if_dge.c revision 1.26 1 /* $NetBSD: if_dge.c,v 1.26 2009/05/12 08:23:00 cegger Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.26 2009/05/12 08:23:00 cegger Exp $");
84
85 #include "bpfilter.h"
86 #include "rnd.h"
87
88 #include <sys/param.h>
89 #include <sys/systm.h>
90 #include <sys/callout.h>
91 #include <sys/mbuf.h>
92 #include <sys/malloc.h>
93 #include <sys/kernel.h>
94 #include <sys/socket.h>
95 #include <sys/ioctl.h>
96 #include <sys/errno.h>
97 #include <sys/device.h>
98 #include <sys/queue.h>
99
100 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
101
102 #if NRND > 0
103 #include <sys/rnd.h>
104 #endif
105
106 #include <net/if.h>
107 #include <net/if_dl.h>
108 #include <net/if_media.h>
109 #include <net/if_ether.h>
110
111 #if NBPFILTER > 0
112 #include <net/bpf.h>
113 #endif
114
115 #include <netinet/in.h> /* XXX for struct ip */
116 #include <netinet/in_systm.h> /* XXX for struct ip */
117 #include <netinet/ip.h> /* XXX for struct ip */
118 #include <netinet/tcp.h> /* XXX for struct tcphdr */
119
120 #include <sys/bus.h>
121 #include <sys/intr.h>
122 #include <machine/endian.h>
123
124 #include <dev/mii/mii.h>
125 #include <dev/mii/miivar.h>
126 #include <dev/mii/mii_bitbang.h>
127
128 #include <dev/pci/pcireg.h>
129 #include <dev/pci/pcivar.h>
130 #include <dev/pci/pcidevs.h>
131
132 #include <dev/pci/if_dgereg.h>
133
134 /*
135 * The receive engine may sometimes become off-by-one when writing back
136 * chained descriptors. Avoid this by allocating a large chunk of
137 * memory and use if instead (to avoid chained descriptors).
138 * This only happens with chained descriptors under heavy load.
139 */
140 #define DGE_OFFBYONE_RXBUG
141
142 #define DGE_EVENT_COUNTERS
143 #define DGE_DEBUG
144
145 #ifdef DGE_DEBUG
146 #define DGE_DEBUG_LINK 0x01
147 #define DGE_DEBUG_TX 0x02
148 #define DGE_DEBUG_RX 0x04
149 #define DGE_DEBUG_CKSUM 0x08
150 int dge_debug = 0;
151
152 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
153 #else
154 #define DPRINTF(x, y) /* nothing */
155 #endif /* DGE_DEBUG */
156
157 /*
158 * Transmit descriptor list size. We allow up to 100 DMA segments per
159 * packet (Intel reports of jumbo frame packets with as
160 * many as 80 DMA segments when using 16k buffers).
161 */
162 #define DGE_NTXSEGS 100
163 #define DGE_IFQUEUELEN 20000
164 #define DGE_TXQUEUELEN 2048
165 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
166 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
167 #define DGE_NTXDESC 1024
168 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
169 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
170 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
171
172 /*
173 * Receive descriptor list size.
174 * Packet is of size MCLBYTES, and for jumbo packets buffers may
175 * be chained. Due to the nature of the card (high-speed), keep this
176 * ring large. With 2k buffers the ring can store 400 jumbo packets,
177 * which at full speed will be received in just under 3ms.
178 */
179 #define DGE_NRXDESC 2048
180 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
181 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
182 /*
183 * # of descriptors between head and written descriptors.
184 * This is to work-around two erratas.
185 */
186 #define DGE_RXSPACE 10
187 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
188 /*
189 * Receive descriptor fetch threshholds. These are values recommended
190 * by Intel, do not touch them unless you know what you are doing.
191 */
192 #define RXDCTL_PTHRESH_VAL 128
193 #define RXDCTL_HTHRESH_VAL 16
194 #define RXDCTL_WTHRESH_VAL 16
195
196
197 /*
198 * Tweakable parameters; default values.
199 */
200 #define FCRTH 0x30000 /* Send XOFF water mark */
201 #define FCRTL 0x28000 /* Send XON water mark */
202 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
203 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
204
205 /*
206 * Control structures are DMA'd to the i82597 chip. We allocate them in
207 * a single clump that maps to a single DMA segment to make serveral things
208 * easier.
209 */
210 struct dge_control_data {
211 /*
212 * The transmit descriptors.
213 */
214 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
215
216 /*
217 * The receive descriptors.
218 */
219 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
220 };
221
222 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
223 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
224 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
225
226 /*
227 * The DGE interface have a higher max MTU size than normal jumbo frames.
228 */
229 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
230
231 /*
232 * Software state for transmit jobs.
233 */
234 struct dge_txsoft {
235 struct mbuf *txs_mbuf; /* head of our mbuf chain */
236 bus_dmamap_t txs_dmamap; /* our DMA map */
237 int txs_firstdesc; /* first descriptor in packet */
238 int txs_lastdesc; /* last descriptor in packet */
239 int txs_ndesc; /* # of descriptors used */
240 };
241
242 /*
243 * Software state for receive buffers. Each descriptor gets a
244 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
245 * more than one buffer, we chain them together.
246 */
247 struct dge_rxsoft {
248 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
249 bus_dmamap_t rxs_dmamap; /* our DMA map */
250 };
251
252 /*
253 * Software state per device.
254 */
255 struct dge_softc {
256 struct device sc_dev; /* generic device information */
257 bus_space_tag_t sc_st; /* bus space tag */
258 bus_space_handle_t sc_sh; /* bus space handle */
259 bus_dma_tag_t sc_dmat; /* bus DMA tag */
260 struct ethercom sc_ethercom; /* ethernet common data */
261 void *sc_sdhook; /* shutdown hook */
262
263 int sc_flags; /* flags; see below */
264 int sc_bus_speed; /* PCI/PCIX bus speed */
265 int sc_pcix_offset; /* PCIX capability register offset */
266
267 pci_chipset_tag_t sc_pc;
268 pcitag_t sc_pt;
269 int sc_mmrbc; /* Max PCIX memory read byte count */
270
271 void *sc_ih; /* interrupt cookie */
272
273 struct ifmedia sc_media;
274
275 bus_dmamap_t sc_cddmamap; /* control data DMA map */
276 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
277
278 int sc_align_tweak;
279
280 /*
281 * Software state for the transmit and receive descriptors.
282 */
283 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
284 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
285
286 /*
287 * Control data structures.
