Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.1
      1 /*	$NetBSD: if_dge.c,v 1.1 2004/03/12 13:46:52 ragge Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  * All rights reserved.
      6  *
      7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	SUNET, Swedish University Computer Network.
     21  * 4. The name of SUNET may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  *
     75  * TODO (in no specific order):
     76  *	HW VLAN support.
     77  *	Large jumbo buffers (16k).
     78  *	TSE offloading (needs kernel changes...)
     79  *	RAIDC (receive interrupt delay adaptation)
     80  *	Use memory > 4GB.
     81  */
     82 
     83 #include <sys/cdefs.h>
     84 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.1 2004/03/12 13:46:52 ragge Exp $");
     85 
     86 #include "bpfilter.h"
     87 #include "rnd.h"
     88 
     89 #include <sys/param.h>
     90 #include <sys/systm.h>
     91 #include <sys/callout.h>
     92 #include <sys/mbuf.h>
     93 #include <sys/malloc.h>
     94 #include <sys/kernel.h>
     95 #include <sys/socket.h>
     96 #include <sys/ioctl.h>
     97 #include <sys/errno.h>
     98 #include <sys/device.h>
     99 #include <sys/queue.h>
    100 
    101 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    102 
    103 #if NRND > 0
    104 #include <sys/rnd.h>
    105 #endif
    106 
    107 #include <net/if.h>
    108 #include <net/if_dl.h>
    109 #include <net/if_media.h>
    110 #include <net/if_ether.h>
    111 
    112 #if NBPFILTER > 0
    113 #include <net/bpf.h>
    114 #endif
    115 
    116 #include <netinet/in.h>			/* XXX for struct ip */
    117 #include <netinet/in_systm.h>		/* XXX for struct ip */
    118 #include <netinet/ip.h>			/* XXX for struct ip */
    119 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    120 
    121 #include <machine/bus.h>
    122 #include <machine/intr.h>
    123 #include <machine/endian.h>
    124 
    125 #include <dev/mii/mii.h>
    126 #include <dev/mii/miivar.h>
    127 #include <dev/mii/mii_bitbang.h>
    128 
    129 #include <dev/pci/pcireg.h>
    130 #include <dev/pci/pcivar.h>
    131 #include <dev/pci/pcidevs.h>
    132 
    133 #include <dev/pci/if_dgereg.h>
    134 
    135 #define DGE_EVENT_COUNTERS
    136 #define DGE_DEBUG
    137 
    138 #ifdef DGE_DEBUG
    139 #define	DGE_DEBUG_LINK		0x01
    140 #define	DGE_DEBUG_TX		0x02
    141 #define	DGE_DEBUG_RX		0x04
    142 #define	DGE_DEBUG_CKSUM		0x08
    143 int	dge_debug = 0;
    144 
    145 #define	DPRINTF(x, y)	if (dge_debug & (x)) printf y
    146 #else
    147 #define	DPRINTF(x, y)	/* nothing */
    148 #endif /* DGE_DEBUG */
    149 
    150 /*
    151  * Transmit descriptor list size. We allow up to 100 DMA segments per
    152  * packet (Intel reports of jumbo frame packets with as
    153  * many as 80 DMA segments when using 16k buffers).
    154  */
    155 #define	DGE_NTXSEGS		100
    156 #define	DGE_IFQUEUELEN		20000
    157 #define	DGE_TXQUEUELEN		2048
    158 #define	DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    159 #define	DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    160 #define	DGE_NTXDESC		1024
    161 #define	DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    162 #define	DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    163 #define	DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    164 
    165 /*
    166  * Receive descriptor list size.
    167  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    168  * be chained.  Due to the nature of the card (high-speed), keep this
    169  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    170  * which at full speed will be received in just under 3ms.
    171  */
    172 #define	DGE_NRXDESC		2048
    173 #define	DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    174 #define	DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    175 /*
    176  * # of descriptors between head and written descriptors.
    177  * This is to work-around two erratas.
    178  */
    179 #define DGE_RXSPACE		10
    180 #define	DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    181 /*
    182  * Receive descriptor fetch threshholds. These are values recommended
    183  * by Intel, do not touch them unless you know what you are doing.
    184  */
    185 #define	RXDCTL_PTHRESH_VAL	128
    186 #define	RXDCTL_HTHRESH_VAL	16
    187 #define	RXDCTL_WTHRESH_VAL	16
    188 
    189 
    190 /*
    191  * Tweakable parameters; default values.
    192  */
    193 #define	FCRTH	0x30000	/* Send XOFF water mark */
    194 #define	FCRTL	0x28000	/* Send XON water mark */
    195 #define	RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    196 #define	TIDV	0x20	/* Interrupt delay after send, .8192us units */
    197 
    198 /*
    199  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    200  * a single clump that maps to a single DMA segment to make serveral things
    201  * easier.
    202  */
    203 struct dge_control_data {
    204 	/*
    205 	 * The transmit descriptors.
    206 	 */
    207 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    208 
    209 	/*
    210 	 * The receive descriptors.
    211 	 */
    212 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    213 };
    214 
    215 #define	DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    216 #define	DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    217 #define	DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    218 
    219 /*
    220  * Software state for transmit jobs.
    221  */
    222 struct dge_txsoft {
    223 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    224 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    225 	int txs_firstdesc;		/* first descriptor in packet */
    226 	int txs_lastdesc;		/* last descriptor in packet */
    227 	int txs_ndesc;			/* # of descriptors used */
    228 };
    229 
    230 /*
    231  * Software state for receive buffers.  Each descriptor gets a
    232  * 2k (MCLBYTES) buffer and a DMA map.  For packets which fill
    233  * more than one buffer, we chain them together.
    234  */
    235 struct dge_rxsoft {
    236 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    237 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    238 };
    239 
    240 /*
    241  * Software state per device.
    242  */
    243 struct dge_softc {
    244 	struct device sc_dev;		/* generic device information */
    245 	bus_space_tag_t sc_st;		/* bus space tag */
    246 	bus_space_handle_t sc_sh;	/* bus space handle */
    247 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    248 	struct ethercom sc_ethercom;	/* ethernet common data */
    249 	void *sc_sdhook;		/* shutdown hook */
    250 
    251 	int sc_flags;			/* flags; see below */
    252 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    253 	int sc_pcix_offset;		/* PCIX capability register offset */
    254 
    255 	pci_chipset_tag_t sc_pc;
    256 	pcitag_t sc_pt;
    257 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    258 
    259 	void *sc_ih;			/* interrupt cookie */
    260 
    261 	struct ifmedia sc_media;
    262 
    263 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    264 #define	sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    265 
    266 	int		sc_align_tweak;
    267 
    268 	/*
    269 	 * Software state for the transmit and receive descriptors.
    270 	 */
    271 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    272 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    273 
    274 	/*
    275 	 * Control data structures.
