Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.27
      1 /*	$NetBSD: if_dge.c,v 1.27 2009/09/27 12:52:59 tsutsui Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  * All rights reserved.
      6  *
      7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	SUNET, Swedish University Computer Network.
     21  * 4. The name of SUNET may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  *
     75  * TODO (in no specific order):
     76  *	HW VLAN support.
     77  *	TSE offloading (needs kernel changes...)
     78  *	RAIDC (receive interrupt delay adaptation)
     79  *	Use memory > 4GB.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.27 2009/09/27 12:52:59 tsutsui Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <netinet/in.h>			/* XXX for struct ip */
    116 #include <netinet/in_systm.h>		/* XXX for struct ip */
    117 #include <netinet/ip.h>			/* XXX for struct ip */
    118 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    119 
    120 #include <sys/bus.h>
    121 #include <sys/intr.h>
    122 #include <machine/endian.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/mii_bitbang.h>
    127 
    128 #include <dev/pci/pcireg.h>
    129 #include <dev/pci/pcivar.h>
    130 #include <dev/pci/pcidevs.h>
    131 
    132 #include <dev/pci/if_dgereg.h>
    133 
    134 /*
    135  * The receive engine may sometimes become off-by-one when writing back
    136  * chained descriptors.	 Avoid this by allocating a large chunk of
    137  * memory and use if instead (to avoid chained descriptors).
    138  * This only happens with chained descriptors under heavy load.
    139  */
    140 #define DGE_OFFBYONE_RXBUG
    141 
    142 #define DGE_EVENT_COUNTERS
    143 #define DGE_DEBUG
    144 
    145 #ifdef DGE_DEBUG
    146 #define DGE_DEBUG_LINK		0x01
    147 #define DGE_DEBUG_TX		0x02
    148 #define DGE_DEBUG_RX		0x04
    149 #define DGE_DEBUG_CKSUM		0x08
    150 int	dge_debug = 0;
    151 
    152 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    153 #else
    154 #define DPRINTF(x, y)	/* nothing */
    155 #endif /* DGE_DEBUG */
    156 
    157 /*
    158  * Transmit descriptor list size. We allow up to 100 DMA segments per
    159  * packet (Intel reports of jumbo frame packets with as
    160  * many as 80 DMA segments when using 16k buffers).
    161  */
    162 #define DGE_NTXSEGS		100
    163 #define DGE_IFQUEUELEN		20000
    164 #define DGE_TXQUEUELEN		2048
    165 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    166 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    167 #define DGE_NTXDESC		1024
    168 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    169 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    170 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    171 
    172 /*
    173  * Receive descriptor list size.
    174  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    175  * be chained.	Due to the nature of the card (high-speed), keep this
    176  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    177  * which at full speed will be received in just under 3ms.
    178  */
    179 #define DGE_NRXDESC		2048
    180 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    181 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    182 /*
    183  * # of descriptors between head and written descriptors.
    184  * This is to work-around two erratas.
    185  */
    186 #define DGE_RXSPACE		10
    187 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    188 /*
    189  * Receive descriptor fetch threshholds. These are values recommended
    190  * by Intel, do not touch them unless you know what you are doing.
    191  */
    192 #define RXDCTL_PTHRESH_VAL	128
    193 #define RXDCTL_HTHRESH_VAL	16
    194 #define RXDCTL_WTHRESH_VAL	16
    195 
    196 
    197 /*
    198  * Tweakable parameters; default values.
    199  */
    200 #define FCRTH	0x30000 /* Send XOFF water mark */
    201 #define FCRTL	0x28000 /* Send XON water mark */
    202 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    203 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    204 
    205 /*
    206  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    207  * a single clump that maps to a single DMA segment to make serveral things
    208  * easier.
    209  */
    210 struct dge_control_data {
    211 	/*
    212 	 * The transmit descriptors.
    213 	 */
    214 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    215 
    216 	/*
    217 	 * The receive descriptors.
    218 	 */
    219 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    220 };
    221 
    222 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    223 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    224 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    225 
    226 /*
    227  * The DGE interface have a higher max MTU size than normal jumbo frames.
    228  */
    229 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    230 
    231 /*
    232  * Software state for transmit jobs.
    233  */
    234 struct dge_txsoft {
    235 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    236 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    237 	int txs_firstdesc;		/* first descriptor in packet */
    238 	int txs_lastdesc;		/* last descriptor in packet */
    239 	int txs_ndesc;			/* # of descriptors used */
    240 };
    241 
    242 /*
    243  * Software state for receive buffers.	Each descriptor gets a
    244  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    245  * more than one buffer, we chain them together.
    246  */
    247 struct dge_rxsoft {
    248 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    249 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    250 };
    251 
    252 /*
    253  * Software state per device.
    254  */
    255 struct dge_softc {
    256 	struct device sc_dev;		/* generic device information */
    257 	bus_space_tag_t sc_st;		/* bus space tag */
    258 	bus_space_handle_t sc_sh;	/* bus space handle */
    259 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    260 	struct ethercom sc_ethercom;	/* ethernet common data */
    261 
    262 	int sc_flags;			/* flags; see below */
    263 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    264 	int sc_pcix_offset;		/* PCIX capability register offset */
    265 
    266 	pci_chipset_tag_t sc_pc;
    267 	pcitag_t sc_pt;
    268 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    269 
    270 	void *sc_ih;			/* interrupt cookie */
    271 
    272 	struct ifmedia sc_media;
    273 
    274 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    275 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    276 
    277 	int		sc_align_tweak;
    278 
    279 	/*
    280 	 * Software state for the transmit and receive descriptors.
    281 	 */
    282 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    283 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    284 
    285 	/*
    286 	 * Control data structures.
    287 	 */
    288 	struct dge_control_data *sc_control_data;
    289 #define sc_txdescs	sc_control_data->wcd_txdescs
    290 #define sc_rxdescs	sc_control_data->wcd_rxdescs
    291 
    292 #ifdef DGE_EVENT_COUNTERS
    293 	/* Event counters. */
    294 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    295 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    296 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    297 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    298 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    299 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    300 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    301 
    302 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    303 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    304 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    305 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    306 
    307 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    308 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    309 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    310 
    311 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    312 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    313 #endif /* DGE_EVENT_COUNTERS */
    314 
    315 	int	sc_txfree;		/* number of free Tx descriptors */
    316 	int	sc_txnext;		/* next ready Tx descriptor */
    317 
    318 	int	sc_txsfree;		/* number of free Tx jobs */
    319 	int	sc_txsnext;		/* next free Tx job */
    320 	int	sc_txsdirty;		/* dirty Tx jobs */
    321 
    322 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    323 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    324 
    325 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    326 	int	sc_rxdiscard;
    327 	int	sc_rxlen;
    328 	struct mbuf *sc_rxhead;
    329 	struct mbuf *sc_rxtail;
    330 	struct mbuf **sc_rxtailp;
    331 
    332 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    333 	uint32_t sc_icr;		/* prototype interrupt bits */
    334 	uint32_t sc_tctl;		/* prototype TCTL register */
    335 	uint32_t sc_rctl;		/* prototype RCTL register */
    336 
    337 	int sc_mchash_type;		/* multicast filter offset */
    338 
    339 	uint16_t sc_eeprom[EEPROM_SIZE];
    340 
    341 #if NRND > 0
    342 	rndsource_element_t rnd_source; /* random source */
    343 #endif
    344 #ifdef DGE_OFFBYONE_RXBUG
    345 	void *sc_bugbuf;
    346 	SLIST_HEAD(, rxbugentry) sc_buglist;
    347 	bus_dmamap_t sc_bugmap;
    348 	struct rxbugentry *sc_entry;
    349 #endif
    350 };
    351 
    352 #define DGE_RXCHAIN_RESET(sc)						\
    353 do {									\
    354 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    355 	*(sc)->sc_rxtailp = NULL;					\
    356 	(sc)->sc_rxlen = 0;						\
    357 } while (/*CONSTCOND*/0)
    358 
    359 #define DGE_RXCHAIN_LINK(sc, m)						\
    360 do {									\
    361 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    362 	(sc)->sc_rxtailp = &(m)->m_next;				\
    363 } while (/*CONSTCOND*/0)
    364 
    365 /* sc_flags */
    366 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    367 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    368 
    369 #ifdef DGE_EVENT_COUNTERS
    370 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    371 #else
    372 #define DGE_EVCNT_INCR(ev)	/* nothing */
    373 #endif
    374 
    375 #define CSR_READ(sc, reg)						\
    376 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    377 #define CSR_WRITE(sc, reg, val)						\
    378 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    379 
    380 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    381 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    382 
    383 #define DGE_CDTXSYNC(sc, x, n, ops)					\
    384 do {									\
    385 	int __x, __n;							\
    386 									\
    387 	__x = (x);							\
    388 	__n = (n);							\
    389 									\
    390 	/* If it will wrap around, sync to the end of the ring. */	\
    391 	if ((__x + __n) > DGE_NTXDESC) {				\
    392 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    393 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    394 		    (DGE_NTXDESC - __x), (ops));			\
    395 		__n -= (DGE_NTXDESC - __x);				\
    396 		__x = 0;						\
    397 	}								\
    398 									\
    399 	/* Now sync whatever is left. */				\
    400 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    401 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    402 } while (/*CONSTCOND*/0)
    403 
    404 #define DGE_CDRXSYNC(sc, x, ops)						\
    405 do {									\
    406 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    407 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    408 } while (/*CONSTCOND*/0)
    409 
    410 #ifdef DGE_OFFBYONE_RXBUG
    411 #define DGE_INIT_RXDESC(sc, x)						\
    412 do {									\
    413 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    414 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    415 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    416 									\
    417 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    418 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    419 	__rxd->dr_baddrh = 0;						\
    420 	__rxd->dr_len = 0;						\
    421 	__rxd->dr_cksum = 0;						\
    422 	__rxd->dr_status = 0;						\
    423 	__rxd->dr_errors = 0;						\
    424 	__rxd->dr_special = 0;						\
    425 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    426 									\
    427 	CSR_WRITE((sc), DGE_RDT, (x));					\
    428 } while (/*CONSTCOND*/0)
    429 #else
    430 #define DGE_INIT_RXDESC(sc, x)						\
    431 do {									\
    432 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    433 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    434 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    435 									\
    436 	/*								\
    437 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    438 	 * so that the payload after the Ethernet header is aligned	\
    439 	 * to a 4-byte boundary.					\
    440 	 *								\
    441 	 * XXX BRAINDAMAGE ALERT!					\
    442 	 * The stupid chip uses the same size for every buffer, which	\
    443 	 * is set in the Receive Control register.  We are using the 2K \
    444 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    445 	 * reason, we can't "scoot" packets longer than the standard	\
    446 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    447 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    448 	 * the upper layer copy the headers.				\
    449 	 */								\
    450 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    451 									\
    452 	__rxd->dr_baddrl =						\
    453 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    454 		(sc)->sc_align_tweak);					\
    455 	__rxd->dr_baddrh = 0;						\
    456 	__rxd->dr_len = 0;						\
    457 	__rxd->dr_cksum = 0;						\
    458 	__rxd->dr_status = 0;						\
    459 	__rxd->dr_errors = 0;						\
    460 	__rxd->dr_special = 0;						\
    461 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    462 									\
    463 	CSR_WRITE((sc), DGE_RDT, (x));					\
    464 } while (/*CONSTCOND*/0)
    465 #endif
    466 
    467 #ifdef DGE_OFFBYONE_RXBUG
    468 /*
    469  * Allocation constants.  Much memory may be used for this.
