Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.29
      1 /*	$NetBSD: if_dge.c,v 1.29 2010/01/19 22:07:00 pooka Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  * All rights reserved.
      6  *
      7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	SUNET, Swedish University Computer Network.
     21  * 4. The name of SUNET may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  *
     75  * TODO (in no specific order):
     76  *	HW VLAN support.
     77  *	TSE offloading (needs kernel changes...)
     78  *	RAIDC (receive interrupt delay adaptation)
     79  *	Use memory > 4GB.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.29 2010/01/19 22:07:00 pooka Exp $");
     84 
     85 #include "rnd.h"
     86 
     87 #include <sys/param.h>
     88 #include <sys/systm.h>
     89 #include <sys/callout.h>
     90 #include <sys/mbuf.h>
     91 #include <sys/malloc.h>
     92 #include <sys/kernel.h>
     93 #include <sys/socket.h>
     94 #include <sys/ioctl.h>
     95 #include <sys/errno.h>
     96 #include <sys/device.h>
     97 #include <sys/queue.h>
     98 
     99 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    100 
    101 #if NRND > 0
    102 #include <sys/rnd.h>
    103 #endif
    104 
    105 #include <net/if.h>
    106 #include <net/if_dl.h>
    107 #include <net/if_media.h>
    108 #include <net/if_ether.h>
    109 
    110 #include <net/bpf.h>
    111 
    112 #include <netinet/in.h>			/* XXX for struct ip */
    113 #include <netinet/in_systm.h>		/* XXX for struct ip */
    114 #include <netinet/ip.h>			/* XXX for struct ip */
    115 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    116 
    117 #include <sys/bus.h>
    118 #include <sys/intr.h>
    119 #include <machine/endian.h>
    120 
    121 #include <dev/mii/mii.h>
    122 #include <dev/mii/miivar.h>
    123 #include <dev/mii/mii_bitbang.h>
    124 
    125 #include <dev/pci/pcireg.h>
    126 #include <dev/pci/pcivar.h>
    127 #include <dev/pci/pcidevs.h>
    128 
    129 #include <dev/pci/if_dgereg.h>
    130 
    131 /*
    132  * The receive engine may sometimes become off-by-one when writing back
    133  * chained descriptors.	 Avoid this by allocating a large chunk of
    134  * memory and use if instead (to avoid chained descriptors).
    135  * This only happens with chained descriptors under heavy load.
    136  */
    137 #define DGE_OFFBYONE_RXBUG
    138 
    139 #define DGE_EVENT_COUNTERS
    140 #define DGE_DEBUG
    141 
    142 #ifdef DGE_DEBUG
    143 #define DGE_DEBUG_LINK		0x01
    144 #define DGE_DEBUG_TX		0x02
    145 #define DGE_DEBUG_RX		0x04
    146 #define DGE_DEBUG_CKSUM		0x08
    147 int	dge_debug = 0;
    148 
    149 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    150 #else
    151 #define DPRINTF(x, y)	/* nothing */
    152 #endif /* DGE_DEBUG */
    153 
    154 /*
    155  * Transmit descriptor list size. We allow up to 100 DMA segments per
    156  * packet (Intel reports of jumbo frame packets with as
    157  * many as 80 DMA segments when using 16k buffers).
    158  */
    159 #define DGE_NTXSEGS		100
    160 #define DGE_IFQUEUELEN		20000
    161 #define DGE_TXQUEUELEN		2048
    162 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    163 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    164 #define DGE_NTXDESC		1024
    165 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    166 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    167 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    168 
    169 /*
    170  * Receive descriptor list size.
    171  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    172  * be chained.	Due to the nature of the card (high-speed), keep this
    173  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    174  * which at full speed will be received in just under 3ms.
    175  */
    176 #define DGE_NRXDESC		2048
    177 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    178 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    179 /*
    180  * # of descriptors between head and written descriptors.
    181  * This is to work-around two erratas.
    182  */
    183 #define DGE_RXSPACE		10
    184 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    185 /*
    186  * Receive descriptor fetch threshholds. These are values recommended
    187  * by Intel, do not touch them unless you know what you are doing.
    188  */
    189 #define RXDCTL_PTHRESH_VAL	128
    190 #define RXDCTL_HTHRESH_VAL	16
    191 #define RXDCTL_WTHRESH_VAL	16
    192 
    193 
    194 /*
    195  * Tweakable parameters; default values.
    196  */
    197 #define FCRTH	0x30000 /* Send XOFF water mark */
    198 #define FCRTL	0x28000 /* Send XON water mark */
    199 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    200 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    201 
    202 /*
    203  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    204  * a single clump that maps to a single DMA segment to make serveral things
    205  * easier.
    206  */
    207 struct dge_control_data {
    208 	/*
    209 	 * The transmit descriptors.
    210 	 */
    211 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    212 
    213 	/*
    214 	 * The receive descriptors.
    215 	 */
    216 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    217 };
    218 
    219 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    220 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    221 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    222 
    223 /*
    224  * The DGE interface have a higher max MTU size than normal jumbo frames.
    225  */
    226 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    227 
    228 /*
    229  * Software state for transmit jobs.
    230  */
    231 struct dge_txsoft {
    232 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    233 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    234 	int txs_firstdesc;		/* first descriptor in packet */
    235 	int txs_lastdesc;		/* last descriptor in packet */
    236 	int txs_ndesc;			/* # of descriptors used */
    237 };
    238 
    239 /*
    240  * Software state for receive buffers.	Each descriptor gets a
    241  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    242  * more than one buffer, we chain them together.
    243  */
    244 struct dge_rxsoft {
    245 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    246 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    247 };
    248 
    249 /*
    250  * Software state per device.
    251  */
    252 struct dge_softc {
    253 	struct device sc_dev;		/* generic device information */
    254 	bus_space_tag_t sc_st;		/* bus space tag */
    255 	bus_space_handle_t sc_sh;	/* bus space handle */
    256 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    257 	struct ethercom sc_ethercom;	/* ethernet common data */
    258 
    259 	int sc_flags;			/* flags; see below */
    260 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    261 	int sc_pcix_offset;		/* PCIX capability register offset */
    262 
    263 	pci_chipset_tag_t sc_pc;
    264 	pcitag_t sc_pt;
    265 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    266 
    267 	void *sc_ih;			/* interrupt cookie */
    268 
    269 	struct ifmedia sc_media;
    270 
    271 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    272 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    273 
    274 	int		sc_align_tweak;
    275 
    276 	/*
    277 	 * Software state for the transmit and receive descriptors.
    278 	 */
    279 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    280 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    281 
    282 	/*
    283 	 * Control data structures.