    276 	 */
    277 	struct dge_control_data *sc_control_data;
    278 #define	sc_txdescs	sc_control_data->wcd_txdescs
    279 #define	sc_rxdescs	sc_control_data->wcd_rxdescs
    280 
    281 #ifdef DGE_EVENT_COUNTERS
    282 	/* Event counters. */
    283 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    284 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    285 	struct evcnt sc_ev_txforceintr;	/* Tx interrupts forced */
    286 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    287 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    288 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    289 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    290 
    291 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    292 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    293 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    294 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    295 
    296 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    297 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    298 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    299 
    300 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    301 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    302 #endif /* DGE_EVENT_COUNTERS */
    303 
    304 	int	sc_txfree;		/* number of free Tx descriptors */
    305 	int	sc_txnext;		/* next ready Tx descriptor */
    306 
    307 	int	sc_txsfree;		/* number of free Tx jobs */
    308 	int	sc_txsnext;		/* next free Tx job */
    309 	int	sc_txsdirty;		/* dirty Tx jobs */
    310 
    311 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    312 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    313 
    314 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    315 	int	sc_rxdiscard;
    316 	int	sc_rxlen;
    317 	struct mbuf *sc_rxhead;
    318 	struct mbuf *sc_rxtail;
    319 	struct mbuf **sc_rxtailp;
    320 
    321 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    322 	uint32_t sc_icr;		/* prototype interrupt bits */
    323 	uint32_t sc_tctl;		/* prototype TCTL register */
    324 	uint32_t sc_rctl;		/* prototype RCTL register */
    325 
    326 	int sc_mchash_type;		/* multicast filter offset */
    327 
    328 	uint16_t sc_eeprom[EEPROM_SIZE];
    329 
    330 #if NRND > 0
    331 	rndsource_element_t rnd_source;	/* random source */
    332 #endif
    333 };
    334 
    335 #define	DGE_RXCHAIN_RESET(sc)						\
    336 do {									\
    337 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    338 	*(sc)->sc_rxtailp = NULL;					\
    339 	(sc)->sc_rxlen = 0;						\
    340 } while (/*CONSTCOND*/0)
    341 
    342 #define	DGE_RXCHAIN_LINK(sc, m)						\
    343 do {									\
    344 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    345 	(sc)->sc_rxtailp = &(m)->m_next;				\
    346 } while (/*CONSTCOND*/0)
    347 
    348 /* sc_flags */
    349 #define	DGE_F_BUS64		0x20	/* bus is 64-bit */
    350 #define	DGE_F_PCIX		0x40	/* bus is PCI-X */
    351 
    352 #ifdef DGE_EVENT_COUNTERS
    353 #define	DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    354 #else
    355 #define	DGE_EVCNT_INCR(ev)	/* nothing */
    356 #endif
    357 
    358 #define	CSR_READ(sc, reg)						\
    359 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    360 #define	CSR_WRITE(sc, reg, val)						\
    361 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    362 
    363 #define	DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    364 #define	DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    365 
    366 #define	DGE_CDTXSYNC(sc, x, n, ops)					\
    367 do {									\
    368 	int __x, __n;							\
    369 									\
    370 	__x = (x);							\
    371 	__n = (n);							\
    372 									\
    373 	/* If it will wrap around, sync to the end of the ring. */	\
    374 	if ((__x + __n) > DGE_NTXDESC) {					\
    375 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    376 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    377 		    (DGE_NTXDESC - __x), (ops));				\
    378 		__n -= (DGE_NTXDESC - __x);				\
    379 		__x = 0;						\
    380 	}								\
    381 									\
    382 	/* Now sync whatever is left. */				\
    383 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    384 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    385 } while (/*CONSTCOND*/0)
    386 
    387 #define	DGE_CDRXSYNC(sc, x, ops)						\
    388 do {									\
    389 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    390 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    391 } while (/*CONSTCOND*/0)
    392 
    393 #define	DGE_INIT_RXDESC(sc, x)						\
    394 do {									\
    395 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    396 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    397 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    398 									\
    399 	/*								\
    400 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    401 	 * so that the payload after the Ethernet header is aligned	\
    402 	 * to a 4-byte boundary.					\
    403 	 *								\
    404 	 * XXX BRAINDAMAGE ALERT!					\
    405 	 * The stupid chip uses the same size for every buffer, which	\
    406 	 * is set in the Receive Control register.  We are using the 2K	\
    407 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    408 	 * reason, we can't "scoot" packets longer than the standard	\
    409 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    410 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    411 	 * the upper layer copy the headers.				\
    412 	 */								\
    413 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    414 									\
    415 	__rxd->dr_baddrl =					\
    416 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + 		\
    417 		(sc)->sc_align_tweak);					\
    418 	__rxd->dr_baddrh = 0;					\
    419 	__rxd->dr_len = 0;						\
    420 	__rxd->dr_cksum = 0;						\
    421 	__rxd->dr_status = 0;						\
    422 	__rxd->dr_errors = 0;						\
    423 	__rxd->dr_special = 0;						\
    424 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    425 									\
    426 	CSR_WRITE((sc), DGE_RDT, (x));					\
    427 } while (/*CONSTCOND*/0)
    428 
    429 static void	dge_start(struct ifnet *);
    430 static void	dge_watchdog(struct ifnet *);
    431 static int	dge_ioctl(struct ifnet *, u_long, caddr_t);
    432 static int	dge_init(struct ifnet *);
    433 static void	dge_stop(struct ifnet *, int);
    434 
    435 static void	dge_shutdown(void *);
    436 
    437 static void	dge_reset(struct dge_softc *);
    438 static void	dge_rxdrain(struct dge_softc *);
    439 static int	dge_add_rxbuf(struct dge_softc *, int);
    440 
    441 static void	dge_set_filter(struct dge_softc *);
    442 
    443 static int	dge_intr(void *);
    444 static void	dge_txintr(struct dge_softc *);
    445 static void	dge_rxintr(struct dge_softc *);
    446 static void	dge_linkintr(struct dge_softc *, uint32_t);
    447 
    448 static int	dge_match(struct device *, struct cfdata *, void *);
    449 static void	dge_attach(struct device *, struct device *, void *);
    450 
    451 static int	dge_read_eeprom(struct dge_softc *sc);
    452 static int	dge_eeprom_clockin(struct dge_softc *sc);
    453 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    454 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    455 static int	dge_xgmii_mediachange(struct ifnet *);
    456 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    457 static void	dge_xgmii_reset(struct dge_softc *);
    458 static void	dge_xgmii_writereg(struct device *, int, int, int);
    459 
    460 
    461 CFATTACH_DECL(dge, sizeof(struct dge_softc),
    462     dge_match, dge_attach, NULL, NULL);
    463 
    464 #ifdef DGE_EVENT_COUNTERS
    465 #if DGE_NTXSEGS > 100
    466 #error Update dge_txseg_evcnt_names
    467 #endif
    468 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    469 #endif /* DGE_EVENT_COUNTERS */
    470 
    471 static int
    472 dge_match(struct device *parent, struct cfdata *cf, void *aux)
    473 {
    474 	struct pci_attach_args *pa = aux;
    475 
    476 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    477 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    478 		return (1);
    479 
    480 	return (0);
    481 }
    482 
    483 static void
    484 dge_attach(struct device *parent, struct device *self, void *aux)
    485 {
    486 	struct dge_softc *sc = (void *) self;
    487 	struct pci_attach_args *pa = aux;
    488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    489 	pci_chipset_tag_t pc = pa->pa_pc;
    490 	pci_intr_handle_t ih;
    491 	const char *intrstr = NULL;
    492 	bus_dma_segment_t seg;
    493 	int i, rseg, error;
    494 	uint8_t enaddr[ETHER_ADDR_LEN];
    495 	pcireg_t preg, memtype;
    496 	uint32_t reg;
    497 
    498 	sc->sc_dmat = pa->pa_dmat;
    499 	sc->sc_pc = pa->pa_pc;
    500 	sc->sc_pt = pa->pa_tag;
    501 
    502 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    503 	aprint_naive(": Ethernet controller\n");
    504 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    505 
    506 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    507         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    508             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    509                 aprint_error("%s: unable to map device registers\n",
    510                     sc->sc_dev.dv_xname);
    511                 return;
    512         }
    513 
    514 	/* Enable bus mastering */
    515 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    516 	preg |= PCI_COMMAND_MASTER_ENABLE;
    517 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    518 
    519 	/*
    520 	 * Map and establish our interrupt.
    521 	 */
    522 	if (pci_intr_map(pa, &ih)) {
    523 		aprint_error("%s: unable to map interrupt\n",
    524 		    sc->sc_dev.dv_xname);
    525 		return;
    526 	}
    527 	intrstr = pci_intr_string(pc, ih);
    528 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    529 	if (sc->sc_ih == NULL) {
    530 		aprint_error("%s: unable to establish interrupt",
    531 		    sc->sc_dev.dv_xname);
    532 		if (intrstr != NULL)
    533 			aprint_normal(" at %s", intrstr);
    534 		aprint_normal("\n");
    535 		return;
    536 	}
    537 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    538 
    539 	/*
    540 	 * Determine a few things about the bus we're connected to.
    541 	 */
    542 	reg = CSR_READ(sc, DGE_STATUS);
    543 	if (reg & STATUS_BUS64)
    544 		sc->sc_flags |= DGE_F_BUS64;
    545 
    546 	sc->sc_flags |= DGE_F_PCIX;
    547 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    548 			       PCI_CAP_PCIX,
    549 			       &sc->sc_pcix_offset, NULL) == 0)
    550 		aprint_error("%s: unable to find PCIX "
    551 		    "capability\n", sc->sc_dev.dv_xname);
    552 
    553 	if (sc->sc_flags & DGE_F_PCIX) {
    554 		switch (reg & STATUS_PCIX_MSK) {
    555 		case STATUS_PCIX_66:
    556 			sc->sc_bus_speed = 66;
    557 			break;
    558 		case STATUS_PCIX_100:
    559 			sc->sc_bus_speed = 100;
    560 			break;
    561 		case STATUS_PCIX_133:
    562 			sc->sc_bus_speed = 133;
    563 			break;
    564 		default:
    565 			aprint_error(
    566 			    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    567 			    sc->sc_dev.dv_xname,
    568 			    reg & STATUS_PCIX_MSK);
    569 			sc->sc_bus_speed = 66;
    570 		}
    571 	} else
    572 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    573 	aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    574 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    575 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    576 
    577 	/*
    578 	 * Allocate the control data structures, and create and load the
    579 	 * DMA map for it.
