Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.3
      1 /*	$NetBSD: if_dge.c,v 1.3 2004/04/14 17:31:02 ragge Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  * All rights reserved.
      6  *
      7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	SUNET, Swedish University Computer Network.
     21  * 4. The name of SUNET may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  *
     75  * TODO (in no specific order):
     76  *	HW VLAN support.
     77  *	TSE offloading (needs kernel changes...)
     78  *	RAIDC (receive interrupt delay adaptation)
     79  *	Use memory > 4GB.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.3 2004/04/14 17:31:02 ragge Exp $");
     84 
     85 #include "bpfilter.h"
     86 #include "rnd.h"
     87 
     88 #include <sys/param.h>
     89 #include <sys/systm.h>
     90 #include <sys/callout.h>
     91 #include <sys/mbuf.h>
     92 #include <sys/malloc.h>
     93 #include <sys/kernel.h>
     94 #include <sys/socket.h>
     95 #include <sys/ioctl.h>
     96 #include <sys/errno.h>
     97 #include <sys/device.h>
     98 #include <sys/queue.h>
     99 
    100 #include <uvm/uvm_extern.h>		/* for PAGE_SIZE */
    101 
    102 #if NRND > 0
    103 #include <sys/rnd.h>
    104 #endif
    105 
    106 #include <net/if.h>
    107 #include <net/if_dl.h>
    108 #include <net/if_media.h>
    109 #include <net/if_ether.h>
    110 
    111 #if NBPFILTER > 0
    112 #include <net/bpf.h>
    113 #endif
    114 
    115 #include <netinet/in.h>			/* XXX for struct ip */
    116 #include <netinet/in_systm.h>		/* XXX for struct ip */
    117 #include <netinet/ip.h>			/* XXX for struct ip */
    118 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    119 
    120 #include <machine/bus.h>
    121 #include <machine/intr.h>
    122 #include <machine/endian.h>
    123 
    124 #include <dev/mii/mii.h>
    125 #include <dev/mii/miivar.h>
    126 #include <dev/mii/mii_bitbang.h>
    127 
    128 #include <dev/pci/pcireg.h>
    129 #include <dev/pci/pcivar.h>
    130 #include <dev/pci/pcidevs.h>
    131 
    132 #include <dev/pci/if_dgereg.h>
    133 
    134 /*
    135  * The receive engine may sometimes become off-by-one when writing back
    136  * chained descriptors.	 Avoid this by allocating a large chunk of
    137  * memory and use if instead (to avoid chained descriptors).
    138  * This only happens with chained descriptors under heavy load.
    139  */
    140 #define DGE_OFFBYONE_RXBUG
    141 
    142 #define DGE_EVENT_COUNTERS
    143 #define DGE_DEBUG
    144 
    145 #ifdef DGE_DEBUG
    146 #define DGE_DEBUG_LINK		0x01
    147 #define DGE_DEBUG_TX		0x02
    148 #define DGE_DEBUG_RX		0x04
    149 #define DGE_DEBUG_CKSUM		0x08
    150 int	dge_debug = 0;
    151 
    152 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    153 #else
    154 #define DPRINTF(x, y)	/* nothing */
    155 #endif /* DGE_DEBUG */
    156 
    157 /*
    158  * Transmit descriptor list size. We allow up to 100 DMA segments per
    159  * packet (Intel reports of jumbo frame packets with as
    160  * many as 80 DMA segments when using 16k buffers).
    161  */
    162 #define DGE_NTXSEGS		100
    163 #define DGE_IFQUEUELEN		20000
    164 #define DGE_TXQUEUELEN		2048
    165 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    166 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    167 #define DGE_NTXDESC		1024
    168 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    169 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    170 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    171 
    172 /*
    173  * Receive descriptor list size.
    174  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    175  * be chained.	Due to the nature of the card (high-speed), keep this
    176  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    177  * which at full speed will be received in just under 3ms.
    178  */
    179 #define DGE_NRXDESC		2048
    180 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    181 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    182 /*
    183  * # of descriptors between head and written descriptors.
    184  * This is to work-around two erratas.
    185  */
    186 #define DGE_RXSPACE		10
    187 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    188 /*
    189  * Receive descriptor fetch threshholds. These are values recommended
    190  * by Intel, do not touch them unless you know what you are doing.
    191  */
    192 #define RXDCTL_PTHRESH_VAL	128
    193 #define RXDCTL_HTHRESH_VAL	16
    194 #define RXDCTL_WTHRESH_VAL	16
    195 
    196 
    197 /*
    198  * Tweakable parameters; default values.
    199  */
    200 #define FCRTH	0x30000 /* Send XOFF water mark */
    201 #define FCRTL	0x28000 /* Send XON water mark */
    202 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    203 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    204 
    205 /*
    206  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    207  * a single clump that maps to a single DMA segment to make serveral things
    208  * easier.
    209  */
    210 struct dge_control_data {
    211 	/*
    212 	 * The transmit descriptors.
    213 	 */
    214 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    215 
    216 	/*
    217 	 * The receive descriptors.
    218 	 */
    219 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    220 };
    221 
    222 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    223 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    224 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    225 
    226 /*
    227  * The DGE interface have a higher max MTU size than normal jumbo frames.
    228  */
    229 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    230 
    231 /*
    232  * Software state for transmit jobs.
    233  */
    234 struct dge_txsoft {
    235 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    236 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    237 	int txs_firstdesc;		/* first descriptor in packet */
    238 	int txs_lastdesc;		/* last descriptor in packet */
    239 	int txs_ndesc;			/* # of descriptors used */
    240 };
    241 
    242 /*
    243  * Software state for receive buffers.	Each descriptor gets a
    244  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    245  * more than one buffer, we chain them together.
    246  */
    247 struct dge_rxsoft {
    248 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    249 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    250 };
    251 
    252 /*
    253  * Software state per device.
    254  */
    255 struct dge_softc {
    256 	struct device sc_dev;		/* generic device information */
    257 	bus_space_tag_t sc_st;		/* bus space tag */
    258 	bus_space_handle_t sc_sh;	/* bus space handle */
    259 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    260 	struct ethercom sc_ethercom;	/* ethernet common data */
    261 	void *sc_sdhook;		/* shutdown hook */
    262 
    263 	int sc_flags;			/* flags; see below */
    264 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    265 	int sc_pcix_offset;		/* PCIX capability register offset */
    266 
    267 	pci_chipset_tag_t sc_pc;
    268 	pcitag_t sc_pt;
    269 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    270 
    271 	void *sc_ih;			/* interrupt cookie */
    272 
    273 	struct ifmedia sc_media;
    274 
    275 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    276 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    277 
    278 	int		sc_align_tweak;
    279 
    280 	/*
    281 	 * Software state for the transmit and receive descriptors.
    282 	 */
    283 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    284 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    285 
    286 	/*
    287 	 * Control data structures.