    284 	 */
    285 	struct dge_control_data *sc_control_data;
    286 #define sc_txdescs	sc_control_data->wcd_txdescs
    287 #define sc_rxdescs	sc_control_data->wcd_rxdescs
    288 
    289 #ifdef DGE_EVENT_COUNTERS
    290 	/* Event counters. */
    291 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    292 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    293 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    294 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    295 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    296 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    297 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    298 
    299 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    300 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    301 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    302 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    303 
    304 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    305 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    306 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    307 
    308 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    309 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    310 #endif /* DGE_EVENT_COUNTERS */
    311 
    312 	int	sc_txfree;		/* number of free Tx descriptors */
    313 	int	sc_txnext;		/* next ready Tx descriptor */
    314 
    315 	int	sc_txsfree;		/* number of free Tx jobs */
    316 	int	sc_txsnext;		/* next free Tx job */
    317 	int	sc_txsdirty;		/* dirty Tx jobs */
    318 
    319 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    320 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    321 
    322 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    323 	int	sc_rxdiscard;
    324 	int	sc_rxlen;
    325 	struct mbuf *sc_rxhead;
    326 	struct mbuf *sc_rxtail;
    327 	struct mbuf **sc_rxtailp;
    328 
    329 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    330 	uint32_t sc_icr;		/* prototype interrupt bits */
    331 	uint32_t sc_tctl;		/* prototype TCTL register */
    332 	uint32_t sc_rctl;		/* prototype RCTL register */
    333 
    334 	int sc_mchash_type;		/* multicast filter offset */
    335 
    336 	uint16_t sc_eeprom[EEPROM_SIZE];
    337 
    338 #if NRND > 0
    339 	rndsource_element_t rnd_source; /* random source */
    340 #endif
    341 #ifdef DGE_OFFBYONE_RXBUG
    342 	void *sc_bugbuf;
    343 	SLIST_HEAD(, rxbugentry) sc_buglist;
    344 	bus_dmamap_t sc_bugmap;
    345 	struct rxbugentry *sc_entry;
    346 #endif
    347 };
    348 
    349 #define DGE_RXCHAIN_RESET(sc)						\
    350 do {									\
    351 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    352 	*(sc)->sc_rxtailp = NULL;					\
    353 	(sc)->sc_rxlen = 0;						\
    354 } while (/*CONSTCOND*/0)
    355 
    356 #define DGE_RXCHAIN_LINK(sc, m)						\
    357 do {									\
    358 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    359 	(sc)->sc_rxtailp = &(m)->m_next;				\
    360 } while (/*CONSTCOND*/0)
    361 
    362 /* sc_flags */
    363 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    364 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    365 
    366 #ifdef DGE_EVENT_COUNTERS
    367 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    368 #else
    369 #define DGE_EVCNT_INCR(ev)	/* nothing */
    370 #endif
    371 
    372 #define CSR_READ(sc, reg)						\
    373 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    374 #define CSR_WRITE(sc, reg, val)						\
    375 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    376 
    377 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    378 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    379 
    380 #define DGE_CDTXSYNC(sc, x, n, ops)					\
    381 do {									\
    382 	int __x, __n;							\
    383 									\
    384 	__x = (x);							\
    385 	__n = (n);							\
    386 									\
    387 	/* If it will wrap around, sync to the end of the ring. */	\
    388 	if ((__x + __n) > DGE_NTXDESC) {				\
    389 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    390 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    391 		    (DGE_NTXDESC - __x), (ops));			\
    392 		__n -= (DGE_NTXDESC - __x);				\
    393 		__x = 0;						\
    394 	}								\
    395 									\
    396 	/* Now sync whatever is left. */				\
    397 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    398 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    399 } while (/*CONSTCOND*/0)
    400 
    401 #define DGE_CDRXSYNC(sc, x, ops)						\
    402 do {									\
    403 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    404 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    405 } while (/*CONSTCOND*/0)
    406 
    407 #ifdef DGE_OFFBYONE_RXBUG
    408 #define DGE_INIT_RXDESC(sc, x)						\
    409 do {									\
    410 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    411 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    412 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    413 									\
    414 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    415 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    416 	__rxd->dr_baddrh = 0;						\
    417 	__rxd->dr_len = 0;						\
    418 	__rxd->dr_cksum = 0;						\
    419 	__rxd->dr_status = 0;						\
    420 	__rxd->dr_errors = 0;						\
    421 	__rxd->dr_special = 0;						\
    422 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    423 									\
    424 	CSR_WRITE((sc), DGE_RDT, (x));					\
    425 } while (/*CONSTCOND*/0)
    426 #else
    427 #define DGE_INIT_RXDESC(sc, x)						\
    428 do {									\
    429 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    430 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    431 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    432 									\
    433 	/*								\
    434 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    435 	 * so that the payload after the Ethernet header is aligned	\
    436 	 * to a 4-byte boundary.					\
    437 	 *								\
    438 	 * XXX BRAINDAMAGE ALERT!					\
    439 	 * The stupid chip uses the same size for every buffer, which	\
    440 	 * is set in the Receive Control register.  We are using the 2K \
    441 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    442 	 * reason, we can't "scoot" packets longer than the standard	\
    443 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    444 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    445 	 * the upper layer copy the headers.				\
    446 	 */								\
    447 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    448 									\
    449 	__rxd->dr_baddrl =						\
    450 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    451 		(sc)->sc_align_tweak);					\
    452 	__rxd->dr_baddrh = 0;						\
    453 	__rxd->dr_len = 0;						\
    454 	__rxd->dr_cksum = 0;						\
    455 	__rxd->dr_status = 0;						\
    456 	__rxd->dr_errors = 0;						\
    457 	__rxd->dr_special = 0;						\
    458 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    459 									\
    460 	CSR_WRITE((sc), DGE_RDT, (x));					\
    461 } while (/*CONSTCOND*/0)
    462 #endif
    463 
    464 #ifdef DGE_OFFBYONE_RXBUG
    465 /*
    466  * Allocation constants.  Much memory may be used for this.
    467  */
    468 #ifndef DGE_BUFFER_SIZE
    469 #define DGE_BUFFER_SIZE DGE_MAX_MTU
    470 #endif
    471 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    472 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    473 
    474 struct rxbugentry {
    475 	SLIST_ENTRY(rxbugentry) rb_entry;
    476 	int rb_slot;
    477 };
    478 
    479 static int
    480 dge_alloc_rcvmem(struct dge_softc *sc)
    481 {
    482 	char *ptr, *kva;
    483 	bus_dma_segment_t seg;
    484 	int i, rseg, state, error;
    485 	struct rxbugentry *entry;
    486 
    487 	state = error = 0;
    488 
    489 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    490 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    491 		aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
    492 		return ENOBUFS;
    493 	}
    494 
    495 	state = 1;
    496 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    497 	    BUS_DMA_NOWAIT)) {
    498 		aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
    499 		    (int)DGE_RXMEM);
    500 		error = ENOBUFS;
    501 		goto out;
    502 	}
    503 
    504 	state = 2;
    505 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    506 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    507 		aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
    508 		error = ENOBUFS;
    509 		goto out;
    510 	}
    511 
    512 	state = 3;
    513 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    514 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    515 		aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
    516 		error = ENOBUFS;
    517 		goto out;
    518 	}
    519 
    520 	state = 4;
    521 	sc->sc_bugbuf = (void *)kva;
    522 	SLIST_INIT(&sc->sc_buglist);
    523 
    524 	/*
    525 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    526 	 * in an array.
    527 	 */
    528 	ptr = sc->sc_bugbuf;
    529 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    530 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    531 		error = ENOBUFS;
    532 		goto out;
    533 	}
    534 	sc->sc_entry = entry;
    535 	for (i = 0; i < DGE_NBUFFERS; i++) {
    536 		entry[i].rb_slot = i;
    537 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    538 	}
    539 out:
    540 	if (error != 0) {
    541 		switch (state) {
    542 		case 4:
    543 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    544 		case 3:
    545 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    546 		case 2:
    547 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    548 		case 1:
    549 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    550 			break;
    551 		default:
    552 			break;
    553 		}
    554 	}
    555 
    556 	return error;
    557 }
    558 
    559 /*
    560  * Allocate a jumbo buffer.
    561  */
    562 static void *
    563 dge_getbuf(struct dge_softc *sc)
    564 {
    565 	struct rxbugentry *entry;
    566 
    567 	entry = SLIST_FIRST(&sc->sc_buglist);
    568 
    569 	if (entry == NULL) {
    570 		printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
    571 		return(NULL);
    572 	}
    573 
    574 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    575 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    576 }
    577 
    578 /*
    579  * Release a jumbo buffer.
    580  */
    581 static void
    582 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    583 {
    584 	struct rxbugentry *entry;
    585 	struct dge_softc *sc;
    586 	int i, s;
    587 
    588 	/* Extract the softc struct pointer. */
    589 	sc = (struct dge_softc *)arg;
    590 
    591 	if (sc == NULL)
    592 		panic("dge_freebuf: can't find softc pointer!");
    593 
    594 	/* calculate the slot this buffer belongs to */
    595 
    596 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    597 
    598 	if ((i < 0) || (i >= DGE_NBUFFERS))
    599 		panic("dge_freebuf: asked to free buffer %d!", i);
    600 
    601 	s = splvm();
    602 	entry = sc->sc_entry + i;
    603 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    604 
    605 	if (__predict_true(m != NULL))
    606 		pool_cache_put(mb_cache, m);
    607 	splx(s);
    608 }
    609 #endif
    610 
    611 static void	dge_start(struct ifnet *);
    612 static void	dge_watchdog(struct ifnet *);
    613 static int	dge_ioctl(struct ifnet *, u_long, void *);
    614 static int	dge_init(struct ifnet *);
    615 static void	dge_stop(struct ifnet *, int);
    616 
    617 static bool	dge_shutdown(device_t, int);
    618 
    619 static void	dge_reset(struct dge_softc *);
    620 static void	dge_rxdrain(struct dge_softc *);
    621 static int	dge_add_rxbuf(struct dge_softc *, int);
    622 
    623 static void	dge_set_filter(struct dge_softc *);
    624 
    625 static int	dge_intr(void *);
    626 static void	dge_txintr(struct dge_softc *);
    627 static void	dge_rxintr(struct dge_softc *);
    628 static void	dge_linkintr(struct dge_softc *, uint32_t);
    629 
    630 static int	dge_match(device_t, cfdata_t, void *);
    631 static void	dge_attach(device_t, device_t, void *);
    632 
    633 static int	dge_read_eeprom(struct dge_softc *sc);
    634 static int	dge_eeprom_clockin(struct dge_softc *sc);
    635 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    636 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    637 static int	dge_xgmii_mediachange(struct ifnet *);
    638 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    639 static void	dge_xgmii_reset(struct dge_softc *);
    640 static void	dge_xgmii_writereg(device_t, int, int, int);
    641 
    642 
    643 CFATTACH_DECL(dge, sizeof(struct dge_softc),
    644     dge_match, dge_attach, NULL, NULL);
    645 
    646 #ifdef DGE_EVENT_COUNTERS
    647 #if DGE_NTXSEGS > 100
    648 #error Update dge_txseg_evcnt_names
    649 #endif
    650 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    651 #endif /* DGE_EVENT_COUNTERS */
    652 
    653 static int
    654 dge_match(device_t parent, cfdata_t cf, void *aux)
    655 {
    656 	struct pci_attach_args *pa = aux;
    657 
    658 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    659 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    660 		return (1);
    661 
    662 	return (0);
    663 }
    664 
    665 static void
    666 dge_attach(device_t parent, device_t self, void *aux)
    667 {
    668 	struct dge_softc *sc = device_private(self);
    669 	struct pci_attach_args *pa = aux;
    670 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    671 	pci_chipset_tag_t pc = pa->pa_pc;
    672 	pci_intr_handle_t ih;
    673 	const char *intrstr = NULL;
    674 	bus_dma_segment_t seg;
    675 	int i, rseg, error;
    676 	uint8_t enaddr[ETHER_ADDR_LEN];
    677 	pcireg_t preg, memtype;
    678 	uint32_t reg;
    679 
    680 	sc->sc_dmat = pa->pa_dmat;
    681 	sc->sc_pc = pa->pa_pc;
    682 	sc->sc_pt = pa->pa_tag;
    683 
    684 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    685 	aprint_naive(": Ethernet controller\n");
    686 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    687 
    688 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    689         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    690             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    691                 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
    692                 return;
    693         }
    694 
    695 	/* Enable bus mastering */
    696 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    697 	preg |= PCI_COMMAND_MASTER_ENABLE;
    698 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    699 
    700 	/*
    701 	 * Map and establish our interrupt.
