if_dge.c revision 1.19 1 /* $NetBSD: if_dge.c,v 1.19 2008/02/07 01:21:56 dyoung Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.19 2008/02/07 01:21:56 dyoung Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <netinet/in.h> /* XXX for struct ip */
116 #include <netinet/in_systm.h> /* XXX for struct ip */
117 #include <netinet/ip.h> /* XXX for struct ip */
118 #include <netinet/tcp.h> /* XXX for struct tcphdr */
119
120 #include <sys/bus.h>
121 #include <sys/intr.h>
122 #include <machine/endian.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/mii_bitbang.h>
127
128 #include <dev/pci/pcireg.h>
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcidevs.h>
131
132 #include <dev/pci/if_dgereg.h>
133
134 /*
135 * The receive engine may sometimes become off-by-one when writing back
136 * chained descriptors. Avoid this by allocating a large chunk of
137 * memory and use if instead (to avoid chained descriptors).
138 * This only happens with chained descriptors under heavy load.
139 */
140 #define DGE_OFFBYONE_RXBUG
141
142 #define DGE_EVENT_COUNTERS
143 #define DGE_DEBUG
144
145 #ifdef DGE_DEBUG
146 #define DGE_DEBUG_LINK 0x01
147 #define DGE_DEBUG_TX 0x02
148 #define DGE_DEBUG_RX 0x04
149 #define DGE_DEBUG_CKSUM 0x08
150 int dge_debug = 0;
151
152 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
153 #else
154 #define DPRINTF(x, y) /* nothing */
155 #endif /* DGE_DEBUG */
156
157 /*
158 * Transmit descriptor list size. We allow up to 100 DMA segments per
159 * packet (Intel reports of jumbo frame packets with as
160 * many as 80 DMA segments when using 16k buffers).
161 */
162 #define DGE_NTXSEGS 100
163 #define DGE_IFQUEUELEN 20000
164 #define DGE_TXQUEUELEN 2048
165 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
166 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
167 #define DGE_NTXDESC 1024
168 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
169 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
170 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
171
172 /*
173 * Receive descriptor list size.
174 * Packet is of size MCLBYTES, and for jumbo packets buffers may
175 * be chained. Due to the nature of the card (high-speed), keep this
176 * ring large. With 2k buffers the ring can store 400 jumbo packets,
177 * which at full speed will be received in just under 3ms.
178 */
179 #define DGE_NRXDESC 2048
180 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
181 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
182 /*
183 * # of descriptors between head and written descriptors.
184 * This is to work-around two erratas.
185 */
186 #define DGE_RXSPACE 10
187 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
188 /*
189 * Receive descriptor fetch threshholds. These are values recommended
190 * by Intel, do not touch them unless you know what you are doing.
191 */
192 #define RXDCTL_PTHRESH_VAL 128
193 #define RXDCTL_HTHRESH_VAL 16
194 #define RXDCTL_WTHRESH_VAL 16
195
196
197 /*
198 * Tweakable parameters; default values.
199 */
200 #define FCRTH 0x30000 /* Send XOFF water mark */
201 #define FCRTL 0x28000 /* Send XON water mark */
202 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
203 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
204
205 /*
206 * Control structures are DMA'd to the i82597 chip. We allocate them in
207 * a single clump that maps to a single DMA segment to make serveral things
208 * easier.
209 */
210 struct dge_control_data {
211 /*
212 * The transmit descriptors.
213 */
214 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
215
216 /*
217 * The receive descriptors.
218 */
219 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
220 };
221
222 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
223 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
224 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
225
226 /*
227 * The DGE interface have a higher max MTU size than normal jumbo frames.
228 */
229 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
230
231 /*
232 * Software state for transmit jobs.
233 */
234 struct dge_txsoft {
235 struct mbuf *txs_mbuf; /* head of our mbuf chain */
236 bus_dmamap_t txs_dmamap; /* our DMA map */
237 int txs_firstdesc; /* first descriptor in packet */
238 int txs_lastdesc; /* last descriptor in packet */
239 int txs_ndesc; /* # of descriptors used */
240 };
241
242 /*
243 * Software state for receive buffers. Each descriptor gets a
244 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
245 * more than one buffer, we chain them together.
246 */
247 struct dge_rxsoft {
248 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
249 bus_dmamap_t rxs_dmamap; /* our DMA map */
250 };
251
252 /*
253 * Software state per device.
254 */
255 struct dge_softc {
256 struct device sc_dev; /* generic device information */
257 bus_space_tag_t sc_st; /* bus space tag */
258 bus_space_handle_t sc_sh; /* bus space handle */
259 bus_dma_tag_t sc_dmat; /* bus DMA tag */
260 struct ethercom sc_ethercom; /* ethernet common data */
261 void *sc_sdhook; /* shutdown hook */
262
263 int sc_flags; /* flags; see below */
264 int sc_bus_speed; /* PCI/PCIX bus speed */
265 int sc_pcix_offset; /* PCIX capability register offset */
266
267 pci_chipset_tag_t sc_pc;
268 pcitag_t sc_pt;
269 int sc_mmrbc; /* Max PCIX memory read byte count */
270
271 void *sc_ih; /* interrupt cookie */
272
273 struct ifmedia sc_media;
274
275 bus_dmamap_t sc_cddmamap; /* control data DMA map */
276 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
277
278 int sc_align_tweak;
279
280 /*
281 * Software state for the transmit and receive descriptors.
282 */
283 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
284 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
285
286 /*
287 * Control data structures.
288 */
289 struct dge_control_data *sc_control_data;
290 #define sc_txdescs sc_control_data->wcd_txdescs
291 #define sc_rxdescs sc_control_data->wcd_rxdescs
292
293 #ifdef DGE_EVENT_COUNTERS
294 /* Event counters. */
295 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
296 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
297 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
298 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
299 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
300 struct evcnt sc_ev_rxintr; /* Rx interrupts */
301 struct evcnt sc_ev_linkintr; /* Link interrupts */
302
303 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
304 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
305 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
306 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
307
308 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
309 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
310 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
311
312 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
313 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
314 #endif /* DGE_EVENT_COUNTERS */
315
316 int sc_txfree; /* number of free Tx descriptors */
317 int sc_txnext; /* next ready Tx descriptor */
318
319 int sc_txsfree; /* number of free Tx jobs */
320 int sc_txsnext; /* next free Tx job */
321 int sc_txsdirty; /* dirty Tx jobs */
322
323 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
324 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
325
326 int sc_rxptr; /* next ready Rx descriptor/queue ent */
327 int sc_rxdiscard;
328 int sc_rxlen;
329 struct mbuf *sc_rxhead;
330 struct mbuf *sc_rxtail;
331 struct mbuf **sc_rxtailp;
332
333 uint32_t sc_ctrl0; /* prototype CTRL0 register */
334 uint32_t sc_icr; /* prototype interrupt bits */
335 uint32_t sc_tctl; /* prototype TCTL register */
336 uint32_t sc_rctl; /* prototype RCTL register */
337
338 int sc_mchash_type; /* multicast filter offset */
339
340 uint16_t sc_eeprom[EEPROM_SIZE];
341
342 #if NRND > 0
343 rndsource_element_t rnd_source; /* random source */
344 #endif
345 #ifdef DGE_OFFBYONE_RXBUG
346 void *sc_bugbuf;
347 SLIST_HEAD(, rxbugentry) sc_buglist;
348 bus_dmamap_t sc_bugmap;
349 struct rxbugentry *sc_entry;
350 #endif
351 };
352
353 #define DGE_RXCHAIN_RESET(sc) \
354 do { \
355 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
356 *(sc)->sc_rxtailp = NULL; \
357 (sc)->sc_rxlen = 0; \
358 } while (/*CONSTCOND*/0)
359
360 #define DGE_RXCHAIN_LINK(sc, m) \
361 do { \
362 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
363 (sc)->sc_rxtailp = &(m)->m_next; \
364 } while (/*CONSTCOND*/0)
365
366 /* sc_flags */
367 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
368 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
369
370 #ifdef DGE_EVENT_COUNTERS
371 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
372 #else
373 #define DGE_EVCNT_INCR(ev) /* nothing */
374 #endif
375
376 #define CSR_READ(sc, reg) \
377 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 #define CSR_WRITE(sc, reg, val) \
379 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380
381 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
382 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
383
384 #define DGE_CDTXSYNC(sc, x, n, ops) \
385 do { \
386 int __x, __n; \
387 \
388 __x = (x); \
389 __n = (n); \
390 \
391 /* If it will wrap around, sync to the end of the ring. */ \
392 if ((__x + __n) > DGE_NTXDESC) { \