    580 	 */
    581 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    582 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    583 	    0)) != 0) {
    584 		aprint_error(
    585 		    "%s: unable to allocate control data, error = %d\n",
    586 		    sc->sc_dev.dv_xname, error);
    587 		goto fail_0;
    588 	}
    589 
    590 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    591 	    sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
    592 	    0)) != 0) {
    593 		aprint_error("%s: unable to map control data, error = %d\n",
    594 		    sc->sc_dev.dv_xname, error);
    595 		goto fail_1;
    596 	}
    597 
    598 	if ((error = bus_dmamap_create(sc->sc_dmat,
    599 	    sizeof(struct dge_control_data), 1,
    600 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    601 		aprint_error("%s: unable to create control data DMA map, "
    602 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    603 		goto fail_2;
    604 	}
    605 
    606 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    607 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    608 	    0)) != 0) {
    609 		aprint_error(
    610 		    "%s: unable to load control data DMA map, error = %d\n",
    611 		    sc->sc_dev.dv_xname, error);
    612 		goto fail_3;
    613 	}
    614 
    615 	/*
    616 	 * Create the transmit buffer DMA maps.
    617 	 */
    618 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    619 		if ((error = bus_dmamap_create(sc->sc_dmat, ETHER_MAX_LEN_JUMBO,
    620 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    621 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    622 			aprint_error("%s: unable to create Tx DMA map %d, "
    623 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    624 			goto fail_4;
    625 		}
    626 	}
    627 
    628 	/*
    629 	 * Create the receive buffer DMA maps.
    630 	 */
    631 	for (i = 0; i < DGE_NRXDESC; i++) {
    632 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    633 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    634 			aprint_error("%s: unable to create Rx DMA map %d, "
    635 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    636 			goto fail_5;
    637 		}
    638 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    639 	}
    640 
    641 	/*
    642 	 * Set bits in ctrl0 register.
    643 	 * Should get the software defined pins out of EEPROM?
    644 	 */
    645 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    646 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    647 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    648 
    649 	/*
    650 	 * Reset the chip to a known state.
    651 	 */
    652 	dge_reset(sc);
    653 
    654 	/*
    655 	 * Reset the PHY.
    656 	 */
    657 	dge_xgmii_reset(sc);
    658 
    659 	/*
    660 	 * Read in EEPROM data.
    661 	 */
    662 	if (dge_read_eeprom(sc)) {
    663 		aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
    664 		return;
    665 	}
    666 
    667 	/*
    668 	 * Get the ethernet address.
    669 	 */
    670 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    671 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    672 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    673 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    674 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    675 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    676 
    677 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    678 	    ether_sprintf(enaddr));
    679 
    680 	/*
    681 	 * Setup media stuff.
    682 	 */
    683         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    684             dge_xgmii_mediastatus);
    685         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    686         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    687 
    688 	ifp = &sc->sc_ethercom.ec_if;
    689 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    690 	ifp->if_softc = sc;
    691 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    692 	ifp->if_ioctl = dge_ioctl;
    693 	ifp->if_start = dge_start;
    694 	ifp->if_watchdog = dge_watchdog;
    695 	ifp->if_init = dge_init;
    696 	ifp->if_stop = dge_stop;
    697 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    698 	IFQ_SET_READY(&ifp->if_snd);
    699 
    700 	sc->sc_ethercom.ec_capabilities |=
    701 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    702 
    703 	/*
    704 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    705 	 */
    706 	ifp->if_capabilities |=
    707 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    708 
    709 	/*
    710 	 * Attach the interface.
    711 	 */
    712 	if_attach(ifp);
    713 	ether_ifattach(ifp, enaddr);
    714 #if NRND > 0
    715 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    716 	    RND_TYPE_NET, 0);
    717 #endif
    718 
    719 #ifdef DGE_EVENT_COUNTERS
    720 	/* Fix segment event naming */
    721 	if (dge_txseg_evcnt_names == NULL) {
    722 		dge_txseg_evcnt_names =
    723 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    724 		for (i = 0; i < DGE_NTXSEGS; i++)
    725 			sprintf((*dge_txseg_evcnt_names)[i], "txseg%d", i);
    726 	}
    727 
    728 	/* Attach event counters. */
    729 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    730 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    731 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    732 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    733 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    734 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    735 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    736 	    NULL, sc->sc_dev.dv_xname, "txdw");
    737 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    738 	    NULL, sc->sc_dev.dv_xname, "txqe");
    739 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    740 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    741 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    742 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    743 
    744 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    745 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    746 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    747 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    748 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    749 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    750 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    751 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    752 
    753 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    754 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    755 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    756 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    757 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    758 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    759 
    760 	for (i = 0; i < DGE_NTXSEGS; i++)
    761 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    762 		    NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
    763 
    764 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    765 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    766 
    767 #endif /* DGE_EVENT_COUNTERS */
    768 
    769 	/*
    770 	 * Make sure the interface is shutdown during reboot.
    771 	 */
    772 	sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
    773 	if (sc->sc_sdhook == NULL)
    774 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    775 		    sc->sc_dev.dv_xname);
    776 	return;
    777 
    778 	/*
    779 	 * Free any resources we've allocated during the failed attach
    780 	 * attempt.  Do this in reverse order and fall through.
    781 	 */
    782  fail_5:
    783 	for (i = 0; i < DGE_NRXDESC; i++) {
    784 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    785 			bus_dmamap_destroy(sc->sc_dmat,
    786 			    sc->sc_rxsoft[i].rxs_dmamap);
    787 	}
    788  fail_4:
    789 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    790 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    791 			bus_dmamap_destroy(sc->sc_dmat,
    792 			    sc->sc_txsoft[i].txs_dmamap);
    793 	}
    794 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    795  fail_3:
    796 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    797  fail_2:
    798 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    799 	    sizeof(struct dge_control_data));
    800  fail_1:
    801 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    802  fail_0:
    803 	return;
    804 }
    805 
    806 /*
    807  * dge_shutdown:
    808  *
    809  *	Make sure the interface is stopped at reboot time.
    810  */
    811 static void
    812 dge_shutdown(void *arg)
    813 {
    814 	struct dge_softc *sc = arg;
    815 
    816 	dge_stop(&sc->sc_ethercom.ec_if, 1);
    817 }
    818 
    819 /*
    820  * dge_tx_cksum:
    821  *
    822  *	Set up TCP/IP checksumming parameters for the
    823  *	specified packet.
    824  */
    825 static int
    826 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
    827 {
    828 	struct mbuf *m0 = txs->txs_mbuf;
    829 	struct dge_ctdes *t;
    830 	uint32_t ipcs, tucs;
    831 	struct ip *ip;
    832 	struct ether_header *eh;
    833 	int offset, iphl;
    834 	uint8_t fields = 0;
    835 
    836 	/*
    837 	 * XXX It would be nice if the mbuf pkthdr had offset
    838 	 * fields for the protocol headers.
    839 	 */
    840 
    841 	eh = mtod(m0, struct ether_header *);
    842 	switch (htons(eh->ether_type)) {
    843 	case ETHERTYPE_IP:
    844 		iphl = sizeof(struct ip);
    845 		offset = ETHER_HDR_LEN;
    846 		break;
    847 
    848 	case ETHERTYPE_VLAN:
    849 		iphl = sizeof(struct ip);
    850 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
    851 		break;
    852 
    853 	default:
    854 		/*
    855 		 * Don't support this protocol or encapsulation.
    856 		 */
    857 		*fieldsp = 0;
    858 		return (0);
    859 	}
    860 
    861 	if (m0->m_len < (offset + iphl)) {
    862 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
    863 			printf("%s: dge_tx_cksum: mbuf allocation failed, "
    864 			    "packet dropped\n", sc->sc_dev.dv_xname);
    865 			return (ENOMEM);
    866 		}
    867 		m0 = txs->txs_mbuf;
    868 	}
    869 
    870 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
    871 	iphl = ip->ip_hl << 2;
    872 
    873 	/*
    874 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
    875 	 * offload feature, if we load the context descriptor, we
    876 	 * MUST provide valid values for IPCSS and TUCSS fields.
