge 	int i, error = 0;
   1885        1.1     ragge 	uint32_t reg;
   1886        1.1     ragge 
   1887        1.1     ragge 	/*
   1888        1.1     ragge 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1889        1.1     ragge 	 * There is a small but measurable benefit to avoiding the adjusment
   1890        1.1     ragge 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1891        1.1     ragge 	 * on such platforms.  One possibility is that the DMA itself is
   1892        1.1     ragge 	 * slightly more efficient if the front of the entire packet (instead
   1893        1.1     ragge 	 * of the front of the headers) is aligned.
   1894        1.1     ragge 	 *
   1895        1.1     ragge 	 * Note we must always set align_tweak to 0 if we are using
   1896        1.1     ragge 	 * jumbo frames.
   1897        1.1     ragge 	 */
   1898        1.1     ragge #ifdef __NO_STRICT_ALIGNMENT
   1899        1.1     ragge 	sc->sc_align_tweak = 0;
   1900        1.1     ragge #else
   1901        1.1     ragge 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1902        1.1     ragge 		sc->sc_align_tweak = 0;
   1903        1.1     ragge 	else
   1904        1.1     ragge 		sc->sc_align_tweak = 2;
   1905        1.1     ragge #endif /* __NO_STRICT_ALIGNMENT */
   1906        1.1     ragge 
   1907        1.1     ragge 	/* Cancel any pending I/O. */
   1908        1.1     ragge 	dge_stop(ifp, 0);
   1909        1.1     ragge 
   1910        1.1     ragge 	/* Reset the chip to a known state. */
   1911        1.1     ragge 	dge_reset(sc);
   1912        1.1     ragge 
   1913        1.1     ragge 	/* Initialize the transmit descriptor ring. */
   1914        1.1     ragge 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1915        1.1     ragge 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1916       1.53   msaitoh 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   1917        1.1     ragge 	sc->sc_txfree = DGE_NTXDESC;
   1918        1.1     ragge 	sc->sc_txnext = 0;
   1919        1.1     ragge 
   1920        1.1     ragge 	sc->sc_txctx_ipcs = 0xffffffff;
   1921        1.1     ragge 	sc->sc_txctx_tucs = 0xffffffff;
   1922        1.1     ragge 
   1923       1.58   thorpej 	CSR_WRITE(sc, DGE_TDBAH, ((uint64_t)DGE_CDTXADDR(sc, 0)) >> 32);
   1924        1.1     ragge 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1925        1.1     ragge 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1926        1.1     ragge 	CSR_WRITE(sc, DGE_TDH, 0);
   1927        1.1     ragge 	CSR_WRITE(sc, DGE_TDT, 0);
   1928        1.1     ragge 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1929        1.1     ragge 
   1930        1.1     ragge #if 0
   1931        1.1     ragge 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1932        1.1     ragge 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1933        1.1     ragge #endif
   1934        1.1     ragge 	CSR_WRITE(sc, DGE_RXDCTL,
   1935        1.1     ragge 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1936        1.1     ragge 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1937        1.1     ragge 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1938        1.1     ragge 
   1939        1.1     ragge 	/* Initialize the transmit job descriptors. */
   1940        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1941        1.1     ragge 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1942        1.1     ragge 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1943        1.1     ragge 	sc->sc_txsnext = 0;
   1944        1.1     ragge 	sc->sc_txsdirty = 0;
   1945        1.1     ragge 
   1946        1.1     ragge 	/*
   1947        1.1     ragge 	 * Initialize the receive descriptor and receive job
   1948        1.1     ragge 	 * descriptor rings.