    288 	 */
    289 	struct dge_control_data *sc_control_data;
    290 #define sc_txdescs	sc_control_data->wcd_txdescs
    291 #define sc_rxdescs	sc_control_data->wcd_rxdescs
    292 
    293 #ifdef DGE_EVENT_COUNTERS
    294 	/* Event counters. */
    295 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    296 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    297 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    298 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    299 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    300 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    301 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    302 
    303 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    304 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    305 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    306 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    307 
    308 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    309 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    310 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    311 
    312 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    313 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    314 #endif /* DGE_EVENT_COUNTERS */
    315 
    316 	int	sc_txfree;		/* number of free Tx descriptors */
    317 	int	sc_txnext;		/* next ready Tx descriptor */
    318 
    319 	int	sc_txsfree;		/* number of free Tx jobs */
    320 	int	sc_txsnext;		/* next free Tx job */
    321 	int	sc_txsdirty;		/* dirty Tx jobs */
    322 
    323 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    324 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    325 
    326 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    327 	int	sc_rxdiscard;
    328 	int	sc_rxlen;
    329 	struct mbuf *sc_rxhead;
    330 	struct mbuf *sc_rxtail;
    331 	struct mbuf **sc_rxtailp;
    332 
    333 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    334 	uint32_t sc_icr;		/* prototype interrupt bits */
    335 	uint32_t sc_tctl;		/* prototype TCTL register */
    336 	uint32_t sc_rctl;		/* prototype RCTL register */
    337 
    338 	int sc_mchash_type;		/* multicast filter offset */
    339 
    340 	uint16_t sc_eeprom[EEPROM_SIZE];
    341 
    342 #if NRND > 0
    343 	rndsource_element_t rnd_source; /* random source */
    344 #endif
    345 #ifdef DGE_OFFBYONE_RXBUG
    346 	caddr_t sc_bugbuf;
    347 	SLIST_HEAD(, rxbugentry) sc_buglist;
    348 	bus_dmamap_t sc_bugmap;
    349 	struct rxbugentry *sc_entry;
    350 #endif
    351 };
    352 
    353 #define DGE_RXCHAIN_RESET(sc)						\
    354 do {									\
    355 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    356 	*(sc)->sc_rxtailp = NULL;					\
    357 	(sc)->sc_rxlen = 0;						\
    358 } while (/*CONSTCOND*/0)
    359 
    360 #define DGE_RXCHAIN_LINK(sc, m)						\
    361 do {									\
    362 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    363 	(sc)->sc_rxtailp = &(m)->m_next;				\
    364 } while (/*CONSTCOND*/0)
    365 
    366 /* sc_flags */
    367 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    368 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    369 
    370 #ifdef DGE_EVENT_COUNTERS
    371 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    372 #else
    373 #define DGE_EVCNT_INCR(ev)	/* nothing */
    374 #endif
    375 
    376 #define CSR_READ(sc, reg)						\
    377 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    378 #define CSR_WRITE(sc, reg, val)						\
    379 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    380 
    381 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    382 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    383 
    384 #define DGE_CDTXSYNC(sc, x, n, ops)					\
    385 do {									\
    386 	int __x, __n;							\
    387 									\
    388 	__x = (x);							\
    389 	__n = (n);							\
    390 									\
    391 	/* If it will wrap around, sync to the end of the ring. */	\
    392 	if ((__x + __n) > DGE_NTXDESC) {					\
    393 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    394 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    395 		    (DGE_NTXDESC - __x), (ops));				\
    396 		__n -= (DGE_NTXDESC - __x);				\
    397 		__x = 0;						\
    398 	}								\
    399 									\
    400 	/* Now sync whatever is left. */				\
    401 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    402 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    403 } while (/*CONSTCOND*/0)
    404 
    405 #define DGE_CDRXSYNC(sc, x, ops)						\
    406 do {									\
    407 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    408 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    409 } while (/*CONSTCOND*/0)
    410 
    411 #ifdef DGE_OFFBYONE_RXBUG
    412 #define DGE_INIT_RXDESC(sc, x)						\
    413 do {									\
    414 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    415 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    416 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    417 									\
    418 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    419 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    420 	__rxd->dr_baddrh = 0;						\
    421 	__rxd->dr_len = 0;						\
    422 	__rxd->dr_cksum = 0;						\
    423 	__rxd->dr_status = 0;						\
    424 	__rxd->dr_errors = 0;						\
    425 	__rxd->dr_special = 0;						\
    426 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    427 									\
    428 	CSR_WRITE((sc), DGE_RDT, (x));					\
    429 } while (/*CONSTCOND*/0)
    430 #else
    431 #define DGE_INIT_RXDESC(sc, x)						\
    432 do {									\
    433 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    434 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    435 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    436 									\
    437 	/*								\
    438 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    439 	 * so that the payload after the Ethernet header is aligned	\
    440 	 * to a 4-byte boundary.					\
    441 	 *								\
    442 	 * XXX BRAINDAMAGE ALERT!					\
    443 	 * The stupid chip uses the same size for every buffer, which	\
    444 	 * is set in the Receive Control register.  We are using the 2K \
    445 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    446 	 * reason, we can't "scoot" packets longer than the standard	\
    447 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    448 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    449 	 * the upper layer copy the headers.				\
    450 	 */								\
    451 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    452 									\
    453 	__rxd->dr_baddrl =					\
    454 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    455 		(sc)->sc_align_tweak);					\
    456 	__rxd->dr_baddrh = 0;					\
    457 	__rxd->dr_len = 0;						\
    458 	__rxd->dr_cksum = 0;						\
    459 	__rxd->dr_status = 0;						\
    460 	__rxd->dr_errors = 0;						\
    461 	__rxd->dr_special = 0;						\
    462 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    463 									\
    464 	CSR_WRITE((sc), DGE_RDT, (x));					\
    465 } while (/*CONSTCOND*/0)
    466 #endif
    467 
    468 #ifdef DGE_OFFBYONE_RXBUG
    469 /*
    470  * Allocation constants.  Much memory may be used for this.
    471  */
    472 #ifndef DGE_BUFFER_SIZE
    473 #define DGE_BUFFER_SIZE DGE_MAX_MTU
    474 #endif
    475 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    476 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    477 
    478 struct rxbugentry {
    479 	SLIST_ENTRY(rxbugentry) rb_entry;
    480 	int rb_slot;
    481 };
    482 
    483 static int
    484 dge_alloc_rcvmem(struct dge_softc *sc)
    485 {
    486 	caddr_t	ptr, kva;
    487 	bus_dma_segment_t seg;
    488 	int i, rseg, state, error;
    489 	struct rxbugentry *entry;
    490 
    491 	state = error = 0;
    492 
    493 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    494 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    495 		printf("%s: can't alloc rx buffers\n", sc->sc_dev.dv_xname);
    496 		return ENOBUFS;
    497 	}
    498 
    499 	state = 1;
    500 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, &kva,
    501 	    BUS_DMA_NOWAIT)) {
    502 		printf("%s: can't map DMA buffers (%d bytes)\n",
    503 		    sc->sc_dev.dv_xname, (int)DGE_RXMEM);
    504 		error = ENOBUFS;
    505 		goto out;
    506 	}
    507 
    508 	state = 2;
    509 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    510 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    511 		printf("%s: can't create DMA map\n", sc->sc_dev.dv_xname);
    512 		error = ENOBUFS;
    513 		goto out;
    514 	}
    515 
    516 	state = 3;
    517 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    518 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    519 		printf("%s: can't load DMA map\n", sc->sc_dev.dv_xname);
    520 		error = ENOBUFS;
    521 		goto out;
    522 	}
    523 
    524 	state = 4;
    525 	sc->sc_bugbuf = (caddr_t)kva;
    526 	SLIST_INIT(&sc->sc_buglist);
    527 
    528 	/*
    529 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    530 	 * in an array.