    877 	 */
    878 
    879 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
    880 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
    881 		fields |= TDESC_POPTS_IXSM;
    882 		ipcs = DGE_TCPIP_IPCSS(offset) |
    883 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
    884 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
    885 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
    886 		/* Use the cached value. */
    887 		ipcs = sc->sc_txctx_ipcs;
    888 	} else {
    889 		/* Just initialize it to the likely value anyway. */
    890 		ipcs = DGE_TCPIP_IPCSS(offset) |
    891 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
    892 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
    893 	}
    894 	DPRINTF(DGE_DEBUG_CKSUM,
    895 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
    896 	    sc->sc_dev.dv_xname, offset, ipcs));
    897 
    898 	offset += iphl;
    899 
    900 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
    901 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
    902 		fields |= TDESC_POPTS_TXSM;
    903 		tucs = DGE_TCPIP_TUCSS(offset) |
    904 		    DGE_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
    905 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
    906 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
    907 		/* Use the cached value. */
    908 		tucs = sc->sc_txctx_tucs;
    909 	} else {
    910 		/* Just initialize it to a valid TCP context. */
    911 		tucs = DGE_TCPIP_TUCSS(offset) |
    912 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
    913 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
    914 	}
    915 
    916 	DPRINTF(DGE_DEBUG_CKSUM,
    917 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
    918 	    sc->sc_dev.dv_xname, offset, tucs));
    919 
    920 	if (sc->sc_txctx_ipcs == ipcs &&
    921 	    sc->sc_txctx_tucs == tucs) {
    922 		/* Cached context is fine. */
    923 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
    924 	} else {
    925 		/* Fill in the context descriptor. */
    926 #ifdef DGE_EVENT_COUNTERS
    927 		if (sc->sc_txctx_ipcs == 0xffffffff &&
    928 		    sc->sc_txctx_tucs == 0xffffffff)
    929 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
    930 		else
    931 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
    932 #endif
    933 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
    934 		t->dc_tcpip_ipcs = htole32(ipcs);
    935 		t->dc_tcpip_tucs = htole32(tucs);
    936 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
    937 		t->dc_tcpip_seg = 0;
    938 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
    939 
    940 		sc->sc_txctx_ipcs = ipcs;
    941 		sc->sc_txctx_tucs = tucs;
    942 
    943 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
    944 		txs->txs_ndesc++;
    945 	}
    946 
    947 	*fieldsp = fields;
    948 
    949 	return (0);
    950 }
    951 
    952 /*
    953  * dge_start:		[ifnet interface function]
    954  *
    955  *	Start packet transmission on the interface.
    956  */
    957 static void
    958 dge_start(struct ifnet *ifp)
    959 {
    960 	struct dge_softc *sc = ifp->if_softc;
    961 	struct mbuf *m0;
    962 	struct dge_txsoft *txs;
    963 	bus_dmamap_t dmamap;
    964 	int error, nexttx, lasttx = -1, ofree, seg;
    965 	uint32_t cksumcmd;
    966 	uint8_t cksumfields;
    967 
    968 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
    969 		return;
    970 
    971 	/*
    972 	 * Remember the previous number of free descriptors.
    973 	 */
    974 	ofree = sc->sc_txfree;
    975 
    976 	/*
    977 	 * Loop through the send queue, setting up transmit descriptors
    978 	 * until we drain the queue, or use up all available transmit
    979 	 * descriptors.
    980 	 */
    981 	for (;;) {
    982 		/* Grab a packet off the queue. */
    983 		IFQ_POLL(&ifp->if_snd, m0);
    984 		if (m0 == NULL)
    985 			break;
    986 
    987 		DPRINTF(DGE_DEBUG_TX,
    988 		    ("%s: TX: have packet to transmit: %p\n",
    989 		    sc->sc_dev.dv_xname, m0));
    990 
    991 		/* Get a work queue entry. */
    992 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
    993 			dge_txintr(sc);
    994 			if (sc->sc_txsfree == 0) {
    995 				DPRINTF(DGE_DEBUG_TX,
    996 				    ("%s: TX: no free job descriptors\n",
    997 					sc->sc_dev.dv_xname));
    998 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
    999 				break;
   1000 			}
   1001 		}
   1002 
   1003 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1004 		dmamap = txs->txs_dmamap;
   1005 
   1006 		/*
   1007 		 * Load the DMA map.  If this fails, the packet either
   1008 		 * didn't fit in the allotted number of segments, or we
   1009 		 * were short on resources.  For the too-many-segments
   1010 		 * case, we simply report an error and drop the packet,
   1011 		 * since we can't sanely copy a jumbo packet to a single
   1012 		 * buffer.
   1013 		 */
   1014 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1015 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1016 		if (error) {
   1017 			if (error == EFBIG) {
   1018 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1019 				printf("%s: Tx packet consumes too many "
   1020 				    "DMA segments, dropping...\n",
   1021 				    sc->sc_dev.dv_xname);
   1022 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1023 				m_freem(m0);
   1024 				continue;
   1025 			}
   1026 			/*
   1027 			 * Short on resources, just stop for now.
   1028 			 */
   1029 			DPRINTF(DGE_DEBUG_TX,
   1030 			    ("%s: TX: dmamap load failed: %d\n",
   1031 			    sc->sc_dev.dv_xname, error));
   1032 			break;
   1033 		}
   1034 
   1035 		/*
   1036 		 * Ensure we have enough descriptors free to describe
   1037 		 * the packet.  Note, we always reserve one descriptor
   1038 		 * at the end of the ring due to the semantics of the
   1039 		 * TDT register, plus one more in the event we need
   1040 		 * to re-load checksum offload context.
   1041 		 */
   1042 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1043 			/*
   1044 			 * Not enough free descriptors to transmit this
   1045 			 * packet.  We haven't committed anything yet,
   1046 			 * so just unload the DMA map, put the packet
   1047 			 * pack on the queue, and punt.  Notify the upper
   1048 			 * layer that there are no more slots left.
   1049 			 */
   1050 			DPRINTF(DGE_DEBUG_TX,
   1051 			    ("%s: TX: need %d descriptors, have %d\n",
   1052 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1053 			    sc->sc_txfree - 1));
   1054 			ifp->if_flags |= IFF_OACTIVE;
   1055 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1056 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1057 			break;
   1058 		}
   1059 
   1060 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1061 
   1062 		/*
   1063 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1064 		 */
   1065 
   1066 		/* Sync the DMA map. */
   1067 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1068 		    BUS_DMASYNC_PREWRITE);
   1069 
   1070 		DPRINTF(DGE_DEBUG_TX,
   1071 		    ("%s: TX: packet has %d DMA segments\n",
   1072 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1073 
   1074 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1075 
   1076 		/*
   1077 		 * Store a pointer to the packet so that we can free it
   1078 		 * later.
   1079 		 *
   1080 		 * Initially, we consider the number of descriptors the
   1081 		 * packet uses the number of DMA segments.  This may be
   1082 		 * incremented by 1 if we do checksum offload (a descriptor
   1083 		 * is used to set the checksum context).
   1084 		 */
   1085 		txs->txs_mbuf = m0;
   1086 		txs->txs_firstdesc = sc->sc_txnext;
   1087 		txs->txs_ndesc = dmamap->dm_nsegs;
   1088 
   1089 		/*
   1090 		 * Set up checksum offload parameters for
   1091 		 * this packet.
   1092 		 */
   1093 		if (m0->m_pkthdr.csum_flags &
   1094 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1095 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1096 				/* Error message already displayed. */
   1097 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1098 				continue;
   1099 			}
   1100 		} else {
   1101 			cksumfields = 0;
   1102 		}
   1103 
   1104 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1105 
   1106 		/*
   1107 		 * Initialize the transmit descriptor.
   1108 		 */
   1109 		for (nexttx = sc->sc_txnext, seg = 0;
   1110 		     seg < dmamap->dm_nsegs;
   1111 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1112 			/*
   1113 			 * Note: we currently only use 32-bit DMA
   1114 			 * addresses.