    470  */
    471 #ifndef DGE_BUFFER_SIZE
    472 #define DGE_BUFFER_SIZE DGE_MAX_MTU
    473 #endif
    474 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    475 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    476 
    477 struct rxbugentry {
    478 	SLIST_ENTRY(rxbugentry) rb_entry;
    479 	int rb_slot;
    480 };
    481 
    482 static int
    483 dge_alloc_rcvmem(struct dge_softc *sc)
    484 {
    485 	char *ptr, *kva;
    486 	bus_dma_segment_t seg;
    487 	int i, rseg, state, error;
    488 	struct rxbugentry *entry;
    489 
    490 	state = error = 0;
    491 
    492 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    493 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    494 		aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
    495 		return ENOBUFS;
    496 	}
    497 
    498 	state = 1;
    499 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    500 	    BUS_DMA_NOWAIT)) {
    501 		aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
    502 		    (int)DGE_RXMEM);
    503 		error = ENOBUFS;
    504 		goto out;
    505 	}
    506 
    507 	state = 2;
    508 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    509 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    510 		aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
    511 		error = ENOBUFS;
    512 		goto out;
    513 	}
    514 
    515 	state = 3;
    516 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    517 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    518 		aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
    519 		error = ENOBUFS;
    520 		goto out;
    521 	}
    522 
    523 	state = 4;
    524 	sc->sc_bugbuf = (void *)kva;
    525 	SLIST_INIT(&sc->sc_buglist);
    526 
    527 	/*
    528 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    529 	 * in an array.
    530 	 */
    531 	ptr = sc->sc_bugbuf;
    532 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    533 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    534 		error = ENOBUFS;
    535 		goto out;
    536 	}
    537 	sc->sc_entry = entry;
    538 	for (i = 0; i < DGE_NBUFFERS; i++) {
    539 		entry[i].rb_slot = i;
    540 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    541 	}
    542 out:
    543 	if (error != 0) {
    544 		switch (state) {
    545 		case 4:
    546 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    547 		case 3:
    548 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    549 		case 2:
    550 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    551 		case 1:
    552 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    553 			break;
    554 		default:
    555 			break;
    556 		}
    557 	}
    558 
    559 	return error;
    560 }
    561 
    562 /*
    563  * Allocate a jumbo buffer.
    564  */
    565 static void *
    566 dge_getbuf(struct dge_softc *sc)
    567 {
    568 	struct rxbugentry *entry;
    569 
    570 	entry = SLIST_FIRST(&sc->sc_buglist);
    571 
    572 	if (entry == NULL) {
    573 		printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
    574 		return(NULL);
    575 	}
    576 
    577 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    578 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    579 }
    580 
    581 /*
    582  * Release a jumbo buffer.
    583  */
    584 static void
    585 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    586 {
    587 	struct rxbugentry *entry;
    588 	struct dge_softc *sc;
    589 	int i, s;
    590 
    591 	/* Extract the softc struct pointer. */
    592 	sc = (struct dge_softc *)arg;
    593 
    594 	if (sc == NULL)
    595 		panic("dge_freebuf: can't find softc pointer!");
    596 
    597 	/* calculate the slot this buffer belongs to */
    598 
    599 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    600 
    601 	if ((i < 0) || (i >= DGE_NBUFFERS))
    602 		panic("dge_freebuf: asked to free buffer %d!", i);
    603 
    604 	s = splvm();
    605 	entry = sc->sc_entry + i;
    606 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    607 
    608 	if (__predict_true(m != NULL))
    609 		pool_cache_put(mb_cache, m);
    610 	splx(s);
    611 }
    612 #endif
    613 
    614 static void	dge_start(struct ifnet *);
    615 static void	dge_watchdog(struct ifnet *);
    616 static int	dge_ioctl(struct ifnet *, u_long, void *);
    617 static int	dge_init(struct ifnet *);
    618 static void	dge_stop(struct ifnet *, int);
    619 
    620 static bool	dge_shutdown(device_t, int);
    621 
    622 static void	dge_reset(struct dge_softc *);
    623 static void	dge_rxdrain(struct dge_softc *);
    624 static int	dge_add_rxbuf(struct dge_softc *, int);
    625 
    626 static void	dge_set_filter(struct dge_softc *);
    627 
    628 static int	dge_intr(void *);
    629 static void	dge_txintr(struct dge_softc *);
    630 static void	dge_rxintr(struct dge_softc *);
    631 static void	dge_linkintr(struct dge_softc *, uint32_t);
    632 
    633 static int	dge_match(device_t, cfdata_t, void *);
    634 static void	dge_attach(device_t, device_t, void *);
    635 
    636 static int	dge_read_eeprom(struct dge_softc *sc);
    637 static int	dge_eeprom_clockin(struct dge_softc *sc);
    638 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    639 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    640 static int	dge_xgmii_mediachange(struct ifnet *);
    641 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    642 static void	dge_xgmii_reset(struct dge_softc *);
    643 static void	dge_xgmii_writereg(device_t, int, int, int);
    644 
    645 
    646 CFATTACH_DECL(dge, sizeof(struct dge_softc),
    647     dge_match, dge_attach, NULL, NULL);
    648 
    649 #ifdef DGE_EVENT_COUNTERS
    650 #if DGE_NTXSEGS > 100
    651 #error Update dge_txseg_evcnt_names
    652 #endif
    653 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    654 #endif /* DGE_EVENT_COUNTERS */
    655 
    656 static int
    657 dge_match(device_t parent, cfdata_t cf, void *aux)
    658 {
    659 	struct pci_attach_args *pa = aux;
    660 
    661 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    662 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    663 		return (1);
    664 
    665 	return (0);
    666 }
    667 
    668 static void
    669 dge_attach(device_t parent, device_t self, void *aux)
    670 {
    671 	struct dge_softc *sc = device_private(self);
    672 	struct pci_attach_args *pa = aux;
    673 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    674 	pci_chipset_tag_t pc = pa->pa_pc;
    675 	pci_intr_handle_t ih;
    676 	const char *intrstr = NULL;
    677 	bus_dma_segment_t seg;
    678 	int i, rseg, error;
    679 	uint8_t enaddr[ETHER_ADDR_LEN];
    680 	pcireg_t preg, memtype;
    681 	uint32_t reg;
    682 
    683 	sc->sc_dmat = pa->pa_dmat;
    684 	sc->sc_pc = pa->pa_pc;
    685 	sc->sc_pt = pa->pa_tag;
    686 
    687 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    688 	aprint_naive(": Ethernet controller\n");
    689 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    690 
    691 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    692         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    693             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    694                 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    695                 return;
    696         }
    697 
    698 	/* Enable bus mastering */
    699 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    700 	preg |= PCI_COMMAND_MASTER_ENABLE;
    701 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    702 
    703 	/*
    704 	 * Map and establish our interrupt.
