if_dge.c revision 1.21.4.3 1 /* $NetBSD: if_dge.c,v 1.21.4.3 2010/03/11 15:03:45 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.21.4.3 2010/03/11 15:03:45 yamt Exp $");
84
85 #include "rnd.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
100
101 #if NRND > 0
102 #include <sys/rnd.h>
103 #endif
104
105 #include <net/if.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_ether.h>
109
110 #include <net/bpf.h>
111
112 #include <netinet/in.h> /* XXX for struct ip */
113 #include <netinet/in_systm.h> /* XXX for struct ip */
114 #include <netinet/ip.h> /* XXX for struct ip */
115 #include <netinet/tcp.h> /* XXX for struct tcphdr */
116
117 #include <sys/bus.h>
118 #include <sys/intr.h>
119 #include <machine/endian.h>
120
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 #include <dev/mii/mii_bitbang.h>
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_dgereg.h>
130
131 /*
132 * The receive engine may sometimes become off-by-one when writing back
133 * chained descriptors. Avoid this by allocating a large chunk of
134 * memory and use if instead (to avoid chained descriptors).
135 * This only happens with chained descriptors under heavy load.
136 */
137 #define DGE_OFFBYONE_RXBUG
138
139 #define DGE_EVENT_COUNTERS
140 #define DGE_DEBUG
141
142 #ifdef DGE_DEBUG
143 #define DGE_DEBUG_LINK 0x01
144 #define DGE_DEBUG_TX 0x02
145 #define DGE_DEBUG_RX 0x04
146 #define DGE_DEBUG_CKSUM 0x08
147 int dge_debug = 0;
148
149 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
150 #else
151 #define DPRINTF(x, y) /* nothing */
152 #endif /* DGE_DEBUG */
153
154 /*
155 * Transmit descriptor list size. We allow up to 100 DMA segments per
156 * packet (Intel reports of jumbo frame packets with as
157 * many as 80 DMA segments when using 16k buffers).
158 */
159 #define DGE_NTXSEGS 100
160 #define DGE_IFQUEUELEN 20000
161 #define DGE_TXQUEUELEN 2048
162 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
163 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
164 #define DGE_NTXDESC 1024
165 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
166 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
167 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
168
169 /*
170 * Receive descriptor list size.
171 * Packet is of size MCLBYTES, and for jumbo packets buffers may
172 * be chained. Due to the nature of the card (high-speed), keep this
173 * ring large. With 2k buffers the ring can store 400 jumbo packets,
174 * which at full speed will be received in just under 3ms.
175 */
176 #define DGE_NRXDESC 2048
177 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
178 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
179 /*
180 * # of descriptors between head and written descriptors.
181 * This is to work-around two erratas.
182 */
183 #define DGE_RXSPACE 10
184 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
185 /*
186 * Receive descriptor fetch threshholds. These are values recommended
187 * by Intel, do not touch them unless you know what you are doing.
188 */
189 #define RXDCTL_PTHRESH_VAL 128
190 #define RXDCTL_HTHRESH_VAL 16
191 #define RXDCTL_WTHRESH_VAL 16
192
193
194 /*
195 * Tweakable parameters; default values.
196 */
197 #define FCRTH 0x30000 /* Send XOFF water mark */
198 #define FCRTL 0x28000 /* Send XON water mark */
199 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
200 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
201
202 /*
203 * Control structures are DMA'd to the i82597 chip. We allocate them in
204 * a single clump that maps to a single DMA segment to make serveral things
205 * easier.
206 */
207 struct dge_control_data {
208 /*
209 * The transmit descriptors.
210 */
211 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
212
213 /*
214 * The receive descriptors.
215 */
216 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
217 };
218
219 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
220 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
221 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
222
223 /*
224 * The DGE interface have a higher max MTU size than normal jumbo frames.
225 */
226 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
227
228 /*
229 * Software state for transmit jobs.
230 */
231 struct dge_txsoft {
232 struct mbuf *txs_mbuf; /* head of our mbuf chain */
233 bus_dmamap_t txs_dmamap; /* our DMA map */
234 int txs_firstdesc; /* first descriptor in packet */
235 int txs_lastdesc; /* last descriptor in packet */
236 int txs_ndesc; /* # of descriptors used */
237 };
238
239 /*
240 * Software state for receive buffers. Each descriptor gets a
241 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
242 * more than one buffer, we chain them together.
243 */
244 struct dge_rxsoft {
245 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
246 bus_dmamap_t rxs_dmamap; /* our DMA map */
247 };
248
249 /*
250 * Software state per device.
251 */
252 struct dge_softc {
253 struct device sc_dev; /* generic device information */
254 bus_space_tag_t sc_st; /* bus space tag */
255 bus_space_handle_t sc_sh; /* bus space handle */
256 bus_dma_tag_t sc_dmat; /* bus DMA tag */
257 struct ethercom sc_ethercom; /* ethernet common data */
258
259 int sc_flags; /* flags; see below */
260 int sc_bus_speed; /* PCI/PCIX bus speed */
261 int sc_pcix_offset; /* PCIX capability register offset */
262
263 pci_chipset_tag_t sc_pc;
264 pcitag_t sc_pt;
265 int sc_mmrbc; /* Max PCIX memory read byte count */
266
267 void *sc_ih; /* interrupt cookie */
268
269 struct ifmedia sc_media;
270
271 bus_dmamap_t sc_cddmamap; /* control data DMA map */
272 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
273
274 int sc_align_tweak;
275
276 /*
277 * Software state for the transmit and receive descriptors.
278 */
279 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
280 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
281
282 /*
283 * Control data structures.
284 */
285 struct dge_control_data *sc_control_data;
286 #define sc_txdescs sc_control_data->wcd_txdescs
287 #define sc_rxdescs sc_control_data->wcd_rxdescs
288
289 #ifdef DGE_EVENT_COUNTERS
290 /* Event counters. */
291 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
292 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
293 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
294 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
295 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
296 struct evcnt sc_ev_rxintr; /* Rx interrupts */
297 struct evcnt sc_ev_linkintr; /* Link interrupts */
298
299 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
300 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
301 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
302 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
303
304 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
305 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
306 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
307
308 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
309 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
310 #endif /* DGE_EVENT_COUNTERS */
311
312 int sc_txfree; /* number of free Tx descriptors */
313 int sc_txnext; /* next ready Tx descriptor */
314
315 int sc_txsfree; /* number of free Tx jobs */
316 int sc_txsnext; /* next free Tx job */
317 int sc_txsdirty; /* dirty Tx jobs */
318
319 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
320 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
321
322 int sc_rxptr; /* next ready Rx descriptor/queue ent */
323 int sc_rxdiscard;
324 int sc_rxlen;
325 struct mbuf *sc_rxhead;
326 struct mbuf *sc_rxtail;
327 struct mbuf **sc_rxtailp;
328
329 uint32_t sc_ctrl0; /* prototype CTRL0 register */
330 uint32_t sc_icr; /* prototype interrupt bits */
331 uint32_t sc_tctl; /* prototype TCTL register */
332 uint32_t sc_rctl; /* prototype RCTL register */
333
334 int sc_mchash_type; /* multicast filter offset */
335
336 uint16_t sc_eeprom[EEPROM_SIZE];
337
338 #if NRND > 0
339 rndsource_element_t rnd_source; /* random source */
340 #endif
341 #ifdef DGE_OFFBYONE_RXBUG
342 void *sc_bugbuf;
343 SLIST_HEAD(, rxbugentry) sc_buglist;
344 bus_dmamap_t sc_bugmap;
345 struct rxbugentry *sc_entry;
346 #endif
347 };
348
349 #define DGE_RXCHAIN_RESET(sc) \
350 do { \
351 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
352 *(sc)->sc_rxtailp = NULL; \
353 (sc)->sc_rxlen = 0; \
354 } while (/*CONSTCOND*/0)
355
356 #define DGE_RXCHAIN_LINK(sc, m) \
357 do { \
358 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
359 (sc)->sc_rxtailp = &(m)->m_next; \
360 } while (/*CONSTCOND*/0)
361
362 /* sc_flags */
363 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
364 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
365
366 #ifdef DGE_EVENT_COUNTERS
367 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
368 #else
369 #define DGE_EVCNT_INCR(ev) /* nothing */
370 #endif
371
372 #define CSR_READ(sc, reg) \
373 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
374 #define CSR_WRITE(sc, reg, val) \
375 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
376
377 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
378 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
379
380 #define DGE_CDTXSYNC(sc, x, n, ops) \
381 do { \
382 int __x, __n; \
383 \
384 __x = (x); \
385 __n = (n); \
386 \