    702 	 */
    703 	if (pci_intr_map(pa, &ih)) {
    704 		aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
    705 		return;
    706 	}
    707 	intrstr = pci_intr_string(pc, ih);
    708 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    709 	if (sc->sc_ih == NULL) {
    710 		aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
    711 		if (intrstr != NULL)
    712 			aprint_error(" at %s", intrstr);
    713 		aprint_error("\n");
    714 		return;
    715 	}
    716 	aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
    717 
    718 	/*
    719 	 * Determine a few things about the bus we're connected to.
    720 	 */
    721 	reg = CSR_READ(sc, DGE_STATUS);
    722 	if (reg & STATUS_BUS64)
    723 		sc->sc_flags |= DGE_F_BUS64;
    724 
    725 	sc->sc_flags |= DGE_F_PCIX;
    726 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    727 			       PCI_CAP_PCIX,
    728 			       &sc->sc_pcix_offset, NULL) == 0)
    729 		aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
    730 		    "capability\n");
    731 
    732 	if (sc->sc_flags & DGE_F_PCIX) {
    733 		switch (reg & STATUS_PCIX_MSK) {
    734 		case STATUS_PCIX_66:
    735 			sc->sc_bus_speed = 66;
    736 			break;
    737 		case STATUS_PCIX_100:
    738 			sc->sc_bus_speed = 100;
    739 			break;
    740 		case STATUS_PCIX_133:
    741 			sc->sc_bus_speed = 133;
    742 			break;
    743 		default:
    744 			aprint_error_dev(&sc->sc_dev,
    745 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    746 			    reg & STATUS_PCIX_MSK);
    747 			sc->sc_bus_speed = 66;
    748 		}
    749 	} else
    750 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    751 	aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
    752 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    753 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    754 
    755 	/*
    756 	 * Allocate the control data structures, and create and load the
    757 	 * DMA map for it.
    758 	 */
    759 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    760 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    761 	    0)) != 0) {
    762 		aprint_error_dev(&sc->sc_dev,
    763 		    "unable to allocate control data, error = %d\n",
    764 		    error);
    765 		goto fail_0;
    766 	}
    767 
    768 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    769 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    770 	    0)) != 0) {
    771 		aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
    772 		    error);
    773 		goto fail_1;
    774 	}
    775 
    776 	if ((error = bus_dmamap_create(sc->sc_dmat,
    777 	    sizeof(struct dge_control_data), 1,
    778 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    779 		aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
    780 		    "error = %d\n", error);
    781 		goto fail_2;
    782 	}
    783 
    784 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    785 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    786 	    0)) != 0) {
    787 		aprint_error_dev(&sc->sc_dev,
    788 		    "unable to load control data DMA map, error = %d\n",
    789 		    error);
    790 		goto fail_3;
    791 	}
    792 
    793 #ifdef DGE_OFFBYONE_RXBUG
    794 	if (dge_alloc_rcvmem(sc) != 0)
    795 		return; /* Already complained */
    796 #endif
    797 	/*
    798 	 * Create the transmit buffer DMA maps.
    799 	 */
    800 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    801 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    802 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    803 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    804 			aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
    805 			    "error = %d\n", i, error);
    806 			goto fail_4;
    807 		}
    808 	}
    809 
    810 	/*
    811 	 * Create the receive buffer DMA maps.
    812 	 */
    813 	for (i = 0; i < DGE_NRXDESC; i++) {
    814 #ifdef DGE_OFFBYONE_RXBUG
    815 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    816 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    817 #else
    818 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    819 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    820 #endif
    821 			aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
    822 			    "error = %d\n", i, error);
    823 			goto fail_5;
    824 		}
    825 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    826 	}
    827 
    828 	/*
    829 	 * Set bits in ctrl0 register.
    830 	 * Should get the software defined pins out of EEPROM?
    831 	 */
    832 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    833 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    834 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    835 
    836 	/*
    837 	 * Reset the chip to a known state.
    838 	 */
    839 	dge_reset(sc);
    840 
    841 	/*
    842 	 * Reset the PHY.
    843 	 */
    844 	dge_xgmii_reset(sc);
    845 
    846 	/*
    847 	 * Read in EEPROM data.
    848 	 */
    849 	if (dge_read_eeprom(sc)) {
    850 		aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
    851 		return;
    852 	}
    853 
    854 	/*
    855 	 * Get the ethernet address.
    856 	 */
    857 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    858 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    859 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    860 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    861 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    862 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    863 
    864 	aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
    865 	    ether_sprintf(enaddr));
    866 
    867 	/*
    868 	 * Setup media stuff.
    869 	 */
    870         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    871             dge_xgmii_mediastatus);
    872         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    873         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    874 
    875 	ifp = &sc->sc_ethercom.ec_if;
    876 	strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
    877 	ifp->if_softc = sc;
    878 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    879 	ifp->if_ioctl = dge_ioctl;
    880 	ifp->if_start = dge_start;
    881 	ifp->if_watchdog = dge_watchdog;
    882 	ifp->if_init = dge_init;
    883 	ifp->if_stop = dge_stop;
    884 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    885 	IFQ_SET_READY(&ifp->if_snd);
    886 
    887 	sc->sc_ethercom.ec_capabilities |=
    888 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    889 
    890 	/*
    891 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    892 	 */
    893 	ifp->if_capabilities |=
    894 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    895 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    896 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    897 
    898 	/*
    899 	 * Attach the interface.
    900 	 */
    901 	if_attach(ifp);
    902 	ether_ifattach(ifp, enaddr);
    903 #if NRND > 0
    904 	rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
    905 	    RND_TYPE_NET, 0);
    906 #endif
    907 
    908 #ifdef DGE_EVENT_COUNTERS
    909 	/* Fix segment event naming */
    910 	if (dge_txseg_evcnt_names == NULL) {
    911 		dge_txseg_evcnt_names =
    912 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    913 		for (i = 0; i < DGE_NTXSEGS; i++)
    914 			snprintf((*dge_txseg_evcnt_names)[i],
    915 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    916 	}
    917 
    918 	/* Attach event counters. */
    919 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    920 	    NULL, device_xname(&sc->sc_dev), "txsstall");
    921 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    922 	    NULL, device_xname(&sc->sc_dev), "txdstall");
    923 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    924 	    NULL, device_xname(&sc->sc_dev), "txforceintr");
    925 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    926 	    NULL, device_xname(&sc->sc_dev), "txdw");
    927 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    928 	    NULL, device_xname(&sc->sc_dev), "txqe");
    929 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    930 	    NULL, device_xname(&sc->sc_dev), "rxintr");
    931 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    932 	    NULL, device_xname(&sc->sc_dev), "linkintr");
    933 
    934 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    935 	    NULL, device_xname(&sc->sc_dev), "rxipsum");
    936 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    937 	    NULL, device_xname(&sc->sc_dev), "rxtusum");
    938 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    939 	    NULL, device_xname(&sc->sc_dev), "txipsum");
    940 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    941 	    NULL, device_xname(&sc->sc_dev), "txtusum");
    942 
    943 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    944 	    NULL, device_xname(&sc->sc_dev), "txctx init");
    945 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    946 	    NULL, device_xname(&sc->sc_dev), "txctx hit");
    947 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    948 	    NULL, device_xname(&sc->sc_dev), "txctx miss");
    949 
    950 	for (i = 0; i < DGE_NTXSEGS; i++)
    951 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    952 		    NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    953 
    954 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    955 	    NULL, device_xname(&sc->sc_dev), "txdrop");
    956 
    957 #endif /* DGE_EVENT_COUNTERS */
    958 
    959 	/*
    960 	 * Make sure the interface is shutdown during reboot.
    961 	 */
    962 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
    963 		pmf_class_network_register(self, ifp);
    964 	else
    965 		aprint_error_dev(self, "couldn't establish power handler\n");
    966 
    967 	return;
    968 
    969 	/*
    970 	 * Free any resources we've allocated during the failed attach
    971 	 * attempt.  Do this in reverse order and fall through.