288 */
289 struct dge_control_data *sc_control_data;
290 #define sc_txdescs sc_control_data->wcd_txdescs
291 #define sc_rxdescs sc_control_data->wcd_rxdescs
292
293 #ifdef DGE_EVENT_COUNTERS
294 /* Event counters. */
295 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
296 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
297 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
298 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
299 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
300 struct evcnt sc_ev_rxintr; /* Rx interrupts */
301 struct evcnt sc_ev_linkintr; /* Link interrupts */
302
303 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
304 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
305 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
306 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
307
308 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
309 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
310 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
311
312 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
313 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
314 #endif /* DGE_EVENT_COUNTERS */
315
316 int sc_txfree; /* number of free Tx descriptors */
317 int sc_txnext; /* next ready Tx descriptor */
318
319 int sc_txsfree; /* number of free Tx jobs */
320 int sc_txsnext; /* next free Tx job */
321 int sc_txsdirty; /* dirty Tx jobs */
322
323 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
324 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
325
326 int sc_rxptr; /* next ready Rx descriptor/queue ent */
327 int sc_rxdiscard;
328 int sc_rxlen;
329 struct mbuf *sc_rxhead;
330 struct mbuf *sc_rxtail;
331 struct mbuf **sc_rxtailp;
332
333 uint32_t sc_ctrl0; /* prototype CTRL0 register */
334 uint32_t sc_icr; /* prototype interrupt bits */
335 uint32_t sc_tctl; /* prototype TCTL register */
336 uint32_t sc_rctl; /* prototype RCTL register */
337
338 int sc_mchash_type; /* multicast filter offset */
339
340 uint16_t sc_eeprom[EEPROM_SIZE];
341
342 #if NRND > 0
343 rndsource_element_t rnd_source; /* random source */
344 #endif
345 #ifdef DGE_OFFBYONE_RXBUG
346 void *sc_bugbuf;
347 SLIST_HEAD(, rxbugentry) sc_buglist;
348 bus_dmamap_t sc_bugmap;
349 struct rxbugentry *sc_entry;
350 #endif
351 };
352
353 #define DGE_RXCHAIN_RESET(sc) \
354 do { \
355 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
356 *(sc)->sc_rxtailp = NULL; \
357 (sc)->sc_rxlen = 0; \
358 } while (/*CONSTCOND*/0)
359
360 #define DGE_RXCHAIN_LINK(sc, m) \
361 do { \
362 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
363 (sc)->sc_rxtailp = &(m)->m_next; \
364 } while (/*CONSTCOND*/0)
365
366 /* sc_flags */
367 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
368 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
369
370 #ifdef DGE_EVENT_COUNTERS
371 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
372 #else
373 #define DGE_EVCNT_INCR(ev) /* nothing */
374 #endif
375
376 #define CSR_READ(sc, reg) \
377 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
378 #define CSR_WRITE(sc, reg, val) \
379 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
380
381 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
382 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
383
384 #define DGE_CDTXSYNC(sc, x, n, ops) \
385 do { \
386 int __x, __n; \
387 \
388 __x = (x); \
389 __n = (n); \
390 \
391 /* If it will wrap around, sync to the end of the ring. */ \
392 if ((__x + __n) > DGE_NTXDESC) { \
393 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
394 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
395 (DGE_NTXDESC - __x), (ops)); \
396 __n -= (DGE_NTXDESC - __x); \
397 __x = 0; \
398 } \
399 \
400 /* Now sync whatever is left. */ \
401 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
402 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
403 } while (/*CONSTCOND*/0)
404
405 #define DGE_CDRXSYNC(sc, x, ops) \
406 do { \
407 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
408 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
409 } while (/*CONSTCOND*/0)
410
411 #ifdef DGE_OFFBYONE_RXBUG
412 #define DGE_INIT_RXDESC(sc, x) \
413 do { \
414 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
415 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
416 struct mbuf *__m = __rxs->rxs_mbuf; \
417 \
418 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
419 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
420 __rxd->dr_baddrh = 0; \
421 __rxd->dr_len = 0; \
422 __rxd->dr_cksum = 0; \
423 __rxd->dr_status = 0; \
424 __rxd->dr_errors = 0; \
425 __rxd->dr_special = 0; \
426 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
427 \
428 CSR_WRITE((sc), DGE_RDT, (x)); \
429 } while (/*CONSTCOND*/0)
430 #else
431 #define DGE_INIT_RXDESC(sc, x) \
432 do { \
433 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
434 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
435 struct mbuf *__m = __rxs->rxs_mbuf; \
436 \
437 /* \
438 * Note: We scoot the packet forward 2 bytes in the buffer \
439 * so that the payload after the Ethernet header is aligned \
440 * to a 4-byte boundary. \
441 * \
442 * XXX BRAINDAMAGE ALERT! \
443 * The stupid chip uses the same size for every buffer, which \
444 * is set in the Receive Control register. We are using the 2K \
445 * size option, but what we REALLY want is (2K - 2)! For this \
446 * reason, we can't "scoot" packets longer than the standard \
447 * Ethernet MTU. On strict-alignment platforms, if the total \
448 * size exceeds (2K - 2) we set align_tweak to 0 and let \
449 * the upper layer copy the headers. \
450 */ \
451 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
452 \
453 __rxd->dr_baddrl = \
454 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
455 (sc)->sc_align_tweak); \
456 __rxd->dr_baddrh = 0; \
457 __rxd->dr_len = 0; \
458 __rxd->dr_cksum = 0; \
459 __rxd->dr_status = 0; \
460 __rxd->dr_errors = 0; \
461 __rxd->dr_special = 0; \
462 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
463 \
464 CSR_WRITE((sc), DGE_RDT, (x)); \
465 } while (/*CONSTCOND*/0)
466 #endif
467
468 #ifdef DGE_OFFBYONE_RXBUG
469 /*
470 * Allocation constants. Much memory may be used for this.
471 */
472 #ifndef DGE_BUFFER_SIZE
473 #define DGE_BUFFER_SIZE DGE_MAX_MTU
474 #endif
475 #define DGE_NBUFFERS (4*DGE_NRXDESC)
476 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
477
478 struct rxbugentry {
479 SLIST_ENTRY(rxbugentry) rb_entry;
480 int rb_slot;
481 };
482
483 static int
484 dge_alloc_rcvmem(struct dge_softc *sc)
485 {
486 char *ptr, *kva;
487 bus_dma_segment_t seg;
488 int i, rseg, state, error;
489 struct rxbugentry *entry;
490
491 state = error = 0;
492
493 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
494 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
495 aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
496 return ENOBUFS;
497 }
498
499 state = 1;
500 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
501 BUS_DMA_NOWAIT)) {
502 aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
503 (int)DGE_RXMEM);
504 error = ENOBUFS;
505 goto out;
506 }
507
508 state = 2;
509 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
510 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
511 aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
512 error = ENOBUFS;
513 goto out;
514 }
515
516 state = 3;
517 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
518 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
519 aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
520 error = ENOBUFS;
521 goto out;
522 }
523
524 state = 4;
525 sc->sc_bugbuf = (void *)kva;
526 SLIST_INIT(&sc->sc_buglist);
527
528 /*
529 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
530 * in an array.
531 */
532 ptr = sc->sc_bugbuf;
533 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
534 M_DEVBUF, M_NOWAIT)) == NULL) {
535 error = ENOBUFS;
536 goto out;
537 }
538 sc->sc_entry = entry;
539 for (i = 0; i < DGE_NBUFFERS; i++) {
540 entry[i].rb_slot = i;
541 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
542 }
543 out:
544 if (error != 0) {
545 switch (state) {
546 case 4:
547 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
548 case 3:
549 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
550 case 2:
551 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
552 case 1:
553 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
554 break;
555 default:
556 break;
557 }
558 }
559
560 return error;
561 }
562
563 /*
564 * Allocate a jumbo buffer.
565 */
566 static void *
567 dge_getbuf(struct dge_softc *sc)
568 {
569 struct rxbugentry *entry;
570
571 entry = SLIST_FIRST(&sc->sc_buglist);
572
573 if (entry == NULL) {
574 printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
575 return(NULL);
576 }
577
578 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
579 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
580 }
581
582 /*
583 * Release a jumbo buffer.
584 */
585 static void
586 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
587 {
588 struct rxbugentry *entry;
589 struct dge_softc *sc;
590 int i, s;
591
592 /* Extract the softc struct pointer. */
593 sc = (struct dge_softc *)arg;
594
595 if (sc == NULL)
596 panic("dge_freebuf: can't find softc pointer!");
597
598 /* calculate the slot this buffer belongs to */
599
600 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
601
602 if ((i < 0) || (i >= DGE_NBUFFERS))
603 panic("dge_freebuf: asked to free buffer %d!", i);
604
605 s = splvm();
606 entry = sc->sc_entry + i;
607 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
608
609 if (__predict_true(m != NULL))
610 pool_cache_put(mb_cache, m);
611 splx(s);
612 }
613 #endif
614
615 static void dge_start(struct ifnet *);
616 static void dge_watchdog(struct ifnet *);
617 static int dge_ioctl(struct ifnet *, u_long, void *);
618 static int dge_init(struct ifnet *);
619 static void dge_stop(struct ifnet *, int);
620
621 static void dge_shutdown(void *);
622
623 static void dge_reset(struct dge_softc *);
624 static void dge_rxdrain(struct dge_softc *);
625 static int dge_add_rxbuf(struct dge_softc *, int);
626
627 static void dge_set_filter(struct dge_softc *);
628
629 static int dge_intr(void *);
630 static void dge_txintr(struct dge_softc *);
631 static void dge_rxintr(struct dge_softc *);
632 static void dge_linkintr(struct dge_softc *, uint32_t);
633
634 static int dge_match(device_t, cfdata_t, void *);
635 static void dge_attach(device_t, device_t, void *);
636
637 static int dge_read_eeprom(struct dge_softc *sc);
638 static int dge_eeprom_clockin(struct dge_softc *sc);
639 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
640 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
641 static int dge_xgmii_mediachange(struct ifnet *);
642 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
643 static void dge_xgmii_reset(struct dge_softc *);
644 static void dge_xgmii_writereg(device_t, int, int, int);
645
646
647 CFATTACH_DECL(dge, sizeof(struct dge_softc),
648 dge_match, dge_attach, NULL, NULL);
649
650 #ifdef DGE_EVENT_COUNTERS
651 #if DGE_NTXSEGS > 100
652 #error Update dge_txseg_evcnt_names
653 #endif
654 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
655 #endif /* DGE_EVENT_COUNTERS */
656
657 static int
658 dge_match(device_t parent, cfdata_t cf, void *aux)
659 {
660 struct pci_attach_args *pa = aux;
661
662 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
663 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
664 return (1);
665
666 return (0);
667 }
668
669 static void
670 dge_attach(device_t parent, device_t self, void *aux)
671 {
672 struct dge_softc *sc = device_private(self);
673 struct pci_attach_args *pa = aux;
674 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
675 pci_chipset_tag_t pc = pa->pa_pc;
676 pci_intr_handle_t ih;
677 const char *intrstr = NULL;
678 bus_dma_segment_t seg;
679 int i, rseg, error;
680 uint8_t enaddr[ETHER_ADDR_LEN];
681 pcireg_t preg, memtype;
682 uint32_t reg;
683
684 sc->sc_dmat = pa->pa_dmat;
685 sc->sc_pc = pa->pa_pc;
686 sc->sc_pt = pa->pa_tag;
687
688 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
689 aprint_naive(": Ethernet controller\n");
690 aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
691
692 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
693 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
694 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
695 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
696 return;
697 }
698
699 /* Enable bus mastering */
700 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
701 preg |= PCI_COMMAND_MASTER_ENABLE;
702 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
703
704 /*
705 * Map and establish our interrupt.