387 /* If it will wrap around, sync to the end of the ring. */ \
388 if ((__x + __n) > DGE_NTXDESC) { \
389 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
390 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
391 (DGE_NTXDESC - __x), (ops)); \
392 __n -= (DGE_NTXDESC - __x); \
393 __x = 0; \
394 } \
395 \
396 /* Now sync whatever is left. */ \
397 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
398 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
399 } while (/*CONSTCOND*/0)
400
401 #define DGE_CDRXSYNC(sc, x, ops) \
402 do { \
403 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
404 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
405 } while (/*CONSTCOND*/0)
406
407 #ifdef DGE_OFFBYONE_RXBUG
408 #define DGE_INIT_RXDESC(sc, x) \
409 do { \
410 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
411 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
412 struct mbuf *__m = __rxs->rxs_mbuf; \
413 \
414 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
415 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
416 __rxd->dr_baddrh = 0; \
417 __rxd->dr_len = 0; \
418 __rxd->dr_cksum = 0; \
419 __rxd->dr_status = 0; \
420 __rxd->dr_errors = 0; \
421 __rxd->dr_special = 0; \
422 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
423 \
424 CSR_WRITE((sc), DGE_RDT, (x)); \
425 } while (/*CONSTCOND*/0)
426 #else
427 #define DGE_INIT_RXDESC(sc, x) \
428 do { \
429 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
430 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
431 struct mbuf *__m = __rxs->rxs_mbuf; \
432 \
433 /* \
434 * Note: We scoot the packet forward 2 bytes in the buffer \
435 * so that the payload after the Ethernet header is aligned \
436 * to a 4-byte boundary. \
437 * \
438 * XXX BRAINDAMAGE ALERT! \
439 * The stupid chip uses the same size for every buffer, which \
440 * is set in the Receive Control register. We are using the 2K \
441 * size option, but what we REALLY want is (2K - 2)! For this \
442 * reason, we can't "scoot" packets longer than the standard \
443 * Ethernet MTU. On strict-alignment platforms, if the total \
444 * size exceeds (2K - 2) we set align_tweak to 0 and let \
445 * the upper layer copy the headers. \
446 */ \
447 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
448 \
449 __rxd->dr_baddrl = \
450 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
451 (sc)->sc_align_tweak); \
452 __rxd->dr_baddrh = 0; \
453 __rxd->dr_len = 0; \
454 __rxd->dr_cksum = 0; \
455 __rxd->dr_status = 0; \
456 __rxd->dr_errors = 0; \
457 __rxd->dr_special = 0; \
458 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
459 \
460 CSR_WRITE((sc), DGE_RDT, (x)); \
461 } while (/*CONSTCOND*/0)
462 #endif
463
464 #ifdef DGE_OFFBYONE_RXBUG
465 /*
466 * Allocation constants. Much memory may be used for this.
467 */
468 #ifndef DGE_BUFFER_SIZE
469 #define DGE_BUFFER_SIZE DGE_MAX_MTU
470 #endif
471 #define DGE_NBUFFERS (4*DGE_NRXDESC)
472 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
473
474 struct rxbugentry {
475 SLIST_ENTRY(rxbugentry) rb_entry;
476 int rb_slot;
477 };
478
479 static int
480 dge_alloc_rcvmem(struct dge_softc *sc)
481 {
482 char *ptr, *kva;
483 bus_dma_segment_t seg;
484 int i, rseg, state, error;
485 struct rxbugentry *entry;
486
487 state = error = 0;
488
489 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
490 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
491 aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
492 return ENOBUFS;
493 }
494
495 state = 1;
496 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
497 BUS_DMA_NOWAIT)) {
498 aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
499 (int)DGE_RXMEM);
500 error = ENOBUFS;
501 goto out;
502 }
503
504 state = 2;
505 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
506 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
507 aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
508 error = ENOBUFS;
509 goto out;
510 }
511
512 state = 3;
513 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
514 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
515 aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
516 error = ENOBUFS;
517 goto out;
518 }
519
520 state = 4;
521 sc->sc_bugbuf = (void *)kva;
522 SLIST_INIT(&sc->sc_buglist);
523
524 /*
525 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
526 * in an array.
527 */
528 ptr = sc->sc_bugbuf;
529 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
530 M_DEVBUF, M_NOWAIT)) == NULL) {
531 error = ENOBUFS;
532 goto out;
533 }
534 sc->sc_entry = entry;
535 for (i = 0; i < DGE_NBUFFERS; i++) {
536 entry[i].rb_slot = i;
537 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
538 }
539 out:
540 if (error != 0) {
541 switch (state) {
542 case 4:
543 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
544 case 3:
545 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
546 case 2:
547 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
548 case 1:
549 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
550 break;
551 default:
552 break;
553 }
554 }
555
556 return error;
557 }
558
559 /*
560 * Allocate a jumbo buffer.
561 */
562 static void *
563 dge_getbuf(struct dge_softc *sc)
564 {
565 struct rxbugentry *entry;
566
567 entry = SLIST_FIRST(&sc->sc_buglist);
568
569 if (entry == NULL) {
570 printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
571 return(NULL);
572 }
573
574 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
575 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
576 }
577
578 /*
579 * Release a jumbo buffer.
580 */
581 static void
582 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
583 {
584 struct rxbugentry *entry;
585 struct dge_softc *sc;
586 int i, s;
587
588 /* Extract the softc struct pointer. */
589 sc = (struct dge_softc *)arg;
590
591 if (sc == NULL)
592 panic("dge_freebuf: can't find softc pointer!");
593
594 /* calculate the slot this buffer belongs to */
595
596 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
597
598 if ((i < 0) || (i >= DGE_NBUFFERS))
599 panic("dge_freebuf: asked to free buffer %d!", i);
600
601 s = splvm();
602 entry = sc->sc_entry + i;
603 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
604
605 if (__predict_true(m != NULL))
606 pool_cache_put(mb_cache, m);
607 splx(s);
608 }
609 #endif
610
611 static void dge_start(struct ifnet *);
612 static void dge_watchdog(struct ifnet *);
613 static int dge_ioctl(struct ifnet *, u_long, void *);
614 static int dge_init(struct ifnet *);
615 static void dge_stop(struct ifnet *, int);
616
617 static bool dge_shutdown(device_t, int);
618
619 static void dge_reset(struct dge_softc *);
620 static void dge_rxdrain(struct dge_softc *);
621 static int dge_add_rxbuf(struct dge_softc *, int);
622
623 static void dge_set_filter(struct dge_softc *);
624
625 static int dge_intr(void *);
626 static void dge_txintr(struct dge_softc *);
627 static void dge_rxintr(struct dge_softc *);
628 static void dge_linkintr(struct dge_softc *, uint32_t);
629
630 static int dge_match(device_t, cfdata_t, void *);
631 static void dge_attach(device_t, device_t, void *);
632
633 static int dge_read_eeprom(struct dge_softc *sc);
634 static int dge_eeprom_clockin(struct dge_softc *sc);
635 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
636 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
637 static int dge_xgmii_mediachange(struct ifnet *);
638 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
639 static void dge_xgmii_reset(struct dge_softc *);
640 static void dge_xgmii_writereg(device_t, int, int, int);
641
642
643 CFATTACH_DECL(dge, sizeof(struct dge_softc),
644 dge_match, dge_attach, NULL, NULL);
645
646 #ifdef DGE_EVENT_COUNTERS
647 #if DGE_NTXSEGS > 100
648 #error Update dge_txseg_evcnt_names
649 #endif
650 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
651 #endif /* DGE_EVENT_COUNTERS */
652
653 static int
654 dge_match(device_t parent, cfdata_t cf, void *aux)
655 {
656 struct pci_attach_args *pa = aux;
657
658 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
659 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
660 return (1);
661
662 return (0);
663 }
664
665 static void
666 dge_attach(device_t parent, device_t self, void *aux)
667 {
668 struct dge_softc *sc = device_private(self);
669 struct pci_attach_args *pa = aux;
670 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
671 pci_chipset_tag_t pc = pa->pa_pc;
672 pci_intr_handle_t ih;
673 const char *intrstr = NULL;
674 bus_dma_segment_t seg;
675 int i, rseg, error;
676 uint8_t enaddr[ETHER_ADDR_LEN];
677 pcireg_t preg, memtype;
678 uint32_t reg;
679
680 sc->sc_dmat = pa->pa_dmat;
681 sc->sc_pc = pa->pa_pc;
682 sc->sc_pt = pa->pa_tag;
683
684 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
685 aprint_naive(": Ethernet controller\n");
686 aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
687
688 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
689 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
690 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
691 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
692 return;
693 }
694
695 /* Enable bus mastering */
696 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
697 preg |= PCI_COMMAND_MASTER_ENABLE;
698 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
699
700 /*
701 * Map and establish our interrupt.