    531 	 */
    532 	ptr = sc->sc_bugbuf;
    533 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    534 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    535 		error = ENOBUFS;
    536 		goto out;
    537 	}
    538 	sc->sc_entry = entry;
    539 	for (i = 0; i < DGE_NBUFFERS; i++) {
    540 		entry[i].rb_slot = i;
    541 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    542 	}
    543 out:
    544 	if (error != 0) {
    545 		switch (state) {
    546 		case 4:
    547 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    548 		case 3:
    549 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    550 		case 2:
    551 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    552 		case 1:
    553 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    554 			break;
    555 		default:
    556 			break;
    557 		}
    558 	}
    559 
    560 	return error;
    561 }
    562 
    563 /*
    564  * Allocate a jumbo buffer.
    565  */
    566 static void *
    567 dge_getbuf(struct dge_softc *sc)
    568 {
    569 	struct rxbugentry *entry;
    570 
    571 	entry = SLIST_FIRST(&sc->sc_buglist);
    572 
    573 	if (entry == NULL) {
    574 		printf("%s: no free RX buffers\n", sc->sc_dev.dv_xname);
    575 		return(NULL);
    576 	}
    577 
    578 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    579 	return sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    580 }
    581 
    582 /*
    583  * Release a jumbo buffer.
    584  */
    585 static void
    586 dge_freebuf(struct mbuf *m, caddr_t buf, size_t size, void *arg)
    587 {
    588 	struct rxbugentry *entry;
    589 	struct dge_softc *sc;
    590 	int i, s;
    591 
    592 	/* Extract the softc struct pointer. */
    593 	sc = (struct dge_softc *)arg;
    594 
    595 	if (sc == NULL)
    596 		panic("dge_freebuf: can't find softc pointer!");
    597 
    598 	/* calculate the slot this buffer belongs to */
    599 
    600 	i = (buf - sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    601 
    602 	if ((i < 0) || (i >= DGE_NBUFFERS))
    603 		panic("dge_freebuf: asked to free buffer %d!", i);
    604 
    605 	s = splvm();
    606 	entry = sc->sc_entry + i;
    607 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    608 
    609 	if (__predict_true(m != NULL))
    610 		pool_cache_put(&mbpool_cache, m);
    611 	splx(s);
    612 }
    613 #endif
    614 
    615 static void	dge_start(struct ifnet *);
    616 static void	dge_watchdog(struct ifnet *);
    617 static int	dge_ioctl(struct ifnet *, u_long, caddr_t);
    618 static int	dge_init(struct ifnet *);
    619 static void	dge_stop(struct ifnet *, int);
    620 
    621 static void	dge_shutdown(void *);
    622 
    623 static void	dge_reset(struct dge_softc *);
    624 static void	dge_rxdrain(struct dge_softc *);
    625 static int	dge_add_rxbuf(struct dge_softc *, int);
    626 
    627 static void	dge_set_filter(struct dge_softc *);
    628 
    629 static int	dge_intr(void *);
    630 static void	dge_txintr(struct dge_softc *);
    631 static void	dge_rxintr(struct dge_softc *);
    632 static void	dge_linkintr(struct dge_softc *, uint32_t);
    633 
    634 static int	dge_match(struct device *, struct cfdata *, void *);
    635 static void	dge_attach(struct device *, struct device *, void *);
    636 
    637 static int	dge_read_eeprom(struct dge_softc *sc);
    638 static int	dge_eeprom_clockin(struct dge_softc *sc);
    639 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    640 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    641 static int	dge_xgmii_mediachange(struct ifnet *);
    642 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    643 static void	dge_xgmii_reset(struct dge_softc *);
    644 static void	dge_xgmii_writereg(struct device *, int, int, int);
    645 
    646 
    647 CFATTACH_DECL(dge, sizeof(struct dge_softc),
    648     dge_match, dge_attach, NULL, NULL);
    649 
    650 #ifdef DGE_EVENT_COUNTERS
    651 #if DGE_NTXSEGS > 100
    652 #error Update dge_txseg_evcnt_names
    653 #endif
    654 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    655 #endif /* DGE_EVENT_COUNTERS */
    656 
    657 static int
    658 dge_match(struct device *parent, struct cfdata *cf, void *aux)
    659 {
    660 	struct pci_attach_args *pa = aux;
    661 
    662 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    663 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    664 		return (1);
    665 
    666 	return (0);
    667 }
    668 
    669 static void
    670 dge_attach(struct device *parent, struct device *self, void *aux)
    671 {
    672 	struct dge_softc *sc = (void *) self;
    673 	struct pci_attach_args *pa = aux;
    674 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    675 	pci_chipset_tag_t pc = pa->pa_pc;
    676 	pci_intr_handle_t ih;
    677 	const char *intrstr = NULL;
    678 	bus_dma_segment_t seg;
    679 	int i, rseg, error;
    680 	uint8_t enaddr[ETHER_ADDR_LEN];
    681 	pcireg_t preg, memtype;
    682 	uint32_t reg;
    683 
    684 	sc->sc_dmat = pa->pa_dmat;
    685 	sc->sc_pc = pa->pa_pc;
    686 	sc->sc_pt = pa->pa_tag;
    687 
    688 	preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
    689 	aprint_naive(": Ethernet controller\n");
    690 	aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
    691 
    692 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    693         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    694             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    695                 aprint_error("%s: unable to map device registers\n",
    696                     sc->sc_dev.dv_xname);
    697                 return;
    698         }
    699 
    700 	/* Enable bus mastering */
    701 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    702 	preg |= PCI_COMMAND_MASTER_ENABLE;
    703 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    704 
    705 	/*
    706 	 * Map and establish our interrupt.
    707 	 */
    708 	if (pci_intr_map(pa, &ih)) {
    709 		aprint_error("%s: unable to map interrupt\n",
    710 		    sc->sc_dev.dv_xname);
    711 		return;
    712 	}
    713 	intrstr = pci_intr_string(pc, ih);
    714 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    715 	if (sc->sc_ih == NULL) {
    716 		aprint_error("%s: unable to establish interrupt",
    717 		    sc->sc_dev.dv_xname);
    718 		if (intrstr != NULL)
    719 			aprint_normal(" at %s", intrstr);
    720 		aprint_normal("\n");
    721 		return;
    722 	}
    723 	aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
    724 
    725 	/*
    726 	 * Determine a few things about the bus we're connected to.
    727 	 */
    728 	reg = CSR_READ(sc, DGE_STATUS);
    729 	if (reg & STATUS_BUS64)
    730 		sc->sc_flags |= DGE_F_BUS64;
    731 
    732 	sc->sc_flags |= DGE_F_PCIX;
    733 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    734 			       PCI_CAP_PCIX,
    735 			       &sc->sc_pcix_offset, NULL) == 0)
    736 		aprint_error("%s: unable to find PCIX "
    737 		    "capability\n", sc->sc_dev.dv_xname);
    738 
    739 	if (sc->sc_flags & DGE_F_PCIX) {
    740 		switch (reg & STATUS_PCIX_MSK) {
    741 		case STATUS_PCIX_66:
    742 			sc->sc_bus_speed = 66;
    743 			break;
    744 		case STATUS_PCIX_100:
    745 			sc->sc_bus_speed = 100;
    746 			break;
    747 		case STATUS_PCIX_133:
    748 			sc->sc_bus_speed = 133;
    749 			break;
    750 		default:
    751 			aprint_error(
    752 			    "%s: unknown PCIXSPD %d; assuming 66MHz\n",
    753 			    sc->sc_dev.dv_xname,
    754 			    reg & STATUS_PCIX_MSK);
    755 			sc->sc_bus_speed = 66;
    756 		}
    757 	} else
    758 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    759 	aprint_verbose("%s: %d-bit %dMHz %s bus\n", sc->sc_dev.dv_xname,
    760 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    761 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    762 
    763 	/*
    764 	 * Allocate the control data structures, and create and load the
    765 	 * DMA map for it.