706 */
707 if (pci_intr_map(pa, &ih)) {
708 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
709 return;
710 }
711 intrstr = pci_intr_string(pc, ih);
712 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
713 if (sc->sc_ih == NULL) {
714 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
715 if (intrstr != NULL)
716 aprint_normal(" at %s", intrstr);
717 aprint_normal("\n");
718 return;
719 }
720 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
721
722 /*
723 * Determine a few things about the bus we're connected to.
724 */
725 reg = CSR_READ(sc, DGE_STATUS);
726 if (reg & STATUS_BUS64)
727 sc->sc_flags |= DGE_F_BUS64;
728
729 sc->sc_flags |= DGE_F_PCIX;
730 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
731 PCI_CAP_PCIX,
732 &sc->sc_pcix_offset, NULL) == 0)
733 aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
734 "capability\n");
735
736 if (sc->sc_flags & DGE_F_PCIX) {
737 switch (reg & STATUS_PCIX_MSK) {
738 case STATUS_PCIX_66:
739 sc->sc_bus_speed = 66;
740 break;
741 case STATUS_PCIX_100:
742 sc->sc_bus_speed = 100;
743 break;
744 case STATUS_PCIX_133:
745 sc->sc_bus_speed = 133;
746 break;
747 default:
748 aprint_error_dev(&sc->sc_dev,
749 "unknown PCIXSPD %d; assuming 66MHz\n",
750 reg & STATUS_PCIX_MSK);
751 sc->sc_bus_speed = 66;
752 }
753 } else
754 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
755 aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
756 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
757 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
758
759 /*
760 * Allocate the control data structures, and create and load the
761 * DMA map for it.
762 */
763 if ((error = bus_dmamem_alloc(sc->sc_dmat,
764 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
765 0)) != 0) {
766 aprint_error_dev(&sc->sc_dev,
767 "unable to allocate control data, error = %d\n",
768 error);
769 goto fail_0;
770 }
771
772 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
773 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
774 0)) != 0) {
775 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
776 error);
777 goto fail_1;
778 }
779
780 if ((error = bus_dmamap_create(sc->sc_dmat,
781 sizeof(struct dge_control_data), 1,
782 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
783 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
784 "error = %d\n", error);
785 goto fail_2;
786 }
787
788 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
789 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
790 0)) != 0) {
791 aprint_error_dev(&sc->sc_dev,
792 "unable to load control data DMA map, error = %d\n",
793 error);
794 goto fail_3;
795 }
796
797 #ifdef DGE_OFFBYONE_RXBUG
798 if (dge_alloc_rcvmem(sc) != 0)
799 return; /* Already complained */
800 #endif
801 /*
802 * Create the transmit buffer DMA maps.
803 */
804 for (i = 0; i < DGE_TXQUEUELEN; i++) {
805 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
806 DGE_NTXSEGS, MCLBYTES, 0, 0,
807 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
808 aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
809 "error = %d\n", i, error);
810 goto fail_4;
811 }
812 }
813
814 /*
815 * Create the receive buffer DMA maps.
816 */
817 for (i = 0; i < DGE_NRXDESC; i++) {
818 #ifdef DGE_OFFBYONE_RXBUG
819 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
820 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
821 #else
822 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
823 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
824 #endif
825 aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
826 "error = %d\n", i, error);
827 goto fail_5;
828 }
829 sc->sc_rxsoft[i].rxs_mbuf = NULL;
830 }
831
832 /*
833 * Set bits in ctrl0 register.
834 * Should get the software defined pins out of EEPROM?
835 */
836 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
837 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
838 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
839
840 /*
841 * Reset the chip to a known state.
842 */
843 dge_reset(sc);
844
845 /*
846 * Reset the PHY.
847 */
848 dge_xgmii_reset(sc);
849
850 /*
851 * Read in EEPROM data.
852 */
853 if (dge_read_eeprom(sc)) {
854 aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
855 return;
856 }
857
858 /*
859 * Get the ethernet address.
860 */
861 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
862 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
863 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
864 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
865 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
866 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
867
868 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
869 ether_sprintf(enaddr));
870
871 /*
872 * Setup media stuff.
873 */
874 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
875 dge_xgmii_mediastatus);
876 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
877 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
878
879 ifp = &sc->sc_ethercom.ec_if;
880 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
881 ifp->if_softc = sc;
882 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
883 ifp->if_ioctl = dge_ioctl;
884 ifp->if_start = dge_start;
885 ifp->if_watchdog = dge_watchdog;
886 ifp->if_init = dge_init;
887 ifp->if_stop = dge_stop;
888 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
889 IFQ_SET_READY(&ifp->if_snd);
890
891 sc->sc_ethercom.ec_capabilities |=
892 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
893
894 /*
895 * We can perform TCPv4 and UDPv4 checkums in-bound.
896 */
897 ifp->if_capabilities |=
898 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
899 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
900 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
901
902 /*
903 * Attach the interface.
904 */
905 if_attach(ifp);
906 ether_ifattach(ifp, enaddr);
907 #if NRND > 0
908 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
909 RND_TYPE_NET, 0);
910 #endif
911
912 #ifdef DGE_EVENT_COUNTERS
913 /* Fix segment event naming */
914 if (dge_txseg_evcnt_names == NULL) {
915 dge_txseg_evcnt_names =
916 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
917 for (i = 0; i < DGE_NTXSEGS; i++)
918 snprintf((*dge_txseg_evcnt_names)[i],
919 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
920 }
921
922 /* Attach event counters. */
923 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
924 NULL, device_xname(&sc->sc_dev), "txsstall");
925 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
926 NULL, device_xname(&sc->sc_dev), "txdstall");
927 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
928 NULL, device_xname(&sc->sc_dev), "txforceintr");
929 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
930 NULL, device_xname(&sc->sc_dev), "txdw");
931 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
932 NULL, device_xname(&sc->sc_dev), "txqe");
933 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
934 NULL, device_xname(&sc->sc_dev), "rxintr");
935 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
936 NULL, device_xname(&sc->sc_dev), "linkintr");
937
938 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
939 NULL, device_xname(&sc->sc_dev), "rxipsum");
940 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
941 NULL, device_xname(&sc->sc_dev), "rxtusum");
942 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
943 NULL, device_xname(&sc->sc_dev), "txipsum");
944 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
945 NULL, device_xname(&sc->sc_dev), "txtusum");
946
947 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
948 NULL, device_xname(&sc->sc_dev), "txctx init");
949 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
950 NULL, device_xname(&sc->sc_dev), "txctx hit");
951 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
952 NULL, device_xname(&sc->sc_dev), "txctx miss");
953
954 for (i = 0; i < DGE_NTXSEGS; i++)
955 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
956 NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
957
958 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
959 NULL, device_xname(&sc->sc_dev), "txdrop");
960
961 #endif /* DGE_EVENT_COUNTERS */
962
963 /*
964 * Make sure the interface is shutdown during reboot.
965 */
966 sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
967 if (sc->sc_sdhook == NULL)
968 aprint_error_dev(&sc->sc_dev, "WARNING: unable to establish shutdown hook\n");
969 return;
970
971 /*
972 * Free any resources we've allocated during the failed attach
973 * attempt. Do this in reverse order and fall through.