    705 	 */
    706 	if (pci_intr_map(pa, &ih)) {
    707 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    708 		return;
    709 	}
    710 	intrstr = pci_intr_string(pc, ih);
    711 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    712 	if (sc->sc_ih == NULL) {
    713 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    714 		if (intrstr != NULL)
    715 			aprint_normal(" at %s", intrstr);
    716 		aprint_normal("\n");
    717 		return;
    718 	}
    719 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    720 
    721 	/*
    722 	 * Determine a few things about the bus we're connected to.
    723 	 */
    724 	reg = CSR_READ(sc, DGE_STATUS);
    725 	if (reg & STATUS_BUS64)
    726 		sc->sc_flags |= DGE_F_BUS64;
    727 
    728 	sc->sc_flags |= DGE_F_PCIX;
    729 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    730 			       PCI_CAP_PCIX,
    731 			       &sc->sc_pcix_offset, NULL) == 0)
    732 		aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
    733 		    "capability\n");
    734 
    735 	if (sc->sc_flags & DGE_F_PCIX) {
    736 		switch (reg & STATUS_PCIX_MSK) {
    737 		case STATUS_PCIX_66:
    738 			sc->sc_bus_speed = 66;
    739 			break;
    740 		case STATUS_PCIX_100:
    741 			sc->sc_bus_speed = 100;
    742 			break;
    743 		case STATUS_PCIX_133:
    744 			sc->sc_bus_speed = 133;
    745 			break;
    746 		default:
    747 			aprint_error_dev(&sc->sc_dev,
    748 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    749 			    reg & STATUS_PCIX_MSK);
    750 			sc->sc_bus_speed = 66;
    751 		}
    752 	} else
    753 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    754 	aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
    755 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    756 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    757 
    758 	/*
    759 	 * Allocate the control data structures, and create and load the
    760 	 * DMA map for it.
    761 	 */
    762 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    763 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    764 	    0)) != 0) {
    765 		aprint_error_dev(&sc->sc_dev,
    766 		    "unable to allocate control data, error = %d\n",
    767 		    error);
    768 		goto fail_0;
    769 	}
    770 
    771 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    772 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    773 	    0)) != 0) {
    774 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    775 		    error);
    776 		goto fail_1;
    777 	}
    778 
    779 	if ((error = bus_dmamap_create(sc->sc_dmat,
    780 	    sizeof(struct dge_control_data), 1,
    781 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    782 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    783 		    "error = %d\n", error);
    784 		goto fail_2;
    785 	}
    786 
    787 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    788 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    789 	    0)) != 0) {
    790 		aprint_error_dev(&sc->sc_dev,
    791 		    "unable to load control data DMA map, error = %d\n",
    792 		    error);
    793 		goto fail_3;
    794 	}
    795 
    796 #ifdef DGE_OFFBYONE_RXBUG
    797 	if (dge_alloc_rcvmem(sc) != 0)
    798 		return; /* Already complained */
    799 #endif
    800 	/*
    801 	 * Create the transmit buffer DMA maps.
    802 	 */
    803 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    804 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    805 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    806 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    807 			aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
    808 			    "error = %d\n", i, error);
    809 			goto fail_4;
    810 		}
    811 	}
    812 
    813 	/*
    814 	 * Create the receive buffer DMA maps.
    815 	 */
    816 	for (i = 0; i < DGE_NRXDESC; i++) {
    817 #ifdef DGE_OFFBYONE_RXBUG
    818 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    819 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    820 #else
    821 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    822 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    823 #endif
    824 			aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
    825 			    "error = %d\n", i, error);
    826 			goto fail_5;
    827 		}
    828 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    829 	}
    830 
    831 	/*
    832 	 * Set bits in ctrl0 register.
    833 	 * Should get the software defined pins out of EEPROM?
    834 	 */
    835 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    836 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    837 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    838 
    839 	/*
    840 	 * Reset the chip to a known state.
    841 	 */
    842 	dge_reset(sc);
    843 
    844 	/*
    845 	 * Reset the PHY.
    846 	 */
    847 	dge_xgmii_reset(sc);
    848 
    849 	/*
    850 	 * Read in EEPROM data.
    851 	 */
    852 	if (dge_read_eeprom(sc)) {
    853 		aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
    854 		return;
    855 	}
    856 
    857 	/*
    858 	 * Get the ethernet address.
    859 	 */
    860 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    861 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    862 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    863 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    864 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    865 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    866 
    867 	aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
    868 	    ether_sprintf(enaddr));
    869 
    870 	/*
    871 	 * Setup media stuff.
    872 	 */
    873         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    874             dge_xgmii_mediastatus);
    875         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    876         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    877 
    878 	ifp = &sc->sc_ethercom.ec_if;
    879 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    880 	ifp->if_softc = sc;
    881 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    882 	ifp->if_ioctl = dge_ioctl;
    883 	ifp->if_start = dge_start;
    884 	ifp->if_watchdog = dge_watchdog;
    885 	ifp->if_init = dge_init;
    886 	ifp->if_stop = dge_stop;
    887 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    888 	IFQ_SET_READY(&ifp->if_snd);
    889 
    890 	sc->sc_ethercom.ec_capabilities |=
    891 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    892 
    893 	/*
    894 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    895 	 */
    896 	ifp->if_capabilities |=
    897 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    898 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    899 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    900 
    901 	/*
    902 	 * Attach the interface.
    903 	 */
    904 	if_attach(ifp);
    905 	ether_ifattach(ifp, enaddr);
    906 #if NRND > 0
    907 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    908 	    RND_TYPE_NET, 0);
    909 #endif
    910 
    911 #ifdef DGE_EVENT_COUNTERS
    912 	/* Fix segment event naming */
    913 	if (dge_txseg_evcnt_names == NULL) {
    914 		dge_txseg_evcnt_names =
    915 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    916 		for (i = 0; i < DGE_NTXSEGS; i++)
    917 			snprintf((*dge_txseg_evcnt_names)[i],
    918 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    919 	}
    920 
    921 	/* Attach event counters. */
    922 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    923 	    NULL, device_xname(&sc->sc_dev), "txsstall");
    924 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    925 	    NULL, device_xname(&sc->sc_dev), "txdstall");
    926 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    927 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
    928 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    929 	    NULL, device_xname(&sc->sc_dev), "txdw");
    930 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    931 	    NULL, device_xname(&sc->sc_dev), "txqe");
    932 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    933 	    NULL, device_xname(&sc->sc_dev), "rxintr");
    934 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    935 	    NULL, device_xname(&sc->sc_dev), "linkintr");
    936 
    937 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    938 	    NULL, device_xname(&sc->sc_dev), "rxipsum");
    939 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    940 	    NULL, device_xname(&sc->sc_dev), "rxtusum");
    941 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    942 	    NULL, device_xname(&sc->sc_dev), "txipsum");
    943 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    944 	    NULL, device_xname(&sc->sc_dev), "txtusum");
    945 
    946 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    947 	    NULL, device_xname(&sc->sc_dev), "txctx init");
    948 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    949 	    NULL, device_xname(&sc->sc_dev), "txctx hit");
    950 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    951 	    NULL, device_xname(&sc->sc_dev), "txctx miss");
    952 
    953 	for (i = 0; i < DGE_NTXSEGS; i++)
    954 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    955 		    NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    956 
    957 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    958 	    NULL, device_xname(&sc->sc_dev), "txdrop");
    959 
    960 #endif /* DGE_EVENT_COUNTERS */
    961 
    962 	/*
    963 	 * Make sure the interface is shutdown during reboot.
    964 	 */
    965 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
    966 		pmf_class_network_register(self, ifp);
    967 	else
    968 		aprint_error_dev(self, "couldn't establish power handler\n");
    969 
    970 	return;
    971 
    972 	/*
    973 	 * Free any resources we've allocated during the failed attach
    974 	 * attempt.  Do this in reverse order and fall through.
    975 	 */
    976  fail_5:
    977 	for (i = 0; i < DGE_NRXDESC; i++) {
    978 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    979 			bus_dmamap_destroy(sc->sc_dmat,
    980 			    sc->sc_rxsoft[i].rxs_dmamap);
    981 	}
    982  fail_4:
    983 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    984 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    985 			bus_dmamap_destroy(sc->sc_dmat,
    986 			    sc->sc_txsoft[i].txs_dmamap);
    987 	}
    988 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    989  fail_3:
    990 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    991  fail_2:
    992 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    993 	    sizeof(struct dge_control_data));
    994  fail_1:
    995 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    996  fail_0:
    997 	return;
    998 }
    999 
   1000 /*
   1001  * dge_shutdown:
   1002  *
   1003  *	Make sure the interface is stopped at reboot time.