    972 	 */
    973  fail_5:
    974 	for (i = 0; i < DGE_NRXDESC; i++) {
    975 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    976 			bus_dmamap_destroy(sc->sc_dmat,
    977 			    sc->sc_rxsoft[i].rxs_dmamap);
    978 	}
    979  fail_4:
    980 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    981 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    982 			bus_dmamap_destroy(sc->sc_dmat,
    983 			    sc->sc_txsoft[i].txs_dmamap);
    984 	}
    985 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    986  fail_3:
    987 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    988  fail_2:
    989 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    990 	    sizeof(struct dge_control_data));
    991  fail_1:
    992 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    993  fail_0:
    994 	return;
    995 }
    996 
    997 /*
    998  * dge_shutdown:
    999  *
   1000  *	Make sure the interface is stopped at reboot time.
   1001  */
   1002 static bool
   1003 dge_shutdown(device_t self, int howto)
   1004 {
   1005 	struct dge_softc *sc;
   1006 
   1007 	sc = device_private(self);
   1008 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1009 
   1010 	return true;
   1011 }
   1012 
   1013 /*
   1014  * dge_tx_cksum:
   1015  *
   1016  *	Set up TCP/IP checksumming parameters for the
   1017  *	specified packet.
   1018  */
   1019 static int
   1020 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1021 {
   1022 	struct mbuf *m0 = txs->txs_mbuf;
   1023 	struct dge_ctdes *t;
   1024 	uint32_t ipcs, tucs;
   1025 	struct ether_header *eh;
   1026 	int offset, iphl;
   1027 	uint8_t fields = 0;
   1028 
   1029 	/*
   1030 	 * XXX It would be nice if the mbuf pkthdr had offset
   1031 	 * fields for the protocol headers.
   1032 	 */
   1033 
   1034 	eh = mtod(m0, struct ether_header *);
   1035 	switch (htons(eh->ether_type)) {
   1036 	case ETHERTYPE_IP:
   1037 		offset = ETHER_HDR_LEN;
   1038 		break;
   1039 
   1040 	case ETHERTYPE_VLAN:
   1041 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1042 		break;
   1043 
   1044 	default:
   1045 		/*
   1046 		 * Don't support this protocol or encapsulation.
   1047 		 */
   1048 		*fieldsp = 0;
   1049 		return (0);
   1050 	}
   1051 
   1052 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1053 
   1054 	/*
   1055 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1056 	 * offload feature, if we load the context descriptor, we
   1057 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1058 	 */
   1059 
   1060 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1061 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1062 		fields |= TDESC_POPTS_IXSM;
   1063 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1064 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1065 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1066 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1067 		/* Use the cached value. */
   1068 		ipcs = sc->sc_txctx_ipcs;
   1069 	} else {
   1070 		/* Just initialize it to the likely value anyway. */
   1071 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1072 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1073 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1074 	}
   1075 	DPRINTF(DGE_DEBUG_CKSUM,
   1076 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1077 	    device_xname(&sc->sc_dev), offset, ipcs));
   1078 
   1079 	offset += iphl;
   1080 
   1081 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1082 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1083 		fields |= TDESC_POPTS_TXSM;
   1084 		tucs = DGE_TCPIP_TUCSS(offset) |
   1085 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1086 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1087 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1088 		/* Use the cached value. */
   1089 		tucs = sc->sc_txctx_tucs;
   1090 	} else {
   1091 		/* Just initialize it to a valid TCP context. */
   1092 		tucs = DGE_TCPIP_TUCSS(offset) |
   1093 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1094 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1095 	}
   1096 
   1097 	DPRINTF(DGE_DEBUG_CKSUM,
   1098 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1099 	    device_xname(&sc->sc_dev), offset, tucs));
   1100 
   1101 	if (sc->sc_txctx_ipcs == ipcs &&
   1102 	    sc->sc_txctx_tucs == tucs) {
   1103 		/* Cached context is fine. */
   1104 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1105 	} else {
   1106 		/* Fill in the context descriptor. */
   1107 #ifdef DGE_EVENT_COUNTERS
   1108 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1109 		    sc->sc_txctx_tucs == 0xffffffff)
   1110 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1111 		else
   1112 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1113 #endif
   1114 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1115 		t->dc_tcpip_ipcs = htole32(ipcs);
   1116 		t->dc_tcpip_tucs = htole32(tucs);
   1117 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1118 		t->dc_tcpip_seg = 0;
   1119 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1120 
   1121 		sc->sc_txctx_ipcs = ipcs;
   1122 		sc->sc_txctx_tucs = tucs;
   1123 
   1124 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1125 		txs->txs_ndesc++;
   1126 	}
   1127 
   1128 	*fieldsp = fields;
   1129 
   1130 	return (0);
   1131 }
   1132 
   1133 /*
   1134  * dge_start:		[ifnet interface function]
   1135  *
   1136  *	Start packet transmission on the interface.
   1137  */
   1138 static void
   1139 dge_start(struct ifnet *ifp)
   1140 {
   1141 	struct dge_softc *sc = ifp->if_softc;
   1142 	struct mbuf *m0;
   1143 	struct dge_txsoft *txs;
   1144 	bus_dmamap_t dmamap;
   1145 	int error, nexttx, lasttx = -1, ofree, seg;
   1146 	uint32_t cksumcmd;
   1147 	uint8_t cksumfields;
   1148 
   1149 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1150 		return;
   1151 
   1152 	/*
   1153 	 * Remember the previous number of free descriptors.
   1154 	 */
   1155 	ofree = sc->sc_txfree;
   1156 
   1157 	/*
   1158 	 * Loop through the send queue, setting up transmit descriptors
   1159 	 * until we drain the queue, or use up all available transmit
   1160 	 * descriptors.
   1161 	 */
   1162 	for (;;) {
   1163 		/* Grab a packet off the queue. */
   1164 		IFQ_POLL(&ifp->if_snd, m0);
   1165 		if (m0 == NULL)
   1166 			break;
   1167 
   1168 		DPRINTF(DGE_DEBUG_TX,
   1169 		    ("%s: TX: have packet to transmit: %p\n",
   1170 		    device_xname(&sc->sc_dev), m0));
   1171 
   1172 		/* Get a work queue entry. */
   1173 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1174 			dge_txintr(sc);
   1175 			if (sc->sc_txsfree == 0) {
   1176 				DPRINTF(DGE_DEBUG_TX,
   1177 				    ("%s: TX: no free job descriptors\n",
   1178 					device_xname(&sc->sc_dev)));
   1179 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1180 				break;
   1181 			}
   1182 		}
   1183 
   1184 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1185 		dmamap = txs->txs_dmamap;
   1186 
   1187 		/*
   1188 		 * Load the DMA map.  If this fails, the packet either
   1189 		 * didn't fit in the allotted number of segments, or we
   1190 		 * were short on resources.  For the too-many-segments
   1191 		 * case, we simply report an error and drop the packet,
   1192 		 * since we can't sanely copy a jumbo packet to a single
   1193 		 * buffer.
   1194 		 */
   1195 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1196 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1197 		if (error) {
   1198 			if (error == EFBIG) {
   1199 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1200 				printf("%s: Tx packet consumes too many "
   1201 				    "DMA segments, dropping...\n",
   1202 				    device_xname(&sc->sc_dev));
   1203 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1204 				m_freem(m0);
   1205 				continue;
   1206 			}
   1207 			/*
   1208 			 * Short on resources, just stop for now.
   1209 			 */
   1210 			DPRINTF(DGE_DEBUG_TX,
   1211 			    ("%s: TX: dmamap load failed: %d\n",
   1212 			    device_xname(&sc->sc_dev), error));
   1213 			break;
   1214 		}
   1215 
   1216 		/*
   1217 		 * Ensure we have enough descriptors free to describe
   1218 		 * the packet.  Note, we always reserve one descriptor
   1219 		 * at the end of the ring due to the semantics of the
   1220 		 * TDT register, plus one more in the event we need
   1221 		 * to re-load checksum offload context.
   1222 		 */
   1223 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1224 			/*
   1225 			 * Not enough free descriptors to transmit this
   1226 			 * packet.  We haven't committed anything yet,
   1227 			 * so just unload the DMA map, put the packet
   1228 			 * pack on the queue, and punt.  Notify the upper
   1229 			 * layer that there are no more slots left.
   1230 			 */
   1231 			DPRINTF(DGE_DEBUG_TX,
   1232 			    ("%s: TX: need %d descriptors, have %d\n",
   1233 			    device_xname(&sc->sc_dev), dmamap->dm_nsegs,
   1234 			    sc->sc_txfree - 1));
   1235 			ifp->if_flags |= IFF_OACTIVE;
   1236 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1237 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1238 			break;
   1239 		}
   1240 
   1241 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1242 
   1243 		/*
   1244 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1245 		 */
   1246 
   1247 		/* Sync the DMA map. */
   1248 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1249 		    BUS_DMASYNC_PREWRITE);
   1250 
   1251 		DPRINTF(DGE_DEBUG_TX,
   1252 		    ("%s: TX: packet has %d DMA segments\n",
   1253 		    device_xname(&sc->sc_dev), dmamap->dm_nsegs));
   1254 
   1255 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1256 
   1257 		/*
   1258 		 * Store a pointer to the packet so that we can free it
   1259 		 * later.