393 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
394 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
395 (DGE_NTXDESC - __x), (ops)); \
396 __n -= (DGE_NTXDESC - __x); \
397 __x = 0; \
398 } \
399 \
400 /* Now sync whatever is left. */ \
401 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
402 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
403 } while (/*CONSTCOND*/0)
404
405 #define DGE_CDRXSYNC(sc, x, ops) \
406 do { \
407 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
408 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
409 } while (/*CONSTCOND*/0)
410
411 #ifdef DGE_OFFBYONE_RXBUG
412 #define DGE_INIT_RXDESC(sc, x) \
413 do { \
414 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
415 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
416 struct mbuf *__m = __rxs->rxs_mbuf; \
417 \
418 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
419 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
420 __rxd->dr_baddrh = 0; \
421 __rxd->dr_len = 0; \
422 __rxd->dr_cksum = 0; \
423 __rxd->dr_status = 0; \
424 __rxd->dr_errors = 0; \
425 __rxd->dr_special = 0; \
426 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
427 \
428 CSR_WRITE((sc), DGE_RDT, (x)); \
429 } while (/*CONSTCOND*/0)
430 #else
431 #define DGE_INIT_RXDESC(sc, x) \
432 do { \
433 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
434 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
435 struct mbuf *__m = __rxs->rxs_mbuf; \
436 \
437 /* \
438 * Note: We scoot the packet forward 2 bytes in the buffer \
439 * so that the payload after the Ethernet header is aligned \
440 * to a 4-byte boundary. \
441 * \
442 * XXX BRAINDAMAGE ALERT! \
443 * The stupid chip uses the same size for every buffer, which \
444 * is set in the Receive Control register. We are using the 2K \
445 * size option, but what we REALLY want is (2K - 2)! For this \
446 * reason, we can't "scoot" packets longer than the standard \
447 * Ethernet MTU. On strict-alignment platforms, if the total \
448 * size exceeds (2K - 2) we set align_tweak to 0 and let \
449 * the upper layer copy the headers. \
450 */ \
451 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
452 \
453 __rxd->dr_baddrl = \
454 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
455 (sc)->sc_align_tweak); \
456 __rxd->dr_baddrh = 0; \
457 __rxd->dr_len = 0; \
458 __rxd->dr_cksum = 0; \
459 __rxd->dr_status = 0; \
460 __rxd->dr_errors = 0; \
461 __rxd->dr_special = 0; \
462 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
463 \
464 CSR_WRITE((sc), DGE_RDT, (x)); \
465 } while (/*CONSTCOND*/0)
466 #endif
467
468 #ifdef DGE_OFFBYONE_RXBUG
469 /*
470 * Allocation constants. Much memory may be used for this.
471 */
472 #ifndef DGE_BUFFER_SIZE
473 #define DGE_BUFFER_SIZE DGE_MAX_MTU
474 #endif
475 #define DGE_NBUFFERS (4*DGE_NRXDESC)
476 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
477
478 struct rxbugentry {
479 SLIST_ENTRY(rxbugentry) rb_entry;
480 int rb_slot;
481 };
482
483 static int
484 dge_alloc_rcvmem(struct dge_softc *sc)
485 {
486 char *ptr, *kva;
487 bus_dma_segment_t seg;
488 int i, rseg, state, error;
489 struct rxbugentry *entry;
490
491 state = error = 0;
492
493 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
494 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
495 printf("%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
496 return ENOBUFS;
497 }
498
499 state = 1;
500 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
501 BUS_DMA_NOWAIT)) {
502 printf("%s: can't map DMA buffers (%d bytes)\n",
503 sc->sc_dev.dv_xname, (int)DGE_RXMEM);
504 error = ENOBUFS;
505 goto out;
506 }
507
508 state = 2;
509 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
510 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
511 printf("%s: can't create DMA map\n", sc->sc_dev.dv_xname);
512 error = ENOBUFS;
513 goto out;
514 }
515
516 state = 3;
517 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
518 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
519 printf("%s: can't load DMA map\n", sc->sc_dev.dv_xname);
520 error = ENOBUFS;
521 goto out;
522 }
523
524 state = 4;
525 sc->sc_bugbuf = (void *)kva;
526 SLIST_INIT(&sc->sc_buglist);
527
528 /*
529 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
530 * in an array.
531 */
532 ptr = sc->sc_bugbuf;
533 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
534 M_DEVBUF, M_NOWAIT)) == NULL) {
535 error = ENOBUFS;
536 goto out;
537 }
538 sc->sc_entry = entry;
539 for (i = 0; i < DGE_NBUFFERS; i++) {
540 entry[i].rb_slot = i;
541 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
542 }
543 out:
544 if (error != 0) {
545 switch (state) {
546 case 4:
547 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
548 case 3:
549 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
550 case 2:
551 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
552 case 1:
553 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
554 break;
555 default:
556 break;
557 }
558 }
559
560 return error;
561 }
562
563 /*
564 * Allocate a jumbo buffer.
565 */
566 static void *
567 dge_getbuf(struct dge_softc *sc)
568 {
569 struct rxbugentry *entry;
570
571 entry = SLIST_FIRST(&sc->sc_buglist);
572
573 if (entry == NULL) {
574 printf("%s: no free RX buffers\n", sc->sc_dev.dv_xname);
575 return(NULL);
576 }
577
578 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
579 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
580 }
581
582 /*
583 * Release a jumbo buffer.
584 */
585 static void
586 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
587 {
588 struct rxbugentry *entry;
589 struct dge_softc *sc;
590 int i, s;
591
592 /* Extract the softc struct pointer. */
593 sc = (struct dge_softc *)arg;
594
595 if (sc == NULL)
596 panic("dge_freebuf: can't find softc pointer!");
597
598 /* calculate the slot this buffer belongs to */
599
600 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
601
602 if ((i < 0) || (i >= DGE_NBUFFERS))
603 panic("dge_freebuf: asked to free buffer %d!", i);
604
605 s = splvm();
606 entry = sc->sc_entry + i;
607 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
608
609 if (__predict_true(m != NULL))
610 pool_cache_put(mb_cache, m);
611 splx(s);
612 }
613 #endif
614
615 static void dge_start(struct ifnet *);
616 static void dge_watchdog(struct ifnet *);
617 static int dge_ioctl(struct ifnet *, u_long, void *);
618 static int dge_init(struct ifnet *);
619 static void dge_stop(struct ifnet *, int);
620
621 static void dge_shutdown(void *);
622
623 static void dge_reset(struct dge_softc *);
624 static void dge_rxdrain(struct dge_softc *);
625 static int dge_add_rxbuf(struct dge_softc *, int);
626
627 static void dge_set_filter(struct dge_softc *);
628
629 static int dge_intr(void *);
630 static void dge_txintr(struct dge_softc *);
631 static void dge_rxintr(struct dge_softc *);
632 static void dge_linkintr(struct dge_softc *, uint32_t);
633
634 static int dge_match(struct device *, struct cfdata *, void *);
635 static void dge_attach(struct device *, struct device *, void *);
636
637 static int dge_read_eeprom(struct dge_softc *sc);
638 static int dge_eeprom_clockin(struct dge_softc *sc);
639 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
640 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
641 static int dge_xgmii_mediachange(struct ifnet *);
642 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
643 static void dge_xgmii_reset(struct dge_softc *);
644 static void dge_xgmii_writereg(struct device *, int, int, int);
645
646
647 CFATTACH_DECL(dge, sizeof(struct dge_softc),
648 dge_match, dge_attach, NULL, NULL);
649
650 #ifdef DGE_EVENT_COUNTERS
651 #if DGE_NTXSEGS > 100
652 #error Update dge_txseg_evcnt_names
653 #endif
654 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
655 #endif /* DGE_EVENT_COUNTERS */
656
657 static int
658 dge_match(struct device *parent, struct cfdata *cf, void *aux)
659 {
660 struct pci_attach_args *pa = aux;
661
662 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
663 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
664 return (1);
665
666 return (0);
667 }
668
669 static void
670 dge_attach(struct device *parent, struct device *self, void *aux)
671 {
672 struct dge_softc *sc = (void *) self;
673 struct pci_attach_args *pa = aux;
674 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
675 pci_chipset_tag_t pc = pa->pa_pc;
676 pci_intr_handle_t ih;
677 const char *intrstr = NULL;
678 bus_dma_segment_t seg;
679 int i, rseg, error;
680 uint8_t enaddr[ETHER_ADDR_LEN];
681 pcireg_t preg, memtype;
682 uint32_t reg;
683
684 sc->sc_dmat = pa->pa_dmat;
685 sc->sc_pc = pa->pa_pc;
686 sc->sc_pt = pa->pa_tag;
687
688 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
689 aprint_naive(": Ethernet controller\n");
690 aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
691
692 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
693 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
694 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
695 aprint_error("%s: unable to map device registers\n",
696 sc->sc_dev.dv_xname);
697 return;
698 }
699
700 /* Enable bus mastering */
701 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
702 preg |= PCI_COMMAND_MASTER_ENABLE;
703 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
704
705 /*
706 * Map and establish our interrupt.