   1115 			 */
   1116 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1117 			sc->sc_txdescs[nexttx].dt_baddrl =
   1118 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1119 			sc->sc_txdescs[nexttx].dt_ctl =
   1120 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1121 			sc->sc_txdescs[nexttx].dt_status = 0;
   1122 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1123 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1124 			lasttx = nexttx;
   1125 
   1126 			DPRINTF(DGE_DEBUG_TX,
   1127 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1128 			    sc->sc_dev.dv_xname, nexttx,
   1129 			    le32toh(dmamap->dm_segs[seg].ds_addr),
   1130 			    le32toh(dmamap->dm_segs[seg].ds_len)));
   1131 		}
   1132 
   1133 		KASSERT(lasttx != -1);
   1134 
   1135 		/*
   1136 		 * Set up the command byte on the last descriptor of
   1137 		 * the packet.  If we're in the interrupt delay window,
   1138 		 * delay the interrupt.
   1139 		 */
   1140 		sc->sc_txdescs[lasttx].dt_ctl |=
   1141 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1142 
   1143 		txs->txs_lastdesc = lasttx;
   1144 
   1145 		DPRINTF(DGE_DEBUG_TX,
   1146 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1147 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1148 
   1149 		/* Sync the descriptors we're using. */
   1150 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1151 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1152 
   1153 		/* Give the packet to the chip. */
   1154 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1155 
   1156 		DPRINTF(DGE_DEBUG_TX,
   1157 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1158 
   1159 		DPRINTF(DGE_DEBUG_TX,
   1160 		    ("%s: TX: finished transmitting packet, job %d\n",
   1161 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1162 
   1163 		/* Advance the tx pointer. */
   1164 		sc->sc_txfree -= txs->txs_ndesc;
   1165 		sc->sc_txnext = nexttx;
   1166 
   1167 		sc->sc_txsfree--;
   1168 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1169 
   1170 #if NBPFILTER > 0
   1171 		/* Pass the packet to any BPF listeners. */
   1172 		if (ifp->if_bpf)
   1173 			bpf_mtap(ifp->if_bpf, m0);
   1174 #endif /* NBPFILTER > 0 */
   1175 	}
   1176 
   1177 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1178 		/* No more slots; notify upper layer. */
   1179 		ifp->if_flags |= IFF_OACTIVE;
   1180 	}
   1181 
   1182 	if (sc->sc_txfree != ofree) {
   1183 		/* Set a watchdog timer in case the chip flakes out. */
   1184 		ifp->if_timer = 5;
   1185 	}
   1186 }
   1187 
   1188 /*
   1189  * dge_watchdog:		[ifnet interface function]
   1190  *
   1191  *	Watchdog timer handler.
   1192  */
   1193 static void
   1194 dge_watchdog(struct ifnet *ifp)
   1195 {
   1196 	struct dge_softc *sc = ifp->if_softc;
   1197 
   1198 	/*
   1199 	 * Since we're using delayed interrupts, sweep up
   1200 	 * before we report an error.
   1201 	 */
   1202 	dge_txintr(sc);
   1203 
   1204 	if (sc->sc_txfree != DGE_NTXDESC) {
   1205 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1206 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1207 		    sc->sc_txnext);
   1208 		ifp->if_oerrors++;
   1209 
   1210 		/* Reset the interface. */
   1211 		(void) dge_init(ifp);
   1212 	}
   1213 
   1214 	/* Try to get more packets going. */
   1215 	dge_start(ifp);
   1216 }
   1217 
   1218 /*
   1219  * dge_ioctl:		[ifnet interface function]
   1220  *
   1221  *	Handle control requests from the operator.
   1222  */
   1223 static int
   1224 dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1225 {
   1226 	struct dge_softc *sc = ifp->if_softc;
   1227 	struct ifreq *ifr = (struct ifreq *) data;
   1228 	pcireg_t preg;
   1229 	int s, error, mmrbc;
   1230 
   1231 	s = splnet();
   1232 
   1233 	switch (cmd) {
   1234 	case SIOCSIFMEDIA:
   1235 	case SIOCGIFMEDIA:
   1236 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1237 		break;
   1238 
   1239         case SIOCSIFFLAGS:
   1240 		/* extract link flags */
   1241 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1242 		    (ifp->if_flags & IFF_LINK1) == 0)
   1243 			mmrbc = PCIX_MMRBC_512;
   1244 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1245 		    (ifp->if_flags & IFF_LINK1) != 0)
   1246 			mmrbc = PCIX_MMRBC_1024;
   1247 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1248 		    (ifp->if_flags & IFF_LINK1) == 0)
   1249 			mmrbc = PCIX_MMRBC_2048;
   1250 		else
   1251 			mmrbc = PCIX_MMRBC_4096;
   1252 		if (mmrbc != sc->sc_mmrbc) {
   1253 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1254 			preg &= ~PCIX_MMRBC_MSK;
   1255 			preg |= mmrbc;
   1256 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1257 			sc->sc_mmrbc = mmrbc;
   1258 		}
   1259                 /* FALLTHROUGH */
   1260 	default:
   1261 		error = ether_ioctl(ifp, cmd, data);
   1262 		if (error == ENETRESET) {
   1263 			/*
   1264 			 * Multicast list has changed; set the hardware filter
   1265 			 * accordingly.
   1266 			 */
   1267 			dge_set_filter(sc);
   1268 			error = 0;
   1269 		}
   1270 		break;
   1271 	}
   1272 
   1273 	/* Try to get more packets going. */
   1274 	dge_start(ifp);
   1275 
   1276 	splx(s);
   1277 	return (error);
   1278 }
   1279 
   1280 /*
   1281  * dge_intr:
   1282  *
   1283  *	Interrupt service routine.
   1284  */
   1285 static int
   1286 dge_intr(void *arg)
   1287 {
   1288 	struct dge_softc *sc = arg;
   1289 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1290 	uint32_t icr;
   1291 	int wantinit, handled = 0;
   1292 
   1293 	for (wantinit = 0; wantinit == 0;) {
   1294 		icr = CSR_READ(sc, DGE_ICR);
   1295 		if ((icr & sc->sc_icr) == 0)
   1296 			break;
   1297 
   1298 #if 0 /*NRND > 0*/
   1299 		if (RND_ENABLED(&sc->rnd_source))
   1300 			rnd_add_uint32(&sc->rnd_source, icr);
   1301 #endif
   1302 
   1303 		handled = 1;
   1304 
   1305 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1306 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1307 			DPRINTF(DGE_DEBUG_RX,
   1308 			    ("%s: RX: got Rx intr 0x%08x\n",
   1309 			    sc->sc_dev.dv_xname,
   1310 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1311 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1312 		}
   1313 #endif
   1314 		dge_rxintr(sc);
   1315 
   1316 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1317 		if (icr & ICR_TXDW) {
   1318 			DPRINTF(DGE_DEBUG_TX,
   1319 			    ("%s: TX: got TXDW interrupt\n",
   1320 			    sc->sc_dev.dv_xname));
   1321 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1322 		}
   1323 		if (icr & ICR_TXQE)
   1324 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1325 #endif
   1326 		dge_txintr(sc);
   1327 
   1328 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1329 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1330 			dge_linkintr(sc, icr);
   1331 		}
   1332 
   1333 		if (icr & ICR_RXO) {
   1334 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1335 			wantinit = 1;
   1336 		}
   1337 	}
   1338 
   1339 	if (handled) {
   1340 		if (wantinit)
   1341 			dge_init(ifp);
   1342 
   1343 		/* Try to get more packets going. */
   1344 		dge_start(ifp);
   1345 	}
   1346 
   1347 	return (handled);
   1348 }
   1349 
   1350 /*
   1351  * dge_txintr:
   1352  *
   1353  *	Helper; handle transmit interrupts.
   1354  */
   1355 static void
   1356 dge_txintr(struct dge_softc *sc)
   1357 {
   1358 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1359 	struct dge_txsoft *txs;
   1360 	uint8_t status;
   1361 	int i;
   1362 
   1363 	ifp->if_flags &= ~IFF_OACTIVE;
   1364 
   1365 	/*
   1366 	 * Go through the Tx list and free mbufs for those
   1367 	 * frames which have been transmitted.
   1368 	 */
   1369 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1370 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1371 		txs = &sc->sc_txsoft[i];
   1372 
   1373 		DPRINTF(DGE_DEBUG_TX,
   1374 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1375 
   1376 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1377 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1378 
   1379 		status =
   1380 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1381 		if ((status & TDESC_STA_DD) == 0) {
   1382 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1383 			    BUS_DMASYNC_PREREAD);
   1384 			break;
   1385 		}
   1386 
   1387 		DPRINTF(DGE_DEBUG_TX,
   1388 		    ("%s: TX: job %d done: descs %d..%d\n",
   1389 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1390 		    txs->txs_lastdesc));
   1391 
   1392 		ifp->if_opackets++;
   1393 		sc->sc_txfree += txs->txs_ndesc;
   1394 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1395 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1396 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1397 		m_freem(txs->txs_mbuf);
   1398 		txs->txs_mbuf = NULL;
   1399 	}
   1400 
   1401 	/* Update the dirty transmit buffer pointer. */
   1402 	sc->sc_txsdirty = i;
   1403 	DPRINTF(DGE_DEBUG_TX,
   1404 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1405 
   1406 	/*
   1407 	 * If there are no more pending transmissions, cancel the watchdog
   1408 	 * timer.