   1260 		 *
   1261 		 * Initially, we consider the number of descriptors the
   1262 		 * packet uses the number of DMA segments.  This may be
   1263 		 * incremented by 1 if we do checksum offload (a descriptor
   1264 		 * is used to set the checksum context).
   1265 		 */
   1266 		txs->txs_mbuf = m0;
   1267 		txs->txs_firstdesc = sc->sc_txnext;
   1268 		txs->txs_ndesc = dmamap->dm_nsegs;
   1269 
   1270 		/*
   1271 		 * Set up checksum offload parameters for
   1272 		 * this packet.
   1273 		 */
   1274 		if (m0->m_pkthdr.csum_flags &
   1275 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1276 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1277 				/* Error message already displayed. */
   1278 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1279 				continue;
   1280 			}
   1281 		} else {
   1282 			cksumfields = 0;
   1283 		}
   1284 
   1285 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1286 
   1287 		/*
   1288 		 * Initialize the transmit descriptor.
   1289 		 */
   1290 		for (nexttx = sc->sc_txnext, seg = 0;
   1291 		     seg < dmamap->dm_nsegs;
   1292 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1293 			/*
   1294 			 * Note: we currently only use 32-bit DMA
   1295 			 * addresses.
   1296 			 */
   1297 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1298 			sc->sc_txdescs[nexttx].dt_baddrl =
   1299 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1300 			sc->sc_txdescs[nexttx].dt_ctl =
   1301 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1302 			sc->sc_txdescs[nexttx].dt_status = 0;
   1303 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1304 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1305 			lasttx = nexttx;
   1306 
   1307 			DPRINTF(DGE_DEBUG_TX,
   1308 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1309 			    device_xname(&sc->sc_dev), nexttx,
   1310 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
   1311 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
   1312 		}
   1313 
   1314 		KASSERT(lasttx != -1);
   1315 
   1316 		/*
   1317 		 * Set up the command byte on the last descriptor of
   1318 		 * the packet.  If we're in the interrupt delay window,
   1319 		 * delay the interrupt.
   1320 		 */
   1321 		sc->sc_txdescs[lasttx].dt_ctl |=
   1322 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1323 
   1324 		txs->txs_lastdesc = lasttx;
   1325 
   1326 		DPRINTF(DGE_DEBUG_TX,
   1327 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
   1328 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1329 
   1330 		/* Sync the descriptors we're using. */
   1331 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1332 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1333 
   1334 		/* Give the packet to the chip. */
   1335 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1336 
   1337 		DPRINTF(DGE_DEBUG_TX,
   1338 		    ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
   1339 
   1340 		DPRINTF(DGE_DEBUG_TX,
   1341 		    ("%s: TX: finished transmitting packet, job %d\n",
   1342 		    device_xname(&sc->sc_dev), sc->sc_txsnext));
   1343 
   1344 		/* Advance the tx pointer. */
   1345 		sc->sc_txfree -= txs->txs_ndesc;
   1346 		sc->sc_txnext = nexttx;
   1347 
   1348 		sc->sc_txsfree--;
   1349 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1350 
   1351 		/* Pass the packet to any BPF listeners. */
   1352 		if (ifp->if_bpf)
   1353 			bpf_ops->bpf_mtap(ifp->if_bpf, m0);
   1354 	}
   1355 
   1356 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1357 		/* No more slots; notify upper layer. */
   1358 		ifp->if_flags |= IFF_OACTIVE;
   1359 	}
   1360 
   1361 	if (sc->sc_txfree != ofree) {
   1362 		/* Set a watchdog timer in case the chip flakes out. */
   1363 		ifp->if_timer = 5;
   1364 	}
   1365 }
   1366 
   1367 /*
   1368  * dge_watchdog:		[ifnet interface function]
   1369  *
   1370  *	Watchdog timer handler.
   1371  */
   1372 static void
   1373 dge_watchdog(struct ifnet *ifp)
   1374 {
   1375 	struct dge_softc *sc = ifp->if_softc;
   1376 
   1377 	/*
   1378 	 * Since we're using delayed interrupts, sweep up
   1379 	 * before we report an error.
   1380 	 */
   1381 	dge_txintr(sc);
   1382 
   1383 	if (sc->sc_txfree != DGE_NTXDESC) {
   1384 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1385 		    device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1386 		    sc->sc_txnext);
   1387 		ifp->if_oerrors++;
   1388 
   1389 		/* Reset the interface. */
   1390 		(void) dge_init(ifp);
   1391 	}
   1392 
   1393 	/* Try to get more packets going. */
   1394 	dge_start(ifp);
   1395 }
   1396 
   1397 /*
   1398  * dge_ioctl:		[ifnet interface function]
   1399  *
   1400  *	Handle control requests from the operator.
   1401  */
   1402 static int
   1403 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1404 {
   1405 	struct dge_softc *sc = ifp->if_softc;
   1406 	struct ifreq *ifr = (struct ifreq *) data;
   1407 	pcireg_t preg;
   1408 	int s, error, mmrbc;
   1409 
   1410 	s = splnet();
   1411 
   1412 	switch (cmd) {
   1413 	case SIOCSIFMEDIA:
   1414 	case SIOCGIFMEDIA:
   1415 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1416 		break;
   1417 
   1418 	case SIOCSIFMTU:
   1419 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1420 			error = EINVAL;
   1421 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1422 			break;
   1423 		else if (ifp->if_flags & IFF_UP)
   1424 			error = (*ifp->if_init)(ifp);
   1425 		else
   1426 			error = 0;
   1427 		break;
   1428 
   1429         case SIOCSIFFLAGS:
   1430 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1431 			break;
   1432 		/* extract link flags */
   1433 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1434 		    (ifp->if_flags & IFF_LINK1) == 0)
   1435 			mmrbc = PCIX_MMRBC_512;
   1436 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1437 		    (ifp->if_flags & IFF_LINK1) != 0)
   1438 			mmrbc = PCIX_MMRBC_1024;
   1439 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1440 		    (ifp->if_flags & IFF_LINK1) == 0)
   1441 			mmrbc = PCIX_MMRBC_2048;
   1442 		else
   1443 			mmrbc = PCIX_MMRBC_4096;
   1444 		if (mmrbc != sc->sc_mmrbc) {
   1445 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1446 			preg &= ~PCIX_MMRBC_MSK;
   1447 			preg |= mmrbc;
   1448 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1449 			sc->sc_mmrbc = mmrbc;
   1450 		}
   1451                 /* FALLTHROUGH */
   1452 	default:
   1453 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1454 			break;
   1455 
   1456 		error = 0;
   1457 
   1458 		if (cmd == SIOCSIFCAP)
   1459 			error = (*ifp->if_init)(ifp);
   1460 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1461 			;
   1462 		else if (ifp->if_flags & IFF_RUNNING) {
   1463 			/*
   1464 			 * Multicast list has changed; set the hardware filter
   1465 			 * accordingly.
   1466 			 */
   1467 			dge_set_filter(sc);
   1468 		}
   1469 		break;
   1470 	}
   1471 
   1472 	/* Try to get more packets going. */
   1473 	dge_start(ifp);
   1474 
   1475 	splx(s);
   1476 	return (error);
   1477 }
   1478 
   1479 /*
   1480  * dge_intr:
   1481  *
   1482  *	Interrupt service routine.
   1483  */
   1484 static int
   1485 dge_intr(void *arg)
   1486 {
   1487 	struct dge_softc *sc = arg;
   1488 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1489 	uint32_t icr;
   1490 	int wantinit, handled = 0;
   1491 
   1492 	for (wantinit = 0; wantinit == 0;) {
   1493 		icr = CSR_READ(sc, DGE_ICR);
   1494 		if ((icr & sc->sc_icr) == 0)
   1495 			break;
   1496 
   1497 #if 0 /*NRND > 0*/
   1498 		if (RND_ENABLED(&sc->rnd_source))
   1499 			rnd_add_uint32(&sc->rnd_source, icr);
   1500 #endif
   1501 
   1502 		handled = 1;
   1503 
   1504 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1505 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1506 			DPRINTF(DGE_DEBUG_RX,
   1507 			    ("%s: RX: got Rx intr 0x%08x\n",
   1508 			    device_xname(&sc->sc_dev),
   1509 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1510 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1511 		}
   1512 #endif
   1513 		dge_rxintr(sc);
   1514 
   1515 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1516 		if (icr & ICR_TXDW) {
   1517 			DPRINTF(DGE_DEBUG_TX,
   1518 			    ("%s: TX: got TXDW interrupt\n",
   1519 			    device_xname(&sc->sc_dev)));
   1520 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1521 		}
   1522 		if (icr & ICR_TXQE)
   1523 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1524 #endif
   1525 		dge_txintr(sc);
   1526 
   1527 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1528 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1529 			dge_linkintr(sc, icr);
   1530 		}
   1531 
   1532 		if (icr & ICR_RXO) {
   1533 			printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
   1534 			wantinit = 1;
   1535 		}
   1536 	}
   1537 
   1538 	if (handled) {
   1539 		if (wantinit)
   1540 			dge_init(ifp);
   1541 
   1542 		/* Try to get more packets going. */
   1543 		dge_start(ifp);
   1544 	}
   1545 
   1546 	return (handled);
   1547 }
   1548 
   1549 /*
   1550  * dge_txintr:
   1551  *
   1552  *	Helper; handle transmit interrupts.