974 */
975 fail_5:
976 for (i = 0; i < DGE_NRXDESC; i++) {
977 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
978 bus_dmamap_destroy(sc->sc_dmat,
979 sc->sc_rxsoft[i].rxs_dmamap);
980 }
981 fail_4:
982 for (i = 0; i < DGE_TXQUEUELEN; i++) {
983 if (sc->sc_txsoft[i].txs_dmamap != NULL)
984 bus_dmamap_destroy(sc->sc_dmat,
985 sc->sc_txsoft[i].txs_dmamap);
986 }
987 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
988 fail_3:
989 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
990 fail_2:
991 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
992 sizeof(struct dge_control_data));
993 fail_1:
994 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
995 fail_0:
996 return;
997 }
998
999 /*
1000 * dge_shutdown:
1001 *
1002 * Make sure the interface is stopped at reboot time.
1003 */
1004 static void
1005 dge_shutdown(void *arg)
1006 {
1007 struct dge_softc *sc = arg;
1008
1009 dge_stop(&sc->sc_ethercom.ec_if, 1);
1010 }
1011
1012 /*
1013 * dge_tx_cksum:
1014 *
1015 * Set up TCP/IP checksumming parameters for the
1016 * specified packet.
1017 */
1018 static int
1019 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1020 {
1021 struct mbuf *m0 = txs->txs_mbuf;
1022 struct dge_ctdes *t;
1023 uint32_t ipcs, tucs;
1024 struct ether_header *eh;
1025 int offset, iphl;
1026 uint8_t fields = 0;
1027
1028 /*
1029 * XXX It would be nice if the mbuf pkthdr had offset
1030 * fields for the protocol headers.
1031 */
1032
1033 eh = mtod(m0, struct ether_header *);
1034 switch (htons(eh->ether_type)) {
1035 case ETHERTYPE_IP:
1036 offset = ETHER_HDR_LEN;
1037 break;
1038
1039 case ETHERTYPE_VLAN:
1040 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1041 break;
1042
1043 default:
1044 /*
1045 * Don't support this protocol or encapsulation.
1046 */
1047 *fieldsp = 0;
1048 return (0);
1049 }
1050
1051 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1052
1053 /*
1054 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1055 * offload feature, if we load the context descriptor, we
1056 * MUST provide valid values for IPCSS and TUCSS fields.
1057 */
1058
1059 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1060 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1061 fields |= TDESC_POPTS_IXSM;
1062 ipcs = DGE_TCPIP_IPCSS(offset) |
1063 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1064 DGE_TCPIP_IPCSE(offset + iphl - 1);
1065 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1066 /* Use the cached value. */
1067 ipcs = sc->sc_txctx_ipcs;
1068 } else {
1069 /* Just initialize it to the likely value anyway. */
1070 ipcs = DGE_TCPIP_IPCSS(offset) |
1071 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1072 DGE_TCPIP_IPCSE(offset + iphl - 1);
1073 }
1074 DPRINTF(DGE_DEBUG_CKSUM,
1075 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1076 device_xname(&sc->sc_dev), offset, ipcs));
1077
1078 offset += iphl;
1079
1080 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1081 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1082 fields |= TDESC_POPTS_TXSM;
1083 tucs = DGE_TCPIP_TUCSS(offset) |
1084 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1085 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1086 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1087 /* Use the cached value. */
1088 tucs = sc->sc_txctx_tucs;
1089 } else {
1090 /* Just initialize it to a valid TCP context. */
1091 tucs = DGE_TCPIP_TUCSS(offset) |
1092 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1093 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1094 }
1095
1096 DPRINTF(DGE_DEBUG_CKSUM,
1097 ("%s: CKSUM: offset %d tucs 0x%x\n",
1098 device_xname(&sc->sc_dev), offset, tucs));
1099
1100 if (sc->sc_txctx_ipcs == ipcs &&
1101 sc->sc_txctx_tucs == tucs) {
1102 /* Cached context is fine. */
1103 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1104 } else {
1105 /* Fill in the context descriptor. */
1106 #ifdef DGE_EVENT_COUNTERS
1107 if (sc->sc_txctx_ipcs == 0xffffffff &&
1108 sc->sc_txctx_tucs == 0xffffffff)
1109 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1110 else
1111 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1112 #endif
1113 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1114 t->dc_tcpip_ipcs = htole32(ipcs);
1115 t->dc_tcpip_tucs = htole32(tucs);
1116 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1117 t->dc_tcpip_seg = 0;
1118 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1119
1120 sc->sc_txctx_ipcs = ipcs;
1121 sc->sc_txctx_tucs = tucs;
1122
1123 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1124 txs->txs_ndesc++;
1125 }
1126
1127 *fieldsp = fields;
1128
1129 return (0);
1130 }
1131
1132 /*
1133 * dge_start: [ifnet interface function]
1134 *
1135 * Start packet transmission on the interface.
1136 */
1137 static void
1138 dge_start(struct ifnet *ifp)
1139 {
1140 struct dge_softc *sc = ifp->if_softc;
1141 struct mbuf *m0;
1142 struct dge_txsoft *txs;
1143 bus_dmamap_t dmamap;
1144 int error, nexttx, lasttx = -1, ofree, seg;
1145 uint32_t cksumcmd;
1146 uint8_t cksumfields;
1147
1148 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1149 return;
1150
1151 /*
1152 * Remember the previous number of free descriptors.
1153 */
1154 ofree = sc->sc_txfree;
1155
1156 /*
1157 * Loop through the send queue, setting up transmit descriptors
1158 * until we drain the queue, or use up all available transmit
1159 * descriptors.
1160 */
1161 for (;;) {
1162 /* Grab a packet off the queue. */
1163 IFQ_POLL(&ifp->if_snd, m0);
1164 if (m0 == NULL)
1165 break;
1166
1167 DPRINTF(DGE_DEBUG_TX,
1168 ("%s: TX: have packet to transmit: %p\n",
1169 device_xname(&sc->sc_dev), m0));
1170
1171 /* Get a work queue entry. */
1172 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1173 dge_txintr(sc);
1174 if (sc->sc_txsfree == 0) {
1175 DPRINTF(DGE_DEBUG_TX,
1176 ("%s: TX: no free job descriptors\n",
1177 device_xname(&sc->sc_dev)));
1178 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1179 break;
1180 }
1181 }
1182
1183 txs = &sc->sc_txsoft[sc->sc_txsnext];
1184 dmamap = txs->txs_dmamap;
1185
1186 /*
1187 * Load the DMA map. If this fails, the packet either
1188 * didn't fit in the allotted number of segments, or we
1189 * were short on resources. For the too-many-segments
1190 * case, we simply report an error and drop the packet,
1191 * since we can't sanely copy a jumbo packet to a single
1192 * buffer.
1193 */
1194 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1195 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1196 if (error) {
1197 if (error == EFBIG) {
1198 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1199 printf("%s: Tx packet consumes too many "
1200 "DMA segments, dropping...\n",
1201 device_xname(&sc->sc_dev));
1202 IFQ_DEQUEUE(&ifp->if_snd, m0);
1203 m_freem(m0);
1204 continue;
1205 }
1206 /*
1207 * Short on resources, just stop for now.
1208 */
1209 DPRINTF(DGE_DEBUG_TX,
1210 ("%s: TX: dmamap load failed: %d\n",
1211 device_xname(&sc->sc_dev), error));
1212 break;
1213 }
1214
1215 /*
1216 * Ensure we have enough descriptors free to describe
1217 * the packet. Note, we always reserve one descriptor
1218 * at the end of the ring due to the semantics of the
1219 * TDT register, plus one more in the event we need
1220 * to re-load checksum offload context.
1221 */
1222 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1223 /*
1224 * Not enough free descriptors to transmit this
1225 * packet. We haven't committed anything yet,
1226 * so just unload the DMA map, put the packet
1227 * pack on the queue, and punt. Notify the upper
1228 * layer that there are no more slots left.
1229 */
1230 DPRINTF(DGE_DEBUG_TX,
1231 ("%s: TX: need %d descriptors, have %d\n",
1232 device_xname(&sc->sc_dev), dmamap->dm_nsegs,
1233 sc->sc_txfree - 1));
1234 ifp->if_flags |= IFF_OACTIVE;
1235 bus_dmamap_unload(sc->sc_dmat, dmamap);
1236 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1237 break;
1238 }
1239
1240 IFQ_DEQUEUE(&ifp->if_snd, m0);
1241
1242 /*
1243 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1244 */
1245
1246 /* Sync the DMA map. */
1247 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1248 BUS_DMASYNC_PREWRITE);
1249
1250 DPRINTF(DGE_DEBUG_TX,
1251 ("%s: TX: packet has %d DMA segments\n",
1252 device_xname(&sc->sc_dev), dmamap->dm_nsegs));
1253
1254 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1255
1256 /*
1257 * Store a pointer to the packet so that we can free it
1258 * later.