   1004  */
   1005 static bool
   1006 dge_shutdown(device_t self, int howto)
   1007 {
   1008 	struct dge_softc *sc;
   1009 
   1010 	sc = device_private(self);
   1011 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1012 
   1013 	return true;
   1014 }
   1015 
   1016 /*
   1017  * dge_tx_cksum:
   1018  *
   1019  *	Set up TCP/IP checksumming parameters for the
   1020  *	specified packet.
   1021  */
   1022 static int
   1023 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1024 {
   1025 	struct mbuf *m0 = txs->txs_mbuf;
   1026 	struct dge_ctdes *t;
   1027 	uint32_t ipcs, tucs;
   1028 	struct ether_header *eh;
   1029 	int offset, iphl;
   1030 	uint8_t fields = 0;
   1031 
   1032 	/*
   1033 	 * XXX It would be nice if the mbuf pkthdr had offset
   1034 	 * fields for the protocol headers.
   1035 	 */
   1036 
   1037 	eh = mtod(m0, struct ether_header *);
   1038 	switch (htons(eh->ether_type)) {
   1039 	case ETHERTYPE_IP:
   1040 		offset = ETHER_HDR_LEN;
   1041 		break;
   1042 
   1043 	case ETHERTYPE_VLAN:
   1044 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1045 		break;
   1046 
   1047 	default:
   1048 		/*
   1049 		 * Don't support this protocol or encapsulation.
   1050 		 */
   1051 		*fieldsp = 0;
   1052 		return (0);
   1053 	}
   1054 
   1055 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1056 
   1057 	/*
   1058 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1059 	 * offload feature, if we load the context descriptor, we
   1060 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1061 	 */
   1062 
   1063 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1064 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1065 		fields |= TDESC_POPTS_IXSM;
   1066 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1067 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1068 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1069 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1070 		/* Use the cached value. */
   1071 		ipcs = sc->sc_txctx_ipcs;
   1072 	} else {
   1073 		/* Just initialize it to the likely value anyway. */
   1074 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1075 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1076 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1077 	}
   1078 	DPRINTF(DGE_DEBUG_CKSUM,
   1079 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1080 	    device_xname(&sc->sc_dev), offset, ipcs));
   1081 
   1082 	offset += iphl;
   1083 
   1084 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1085 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1086 		fields |= TDESC_POPTS_TXSM;
   1087 		tucs = DGE_TCPIP_TUCSS(offset) |
   1088 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1089 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1090 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1091 		/* Use the cached value. */
   1092 		tucs = sc->sc_txctx_tucs;
   1093 	} else {
   1094 		/* Just initialize it to a valid TCP context. */
   1095 		tucs = DGE_TCPIP_TUCSS(offset) |
   1096 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1097 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1098 	}
   1099 
   1100 	DPRINTF(DGE_DEBUG_CKSUM,
   1101 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1102 	    device_xname(&sc->sc_dev), offset, tucs));
   1103 
   1104 	if (sc->sc_txctx_ipcs == ipcs &&
   1105 	    sc->sc_txctx_tucs == tucs) {
   1106 		/* Cached context is fine. */
   1107 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1108 	} else {
   1109 		/* Fill in the context descriptor. */
   1110 #ifdef DGE_EVENT_COUNTERS
   1111 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1112 		    sc->sc_txctx_tucs == 0xffffffff)
   1113 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1114 		else
   1115 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1116 #endif
   1117 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1118 		t->dc_tcpip_ipcs = htole32(ipcs);
   1119 		t->dc_tcpip_tucs = htole32(tucs);
   1120 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1121 		t->dc_tcpip_seg = 0;
   1122 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1123 
   1124 		sc->sc_txctx_ipcs = ipcs;
   1125 		sc->sc_txctx_tucs = tucs;
   1126 
   1127 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1128 		txs->txs_ndesc++;
   1129 	}
   1130 
   1131 	*fieldsp = fields;
   1132 
   1133 	return (0);
   1134 }
   1135 
   1136 /*
   1137  * dge_start:		[ifnet interface function]
   1138  *
   1139  *	Start packet transmission on the interface.
   1140  */
   1141 static void
   1142 dge_start(struct ifnet *ifp)
   1143 {
   1144 	struct dge_softc *sc = ifp->if_softc;
   1145 	struct mbuf *m0;
   1146 	struct dge_txsoft *txs;
   1147 	bus_dmamap_t dmamap;
   1148 	int error, nexttx, lasttx = -1, ofree, seg;
   1149 	uint32_t cksumcmd;
   1150 	uint8_t cksumfields;
   1151 
   1152 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1153 		return;
   1154 
   1155 	/*
   1156 	 * Remember the previous number of free descriptors.
   1157 	 */
   1158 	ofree = sc->sc_txfree;
   1159 
   1160 	/*
   1161 	 * Loop through the send queue, setting up transmit descriptors
   1162 	 * until we drain the queue, or use up all available transmit
   1163 	 * descriptors.
   1164 	 */
   1165 	for (;;) {
   1166 		/* Grab a packet off the queue. */
   1167 		IFQ_POLL(&ifp->if_snd, m0);
   1168 		if (m0 == NULL)
   1169 			break;
   1170 
   1171 		DPRINTF(DGE_DEBUG_TX,
   1172 		    ("%s: TX: have packet to transmit: %p\n",
   1173 		    device_xname(&sc->sc_dev), m0));
   1174 
   1175 		/* Get a work queue entry. */
   1176 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1177 			dge_txintr(sc);
   1178 			if (sc->sc_txsfree == 0) {
   1179 				DPRINTF(DGE_DEBUG_TX,
   1180 				    ("%s: TX: no free job descriptors\n",
   1181 					device_xname(&sc->sc_dev)));
   1182 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1183 				break;
   1184 			}
   1185 		}
   1186 
   1187 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1188 		dmamap = txs->txs_dmamap;
   1189 
   1190 		/*
   1191 		 * Load the DMA map.  If this fails, the packet either
   1192 		 * didn't fit in the allotted number of segments, or we
   1193 		 * were short on resources.  For the too-many-segments
   1194 		 * case, we simply report an error and drop the packet,
   1195 		 * since we can't sanely copy a jumbo packet to a single
   1196 		 * buffer.
   1197 		 */
   1198 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1199 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1200 		if (error) {
   1201 			if (error == EFBIG) {
   1202 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1203 				printf("%s: Tx packet consumes too many "
   1204 				    "DMA segments, dropping...\n",
   1205 				    device_xname(&sc->sc_dev));
   1206 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1207 				m_freem(m0);
   1208 				continue;
   1209 			}
   1210 			/*
   1211 			 * Short on resources, just stop for now.
   1212 			 */
   1213 			DPRINTF(DGE_DEBUG_TX,
   1214 			    ("%s: TX: dmamap load failed: %d\n",
   1215 			    device_xname(&sc->sc_dev), error));
   1216 			break;
   1217 		}
   1218 
   1219 		/*
   1220 		 * Ensure we have enough descriptors free to describe
   1221 		 * the packet.  Note, we always reserve one descriptor
   1222 		 * at the end of the ring due to the semantics of the
   1223 		 * TDT register, plus one more in the event we need
   1224 		 * to re-load checksum offload context.
   1225 		 */
   1226 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1227 			/*
   1228 			 * Not enough free descriptors to transmit this
   1229 			 * packet.  We haven't committed anything yet,
   1230 			 * so just unload the DMA map, put the packet
   1231 			 * pack on the queue, and punt.  Notify the upper
   1232 			 * layer that there are no more slots left.
   1233 			 */
   1234 			DPRINTF(DGE_DEBUG_TX,
   1235 			    ("%s: TX: need %d descriptors, have %d\n",
   1236 			    device_xname(&sc->sc_dev), dmamap->dm_nsegs,
   1237 			    sc->sc_txfree - 1));
   1238 			ifp->if_flags |= IFF_OACTIVE;
   1239 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1240 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1241 			break;
   1242 		}
   1243 
   1244 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1245 
   1246 		/*
   1247 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1248 		 */
   1249 
   1250 		/* Sync the DMA map. */
   1251 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1252 		    BUS_DMASYNC_PREWRITE);
   1253 
   1254 		DPRINTF(DGE_DEBUG_TX,
   1255 		    ("%s: TX: packet has %d DMA segments\n",
   1256 		    device_xname(&sc->sc_dev), dmamap->dm_nsegs));
   1257 
   1258 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1259 
   1260 		/*
   1261 		 * Store a pointer to the packet so that we can free it
   1262 		 * later.
   1263 		 *
   1264 		 * Initially, we consider the number of descriptors the
   1265 		 * packet uses the number of DMA segments.  This may be
   1266 		 * incremented by 1 if we do checksum offload (a descriptor
   1267 		 * is used to set the checksum context).
   1268 		 */
   1269 		txs->txs_mbuf = m0;
   1270 		txs->txs_firstdesc = sc->sc_txnext;
   1271 		txs->txs_ndesc = dmamap->dm_nsegs;
   1272 
   1273 		/*
   1274 		 * Set up checksum offload parameters for
   1275 		 * this packet.