   1553  */
   1554 static void
   1555 dge_txintr(struct dge_softc *sc)
   1556 {
   1557 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1558 	struct dge_txsoft *txs;
   1559 	uint8_t status;
   1560 	int i;
   1561 
   1562 	ifp->if_flags &= ~IFF_OACTIVE;
   1563 
   1564 	/*
   1565 	 * Go through the Tx list and free mbufs for those
   1566 	 * frames which have been transmitted.
   1567 	 */
   1568 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1569 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1570 		txs = &sc->sc_txsoft[i];
   1571 
   1572 		DPRINTF(DGE_DEBUG_TX,
   1573 		    ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
   1574 
   1575 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1576 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1577 
   1578 		status =
   1579 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1580 		if ((status & TDESC_STA_DD) == 0) {
   1581 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1582 			    BUS_DMASYNC_PREREAD);
   1583 			break;
   1584 		}
   1585 
   1586 		DPRINTF(DGE_DEBUG_TX,
   1587 		    ("%s: TX: job %d done: descs %d..%d\n",
   1588 		    device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
   1589 		    txs->txs_lastdesc));
   1590 
   1591 		ifp->if_opackets++;
   1592 		sc->sc_txfree += txs->txs_ndesc;
   1593 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1594 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1595 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1596 		m_freem(txs->txs_mbuf);
   1597 		txs->txs_mbuf = NULL;
   1598 	}
   1599 
   1600 	/* Update the dirty transmit buffer pointer. */
   1601 	sc->sc_txsdirty = i;
   1602 	DPRINTF(DGE_DEBUG_TX,
   1603 	    ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
   1604 
   1605 	/*
   1606 	 * If there are no more pending transmissions, cancel the watchdog
   1607 	 * timer.
   1608 	 */
   1609 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1610 		ifp->if_timer = 0;
   1611 }
   1612 
   1613 /*
   1614  * dge_rxintr:
   1615  *
   1616  *	Helper; handle receive interrupts.
   1617  */
   1618 static void
   1619 dge_rxintr(struct dge_softc *sc)
   1620 {
   1621 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1622 	struct dge_rxsoft *rxs;
   1623 	struct mbuf *m;
   1624 	int i, len;
   1625 	uint8_t status, errors;
   1626 
   1627 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1628 		rxs = &sc->sc_rxsoft[i];
   1629 
   1630 		DPRINTF(DGE_DEBUG_RX,
   1631 		    ("%s: RX: checking descriptor %d\n",
   1632 		    device_xname(&sc->sc_dev), i));
   1633 
   1634 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1635 
   1636 		status = sc->sc_rxdescs[i].dr_status;
   1637 		errors = sc->sc_rxdescs[i].dr_errors;
   1638 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1639 
   1640 		if ((status & RDESC_STS_DD) == 0) {
   1641 			/*
   1642 			 * We have processed all of the receive descriptors.
   1643 			 */
   1644 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1645 			break;
   1646 		}
   1647 
   1648 		if (__predict_false(sc->sc_rxdiscard)) {
   1649 			DPRINTF(DGE_DEBUG_RX,
   1650 			    ("%s: RX: discarding contents of descriptor %d\n",
   1651 			    device_xname(&sc->sc_dev), i));
   1652 			DGE_INIT_RXDESC(sc, i);
   1653 			if (status & RDESC_STS_EOP) {
   1654 				/* Reset our state. */
   1655 				DPRINTF(DGE_DEBUG_RX,
   1656 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1657 				    device_xname(&sc->sc_dev)));
   1658 				sc->sc_rxdiscard = 0;
   1659 			}
   1660 			continue;
   1661 		}
   1662 
   1663 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1664 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1665 
   1666 		m = rxs->rxs_mbuf;
   1667 
   1668 		/*
   1669 		 * Add a new receive buffer to the ring.
   1670 		 */
   1671 		if (dge_add_rxbuf(sc, i) != 0) {
   1672 			/*
   1673 			 * Failed, throw away what we've done so
   1674 			 * far, and discard the rest of the packet.
   1675 			 */
   1676 			ifp->if_ierrors++;
   1677 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1678 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1679 			DGE_INIT_RXDESC(sc, i);
   1680 			if ((status & RDESC_STS_EOP) == 0)
   1681 				sc->sc_rxdiscard = 1;
   1682 			if (sc->sc_rxhead != NULL)
   1683 				m_freem(sc->sc_rxhead);
   1684 			DGE_RXCHAIN_RESET(sc);
   1685 			DPRINTF(DGE_DEBUG_RX,
   1686 			    ("%s: RX: Rx buffer allocation failed, "
   1687 			    "dropping packet%s\n", device_xname(&sc->sc_dev),
   1688 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1689 			continue;
   1690 		}
   1691 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1692 
   1693 		DGE_RXCHAIN_LINK(sc, m);
   1694 
   1695 		m->m_len = len;
   1696 
   1697 		DPRINTF(DGE_DEBUG_RX,
   1698 		    ("%s: RX: buffer at %p len %d\n",
   1699 		    device_xname(&sc->sc_dev), m->m_data, len));
   1700 
   1701 		/*
   1702 		 * If this is not the end of the packet, keep
   1703 		 * looking.
   1704 		 */
   1705 		if ((status & RDESC_STS_EOP) == 0) {
   1706 			sc->sc_rxlen += len;
   1707 			DPRINTF(DGE_DEBUG_RX,
   1708 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1709 			    device_xname(&sc->sc_dev), sc->sc_rxlen));
   1710 			continue;
   1711 		}
   1712 
   1713 		/*
   1714 		 * Okay, we have the entire packet now...
   1715 		 */
   1716 		*sc->sc_rxtailp = NULL;
   1717 		m = sc->sc_rxhead;
   1718 		len += sc->sc_rxlen;
   1719 
   1720 		DGE_RXCHAIN_RESET(sc);
   1721 
   1722 		DPRINTF(DGE_DEBUG_RX,
   1723 		    ("%s: RX: have entire packet, len -> %d\n",
   1724 		    device_xname(&sc->sc_dev), len));
   1725 
   1726 		/*
   1727 		 * If an error occurred, update stats and drop the packet.
   1728 		 */
   1729 		if (errors &
   1730 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1731 			ifp->if_ierrors++;
   1732 			if (errors & RDESC_ERR_SE)
   1733 				printf("%s: symbol error\n",
   1734 				    device_xname(&sc->sc_dev));
   1735 			else if (errors & RDESC_ERR_P)
   1736 				printf("%s: parity error\n",
   1737 				    device_xname(&sc->sc_dev));
   1738 			else if (errors & RDESC_ERR_CE)
   1739 				printf("%s: CRC error\n",
   1740 				    device_xname(&sc->sc_dev));
   1741 			m_freem(m);
   1742 			continue;
   1743 		}
   1744 
   1745 		/*
   1746 		 * No errors.  Receive the packet.
   1747 		 */
   1748 		m->m_pkthdr.rcvif = ifp;
   1749 		m->m_pkthdr.len = len;
   1750 
   1751 		/*
   1752 		 * Set up checksum info for this packet.
   1753 		 */
   1754 		if (status & RDESC_STS_IPCS) {
   1755 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1756 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1757 			if (errors & RDESC_ERR_IPE)
   1758 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1759 		}
   1760 		if (status & RDESC_STS_TCPCS) {
   1761 			/*
   1762 			 * Note: we don't know if this was TCP or UDP,
   1763 			 * so we just set both bits, and expect the
   1764 			 * upper layers to deal.
   1765 			 */
   1766 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1767 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1768 			if (errors & RDESC_ERR_TCPE)
   1769 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1770 		}
   1771 
   1772 		ifp->if_ipackets++;
   1773 
   1774 		/* Pass this up to any BPF listeners. */
   1775 		if (ifp->if_bpf)
   1776 			bpf_ops->bpf_mtap(ifp->if_bpf, m);
   1777 
   1778 		/* Pass it on. */
   1779 		(*ifp->if_input)(ifp, m);
   1780 	}
   1781 
   1782 	/* Update the receive pointer. */
   1783 	sc->sc_rxptr = i;
   1784 
   1785 	DPRINTF(DGE_DEBUG_RX,
   1786 	    ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
   1787 }
   1788 
   1789 /*
   1790  * dge_linkintr:
   1791  *
   1792  *	Helper; handle link interrupts.
   1793  */
   1794 static void
   1795 dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1796 {
   1797 	uint32_t status;
   1798 
   1799 	if (icr & ICR_LSC) {
   1800 		status = CSR_READ(sc, DGE_STATUS);
   1801 		if (status & STATUS_LINKUP) {
   1802 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1803 			    device_xname(&sc->sc_dev)));
   1804 		} else {
   1805 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1806 			    device_xname(&sc->sc_dev)));
   1807 		}
   1808 	} else if (icr & ICR_RXSEQ) {
   1809 		DPRINTF(DGE_DEBUG_LINK,
   1810 		    ("%s: LINK: Receive sequence error\n",
   1811 		    device_xname(&sc->sc_dev)));
   1812 	}
   1813 	/* XXX - fix errata */
   1814 }
   1815 
   1816 /*
   1817  * dge_reset:
   1818  *
   1819  *	Reset the i82597 chip.