   1409 	 */
   1410 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1411 		ifp->if_timer = 0;
   1412 }
   1413 
   1414 /*
   1415  * dge_rxintr:
   1416  *
   1417  *	Helper; handle receive interrupts.
   1418  */
   1419 static void
   1420 dge_rxintr(struct dge_softc *sc)
   1421 {
   1422 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1423 	struct dge_rxsoft *rxs;
   1424 	struct mbuf *m;
   1425 	int i, len;
   1426 	uint8_t status, errors;
   1427 
   1428 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1429 		rxs = &sc->sc_rxsoft[i];
   1430 
   1431 		DPRINTF(DGE_DEBUG_RX,
   1432 		    ("%s: RX: checking descriptor %d\n",
   1433 		    sc->sc_dev.dv_xname, i));
   1434 
   1435 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1436 
   1437 		status = sc->sc_rxdescs[i].dr_status;
   1438 		errors = sc->sc_rxdescs[i].dr_errors;
   1439 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1440 
   1441 		if ((status & RDESC_STS_DD) == 0) {
   1442 			/*
   1443 			 * We have processed all of the receive descriptors.
   1444 			 */
   1445 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1446 			break;
   1447 		}
   1448 
   1449 		if (__predict_false(sc->sc_rxdiscard)) {
   1450 			DPRINTF(DGE_DEBUG_RX,
   1451 			    ("%s: RX: discarding contents of descriptor %d\n",
   1452 			    sc->sc_dev.dv_xname, i));
   1453 			DGE_INIT_RXDESC(sc, i);
   1454 			if (status & RDESC_STS_EOP) {
   1455 				/* Reset our state. */
   1456 				DPRINTF(DGE_DEBUG_RX,
   1457 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1458 				    sc->sc_dev.dv_xname));
   1459 				sc->sc_rxdiscard = 0;
   1460 			}
   1461 			continue;
   1462 		}
   1463 
   1464 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1465 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1466 
   1467 		m = rxs->rxs_mbuf;
   1468 
   1469 		/*
   1470 		 * Add a new receive buffer to the ring.
   1471 		 */
   1472 		if (dge_add_rxbuf(sc, i) != 0) {
   1473 			/*
   1474 			 * Failed, throw away what we've done so
   1475 			 * far, and discard the rest of the packet.
   1476 			 */
   1477 			ifp->if_ierrors++;
   1478 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1479 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1480 			DGE_INIT_RXDESC(sc, i);
   1481 			if ((status & RDESC_STS_EOP) == 0)
   1482 				sc->sc_rxdiscard = 1;
   1483 			if (sc->sc_rxhead != NULL)
   1484 				m_freem(sc->sc_rxhead);
   1485 			DGE_RXCHAIN_RESET(sc);
   1486 			DPRINTF(DGE_DEBUG_RX,
   1487 			    ("%s: RX: Rx buffer allocation failed, "
   1488 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1489 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1490 			continue;
   1491 		}
   1492 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1493 
   1494 		DGE_RXCHAIN_LINK(sc, m);
   1495 
   1496 		m->m_len = len;
   1497 
   1498 		DPRINTF(DGE_DEBUG_RX,
   1499 		    ("%s: RX: buffer at %p len %d\n",
   1500 		    sc->sc_dev.dv_xname, m->m_data, len));
   1501 
   1502 		/*
   1503 		 * If this is not the end of the packet, keep
   1504 		 * looking.
   1505 		 */
   1506 		if ((status & RDESC_STS_EOP) == 0) {
   1507 			sc->sc_rxlen += len;
   1508 			DPRINTF(DGE_DEBUG_RX,
   1509 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1510 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1511 			continue;
   1512 		}
   1513 
   1514 		/*
   1515 		 * Okay, we have the entire packet now...
   1516 		 */
   1517 		*sc->sc_rxtailp = NULL;
   1518 		m = sc->sc_rxhead;
   1519 		len += sc->sc_rxlen;
   1520 
   1521 		DGE_RXCHAIN_RESET(sc);
   1522 
   1523 		DPRINTF(DGE_DEBUG_RX,
   1524 		    ("%s: RX: have entire packet, len -> %d\n",
   1525 		    sc->sc_dev.dv_xname, len));
   1526 
   1527 		/*
   1528 		 * If an error occurred, update stats and drop the packet.
   1529 		 */
   1530 		if (errors &
   1531 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1532 			ifp->if_ierrors++;
   1533 			if (errors & RDESC_ERR_SE)
   1534 				printf("%s: symbol error\n",
   1535 				    sc->sc_dev.dv_xname);
   1536 			else if (errors & RDESC_ERR_P)
   1537 				printf("%s: parity error\n",
   1538 				    sc->sc_dev.dv_xname);
   1539 			else if (errors & RDESC_ERR_CE)
   1540 				printf("%s: CRC error\n",
   1541 				    sc->sc_dev.dv_xname);
   1542 			m_freem(m);
   1543 			continue;
   1544 		}
   1545 
   1546 		/*
   1547 		 * No errors.  Receive the packet.
   1548 		 */
   1549 		m->m_pkthdr.rcvif = ifp;
   1550 		m->m_pkthdr.len = len;
   1551 
   1552 		/*
   1553 		 * Set up checksum info for this packet.
   1554 		 */
   1555 		if (status & RDESC_STS_IPCS) {
   1556 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1557 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1558 			if (errors & RDESC_ERR_IPE)
   1559 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1560 		}
   1561 		if (status & RDESC_STS_TCPCS) {
   1562 			/*
   1563 			 * Note: we don't know if this was TCP or UDP,
   1564 			 * so we just set both bits, and expect the
   1565 			 * upper layers to deal.
   1566 			 */
   1567 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1568 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1569 			if (errors & RDESC_ERR_TCPE)
   1570 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1571 		}
   1572 
   1573 		ifp->if_ipackets++;
   1574 
   1575 #if NBPFILTER > 0
   1576 		/* Pass this up to any BPF listeners. */
   1577 		if (ifp->if_bpf)
   1578 			bpf_mtap(ifp->if_bpf, m);
   1579 #endif /* NBPFILTER > 0 */
   1580 
   1581 		/* Pass it on. */
   1582 		(*ifp->if_input)(ifp, m);
   1583 	}
   1584 
   1585 	/* Update the receive pointer. */
   1586 	sc->sc_rxptr = i;
   1587 
   1588 	DPRINTF(DGE_DEBUG_RX,
   1589 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1590 }
   1591 
   1592 /*
   1593  * dge_linkintr:
   1594  *
   1595  *	Helper; handle link interrupts.
   1596  */
   1597 static void
   1598 dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1599 {
   1600 	uint32_t status;
   1601 
   1602 	if (icr & ICR_LSC) {
   1603 		status = CSR_READ(sc, DGE_STATUS);
   1604 		if (status & STATUS_LINKUP) {
   1605 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1606 			    sc->sc_dev.dv_xname));
   1607 		} else {
   1608 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1609 			    sc->sc_dev.dv_xname));
   1610 		}
   1611 	} else if (icr & ICR_RXSEQ) {
   1612 		DPRINTF(DGE_DEBUG_LINK,
   1613 		    ("%s: LINK: Receive sequence error\n",
   1614 		    sc->sc_dev.dv_xname));
   1615 	}
   1616 	/* XXX - fix errata */
   1617 }
   1618 
   1619 /*
   1620  * dge_reset:
   1621  *
   1622  *	Reset the i82597 chip.
   1623  */
   1624 static void
   1625 dge_reset(struct dge_softc *sc)
   1626 {
   1627 	int i;
   1628 
   1629 	/*
   1630 	 * Do a chip reset.
   1631 	 */
   1632 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1633 
   1634 	delay(10000);
   1635 
   1636 	for (i = 0; i < 1000; i++) {
   1637 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1638 			break;
   1639 		delay(20);
   1640 	}
   1641 
   1642 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1643 		printf("%s: WARNING: reset failed to complete\n",
   1644 		    sc->sc_dev.dv_xname);
   1645         /*
   1646          * Reset the EEPROM logic.