   1276 		 */
   1277 		if (m0->m_pkthdr.csum_flags &
   1278 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1279 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1280 				/* Error message already displayed. */
   1281 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1282 				continue;
   1283 			}
   1284 		} else {
   1285 			cksumfields = 0;
   1286 		}
   1287 
   1288 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1289 
   1290 		/*
   1291 		 * Initialize the transmit descriptor.
   1292 		 */
   1293 		for (nexttx = sc->sc_txnext, seg = 0;
   1294 		     seg < dmamap->dm_nsegs;
   1295 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1296 			/*
   1297 			 * Note: we currently only use 32-bit DMA
   1298 			 * addresses.
   1299 			 */
   1300 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1301 			sc->sc_txdescs[nexttx].dt_baddrl =
   1302 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1303 			sc->sc_txdescs[nexttx].dt_ctl =
   1304 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1305 			sc->sc_txdescs[nexttx].dt_status = 0;
   1306 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1307 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1308 			lasttx = nexttx;
   1309 
   1310 			DPRINTF(DGE_DEBUG_TX,
   1311 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1312 			    device_xname(&sc->sc_dev), nexttx,
   1313 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
   1314 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
   1315 		}
   1316 
   1317 		KASSERT(lasttx != -1);
   1318 
   1319 		/*
   1320 		 * Set up the command byte on the last descriptor of
   1321 		 * the packet.  If we're in the interrupt delay window,
   1322 		 * delay the interrupt.
   1323 		 */
   1324 		sc->sc_txdescs[lasttx].dt_ctl |=
   1325 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1326 
   1327 		txs->txs_lastdesc = lasttx;
   1328 
   1329 		DPRINTF(DGE_DEBUG_TX,
   1330 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
   1331 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1332 
   1333 		/* Sync the descriptors we're using. */
   1334 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1335 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1336 
   1337 		/* Give the packet to the chip. */
   1338 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1339 
   1340 		DPRINTF(DGE_DEBUG_TX,
   1341 		    ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
   1342 
   1343 		DPRINTF(DGE_DEBUG_TX,
   1344 		    ("%s: TX: finished transmitting packet, job %d\n",
   1345 		    device_xname(&sc->sc_dev), sc->sc_txsnext));
   1346 
   1347 		/* Advance the tx pointer. */
   1348 		sc->sc_txfree -= txs->txs_ndesc;
   1349 		sc->sc_txnext = nexttx;
   1350 
   1351 		sc->sc_txsfree--;
   1352 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1353 
   1354 #if NBPFILTER > 0
   1355 		/* Pass the packet to any BPF listeners. */
   1356 		if (ifp->if_bpf)
   1357 			bpf_mtap(ifp->if_bpf, m0);
   1358 #endif /* NBPFILTER > 0 */
   1359 	}
   1360 
   1361 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1362 		/* No more slots; notify upper layer. */
   1363 		ifp->if_flags |= IFF_OACTIVE;
   1364 	}
   1365 
   1366 	if (sc->sc_txfree != ofree) {
   1367 		/* Set a watchdog timer in case the chip flakes out. */
   1368 		ifp->if_timer = 5;
   1369 	}
   1370 }
   1371 
   1372 /*
   1373  * dge_watchdog:		[ifnet interface function]
   1374  *
   1375  *	Watchdog timer handler.
   1376  */
   1377 static void
   1378 dge_watchdog(struct ifnet *ifp)
   1379 {
   1380 	struct dge_softc *sc = ifp->if_softc;
   1381 
   1382 	/*
   1383 	 * Since we're using delayed interrupts, sweep up
   1384 	 * before we report an error.
   1385 	 */
   1386 	dge_txintr(sc);
   1387 
   1388 	if (sc->sc_txfree != DGE_NTXDESC) {
   1389 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1390 		    device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1391 		    sc->sc_txnext);
   1392 		ifp->if_oerrors++;
   1393 
   1394 		/* Reset the interface. */
   1395 		(void) dge_init(ifp);
   1396 	}
   1397 
   1398 	/* Try to get more packets going. */
   1399 	dge_start(ifp);
   1400 }
   1401 
   1402 /*
   1403  * dge_ioctl:		[ifnet interface function]
   1404  *
   1405  *	Handle control requests from the operator.
   1406  */
   1407 static int
   1408 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1409 {
   1410 	struct dge_softc *sc = ifp->if_softc;
   1411 	struct ifreq *ifr = (struct ifreq *) data;
   1412 	pcireg_t preg;
   1413 	int s, error, mmrbc;
   1414 
   1415 	s = splnet();
   1416 
   1417 	switch (cmd) {
   1418 	case SIOCSIFMEDIA:
   1419 	case SIOCGIFMEDIA:
   1420 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1421 		break;
   1422 
   1423 	case SIOCSIFMTU:
   1424 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1425 			error = EINVAL;
   1426 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1427 			break;
   1428 		else if (ifp->if_flags & IFF_UP)
   1429 			error = (*ifp->if_init)(ifp);
   1430 		else
   1431 			error = 0;
   1432 		break;
   1433 
   1434         case SIOCSIFFLAGS:
   1435 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1436 			break;
   1437 		/* extract link flags */
   1438 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1439 		    (ifp->if_flags & IFF_LINK1) == 0)
   1440 			mmrbc = PCIX_MMRBC_512;
   1441 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1442 		    (ifp->if_flags & IFF_LINK1) != 0)
   1443 			mmrbc = PCIX_MMRBC_1024;
   1444 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1445 		    (ifp->if_flags & IFF_LINK1) == 0)
   1446 			mmrbc = PCIX_MMRBC_2048;
   1447 		else
   1448 			mmrbc = PCIX_MMRBC_4096;
   1449 		if (mmrbc != sc->sc_mmrbc) {
   1450 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1451 			preg &= ~PCIX_MMRBC_MSK;
   1452 			preg |= mmrbc;
   1453 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1454 			sc->sc_mmrbc = mmrbc;
   1455 		}
   1456                 /* FALLTHROUGH */
   1457 	default:
   1458 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1459 			break;
   1460 
   1461 		error = 0;
   1462 
   1463 		if (cmd == SIOCSIFCAP)
   1464 			error = (*ifp->if_init)(ifp);
   1465 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1466 			;
   1467 		else if (ifp->if_flags & IFF_RUNNING) {
   1468 			/*
   1469 			 * Multicast list has changed; set the hardware filter
   1470 			 * accordingly.
   1471 			 */
   1472 			dge_set_filter(sc);
   1473 		}
   1474 		break;
   1475 	}
   1476 
   1477 	/* Try to get more packets going. */
   1478 	dge_start(ifp);
   1479 
   1480 	splx(s);
   1481 	return (error);
   1482 }
   1483 
   1484 /*
   1485  * dge_intr:
   1486  *
   1487  *	Interrupt service routine.
   1488  */
   1489 static int
   1490 dge_intr(void *arg)
   1491 {
   1492 	struct dge_softc *sc = arg;
   1493 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1494 	uint32_t icr;
   1495 	int wantinit, handled = 0;
   1496 
   1497 	for (wantinit = 0; wantinit == 0;) {
   1498 		icr = CSR_READ(sc, DGE_ICR);
   1499 		if ((icr & sc->sc_icr) == 0)
   1500 			break;
   1501 
   1502 #if 0 /*NRND > 0*/
   1503 		if (RND_ENABLED(&sc->rnd_source))
   1504 			rnd_add_uint32(&sc->rnd_source, icr);
   1505 #endif
   1506 
   1507 		handled = 1;
   1508 
   1509 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1510 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1511 			DPRINTF(DGE_DEBUG_RX,
   1512 			    ("%s: RX: got Rx intr 0x%08x\n",
   1513 			    device_xname(&sc->sc_dev),
   1514 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1515 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1516 		}
   1517 #endif
   1518 		dge_rxintr(sc);
   1519 
   1520 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1521 		if (icr & ICR_TXDW) {
   1522 			DPRINTF(DGE_DEBUG_TX,
   1523 			    ("%s: TX: got TXDW interrupt\n",
   1524 			    device_xname(&sc->sc_dev)));
   1525 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1526 		}
   1527 		if (icr & ICR_TXQE)
   1528 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1529 #endif
   1530 		dge_txintr(sc);
   1531 
   1532 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1533 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1534 			dge_linkintr(sc, icr);
   1535 		}
   1536 
   1537 		if (icr & ICR_RXO) {
   1538 			printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
   1539 			wantinit = 1;
   1540 		}
   1541 	}
   1542 
   1543 	if (handled) {
   1544 		if (wantinit)
   1545 			dge_init(ifp);
   1546 
   1547 		/* Try to get more packets going. */
   1548 		dge_start(ifp);
   1549 	}
   1550 
   1551 	return (handled);
   1552 }
   1553 
   1554 /*
   1555  * dge_txintr:
   1556  *
   1557  *	Helper; handle transmit interrupts.