    766 	 */
    767 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    768 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    769 	    0)) != 0) {
    770 		aprint_error(
    771 		    "%s: unable to allocate control data, error = %d\n",
    772 		    sc->sc_dev.dv_xname, error);
    773 		goto fail_0;
    774 	}
    775 
    776 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    777 	    sizeof(struct dge_control_data), (caddr_t *)&sc->sc_control_data,
    778 	    0)) != 0) {
    779 		aprint_error("%s: unable to map control data, error = %d\n",
    780 		    sc->sc_dev.dv_xname, error);
    781 		goto fail_1;
    782 	}
    783 
    784 	if ((error = bus_dmamap_create(sc->sc_dmat,
    785 	    sizeof(struct dge_control_data), 1,
    786 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    787 		aprint_error("%s: unable to create control data DMA map, "
    788 		    "error = %d\n", sc->sc_dev.dv_xname, error);
    789 		goto fail_2;
    790 	}
    791 
    792 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    793 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    794 	    0)) != 0) {
    795 		aprint_error(
    796 		    "%s: unable to load control data DMA map, error = %d\n",
    797 		    sc->sc_dev.dv_xname, error);
    798 		goto fail_3;
    799 	}
    800 
    801 #ifdef DGE_OFFBYONE_RXBUG
    802 	if (dge_alloc_rcvmem(sc) != 0)
    803 		return; /* Already complained */
    804 #endif
    805 	/*
    806 	 * Create the transmit buffer DMA maps.
    807 	 */
    808 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    809 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    810 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    811 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    812 			aprint_error("%s: unable to create Tx DMA map %d, "
    813 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    814 			goto fail_4;
    815 		}
    816 	}
    817 
    818 	/*
    819 	 * Create the receive buffer DMA maps.
    820 	 */
    821 	for (i = 0; i < DGE_NRXDESC; i++) {
    822 #ifdef DGE_OFFBYONE_RXBUG
    823 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    824 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    825 #else
    826 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    827 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    828 #endif
    829 			aprint_error("%s: unable to create Rx DMA map %d, "
    830 			    "error = %d\n", sc->sc_dev.dv_xname, i, error);
    831 			goto fail_5;
    832 		}
    833 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    834 	}
    835 
    836 	/*
    837 	 * Set bits in ctrl0 register.
    838 	 * Should get the software defined pins out of EEPROM?
    839 	 */
    840 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    841 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    842 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    843 
    844 	/*
    845 	 * Reset the chip to a known state.
    846 	 */
    847 	dge_reset(sc);
    848 
    849 	/*
    850 	 * Reset the PHY.
    851 	 */
    852 	dge_xgmii_reset(sc);
    853 
    854 	/*
    855 	 * Read in EEPROM data.
    856 	 */
    857 	if (dge_read_eeprom(sc)) {
    858 		aprint_error("%s: couldn't read EEPROM\n", sc->sc_dev.dv_xname);
    859 		return;
    860 	}
    861 
    862 	/*
    863 	 * Get the ethernet address.
    864 	 */
    865 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    866 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    867 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    868 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    869 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    870 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    871 
    872 	aprint_normal("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
    873 	    ether_sprintf(enaddr));
    874 
    875 	/*
    876 	 * Setup media stuff.
    877 	 */
    878         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    879             dge_xgmii_mediastatus);
    880         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    881         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    882 
    883 	ifp = &sc->sc_ethercom.ec_if;
    884 	strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
    885 	ifp->if_softc = sc;
    886 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    887 	ifp->if_ioctl = dge_ioctl;
    888 	ifp->if_start = dge_start;
    889 	ifp->if_watchdog = dge_watchdog;
    890 	ifp->if_init = dge_init;
    891 	ifp->if_stop = dge_stop;
    892 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    893 	IFQ_SET_READY(&ifp->if_snd);
    894 
    895 	sc->sc_ethercom.ec_capabilities |=
    896 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    897 
    898 	/*
    899 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    900 	 */
    901 	ifp->if_capabilities |=
    902 	    IFCAP_CSUM_IPv4 | IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
    903 
    904 	/*
    905 	 * Attach the interface.
    906 	 */
    907 	if_attach(ifp);
    908 	ether_ifattach(ifp, enaddr);
    909 #if NRND > 0
    910 	rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
    911 	    RND_TYPE_NET, 0);
    912 #endif
    913 
    914 #ifdef DGE_EVENT_COUNTERS
    915 	/* Fix segment event naming */
    916 	if (dge_txseg_evcnt_names == NULL) {
    917 		dge_txseg_evcnt_names =
    918 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    919 		for (i = 0; i < DGE_NTXSEGS; i++)
    920 			sprintf((*dge_txseg_evcnt_names)[i], "txseg%d", i);
    921 	}
    922 
    923 	/* Attach event counters. */
    924 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    925 	    NULL, sc->sc_dev.dv_xname, "txsstall");
    926 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    927 	    NULL, sc->sc_dev.dv_xname, "txdstall");
    928 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    929 	    NULL, sc->sc_dev.dv_xname, "txforceintr");
    930 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    931 	    NULL, sc->sc_dev.dv_xname, "txdw");
    932 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    933 	    NULL, sc->sc_dev.dv_xname, "txqe");
    934 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    935 	    NULL, sc->sc_dev.dv_xname, "rxintr");
    936 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    937 	    NULL, sc->sc_dev.dv_xname, "linkintr");
    938 
    939 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    940 	    NULL, sc->sc_dev.dv_xname, "rxipsum");
    941 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    942 	    NULL, sc->sc_dev.dv_xname, "rxtusum");
    943 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    944 	    NULL, sc->sc_dev.dv_xname, "txipsum");
    945 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    946 	    NULL, sc->sc_dev.dv_xname, "txtusum");
    947 
    948 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    949 	    NULL, sc->sc_dev.dv_xname, "txctx init");
    950 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    951 	    NULL, sc->sc_dev.dv_xname, "txctx hit");
    952 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    953 	    NULL, sc->sc_dev.dv_xname, "txctx miss");
    954 
    955 	for (i = 0; i < DGE_NTXSEGS; i++)
    956 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    957 		    NULL, sc->sc_dev.dv_xname, (*dge_txseg_evcnt_names)[i]);
    958 
    959 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    960 	    NULL, sc->sc_dev.dv_xname, "txdrop");
    961 
    962 #endif /* DGE_EVENT_COUNTERS */
    963 
    964 	/*
    965 	 * Make sure the interface is shutdown during reboot.
    966 	 */
    967 	sc->sc_sdhook = shutdownhook_establish(dge_shutdown, sc);
    968 	if (sc->sc_sdhook == NULL)
    969 		aprint_error("%s: WARNING: unable to establish shutdown hook\n",
    970 		    sc->sc_dev.dv_xname);
    971 	return;
    972 
    973 	/*
    974 	 * Free any resources we've allocated during the failed attach
    975 	 * attempt.  Do this in reverse order and fall through.