707 */
708 if (pci_intr_map(pa, &ih)) {
709 aprint_error("%s: unable to map interrupt\n",
710 sc->sc_dev.dv_xname);
711 return;
712 }
713 intrstr = pci_intr_string(pc, ih);
714 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
715 if (sc->sc_ih == NULL) {
716 aprint_error("%s: unable to establish interrupt",
717 sc->sc_dev.dv_xname);
718 if (intrstr != NULL)
719 aprint_normal(" at %s", intrstr);
720 aprint_normal("\n");
721 return;
722 }
723 aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
724
725 /*
726 * Determine a few things about the bus we're connected to.
727 */
728 reg = CSR_READ(sc, DGE_STATUS);
729 if (reg & STATUS_BUS64)
730 sc->sc_flags |= DGE_F_BUS64;
731
732 sc->sc_flags |= DGE_F_PCIX;
733 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
734 PCI_CAP_PCIX,
735 &sc->sc_pcix_offset, NULL) == 0)
736 aprint_error("%s: unable to find PCIX "
737 "capability\n", sc->sc_dev.dv_xname);
738
739 if (sc->sc_flags & DGE_F_PCIX) {
740 switch (reg & STATUS_PCIX_MSK) {
741 case STATUS_PCIX_66:
742 sc->sc_bus_speed = 66;
743 break;
744 case STATUS_PCIX_100:
745 sc->sc_bus_speed = 100;
746 break;
747 case STATUS_PCIX_133:
748 sc->sc_bus_speed = 133;
749 break;
750 default:
751 aprint_error(
752 "%s: unknown PCIXSPD %d; assuming 66MHz\n",
753 sc->sc_dev.dv_xname,
754 reg & STATUS_PCIX_MSK);
755 sc->sc_bus_speed = 66;
756 }
757 } else
758 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
759 aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
760 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
761 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
762
763 /*
764 * Allocate the control data structures, and create and load the
765 * DMA map for it.
766 */
767 if ((error = bus_dmamem_alloc(sc->sc_dmat,
768 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
769 0)) != 0) {
770 aprint_error(
771 "%s: unable to allocate control data, error = %d\n",
772 sc->sc_dev.dv_xname, error);
773 goto fail_0;
774 }
775
776 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
777 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
778 0)) != 0) {
779 aprint_error("%s: unable to map control data, error = %d\n",
780 sc->sc_dev.dv_xname, error);
781 goto fail_1;
782 }
783
784 if ((error = bus_dmamap_create(sc->sc_dmat,
785 sizeof(struct dge_control_data), 1,
786 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
787 aprint_error("%s: unable to create control data DMA map, "
788 "error = %d\n", sc->sc_dev.dv_xname, error);
789 goto fail_2;
790 }
791
792 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
793 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
794 0)) != 0) {
795 aprint_error(
796 "%s: unable to load control data DMA map, error = %d\n",
797 sc->sc_dev.dv_xname, error);
798 goto fail_3;
799 }
800
801 #ifdef DGE_OFFBYONE_RXBUG
802 if (dge_alloc_rcvmem(sc) != 0)
803 return; /* Already complained */
804 #endif
805 /*
806 * Create the transmit buffer DMA maps.
807 */
808 for (i = 0; i < DGE_TXQUEUELEN; i++) {
809 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
810 DGE_NTXSEGS, MCLBYTES, 0, 0,
811 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
812 aprint_error("%s: unable to create Tx DMA map %d, "
813 "error = %d\n", sc->sc_dev.dv_xname, i, error);
814 goto fail_4;
815 }
816 }
817
818 /*
819 * Create the receive buffer DMA maps.
820 */
821 for (i = 0; i < DGE_NRXDESC; i++) {
822 #ifdef DGE_OFFBYONE_RXBUG
823 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
824 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
825 #else
826 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
827 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
828 #endif
829 aprint_error("%s: unable to create Rx DMA map %d, "
830 "error = %d\n", sc->sc_dev.dv_xname, i, error);
831 goto fail_5;
832 }
833 sc->sc_rxsoft[i].rxs_mbuf = NULL;
834 }
835
836 /*
837 * Set bits in ctrl0 register.
838 * Should get the software defined pins out of EEPROM?
839 */
840 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
841 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
842 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
843
844 /*
845 * Reset the chip to a known state.
846 */
847 dge_reset(sc);
848
849 /*
850 * Reset the PHY.
851 */
852 dge_xgmii_reset(sc);
853
854 /*
855 * Read in EEPROM data.
856 */
857 if (dge_read_eeprom(sc)) {
858 aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
859 return;
860 }
861
862 /*
863 * Get the ethernet address.
864 */
865 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
866 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
867 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
868 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
869 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
870 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
871
872 aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
873 ether_sprintf(enaddr));
874
875 /*
876 * Setup media stuff.
877 */
878 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
879 dge_xgmii_mediastatus);
880 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
881 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
882
883 ifp = &sc->sc_ethercom.ec_if;
884 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
885 ifp->if_softc = sc;
886 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
887 ifp->if_ioctl = dge_ioctl;
888 ifp->if_start = dge_start;
889 ifp->if_watchdog = dge_watchdog;
890 ifp->if_init = dge_init;
891 ifp->if_stop = dge_stop;
892 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
893 IFQ_SET_READY(&ifp->if_snd);
894
895 sc->sc_ethercom.ec_capabilities |=
896 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
897
898 /*
899 * We can perform TCPv4 and UDPv4 checkums in-bound.
900 */
901 ifp->if_capabilities |=
902 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
903 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
904 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
905
906 /*
907 * Attach the interface.
908 */
909 if_attach(ifp);
910 ether_ifattach(ifp, enaddr);
911 #if NRND > 0
912 rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
913 RND_TYPE_NET, 0);
914 #endif
915
916 #ifdef DGE_EVENT_COUNTERS
917 /* Fix segment event naming */
918 if (dge_txseg_evcnt_names == NULL) {
919 dge_txseg_evcnt_names =
920 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
921 for (i = 0; i < DGE_NTXSEGS; i++)
922 snprintf((*dge_txseg_evcnt_names)[i],
923 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
924 }
925
926 /* Attach event counters. */
927 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
928 NULL, sc->sc_dev.dv_xname, "txsstall");
929 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
930 NULL, sc->sc_dev.dv_xname, "txdstall");
931 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
932 NULL, sc->sc_dev.dv_xname, "txforceintr");
933 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
934 NULL, sc->sc_dev.dv_xname, "txdw");
935 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
936 NULL, sc->sc_dev.dv_xname, "txqe");
937 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
938 NULL, sc->sc_dev.dv_xname, "rxintr");
939 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
940 NULL, sc->sc_dev.dv_xname, "linkintr");
941
942 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
943 NULL, sc->sc_dev.dv_xname, "rxipsum");
944 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
945 NULL, sc->sc_dev.dv_xname, "rxtusum");
946 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
947 NULL, sc->sc_dev.dv_xname, "txipsum");
948 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
949 NULL, sc->sc_dev.dv_xname, "txtusum");
950
951 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
952 NULL, sc->sc_dev.dv_xname, "txctx init");
953 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
954 NULL, sc->sc_dev.dv_xname, "txctx hit");
955 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
956 NULL, sc->sc_dev.dv_xname, "txctx miss");
957
958 for (i = 0; i < DGE_NTXSEGS; i++)
959 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
960 NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
961
962 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
963 NULL, sc->sc_dev.dv_xname, "txdrop");
964
965 #endif /* DGE_EVENT_COUNTERS */
966
967 /*
968 * Make sure the interface is shutdown during reboot.
969 */
970 sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
971 if (sc->sc_sdhook == NULL)
972 aprint_error("%s: WARNING: unable to establish shutdown hook\n",
973 sc->sc_dev.dv_xname);
974 return;
975
976 /*
977 * Free any resources we've allocated during the failed attach
978 * attempt. Do this in reverse order and fall through.