702 */
703 if (pci_intr_map(pa, &ih)) {
704 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
705 return;
706 }
707 intrstr = pci_intr_string(pc, ih);
708 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
709 if (sc->sc_ih == NULL) {
710 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
711 if (intrstr != NULL)
712 aprint_error(" at %s", intrstr);
713 aprint_error("\n");
714 return;
715 }
716 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
717
718 /*
719 * Determine a few things about the bus we're connected to.
720 */
721 reg = CSR_READ(sc, DGE_STATUS);
722 if (reg & STATUS_BUS64)
723 sc->sc_flags |= DGE_F_BUS64;
724
725 sc->sc_flags |= DGE_F_PCIX;
726 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
727 PCI_CAP_PCIX,
728 &sc->sc_pcix_offset, NULL) == 0)
729 aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
730 "capability\n");
731
732 if (sc->sc_flags & DGE_F_PCIX) {
733 switch (reg & STATUS_PCIX_MSK) {
734 case STATUS_PCIX_66:
735 sc->sc_bus_speed = 66;
736 break;
737 case STATUS_PCIX_100:
738 sc->sc_bus_speed = 100;
739 break;
740 case STATUS_PCIX_133:
741 sc->sc_bus_speed = 133;
742 break;
743 default:
744 aprint_error_dev(&sc->sc_dev,
745 "unknown PCIXSPD %d; assuming 66MHz\n",
746 reg & STATUS_PCIX_MSK);
747 sc->sc_bus_speed = 66;
748 }
749 } else
750 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
751 aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
752 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
753 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
754
755 /*
756 * Allocate the control data structures, and create and load the
757 * DMA map for it.
758 */
759 if ((error = bus_dmamem_alloc(sc->sc_dmat,
760 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
761 0)) != 0) {
762 aprint_error_dev(&sc->sc_dev,
763 "unable to allocate control data, error = %d\n",
764 error);
765 goto fail_0;
766 }
767
768 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
769 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
770 0)) != 0) {
771 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
772 error);
773 goto fail_1;
774 }
775
776 if ((error = bus_dmamap_create(sc->sc_dmat,
777 sizeof(struct dge_control_data), 1,
778 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
779 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
780 "error = %d\n", error);
781 goto fail_2;
782 }
783
784 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
785 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
786 0)) != 0) {
787 aprint_error_dev(&sc->sc_dev,
788 "unable to load control data DMA map, error = %d\n",
789 error);
790 goto fail_3;
791 }
792
793 #ifdef DGE_OFFBYONE_RXBUG
794 if (dge_alloc_rcvmem(sc) != 0)
795 return; /* Already complained */
796 #endif
797 /*
798 * Create the transmit buffer DMA maps.
799 */
800 for (i = 0; i < DGE_TXQUEUELEN; i++) {
801 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
802 DGE_NTXSEGS, MCLBYTES, 0, 0,
803 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
804 aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
805 "error = %d\n", i, error);
806 goto fail_4;
807 }
808 }
809
810 /*
811 * Create the receive buffer DMA maps.
812 */
813 for (i = 0; i < DGE_NRXDESC; i++) {
814 #ifdef DGE_OFFBYONE_RXBUG
815 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
816 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
817 #else
818 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
819 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
820 #endif
821 aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
822 "error = %d\n", i, error);
823 goto fail_5;
824 }
825 sc->sc_rxsoft[i].rxs_mbuf = NULL;
826 }
827
828 /*
829 * Set bits in ctrl0 register.
830 * Should get the software defined pins out of EEPROM?
831 */
832 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
833 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
834 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
835
836 /*
837 * Reset the chip to a known state.
838 */
839 dge_reset(sc);
840
841 /*
842 * Reset the PHY.
843 */
844 dge_xgmii_reset(sc);
845
846 /*
847 * Read in EEPROM data.
848 */
849 if (dge_read_eeprom(sc)) {
850 aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
851 return;
852 }
853
854 /*
855 * Get the ethernet address.
856 */
857 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
858 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
859 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
860 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
861 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
862 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
863
864 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
865 ether_sprintf(enaddr));
866
867 /*
868 * Setup media stuff.
869 */
870 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
871 dge_xgmii_mediastatus);
872 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
873 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
874
875 ifp = &sc->sc_ethercom.ec_if;
876 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
877 ifp->if_softc = sc;
878 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
879 ifp->if_ioctl = dge_ioctl;
880 ifp->if_start = dge_start;
881 ifp->if_watchdog = dge_watchdog;
882 ifp->if_init = dge_init;
883 ifp->if_stop = dge_stop;
884 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
885 IFQ_SET_READY(&ifp->if_snd);
886
887 sc->sc_ethercom.ec_capabilities |=
888 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
889
890 /*
891 * We can perform TCPv4 and UDPv4 checkums in-bound.
892 */
893 ifp->if_capabilities |=
894 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
895 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
896 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
897
898 /*
899 * Attach the interface.
900 */
901 if_attach(ifp);
902 ether_ifattach(ifp, enaddr);
903 #if NRND > 0
904 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
905 RND_TYPE_NET, 0);
906 #endif
907
908 #ifdef DGE_EVENT_COUNTERS
909 /* Fix segment event naming */
910 if (dge_txseg_evcnt_names == NULL) {
911 dge_txseg_evcnt_names =
912 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
913 for (i = 0; i < DGE_NTXSEGS; i++)
914 snprintf((*dge_txseg_evcnt_names)[i],
915 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
916 }
917
918 /* Attach event counters. */
919 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
920 NULL, device_xname(&sc->sc_dev), "txsstall");
921 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
922 NULL, device_xname(&sc->sc_dev), "txdstall");
923 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
924 NULL, device_xname(&sc->sc_dev), "txforceintr");
925 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
926 NULL, device_xname(&sc->sc_dev), "txdw");
927 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
928 NULL, device_xname(&sc->sc_dev), "txqe");
929 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
930 NULL, device_xname(&sc->sc_dev), "rxintr");
931 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
932 NULL, device_xname(&sc->sc_dev), "linkintr");
933
934 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
935 NULL, device_xname(&sc->sc_dev), "rxipsum");
936 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
937 NULL, device_xname(&sc->sc_dev), "rxtusum");
938 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
939 NULL, device_xname(&sc->sc_dev), "txipsum");
940 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
941 NULL, device_xname(&sc->sc_dev), "txtusum");
942
943 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
944 NULL, device_xname(&sc->sc_dev), "txctx init");
945 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
946 NULL, device_xname(&sc->sc_dev), "txctx hit");
947 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
948 NULL, device_xname(&sc->sc_dev), "txctx miss");
949
950 for (i = 0; i < DGE_NTXSEGS; i++)
951 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
952 NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
953
954 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
955 NULL, device_xname(&sc->sc_dev), "txdrop");
956
957 #endif /* DGE_EVENT_COUNTERS */
958
959 /*
960 * Make sure the interface is shutdown during reboot.
961 */
962 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
963 pmf_class_network_register(self, ifp);
964 else
965 aprint_error_dev(self, "couldn't establish power handler\n");
966
967 return;
968
969 /*
970 * Free any resources we've allocated during the failed attach
971 * attempt. Do this in reverse order and fall through.
972 */
973 fail_5:
974 for (i = 0; i < DGE_NRXDESC; i++) {
975 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
976 bus_dmamap_destroy(sc->sc_dmat,
977 sc->sc_rxsoft[i].rxs_dmamap);
978 }
979 fail_4:
980 for (i = 0; i < DGE_TXQUEUELEN; i++) {
981 if (sc->sc_txsoft[i].txs_dmamap != NULL)
982 bus_dmamap_destroy(sc->sc_dmat,
983 sc->sc_txsoft[i].txs_dmamap);
984 }
985 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
986 fail_3:
987 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
988 fail_2:
989 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
990 sizeof(struct dge_control_data));
991 fail_1:
992 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
993 fail_0:
994 return;
995 }
996
997 /*
998 * dge_shutdown:
999 *
1000 * Make sure the interface is stopped at reboot time.