    976 	 */
    977  fail_5:
    978 	for (i = 0; i < DGE_NRXDESC; i++) {
    979 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    980 			bus_dmamap_destroy(sc->sc_dmat,
    981 			    sc->sc_rxsoft[i].rxs_dmamap);
    982 	}
    983  fail_4:
    984 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    985 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    986 			bus_dmamap_destroy(sc->sc_dmat,
    987 			    sc->sc_txsoft[i].txs_dmamap);
    988 	}
    989 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    990  fail_3:
    991 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    992  fail_2:
    993 	bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_control_data,
    994 	    sizeof(struct dge_control_data));
    995  fail_1:
    996 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    997  fail_0:
    998 	return;
    999 }
   1000 
   1001 /*
   1002  * dge_shutdown:
   1003  *
   1004  *	Make sure the interface is stopped at reboot time.
   1005  */
   1006 static void
   1007 dge_shutdown(void *arg)
   1008 {
   1009 	struct dge_softc *sc = arg;
   1010 
   1011 	dge_stop(&sc->sc_ethercom.ec_if, 1);
   1012 }
   1013 
   1014 /*
   1015  * dge_tx_cksum:
   1016  *
   1017  *	Set up TCP/IP checksumming parameters for the
   1018  *	specified packet.
   1019  */
   1020 static int
   1021 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1022 {
   1023 	struct mbuf *m0 = txs->txs_mbuf;
   1024 	struct dge_ctdes *t;
   1025 	uint32_t ipcs, tucs;
   1026 	struct ip *ip;
   1027 	struct ether_header *eh;
   1028 	int offset, iphl;
   1029 	uint8_t fields = 0;
   1030 
   1031 	/*
   1032 	 * XXX It would be nice if the mbuf pkthdr had offset
   1033 	 * fields for the protocol headers.
   1034 	 */
   1035 
   1036 	eh = mtod(m0, struct ether_header *);
   1037 	switch (htons(eh->ether_type)) {
   1038 	case ETHERTYPE_IP:
   1039 		iphl = sizeof(struct ip);
   1040 		offset = ETHER_HDR_LEN;
   1041 		break;
   1042 
   1043 	case ETHERTYPE_VLAN:
   1044 		iphl = sizeof(struct ip);
   1045 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1046 		break;
   1047 
   1048 	default:
   1049 		/*
   1050 		 * Don't support this protocol or encapsulation.
   1051 		 */
   1052 		*fieldsp = 0;
   1053 		return (0);
   1054 	}
   1055 
   1056 	if (m0->m_len < (offset + iphl)) {
   1057 		if ((txs->txs_mbuf = m_pullup(m0, offset + iphl)) == NULL) {
   1058 			printf("%s: dge_tx_cksum: mbuf allocation failed, "
   1059 			    "packet dropped\n", sc->sc_dev.dv_xname);
   1060 			return (ENOMEM);
   1061 		}
   1062 		m0 = txs->txs_mbuf;
   1063 	}
   1064 
   1065 	ip = (struct ip *) (mtod(m0, caddr_t) + offset);
   1066 	iphl = ip->ip_hl << 2;
   1067 
   1068 	/*
   1069 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1070 	 * offload feature, if we load the context descriptor, we
   1071 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1072 	 */
   1073 
   1074 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1075 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1076 		fields |= TDESC_POPTS_IXSM;
   1077 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1078 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1079 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1080 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1081 		/* Use the cached value. */
   1082 		ipcs = sc->sc_txctx_ipcs;
   1083 	} else {
   1084 		/* Just initialize it to the likely value anyway. */
   1085 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1086 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1087 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1088 	}
   1089 	DPRINTF(DGE_DEBUG_CKSUM,
   1090 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1091 	    sc->sc_dev.dv_xname, offset, ipcs));
   1092 
   1093 	offset += iphl;
   1094 
   1095 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1096 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1097 		fields |= TDESC_POPTS_TXSM;
   1098 		tucs = DGE_TCPIP_TUCSS(offset) |
   1099 		    DGE_TCPIP_TUCSO(offset + m0->m_pkthdr.csum_data) |
   1100 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1101 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1102 		/* Use the cached value. */
   1103 		tucs = sc->sc_txctx_tucs;
   1104 	} else {
   1105 		/* Just initialize it to a valid TCP context. */
   1106 		tucs = DGE_TCPIP_TUCSS(offset) |
   1107 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1108 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1109 	}
   1110 
   1111 	DPRINTF(DGE_DEBUG_CKSUM,
   1112 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1113 	    sc->sc_dev.dv_xname, offset, tucs));
   1114 
   1115 	if (sc->sc_txctx_ipcs == ipcs &&
   1116 	    sc->sc_txctx_tucs == tucs) {
   1117 		/* Cached context is fine. */
   1118 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1119 	} else {
   1120 		/* Fill in the context descriptor. */
   1121 #ifdef DGE_EVENT_COUNTERS
   1122 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1123 		    sc->sc_txctx_tucs == 0xffffffff)
   1124 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1125 		else
   1126 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1127 #endif
   1128 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1129 		t->dc_tcpip_ipcs = htole32(ipcs);
   1130 		t->dc_tcpip_tucs = htole32(tucs);
   1131 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1132 		t->dc_tcpip_seg = 0;
   1133 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1134 
   1135 		sc->sc_txctx_ipcs = ipcs;
   1136 		sc->sc_txctx_tucs = tucs;
   1137 
   1138 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1139 		txs->txs_ndesc++;
   1140 	}
   1141 
   1142 	*fieldsp = fields;
   1143 
   1144 	return (0);
   1145 }
   1146 
   1147 /*
   1148  * dge_start:		[ifnet interface function]
   1149  *
   1150  *	Start packet transmission on the interface.
   1151  */
   1152 static void
   1153 dge_start(struct ifnet *ifp)
   1154 {
   1155 	struct dge_softc *sc = ifp->if_softc;
   1156 	struct mbuf *m0;
   1157 	struct dge_txsoft *txs;
   1158 	bus_dmamap_t dmamap;
   1159 	int error, nexttx, lasttx = -1, ofree, seg;
   1160 	uint32_t cksumcmd;
   1161 	uint8_t cksumfields;
   1162 
   1163 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1164 		return;
   1165 
   1166 	/*
   1167 	 * Remember the previous number of free descriptors.
   1168 	 */
   1169 	ofree = sc->sc_txfree;
   1170 
   1171 	/*
   1172 	 * Loop through the send queue, setting up transmit descriptors
   1173 	 * until we drain the queue, or use up all available transmit
   1174 	 * descriptors.