979 */
980 fail_5:
981 for (i = 0; i < DGE_NRXDESC; i++) {
982 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
983 bus_dmamap_destroy(sc->sc_dmat,
984 sc->sc_rxsoft[i].rxs_dmamap);
985 }
986 fail_4:
987 for (i = 0; i < DGE_TXQUEUELEN; i++) {
988 if (sc->sc_txsoft[i].txs_dmamap != NULL)
989 bus_dmamap_destroy(sc->sc_dmat,
990 sc->sc_txsoft[i].txs_dmamap);
991 }
992 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
993 fail_3:
994 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
995 fail_2:
996 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
997 sizeof(struct dge_control_data));
998 fail_1:
999 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
1000 fail_0:
1001 return;
1002 }
1003
1004 /*
1005 * dge_shutdown:
1006 *
1007 * Make sure the interface is stopped at reboot time.
1008 */
1009 static void
1010 dge_shutdown(void *arg)
1011 {
1012 struct dge_softc *sc = arg;
1013
1014 dge_stop(&sc->sc_ethercom.ec_if, 1);
1015 }
1016
1017 /*
1018 * dge_tx_cksum:
1019 *
1020 * Set up TCP/IP checksumming parameters for the
1021 * specified packet.
1022 */
1023 static int
1024 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1025 {
1026 struct mbuf *m0 = txs->txs_mbuf;
1027 struct dge_ctdes *t;
1028 uint32_t ipcs, tucs;
1029 struct ether_header *eh;
1030 int offset, iphl;
1031 uint8_t fields = 0;
1032
1033 /*
1034 * XXX It would be nice if the mbuf pkthdr had offset
1035 * fields for the protocol headers.
1036 */
1037
1038 eh = mtod(m0, struct ether_header *);
1039 switch (htons(eh->ether_type)) {
1040 case ETHERTYPE_IP:
1041 offset = ETHER_HDR_LEN;
1042 break;
1043
1044 case ETHERTYPE_VLAN:
1045 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1046 break;
1047
1048 default:
1049 /*
1050 * Don't support this protocol or encapsulation.
1051 */
1052 *fieldsp = 0;
1053 return (0);
1054 }
1055
1056 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1057
1058 /*
1059 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1060 * offload feature, if we load the context descriptor, we
1061 * MUST provide valid values for IPCSS and TUCSS fields.
1062 */
1063
1064 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1065 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1066 fields |= TDESC_POPTS_IXSM;
1067 ipcs = DGE_TCPIP_IPCSS(offset) |
1068 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1069 DGE_TCPIP_IPCSE(offset + iphl - 1);
1070 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1071 /* Use the cached value. */
1072 ipcs = sc->sc_txctx_ipcs;
1073 } else {
1074 /* Just initialize it to the likely value anyway. */
1075 ipcs = DGE_TCPIP_IPCSS(offset) |
1076 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1077 DGE_TCPIP_IPCSE(offset + iphl - 1);
1078 }
1079 DPRINTF(DGE_DEBUG_CKSUM,
1080 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1081 sc->sc_dev.dv_xname, offset, ipcs));
1082
1083 offset += iphl;
1084
1085 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1086 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1087 fields |= TDESC_POPTS_TXSM;
1088 tucs = DGE_TCPIP_TUCSS(offset) |
1089 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1090 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1091 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1092 /* Use the cached value. */
1093 tucs = sc->sc_txctx_tucs;
1094 } else {
1095 /* Just initialize it to a valid TCP context. */
1096 tucs = DGE_TCPIP_TUCSS(offset) |
1097 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1098 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1099 }
1100
1101 DPRINTF(DGE_DEBUG_CKSUM,
1102 ("%s: CKSUM: offset %d tucs 0x%x\n",
1103 sc->sc_dev.dv_xname, offset, tucs));
1104
1105 if (sc->sc_txctx_ipcs == ipcs &&
1106 sc->sc_txctx_tucs == tucs) {
1107 /* Cached context is fine. */
1108 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1109 } else {
1110 /* Fill in the context descriptor. */
1111 #ifdef DGE_EVENT_COUNTERS
1112 if (sc->sc_txctx_ipcs == 0xffffffff &&
1113 sc->sc_txctx_tucs == 0xffffffff)
1114 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1115 else
1116 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1117 #endif
1118 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1119 t->dc_tcpip_ipcs = htole32(ipcs);
1120 t->dc_tcpip_tucs = htole32(tucs);
1121 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1122 t->dc_tcpip_seg = 0;
1123 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1124
1125 sc->sc_txctx_ipcs = ipcs;
1126 sc->sc_txctx_tucs = tucs;
1127
1128 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1129 txs->txs_ndesc++;
1130 }
1131
1132 *fieldsp = fields;
1133
1134 return (0);
1135 }
1136
1137 /*
1138 * dge_start: [ifnet interface function]
1139 *
1140 * Start packet transmission on the interface.
1141 */
1142 static void
1143 dge_start(struct ifnet *ifp)
1144 {
1145 struct dge_softc *sc = ifp->if_softc;
1146 struct mbuf *m0;
1147 struct dge_txsoft *txs;
1148 bus_dmamap_t dmamap;
1149 int error, nexttx, lasttx = -1, ofree, seg;
1150 uint32_t cksumcmd;
1151 uint8_t cksumfields;
1152
1153 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1154 return;
1155
1156 /*
1157 * Remember the previous number of free descriptors.
1158 */
1159 ofree = sc->sc_txfree;
1160
1161 /*
1162 * Loop through the send queue, setting up transmit descriptors
1163 * until we drain the queue, or use up all available transmit
1164 * descriptors.
1165 */
1166 for (;;) {
1167 /* Grab a packet off the queue. */
1168 IFQ_POLL(&ifp->if_snd, m0);
1169 if (m0 == NULL)
1170 break;
1171
1172 DPRINTF(DGE_DEBUG_TX,
1173 ("%s: TX: have packet to transmit: %p\n",
1174 sc->sc_dev.dv_xname, m0));
1175
1176 /* Get a work queue entry. */
1177 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1178 dge_txintr(sc);
1179 if (sc->sc_txsfree == 0) {
1180 DPRINTF(DGE_DEBUG_TX,
1181 ("%s: TX: no free job descriptors\n",
1182 sc->sc_dev.dv_xname));
1183 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1184 break;
1185 }
1186 }
1187
1188 txs = &sc->sc_txsoft[sc->sc_txsnext];
1189 dmamap = txs->txs_dmamap;
1190
1191 /*
1192 * Load the DMA map. If this fails, the packet either
1193 * didn't fit in the allotted number of segments, or we
1194 * were short on resources. For the too-many-segments
1195 * case, we simply report an error and drop the packet,
1196 * since we can't sanely copy a jumbo packet to a single
1197 * buffer.
1198 */
1199 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1200 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1201 if (error) {
1202 if (error == EFBIG) {
1203 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1204 printf("%s: Tx packet consumes too many "
1205 "DMA segments, dropping...\n",
1206 sc->sc_dev.dv_xname);
1207 IFQ_DEQUEUE(&ifp->if_snd, m0);
1208 m_freem(m0);
1209 continue;
1210 }
1211 /*
1212 * Short on resources, just stop for now.
1213 */
1214 DPRINTF(DGE_DEBUG_TX,
1215 ("%s: TX: dmamap load failed: %d\n",
1216 sc->sc_dev.dv_xname, error));
1217 break;
1218 }
1219
1220 /*
1221 * Ensure we have enough descriptors free to describe
1222 * the packet. Note, we always reserve one descriptor
1223 * at the end of the ring due to the semantics of the
1224 * TDT register, plus one more in the event we need
1225 * to re-load checksum offload context.
1226 */
1227 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1228 /*
1229 * Not enough free descriptors to transmit this
1230 * packet. We haven't committed anything yet,
1231 * so just unload the DMA map, put the packet
1232 * pack on the queue, and punt. Notify the upper
1233 * layer that there are no more slots left.
1234 */
1235 DPRINTF(DGE_DEBUG_TX,
1236 ("%s: TX: need %d descriptors, have %d\n",
1237 sc->sc_dev.dv_xname, dmamap->dm_nsegs,
1238 sc->sc_txfree - 1));
1239 ifp->if_flags |= IFF_OACTIVE;
1240 bus_dmamap_unload(sc->sc_dmat, dmamap);
1241 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1242 break;
1243 }
1244
1245 IFQ_DEQUEUE(&ifp->if_snd, m0);
1246
1247 /*
1248 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1249 */
1250
1251 /* Sync the DMA map. */
1252 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1253 BUS_DMASYNC_PREWRITE);
1254
1255 DPRINTF(DGE_DEBUG_TX,
1256 ("%s: TX: packet has %d DMA segments\n",
1257 sc->sc_dev.dv_xname, dmamap->dm_nsegs));
1258
1259 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1260
1261 /*
1262 * Store a pointer to the packet so that we can free it
1263 * later.