   1949        1.1     ragge 	 */
   1950       1.58   thorpej 	CSR_WRITE(sc, DGE_RDBAH, ((uint64_t)DGE_CDRXADDR(sc, 0)) >> 32);
   1951        1.1     ragge 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1952        1.1     ragge 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1953        1.1     ragge 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1954        1.1     ragge 	CSR_WRITE(sc, DGE_RDT, 0);
   1955        1.1     ragge 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1956        1.1     ragge 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1957        1.1     ragge 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1958        1.1     ragge 
   1959        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   1960        1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   1961        1.1     ragge 		if (rxs->rxs_mbuf == NULL) {
   1962        1.1     ragge 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1963        1.1     ragge 				printf("%s: unable to allocate or map rx "
   1964        1.1     ragge 				    "buffer %d, error = %d\n",
   1965       1.35       chs 				    device_xname(sc->sc_dev), i, error);
   1966        1.1     ragge 				/*
   1967        1.1     ragge 				 * XXX Should attempt to run with fewer receive
   1968        1.1     ragge 				 * XXX buffers instead of just failing.
   1969        1.1     ragge 				 */
   1970        1.1     ragge 				dge_rxdrain(sc);
   1971        1.1     ragge 				goto out;
   1972        1.1     ragge 			}
   1973        1.1     ragge 		}
   1974        1.1     ragge 		DGE_INIT_RXDESC(sc, i);
   1975        1.1     ragge 	}
   1976        1.1     ragge 	sc->sc_rxptr = DGE_RXSPACE;
   1977        1.1     ragge 	sc->sc_rxdiscard = 0;
   1978        1.1     ragge 	DGE_RXCHAIN_RESET(sc);
   1979        1.1     ragge 
   1980        1.1     ragge 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1981        1.1     ragge 		sc->sc_ctrl0 |= CTRL0_JFE;
   1982        1.1     ragge 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1983        1.1     ragge 	}
   1984        1.1     ragge 
   1985        1.1     ragge 	/* Write the control registers. */
   1986        1.1     ragge 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1987        1.1     ragge 
   1988        1.1     ragge 	/*
   1989        1.1     ragge 	 * Set up checksum offload parameters.
   1990        1.1     ragge 	 */
   1991        1.1     ragge 	reg = CSR_READ(sc, DGE_RXCSUM);
   1992       1.11      yamt 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1993        1.1     ragge 		reg |= RXCSUM_IPOFL;
   1994        1.1     ragge 	else
   1995        1.1     ragge 		reg &= ~RXCSUM_IPOFL;
   1996       1.11      yamt 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1997        1.1     ragge 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1998        1.1     ragge 	else {
   1999        1.1     ragge 		reg &= ~RXCSUM_TUOFL;
   2000       1.11      yamt 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   2001        1.1     ragge 			reg &= ~RXCSUM_IPOFL;
   2002        1.1     ragge 	}
   2003        1.1     ragge 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   2004        1.1     ragge 
   2005        1.1     ragge 	/*
   2006        1.1     ragge 	 * Set up the interrupt registers.
   2007        1.1     ragge 	 */
   2008        1.1     ragge 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   2009        1.1     ragge 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   2010        1.1     ragge 	    ICR_RXO | ICR_RXT0;
   2011        1.1     ragge 
   2012        1.1     ragge 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   2013        1.1     ragge 
   2014        1.1     ragge 	/*
   2015        1.1     ragge 	 * Set up the transmit control register.
   2016        1.1     ragge 	 */
   2017       1.53   msaitoh 	sc->sc_tctl = TCTL_TCE | TCTL_TPDE | TCTL_TXEN;
   2018        1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   2019        1.1     ragge 
   2020        1.1     ragge 	/*
   2021        1.1     ragge 	 * Set up the receive control register; we actually program
   2022        1.1     ragge 	 * the register when we set the receive filter.  Use multicast
   2023        1.1     ragge 	 * address offset type 0.