1001 */
1002 static bool
1003 dge_shutdown(device_t self, int howto)
1004 {
1005 struct dge_softc *sc;
1006
1007 sc = device_private(self);
1008 dge_stop(&sc->sc_ethercom.ec_if, 1);
1009
1010 return true;
1011 }
1012
1013 /*
1014 * dge_tx_cksum:
1015 *
1016 * Set up TCP/IP checksumming parameters for the
1017 * specified packet.
1018 */
1019 static int
1020 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1021 {
1022 struct mbuf *m0 = txs->txs_mbuf;
1023 struct dge_ctdes *t;
1024 uint32_t ipcs, tucs;
1025 struct ether_header *eh;
1026 int offset, iphl;
1027 uint8_t fields = 0;
1028
1029 /*
1030 * XXX It would be nice if the mbuf pkthdr had offset
1031 * fields for the protocol headers.
1032 */
1033
1034 eh = mtod(m0, struct ether_header *);
1035 switch (htons(eh->ether_type)) {
1036 case ETHERTYPE_IP:
1037 offset = ETHER_HDR_LEN;
1038 break;
1039
1040 case ETHERTYPE_VLAN:
1041 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1042 break;
1043
1044 default:
1045 /*
1046 * Don't support this protocol or encapsulation.
1047 */
1048 *fieldsp = 0;
1049 return (0);
1050 }
1051
1052 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1053
1054 /*
1055 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1056 * offload feature, if we load the context descriptor, we
1057 * MUST provide valid values for IPCSS and TUCSS fields.
1058 */
1059
1060 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1061 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1062 fields |= TDESC_POPTS_IXSM;
1063 ipcs = DGE_TCPIP_IPCSS(offset) |
1064 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1065 DGE_TCPIP_IPCSE(offset + iphl - 1);
1066 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1067 /* Use the cached value. */
1068 ipcs = sc->sc_txctx_ipcs;
1069 } else {
1070 /* Just initialize it to the likely value anyway. */
1071 ipcs = DGE_TCPIP_IPCSS(offset) |
1072 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1073 DGE_TCPIP_IPCSE(offset + iphl - 1);
1074 }
1075 DPRINTF(DGE_DEBUG_CKSUM,
1076 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1077 device_xname(&sc->sc_dev), offset, ipcs));
1078
1079 offset += iphl;
1080
1081 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1082 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1083 fields |= TDESC_POPTS_TXSM;
1084 tucs = DGE_TCPIP_TUCSS(offset) |
1085 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1086 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1087 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1088 /* Use the cached value. */
1089 tucs = sc->sc_txctx_tucs;
1090 } else {
1091 /* Just initialize it to a valid TCP context. */
1092 tucs = DGE_TCPIP_TUCSS(offset) |
1093 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1094 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1095 }
1096
1097 DPRINTF(DGE_DEBUG_CKSUM,
1098 ("%s: CKSUM: offset %d tucs 0x%x\n",
1099 device_xname(&sc->sc_dev), offset, tucs));
1100
1101 if (sc->sc_txctx_ipcs == ipcs &&
1102 sc->sc_txctx_tucs == tucs) {
1103 /* Cached context is fine. */
1104 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1105 } else {
1106 /* Fill in the context descriptor. */
1107 #ifdef DGE_EVENT_COUNTERS
1108 if (sc->sc_txctx_ipcs == 0xffffffff &&
1109 sc->sc_txctx_tucs == 0xffffffff)
1110 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1111 else
1112 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1113 #endif
1114 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1115 t->dc_tcpip_ipcs = htole32(ipcs);
1116 t->dc_tcpip_tucs = htole32(tucs);
1117 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1118 t->dc_tcpip_seg = 0;
1119 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1120
1121 sc->sc_txctx_ipcs = ipcs;
1122 sc->sc_txctx_tucs = tucs;
1123
1124 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1125 txs->txs_ndesc++;
1126 }
1127
1128 *fieldsp = fields;
1129
1130 return (0);
1131 }
1132
1133 /*
1134 * dge_start: [ifnet interface function]
1135 *
1136 * Start packet transmission on the interface.
1137 */
1138 static void
1139 dge_start(struct ifnet *ifp)
1140 {
1141 struct dge_softc *sc = ifp->if_softc;
1142 struct mbuf *m0;
1143 struct dge_txsoft *txs;
1144 bus_dmamap_t dmamap;
1145 int error, nexttx, lasttx = -1, ofree, seg;
1146 uint32_t cksumcmd;
1147 uint8_t cksumfields;
1148
1149 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1150 return;
1151
1152 /*
1153 * Remember the previous number of free descriptors.
1154 */
1155 ofree = sc->sc_txfree;
1156
1157 /*
1158 * Loop through the send queue, setting up transmit descriptors
1159 * until we drain the queue, or use up all available transmit
1160 * descriptors.
1161 */
1162 for (;;) {
1163 /* Grab a packet off the queue. */
1164 IFQ_POLL(&ifp->if_snd, m0);
1165 if (m0 == NULL)
1166 break;
1167
1168 DPRINTF(DGE_DEBUG_TX,
1169 ("%s: TX: have packet to transmit: %p\n",
1170 device_xname(&sc->sc_dev), m0));
1171
1172 /* Get a work queue entry. */
1173 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1174 dge_txintr(sc);
1175 if (sc->sc_txsfree == 0) {
1176 DPRINTF(DGE_DEBUG_TX,
1177 ("%s: TX: no free job descriptors\n",
1178 device_xname(&sc->sc_dev)));
1179 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1180 break;
1181 }
1182 }
1183
1184 txs = &sc->sc_txsoft[sc->sc_txsnext];
1185 dmamap = txs->txs_dmamap;
1186
1187 /*
1188 * Load the DMA map. If this fails, the packet either
1189 * didn't fit in the allotted number of segments, or we
1190 * were short on resources. For the too-many-segments
1191 * case, we simply report an error and drop the packet,
1192 * since we can't sanely copy a jumbo packet to a single
1193 * buffer.
1194 */
1195 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1196 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1197 if (error) {
1198 if (error == EFBIG) {
1199 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1200 printf("%s: Tx packet consumes too many "
1201 "DMA segments, dropping...\n",
1202 device_xname(&sc->sc_dev));
1203 IFQ_DEQUEUE(&ifp->if_snd, m0);
1204 m_freem(m0);
1205 continue;
1206 }
1207 /*
1208 * Short on resources, just stop for now.
1209 */
1210 DPRINTF(DGE_DEBUG_TX,
1211 ("%s: TX: dmamap load failed: %d\n",
1212 device_xname(&sc->sc_dev), error));
1213 break;
1214 }
1215
1216 /*
1217 * Ensure we have enough descriptors free to describe
1218 * the packet. Note, we always reserve one descriptor
1219 * at the end of the ring due to the semantics of the
1220 * TDT register, plus one more in the event we need
1221 * to re-load checksum offload context.
1222 */
1223 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1224 /*
1225 * Not enough free descriptors to transmit this
1226 * packet. We haven't committed anything yet,
1227 * so just unload the DMA map, put the packet
1228 * pack on the queue, and punt. Notify the upper
1229 * layer that there are no more slots left.
1230 */
1231 DPRINTF(DGE_DEBUG_TX,
1232 ("%s: TX: need %d descriptors, have %d\n",
1233 device_xname(&sc->sc_dev), dmamap->dm_nsegs,
1234 sc->sc_txfree - 1));
1235 ifp->if_flags |= IFF_OACTIVE;
1236 bus_dmamap_unload(sc->sc_dmat, dmamap);
1237 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1238 break;
1239 }
1240
1241 IFQ_DEQUEUE(&ifp->if_snd, m0);
1242
1243 /*
1244 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1245 */
1246
1247 /* Sync the DMA map. */
1248 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1249 BUS_DMASYNC_PREWRITE);
1250
1251 DPRINTF(DGE_DEBUG_TX,
1252 ("%s: TX: packet has %d DMA segments\n",
1253 device_xname(&sc->sc_dev), dmamap->dm_nsegs));
1254
1255 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1256
1257 /*
1258 * Store a pointer to the packet so that we can free it
1259 * later.