   1175 	 */
   1176 	for (;;) {
   1177 		/* Grab a packet off the queue. */
   1178 		IFQ_POLL(&ifp->if_snd, m0);
   1179 		if (m0 == NULL)
   1180 			break;
   1181 
   1182 		DPRINTF(DGE_DEBUG_TX,
   1183 		    ("%s: TX: have packet to transmit: %p\n",
   1184 		    sc->sc_dev.dv_xname, m0));
   1185 
   1186 		/* Get a work queue entry. */
   1187 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1188 			dge_txintr(sc);
   1189 			if (sc->sc_txsfree == 0) {
   1190 				DPRINTF(DGE_DEBUG_TX,
   1191 				    ("%s: TX: no free job descriptors\n",
   1192 					sc->sc_dev.dv_xname));
   1193 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1194 				break;
   1195 			}
   1196 		}
   1197 
   1198 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1199 		dmamap = txs->txs_dmamap;
   1200 
   1201 		/*
   1202 		 * Load the DMA map.  If this fails, the packet either
   1203 		 * didn't fit in the allotted number of segments, or we
   1204 		 * were short on resources.  For the too-many-segments
   1205 		 * case, we simply report an error and drop the packet,
   1206 		 * since we can't sanely copy a jumbo packet to a single
   1207 		 * buffer.
   1208 		 */
   1209 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1210 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1211 		if (error) {
   1212 			if (error == EFBIG) {
   1213 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1214 				printf("%s: Tx packet consumes too many "
   1215 				    "DMA segments, dropping...\n",
   1216 				    sc->sc_dev.dv_xname);
   1217 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1218 				m_freem(m0);
   1219 				continue;
   1220 			}
   1221 			/*
   1222 			 * Short on resources, just stop for now.
   1223 			 */
   1224 			DPRINTF(DGE_DEBUG_TX,
   1225 			    ("%s: TX: dmamap load failed: %d\n",
   1226 			    sc->sc_dev.dv_xname, error));
   1227 			break;
   1228 		}
   1229 
   1230 		/*
   1231 		 * Ensure we have enough descriptors free to describe
   1232 		 * the packet.  Note, we always reserve one descriptor
   1233 		 * at the end of the ring due to the semantics of the
   1234 		 * TDT register, plus one more in the event we need
   1235 		 * to re-load checksum offload context.
   1236 		 */
   1237 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1238 			/*
   1239 			 * Not enough free descriptors to transmit this
   1240 			 * packet.  We haven't committed anything yet,
   1241 			 * so just unload the DMA map, put the packet
   1242 			 * pack on the queue, and punt.  Notify the upper
   1243 			 * layer that there are no more slots left.
   1244 			 */
   1245 			DPRINTF(DGE_DEBUG_TX,
   1246 			    ("%s: TX: need %d descriptors, have %d\n",
   1247 			    sc->sc_dev.dv_xname, dmamap->dm_nsegs,
   1248 			    sc->sc_txfree - 1));
   1249 			ifp->if_flags |= IFF_OACTIVE;
   1250 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1251 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1252 			break;
   1253 		}
   1254 
   1255 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1256 
   1257 		/*
   1258 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1259 		 */
   1260 
   1261 		/* Sync the DMA map. */
   1262 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1263 		    BUS_DMASYNC_PREWRITE);
   1264 
   1265 		DPRINTF(DGE_DEBUG_TX,
   1266 		    ("%s: TX: packet has %d DMA segments\n",
   1267 		    sc->sc_dev.dv_xname, dmamap->dm_nsegs));
   1268 
   1269 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1270 
   1271 		/*
   1272 		 * Store a pointer to the packet so that we can free it
   1273 		 * later.
   1274 		 *
   1275 		 * Initially, we consider the number of descriptors the
   1276 		 * packet uses the number of DMA segments.  This may be
   1277 		 * incremented by 1 if we do checksum offload (a descriptor
   1278 		 * is used to set the checksum context).
   1279 		 */
   1280 		txs->txs_mbuf = m0;
   1281 		txs->txs_firstdesc = sc->sc_txnext;
   1282 		txs->txs_ndesc = dmamap->dm_nsegs;
   1283 
   1284 		/*
   1285 		 * Set up checksum offload parameters for
   1286 		 * this packet.
   1287 		 */
   1288 		if (m0->m_pkthdr.csum_flags &
   1289 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1290 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1291 				/* Error message already displayed. */
   1292 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1293 				continue;
   1294 			}
   1295 		} else {
   1296 			cksumfields = 0;
   1297 		}
   1298 
   1299 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1300 
   1301 		/*
   1302 		 * Initialize the transmit descriptor.
   1303 		 */
   1304 		for (nexttx = sc->sc_txnext, seg = 0;
   1305 		     seg < dmamap->dm_nsegs;
   1306 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1307 			/*
   1308 			 * Note: we currently only use 32-bit DMA
   1309 			 * addresses.
   1310 			 */
   1311 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1312 			sc->sc_txdescs[nexttx].dt_baddrl =
   1313 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1314 			sc->sc_txdescs[nexttx].dt_ctl =
   1315 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1316 			sc->sc_txdescs[nexttx].dt_status = 0;
   1317 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1318 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1319 			lasttx = nexttx;
   1320 
   1321 			DPRINTF(DGE_DEBUG_TX,
   1322 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1323 			    sc->sc_dev.dv_xname, nexttx,
   1324 			    le32toh(dmamap->dm_segs[seg].ds_addr),
   1325 			    le32toh(dmamap->dm_segs[seg].ds_len)));
   1326 		}
   1327 
   1328 		KASSERT(lasttx != -1);
   1329 
   1330 		/*
   1331 		 * Set up the command byte on the last descriptor of
   1332 		 * the packet.  If we're in the interrupt delay window,
   1333 		 * delay the interrupt.
   1334 		 */
   1335 		sc->sc_txdescs[lasttx].dt_ctl |=
   1336 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1337 
   1338 		txs->txs_lastdesc = lasttx;
   1339 
   1340 		DPRINTF(DGE_DEBUG_TX,
   1341 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", sc->sc_dev.dv_xname,
   1342 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1343 
   1344 		/* Sync the descriptors we're using. */
   1345 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1346 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1347 
   1348 		/* Give the packet to the chip. */
   1349 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1350 
   1351 		DPRINTF(DGE_DEBUG_TX,
   1352 		    ("%s: TX: TDT -> %d\n", sc->sc_dev.dv_xname, nexttx));
   1353 
   1354 		DPRINTF(DGE_DEBUG_TX,
   1355 		    ("%s: TX: finished transmitting packet, job %d\n",
   1356 		    sc->sc_dev.dv_xname, sc->sc_txsnext));
   1357 
   1358 		/* Advance the tx pointer. */
   1359 		sc->sc_txfree -= txs->txs_ndesc;
   1360 		sc->sc_txnext = nexttx;
   1361 
   1362 		sc->sc_txsfree--;
   1363 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1364 
   1365 #if NBPFILTER > 0
   1366 		/* Pass the packet to any BPF listeners. */
   1367 		if (ifp->if_bpf)
   1368 			bpf_mtap(ifp->if_bpf, m0);
   1369 #endif /* NBPFILTER > 0 */
   1370 	}
   1371 
   1372 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1373 		/* No more slots; notify upper layer. */
   1374 		ifp->if_flags |= IFF_OACTIVE;
   1375 	}
   1376 
   1377 	if (sc->sc_txfree != ofree) {
   1378 		/* Set a watchdog timer in case the chip flakes out. */
   1379 		ifp->if_timer = 5;
   1380 	}
   1381 }
   1382 
   1383 /*
   1384  * dge_watchdog:		[ifnet interface function]
   1385  *
   1386  *	Watchdog timer handler.
   1387  */
   1388 static void
   1389 dge_watchdog(struct ifnet *ifp)
   1390 {
   1391 	struct dge_softc *sc = ifp->if_softc;
   1392 
   1393 	/*
   1394 	 * Since we're using delayed interrupts, sweep up
   1395 	 * before we report an error.