1264 *
1265 * Initially, we consider the number of descriptors the
1266 * packet uses the number of DMA segments. This may be
1267 * incremented by 1 if we do checksum offload (a descriptor
1268 * is used to set the checksum context).
1269 */
1270 txs->txs_mbuf = m0;
1271 txs->txs_firstdesc = sc->sc_txnext;
1272 txs->txs_ndesc = dmamap->dm_nsegs;
1273
1274 /*
1275 * Set up checksum offload parameters for
1276 * this packet.
1277 */
1278 if (m0->m_pkthdr.csum_flags &
1279 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1280 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1281 /* Error message already displayed. */
1282 bus_dmamap_unload(sc->sc_dmat, dmamap);
1283 continue;
1284 }
1285 } else {
1286 cksumfields = 0;
1287 }
1288
1289 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1290
1291 /*
1292 * Initialize the transmit descriptor.
1293 */
1294 for (nexttx = sc->sc_txnext, seg = 0;
1295 seg < dmamap->dm_nsegs;
1296 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1297 /*
1298 * Note: we currently only use 32-bit DMA
1299 * addresses.
1300 */
1301 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1302 sc->sc_txdescs[nexttx].dt_baddrl =
1303 htole32(dmamap->dm_segs[seg].ds_addr);
1304 sc->sc_txdescs[nexttx].dt_ctl =
1305 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1306 sc->sc_txdescs[nexttx].dt_status = 0;
1307 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1308 sc->sc_txdescs[nexttx].dt_vlan = 0;
1309 lasttx = nexttx;
1310
1311 DPRINTF(DGE_DEBUG_TX,
1312 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1313 sc->sc_dev.dv_xname, nexttx,
1314 le32toh(dmamap->dm_segs[seg].ds_addr),
1315 le32toh(dmamap->dm_segs[seg].ds_len)));
1316 }
1317
1318 KASSERT(lasttx != -1);
1319
1320 /*
1321 * Set up the command byte on the last descriptor of
1322 * the packet. If we're in the interrupt delay window,
1323 * delay the interrupt.
1324 */
1325 sc->sc_txdescs[lasttx].dt_ctl |=
1326 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1327
1328 txs->txs_lastdesc = lasttx;
1329
1330 DPRINTF(DGE_DEBUG_TX,
1331 ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
1332 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1333
1334 /* Sync the descriptors we're using. */
1335 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1336 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1337
1338 /* Give the packet to the chip. */
1339 CSR_WRITE(sc, DGE_TDT, nexttx);
1340
1341 DPRINTF(DGE_DEBUG_TX,
1342 ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
1343
1344 DPRINTF(DGE_DEBUG_TX,
1345 ("%s: TX: finished transmitting packet, job %d\n",
1346 sc->sc_dev.dv_xname, sc->sc_txsnext));
1347
1348 /* Advance the tx pointer. */
1349 sc->sc_txfree -= txs->txs_ndesc;
1350 sc->sc_txnext = nexttx;
1351
1352 sc->sc_txsfree--;
1353 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1354
1355 #if NBPFILTER > 0
1356 /* Pass the packet to any BPF listeners. */
1357 if (ifp->if_bpf)
1358 bpf_mtap(ifp->if_bpf, m0);
1359 #endif /* NBPFILTER > 0 */
1360 }
1361
1362 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1363 /* No more slots; notify upper layer. */
1364 ifp->if_flags |= IFF_OACTIVE;
1365 }
1366
1367 if (sc->sc_txfree != ofree) {
1368 /* Set a watchdog timer in case the chip flakes out. */
1369 ifp->if_timer = 5;
1370 }
1371 }
1372
1373 /*
1374 * dge_watchdog: [ifnet interface function]
1375 *
1376 * Watchdog timer handler.
1377 */
1378 static void
1379 dge_watchdog(struct ifnet *ifp)
1380 {
1381 struct dge_softc *sc = ifp->if_softc;
1382
1383 /*
1384 * Since we're using delayed interrupts, sweep up
1385 * before we report an error.
1386 */
1387 dge_txintr(sc);
1388
1389 if (sc->sc_txfree != DGE_NTXDESC) {
1390 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1391 sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
1392 sc->sc_txnext);
1393 ifp->if_oerrors++;
1394
1395 /* Reset the interface. */
1396 (void) dge_init(ifp);
1397 }
1398
1399 /* Try to get more packets going. */
1400 dge_start(ifp);
1401 }
1402
1403 /*
1404 * dge_ioctl: [ifnet interface function]
1405 *
1406 * Handle control requests from the operator.
1407 */
1408 static int
1409 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1410 {
1411 struct dge_softc *sc = ifp->if_softc;
1412 struct ifreq *ifr = (struct ifreq *) data;
1413 pcireg_t preg;
1414 int s, error, mmrbc;
1415
1416 s = splnet();
1417
1418 switch (cmd) {
1419 case SIOCSIFMEDIA:
1420 case SIOCGIFMEDIA:
1421 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1422 break;
1423
1424 case SIOCSIFMTU:
1425 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1426 error = EINVAL;
1427 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1428 break;
1429 else if (ifp->if_flags & IFF_UP)
1430 error = (*ifp->if_init)(ifp);
1431 else
1432 error = 0;
1433 break;
1434
1435 case SIOCSIFFLAGS:
1436 /* extract link flags */
1437 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1438 (ifp->if_flags & IFF_LINK1) == 0)
1439 mmrbc = PCIX_MMRBC_512;
1440 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1441 (ifp->if_flags & IFF_LINK1) != 0)
1442 mmrbc = PCIX_MMRBC_1024;
1443 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1444 (ifp->if_flags & IFF_LINK1) == 0)
1445 mmrbc = PCIX_MMRBC_2048;
1446 else
1447 mmrbc = PCIX_MMRBC_4096;
1448 if (mmrbc != sc->sc_mmrbc) {
1449 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1450 preg &= ~PCIX_MMRBC_MSK;
1451 preg |= mmrbc;
1452 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1453 sc->sc_mmrbc = mmrbc;
1454 }
1455 /* FALLTHROUGH */
1456 default:
1457 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1458 break;
1459
1460 error = 0;
1461
1462 if (cmd == SIOCSIFCAP)
1463 error = (*ifp->if_init)(ifp);
1464 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1465 ;
1466 else if (ifp->if_flags & IFF_RUNNING) {
1467 /*
1468 * Multicast list has changed; set the hardware filter
1469 * accordingly.
1470 */
1471 dge_set_filter(sc);
1472 }
1473 break;
1474 }
1475
1476 /* Try to get more packets going. */
1477 dge_start(ifp);
1478
1479 splx(s);
1480 return (error);
1481 }
1482
1483 /*
1484 * dge_intr:
1485 *
1486 * Interrupt service routine.
1487 */
1488 static int
1489 dge_intr(void *arg)
1490 {
1491 struct dge_softc *sc = arg;
1492 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1493 uint32_t icr;
1494 int wantinit, handled = 0;
1495
1496 for (wantinit = 0; wantinit == 0;) {
1497 icr = CSR_READ(sc, DGE_ICR);
1498 if ((icr & sc->sc_icr) == 0)
1499 break;
1500
1501 #if 0 /*NRND > 0*/
1502 if (RND_ENABLED(&sc->rnd_source))
1503 rnd_add_uint32(&sc->rnd_source, icr);
1504 #endif
1505
1506 handled = 1;
1507
1508 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1509 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1510 DPRINTF(DGE_DEBUG_RX,
1511 ("%s: RX: got Rx intr 0x%08x\n",
1512 sc->sc_dev.dv_xname,
1513 icr & (ICR_RXDMT0|ICR_RXT0)));
1514 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1515 }
1516 #endif
1517 dge_rxintr(sc);
1518
1519 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1520 if (icr & ICR_TXDW) {
1521 DPRINTF(DGE_DEBUG_TX,
1522 ("%s: TX: got TXDW interrupt\n",
1523 sc->sc_dev.dv_xname));
1524 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1525 }
1526 if (icr & ICR_TXQE)
1527 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1528 #endif
1529 dge_txintr(sc);
1530
1531 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1532 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1533 dge_linkintr(sc, icr);
1534 }
1535
1536 if (icr & ICR_RXO) {
1537 printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
1538 wantinit = 1;
1539 }
1540 }
1541
1542 if (handled) {
1543 if (wantinit)
1544 dge_init(ifp);
1545
1546 /* Try to get more packets going. */
1547 dge_start(ifp);
1548 }
1549
1550 return (handled);
1551 }
1552
1553 /*
1554 * dge_txintr:
1555 *
1556 * Helper; handle transmit interrupts.