1259 *
1260 * Initially, we consider the number of descriptors the
1261 * packet uses the number of DMA segments. This may be
1262 * incremented by 1 if we do checksum offload (a descriptor
1263 * is used to set the checksum context).
1264 */
1265 txs->txs_mbuf = m0;
1266 txs->txs_firstdesc = sc->sc_txnext;
1267 txs->txs_ndesc = dmamap->dm_nsegs;
1268
1269 /*
1270 * Set up checksum offload parameters for
1271 * this packet.
1272 */
1273 if (m0->m_pkthdr.csum_flags &
1274 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1275 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1276 /* Error message already displayed. */
1277 bus_dmamap_unload(sc->sc_dmat, dmamap);
1278 continue;
1279 }
1280 } else {
1281 cksumfields = 0;
1282 }
1283
1284 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1285
1286 /*
1287 * Initialize the transmit descriptor.
1288 */
1289 for (nexttx = sc->sc_txnext, seg = 0;
1290 seg < dmamap->dm_nsegs;
1291 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1292 /*
1293 * Note: we currently only use 32-bit DMA
1294 * addresses.
1295 */
1296 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1297 sc->sc_txdescs[nexttx].dt_baddrl =
1298 htole32(dmamap->dm_segs[seg].ds_addr);
1299 sc->sc_txdescs[nexttx].dt_ctl =
1300 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1301 sc->sc_txdescs[nexttx].dt_status = 0;
1302 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1303 sc->sc_txdescs[nexttx].dt_vlan = 0;
1304 lasttx = nexttx;
1305
1306 DPRINTF(DGE_DEBUG_TX,
1307 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1308 device_xname(&sc->sc_dev), nexttx,
1309 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1310 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1311 }
1312
1313 KASSERT(lasttx != -1);
1314
1315 /*
1316 * Set up the command byte on the last descriptor of
1317 * the packet. If we're in the interrupt delay window,
1318 * delay the interrupt.
1319 */
1320 sc->sc_txdescs[lasttx].dt_ctl |=
1321 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1322
1323 txs->txs_lastdesc = lasttx;
1324
1325 DPRINTF(DGE_DEBUG_TX,
1326 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
1327 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1328
1329 /* Sync the descriptors we're using. */
1330 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1331 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1332
1333 /* Give the packet to the chip. */
1334 CSR_WRITE(sc, DGE_TDT, nexttx);
1335
1336 DPRINTF(DGE_DEBUG_TX,
1337 ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
1338
1339 DPRINTF(DGE_DEBUG_TX,
1340 ("%s: TX: finished transmitting packet, job %d\n",
1341 device_xname(&sc->sc_dev), sc->sc_txsnext));
1342
1343 /* Advance the tx pointer. */
1344 sc->sc_txfree -= txs->txs_ndesc;
1345 sc->sc_txnext = nexttx;
1346
1347 sc->sc_txsfree--;
1348 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1349
1350 #if NBPFILTER > 0
1351 /* Pass the packet to any BPF listeners. */
1352 if (ifp->if_bpf)
1353 bpf_mtap(ifp->if_bpf, m0);
1354 #endif /* NBPFILTER > 0 */
1355 }
1356
1357 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1358 /* No more slots; notify upper layer. */
1359 ifp->if_flags |= IFF_OACTIVE;
1360 }
1361
1362 if (sc->sc_txfree != ofree) {
1363 /* Set a watchdog timer in case the chip flakes out. */
1364 ifp->if_timer = 5;
1365 }
1366 }
1367
1368 /*
1369 * dge_watchdog: [ifnet interface function]
1370 *
1371 * Watchdog timer handler.
1372 */
1373 static void
1374 dge_watchdog(struct ifnet *ifp)
1375 {
1376 struct dge_softc *sc = ifp->if_softc;
1377
1378 /*
1379 * Since we're using delayed interrupts, sweep up
1380 * before we report an error.
1381 */
1382 dge_txintr(sc);
1383
1384 if (sc->sc_txfree != DGE_NTXDESC) {
1385 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1386 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1387 sc->sc_txnext);
1388 ifp->if_oerrors++;
1389
1390 /* Reset the interface. */
1391 (void) dge_init(ifp);
1392 }
1393
1394 /* Try to get more packets going. */
1395 dge_start(ifp);
1396 }
1397
1398 /*
1399 * dge_ioctl: [ifnet interface function]
1400 *
1401 * Handle control requests from the operator.
1402 */
1403 static int
1404 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1405 {
1406 struct dge_softc *sc = ifp->if_softc;
1407 struct ifreq *ifr = (struct ifreq *) data;
1408 pcireg_t preg;
1409 int s, error, mmrbc;
1410
1411 s = splnet();
1412
1413 switch (cmd) {
1414 case SIOCSIFMEDIA:
1415 case SIOCGIFMEDIA:
1416 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1417 break;
1418
1419 case SIOCSIFMTU:
1420 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1421 error = EINVAL;
1422 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1423 break;
1424 else if (ifp->if_flags & IFF_UP)
1425 error = (*ifp->if_init)(ifp);
1426 else
1427 error = 0;
1428 break;
1429
1430 case SIOCSIFFLAGS:
1431 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1432 break;
1433 /* extract link flags */
1434 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1435 (ifp->if_flags & IFF_LINK1) == 0)
1436 mmrbc = PCIX_MMRBC_512;
1437 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1438 (ifp->if_flags & IFF_LINK1) != 0)
1439 mmrbc = PCIX_MMRBC_1024;
1440 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1441 (ifp->if_flags & IFF_LINK1) == 0)
1442 mmrbc = PCIX_MMRBC_2048;
1443 else
1444 mmrbc = PCIX_MMRBC_4096;
1445 if (mmrbc != sc->sc_mmrbc) {
1446 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1447 preg &= ~PCIX_MMRBC_MSK;
1448 preg |= mmrbc;
1449 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1450 sc->sc_mmrbc = mmrbc;
1451 }
1452 /* FALLTHROUGH */
1453 default:
1454 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1455 break;
1456
1457 error = 0;
1458
1459 if (cmd == SIOCSIFCAP)
1460 error = (*ifp->if_init)(ifp);
1461 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1462 ;
1463 else if (ifp->if_flags & IFF_RUNNING) {
1464 /*
1465 * Multicast list has changed; set the hardware filter
1466 * accordingly.
1467 */
1468 dge_set_filter(sc);
1469 }
1470 break;
1471 }
1472
1473 /* Try to get more packets going. */
1474 dge_start(ifp);
1475
1476 splx(s);
1477 return (error);
1478 }
1479
1480 /*
1481 * dge_intr:
1482 *
1483 * Interrupt service routine.
1484 */
1485 static int
1486 dge_intr(void *arg)
1487 {
1488 struct dge_softc *sc = arg;
1489 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1490 uint32_t icr;
1491 int wantinit, handled = 0;
1492
1493 for (wantinit = 0; wantinit == 0;) {
1494 icr = CSR_READ(sc, DGE_ICR);
1495 if ((icr & sc->sc_icr) == 0)
1496 break;
1497
1498 #if 0 /*NRND > 0*/
1499 if (RND_ENABLED(&sc->rnd_source))
1500 rnd_add_uint32(&sc->rnd_source, icr);
1501 #endif
1502
1503 handled = 1;
1504
1505 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1506 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1507 DPRINTF(DGE_DEBUG_RX,
1508 ("%s: RX: got Rx intr 0x%08x\n",
1509 device_xname(&sc->sc_dev),
1510 icr & (ICR_RXDMT0|ICR_RXT0)));
1511 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1512 }
1513 #endif
1514 dge_rxintr(sc);
1515
1516 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1517 if (icr & ICR_TXDW) {
1518 DPRINTF(DGE_DEBUG_TX,
1519 ("%s: TX: got TXDW interrupt\n",
1520 device_xname(&sc->sc_dev)));
1521 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1522 }
1523 if (icr & ICR_TXQE)
1524 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1525 #endif
1526 dge_txintr(sc);
1527
1528 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1529 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1530 dge_linkintr(sc, icr);
1531 }
1532
1533 if (icr & ICR_RXO) {
1534 printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
1535 wantinit = 1;
1536 }
1537 }
1538
1539 if (handled) {
1540 if (wantinit)
1541 dge_init(ifp);
1542
1543 /* Try to get more packets going. */
1544 dge_start(ifp);
1545 }
1546
1547 return (handled);
1548 }
1549
1550 /*
1551 * dge_txintr:
1552 *
1553 * Helper; handle transmit interrupts.