   1647          * This will cause the chip to reread its default values,
   1648 	 * which doesn't happen otherwise (errata).
   1649          */
   1650         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1651         delay(10000);
   1652 }
   1653 
   1654 /*
   1655  * dge_init:		[ifnet interface function]
   1656  *
   1657  *	Initialize the interface.  Must be called at splnet().
   1658  */
   1659 static int
   1660 dge_init(struct ifnet *ifp)
   1661 {
   1662 	struct dge_softc *sc = ifp->if_softc;
   1663 	struct dge_rxsoft *rxs;
   1664 	int i, error = 0;
   1665 	uint32_t reg;
   1666 
   1667 	/*
   1668 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1669 	 * There is a small but measurable benefit to avoiding the adjusment
   1670 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1671 	 * on such platforms.  One possibility is that the DMA itself is
   1672 	 * slightly more efficient if the front of the entire packet (instead
   1673 	 * of the front of the headers) is aligned.
   1674 	 *
   1675 	 * Note we must always set align_tweak to 0 if we are using
   1676 	 * jumbo frames.
   1677 	 */
   1678 #ifdef __NO_STRICT_ALIGNMENT
   1679 	sc->sc_align_tweak = 0;
   1680 #else
   1681 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1682 		sc->sc_align_tweak = 0;
   1683 	else
   1684 		sc->sc_align_tweak = 2;
   1685 #endif /* __NO_STRICT_ALIGNMENT */
   1686 
   1687 	/* Cancel any pending I/O. */
   1688 	dge_stop(ifp, 0);
   1689 
   1690 	/* Reset the chip to a known state. */
   1691 	dge_reset(sc);
   1692 
   1693 	/* Initialize the transmit descriptor ring. */
   1694 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1695 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1696 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1697 	sc->sc_txfree = DGE_NTXDESC;
   1698 	sc->sc_txnext = 0;
   1699 
   1700 	sc->sc_txctx_ipcs = 0xffffffff;
   1701 	sc->sc_txctx_tucs = 0xffffffff;
   1702 
   1703 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1704 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1705 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1706 	CSR_WRITE(sc, DGE_TDH, 0);
   1707 	CSR_WRITE(sc, DGE_TDT, 0);
   1708 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1709 
   1710 #if 0
   1711 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1712 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1713 #endif
   1714 	CSR_WRITE(sc, DGE_RXDCTL,
   1715 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1716 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1717 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1718 
   1719 	/* Initialize the transmit job descriptors. */
   1720 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1721 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1722 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1723 	sc->sc_txsnext = 0;
   1724 	sc->sc_txsdirty = 0;
   1725 
   1726 	/*
   1727 	 * Initialize the receive descriptor and receive job
   1728 	 * descriptor rings.
   1729 	 */
   1730 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1731 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1732 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1733 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1734 	CSR_WRITE(sc, DGE_RDT, 0);
   1735 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1736 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1737 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1738 
   1739 	for (i = 0; i < DGE_NRXDESC; i++) {
   1740 		rxs = &sc->sc_rxsoft[i];
   1741 		if (rxs->rxs_mbuf == NULL) {
   1742 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1743 				printf("%s: unable to allocate or map rx "
   1744 				    "buffer %d, error = %d\n",
   1745 				    sc->sc_dev.dv_xname, i, error);
   1746 				/*
   1747 				 * XXX Should attempt to run with fewer receive
   1748 				 * XXX buffers instead of just failing.
   1749 				 */
   1750 				dge_rxdrain(sc);
   1751 				goto out;
   1752 			}
   1753 		}
   1754 		DGE_INIT_RXDESC(sc, i);
   1755 	}
   1756 	sc->sc_rxptr = DGE_RXSPACE;
   1757 	sc->sc_rxdiscard = 0;
   1758 	DGE_RXCHAIN_RESET(sc);
   1759 
   1760 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1761 		sc->sc_ctrl0 |= CTRL0_JFE;
   1762 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1763 	}
   1764 
   1765 	/* Write the control registers. */
   1766 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1767 
   1768 	/*
   1769 	 * Set up checksum offload parameters.
   1770 	 */
   1771 	reg = CSR_READ(sc, DGE_RXCSUM);
   1772 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1773 		reg |= RXCSUM_IPOFL;
   1774 	else
   1775 		reg &= ~RXCSUM_IPOFL;
   1776 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1777 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1778 	else {
   1779 		reg &= ~RXCSUM_TUOFL;
   1780 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   1781 			reg &= ~RXCSUM_IPOFL;
   1782 	}
   1783 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1784 
   1785 	/*
   1786 	 * Set up the interrupt registers.
   1787 	 */
   1788 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1789 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1790 	    ICR_RXO | ICR_RXT0;
   1791 
   1792 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1793 
   1794 	/*
   1795 	 * Set up the transmit control register.
   1796 	 */
   1797 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1798 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1799 
   1800 	/*
   1801 	 * Set up the receive control register; we actually program
   1802 	 * the register when we set the receive filter.  Use multicast
   1803 	 * address offset type 0.
   1804 	 */
   1805 	sc->sc_mchash_type = 0;
   1806 
   1807 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   1808 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   1809 
   1810 	switch(MCLBYTES) {
   1811 	case 2048:
   1812 		sc->sc_rctl |= RCTL_BSIZE_2k;
   1813 		break;
   1814 	case 4096:
   1815 		sc->sc_rctl |= RCTL_BSIZE_4k;
   1816 		break;
   1817 	case 8192:
   1818 		sc->sc_rctl |= RCTL_BSIZE_8k;
   1819 		break;
   1820 	case 16384:
   1821 		sc->sc_rctl |= RCTL_BSIZE_16k;
   1822 		break;
   1823 	default:
   1824 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   1825 	}
   1826 
   1827 	/* Set the receive filter. */
   1828 	/* Also sets RCTL */
   1829 	dge_set_filter(sc);
   1830 
   1831 	/* ...all done! */
   1832 	ifp->if_flags |= IFF_RUNNING;
   1833 	ifp->if_flags &= ~IFF_OACTIVE;
   1834 
   1835  out:
   1836 	if (error)
   1837 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   1838 	return (error);
   1839 }
   1840 
   1841 /*
   1842  * dge_rxdrain:
   1843  *
   1844  *	Drain the receive queue.
   1845  */
   1846 static void
   1847 dge_rxdrain(struct dge_softc *sc)
   1848 {
   1849 	struct dge_rxsoft *rxs;
   1850 	int i;
   1851 
   1852 	for (i = 0; i < DGE_NRXDESC; i++) {
   1853 		rxs = &sc->sc_rxsoft[i];
   1854 		if (rxs->rxs_mbuf != NULL) {
   1855 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1856 			m_freem(rxs->rxs_mbuf);
   1857 			rxs->rxs_mbuf = NULL;
   1858 		}
   1859 	}
   1860 }
   1861 
   1862 /*
   1863  * dge_stop:		[ifnet interface function]
   1864  *
   1865  *	Stop transmission on the interface.
   1866  */
   1867 static void
   1868 dge_stop(struct ifnet *ifp, int disable)
   1869 {
   1870 	struct dge_softc *sc = ifp->if_softc;
   1871 	struct dge_txsoft *txs;
   1872 	int i;
   1873 
   1874 	/* Stop the transmit and receive processes. */
   1875 	CSR_WRITE(sc, DGE_TCTL, 0);
   1876 	CSR_WRITE(sc, DGE_RCTL, 0);
   1877 
   1878 	/* Release any queued transmit buffers. */
   1879 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   1880 		txs = &sc->sc_txsoft[i];
   1881 		if (txs->txs_mbuf != NULL) {
   1882 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1883 			m_freem(txs->txs_mbuf);
   1884 			txs->txs_mbuf = NULL;
   1885 		}
   1886 	}
   1887 
   1888 	if (disable)
   1889 		dge_rxdrain(sc);
   1890 
   1891 	/* Mark the interface as down and cancel the watchdog timer. */
   1892 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   1893 	ifp->if_timer = 0;
   1894 }
   1895 
   1896 /*
   1897  * dge_add_rxbuf:
   1898  *
   1899  *	Add a receive buffer to the indiciated descriptor.