   1396 	 */
   1397 	dge_txintr(sc);
   1398 
   1399 	if (sc->sc_txfree != DGE_NTXDESC) {
   1400 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1401 		    sc->sc_dev.dv_xname, sc->sc_txfree, sc->sc_txsfree,
   1402 		    sc->sc_txnext);
   1403 		ifp->if_oerrors++;
   1404 
   1405 		/* Reset the interface. */
   1406 		(void) dge_init(ifp);
   1407 	}
   1408 
   1409 	/* Try to get more packets going. */
   1410 	dge_start(ifp);
   1411 }
   1412 
   1413 /*
   1414  * dge_ioctl:		[ifnet interface function]
   1415  *
   1416  *	Handle control requests from the operator.
   1417  */
   1418 static int
   1419 dge_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
   1420 {
   1421 	struct dge_softc *sc = ifp->if_softc;
   1422 	struct ifreq *ifr = (struct ifreq *) data;
   1423 	pcireg_t preg;
   1424 	int s, error, mmrbc;
   1425 
   1426 	s = splnet();
   1427 
   1428 	switch (cmd) {
   1429 	case SIOCSIFMEDIA:
   1430 	case SIOCGIFMEDIA:
   1431 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1432 		break;
   1433 
   1434 	case SIOCSIFMTU:
   1435 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU) {
   1436 			error = EINVAL;
   1437 		} else {
   1438 			error = 0;
   1439 			ifp->if_mtu = ifr->ifr_mtu;
   1440 			if (ifp->if_flags & IFF_UP)
   1441 				error = (*ifp->if_init)(ifp);
   1442 		}
   1443 		break;
   1444 
   1445         case SIOCSIFFLAGS:
   1446 		/* extract link flags */
   1447 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1448 		    (ifp->if_flags & IFF_LINK1) == 0)
   1449 			mmrbc = PCIX_MMRBC_512;
   1450 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1451 		    (ifp->if_flags & IFF_LINK1) != 0)
   1452 			mmrbc = PCIX_MMRBC_1024;
   1453 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1454 		    (ifp->if_flags & IFF_LINK1) == 0)
   1455 			mmrbc = PCIX_MMRBC_2048;
   1456 		else
   1457 			mmrbc = PCIX_MMRBC_4096;
   1458 		if (mmrbc != sc->sc_mmrbc) {
   1459 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1460 			preg &= ~PCIX_MMRBC_MSK;
   1461 			preg |= mmrbc;
   1462 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1463 			sc->sc_mmrbc = mmrbc;
   1464 		}
   1465                 /* FALLTHROUGH */
   1466 	default:
   1467 		error = ether_ioctl(ifp, cmd, data);
   1468 		if (error == ENETRESET) {
   1469 			/*
   1470 			 * Multicast list has changed; set the hardware filter
   1471 			 * accordingly.
   1472 			 */
   1473 			dge_set_filter(sc);
   1474 			error = 0;
   1475 		}
   1476 		break;
   1477 	}
   1478 
   1479 	/* Try to get more packets going. */
   1480 	dge_start(ifp);
   1481 
   1482 	splx(s);
   1483 	return (error);
   1484 }
   1485 
   1486 /*
   1487  * dge_intr:
   1488  *
   1489  *	Interrupt service routine.
   1490  */
   1491 static int
   1492 dge_intr(void *arg)
   1493 {
   1494 	struct dge_softc *sc = arg;
   1495 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1496 	uint32_t icr;
   1497 	int wantinit, handled = 0;
   1498 
   1499 	for (wantinit = 0; wantinit == 0;) {
   1500 		icr = CSR_READ(sc, DGE_ICR);
   1501 		if ((icr & sc->sc_icr) == 0)
   1502 			break;
   1503 
   1504 #if 0 /*NRND > 0*/
   1505 		if (RND_ENABLED(&sc->rnd_source))
   1506 			rnd_add_uint32(&sc->rnd_source, icr);
   1507 #endif
   1508 
   1509 		handled = 1;
   1510 
   1511 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1512 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1513 			DPRINTF(DGE_DEBUG_RX,
   1514 			    ("%s: RX: got Rx intr 0x%08x\n",
   1515 			    sc->sc_dev.dv_xname,
   1516 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1517 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1518 		}
   1519 #endif
   1520 		dge_rxintr(sc);
   1521 
   1522 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1523 		if (icr & ICR_TXDW) {
   1524 			DPRINTF(DGE_DEBUG_TX,
   1525 			    ("%s: TX: got TXDW interrupt\n",
   1526 			    sc->sc_dev.dv_xname));
   1527 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1528 		}
   1529 		if (icr & ICR_TXQE)
   1530 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1531 #endif
   1532 		dge_txintr(sc);
   1533 
   1534 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1535 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1536 			dge_linkintr(sc, icr);
   1537 		}
   1538 
   1539 		if (icr & ICR_RXO) {
   1540 			printf("%s: Receive overrun\n", sc->sc_dev.dv_xname);
   1541 			wantinit = 1;
   1542 		}
   1543 	}
   1544 
   1545 	if (handled) {
   1546 		if (wantinit)
   1547 			dge_init(ifp);
   1548 
   1549 		/* Try to get more packets going. */
   1550 		dge_start(ifp);
   1551 	}
   1552 
   1553 	return (handled);
   1554 }
   1555 
   1556 /*
   1557  * dge_txintr:
   1558  *
   1559  *	Helper; handle transmit interrupts.
   1560  */
   1561 static void
   1562 dge_txintr(struct dge_softc *sc)
   1563 {
   1564 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1565 	struct dge_txsoft *txs;
   1566 	uint8_t status;
   1567 	int i;
   1568 
   1569 	ifp->if_flags &= ~IFF_OACTIVE;
   1570 
   1571 	/*
   1572 	 * Go through the Tx list and free mbufs for those
   1573 	 * frames which have been transmitted.
   1574 	 */
   1575 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1576 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1577 		txs = &sc->sc_txsoft[i];
   1578 
   1579 		DPRINTF(DGE_DEBUG_TX,
   1580 		    ("%s: TX: checking job %d\n", sc->sc_dev.dv_xname, i));
   1581 
   1582 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1583 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1584 
   1585 		status =
   1586 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1587 		if ((status & TDESC_STA_DD) == 0) {
   1588 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1589 			    BUS_DMASYNC_PREREAD);
   1590 			break;
   1591 		}
   1592 
   1593 		DPRINTF(DGE_DEBUG_TX,
   1594 		    ("%s: TX: job %d done: descs %d..%d\n",
   1595 		    sc->sc_dev.dv_xname, i, txs->txs_firstdesc,
   1596 		    txs->txs_lastdesc));
   1597 
   1598 		ifp->if_opackets++;
   1599 		sc->sc_txfree += txs->txs_ndesc;
   1600 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1601 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1602 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1603 		m_freem(txs->txs_mbuf);
   1604 		txs->txs_mbuf = NULL;
   1605 	}
   1606 
   1607 	/* Update the dirty transmit buffer pointer. */
   1608 	sc->sc_txsdirty = i;
   1609 	DPRINTF(DGE_DEBUG_TX,
   1610 	    ("%s: TX: txsdirty -> %d\n", sc->sc_dev.dv_xname, i));
   1611 
   1612 	/*
   1613 	 * If there are no more pending transmissions, cancel the watchdog
   1614 	 * timer.