1260 *
1261 * Initially, we consider the number of descriptors the
1262 * packet uses the number of DMA segments. This may be
1263 * incremented by 1 if we do checksum offload (a descriptor
1264 * is used to set the checksum context).
1265 */
1266 txs->txs_mbuf = m0;
1267 txs->txs_firstdesc = sc->sc_txnext;
1268 txs->txs_ndesc = dmamap->dm_nsegs;
1269
1270 /*
1271 * Set up checksum offload parameters for
1272 * this packet.
1273 */
1274 if (m0->m_pkthdr.csum_flags &
1275 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1276 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1277 /* Error message already displayed. */
1278 bus_dmamap_unload(sc->sc_dmat, dmamap);
1279 continue;
1280 }
1281 } else {
1282 cksumfields = 0;
1283 }
1284
1285 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1286
1287 /*
1288 * Initialize the transmit descriptor.
1289 */
1290 for (nexttx = sc->sc_txnext, seg = 0;
1291 seg < dmamap->dm_nsegs;
1292 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1293 /*
1294 * Note: we currently only use 32-bit DMA
1295 * addresses.
1296 */
1297 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1298 sc->sc_txdescs[nexttx].dt_baddrl =
1299 htole32(dmamap->dm_segs[seg].ds_addr);
1300 sc->sc_txdescs[nexttx].dt_ctl =
1301 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1302 sc->sc_txdescs[nexttx].dt_status = 0;
1303 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1304 sc->sc_txdescs[nexttx].dt_vlan = 0;
1305 lasttx = nexttx;
1306
1307 DPRINTF(DGE_DEBUG_TX,
1308 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1309 device_xname(&sc->sc_dev), nexttx,
1310 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1311 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1312 }
1313
1314 KASSERT(lasttx != -1);
1315
1316 /*
1317 * Set up the command byte on the last descriptor of
1318 * the packet. If we're in the interrupt delay window,
1319 * delay the interrupt.
1320 */
1321 sc->sc_txdescs[lasttx].dt_ctl |=
1322 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1323
1324 txs->txs_lastdesc = lasttx;
1325
1326 DPRINTF(DGE_DEBUG_TX,
1327 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
1328 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1329
1330 /* Sync the descriptors we're using. */
1331 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1332 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1333
1334 /* Give the packet to the chip. */
1335 CSR_WRITE(sc, DGE_TDT, nexttx);
1336
1337 DPRINTF(DGE_DEBUG_TX,
1338 ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
1339
1340 DPRINTF(DGE_DEBUG_TX,
1341 ("%s: TX: finished transmitting packet, job %d\n",
1342 device_xname(&sc->sc_dev), sc->sc_txsnext));
1343
1344 /* Advance the tx pointer. */
1345 sc->sc_txfree -= txs->txs_ndesc;
1346 sc->sc_txnext = nexttx;
1347
1348 sc->sc_txsfree--;
1349 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1350
1351 /* Pass the packet to any BPF listeners. */
1352 if (ifp->if_bpf)
1353 bpf_ops->bpf_mtap(ifp->if_bpf, m0);
1354 }
1355
1356 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1357 /* No more slots; notify upper layer. */
1358 ifp->if_flags |= IFF_OACTIVE;
1359 }
1360
1361 if (sc->sc_txfree != ofree) {
1362 /* Set a watchdog timer in case the chip flakes out. */
1363 ifp->if_timer = 5;
1364 }
1365 }
1366
1367 /*
1368 * dge_watchdog: [ifnet interface function]
1369 *
1370 * Watchdog timer handler.
1371 */
1372 static void
1373 dge_watchdog(struct ifnet *ifp)
1374 {
1375 struct dge_softc *sc = ifp->if_softc;
1376
1377 /*
1378 * Since we're using delayed interrupts, sweep up
1379 * before we report an error.
1380 */
1381 dge_txintr(sc);
1382
1383 if (sc->sc_txfree != DGE_NTXDESC) {
1384 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1385 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1386 sc->sc_txnext);
1387 ifp->if_oerrors++;
1388
1389 /* Reset the interface. */
1390 (void) dge_init(ifp);
1391 }
1392
1393 /* Try to get more packets going. */
1394 dge_start(ifp);
1395 }
1396
1397 /*
1398 * dge_ioctl: [ifnet interface function]
1399 *
1400 * Handle control requests from the operator.
1401 */
1402 static int
1403 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1404 {
1405 struct dge_softc *sc = ifp->if_softc;
1406 struct ifreq *ifr = (struct ifreq *) data;
1407 pcireg_t preg;
1408 int s, error, mmrbc;
1409
1410 s = splnet();
1411
1412 switch (cmd) {
1413 case SIOCSIFMEDIA:
1414 case SIOCGIFMEDIA:
1415 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1416 break;
1417
1418 case SIOCSIFMTU:
1419 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1420 error = EINVAL;
1421 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1422 break;
1423 else if (ifp->if_flags & IFF_UP)
1424 error = (*ifp->if_init)(ifp);
1425 else
1426 error = 0;
1427 break;
1428
1429 case SIOCSIFFLAGS:
1430 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1431 break;
1432 /* extract link flags */
1433 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1434 (ifp->if_flags & IFF_LINK1) == 0)
1435 mmrbc = PCIX_MMRBC_512;
1436 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1437 (ifp->if_flags & IFF_LINK1) != 0)
1438 mmrbc = PCIX_MMRBC_1024;
1439 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1440 (ifp->if_flags & IFF_LINK1) == 0)
1441 mmrbc = PCIX_MMRBC_2048;
1442 else
1443 mmrbc = PCIX_MMRBC_4096;
1444 if (mmrbc != sc->sc_mmrbc) {
1445 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1446 preg &= ~PCIX_MMRBC_MSK;
1447 preg |= mmrbc;
1448 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1449 sc->sc_mmrbc = mmrbc;
1450 }
1451 /* FALLTHROUGH */
1452 default:
1453 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1454 break;
1455
1456 error = 0;
1457
1458 if (cmd == SIOCSIFCAP)
1459 error = (*ifp->if_init)(ifp);
1460 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1461 ;
1462 else if (ifp->if_flags & IFF_RUNNING) {
1463 /*
1464 * Multicast list has changed; set the hardware filter
1465 * accordingly.
1466 */
1467 dge_set_filter(sc);
1468 }
1469 break;
1470 }
1471
1472 /* Try to get more packets going. */
1473 dge_start(ifp);
1474
1475 splx(s);
1476 return (error);
1477 }
1478
1479 /*
1480 * dge_intr:
1481 *
1482 * Interrupt service routine.
1483 */
1484 static int
1485 dge_intr(void *arg)
1486 {
1487 struct dge_softc *sc = arg;
1488 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1489 uint32_t icr;
1490 int wantinit, handled = 0;
1491
1492 for (wantinit = 0; wantinit == 0;) {
1493 icr = CSR_READ(sc, DGE_ICR);
1494 if ((icr & sc->sc_icr) == 0)
1495 break;
1496
1497 #if 0 /*NRND > 0*/
1498 if (RND_ENABLED(&sc->rnd_source))
1499 rnd_add_uint32(&sc->rnd_source, icr);
1500 #endif
1501
1502 handled = 1;
1503
1504 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1505 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1506 DPRINTF(DGE_DEBUG_RX,
1507 ("%s: RX: got Rx intr 0x%08x\n",
1508 device_xname(&sc->sc_dev),
1509 icr & (ICR_RXDMT0|ICR_RXT0)));
1510 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1511 }
1512 #endif
1513 dge_rxintr(sc);
1514
1515 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1516 if (icr & ICR_TXDW) {
1517 DPRINTF(DGE_DEBUG_TX,
1518 ("%s: TX: got TXDW interrupt\n",
1519 device_xname(&sc->sc_dev)));
1520 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1521 }
1522 if (icr & ICR_TXQE)
1523 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1524 #endif
1525 dge_txintr(sc);
1526
1527 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1528 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1529 dge_linkintr(sc, icr);
1530 }
1531
1532 if (icr & ICR_RXO) {
1533 printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
1534 wantinit = 1;
1535 }
1536 }
1537
1538 if (handled) {
1539 if (wantinit)
1540 dge_init(ifp);
1541
1542 /* Try to get more packets going. */
1543 dge_start(ifp);
1544 }
1545
1546 return (handled);
1547 }
1548
1549 /*
1550 * dge_txintr:
1551 *
1552 * Helper; handle transmit interrupts.