   1820  */
   1821 static void
   1822 dge_reset(struct dge_softc *sc)
   1823 {
   1824 	int i;
   1825 
   1826 	/*
   1827 	 * Do a chip reset.
   1828 	 */
   1829 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1830 
   1831 	delay(10000);
   1832 
   1833 	for (i = 0; i < 1000; i++) {
   1834 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1835 			break;
   1836 		delay(20);
   1837 	}
   1838 
   1839 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1840 		printf("%s: WARNING: reset failed to complete\n",
   1841 		    device_xname(&sc->sc_dev));
   1842         /*
   1843          * Reset the EEPROM logic.
   1844          * This will cause the chip to reread its default values,
   1845 	 * which doesn't happen otherwise (errata).
   1846          */
   1847         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1848         delay(10000);
   1849 }
   1850 
   1851 /*
   1852  * dge_init:		[ifnet interface function]
   1853  *
   1854  *	Initialize the interface.  Must be called at splnet().
   1855  */
   1856 static int
   1857 dge_init(struct ifnet *ifp)
   1858 {
   1859 	struct dge_softc *sc = ifp->if_softc;
   1860 	struct dge_rxsoft *rxs;
   1861 	int i, error = 0;
   1862 	uint32_t reg;
   1863 
   1864 	/*
   1865 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1866 	 * There is a small but measurable benefit to avoiding the adjusment
   1867 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1868 	 * on such platforms.  One possibility is that the DMA itself is
   1869 	 * slightly more efficient if the front of the entire packet (instead
   1870 	 * of the front of the headers) is aligned.
   1871 	 *
   1872 	 * Note we must always set align_tweak to 0 if we are using
   1873 	 * jumbo frames.
   1874 	 */
   1875 #ifdef __NO_STRICT_ALIGNMENT
   1876 	sc->sc_align_tweak = 0;
   1877 #else
   1878 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1879 		sc->sc_align_tweak = 0;
   1880 	else
   1881 		sc->sc_align_tweak = 2;
   1882 #endif /* __NO_STRICT_ALIGNMENT */
   1883 
   1884 	/* Cancel any pending I/O. */
   1885 	dge_stop(ifp, 0);
   1886 
   1887 	/* Reset the chip to a known state. */
   1888 	dge_reset(sc);
   1889 
   1890 	/* Initialize the transmit descriptor ring. */
   1891 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1892 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1893 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1894 	sc->sc_txfree = DGE_NTXDESC;
   1895 	sc->sc_txnext = 0;
   1896 
   1897 	sc->sc_txctx_ipcs = 0xffffffff;
   1898 	sc->sc_txctx_tucs = 0xffffffff;
   1899 
   1900 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1901 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1902 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1903 	CSR_WRITE(sc, DGE_TDH, 0);
   1904 	CSR_WRITE(sc, DGE_TDT, 0);
   1905 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1906 
   1907 #if 0
   1908 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1909 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1910 #endif
   1911 	CSR_WRITE(sc, DGE_RXDCTL,
   1912 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1913 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1914 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1915 
   1916 	/* Initialize the transmit job descriptors. */
   1917 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1918 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1919 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1920 	sc->sc_txsnext = 0;
   1921 	sc->sc_txsdirty = 0;
   1922 
   1923 	/*
   1924 	 * Initialize the receive descriptor and receive job
   1925 	 * descriptor rings.
   1926 	 */
   1927 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1928 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1929 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1930 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1931 	CSR_WRITE(sc, DGE_RDT, 0);
   1932 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1933 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1934 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1935 
   1936 	for (i = 0; i < DGE_NRXDESC; i++) {
   1937 		rxs = &sc->sc_rxsoft[i];
   1938 		if (rxs->rxs_mbuf == NULL) {
   1939 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1940 				printf("%s: unable to allocate or map rx "
   1941 				    "buffer %d, error = %d\n",
   1942 				    device_xname(&sc->sc_dev), i, error);
   1943 				/*
   1944 				 * XXX Should attempt to run with fewer receive
   1945 				 * XXX buffers instead of just failing.
   1946 				 */
   1947 				dge_rxdrain(sc);
   1948 				goto out;
   1949 			}
   1950 		}
   1951 		DGE_INIT_RXDESC(sc, i);
   1952 	}
   1953 	sc->sc_rxptr = DGE_RXSPACE;
   1954 	sc->sc_rxdiscard = 0;
   1955 	DGE_RXCHAIN_RESET(sc);
   1956 
   1957 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1958 		sc->sc_ctrl0 |= CTRL0_JFE;
   1959 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1960 	}
   1961 
   1962 	/* Write the control registers. */
   1963 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1964 
   1965 	/*
   1966 	 * Set up checksum offload parameters.
   1967 	 */
   1968 	reg = CSR_READ(sc, DGE_RXCSUM);
   1969 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1970 		reg |= RXCSUM_IPOFL;
   1971 	else
   1972 		reg &= ~RXCSUM_IPOFL;
   1973 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1974 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1975 	else {
   1976 		reg &= ~RXCSUM_TUOFL;
   1977 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   1978 			reg &= ~RXCSUM_IPOFL;
   1979 	}
   1980 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1981 
   1982 	/*
   1983 	 * Set up the interrupt registers.
   1984 	 */
   1985 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1986 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1987 	    ICR_RXO | ICR_RXT0;
   1988 
   1989 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1990 
   1991 	/*
   1992 	 * Set up the transmit control register.
   1993 	 */
   1994 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1995 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1996 
   1997 	/*
   1998 	 * Set up the receive control register; we actually program
   1999 	 * the register when we set the receive filter.  Use multicast
   2000 	 * address offset type 0.
   2001 	 */
   2002 	sc->sc_mchash_type = 0;
   2003 
   2004 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2005 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2006 
   2007 #ifdef DGE_OFFBYONE_RXBUG
   2008 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2009 #else
   2010 	switch(MCLBYTES) {
   2011 	case 2048:
   2012 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2013 		break;
   2014 	case 4096:
   2015 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2016 		break;
   2017 	case 8192:
   2018 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2019 		break;
   2020 	case 16384:
   2021 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2022 		break;
   2023 	default:
   2024 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2025 	}
   2026 #endif
   2027 
   2028 	/* Set the receive filter. */
   2029 	/* Also sets RCTL */
   2030 	dge_set_filter(sc);
   2031 
   2032 	/* ...all done! */
   2033 	ifp->if_flags |= IFF_RUNNING;
   2034 	ifp->if_flags &= ~IFF_OACTIVE;
   2035 
   2036  out:
   2037 	if (error)
   2038 		printf("%s: interface not running\n", device_xname(&sc->sc_dev));
   2039 	return (error);
   2040 }
   2041 
   2042 /*
   2043  * dge_rxdrain:
   2044  *
   2045  *	Drain the receive queue.
   2046  */
   2047 static void
   2048 dge_rxdrain(struct dge_softc *sc)
   2049 {
   2050 	struct dge_rxsoft *rxs;
   2051 	int i;
   2052 
   2053 	for (i = 0; i < DGE_NRXDESC; i++) {
   2054 		rxs = &sc->sc_rxsoft[i];
   2055 		if (rxs->rxs_mbuf != NULL) {
   2056 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2057 			m_freem(rxs->rxs_mbuf);
   2058 			rxs->rxs_mbuf = NULL;
   2059 		}
   2060 	}
   2061 }
   2062 
   2063 /*
   2064  * dge_stop:		[ifnet interface function]
   2065  *
   2066  *	Stop transmission on the interface.
   2067  */
   2068 static void
   2069 dge_stop(struct ifnet *ifp, int disable)
   2070 {
   2071 	struct dge_softc *sc = ifp->if_softc;
   2072 	struct dge_txsoft *txs;
   2073 	int i;
   2074 
   2075 	/* Stop the transmit and receive processes. */
   2076 	CSR_WRITE(sc, DGE_TCTL, 0);
   2077 	CSR_WRITE(sc, DGE_RCTL, 0);
   2078 
   2079 	/* Release any queued transmit buffers. */
   2080 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2081 		txs = &sc->sc_txsoft[i];
   2082 		if (txs->txs_mbuf != NULL) {
   2083 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2084 			m_freem(txs->txs_mbuf);
   2085 			txs->txs_mbuf = NULL;
   2086 		}
   2087 	}
   2088 
   2089 	/* Mark the interface as down and cancel the watchdog timer. */
   2090 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2091 	ifp->if_timer = 0;
   2092 
   2093 	if (disable)
   2094 		dge_rxdrain(sc);
   2095 }
   2096 
   2097 /*
   2098  * dge_add_rxbuf:
   2099  *
   2100  *	Add a receive buffer to the indiciated descriptor.