   1558  */
   1559 static void
   1560 dge_txintr(struct dge_softc *sc)
   1561 {
   1562 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1563 	struct dge_txsoft *txs;
   1564 	uint8_t status;
   1565 	int i;
   1566 
   1567 	ifp->if_flags &= ~IFF_OACTIVE;
   1568 
   1569 	/*
   1570 	 * Go through the Tx list and free mbufs for those
   1571 	 * frames which have been transmitted.
   1572 	 */
   1573 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1574 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1575 		txs = &sc->sc_txsoft[i];
   1576 
   1577 		DPRINTF(DGE_DEBUG_TX,
   1578 		    ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
   1579 
   1580 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1581 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1582 
   1583 		status =
   1584 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1585 		if ((status & TDESC_STA_DD) == 0) {
   1586 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1587 			    BUS_DMASYNC_PREREAD);
   1588 			break;
   1589 		}
   1590 
   1591 		DPRINTF(DGE_DEBUG_TX,
   1592 		    ("%s: TX: job %d done: descs %d..%d\n",
   1593 		    device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
   1594 		    txs->txs_lastdesc));
   1595 
   1596 		ifp->if_opackets++;
   1597 		sc->sc_txfree += txs->txs_ndesc;
   1598 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1599 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1600 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1601 		m_freem(txs->txs_mbuf);
   1602 		txs->txs_mbuf = NULL;
   1603 	}
   1604 
   1605 	/* Update the dirty transmit buffer pointer. */
   1606 	sc->sc_txsdirty = i;
   1607 	DPRINTF(DGE_DEBUG_TX,
   1608 	    ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
   1609 
   1610 	/*
   1611 	 * If there are no more pending transmissions, cancel the watchdog
   1612 	 * timer.
   1613 	 */
   1614 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1615 		ifp->if_timer = 0;
   1616 }
   1617 
   1618 /*
   1619  * dge_rxintr:
   1620  *
   1621  *	Helper; handle receive interrupts.
   1622  */
   1623 static void
   1624 dge_rxintr(struct dge_softc *sc)
   1625 {
   1626 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1627 	struct dge_rxsoft *rxs;
   1628 	struct mbuf *m;
   1629 	int i, len;
   1630 	uint8_t status, errors;
   1631 
   1632 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1633 		rxs = &sc->sc_rxsoft[i];
   1634 
   1635 		DPRINTF(DGE_DEBUG_RX,
   1636 		    ("%s: RX: checking descriptor %d\n",
   1637 		    device_xname(&sc->sc_dev), i));
   1638 
   1639 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1640 
   1641 		status = sc->sc_rxdescs[i].dr_status;
   1642 		errors = sc->sc_rxdescs[i].dr_errors;
   1643 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1644 
   1645 		if ((status & RDESC_STS_DD) == 0) {
   1646 			/*
   1647 			 * We have processed all of the receive descriptors.
   1648 			 */
   1649 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1650 			break;
   1651 		}
   1652 
   1653 		if (__predict_false(sc->sc_rxdiscard)) {
   1654 			DPRINTF(DGE_DEBUG_RX,
   1655 			    ("%s: RX: discarding contents of descriptor %d\n",
   1656 			    device_xname(&sc->sc_dev), i));
   1657 			DGE_INIT_RXDESC(sc, i);
   1658 			if (status & RDESC_STS_EOP) {
   1659 				/* Reset our state. */
   1660 				DPRINTF(DGE_DEBUG_RX,
   1661 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1662 				    device_xname(&sc->sc_dev)));
   1663 				sc->sc_rxdiscard = 0;
   1664 			}
   1665 			continue;
   1666 		}
   1667 
   1668 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1669 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1670 
   1671 		m = rxs->rxs_mbuf;
   1672 
   1673 		/*
   1674 		 * Add a new receive buffer to the ring.
   1675 		 */
   1676 		if (dge_add_rxbuf(sc, i) != 0) {
   1677 			/*
   1678 			 * Failed, throw away what we've done so
   1679 			 * far, and discard the rest of the packet.
   1680 			 */
   1681 			ifp->if_ierrors++;
   1682 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1683 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1684 			DGE_INIT_RXDESC(sc, i);
   1685 			if ((status & RDESC_STS_EOP) == 0)
   1686 				sc->sc_rxdiscard = 1;
   1687 			if (sc->sc_rxhead != NULL)
   1688 				m_freem(sc->sc_rxhead);
   1689 			DGE_RXCHAIN_RESET(sc);
   1690 			DPRINTF(DGE_DEBUG_RX,
   1691 			    ("%s: RX: Rx buffer allocation failed, "
   1692 			    "dropping packet%s\n", device_xname(&sc->sc_dev),
   1693 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1694 			continue;
   1695 		}
   1696 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1697 
   1698 		DGE_RXCHAIN_LINK(sc, m);
   1699 
   1700 		m->m_len = len;
   1701 
   1702 		DPRINTF(DGE_DEBUG_RX,
   1703 		    ("%s: RX: buffer at %p len %d\n",
   1704 		    device_xname(&sc->sc_dev), m->m_data, len));
   1705 
   1706 		/*
   1707 		 * If this is not the end of the packet, keep
   1708 		 * looking.
   1709 		 */
   1710 		if ((status & RDESC_STS_EOP) == 0) {
   1711 			sc->sc_rxlen += len;
   1712 			DPRINTF(DGE_DEBUG_RX,
   1713 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1714 			    device_xname(&sc->sc_dev), sc->sc_rxlen));
   1715 			continue;
   1716 		}
   1717 
   1718 		/*
   1719 		 * Okay, we have the entire packet now...
   1720 		 */
   1721 		*sc->sc_rxtailp = NULL;
   1722 		m = sc->sc_rxhead;
   1723 		len += sc->sc_rxlen;
   1724 
   1725 		DGE_RXCHAIN_RESET(sc);
   1726 
   1727 		DPRINTF(DGE_DEBUG_RX,
   1728 		    ("%s: RX: have entire packet, len -> %d\n",
   1729 		    device_xname(&sc->sc_dev), len));
   1730 
   1731 		/*
   1732 		 * If an error occurred, update stats and drop the packet.
   1733 		 */
   1734 		if (errors &
   1735 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1736 			ifp->if_ierrors++;
   1737 			if (errors & RDESC_ERR_SE)
   1738 				printf("%s: symbol error\n",
   1739 				    device_xname(&sc->sc_dev));
   1740 			else if (errors & RDESC_ERR_P)
   1741 				printf("%s: parity error\n",
   1742 				    device_xname(&sc->sc_dev));
   1743 			else if (errors & RDESC_ERR_CE)
   1744 				printf("%s: CRC error\n",
   1745 				    device_xname(&sc->sc_dev));
   1746 			m_freem(m);
   1747 			continue;
   1748 		}
   1749 
   1750 		/*
   1751 		 * No errors.  Receive the packet.
   1752 		 */
   1753 		m->m_pkthdr.rcvif = ifp;
   1754 		m->m_pkthdr.len = len;
   1755 
   1756 		/*
   1757 		 * Set up checksum info for this packet.
   1758 		 */
   1759 		if (status & RDESC_STS_IPCS) {
   1760 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1761 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1762 			if (errors & RDESC_ERR_IPE)
   1763 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1764 		}
   1765 		if (status & RDESC_STS_TCPCS) {
   1766 			/*
   1767 			 * Note: we don't know if this was TCP or UDP,
   1768 			 * so we just set both bits, and expect the
   1769 			 * upper layers to deal.
   1770 			 */
   1771 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1772 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1773 			if (errors & RDESC_ERR_TCPE)
   1774 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1775 		}
   1776 
   1777 		ifp->if_ipackets++;
   1778 
   1779 #if NBPFILTER > 0
   1780 		/* Pass this up to any BPF listeners. */
   1781 		if (ifp->if_bpf)
   1782 			bpf_mtap(ifp->if_bpf, m);
   1783 #endif /* NBPFILTER > 0 */
   1784 
   1785 		/* Pass it on. */
   1786 		(*ifp->if_input)(ifp, m);
   1787 	}
   1788 
   1789 	/* Update the receive pointer. */
   1790 	sc->sc_rxptr = i;
   1791 
   1792 	DPRINTF(DGE_DEBUG_RX,
   1793 	    ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
   1794 }
   1795 
   1796 /*
   1797  * dge_linkintr:
   1798  *
   1799  *	Helper; handle link interrupts.
   1800  */
   1801 static void
   1802 dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1803 {
   1804 	uint32_t status;
   1805 
   1806 	if (icr & ICR_LSC) {
   1807 		status = CSR_READ(sc, DGE_STATUS);
   1808 		if (status & STATUS_LINKUP) {
   1809 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1810 			    device_xname(&sc->sc_dev)));
   1811 		} else {
   1812 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1813 			    device_xname(&sc->sc_dev)));
   1814 		}
   1815 	} else if (icr & ICR_RXSEQ) {
   1816 		DPRINTF(DGE_DEBUG_LINK,
   1817 		    ("%s: LINK: Receive sequence error\n",
   1818 		    device_xname(&sc->sc_dev)));
   1819 	}
   1820 	/* XXX - fix errata */
   1821 }
   1822 
   1823 /*
   1824  * dge_reset:
   1825  *
   1826  *	Reset the i82597 chip.