1553 */
1554 static void
1555 dge_txintr(struct dge_softc *sc)
1556 {
1557 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1558 struct dge_txsoft *txs;
1559 uint8_t status;
1560 int i;
1561
1562 ifp->if_flags &= ~IFF_OACTIVE;
1563
1564 /*
1565 * Go through the Tx list and free mbufs for those
1566 * frames which have been transmitted.
1567 */
1568 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1569 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1570 txs = &sc->sc_txsoft[i];
1571
1572 DPRINTF(DGE_DEBUG_TX,
1573 ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
1574
1575 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1576 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1577
1578 status =
1579 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1580 if ((status & TDESC_STA_DD) == 0) {
1581 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1582 BUS_DMASYNC_PREREAD);
1583 break;
1584 }
1585
1586 DPRINTF(DGE_DEBUG_TX,
1587 ("%s: TX: job %d done: descs %d..%d\n",
1588 device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
1589 txs->txs_lastdesc));
1590
1591 ifp->if_opackets++;
1592 sc->sc_txfree += txs->txs_ndesc;
1593 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1594 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1595 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1596 m_freem(txs->txs_mbuf);
1597 txs->txs_mbuf = NULL;
1598 }
1599
1600 /* Update the dirty transmit buffer pointer. */
1601 sc->sc_txsdirty = i;
1602 DPRINTF(DGE_DEBUG_TX,
1603 ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
1604
1605 /*
1606 * If there are no more pending transmissions, cancel the watchdog
1607 * timer.
1608 */
1609 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1610 ifp->if_timer = 0;
1611 }
1612
1613 /*
1614 * dge_rxintr:
1615 *
1616 * Helper; handle receive interrupts.
1617 */
1618 static void
1619 dge_rxintr(struct dge_softc *sc)
1620 {
1621 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1622 struct dge_rxsoft *rxs;
1623 struct mbuf *m;
1624 int i, len;
1625 uint8_t status, errors;
1626
1627 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1628 rxs = &sc->sc_rxsoft[i];
1629
1630 DPRINTF(DGE_DEBUG_RX,
1631 ("%s: RX: checking descriptor %d\n",
1632 device_xname(&sc->sc_dev), i));
1633
1634 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1635
1636 status = sc->sc_rxdescs[i].dr_status;
1637 errors = sc->sc_rxdescs[i].dr_errors;
1638 len = le16toh(sc->sc_rxdescs[i].dr_len);
1639
1640 if ((status & RDESC_STS_DD) == 0) {
1641 /*
1642 * We have processed all of the receive descriptors.
1643 */
1644 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1645 break;
1646 }
1647
1648 if (__predict_false(sc->sc_rxdiscard)) {
1649 DPRINTF(DGE_DEBUG_RX,
1650 ("%s: RX: discarding contents of descriptor %d\n",
1651 device_xname(&sc->sc_dev), i));
1652 DGE_INIT_RXDESC(sc, i);
1653 if (status & RDESC_STS_EOP) {
1654 /* Reset our state. */
1655 DPRINTF(DGE_DEBUG_RX,
1656 ("%s: RX: resetting rxdiscard -> 0\n",
1657 device_xname(&sc->sc_dev)));
1658 sc->sc_rxdiscard = 0;
1659 }
1660 continue;
1661 }
1662
1663 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1664 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1665
1666 m = rxs->rxs_mbuf;
1667
1668 /*
1669 * Add a new receive buffer to the ring.
1670 */
1671 if (dge_add_rxbuf(sc, i) != 0) {
1672 /*
1673 * Failed, throw away what we've done so
1674 * far, and discard the rest of the packet.
1675 */
1676 ifp->if_ierrors++;
1677 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1678 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1679 DGE_INIT_RXDESC(sc, i);
1680 if ((status & RDESC_STS_EOP) == 0)
1681 sc->sc_rxdiscard = 1;
1682 if (sc->sc_rxhead != NULL)
1683 m_freem(sc->sc_rxhead);
1684 DGE_RXCHAIN_RESET(sc);
1685 DPRINTF(DGE_DEBUG_RX,
1686 ("%s: RX: Rx buffer allocation failed, "
1687 "dropping packet%s\n", device_xname(&sc->sc_dev),
1688 sc->sc_rxdiscard ? " (discard)" : ""));
1689 continue;
1690 }
1691 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1692
1693 DGE_RXCHAIN_LINK(sc, m);
1694
1695 m->m_len = len;
1696
1697 DPRINTF(DGE_DEBUG_RX,
1698 ("%s: RX: buffer at %p len %d\n",
1699 device_xname(&sc->sc_dev), m->m_data, len));
1700
1701 /*
1702 * If this is not the end of the packet, keep
1703 * looking.
1704 */
1705 if ((status & RDESC_STS_EOP) == 0) {
1706 sc->sc_rxlen += len;
1707 DPRINTF(DGE_DEBUG_RX,
1708 ("%s: RX: not yet EOP, rxlen -> %d\n",
1709 device_xname(&sc->sc_dev), sc->sc_rxlen));
1710 continue;
1711 }
1712
1713 /*
1714 * Okay, we have the entire packet now...
1715 */
1716 *sc->sc_rxtailp = NULL;
1717 m = sc->sc_rxhead;
1718 len += sc->sc_rxlen;
1719
1720 DGE_RXCHAIN_RESET(sc);
1721
1722 DPRINTF(DGE_DEBUG_RX,
1723 ("%s: RX: have entire packet, len -> %d\n",
1724 device_xname(&sc->sc_dev), len));
1725
1726 /*
1727 * If an error occurred, update stats and drop the packet.
1728 */
1729 if (errors &
1730 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1731 ifp->if_ierrors++;
1732 if (errors & RDESC_ERR_SE)
1733 printf("%s: symbol error\n",
1734 device_xname(&sc->sc_dev));
1735 else if (errors & RDESC_ERR_P)
1736 printf("%s: parity error\n",
1737 device_xname(&sc->sc_dev));
1738 else if (errors & RDESC_ERR_CE)
1739 printf("%s: CRC error\n",
1740 device_xname(&sc->sc_dev));
1741 m_freem(m);
1742 continue;
1743 }
1744
1745 /*
1746 * No errors. Receive the packet.
1747 */
1748 m->m_pkthdr.rcvif = ifp;
1749 m->m_pkthdr.len = len;
1750
1751 /*
1752 * Set up checksum info for this packet.
1753 */
1754 if (status & RDESC_STS_IPCS) {
1755 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1756 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1757 if (errors & RDESC_ERR_IPE)
1758 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1759 }
1760 if (status & RDESC_STS_TCPCS) {
1761 /*
1762 * Note: we don't know if this was TCP or UDP,
1763 * so we just set both bits, and expect the
1764 * upper layers to deal.
1765 */
1766 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1767 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1768 if (errors & RDESC_ERR_TCPE)
1769 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1770 }
1771
1772 ifp->if_ipackets++;
1773
1774 /* Pass this up to any BPF listeners. */
1775 if (ifp->if_bpf)
1776 bpf_ops->bpf_mtap(ifp->if_bpf, m);
1777
1778 /* Pass it on. */
1779 (*ifp->if_input)(ifp, m);
1780 }
1781
1782 /* Update the receive pointer. */
1783 sc->sc_rxptr = i;
1784
1785 DPRINTF(DGE_DEBUG_RX,
1786 ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
1787 }
1788
1789 /*
1790 * dge_linkintr:
1791 *
1792 * Helper; handle link interrupts.
1793 */
1794 static void
1795 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1796 {
1797 uint32_t status;
1798
1799 if (icr & ICR_LSC) {
1800 status = CSR_READ(sc, DGE_STATUS);
1801 if (status & STATUS_LINKUP) {
1802 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1803 device_xname(&sc->sc_dev)));
1804 } else {
1805 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1806 device_xname(&sc->sc_dev)));
1807 }
1808 } else if (icr & ICR_RXSEQ) {
1809 DPRINTF(DGE_DEBUG_LINK,
1810 ("%s: LINK: Receive sequence error\n",
1811 device_xname(&sc->sc_dev)));
1812 }
1813 /* XXX - fix errata */
1814 }
1815
1816 /*
1817 * dge_reset:
1818 *
1819 * Reset the i82597 chip.
1820 */
1821 static void
1822 dge_reset(struct dge_softc *sc)
1823 {
1824 int i;
1825
1826 /*
1827 * Do a chip reset.