   2101  */
   2102 static int
   2103 dge_add_rxbuf(struct dge_softc *sc, int idx)
   2104 {
   2105 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2106 	struct mbuf *m;
   2107 	int error;
   2108 #ifdef DGE_OFFBYONE_RXBUG
   2109 	void *buf;
   2110 #endif
   2111 
   2112 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2113 	if (m == NULL)
   2114 		return (ENOBUFS);
   2115 
   2116 #ifdef DGE_OFFBYONE_RXBUG
   2117 	if ((buf = dge_getbuf(sc)) == NULL)
   2118 		return ENOBUFS;
   2119 
   2120 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2121 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2122 	m->m_flags |= M_EXT_RW;
   2123 
   2124 	if (rxs->rxs_mbuf != NULL)
   2125 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2126 	rxs->rxs_mbuf = m;
   2127 
   2128 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2129 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2130 #else
   2131 	MCLGET(m, M_DONTWAIT);
   2132 	if ((m->m_flags & M_EXT) == 0) {
   2133 		m_freem(m);
   2134 		return (ENOBUFS);
   2135 	}
   2136 
   2137 	if (rxs->rxs_mbuf != NULL)
   2138 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2139 
   2140 	rxs->rxs_mbuf = m;
   2141 
   2142 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2143 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2144 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2145 #endif
   2146 	if (error) {
   2147 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2148 		    device_xname(&sc->sc_dev), idx, error);
   2149 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2150 	}
   2151 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2152 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2153 
   2154 	return (0);
   2155 }
   2156 
   2157 /*
   2158  * dge_set_ral:
   2159  *
   2160  *	Set an entry in the receive address list.
   2161  */
   2162 static void
   2163 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2164 {
   2165 	uint32_t ral_lo, ral_hi;
   2166 
   2167 	if (enaddr != NULL) {
   2168 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2169 		    (enaddr[3] << 24);
   2170 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2171 		ral_hi |= RAH_AV;
   2172 	} else {
   2173 		ral_lo = 0;
   2174 		ral_hi = 0;
   2175 	}
   2176 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2177 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2178 }
   2179 
   2180 /*
   2181  * dge_mchash:
   2182  *
   2183  *	Compute the hash of the multicast address for the 4096-bit
   2184  *	multicast filter.
   2185  */
   2186 static uint32_t
   2187 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2188 {
   2189 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2190 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2191 	uint32_t hash;
   2192 
   2193 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2194 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2195 
   2196 	return (hash & 0xfff);
   2197 }
   2198 
   2199 /*
   2200  * dge_set_filter:
   2201  *
   2202  *	Set up the receive filter.
   2203  */
   2204 static void
   2205 dge_set_filter(struct dge_softc *sc)
   2206 {
   2207 	struct ethercom *ec = &sc->sc_ethercom;
   2208 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2209 	struct ether_multi *enm;
   2210 	struct ether_multistep step;
   2211 	uint32_t hash, reg, bit;
   2212 	int i;
   2213 
   2214 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2215 
   2216 	if (ifp->if_flags & IFF_BROADCAST)
   2217 		sc->sc_rctl |= RCTL_BAM;
   2218 	if (ifp->if_flags & IFF_PROMISC) {
   2219 		sc->sc_rctl |= RCTL_UPE;
   2220 		goto allmulti;
   2221 	}
   2222 
   2223 	/*
   2224 	 * Set the station address in the first RAL slot, and
   2225 	 * clear the remaining slots.
   2226 	 */
   2227 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2228 	for (i = 1; i < RA_TABSIZE; i++)
   2229 		dge_set_ral(sc, NULL, i);
   2230 
   2231 	/* Clear out the multicast table. */
   2232 	for (i = 0; i < MC_TABSIZE; i++)
   2233 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2234 
   2235 	ETHER_FIRST_MULTI(step, ec, enm);
   2236 	while (enm != NULL) {
   2237 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2238 			/*
   2239 			 * We must listen to a range of multicast addresses.
   2240 			 * For now, just accept all multicasts, rather than
   2241 			 * trying to set only those filter bits needed to match
   2242 			 * the range.  (At this time, the only use of address
   2243 			 * ranges is for IP multicast routing, for which the
   2244 			 * range is big enough to require all bits set.)
   2245 			 */
   2246 			goto allmulti;
   2247 		}
   2248 
   2249 		hash = dge_mchash(sc, enm->enm_addrlo);
   2250 
   2251 		reg = (hash >> 5) & 0x7f;
   2252 		bit = hash & 0x1f;
   2253 
   2254 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2255 		hash |= 1U << bit;
   2256 
   2257 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2258 
   2259 		ETHER_NEXT_MULTI(step, enm);
   2260 	}
   2261 
   2262 	ifp->if_flags &= ~IFF_ALLMULTI;
   2263 	goto setit;
   2264 
   2265  allmulti:
   2266 	ifp->if_flags |= IFF_ALLMULTI;
   2267 	sc->sc_rctl |= RCTL_MPE;
   2268 
   2269  setit:
   2270 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2271 }
   2272 
   2273 /*
   2274  * Read in the EEPROM info and verify checksum.
   2275  */
   2276 int
   2277 dge_read_eeprom(struct dge_softc *sc)
   2278 {
   2279 	uint16_t cksum;
   2280 	int i;
   2281 
   2282 	cksum = 0;
   2283 	for (i = 0; i < EEPROM_SIZE; i++) {
   2284 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2285 		cksum += sc->sc_eeprom[i];
   2286 	}
   2287 	return cksum != EEPROM_CKSUM;
   2288 }
   2289 
   2290 
   2291 /*
   2292  * Read a 16-bit word from address addr in the serial EEPROM.
   2293  */
   2294 uint16_t
   2295 dge_eeprom_word(struct dge_softc *sc, int addr)
   2296 {
   2297 	uint32_t reg;
   2298 	uint16_t rval = 0;
   2299 	int i;
   2300 
   2301 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2302 
   2303 	/* Lower clock pulse (and data in to chip) */
   2304 	CSR_WRITE(sc, DGE_EECD, reg);
   2305 	/* Select chip */
   2306 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2307 
   2308 	/* Send read command */
   2309 	dge_eeprom_clockout(sc, 1);
   2310 	dge_eeprom_clockout(sc, 1);
   2311 	dge_eeprom_clockout(sc, 0);
   2312 
   2313 	/* Send address */
   2314 	for (i = 5; i >= 0; i--)
   2315 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2316 
   2317 	/* Read data */
   2318 	for (i = 0; i < 16; i++) {
   2319 		rval <<= 1;
   2320 		rval |= dge_eeprom_clockin(sc);
   2321 	}
   2322 
   2323 	/* Deselect chip */
   2324 	CSR_WRITE(sc, DGE_EECD, reg);
   2325 
   2326 	return rval;
   2327 }
   2328 
   2329 /*
   2330  * Clock out a single bit to the EEPROM.
   2331  */
   2332 void
   2333 dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2334 {
   2335 	int reg;
   2336 
   2337 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2338 	if (bit)
   2339 		reg |= EECD_DI;
   2340 
   2341 	CSR_WRITE(sc, DGE_EECD, reg);
   2342 	delay(2);
   2343 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2344 	delay(2);
   2345 	CSR_WRITE(sc, DGE_EECD, reg);
   2346 	delay(2);
   2347 }
   2348 
   2349 /*
   2350  * Clock in a single bit from EEPROM.
   2351  */
   2352 int
   2353 dge_eeprom_clockin(struct dge_softc *sc)
   2354 {
   2355 	int reg, rv;
   2356 
   2357 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2358 
   2359 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2360 	delay(2);
   2361 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2362 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2363 	delay(2);
   2364 
   2365 	return rv;
   2366 }
   2367 
   2368 static void
   2369 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2370 {
   2371 	struct dge_softc *sc = ifp->if_softc;
   2372 
   2373 	ifmr->ifm_status = IFM_AVALID;
   2374 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2375 
   2376 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2377 		ifmr->ifm_status |= IFM_ACTIVE;
   2378 }
   2379 
   2380 static inline int
   2381 phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2382 {
   2383         int i, mdic;
   2384 
   2385         CSR_WRITE(sc, DGE_MDIO,
   2386 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2387         for (i = 0; i < 10; i++) {
   2388                 delay(10);
   2389                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2390                         break;
   2391         }
   2392         return mdic;
   2393 }
   2394 
   2395 
   2396 static void
   2397 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
   2398 {
   2399 	struct dge_softc *sc = device_private(self);
   2400 	int mdic;
   2401 
   2402 	CSR_WRITE(sc, DGE_MDIRW, val);
   2403 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2404 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2405 		    device_xname(&sc->sc_dev), phy, reg);
   2406 		return;
   2407 	}
   2408 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2409 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2410 		    device_xname(&sc->sc_dev), phy, reg);
   2411 		return;
   2412 	}
   2413 }
   2414 
   2415 static void
   2416 dge_xgmii_reset(struct dge_softc *sc)
   2417 {
   2418 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2419 }
   2420 
   2421 static int
   2422 dge_xgmii_mediachange(struct ifnet *ifp)
   2423 {
   2424 	return 0;
   2425 }
   2426