   1827  */
   1828 static void
   1829 dge_reset(struct dge_softc *sc)
   1830 {
   1831 	int i;
   1832 
   1833 	/*
   1834 	 * Do a chip reset.
   1835 	 */
   1836 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1837 
   1838 	delay(10000);
   1839 
   1840 	for (i = 0; i < 1000; i++) {
   1841 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1842 			break;
   1843 		delay(20);
   1844 	}
   1845 
   1846 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1847 		printf("%s: WARNING: reset failed to complete\n",
   1848 		    device_xname(&sc->sc_dev));
   1849         /*
   1850          * Reset the EEPROM logic.
   1851          * This will cause the chip to reread its default values,
   1852 	 * which doesn't happen otherwise (errata).
   1853          */
   1854         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1855         delay(10000);
   1856 }
   1857 
   1858 /*
   1859  * dge_init:		[ifnet interface function]
   1860  *
   1861  *	Initialize the interface.  Must be called at splnet().
   1862  */
   1863 static int
   1864 dge_init(struct ifnet *ifp)
   1865 {
   1866 	struct dge_softc *sc = ifp->if_softc;
   1867 	struct dge_rxsoft *rxs;
   1868 	int i, error = 0;
   1869 	uint32_t reg;
   1870 
   1871 	/*
   1872 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1873 	 * There is a small but measurable benefit to avoiding the adjusment
   1874 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1875 	 * on such platforms.  One possibility is that the DMA itself is
   1876 	 * slightly more efficient if the front of the entire packet (instead
   1877 	 * of the front of the headers) is aligned.
   1878 	 *
   1879 	 * Note we must always set align_tweak to 0 if we are using
   1880 	 * jumbo frames.
   1881 	 */
   1882 #ifdef __NO_STRICT_ALIGNMENT
   1883 	sc->sc_align_tweak = 0;
   1884 #else
   1885 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1886 		sc->sc_align_tweak = 0;
   1887 	else
   1888 		sc->sc_align_tweak = 2;
   1889 #endif /* __NO_STRICT_ALIGNMENT */
   1890 
   1891 	/* Cancel any pending I/O. */
   1892 	dge_stop(ifp, 0);
   1893 
   1894 	/* Reset the chip to a known state. */
   1895 	dge_reset(sc);
   1896 
   1897 	/* Initialize the transmit descriptor ring. */
   1898 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1899 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1900 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1901 	sc->sc_txfree = DGE_NTXDESC;
   1902 	sc->sc_txnext = 0;
   1903 
   1904 	sc->sc_txctx_ipcs = 0xffffffff;
   1905 	sc->sc_txctx_tucs = 0xffffffff;
   1906 
   1907 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1908 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1909 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1910 	CSR_WRITE(sc, DGE_TDH, 0);
   1911 	CSR_WRITE(sc, DGE_TDT, 0);
   1912 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1913 
   1914 #if 0
   1915 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1916 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1917 #endif
   1918 	CSR_WRITE(sc, DGE_RXDCTL,
   1919 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1920 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1921 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1922 
   1923 	/* Initialize the transmit job descriptors. */
   1924 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1925 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1926 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1927 	sc->sc_txsnext = 0;
   1928 	sc->sc_txsdirty = 0;
   1929 
   1930 	/*
   1931 	 * Initialize the receive descriptor and receive job
   1932 	 * descriptor rings.
   1933 	 */
   1934 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1935 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1936 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1937 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1938 	CSR_WRITE(sc, DGE_RDT, 0);
   1939 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1940 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1941 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1942 
   1943 	for (i = 0; i < DGE_NRXDESC; i++) {
   1944 		rxs = &sc->sc_rxsoft[i];
   1945 		if (rxs->rxs_mbuf == NULL) {
   1946 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1947 				printf("%s: unable to allocate or map rx "
   1948 				    "buffer %d, error = %d\n",
   1949 				    device_xname(&sc->sc_dev), i, error);
   1950 				/*
   1951 				 * XXX Should attempt to run with fewer receive
   1952 				 * XXX buffers instead of just failing.
   1953 				 */
   1954 				dge_rxdrain(sc);
   1955 				goto out;
   1956 			}
   1957 		}
   1958 		DGE_INIT_RXDESC(sc, i);
   1959 	}
   1960 	sc->sc_rxptr = DGE_RXSPACE;
   1961 	sc->sc_rxdiscard = 0;
   1962 	DGE_RXCHAIN_RESET(sc);
   1963 
   1964 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1965 		sc->sc_ctrl0 |= CTRL0_JFE;
   1966 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1967 	}
   1968 
   1969 	/* Write the control registers. */
   1970 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1971 
   1972 	/*
   1973 	 * Set up checksum offload parameters.
   1974 	 */
   1975 	reg = CSR_READ(sc, DGE_RXCSUM);
   1976 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1977 		reg |= RXCSUM_IPOFL;
   1978 	else
   1979 		reg &= ~RXCSUM_IPOFL;
   1980 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1981 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1982 	else {
   1983 		reg &= ~RXCSUM_TUOFL;
   1984 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   1985 			reg &= ~RXCSUM_IPOFL;
   1986 	}
   1987 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1988 
   1989 	/*
   1990 	 * Set up the interrupt registers.
   1991 	 */
   1992 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1993 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1994 	    ICR_RXO | ICR_RXT0;
   1995 
   1996 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1997 
   1998 	/*
   1999 	 * Set up the transmit control register.
   2000 	 */
   2001 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   2002 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   2003 
   2004 	/*
   2005 	 * Set up the receive control register; we actually program
   2006 	 * the register when we set the receive filter.  Use multicast
   2007 	 * address offset type 0.
   2008 	 */
   2009 	sc->sc_mchash_type = 0;
   2010 
   2011 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2012 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2013 
   2014 #ifdef DGE_OFFBYONE_RXBUG
   2015 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2016 #else
   2017 	switch(MCLBYTES) {
   2018 	case 2048:
   2019 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2020 		break;
   2021 	case 4096:
   2022 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2023 		break;
   2024 	case 8192:
   2025 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2026 		break;
   2027 	case 16384:
   2028 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2029 		break;
   2030 	default:
   2031 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2032 	}
   2033 #endif
   2034 
   2035 	/* Set the receive filter. */
   2036 	/* Also sets RCTL */
   2037 	dge_set_filter(sc);
   2038 
   2039 	/* ...all done! */
   2040 	ifp->if_flags |= IFF_RUNNING;
   2041 	ifp->if_flags &= ~IFF_OACTIVE;
   2042 
   2043  out:
   2044 	if (error)
   2045 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   2046 	return (error);
   2047 }
   2048 
   2049 /*
   2050  * dge_rxdrain:
   2051  *
   2052  *	Drain the receive queue.
   2053  */
   2054 static void
   2055 dge_rxdrain(struct dge_softc *sc)
   2056 {
   2057 	struct dge_rxsoft *rxs;
   2058 	int i;
   2059 
   2060 	for (i = 0; i < DGE_NRXDESC; i++) {
   2061 		rxs = &sc->sc_rxsoft[i];
   2062 		if (rxs->rxs_mbuf != NULL) {
   2063 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2064 			m_freem(rxs->rxs_mbuf);
   2065 			rxs->rxs_mbuf = NULL;
   2066 		}
   2067 	}
   2068 }
   2069 
   2070 /*
   2071  * dge_stop:		[ifnet interface function]
   2072  *
   2073  *	Stop transmission on the interface.
   2074  */
   2075 static void
   2076 dge_stop(struct ifnet *ifp, int disable)
   2077 {
   2078 	struct dge_softc *sc = ifp->if_softc;
   2079 	struct dge_txsoft *txs;
   2080 	int i;
   2081 
   2082 	/* Stop the transmit and receive processes. */
   2083 	CSR_WRITE(sc, DGE_TCTL, 0);
   2084 	CSR_WRITE(sc, DGE_RCTL, 0);
   2085 
   2086 	/* Release any queued transmit buffers. */
   2087 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2088 		txs = &sc->sc_txsoft[i];
   2089 		if (txs->txs_mbuf != NULL) {
   2090 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2091 			m_freem(txs->txs_mbuf);
   2092 			txs->txs_mbuf = NULL;
   2093 		}
   2094 	}
   2095 
   2096 	/* Mark the interface as down and cancel the watchdog timer. */
   2097 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2098 	ifp->if_timer = 0;
   2099 
   2100 	if (disable)
   2101 		dge_rxdrain(sc);
   2102 }
   2103 
   2104 /*
   2105  * dge_add_rxbuf:
   2106  *
   2107  *	Add a receive buffer to the indiciated descriptor.