1557 */
1558 static void
1559 dge_txintr(struct dge_softc *sc)
1560 {
1561 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1562 struct dge_txsoft *txs;
1563 uint8_t status;
1564 int i;
1565
1566 ifp->if_flags &= ~IFF_OACTIVE;
1567
1568 /*
1569 * Go through the Tx list and free mbufs for those
1570 * frames which have been transmitted.
1571 */
1572 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1573 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1574 txs = &sc->sc_txsoft[i];
1575
1576 DPRINTF(DGE_DEBUG_TX,
1577 ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
1578
1579 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1580 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1581
1582 status =
1583 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1584 if ((status & TDESC_STA_DD) == 0) {
1585 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1586 BUS_DMASYNC_PREREAD);
1587 break;
1588 }
1589
1590 DPRINTF(DGE_DEBUG_TX,
1591 ("%s: TX: job %d done: descs %d..%d\n",
1592 sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
1593 txs->txs_lastdesc));
1594
1595 ifp->if_opackets++;
1596 sc->sc_txfree += txs->txs_ndesc;
1597 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1598 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1599 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1600 m_freem(txs->txs_mbuf);
1601 txs->txs_mbuf = NULL;
1602 }
1603
1604 /* Update the dirty transmit buffer pointer. */
1605 sc->sc_txsdirty = i;
1606 DPRINTF(DGE_DEBUG_TX,
1607 ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
1608
1609 /*
1610 * If there are no more pending transmissions, cancel the watchdog
1611 * timer.
1612 */
1613 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1614 ifp->if_timer = 0;
1615 }
1616
1617 /*
1618 * dge_rxintr:
1619 *
1620 * Helper; handle receive interrupts.
1621 */
1622 static void
1623 dge_rxintr(struct dge_softc *sc)
1624 {
1625 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1626 struct dge_rxsoft *rxs;
1627 struct mbuf *m;
1628 int i, len;
1629 uint8_t status, errors;
1630
1631 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1632 rxs = &sc->sc_rxsoft[i];
1633
1634 DPRINTF(DGE_DEBUG_RX,
1635 ("%s: RX: checking descriptor %d\n",
1636 sc->sc_dev.dv_xname, i));
1637
1638 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1639
1640 status = sc->sc_rxdescs[i].dr_status;
1641 errors = sc->sc_rxdescs[i].dr_errors;
1642 len = le16toh(sc->sc_rxdescs[i].dr_len);
1643
1644 if ((status & RDESC_STS_DD) == 0) {
1645 /*
1646 * We have processed all of the receive descriptors.
1647 */
1648 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1649 break;
1650 }
1651
1652 if (__predict_false(sc->sc_rxdiscard)) {
1653 DPRINTF(DGE_DEBUG_RX,
1654 ("%s: RX: discarding contents of descriptor %d\n",
1655 sc->sc_dev.dv_xname, i));
1656 DGE_INIT_RXDESC(sc, i);
1657 if (status & RDESC_STS_EOP) {
1658 /* Reset our state. */
1659 DPRINTF(DGE_DEBUG_RX,
1660 ("%s: RX: resetting rxdiscard -> 0\n",
1661 sc->sc_dev.dv_xname));
1662 sc->sc_rxdiscard = 0;
1663 }
1664 continue;
1665 }
1666
1667 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1668 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1669
1670 m = rxs->rxs_mbuf;
1671
1672 /*
1673 * Add a new receive buffer to the ring.
1674 */
1675 if (dge_add_rxbuf(sc, i) != 0) {
1676 /*
1677 * Failed, throw away what we've done so
1678 * far, and discard the rest of the packet.
1679 */
1680 ifp->if_ierrors++;
1681 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1682 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1683 DGE_INIT_RXDESC(sc, i);
1684 if ((status & RDESC_STS_EOP) == 0)
1685 sc->sc_rxdiscard = 1;
1686 if (sc->sc_rxhead != NULL)
1687 m_freem(sc->sc_rxhead);
1688 DGE_RXCHAIN_RESET(sc);
1689 DPRINTF(DGE_DEBUG_RX,
1690 ("%s: RX: Rx buffer allocation failed, "
1691 "dropping packet%s\n", sc->sc_dev.dv_xname,
1692 sc->sc_rxdiscard ? " (discard)" : ""));
1693 continue;
1694 }
1695 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1696
1697 DGE_RXCHAIN_LINK(sc, m);
1698
1699 m->m_len = len;
1700
1701 DPRINTF(DGE_DEBUG_RX,
1702 ("%s: RX: buffer at %p len %d\n",
1703 sc->sc_dev.dv_xname, m->m_data, len));
1704
1705 /*
1706 * If this is not the end of the packet, keep
1707 * looking.
1708 */
1709 if ((status & RDESC_STS_EOP) == 0) {
1710 sc->sc_rxlen += len;
1711 DPRINTF(DGE_DEBUG_RX,
1712 ("%s: RX: not yet EOP, rxlen -> %d\n",
1713 sc->sc_dev.dv_xname, sc->sc_rxlen));
1714 continue;
1715 }
1716
1717 /*
1718 * Okay, we have the entire packet now...
1719 */
1720 *sc->sc_rxtailp = NULL;
1721 m = sc->sc_rxhead;
1722 len += sc->sc_rxlen;
1723
1724 DGE_RXCHAIN_RESET(sc);
1725
1726 DPRINTF(DGE_DEBUG_RX,
1727 ("%s: RX: have entire packet, len -> %d\n",
1728 sc->sc_dev.dv_xname, len));
1729
1730 /*
1731 * If an error occurred, update stats and drop the packet.
1732 */
1733 if (errors &
1734 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1735 ifp->if_ierrors++;
1736 if (errors & RDESC_ERR_SE)
1737 printf("%s: symbol error\n",
1738 sc->sc_dev.dv_xname);
1739 else if (errors & RDESC_ERR_P)
1740 printf("%s: parity error\n",
1741 sc->sc_dev.dv_xname);
1742 else if (errors & RDESC_ERR_CE)
1743 printf("%s: CRC error\n",
1744 sc->sc_dev.dv_xname);
1745 m_freem(m);
1746 continue;
1747 }
1748
1749 /*
1750 * No errors. Receive the packet.
1751 */
1752 m->m_pkthdr.rcvif = ifp;
1753 m->m_pkthdr.len = len;
1754
1755 /*
1756 * Set up checksum info for this packet.
1757 */
1758 if (status & RDESC_STS_IPCS) {
1759 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1760 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1761 if (errors & RDESC_ERR_IPE)
1762 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1763 }
1764 if (status & RDESC_STS_TCPCS) {
1765 /*
1766 * Note: we don't know if this was TCP or UDP,
1767 * so we just set both bits, and expect the
1768 * upper layers to deal.
1769 */
1770 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1771 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1772 if (errors & RDESC_ERR_TCPE)
1773 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1774 }
1775
1776 ifp->if_ipackets++;
1777
1778 #if NBPFILTER > 0
1779 /* Pass this up to any BPF listeners. */
1780 if (ifp->if_bpf)
1781 bpf_mtap(ifp->if_bpf, m);
1782 #endif /* NBPFILTER > 0 */
1783
1784 /* Pass it on. */
1785 (*ifp->if_input)(ifp, m);
1786 }
1787
1788 /* Update the receive pointer. */
1789 sc->sc_rxptr = i;
1790
1791 DPRINTF(DGE_DEBUG_RX,
1792 ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
1793 }
1794
1795 /*
1796 * dge_linkintr:
1797 *
1798 * Helper; handle link interrupts.
1799 */
1800 static void
1801 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1802 {
1803 uint32_t status;
1804
1805 if (icr & ICR_LSC) {
1806 status = CSR_READ(sc, DGE_STATUS);
1807 if (status & STATUS_LINKUP) {
1808 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1809 sc->sc_dev.dv_xname));
1810 } else {
1811 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1812 sc->sc_dev.dv_xname));
1813 }
1814 } else if (icr & ICR_RXSEQ) {
1815 DPRINTF(DGE_DEBUG_LINK,
1816 ("%s: LINK: Receive sequence error\n",
1817 sc->sc_dev.dv_xname));
1818 }
1819 /* XXX - fix errata */
1820 }
1821
1822 /*
1823 * dge_reset:
1824 *
1825 * Reset the i82597 chip.