   2024        1.1     ragge 	 */
   2025        1.1     ragge 	sc->sc_mchash_type = 0;
   2026        1.1     ragge 
   2027       1.10     perry 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2028        1.1     ragge 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2029        1.1     ragge 
   2030        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2031        1.3     ragge 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2032        1.3     ragge #else
   2033       1.53   msaitoh 	switch (MCLBYTES) {
   2034        1.1     ragge 	case 2048:
   2035        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2036        1.1     ragge 		break;
   2037        1.1     ragge 	case 4096:
   2038        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2039        1.1     ragge 		break;
   2040        1.1     ragge 	case 8192:
   2041        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2042        1.1     ragge 		break;
   2043        1.1     ragge 	case 16384:
   2044        1.1     ragge 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2045        1.1     ragge 		break;
   2046        1.1     ragge 	default:
   2047        1.1     ragge 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2048        1.1     ragge 	}
   2049        1.3     ragge #endif
   2050        1.1     ragge 
   2051        1.1     ragge 	/* Set the receive filter. */
   2052        1.1     ragge 	/* Also sets RCTL */
   2053        1.1     ragge 	dge_set_filter(sc);
   2054        1.1     ragge 
   2055        1.1     ragge 	/* ...all done! */
   2056       1.10     perry 	ifp->if_flags |= IFF_RUNNING;
   2057        1.1     ragge 	ifp->if_flags &= ~IFF_OACTIVE;
   2058        1.1     ragge 
   2059        1.1     ragge  out:
   2060        1.1     ragge 	if (error)
   2061       1.35       chs 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2062       1.52   msaitoh 	return error;
   2063        1.1     ragge }
   2064        1.1     ragge 
   2065        1.1     ragge /*
   2066        1.1     ragge  * dge_rxdrain:
   2067        1.1     ragge  *
   2068        1.1     ragge  *	Drain the receive queue.
   2069        1.1     ragge  */
   2070        1.1     ragge static void
   2071        1.1     ragge dge_rxdrain(struct dge_softc *sc)
   2072        1.1     ragge {
   2073        1.1     ragge 	struct dge_rxsoft *rxs;
   2074        1.1     ragge 	int i;
   2075        1.1     ragge 
   2076        1.1     ragge 	for (i = 0; i < DGE_NRXDESC; i++) {
   2077        1.1     ragge 		rxs = &sc->sc_rxsoft[i];
   2078        1.1     ragge 		if (rxs->rxs_mbuf != NULL) {
   2079        1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2080        1.1     ragge 			m_freem(rxs->rxs_mbuf);
   2081        1.1     ragge 			rxs->rxs_mbuf = NULL;
   2082        1.1     ragge 		}
   2083        1.1     ragge 	}
   2084        1.1     ragge }
   2085        1.1     ragge 
   2086        1.1     ragge /*
   2087        1.1     ragge  * dge_stop:		[ifnet interface function]
   2088        1.1     ragge  *
   2089        1.1     ragge  *	Stop transmission on the interface.
   2090        1.1     ragge  */
   2091        1.1     ragge static void
   2092        1.1     ragge dge_stop(struct ifnet *ifp, int disable)
   2093        1.1     ragge {
   2094        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2095        1.1     ragge 	struct dge_txsoft *txs;
   2096        1.1     ragge 	int i;
   2097        1.1     ragge 
   2098        1.1     ragge 	/* Stop the transmit and receive processes. */
   2099        1.1     ragge 	CSR_WRITE(sc, DGE_TCTL, 0);
   2100        1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, 0);
   2101        1.1     ragge 
   2102        1.1     ragge 	/* Release any queued transmit buffers. */
   2103        1.1     ragge 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2104        1.1     ragge 		txs = &sc->sc_txsoft[i];
   2105        1.1     ragge 		if (txs->txs_mbuf != NULL) {
   2106        1.1     ragge 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2107        1.1     ragge 			m_freem(txs->txs_mbuf);
   2108        1.1     ragge 			txs->txs_mbuf = NULL;
   2109        1.1     ragge 		}
   2110        1.1     ragge 	}
   2111        1.1     ragge 
   2112        1.1     ragge 	/* Mark the interface as down and cancel the watchdog timer. */
   2113        1.1     ragge 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2114        1.1     ragge 	ifp->if_timer = 0;
   2115       1.20    dyoung 
   2116       1.20    dyoung 	if (disable)
   2117       1.20    dyoung 		dge_rxdrain(sc);
   2118        1.1     ragge }
   2119        1.1     ragge 
   2120        1.1     ragge /*
   2121        1.1     ragge  * dge_add_rxbuf:
   2122        1.1     ragge  *
   2123        1.1     ragge  *	Add a receive buffer to the indiciated descriptor.