   2108  */
   2109 static int
   2110 dge_add_rxbuf(struct dge_softc *sc, int idx)
   2111 {
   2112 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2113 	struct mbuf *m;
   2114 	int error;
   2115 #ifdef DGE_OFFBYONE_RXBUG
   2116 	void *buf;
   2117 #endif
   2118 
   2119 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2120 	if (m == NULL)
   2121 		return (ENOBUFS);
   2122 
   2123 #ifdef DGE_OFFBYONE_RXBUG
   2124 	if ((buf = dge_getbuf(sc)) == NULL)
   2125 		return ENOBUFS;
   2126 
   2127 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2128 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2129 	m->m_flags |= M_EXT_RW;
   2130 
   2131 	if (rxs->rxs_mbuf != NULL)
   2132 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2133 	rxs->rxs_mbuf = m;
   2134 
   2135 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2136 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2137 #else
   2138 	MCLGET(m, M_DONTWAIT);
   2139 	if ((m->m_flags & M_EXT) == 0) {
   2140 		m_freem(m);
   2141 		return (ENOBUFS);
   2142 	}
   2143 
   2144 	if (rxs->rxs_mbuf != NULL)
   2145 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2146 
   2147 	rxs->rxs_mbuf = m;
   2148 
   2149 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2150 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2151 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2152 #endif
   2153 	if (error) {
   2154 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2155 		    device_xname(&sc->sc_dev), idx, error);
   2156 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2157 	}
   2158 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2159 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2160 
   2161 	return (0);
   2162 }
   2163 
   2164 /*
   2165  * dge_set_ral:
   2166  *
   2167  *	Set an entry in the receive address list.
   2168  */
   2169 static void
   2170 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2171 {
   2172 	uint32_t ral_lo, ral_hi;
   2173 
   2174 	if (enaddr != NULL) {
   2175 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2176 		    (enaddr[3] << 24);
   2177 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2178 		ral_hi |= RAH_AV;
   2179 	} else {
   2180 		ral_lo = 0;
   2181 		ral_hi = 0;
   2182 	}
   2183 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2184 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2185 }
   2186 
   2187 /*
   2188  * dge_mchash:
   2189  *
   2190  *	Compute the hash of the multicast address for the 4096-bit
   2191  *	multicast filter.
   2192  */
   2193 static uint32_t
   2194 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2195 {
   2196 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2197 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2198 	uint32_t hash;
   2199 
   2200 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2201 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2202 
   2203 	return (hash & 0xfff);
   2204 }
   2205 
   2206 /*
   2207  * dge_set_filter:
   2208  *
   2209  *	Set up the receive filter.
   2210  */
   2211 static void
   2212 dge_set_filter(struct dge_softc *sc)
   2213 {
   2214 	struct ethercom *ec = &sc->sc_ethercom;
   2215 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2216 	struct ether_multi *enm;
   2217 	struct ether_multistep step;
   2218 	uint32_t hash, reg, bit;
   2219 	int i;
   2220 
   2221 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2222 
   2223 	if (ifp->if_flags & IFF_BROADCAST)
   2224 		sc->sc_rctl |= RCTL_BAM;
   2225 	if (ifp->if_flags & IFF_PROMISC) {
   2226 		sc->sc_rctl |= RCTL_UPE;
   2227 		goto allmulti;
   2228 	}
   2229 
   2230 	/*
   2231 	 * Set the station address in the first RAL slot, and
   2232 	 * clear the remaining slots.
   2233 	 */
   2234 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2235 	for (i = 1; i < RA_TABSIZE; i++)
   2236 		dge_set_ral(sc, NULL, i);
   2237 
   2238 	/* Clear out the multicast table. */
   2239 	for (i = 0; i < MC_TABSIZE; i++)
   2240 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2241 
   2242 	ETHER_FIRST_MULTI(step, ec, enm);
   2243 	while (enm != NULL) {
   2244 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2245 			/*
   2246 			 * We must listen to a range of multicast addresses.
   2247 			 * For now, just accept all multicasts, rather than
   2248 			 * trying to set only those filter bits needed to match
   2249 			 * the range.  (At this time, the only use of address
   2250 			 * ranges is for IP multicast routing, for which the
   2251 			 * range is big enough to require all bits set.)
   2252 			 */
   2253 			goto allmulti;
   2254 		}
   2255 
   2256 		hash = dge_mchash(sc, enm->enm_addrlo);
   2257 
   2258 		reg = (hash >> 5) & 0x7f;
   2259 		bit = hash & 0x1f;
   2260 
   2261 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2262 		hash |= 1U << bit;
   2263 
   2264 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2265 
   2266 		ETHER_NEXT_MULTI(step, enm);
   2267 	}
   2268 
   2269 	ifp->if_flags &= ~IFF_ALLMULTI;
   2270 	goto setit;
   2271 
   2272  allmulti:
   2273 	ifp->if_flags |= IFF_ALLMULTI;
   2274 	sc->sc_rctl |= RCTL_MPE;
   2275 
   2276  setit:
   2277 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2278 }
   2279 
   2280 /*
   2281  * Read in the EEPROM info and verify checksum.
   2282  */
   2283 int
   2284 dge_read_eeprom(struct dge_softc *sc)
   2285 {
   2286 	uint16_t cksum;
   2287 	int i;
   2288 
   2289 	cksum = 0;
   2290 	for (i = 0; i < EEPROM_SIZE; i++) {
   2291 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2292 		cksum += sc->sc_eeprom[i];
   2293 	}
   2294 	return cksum != EEPROM_CKSUM;
   2295 }
   2296 
   2297 
   2298 /*
   2299  * Read a 16-bit word from address addr in the serial EEPROM.
   2300  */
   2301 uint16_t
   2302 dge_eeprom_word(struct dge_softc *sc, int addr)
   2303 {
   2304 	uint32_t reg;
   2305 	uint16_t rval = 0;
   2306 	int i;
   2307 
   2308 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2309 
   2310 	/* Lower clock pulse (and data in to chip) */
   2311 	CSR_WRITE(sc, DGE_EECD, reg);
   2312 	/* Select chip */
   2313 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2314 
   2315 	/* Send read command */
   2316 	dge_eeprom_clockout(sc, 1);
   2317 	dge_eeprom_clockout(sc, 1);
   2318 	dge_eeprom_clockout(sc, 0);
   2319 
   2320 	/* Send address */
   2321 	for (i = 5; i >= 0; i--)
   2322 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2323 
   2324 	/* Read data */
   2325 	for (i = 0; i < 16; i++) {
   2326 		rval <<= 1;
   2327 		rval |= dge_eeprom_clockin(sc);
   2328 	}
   2329 
   2330 	/* Deselect chip */
   2331 	CSR_WRITE(sc, DGE_EECD, reg);
   2332 
   2333 	return rval;
   2334 }
   2335 
   2336 /*
   2337  * Clock out a single bit to the EEPROM.
   2338  */
   2339 void
   2340 dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2341 {
   2342 	int reg;
   2343 
   2344 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2345 	if (bit)
   2346 		reg |= EECD_DI;
   2347 
   2348 	CSR_WRITE(sc, DGE_EECD, reg);
   2349 	delay(2);
   2350 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2351 	delay(2);
   2352 	CSR_WRITE(sc, DGE_EECD, reg);
   2353 	delay(2);
   2354 }
   2355 
   2356 /*
   2357  * Clock in a single bit from EEPROM.
   2358  */
   2359 int
   2360 dge_eeprom_clockin(struct dge_softc *sc)
   2361 {
   2362 	int reg, rv;
   2363 
   2364 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2365 
   2366 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2367 	delay(2);
   2368 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2369 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2370 	delay(2);
   2371 
   2372 	return rv;
   2373 }
   2374 
   2375 static void
   2376 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2377 {
   2378 	struct dge_softc *sc = ifp->if_softc;
   2379 
   2380 	ifmr->ifm_status = IFM_AVALID;
   2381 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2382 
   2383 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2384 		ifmr->ifm_status |= IFM_ACTIVE;
   2385 }
   2386 
   2387 static inline int
   2388 phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2389 {
   2390         int i, mdic;
   2391 
   2392         CSR_WRITE(sc, DGE_MDIO,
   2393 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2394         for (i = 0; i < 10; i++) {
   2395                 delay(10);
   2396                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2397                         break;
   2398         }
   2399         return mdic;
   2400 }
   2401 
   2402 
   2403 static void
   2404 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
   2405 {
   2406 	struct dge_softc *sc = device_private(self);
   2407 	int mdic;
   2408 
   2409 	CSR_WRITE(sc, DGE_MDIRW, val);
   2410 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2411 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2412 		    device_xname(&sc->sc_dev), phy, reg);
   2413 		return;
   2414 	}
   2415 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2416 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2417 		    device_xname(&sc->sc_dev), phy, reg);
   2418 		return;
   2419 	}
   2420 }
   2421 
   2422 static void
   2423 dge_xgmii_reset(struct dge_softc *sc)
   2424 {
   2425 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2426 }
   2427 
   2428 static int
   2429 dge_xgmii_mediachange(struct ifnet *ifp)
   2430 {
   2431 	return 0;
   2432 }
   2433