   1900  */
   1901 static int
   1902 dge_add_rxbuf(struct dge_softc *sc, int idx)
   1903 {
   1904 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   1905 	struct mbuf *m;
   1906 	int error;
   1907 
   1908 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   1909 	if (m == NULL)
   1910 		return (ENOBUFS);
   1911 
   1912 	MCLGET(m, M_DONTWAIT);
   1913 	if ((m->m_flags & M_EXT) == 0) {
   1914 		m_freem(m);
   1915 		return (ENOBUFS);
   1916 	}
   1917 
   1918 	if (rxs->rxs_mbuf != NULL)
   1919 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   1920 
   1921 	rxs->rxs_mbuf = m;
   1922 
   1923 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   1924 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   1925 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   1926 	if (error) {
   1927 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   1928 		    sc->sc_dev.dv_xname, idx, error);
   1929 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   1930 	}
   1931 
   1932 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1933 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1934 
   1935 	return (0);
   1936 }
   1937 
   1938 /*
   1939  * dge_set_ral:
   1940  *
   1941  *	Set an entry in the receive address list.
   1942  */
   1943 static void
   1944 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   1945 {
   1946 	uint32_t ral_lo, ral_hi;
   1947 
   1948 	if (enaddr != NULL) {
   1949 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   1950 		    (enaddr[3] << 24);
   1951 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   1952 		ral_hi |= RAH_AV;
   1953 	} else {
   1954 		ral_lo = 0;
   1955 		ral_hi = 0;
   1956 	}
   1957 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   1958 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   1959 }
   1960 
   1961 /*
   1962  * dge_mchash:
   1963  *
   1964  *	Compute the hash of the multicast address for the 4096-bit
   1965  *	multicast filter.
   1966  */
   1967 static uint32_t
   1968 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   1969 {
   1970 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   1971 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   1972 	uint32_t hash;
   1973 
   1974 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   1975 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   1976 
   1977 	return (hash & 0xfff);
   1978 }
   1979 
   1980 /*
   1981  * dge_set_filter:
   1982  *
   1983  *	Set up the receive filter.
   1984  */
   1985 static void
   1986 dge_set_filter(struct dge_softc *sc)
   1987 {
   1988 	struct ethercom *ec = &sc->sc_ethercom;
   1989 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1990 	struct ether_multi *enm;
   1991 	struct ether_multistep step;
   1992 	uint32_t hash, reg, bit;
   1993 	int i;
   1994 
   1995 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   1996 
   1997 	if (ifp->if_flags & IFF_BROADCAST)
   1998 		sc->sc_rctl |= RCTL_BAM;
   1999 	if (ifp->if_flags & IFF_PROMISC) {
   2000 		sc->sc_rctl |= RCTL_UPE;
   2001 		goto allmulti;
   2002 	}
   2003 
   2004 	/*
   2005 	 * Set the station address in the first RAL slot, and
   2006 	 * clear the remaining slots.
   2007 	 */
   2008 	dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2009 	for (i = 1; i < RA_TABSIZE; i++)
   2010 		dge_set_ral(sc, NULL, i);
   2011 
   2012 	/* Clear out the multicast table. */
   2013 	for (i = 0; i < MC_TABSIZE; i++)
   2014 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2015 
   2016 	ETHER_FIRST_MULTI(step, ec, enm);
   2017 	while (enm != NULL) {
   2018 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2019 			/*
   2020 			 * We must listen to a range of multicast addresses.
   2021 			 * For now, just accept all multicasts, rather than
   2022 			 * trying to set only those filter bits needed to match
   2023 			 * the range.  (At this time, the only use of address
   2024 			 * ranges is for IP multicast routing, for which the
   2025 			 * range is big enough to require all bits set.)
   2026 			 */
   2027 			goto allmulti;
   2028 		}
   2029 
   2030 		hash = dge_mchash(sc, enm->enm_addrlo);
   2031 
   2032 		reg = (hash >> 5) & 0x7f;
   2033 		bit = hash & 0x1f;
   2034 
   2035 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2036 		hash |= 1U << bit;
   2037 
   2038 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2039 
   2040 		ETHER_NEXT_MULTI(step, enm);
   2041 	}
   2042 
   2043 	ifp->if_flags &= ~IFF_ALLMULTI;
   2044 	goto setit;
   2045 
   2046  allmulti:
   2047 	ifp->if_flags |= IFF_ALLMULTI;
   2048 	sc->sc_rctl |= RCTL_MPE;
   2049 
   2050  setit:
   2051 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2052 }
   2053 
   2054 /*
   2055  * Read in the EEPROM info and verify checksum.
   2056  */
   2057 int
   2058 dge_read_eeprom(struct dge_softc *sc)
   2059 {
   2060 	uint16_t cksum;
   2061 	int i;
   2062 
   2063 	cksum = 0;
   2064 	for (i = 0; i < EEPROM_SIZE; i++) {
   2065 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2066 		cksum += sc->sc_eeprom[i];
   2067 	}
   2068 	return cksum != EEPROM_CKSUM;
   2069 }
   2070 
   2071 
   2072 /*
   2073  * Read a 16-bit word from address addr in the serial EEPROM.
   2074  */
   2075 uint16_t
   2076 dge_eeprom_word(struct dge_softc *sc, int addr)
   2077 {
   2078 	uint32_t reg;
   2079 	uint16_t rval = 0;
   2080 	int i;
   2081 
   2082 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2083 
   2084 	/* Lower clock pulse (and data in to chip) */
   2085 	CSR_WRITE(sc, DGE_EECD, reg);
   2086 	/* Select chip */
   2087 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2088 
   2089 	/* Send read command */
   2090 	dge_eeprom_clockout(sc, 1);
   2091 	dge_eeprom_clockout(sc, 1);
   2092 	dge_eeprom_clockout(sc, 0);
   2093 
   2094 	/* Send address */
   2095 	for (i = 5; i >= 0; i--)
   2096 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2097 
   2098 	/* Read data */
   2099 	for (i = 0; i < 16; i++) {
   2100 		rval <<= 1;
   2101 		rval |= dge_eeprom_clockin(sc);
   2102 	}
   2103 
   2104 	/* Deselect chip */
   2105 	CSR_WRITE(sc, DGE_EECD, reg);
   2106 
   2107 	return rval;
   2108 }
   2109 
   2110 /*
   2111  * Clock out a single bit to the EEPROM.
   2112  */
   2113 void
   2114 dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2115 {
   2116 	int reg;
   2117 
   2118 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2119 	if (bit)
   2120 		reg |= EECD_DI;
   2121 
   2122 	CSR_WRITE(sc, DGE_EECD, reg);
   2123 	delay(2);
   2124 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2125 	delay(2);
   2126 	CSR_WRITE(sc, DGE_EECD, reg);
   2127 	delay(2);
   2128 }
   2129 
   2130 /*
   2131  * Clock in a single bit from EEPROM.
   2132  */
   2133 int
   2134 dge_eeprom_clockin(struct dge_softc *sc)
   2135 {
   2136 	int reg, rv;
   2137 
   2138 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2139 
   2140 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2141 	delay(2);
   2142 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2143 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2144 	delay(2);
   2145 
   2146 	return rv;
   2147 }
   2148 
   2149 static void
   2150 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2151 {
   2152 	struct dge_softc *sc = ifp->if_softc;
   2153 
   2154 	ifmr->ifm_status = IFM_AVALID;
   2155 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2156 
   2157 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2158 		ifmr->ifm_status |= IFM_ACTIVE;
   2159 }
   2160 
   2161 static inline int
   2162 phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2163 {
   2164         int i, mdic;
   2165 
   2166         CSR_WRITE(sc, DGE_MDIO,
   2167 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2168         for (i = 0; i < 10; i++) {
   2169                 delay(10);
   2170                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2171                         break;
   2172         }
   2173         return mdic;
   2174 }
   2175 
   2176 
   2177 static void
   2178 dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
   2179 {
   2180 	struct dge_softc *sc = (void *) self;
   2181 	int mdic;
   2182 
   2183 	CSR_WRITE(sc, DGE_MDIRW, val);
   2184 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2185 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2186 		    sc->sc_dev.dv_xname, phy, reg);
   2187 		return;
   2188 	}
   2189 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2190 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2191 		    sc->sc_dev.dv_xname, phy, reg);
   2192 		return;
   2193 	}
   2194 }
   2195 
   2196 static void
   2197 dge_xgmii_reset(struct dge_softc *sc)
   2198 {
   2199 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2200 }
   2201 
   2202 static int
   2203 dge_xgmii_mediachange(struct ifnet *ifp)
   2204 {
   2205 	return 0;
   2206 }
   2207 
   2208