   2124        1.1     ragge  */
   2125        1.1     ragge static int
   2126        1.1     ragge dge_add_rxbuf(struct dge_softc *sc, int idx)
   2127        1.1     ragge {
   2128        1.1     ragge 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2129        1.1     ragge 	struct mbuf *m;
   2130        1.1     ragge 	int error;
   2131        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2132       1.15  christos 	void *buf;
   2133        1.3     ragge #endif
   2134        1.1     ragge 
   2135        1.1     ragge 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2136        1.1     ragge 	if (m == NULL)
   2137       1.52   msaitoh 		return ENOBUFS;
   2138        1.1     ragge 
   2139        1.3     ragge #ifdef DGE_OFFBYONE_RXBUG
   2140        1.3     ragge 	if ((buf = dge_getbuf(sc)) == NULL)
   2141        1.3     ragge 		return ENOBUFS;
   2142        1.3     ragge 
   2143        1.3     ragge 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2144        1.3     ragge 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2145        1.6      yamt 	m->m_flags |= M_EXT_RW;
   2146        1.3     ragge 
   2147        1.3     ragge 	if (rxs->rxs_mbuf != NULL)
   2148        1.3     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2149        1.3     ragge 	rxs->rxs_mbuf = m;
   2150        1.3     ragge 
   2151        1.3     ragge 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2152       1.53   msaitoh 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
   2153        1.3     ragge #else
   2154        1.1     ragge 	MCLGET(m, M_DONTWAIT);
   2155        1.1     ragge 	if ((m->m_flags & M_EXT) == 0) {
   2156        1.1     ragge 		m_freem(m);
   2157       1.52   msaitoh 		return ENOBUFS;
   2158        1.1     ragge 	}
   2159        1.1     ragge 
   2160        1.1     ragge 	if (rxs->rxs_mbuf != NULL)
   2161        1.1     ragge 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2162        1.1     ragge 
   2163        1.1     ragge 	rxs->rxs_mbuf = m;
   2164        1.1     ragge 
   2165        1.1     ragge 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2166        1.1     ragge 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2167       1.53   msaitoh 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
   2168        1.3     ragge #endif
   2169        1.1     ragge 	if (error) {
   2170        1.1     ragge 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2171       1.35       chs 		    device_xname(sc->sc_dev), idx, error);
   2172        1.1     ragge 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2173        1.1     ragge 	}
   2174        1.1     ragge 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2175        1.1     ragge 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2176        1.1     ragge 
   2177       1.52   msaitoh 	return 0;
   2178        1.1     ragge }
   2179        1.1     ragge 
   2180        1.1     ragge /*
   2181        1.1     ragge  * dge_set_ral:
   2182        1.1     ragge  *
   2183        1.1     ragge  *	Set an entry in the receive address list.
   2184        1.1     ragge  */
   2185        1.1     ragge static void
   2186        1.1     ragge dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2187        1.1     ragge {
   2188        1.1     ragge 	uint32_t ral_lo, ral_hi;
   2189        1.1     ragge 
   2190        1.1     ragge 	if (enaddr != NULL) {
   2191        1.1     ragge 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2192        1.1     ragge 		    (enaddr[3] << 24);
   2193        1.1     ragge 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2194        1.1     ragge 		ral_hi |= RAH_AV;
   2195        1.1     ragge 	} else {
   2196        1.1     ragge 		ral_lo = 0;
   2197        1.1     ragge 		ral_hi = 0;
   2198        1.1     ragge 	}
   2199        1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2200        1.1     ragge 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2201        1.1     ragge }
   2202        1.1     ragge 
   2203        1.1     ragge /*
   2204        1.1     ragge  * dge_mchash:
   2205        1.1     ragge  *
   2206        1.1     ragge  *	Compute the hash of the multicast address for the 4096-bit
   2207        1.1     ragge  *	multicast filter.