1828 */
1829 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1830
1831 delay(10000);
1832
1833 for (i = 0; i < 1000; i++) {
1834 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1835 break;
1836 delay(20);
1837 }
1838
1839 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1840 printf("%s: WARNING: reset failed to complete\n",
1841 device_xname(&sc->sc_dev));
1842 /*
1843 * Reset the EEPROM logic.
1844 * This will cause the chip to reread its default values,
1845 * which doesn't happen otherwise (errata).
1846 */
1847 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1848 delay(10000);
1849 }
1850
1851 /*
1852 * dge_init: [ifnet interface function]
1853 *
1854 * Initialize the interface. Must be called at splnet().
1855 */
1856 static int
1857 dge_init(struct ifnet *ifp)
1858 {
1859 struct dge_softc *sc = ifp->if_softc;
1860 struct dge_rxsoft *rxs;
1861 int i, error = 0;
1862 uint32_t reg;
1863
1864 /*
1865 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1866 * There is a small but measurable benefit to avoiding the adjusment
1867 * of the descriptor so that the headers are aligned, for normal mtu,
1868 * on such platforms. One possibility is that the DMA itself is
1869 * slightly more efficient if the front of the entire packet (instead
1870 * of the front of the headers) is aligned.
1871 *
1872 * Note we must always set align_tweak to 0 if we are using
1873 * jumbo frames.
1874 */
1875 #ifdef __NO_STRICT_ALIGNMENT
1876 sc->sc_align_tweak = 0;
1877 #else
1878 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1879 sc->sc_align_tweak = 0;
1880 else
1881 sc->sc_align_tweak = 2;
1882 #endif /* __NO_STRICT_ALIGNMENT */
1883
1884 /* Cancel any pending I/O. */
1885 dge_stop(ifp, 0);
1886
1887 /* Reset the chip to a known state. */
1888 dge_reset(sc);
1889
1890 /* Initialize the transmit descriptor ring. */
1891 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1892 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1893 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1894 sc->sc_txfree = DGE_NTXDESC;
1895 sc->sc_txnext = 0;
1896
1897 sc->sc_txctx_ipcs = 0xffffffff;
1898 sc->sc_txctx_tucs = 0xffffffff;
1899
1900 CSR_WRITE(sc, DGE_TDBAH, 0);
1901 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1902 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1903 CSR_WRITE(sc, DGE_TDH, 0);
1904 CSR_WRITE(sc, DGE_TDT, 0);
1905 CSR_WRITE(sc, DGE_TIDV, TIDV);
1906
1907 #if 0
1908 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1909 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1910 #endif
1911 CSR_WRITE(sc, DGE_RXDCTL,
1912 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1913 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1914 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1915
1916 /* Initialize the transmit job descriptors. */
1917 for (i = 0; i < DGE_TXQUEUELEN; i++)
1918 sc->sc_txsoft[i].txs_mbuf = NULL;
1919 sc->sc_txsfree = DGE_TXQUEUELEN;
1920 sc->sc_txsnext = 0;
1921 sc->sc_txsdirty = 0;
1922
1923 /*
1924 * Initialize the receive descriptor and receive job
1925 * descriptor rings.
1926 */
1927 CSR_WRITE(sc, DGE_RDBAH, 0);
1928 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1929 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1930 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1931 CSR_WRITE(sc, DGE_RDT, 0);
1932 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1933 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1934 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1935
1936 for (i = 0; i < DGE_NRXDESC; i++) {
1937 rxs = &sc->sc_rxsoft[i];
1938 if (rxs->rxs_mbuf == NULL) {
1939 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1940 printf("%s: unable to allocate or map rx "
1941 "buffer %d, error = %d\n",
1942 device_xname(&sc->sc_dev), i, error);
1943 /*
1944 * XXX Should attempt to run with fewer receive
1945 * XXX buffers instead of just failing.
1946 */
1947 dge_rxdrain(sc);
1948 goto out;
1949 }
1950 }
1951 DGE_INIT_RXDESC(sc, i);
1952 }
1953 sc->sc_rxptr = DGE_RXSPACE;
1954 sc->sc_rxdiscard = 0;
1955 DGE_RXCHAIN_RESET(sc);
1956
1957 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1958 sc->sc_ctrl0 |= CTRL0_JFE;
1959 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1960 }
1961
1962 /* Write the control registers. */
1963 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1964
1965 /*
1966 * Set up checksum offload parameters.
1967 */
1968 reg = CSR_READ(sc, DGE_RXCSUM);
1969 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1970 reg |= RXCSUM_IPOFL;
1971 else
1972 reg &= ~RXCSUM_IPOFL;
1973 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1974 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1975 else {
1976 reg &= ~RXCSUM_TUOFL;
1977 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1978 reg &= ~RXCSUM_IPOFL;
1979 }
1980 CSR_WRITE(sc, DGE_RXCSUM, reg);
1981
1982 /*
1983 * Set up the interrupt registers.
1984 */
1985 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1986 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1987 ICR_RXO | ICR_RXT0;
1988
1989 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1990
1991 /*
1992 * Set up the transmit control register.
1993 */
1994 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1995 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1996
1997 /*
1998 * Set up the receive control register; we actually program
1999 * the register when we set the receive filter. Use multicast
2000 * address offset type 0.
2001 */
2002 sc->sc_mchash_type = 0;
2003
2004 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2005 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2006
2007 #ifdef DGE_OFFBYONE_RXBUG
2008 sc->sc_rctl |= RCTL_BSIZE_16k;
2009 #else
2010 switch(MCLBYTES) {
2011 case 2048:
2012 sc->sc_rctl |= RCTL_BSIZE_2k;
2013 break;
2014 case 4096:
2015 sc->sc_rctl |= RCTL_BSIZE_4k;
2016 break;
2017 case 8192:
2018 sc->sc_rctl |= RCTL_BSIZE_8k;
2019 break;
2020 case 16384:
2021 sc->sc_rctl |= RCTL_BSIZE_16k;
2022 break;
2023 default:
2024 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2025 }
2026 #endif
2027
2028 /* Set the receive filter. */
2029 /* Also sets RCTL */
2030 dge_set_filter(sc);
2031
2032 /* ...all done! */
2033 ifp->if_flags |= IFF_RUNNING;
2034 ifp->if_flags &= ~IFF_OACTIVE;
2035
2036 out:
2037 if (error)
2038 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2039 return (error);
2040 }
2041
2042 /*
2043 * dge_rxdrain:
2044 *
2045 * Drain the receive queue.
2046 */
2047 static void
2048 dge_rxdrain(struct dge_softc *sc)
2049 {
2050 struct dge_rxsoft *rxs;
2051 int i;
2052
2053 for (i = 0; i < DGE_NRXDESC; i++) {
2054 rxs = &sc->sc_rxsoft[i];
2055 if (rxs->rxs_mbuf != NULL) {
2056 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2057 m_freem(rxs->rxs_mbuf);
2058 rxs->rxs_mbuf = NULL;
2059 }
2060 }
2061 }
2062
2063 /*
2064 * dge_stop: [ifnet interface function]
2065 *
2066 * Stop transmission on the interface.
2067 */
2068 static void
2069 dge_stop(struct ifnet *ifp, int disable)
2070 {
2071 struct dge_softc *sc = ifp->if_softc;
2072 struct dge_txsoft *txs;
2073 int i;
2074
2075 /* Stop the transmit and receive processes. */
2076 CSR_WRITE(sc, DGE_TCTL, 0);
2077 CSR_WRITE(sc, DGE_RCTL, 0);
2078
2079 /* Release any queued transmit buffers. */
2080 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2081 txs = &sc->sc_txsoft[i];
2082 if (txs->txs_mbuf != NULL) {
2083 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2084 m_freem(txs->txs_mbuf);
2085 txs->txs_mbuf = NULL;
2086 }
2087 }
2088
2089 /* Mark the interface as down and cancel the watchdog timer. */
2090 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2091 ifp->if_timer = 0;
2092
2093 if (disable)
2094 dge_rxdrain(sc);
2095 }
2096
2097 /*
2098 * dge_add_rxbuf:
2099 *
2100 * Add a receive buffer to the indiciated descriptor.