1826 */
1827 static void
1828 dge_reset(struct dge_softc *sc)
1829 {
1830 int i;
1831
1832 /*
1833 * Do a chip reset.
1834 */
1835 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1836
1837 delay(10000);
1838
1839 for (i = 0; i < 1000; i++) {
1840 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1841 break;
1842 delay(20);
1843 }
1844
1845 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1846 printf("%s: WARNING: reset failed to complete\n",
1847 sc->sc_dev.dv_xname);
1848 /*
1849 * Reset the EEPROM logic.
1850 * This will cause the chip to reread its default values,
1851 * which doesn't happen otherwise (errata).
1852 */
1853 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1854 delay(10000);
1855 }
1856
1857 /*
1858 * dge_init: [ifnet interface function]
1859 *
1860 * Initialize the interface. Must be called at splnet().
1861 */
1862 static int
1863 dge_init(struct ifnet *ifp)
1864 {
1865 struct dge_softc *sc = ifp->if_softc;
1866 struct dge_rxsoft *rxs;
1867 int i, error = 0;
1868 uint32_t reg;
1869
1870 /*
1871 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1872 * There is a small but measurable benefit to avoiding the adjusment
1873 * of the descriptor so that the headers are aligned, for normal mtu,
1874 * on such platforms. One possibility is that the DMA itself is
1875 * slightly more efficient if the front of the entire packet (instead
1876 * of the front of the headers) is aligned.
1877 *
1878 * Note we must always set align_tweak to 0 if we are using
1879 * jumbo frames.
1880 */
1881 #ifdef __NO_STRICT_ALIGNMENT
1882 sc->sc_align_tweak = 0;
1883 #else
1884 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1885 sc->sc_align_tweak = 0;
1886 else
1887 sc->sc_align_tweak = 2;
1888 #endif /* __NO_STRICT_ALIGNMENT */
1889
1890 /* Cancel any pending I/O. */
1891 dge_stop(ifp, 0);
1892
1893 /* Reset the chip to a known state. */
1894 dge_reset(sc);
1895
1896 /* Initialize the transmit descriptor ring. */
1897 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1898 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1899 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1900 sc->sc_txfree = DGE_NTXDESC;
1901 sc->sc_txnext = 0;
1902
1903 sc->sc_txctx_ipcs = 0xffffffff;
1904 sc->sc_txctx_tucs = 0xffffffff;
1905
1906 CSR_WRITE(sc, DGE_TDBAH, 0);
1907 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1908 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1909 CSR_WRITE(sc, DGE_TDH, 0);
1910 CSR_WRITE(sc, DGE_TDT, 0);
1911 CSR_WRITE(sc, DGE_TIDV, TIDV);
1912
1913 #if 0
1914 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1915 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1916 #endif
1917 CSR_WRITE(sc, DGE_RXDCTL,
1918 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1919 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1920 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1921
1922 /* Initialize the transmit job descriptors. */
1923 for (i = 0; i < DGE_TXQUEUELEN; i++)
1924 sc->sc_txsoft[i].txs_mbuf = NULL;
1925 sc->sc_txsfree = DGE_TXQUEUELEN;
1926 sc->sc_txsnext = 0;
1927 sc->sc_txsdirty = 0;
1928
1929 /*
1930 * Initialize the receive descriptor and receive job
1931 * descriptor rings.
1932 */
1933 CSR_WRITE(sc, DGE_RDBAH, 0);
1934 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1935 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1936 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1937 CSR_WRITE(sc, DGE_RDT, 0);
1938 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1939 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1940 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1941
1942 for (i = 0; i < DGE_NRXDESC; i++) {
1943 rxs = &sc->sc_rxsoft[i];
1944 if (rxs->rxs_mbuf == NULL) {
1945 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1946 printf("%s: unable to allocate or map rx "
1947 "buffer %d, error = %d\n",
1948 sc->sc_dev.dv_xname, i, error);
1949 /*
1950 * XXX Should attempt to run with fewer receive
1951 * XXX buffers instead of just failing.
1952 */
1953 dge_rxdrain(sc);
1954 goto out;
1955 }
1956 }
1957 DGE_INIT_RXDESC(sc, i);
1958 }
1959 sc->sc_rxptr = DGE_RXSPACE;
1960 sc->sc_rxdiscard = 0;
1961 DGE_RXCHAIN_RESET(sc);
1962
1963 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1964 sc->sc_ctrl0 |= CTRL0_JFE;
1965 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1966 }
1967
1968 /* Write the control registers. */
1969 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1970
1971 /*
1972 * Set up checksum offload parameters.
1973 */
1974 reg = CSR_READ(sc, DGE_RXCSUM);
1975 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1976 reg |= RXCSUM_IPOFL;
1977 else
1978 reg &= ~RXCSUM_IPOFL;
1979 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1980 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1981 else {
1982 reg &= ~RXCSUM_TUOFL;
1983 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1984 reg &= ~RXCSUM_IPOFL;
1985 }
1986 CSR_WRITE(sc, DGE_RXCSUM, reg);
1987
1988 /*
1989 * Set up the interrupt registers.
1990 */
1991 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1992 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1993 ICR_RXO | ICR_RXT0;
1994
1995 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1996
1997 /*
1998 * Set up the transmit control register.
1999 */
2000 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
2001 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
2002
2003 /*
2004 * Set up the receive control register; we actually program
2005 * the register when we set the receive filter. Use multicast
2006 * address offset type 0.
2007 */
2008 sc->sc_mchash_type = 0;
2009
2010 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2011 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2012
2013 #ifdef DGE_OFFBYONE_RXBUG
2014 sc->sc_rctl |= RCTL_BSIZE_16k;
2015 #else
2016 switch(MCLBYTES) {
2017 case 2048:
2018 sc->sc_rctl |= RCTL_BSIZE_2k;
2019 break;
2020 case 4096:
2021 sc->sc_rctl |= RCTL_BSIZE_4k;
2022 break;
2023 case 8192:
2024 sc->sc_rctl |= RCTL_BSIZE_8k;
2025 break;
2026 case 16384:
2027 sc->sc_rctl |= RCTL_BSIZE_16k;
2028 break;
2029 default:
2030 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2031 }
2032 #endif
2033
2034 /* Set the receive filter. */
2035 /* Also sets RCTL */
2036 dge_set_filter(sc);
2037
2038 /* ...all done! */
2039 ifp->if_flags |= IFF_RUNNING;
2040 ifp->if_flags &= ~IFF_OACTIVE;
2041
2042 out:
2043 if (error)
2044 printf("%s: interface not running\n", sc->sc_dev.dv_xname);
2045 return (error);
2046 }
2047
2048 /*
2049 * dge_rxdrain:
2050 *
2051 * Drain the receive queue.
2052 */
2053 static void
2054 dge_rxdrain(struct dge_softc *sc)
2055 {
2056 struct dge_rxsoft *rxs;
2057 int i;
2058
2059 for (i = 0; i < DGE_NRXDESC; i++) {
2060 rxs = &sc->sc_rxsoft[i];
2061 if (rxs->rxs_mbuf != NULL) {
2062 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2063 m_freem(rxs->rxs_mbuf);
2064 rxs->rxs_mbuf = NULL;
2065 }
2066 }
2067 }
2068
2069 /*
2070 * dge_stop: [ifnet interface function]
2071 *
2072 * Stop transmission on the interface.
2073 */
2074 static void
2075 dge_stop(struct ifnet *ifp, int disable)
2076 {
2077 struct dge_softc *sc = ifp->if_softc;
2078 struct dge_txsoft *txs;
2079 int i;
2080
2081 /* Stop the transmit and receive processes. */
2082 CSR_WRITE(sc, DGE_TCTL, 0);
2083 CSR_WRITE(sc, DGE_RCTL, 0);
2084
2085 /* Release any queued transmit buffers. */
2086 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2087 txs = &sc->sc_txsoft[i];
2088 if (txs->txs_mbuf != NULL) {
2089 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2090 m_freem(txs->txs_mbuf);
2091 txs->txs_mbuf = NULL;
2092 }
2093 }
2094
2095 if (disable)
2096 dge_rxdrain(sc);
2097
2098 /* Mark the interface as down and cancel the watchdog timer. */
2099 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2100 ifp->if_timer = 0;
2101 }
2102
2103 /*
2104 * dge_add_rxbuf:
2105 *
2106 * Add a receive buffer to the indiciated descriptor.