   2208        1.1     ragge  */
   2209        1.1     ragge static uint32_t
   2210        1.1     ragge dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2211        1.1     ragge {
   2212        1.1     ragge 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2213        1.1     ragge 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2214        1.1     ragge 	uint32_t hash;
   2215        1.1     ragge 
   2216        1.1     ragge 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2217        1.1     ragge 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2218        1.1     ragge 
   2219        1.1     ragge 	return (hash & 0xfff);
   2220        1.1     ragge }
   2221        1.1     ragge 
   2222        1.1     ragge /*
   2223        1.1     ragge  * dge_set_filter:
   2224        1.1     ragge  *
   2225        1.1     ragge  *	Set up the receive filter.
   2226        1.1     ragge  */
   2227        1.1     ragge static void
   2228        1.1     ragge dge_set_filter(struct dge_softc *sc)
   2229        1.1     ragge {
   2230        1.1     ragge 	struct ethercom *ec = &sc->sc_ethercom;
   2231        1.1     ragge 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2232        1.1     ragge 	struct ether_multi *enm;
   2233        1.1     ragge 	struct ether_multistep step;
   2234        1.1     ragge 	uint32_t hash, reg, bit;
   2235        1.1     ragge 	int i;
   2236        1.1     ragge 
   2237        1.1     ragge 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2238        1.1     ragge 
   2239        1.1     ragge 	if (ifp->if_flags & IFF_BROADCAST)
   2240        1.1     ragge 		sc->sc_rctl |= RCTL_BAM;
   2241        1.1     ragge 	if (ifp->if_flags & IFF_PROMISC) {
   2242        1.1     ragge 		sc->sc_rctl |= RCTL_UPE;
   2243        1.1     ragge 		goto allmulti;
   2244        1.1     ragge 	}
   2245        1.1     ragge 
   2246        1.1     ragge 	/*
   2247        1.1     ragge 	 * Set the station address in the first RAL slot, and
   2248        1.1     ragge 	 * clear the remaining slots.
   2249        1.1     ragge 	 */
   2250       1.16    dyoung 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2251        1.1     ragge 	for (i = 1; i < RA_TABSIZE; i++)
   2252        1.1     ragge 		dge_set_ral(sc, NULL, i);
   2253        1.1     ragge 
   2254        1.1     ragge 	/* Clear out the multicast table. */
   2255        1.1     ragge 	for (i = 0; i < MC_TABSIZE; i++)
   2256        1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2257        1.1     ragge 
   2258       1.54   msaitoh 	ETHER_LOCK(ec);
   2259        1.1     ragge 	ETHER_FIRST_MULTI(step, ec, enm);
   2260        1.1     ragge 	while (enm != NULL) {
   2261        1.1     ragge 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2262        1.1     ragge 			/*
   2263        1.1     ragge 			 * We must listen to a range of multicast addresses.
   2264        1.1     ragge 			 * For now, just accept all multicasts, rather than
   2265        1.1     ragge 			 * trying to set only those filter bits needed to match
   2266        1.1     ragge 			 * the range.  (At this time, the only use of address
   2267        1.1     ragge 			 * ranges is for IP multicast routing, for which the
   2268        1.1     ragge 			 * range is big enough to require all bits set.)
   2269        1.1     ragge 			 */
   2270       1.54   msaitoh 			ETHER_UNLOCK(ec);
   2271        1.1     ragge 			goto allmulti;
   2272        1.1     ragge 		}
   2273        1.1     ragge 
   2274        1.1     ragge 		hash = dge_mchash(sc, enm->enm_addrlo);
   2275        1.1     ragge 
   2276        1.1     ragge 		reg = (hash >> 5) & 0x7f;
   2277        1.1     ragge 		bit = hash & 0x1f;
   2278        1.1     ragge 
   2279        1.1     ragge 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2280        1.1     ragge 		hash |= 1U << bit;
   2281        1.1     ragge 
   2282        1.1     ragge 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2283        1.1     ragge 
   2284        1.1     ragge 		ETHER_NEXT_MULTI(step, enm);
   2285        1.1     ragge 	}
   2286       1.54   msaitoh 	ETHER_UNLOCK(ec);
   2287        1.1     ragge 
   2288        1.1     ragge 	ifp->if_flags &= ~IFF_ALLMULTI;
   2289        1.1     ragge 	goto setit;
   2290        1.1     ragge 
   2291        1.1     ragge  allmulti:
   2292        1.1     ragge 	ifp->if_flags |= IFF_ALLMULTI;
   2293        1.1     ragge 	sc->sc_rctl |= RCTL_MPE;
   2294        1.1     ragge 
   2295        1.1     ragge  setit:
   2296        1.1     ragge 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2297        1.1     ragge }
   2298        1.1     ragge 
   2299        1.1     ragge /*
   2300        1.1     ragge  * Read in the EEPROM info and verify checksum.