1554 */
1555 static void
1556 dge_txintr(struct dge_softc *sc)
1557 {
1558 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1559 struct dge_txsoft *txs;
1560 uint8_t status;
1561 int i;
1562
1563 ifp->if_flags &= ~IFF_OACTIVE;
1564
1565 /*
1566 * Go through the Tx list and free mbufs for those
1567 * frames which have been transmitted.
1568 */
1569 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1570 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1571 txs = &sc->sc_txsoft[i];
1572
1573 DPRINTF(DGE_DEBUG_TX,
1574 ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
1575
1576 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1577 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1578
1579 status =
1580 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1581 if ((status & TDESC_STA_DD) == 0) {
1582 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1583 BUS_DMASYNC_PREREAD);
1584 break;
1585 }
1586
1587 DPRINTF(DGE_DEBUG_TX,
1588 ("%s: TX: job %d done: descs %d..%d\n",
1589 device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
1590 txs->txs_lastdesc));
1591
1592 ifp->if_opackets++;
1593 sc->sc_txfree += txs->txs_ndesc;
1594 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1595 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1596 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1597 m_freem(txs->txs_mbuf);
1598 txs->txs_mbuf = NULL;
1599 }
1600
1601 /* Update the dirty transmit buffer pointer. */
1602 sc->sc_txsdirty = i;
1603 DPRINTF(DGE_DEBUG_TX,
1604 ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
1605
1606 /*
1607 * If there are no more pending transmissions, cancel the watchdog
1608 * timer.
1609 */
1610 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1611 ifp->if_timer = 0;
1612 }
1613
1614 /*
1615 * dge_rxintr:
1616 *
1617 * Helper; handle receive interrupts.
1618 */
1619 static void
1620 dge_rxintr(struct dge_softc *sc)
1621 {
1622 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1623 struct dge_rxsoft *rxs;
1624 struct mbuf *m;
1625 int i, len;
1626 uint8_t status, errors;
1627
1628 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1629 rxs = &sc->sc_rxsoft[i];
1630
1631 DPRINTF(DGE_DEBUG_RX,
1632 ("%s: RX: checking descriptor %d\n",
1633 device_xname(&sc->sc_dev), i));
1634
1635 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1636
1637 status = sc->sc_rxdescs[i].dr_status;
1638 errors = sc->sc_rxdescs[i].dr_errors;
1639 len = le16toh(sc->sc_rxdescs[i].dr_len);
1640
1641 if ((status & RDESC_STS_DD) == 0) {
1642 /*
1643 * We have processed all of the receive descriptors.
1644 */
1645 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1646 break;
1647 }
1648
1649 if (__predict_false(sc->sc_rxdiscard)) {
1650 DPRINTF(DGE_DEBUG_RX,
1651 ("%s: RX: discarding contents of descriptor %d\n",
1652 device_xname(&sc->sc_dev), i));
1653 DGE_INIT_RXDESC(sc, i);
1654 if (status & RDESC_STS_EOP) {
1655 /* Reset our state. */
1656 DPRINTF(DGE_DEBUG_RX,
1657 ("%s: RX: resetting rxdiscard -> 0\n",
1658 device_xname(&sc->sc_dev)));
1659 sc->sc_rxdiscard = 0;
1660 }
1661 continue;
1662 }
1663
1664 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1665 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1666
1667 m = rxs->rxs_mbuf;
1668
1669 /*
1670 * Add a new receive buffer to the ring.
1671 */
1672 if (dge_add_rxbuf(sc, i) != 0) {
1673 /*
1674 * Failed, throw away what we've done so
1675 * far, and discard the rest of the packet.
1676 */
1677 ifp->if_ierrors++;
1678 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1679 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1680 DGE_INIT_RXDESC(sc, i);
1681 if ((status & RDESC_STS_EOP) == 0)
1682 sc->sc_rxdiscard = 1;
1683 if (sc->sc_rxhead != NULL)
1684 m_freem(sc->sc_rxhead);
1685 DGE_RXCHAIN_RESET(sc);
1686 DPRINTF(DGE_DEBUG_RX,
1687 ("%s: RX: Rx buffer allocation failed, "
1688 "dropping packet%s\n", device_xname(&sc->sc_dev),
1689 sc->sc_rxdiscard ? " (discard)" : ""));
1690 continue;
1691 }
1692 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1693
1694 DGE_RXCHAIN_LINK(sc, m);
1695
1696 m->m_len = len;
1697
1698 DPRINTF(DGE_DEBUG_RX,
1699 ("%s: RX: buffer at %p len %d\n",
1700 device_xname(&sc->sc_dev), m->m_data, len));
1701
1702 /*
1703 * If this is not the end of the packet, keep
1704 * looking.
1705 */
1706 if ((status & RDESC_STS_EOP) == 0) {
1707 sc->sc_rxlen += len;
1708 DPRINTF(DGE_DEBUG_RX,
1709 ("%s: RX: not yet EOP, rxlen -> %d\n",
1710 device_xname(&sc->sc_dev), sc->sc_rxlen));
1711 continue;
1712 }
1713
1714 /*
1715 * Okay, we have the entire packet now...
1716 */
1717 *sc->sc_rxtailp = NULL;
1718 m = sc->sc_rxhead;
1719 len += sc->sc_rxlen;
1720
1721 DGE_RXCHAIN_RESET(sc);
1722
1723 DPRINTF(DGE_DEBUG_RX,
1724 ("%s: RX: have entire packet, len -> %d\n",
1725 device_xname(&sc->sc_dev), len));
1726
1727 /*
1728 * If an error occurred, update stats and drop the packet.
1729 */
1730 if (errors &
1731 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1732 ifp->if_ierrors++;
1733 if (errors & RDESC_ERR_SE)
1734 printf("%s: symbol error\n",
1735 device_xname(&sc->sc_dev));
1736 else if (errors & RDESC_ERR_P)
1737 printf("%s: parity error\n",
1738 device_xname(&sc->sc_dev));
1739 else if (errors & RDESC_ERR_CE)
1740 printf("%s: CRC error\n",
1741 device_xname(&sc->sc_dev));
1742 m_freem(m);
1743 continue;
1744 }
1745
1746 /*
1747 * No errors. Receive the packet.
1748 */
1749 m->m_pkthdr.rcvif = ifp;
1750 m->m_pkthdr.len = len;
1751
1752 /*
1753 * Set up checksum info for this packet.
1754 */
1755 if (status & RDESC_STS_IPCS) {
1756 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1757 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1758 if (errors & RDESC_ERR_IPE)
1759 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1760 }
1761 if (status & RDESC_STS_TCPCS) {
1762 /*
1763 * Note: we don't know if this was TCP or UDP,
1764 * so we just set both bits, and expect the
1765 * upper layers to deal.
1766 */
1767 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1768 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1769 if (errors & RDESC_ERR_TCPE)
1770 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1771 }
1772
1773 ifp->if_ipackets++;
1774
1775 #if NBPFILTER > 0
1776 /* Pass this up to any BPF listeners. */
1777 if (ifp->if_bpf)
1778 bpf_mtap(ifp->if_bpf, m);
1779 #endif /* NBPFILTER > 0 */
1780
1781 /* Pass it on. */
1782 (*ifp->if_input)(ifp, m);
1783 }
1784
1785 /* Update the receive pointer. */
1786 sc->sc_rxptr = i;
1787
1788 DPRINTF(DGE_DEBUG_RX,
1789 ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
1790 }
1791
1792 /*
1793 * dge_linkintr:
1794 *
1795 * Helper; handle link interrupts.
1796 */
1797 static void
1798 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1799 {
1800 uint32_t status;
1801
1802 if (icr & ICR_LSC) {
1803 status = CSR_READ(sc, DGE_STATUS);
1804 if (status & STATUS_LINKUP) {
1805 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1806 device_xname(&sc->sc_dev)));
1807 } else {
1808 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1809 device_xname(&sc->sc_dev)));
1810 }
1811 } else if (icr & ICR_RXSEQ) {
1812 DPRINTF(DGE_DEBUG_LINK,
1813 ("%s: LINK: Receive sequence error\n",
1814 device_xname(&sc->sc_dev)));
1815 }
1816 /* XXX - fix errata */
1817 }
1818
1819 /*
1820 * dge_reset:
1821 *
1822 * Reset the i82597 chip.