2107 */
2108 static int
2109 dge_add_rxbuf(struct dge_softc *sc, int idx)
2110 {
2111 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2112 struct mbuf *m;
2113 int error;
2114 #ifdef DGE_OFFBYONE_RXBUG
2115 void *buf;
2116 #endif
2117
2118 MGETHDR(m, M_DONTWAIT, MT_DATA);
2119 if (m == NULL)
2120 return (ENOBUFS);
2121
2122 #ifdef DGE_OFFBYONE_RXBUG
2123 if ((buf = dge_getbuf(sc)) == NULL)
2124 return ENOBUFS;
2125
2126 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2127 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2128 m->m_flags |= M_EXT_RW;
2129
2130 if (rxs->rxs_mbuf != NULL)
2131 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2132 rxs->rxs_mbuf = m;
2133
2134 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2135 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2136 #else
2137 MCLGET(m, M_DONTWAIT);
2138 if ((m->m_flags & M_EXT) == 0) {
2139 m_freem(m);
2140 return (ENOBUFS);
2141 }
2142
2143 if (rxs->rxs_mbuf != NULL)
2144 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2145
2146 rxs->rxs_mbuf = m;
2147
2148 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2149 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2150 BUS_DMA_READ|BUS_DMA_NOWAIT);
2151 #endif
2152 if (error) {
2153 printf("%s: unable to load rx DMA map %d, error = %d\n",
2154 sc->sc_dev.dv_xname, idx, error);
2155 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2156 }
2157 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2158 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2159
2160 return (0);
2161 }
2162
2163 /*
2164 * dge_set_ral:
2165 *
2166 * Set an entry in the receive address list.
2167 */
2168 static void
2169 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2170 {
2171 uint32_t ral_lo, ral_hi;
2172
2173 if (enaddr != NULL) {
2174 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2175 (enaddr[3] << 24);
2176 ral_hi = enaddr[4] | (enaddr[5] << 8);
2177 ral_hi |= RAH_AV;
2178 } else {
2179 ral_lo = 0;
2180 ral_hi = 0;
2181 }
2182 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2183 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2184 }
2185
2186 /*
2187 * dge_mchash:
2188 *
2189 * Compute the hash of the multicast address for the 4096-bit
2190 * multicast filter.
2191 */
2192 static uint32_t
2193 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2194 {
2195 static const int lo_shift[4] = { 4, 3, 2, 0 };
2196 static const int hi_shift[4] = { 4, 5, 6, 8 };
2197 uint32_t hash;
2198
2199 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2200 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2201
2202 return (hash & 0xfff);
2203 }
2204
2205 /*
2206 * dge_set_filter:
2207 *
2208 * Set up the receive filter.
2209 */
2210 static void
2211 dge_set_filter(struct dge_softc *sc)
2212 {
2213 struct ethercom *ec = &sc->sc_ethercom;
2214 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2215 struct ether_multi *enm;
2216 struct ether_multistep step;
2217 uint32_t hash, reg, bit;
2218 int i;
2219
2220 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2221
2222 if (ifp->if_flags & IFF_BROADCAST)
2223 sc->sc_rctl |= RCTL_BAM;
2224 if (ifp->if_flags & IFF_PROMISC) {
2225 sc->sc_rctl |= RCTL_UPE;
2226 goto allmulti;
2227 }
2228
2229 /*
2230 * Set the station address in the first RAL slot, and
2231 * clear the remaining slots.
2232 */
2233 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2234 for (i = 1; i < RA_TABSIZE; i++)
2235 dge_set_ral(sc, NULL, i);
2236
2237 /* Clear out the multicast table. */
2238 for (i = 0; i < MC_TABSIZE; i++)
2239 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2240
2241 ETHER_FIRST_MULTI(step, ec, enm);
2242 while (enm != NULL) {
2243 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2244 /*
2245 * We must listen to a range of multicast addresses.
2246 * For now, just accept all multicasts, rather than
2247 * trying to set only those filter bits needed to match
2248 * the range. (At this time, the only use of address
2249 * ranges is for IP multicast routing, for which the
2250 * range is big enough to require all bits set.)
2251 */
2252 goto allmulti;
2253 }
2254
2255 hash = dge_mchash(sc, enm->enm_addrlo);
2256
2257 reg = (hash >> 5) & 0x7f;
2258 bit = hash & 0x1f;
2259
2260 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2261 hash |= 1U << bit;
2262
2263 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2264
2265 ETHER_NEXT_MULTI(step, enm);
2266 }
2267
2268 ifp->if_flags &= ~IFF_ALLMULTI;
2269 goto setit;
2270
2271 allmulti:
2272 ifp->if_flags |= IFF_ALLMULTI;
2273 sc->sc_rctl |= RCTL_MPE;
2274
2275 setit:
2276 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2277 }
2278
2279 /*
2280 * Read in the EEPROM info and verify checksum.
2281 */
2282 int
2283 dge_read_eeprom(struct dge_softc *sc)
2284 {
2285 uint16_t cksum;
2286 int i;
2287
2288 cksum = 0;
2289 for (i = 0; i < EEPROM_SIZE; i++) {
2290 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2291 cksum += sc->sc_eeprom[i];
2292 }
2293 return cksum != EEPROM_CKSUM;
2294 }
2295
2296
2297 /*
2298 * Read a 16-bit word from address addr in the serial EEPROM.
2299 */
2300 uint16_t
2301 dge_eeprom_word(struct dge_softc *sc, int addr)
2302 {
2303 uint32_t reg;
2304 uint16_t rval = 0;
2305 int i;
2306
2307 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2308
2309 /* Lower clock pulse (and data in to chip) */
2310 CSR_WRITE(sc, DGE_EECD, reg);
2311 /* Select chip */
2312 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2313
2314 /* Send read command */
2315 dge_eeprom_clockout(sc, 1);
2316 dge_eeprom_clockout(sc, 1);
2317 dge_eeprom_clockout(sc, 0);
2318
2319 /* Send address */
2320 for (i = 5; i >= 0; i--)
2321 dge_eeprom_clockout(sc, (addr >> i) & 1);
2322
2323 /* Read data */
2324 for (i = 0; i < 16; i++) {
2325 rval <<= 1;
2326 rval |= dge_eeprom_clockin(sc);
2327 }
2328
2329 /* Deselect chip */
2330 CSR_WRITE(sc, DGE_EECD, reg);
2331
2332 return rval;
2333 }
2334
2335 /*
2336 * Clock out a single bit to the EEPROM.
2337 */
2338 void
2339 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2340 {
2341 int reg;
2342
2343 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2344 if (bit)
2345 reg |= EECD_DI;
2346
2347 CSR_WRITE(sc, DGE_EECD, reg);
2348 delay(2);
2349 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2350 delay(2);
2351 CSR_WRITE(sc, DGE_EECD, reg);
2352 delay(2);
2353 }
2354
2355 /*
2356 * Clock in a single bit from EEPROM.
2357 */
2358 int
2359 dge_eeprom_clockin(struct dge_softc *sc)
2360 {
2361 int reg, rv;
2362
2363 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2364
2365 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2366 delay(2);
2367 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2368 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2369 delay(2);
2370
2371 return rv;
2372 }
2373
2374 static void
2375 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2376 {
2377 struct dge_softc *sc = ifp->if_softc;
2378
2379 ifmr->ifm_status = IFM_AVALID;
2380 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2381
2382 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2383 ifmr->ifm_status |= IFM_ACTIVE;
2384 }
2385
2386 static inline int
2387 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2388 {
2389 int i, mdic;
2390
2391 CSR_WRITE(sc, DGE_MDIO,
2392 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2393 for (i = 0; i < 10; i++) {
2394 delay(10);
2395 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2396 break;
2397 }
2398 return mdic;
2399 }
2400
2401
2402 static void
2403 dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
2404 {
2405 struct dge_softc *sc = (void *) self;
2406 int mdic;
2407
2408 CSR_WRITE(sc, DGE_MDIRW, val);
2409 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2410 printf("%s: address cycle timeout; phy %d reg %d\n",
2411 sc->sc_dev.dv_xname, phy, reg);
2412 return;
2413 }
2414 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2415 printf("%s: read cycle timeout; phy %d reg %d\n",
2416 sc->sc_dev.dv_xname, phy, reg);
2417 return;
2418 }
2419 }
2420
2421 static void
2422 dge_xgmii_reset(struct dge_softc *sc)
2423 {
2424 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2425 }
2426
2427 static int
2428 dge_xgmii_mediachange(struct ifnet *ifp)
2429 {
2430 return 0;
2431 }
2432