   2301        1.1     ragge  */
   2302        1.1     ragge int
   2303        1.1     ragge dge_read_eeprom(struct dge_softc *sc)
   2304        1.1     ragge {
   2305        1.1     ragge 	uint16_t cksum;
   2306        1.1     ragge 	int i;
   2307        1.1     ragge 
   2308        1.1     ragge 	cksum = 0;
   2309        1.1     ragge 	for (i = 0; i < EEPROM_SIZE; i++) {
   2310        1.1     ragge 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2311        1.1     ragge 		cksum += sc->sc_eeprom[i];
   2312        1.1     ragge 	}
   2313        1.1     ragge 	return cksum != EEPROM_CKSUM;
   2314        1.1     ragge }
   2315        1.1     ragge 
   2316        1.1     ragge 
   2317        1.1     ragge /*
   2318        1.1     ragge  * Read a 16-bit word from address addr in the serial EEPROM.
   2319        1.1     ragge  */
   2320        1.1     ragge uint16_t
   2321        1.1     ragge dge_eeprom_word(struct dge_softc *sc, int addr)
   2322        1.1     ragge {
   2323        1.1     ragge 	uint32_t reg;
   2324        1.1     ragge 	uint16_t rval = 0;
   2325        1.1     ragge 	int i;
   2326        1.1     ragge 
   2327       1.53   msaitoh 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK | EECD_DI | EECD_CS);
   2328        1.1     ragge 
   2329        1.1     ragge 	/* Lower clock pulse (and data in to chip) */
   2330        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2331        1.1     ragge 	/* Select chip */
   2332       1.53   msaitoh 	CSR_WRITE(sc, DGE_EECD, reg | EECD_CS);
   2333        1.1     ragge 
   2334        1.1     ragge 	/* Send read command */
   2335        1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2336        1.1     ragge 	dge_eeprom_clockout(sc, 1);
   2337        1.1     ragge 	dge_eeprom_clockout(sc, 0);
   2338        1.1     ragge 
   2339        1.1     ragge 	/* Send address */
   2340        1.1     ragge 	for (i = 5; i >= 0; i--)
   2341        1.1     ragge 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2342        1.1     ragge 
   2343        1.1     ragge 	/* Read data */
   2344        1.1     ragge 	for (i = 0; i < 16; i++) {
   2345        1.1     ragge 		rval <<= 1;
   2346        1.1     ragge 		rval |= dge_eeprom_clockin(sc);
   2347        1.1     ragge 	}
   2348        1.1     ragge 
   2349        1.1     ragge 	/* Deselect chip */
   2350        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2351        1.1     ragge 
   2352        1.1     ragge 	return rval;
   2353        1.1     ragge }
   2354        1.1     ragge 
   2355        1.1     ragge /*
   2356        1.1     ragge  * Clock out a single bit to the EEPROM.
   2357        1.1     ragge  */
   2358        1.1     ragge void
   2359        1.1     ragge dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2360        1.1     ragge {
   2361        1.1     ragge 	int reg;
   2362        1.1     ragge 
   2363       1.53   msaitoh 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_SK);
   2364        1.1     ragge 	if (bit)
   2365        1.1     ragge 		reg |= EECD_DI;
   2366       1.10     perry 
   2367        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2368        1.1     ragge 	delay(2);
   2369       1.53   msaitoh 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK);
   2370        1.1     ragge 	delay(2);
   2371        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg);
   2372        1.1     ragge 	delay(2);
   2373        1.1     ragge }
   2374        1.1     ragge 
   2375        1.1     ragge /*
   2376        1.1     ragge  * Clock in a single bit from EEPROM.