1823 */
1824 static void
1825 dge_reset(struct dge_softc *sc)
1826 {
1827 int i;
1828
1829 /*
1830 * Do a chip reset.
1831 */
1832 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1833
1834 delay(10000);
1835
1836 for (i = 0; i < 1000; i++) {
1837 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1838 break;
1839 delay(20);
1840 }
1841
1842 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1843 printf("%s: WARNING: reset failed to complete\n",
1844 device_xname(&sc->sc_dev));
1845 /*
1846 * Reset the EEPROM logic.
1847 * This will cause the chip to reread its default values,
1848 * which doesn't happen otherwise (errata).
1849 */
1850 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1851 delay(10000);
1852 }
1853
1854 /*
1855 * dge_init: [ifnet interface function]
1856 *
1857 * Initialize the interface. Must be called at splnet().
1858 */
1859 static int
1860 dge_init(struct ifnet *ifp)
1861 {
1862 struct dge_softc *sc = ifp->if_softc;
1863 struct dge_rxsoft *rxs;
1864 int i, error = 0;
1865 uint32_t reg;
1866
1867 /*
1868 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1869 * There is a small but measurable benefit to avoiding the adjusment
1870 * of the descriptor so that the headers are aligned, for normal mtu,
1871 * on such platforms. One possibility is that the DMA itself is
1872 * slightly more efficient if the front of the entire packet (instead
1873 * of the front of the headers) is aligned.
1874 *
1875 * Note we must always set align_tweak to 0 if we are using
1876 * jumbo frames.
1877 */
1878 #ifdef __NO_STRICT_ALIGNMENT
1879 sc->sc_align_tweak = 0;
1880 #else
1881 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1882 sc->sc_align_tweak = 0;
1883 else
1884 sc->sc_align_tweak = 2;
1885 #endif /* __NO_STRICT_ALIGNMENT */
1886
1887 /* Cancel any pending I/O. */
1888 dge_stop(ifp, 0);
1889
1890 /* Reset the chip to a known state. */
1891 dge_reset(sc);
1892
1893 /* Initialize the transmit descriptor ring. */
1894 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1895 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1896 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1897 sc->sc_txfree = DGE_NTXDESC;
1898 sc->sc_txnext = 0;
1899
1900 sc->sc_txctx_ipcs = 0xffffffff;
1901 sc->sc_txctx_tucs = 0xffffffff;
1902
1903 CSR_WRITE(sc, DGE_TDBAH, 0);
1904 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1905 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1906 CSR_WRITE(sc, DGE_TDH, 0);
1907 CSR_WRITE(sc, DGE_TDT, 0);
1908 CSR_WRITE(sc, DGE_TIDV, TIDV);
1909
1910 #if 0
1911 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1912 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1913 #endif
1914 CSR_WRITE(sc, DGE_RXDCTL,
1915 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1916 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1917 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1918
1919 /* Initialize the transmit job descriptors. */
1920 for (i = 0; i < DGE_TXQUEUELEN; i++)
1921 sc->sc_txsoft[i].txs_mbuf = NULL;
1922 sc->sc_txsfree = DGE_TXQUEUELEN;
1923 sc->sc_txsnext = 0;
1924 sc->sc_txsdirty = 0;
1925
1926 /*
1927 * Initialize the receive descriptor and receive job
1928 * descriptor rings.
1929 */
1930 CSR_WRITE(sc, DGE_RDBAH, 0);
1931 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1932 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1933 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1934 CSR_WRITE(sc, DGE_RDT, 0);
1935 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1936 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1937 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1938
1939 for (i = 0; i < DGE_NRXDESC; i++) {
1940 rxs = &sc->sc_rxsoft[i];
1941 if (rxs->rxs_mbuf == NULL) {
1942 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1943 printf("%s: unable to allocate or map rx "
1944 "buffer %d, error = %d\n",
1945 device_xname(&sc->sc_dev), i, error);
1946 /*
1947 * XXX Should attempt to run with fewer receive
1948 * XXX buffers instead of just failing.
1949 */
1950 dge_rxdrain(sc);
1951 goto out;
1952 }
1953 }
1954 DGE_INIT_RXDESC(sc, i);
1955 }
1956 sc->sc_rxptr = DGE_RXSPACE;
1957 sc->sc_rxdiscard = 0;
1958 DGE_RXCHAIN_RESET(sc);
1959
1960 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1961 sc->sc_ctrl0 |= CTRL0_JFE;
1962 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1963 }
1964
1965 /* Write the control registers. */
1966 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1967
1968 /*
1969 * Set up checksum offload parameters.
1970 */
1971 reg = CSR_READ(sc, DGE_RXCSUM);
1972 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1973 reg |= RXCSUM_IPOFL;
1974 else
1975 reg &= ~RXCSUM_IPOFL;
1976 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1977 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1978 else {
1979 reg &= ~RXCSUM_TUOFL;
1980 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1981 reg &= ~RXCSUM_IPOFL;
1982 }
1983 CSR_WRITE(sc, DGE_RXCSUM, reg);
1984
1985 /*
1986 * Set up the interrupt registers.
1987 */
1988 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1989 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1990 ICR_RXO | ICR_RXT0;
1991
1992 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1993
1994 /*
1995 * Set up the transmit control register.
1996 */
1997 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1998 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1999
2000 /*
2001 * Set up the receive control register; we actually program
2002 * the register when we set the receive filter. Use multicast
2003 * address offset type 0.
2004 */
2005 sc->sc_mchash_type = 0;
2006
2007 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2008 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2009
2010 #ifdef DGE_OFFBYONE_RXBUG
2011 sc->sc_rctl |= RCTL_BSIZE_16k;
2012 #else
2013 switch(MCLBYTES) {
2014 case 2048:
2015 sc->sc_rctl |= RCTL_BSIZE_2k;
2016 break;
2017 case 4096:
2018 sc->sc_rctl |= RCTL_BSIZE_4k;
2019 break;
2020 case 8192:
2021 sc->sc_rctl |= RCTL_BSIZE_8k;
2022 break;
2023 case 16384:
2024 sc->sc_rctl |= RCTL_BSIZE_16k;
2025 break;
2026 default:
2027 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2028 }
2029 #endif
2030
2031 /* Set the receive filter. */
2032 /* Also sets RCTL */
2033 dge_set_filter(sc);
2034
2035 /* ...all done! */
2036 ifp->if_flags |= IFF_RUNNING;
2037 ifp->if_flags &= ~IFF_OACTIVE;
2038
2039 out:
2040 if (error)
2041 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2042 return (error);
2043 }
2044
2045 /*
2046 * dge_rxdrain:
2047 *
2048 * Drain the receive queue.
2049 */
2050 static void
2051 dge_rxdrain(struct dge_softc *sc)
2052 {
2053 struct dge_rxsoft *rxs;
2054 int i;
2055
2056 for (i = 0; i < DGE_NRXDESC; i++) {
2057 rxs = &sc->sc_rxsoft[i];
2058 if (rxs->rxs_mbuf != NULL) {
2059 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2060 m_freem(rxs->rxs_mbuf);
2061 rxs->rxs_mbuf = NULL;
2062 }
2063 }
2064 }
2065
2066 /*
2067 * dge_stop: [ifnet interface function]
2068 *
2069 * Stop transmission on the interface.
2070 */
2071 static void
2072 dge_stop(struct ifnet *ifp, int disable)
2073 {
2074 struct dge_softc *sc = ifp->if_softc;
2075 struct dge_txsoft *txs;
2076 int i;
2077
2078 /* Stop the transmit and receive processes. */
2079 CSR_WRITE(sc, DGE_TCTL, 0);
2080 CSR_WRITE(sc, DGE_RCTL, 0);
2081
2082 /* Release any queued transmit buffers. */
2083 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2084 txs = &sc->sc_txsoft[i];
2085 if (txs->txs_mbuf != NULL) {
2086 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2087 m_freem(txs->txs_mbuf);
2088 txs->txs_mbuf = NULL;
2089 }
2090 }
2091
2092 /* Mark the interface as down and cancel the watchdog timer. */
2093 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2094 ifp->if_timer = 0;
2095
2096 if (disable)
2097 dge_rxdrain(sc);
2098 }
2099
2100 /*
2101 * dge_add_rxbuf:
2102 *
2103 * Add a receive buffer to the indiciated descriptor.