2101 */
2102 static int
2103 dge_add_rxbuf(struct dge_softc *sc, int idx)
2104 {
2105 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2106 struct mbuf *m;
2107 int error;
2108 #ifdef DGE_OFFBYONE_RXBUG
2109 void *buf;
2110 #endif
2111
2112 MGETHDR(m, M_DONTWAIT, MT_DATA);
2113 if (m == NULL)
2114 return (ENOBUFS);
2115
2116 #ifdef DGE_OFFBYONE_RXBUG
2117 if ((buf = dge_getbuf(sc)) == NULL)
2118 return ENOBUFS;
2119
2120 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2121 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2122 m->m_flags |= M_EXT_RW;
2123
2124 if (rxs->rxs_mbuf != NULL)
2125 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2126 rxs->rxs_mbuf = m;
2127
2128 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2129 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2130 #else
2131 MCLGET(m, M_DONTWAIT);
2132 if ((m->m_flags & M_EXT) == 0) {
2133 m_freem(m);
2134 return (ENOBUFS);
2135 }
2136
2137 if (rxs->rxs_mbuf != NULL)
2138 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2139
2140 rxs->rxs_mbuf = m;
2141
2142 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2143 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2144 BUS_DMA_READ|BUS_DMA_NOWAIT);
2145 #endif
2146 if (error) {
2147 printf("%s: unable to load rx DMA map %d, error = %d\n",
2148 device_xname(&sc->sc_dev), idx, error);
2149 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2150 }
2151 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2152 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2153
2154 return (0);
2155 }
2156
2157 /*
2158 * dge_set_ral:
2159 *
2160 * Set an entry in the receive address list.
2161 */
2162 static void
2163 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2164 {
2165 uint32_t ral_lo, ral_hi;
2166
2167 if (enaddr != NULL) {
2168 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2169 (enaddr[3] << 24);
2170 ral_hi = enaddr[4] | (enaddr[5] << 8);
2171 ral_hi |= RAH_AV;
2172 } else {
2173 ral_lo = 0;
2174 ral_hi = 0;
2175 }
2176 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2177 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2178 }
2179
2180 /*
2181 * dge_mchash:
2182 *
2183 * Compute the hash of the multicast address for the 4096-bit
2184 * multicast filter.
2185 */
2186 static uint32_t
2187 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2188 {
2189 static const int lo_shift[4] = { 4, 3, 2, 0 };
2190 static const int hi_shift[4] = { 4, 5, 6, 8 };
2191 uint32_t hash;
2192
2193 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2194 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2195
2196 return (hash & 0xfff);
2197 }
2198
2199 /*
2200 * dge_set_filter:
2201 *
2202 * Set up the receive filter.
2203 */
2204 static void
2205 dge_set_filter(struct dge_softc *sc)
2206 {
2207 struct ethercom *ec = &sc->sc_ethercom;
2208 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2209 struct ether_multi *enm;
2210 struct ether_multistep step;
2211 uint32_t hash, reg, bit;
2212 int i;
2213
2214 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2215
2216 if (ifp->if_flags & IFF_BROADCAST)
2217 sc->sc_rctl |= RCTL_BAM;
2218 if (ifp->if_flags & IFF_PROMISC) {
2219 sc->sc_rctl |= RCTL_UPE;
2220 goto allmulti;
2221 }
2222
2223 /*
2224 * Set the station address in the first RAL slot, and
2225 * clear the remaining slots.
2226 */
2227 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2228 for (i = 1; i < RA_TABSIZE; i++)
2229 dge_set_ral(sc, NULL, i);
2230
2231 /* Clear out the multicast table. */
2232 for (i = 0; i < MC_TABSIZE; i++)
2233 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2234
2235 ETHER_FIRST_MULTI(step, ec, enm);
2236 while (enm != NULL) {
2237 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2238 /*
2239 * We must listen to a range of multicast addresses.
2240 * For now, just accept all multicasts, rather than
2241 * trying to set only those filter bits needed to match
2242 * the range. (At this time, the only use of address
2243 * ranges is for IP multicast routing, for which the
2244 * range is big enough to require all bits set.)
2245 */
2246 goto allmulti;
2247 }
2248
2249 hash = dge_mchash(sc, enm->enm_addrlo);
2250
2251 reg = (hash >> 5) & 0x7f;
2252 bit = hash & 0x1f;
2253
2254 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2255 hash |= 1U << bit;
2256
2257 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2258
2259 ETHER_NEXT_MULTI(step, enm);
2260 }
2261
2262 ifp->if_flags &= ~IFF_ALLMULTI;
2263 goto setit;
2264
2265 allmulti:
2266 ifp->if_flags |= IFF_ALLMULTI;
2267 sc->sc_rctl |= RCTL_MPE;
2268
2269 setit:
2270 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2271 }
2272
2273 /*
2274 * Read in the EEPROM info and verify checksum.
2275 */
2276 int
2277 dge_read_eeprom(struct dge_softc *sc)
2278 {
2279 uint16_t cksum;
2280 int i;
2281
2282 cksum = 0;
2283 for (i = 0; i < EEPROM_SIZE; i++) {
2284 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2285 cksum += sc->sc_eeprom[i];
2286 }
2287 return cksum != EEPROM_CKSUM;
2288 }
2289
2290
2291 /*
2292 * Read a 16-bit word from address addr in the serial EEPROM.
2293 */
2294 uint16_t
2295 dge_eeprom_word(struct dge_softc *sc, int addr)
2296 {
2297 uint32_t reg;
2298 uint16_t rval = 0;
2299 int i;
2300
2301 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2302
2303 /* Lower clock pulse (and data in to chip) */
2304 CSR_WRITE(sc, DGE_EECD, reg);
2305 /* Select chip */
2306 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2307
2308 /* Send read command */
2309 dge_eeprom_clockout(sc, 1);
2310 dge_eeprom_clockout(sc, 1);
2311 dge_eeprom_clockout(sc, 0);
2312
2313 /* Send address */
2314 for (i = 5; i >= 0; i--)
2315 dge_eeprom_clockout(sc, (addr >> i) & 1);
2316
2317 /* Read data */
2318 for (i = 0; i < 16; i++) {
2319 rval <<= 1;
2320 rval |= dge_eeprom_clockin(sc);
2321 }
2322
2323 /* Deselect chip */
2324 CSR_WRITE(sc, DGE_EECD, reg);
2325
2326 return rval;
2327 }
2328
2329 /*
2330 * Clock out a single bit to the EEPROM.
2331 */
2332 void
2333 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2334 {
2335 int reg;
2336
2337 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2338 if (bit)
2339 reg |= EECD_DI;
2340
2341 CSR_WRITE(sc, DGE_EECD, reg);
2342 delay(2);
2343 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2344 delay(2);
2345 CSR_WRITE(sc, DGE_EECD, reg);
2346 delay(2);
2347 }
2348
2349 /*
2350 * Clock in a single bit from EEPROM.
2351 */
2352 int
2353 dge_eeprom_clockin(struct dge_softc *sc)
2354 {
2355 int reg, rv;
2356
2357 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2358
2359 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2360 delay(2);
2361 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2362 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2363 delay(2);
2364
2365 return rv;
2366 }
2367
2368 static void
2369 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2370 {
2371 struct dge_softc *sc = ifp->if_softc;
2372
2373 ifmr->ifm_status = IFM_AVALID;
2374 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2375
2376 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2377 ifmr->ifm_status |= IFM_ACTIVE;
2378 }
2379
2380 static inline int
2381 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2382 {
2383 int i, mdic;
2384
2385 CSR_WRITE(sc, DGE_MDIO,
2386 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2387 for (i = 0; i < 10; i++) {
2388 delay(10);
2389 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2390 break;
2391 }
2392 return mdic;
2393 }
2394
2395
2396 static void
2397 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
2398 {
2399 struct dge_softc *sc = device_private(self);
2400 int mdic;
2401
2402 CSR_WRITE(sc, DGE_MDIRW, val);
2403 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2404 printf("%s: address cycle timeout; phy %d reg %d\n",
2405 device_xname(&sc->sc_dev), phy, reg);
2406 return;
2407 }
2408 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2409 printf("%s: read cycle timeout; phy %d reg %d\n",
2410 device_xname(&sc->sc_dev), phy, reg);
2411 return;
2412 }
2413 }
2414
2415 static void
2416 dge_xgmii_reset(struct dge_softc *sc)
2417 {
2418 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2419 }
2420
2421 static int
2422 dge_xgmii_mediachange(struct ifnet *ifp)
2423 {
2424 return 0;
2425 }
2426