   2377        1.1     ragge  */
   2378        1.1     ragge int
   2379        1.1     ragge dge_eeprom_clockin(struct dge_softc *sc)
   2380        1.1     ragge {
   2381        1.1     ragge 	int reg, rv;
   2382        1.1     ragge 
   2383       1.53   msaitoh 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI | EECD_DO | EECD_SK);
   2384        1.1     ragge 
   2385       1.53   msaitoh 	CSR_WRITE(sc, DGE_EECD, reg | EECD_SK); /* Raise clock */
   2386        1.1     ragge 	delay(2);
   2387        1.1     ragge 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2388        1.1     ragge 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2389        1.1     ragge 	delay(2);
   2390        1.1     ragge 
   2391        1.1     ragge 	return rv;
   2392        1.1     ragge }
   2393        1.1     ragge 
   2394        1.1     ragge static void
   2395        1.1     ragge dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2396        1.1     ragge {
   2397        1.1     ragge 	struct dge_softc *sc = ifp->if_softc;
   2398        1.1     ragge 
   2399        1.1     ragge 	ifmr->ifm_status = IFM_AVALID;
   2400  1.58.10.1   thorpej 	if (sc->sc_dgep->flags & DGEP_F_10G_SR ) {
   2401       1.53   msaitoh 		ifmr->ifm_active = IFM_ETHER | IFM_10G_SR;
   2402       1.42  pgoyette 	} else {
   2403       1.53   msaitoh 		ifmr->ifm_active = IFM_ETHER | IFM_10G_LR;
   2404       1.42  pgoyette 	}
   2405        1.1     ragge 
   2406        1.1     ragge 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2407        1.1     ragge 		ifmr->ifm_status |= IFM_ACTIVE;
   2408        1.1     ragge }
   2409        1.1     ragge 
   2410        1.1     ragge static inline int
   2411        1.1     ragge phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2412        1.1     ragge {
   2413       1.52   msaitoh 	int i, mdic;
   2414        1.1     ragge 
   2415       1.52   msaitoh 	CSR_WRITE(sc, DGE_MDIO,
   2416        1.1     ragge 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2417       1.52   msaitoh 	for (i = 0; i < 10; i++) {
   2418       1.52   msaitoh 		delay(10);
   2419       1.52   msaitoh 		if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2420       1.52   msaitoh 			break;
   2421       1.52   msaitoh 	}
   2422       1.52   msaitoh 	return mdic;
   2423        1.1     ragge }
   2424        1.1     ragge 
   2425        1.1     ragge static void
   2426       1.39       chs dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
   2427        1.1     ragge {
   2428        1.1     ragge 	int mdic;
   2429        1.1     ragge 
   2430        1.1     ragge 	CSR_WRITE(sc, DGE_MDIRW, val);
   2431        1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2432        1.1     ragge 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2433       1.35       chs 		    device_xname(sc->sc_dev), phy, reg);
   2434        1.1     ragge 		return;
   2435        1.1     ragge 	}
   2436        1.1     ragge 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2437       1.39       chs 		printf("%s: write cycle timeout; phy %d reg %d\n",
   2438       1.35       chs 		    device_xname(sc->sc_dev), phy, reg);
   2439        1.1     ragge 		return;
   2440        1.1     ragge 	}
   2441        1.1     ragge }
   2442        1.1     ragge 
   2443        1.1     ragge static void
   2444        1.1     ragge dge_xgmii_reset(struct dge_softc *sc)
   2445        1.1     ragge {
   2446       1.39       chs 	dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
   2447        1.1     ragge }
   2448        1.1     ragge 
   2449        1.1     ragge static int
   2450       1.14  christos dge_xgmii_mediachange(struct ifnet *ifp)
   2451        1.1     ragge {
   2452        1.1     ragge 	return 0;
   2453        1.1     ragge }
   2454