2104 */
2105 static int
2106 dge_add_rxbuf(struct dge_softc *sc, int idx)
2107 {
2108 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2109 struct mbuf *m;
2110 int error;
2111 #ifdef DGE_OFFBYONE_RXBUG
2112 void *buf;
2113 #endif
2114
2115 MGETHDR(m, M_DONTWAIT, MT_DATA);
2116 if (m == NULL)
2117 return (ENOBUFS);
2118
2119 #ifdef DGE_OFFBYONE_RXBUG
2120 if ((buf = dge_getbuf(sc)) == NULL)
2121 return ENOBUFS;
2122
2123 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2124 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2125 m->m_flags |= M_EXT_RW;
2126
2127 if (rxs->rxs_mbuf != NULL)
2128 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2129 rxs->rxs_mbuf = m;
2130
2131 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2132 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2133 #else
2134 MCLGET(m, M_DONTWAIT);
2135 if ((m->m_flags & M_EXT) == 0) {
2136 m_freem(m);
2137 return (ENOBUFS);
2138 }
2139
2140 if (rxs->rxs_mbuf != NULL)
2141 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2142
2143 rxs->rxs_mbuf = m;
2144
2145 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2146 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2147 BUS_DMA_READ|BUS_DMA_NOWAIT);
2148 #endif
2149 if (error) {
2150 printf("%s: unable to load rx DMA map %d, error = %d\n",
2151 device_xname(&sc->sc_dev), idx, error);
2152 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2153 }
2154 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2155 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2156
2157 return (0);
2158 }
2159
2160 /*
2161 * dge_set_ral:
2162 *
2163 * Set an entry in the receive address list.
2164 */
2165 static void
2166 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2167 {
2168 uint32_t ral_lo, ral_hi;
2169
2170 if (enaddr != NULL) {
2171 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2172 (enaddr[3] << 24);
2173 ral_hi = enaddr[4] | (enaddr[5] << 8);
2174 ral_hi |= RAH_AV;
2175 } else {
2176 ral_lo = 0;
2177 ral_hi = 0;
2178 }
2179 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2180 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2181 }
2182
2183 /*
2184 * dge_mchash:
2185 *
2186 * Compute the hash of the multicast address for the 4096-bit
2187 * multicast filter.
2188 */
2189 static uint32_t
2190 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2191 {
2192 static const int lo_shift[4] = { 4, 3, 2, 0 };
2193 static const int hi_shift[4] = { 4, 5, 6, 8 };
2194 uint32_t hash;
2195
2196 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2197 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2198
2199 return (hash & 0xfff);
2200 }
2201
2202 /*
2203 * dge_set_filter:
2204 *
2205 * Set up the receive filter.
2206 */
2207 static void
2208 dge_set_filter(struct dge_softc *sc)
2209 {
2210 struct ethercom *ec = &sc->sc_ethercom;
2211 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2212 struct ether_multi *enm;
2213 struct ether_multistep step;
2214 uint32_t hash, reg, bit;
2215 int i;
2216
2217 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2218
2219 if (ifp->if_flags & IFF_BROADCAST)
2220 sc->sc_rctl |= RCTL_BAM;
2221 if (ifp->if_flags & IFF_PROMISC) {
2222 sc->sc_rctl |= RCTL_UPE;
2223 goto allmulti;
2224 }
2225
2226 /*
2227 * Set the station address in the first RAL slot, and
2228 * clear the remaining slots.
2229 */
2230 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2231 for (i = 1; i < RA_TABSIZE; i++)
2232 dge_set_ral(sc, NULL, i);
2233
2234 /* Clear out the multicast table. */
2235 for (i = 0; i < MC_TABSIZE; i++)
2236 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2237
2238 ETHER_FIRST_MULTI(step, ec, enm);
2239 while (enm != NULL) {
2240 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2241 /*
2242 * We must listen to a range of multicast addresses.
2243 * For now, just accept all multicasts, rather than
2244 * trying to set only those filter bits needed to match
2245 * the range. (At this time, the only use of address
2246 * ranges is for IP multicast routing, for which the
2247 * range is big enough to require all bits set.)
2248 */
2249 goto allmulti;
2250 }
2251
2252 hash = dge_mchash(sc, enm->enm_addrlo);
2253
2254 reg = (hash >> 5) & 0x7f;
2255 bit = hash & 0x1f;
2256
2257 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2258 hash |= 1U << bit;
2259
2260 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2261
2262 ETHER_NEXT_MULTI(step, enm);
2263 }
2264
2265 ifp->if_flags &= ~IFF_ALLMULTI;
2266 goto setit;
2267
2268 allmulti:
2269 ifp->if_flags |= IFF_ALLMULTI;
2270 sc->sc_rctl |= RCTL_MPE;
2271
2272 setit:
2273 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2274 }
2275
2276 /*
2277 * Read in the EEPROM info and verify checksum.
2278 */
2279 int
2280 dge_read_eeprom(struct dge_softc *sc)
2281 {
2282 uint16_t cksum;
2283 int i;
2284
2285 cksum = 0;
2286 for (i = 0; i < EEPROM_SIZE; i++) {
2287 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2288 cksum += sc->sc_eeprom[i];
2289 }
2290 return cksum != EEPROM_CKSUM;
2291 }
2292
2293
2294 /*
2295 * Read a 16-bit word from address addr in the serial EEPROM.
2296 */
2297 uint16_t
2298 dge_eeprom_word(struct dge_softc *sc, int addr)
2299 {
2300 uint32_t reg;
2301 uint16_t rval = 0;
2302 int i;
2303
2304 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2305
2306 /* Lower clock pulse (and data in to chip) */
2307 CSR_WRITE(sc, DGE_EECD, reg);
2308 /* Select chip */
2309 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2310
2311 /* Send read command */
2312 dge_eeprom_clockout(sc, 1);
2313 dge_eeprom_clockout(sc, 1);
2314 dge_eeprom_clockout(sc, 0);
2315
2316 /* Send address */
2317 for (i = 5; i >= 0; i--)
2318 dge_eeprom_clockout(sc, (addr >> i) & 1);
2319
2320 /* Read data */
2321 for (i = 0; i < 16; i++) {
2322 rval <<= 1;
2323 rval |= dge_eeprom_clockin(sc);
2324 }
2325
2326 /* Deselect chip */
2327 CSR_WRITE(sc, DGE_EECD, reg);
2328
2329 return rval;
2330 }
2331
2332 /*
2333 * Clock out a single bit to the EEPROM.
2334 */
2335 void
2336 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2337 {
2338 int reg;
2339
2340 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2341 if (bit)
2342 reg |= EECD_DI;
2343
2344 CSR_WRITE(sc, DGE_EECD, reg);
2345 delay(2);
2346 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2347 delay(2);
2348 CSR_WRITE(sc, DGE_EECD, reg);
2349 delay(2);
2350 }
2351
2352 /*
2353 * Clock in a single bit from EEPROM.
2354 */
2355 int
2356 dge_eeprom_clockin(struct dge_softc *sc)
2357 {
2358 int reg, rv;
2359
2360 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2361
2362 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2363 delay(2);
2364 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2365 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2366 delay(2);
2367
2368 return rv;
2369 }
2370
2371 static void
2372 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2373 {
2374 struct dge_softc *sc = ifp->if_softc;
2375
2376 ifmr->ifm_status = IFM_AVALID;
2377 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2378
2379 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2380 ifmr->ifm_status |= IFM_ACTIVE;
2381 }
2382
2383 static inline int
2384 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2385 {
2386 int i, mdic;
2387
2388 CSR_WRITE(sc, DGE_MDIO,
2389 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2390 for (i = 0; i < 10; i++) {
2391 delay(10);
2392 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2393 break;
2394 }
2395 return mdic;
2396 }
2397
2398
2399 static void
2400 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
2401 {
2402 struct dge_softc *sc = device_private(self);
2403 int mdic;
2404
2405 CSR_WRITE(sc, DGE_MDIRW, val);
2406 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2407 printf("%s: address cycle timeout; phy %d reg %d\n",
2408 device_xname(&sc->sc_dev), phy, reg);
2409 return;
2410 }
2411 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2412 printf("%s: read cycle timeout; phy %d reg %d\n",
2413 device_xname(&sc->sc_dev), phy, reg);
2414 return;
2415 }
2416 }
2417
2418 static void
2419 dge_xgmii_reset(struct dge_softc *sc)
2420 {
2421 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2422 }
2423
2424 static int
2425 dge_xgmii_mediachange(struct ifnet *ifp)
2426 {
2427 return 0;
2428 }
2429