   1615 	 */
   1616 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1617 		ifp->if_timer = 0;
   1618 }
   1619 
   1620 /*
   1621  * dge_rxintr:
   1622  *
   1623  *	Helper; handle receive interrupts.
   1624  */
   1625 static void
   1626 dge_rxintr(struct dge_softc *sc)
   1627 {
   1628 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1629 	struct dge_rxsoft *rxs;
   1630 	struct mbuf *m;
   1631 	int i, len;
   1632 	uint8_t status, errors;
   1633 
   1634 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1635 		rxs = &sc->sc_rxsoft[i];
   1636 
   1637 		DPRINTF(DGE_DEBUG_RX,
   1638 		    ("%s: RX: checking descriptor %d\n",
   1639 		    sc->sc_dev.dv_xname, i));
   1640 
   1641 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1642 
   1643 		status = sc->sc_rxdescs[i].dr_status;
   1644 		errors = sc->sc_rxdescs[i].dr_errors;
   1645 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1646 
   1647 		if ((status & RDESC_STS_DD) == 0) {
   1648 			/*
   1649 			 * We have processed all of the receive descriptors.
   1650 			 */
   1651 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1652 			break;
   1653 		}
   1654 
   1655 		if (__predict_false(sc->sc_rxdiscard)) {
   1656 			DPRINTF(DGE_DEBUG_RX,
   1657 			    ("%s: RX: discarding contents of descriptor %d\n",
   1658 			    sc->sc_dev.dv_xname, i));
   1659 			DGE_INIT_RXDESC(sc, i);
   1660 			if (status & RDESC_STS_EOP) {
   1661 				/* Reset our state. */
   1662 				DPRINTF(DGE_DEBUG_RX,
   1663 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1664 				    sc->sc_dev.dv_xname));
   1665 				sc->sc_rxdiscard = 0;
   1666 			}
   1667 			continue;
   1668 		}
   1669 
   1670 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1671 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1672 
   1673 		m = rxs->rxs_mbuf;
   1674 
   1675 		/*
   1676 		 * Add a new receive buffer to the ring.
   1677 		 */
   1678 		if (dge_add_rxbuf(sc, i) != 0) {
   1679 			/*
   1680 			 * Failed, throw away what we've done so
   1681 			 * far, and discard the rest of the packet.
   1682 			 */
   1683 			ifp->if_ierrors++;
   1684 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1685 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1686 			DGE_INIT_RXDESC(sc, i);
   1687 			if ((status & RDESC_STS_EOP) == 0)
   1688 				sc->sc_rxdiscard = 1;
   1689 			if (sc->sc_rxhead != NULL)
   1690 				m_freem(sc->sc_rxhead);
   1691 			DGE_RXCHAIN_RESET(sc);
   1692 			DPRINTF(DGE_DEBUG_RX,
   1693 			    ("%s: RX: Rx buffer allocation failed, "
   1694 			    "dropping packet%s\n", sc->sc_dev.dv_xname,
   1695 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1696 			continue;
   1697 		}
   1698 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1699 
   1700 		DGE_RXCHAIN_LINK(sc, m);
   1701 
   1702 		m->m_len = len;
   1703 
   1704 		DPRINTF(DGE_DEBUG_RX,
   1705 		    ("%s: RX: buffer at %p len %d\n",
   1706 		    sc->sc_dev.dv_xname, m->m_data, len));
   1707 
   1708 		/*
   1709 		 * If this is not the end of the packet, keep
   1710 		 * looking.
   1711 		 */
   1712 		if ((status & RDESC_STS_EOP) == 0) {
   1713 			sc->sc_rxlen += len;
   1714 			DPRINTF(DGE_DEBUG_RX,
   1715 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1716 			    sc->sc_dev.dv_xname, sc->sc_rxlen));
   1717 			continue;
   1718 		}
   1719 
   1720 		/*
   1721 		 * Okay, we have the entire packet now...
   1722 		 */
   1723 		*sc->sc_rxtailp = NULL;
   1724 		m = sc->sc_rxhead;
   1725 		len += sc->sc_rxlen;
   1726 
   1727 		DGE_RXCHAIN_RESET(sc);
   1728 
   1729 		DPRINTF(DGE_DEBUG_RX,
   1730 		    ("%s: RX: have entire packet, len -> %d\n",
   1731 		    sc->sc_dev.dv_xname, len));
   1732 
   1733 		/*
   1734 		 * If an error occurred, update stats and drop the packet.
   1735 		 */
   1736 		if (errors &
   1737 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1738 			ifp->if_ierrors++;
   1739 			if (errors & RDESC_ERR_SE)
   1740 				printf("%s: symbol error\n",
   1741 				    sc->sc_dev.dv_xname);
   1742 			else if (errors & RDESC_ERR_P)
   1743 				printf("%s: parity error\n",
   1744 				    sc->sc_dev.dv_xname);
   1745 			else if (errors & RDESC_ERR_CE)
   1746 				printf("%s: CRC error\n",
   1747 				    sc->sc_dev.dv_xname);
   1748 			m_freem(m);
   1749 			continue;
   1750 		}
   1751 
   1752 		/*
   1753 		 * No errors.  Receive the packet.
   1754 		 */
   1755 		m->m_pkthdr.rcvif = ifp;
   1756 		m->m_pkthdr.len = len;
   1757 
   1758 		/*
   1759 		 * Set up checksum info for this packet.
   1760 		 */
   1761 		if (status & RDESC_STS_IPCS) {
   1762 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1763 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1764 			if (errors & RDESC_ERR_IPE)
   1765 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1766 		}
   1767 		if (status & RDESC_STS_TCPCS) {
   1768 			/*
   1769 			 * Note: we don't know if this was TCP or UDP,
   1770 			 * so we just set both bits, and expect the
   1771 			 * upper layers to deal.
   1772 			 */
   1773 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1774 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1775 			if (errors & RDESC_ERR_TCPE)
   1776 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1777 		}
   1778 
   1779 		ifp->if_ipackets++;
   1780 
   1781 #if NBPFILTER > 0
   1782 		/* Pass this up to any BPF listeners. */
   1783 		if (ifp->if_bpf)
   1784 			bpf_mtap(ifp->if_bpf, m);
   1785 #endif /* NBPFILTER > 0 */
   1786 
   1787 		/* Pass it on. */
   1788 		(*ifp->if_input)(ifp, m);
   1789 	}
   1790 
   1791 	/* Update the receive pointer. */
   1792 	sc->sc_rxptr = i;
   1793 
   1794 	DPRINTF(DGE_DEBUG_RX,
   1795 	    ("%s: RX: rxptr -> %d\n", sc->sc_dev.dv_xname, i));
   1796 }
   1797 
   1798 /*
   1799  * dge_linkintr:
   1800  *
   1801  *	Helper; handle link interrupts.
   1802  */
   1803 static void
   1804 dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1805 {
   1806 	uint32_t status;
   1807 
   1808 	if (icr & ICR_LSC) {
   1809 		status = CSR_READ(sc, DGE_STATUS);
   1810 		if (status & STATUS_LINKUP) {
   1811 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1812 			    sc->sc_dev.dv_xname));
   1813 		} else {
   1814 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1815 			    sc->sc_dev.dv_xname));
   1816 		}
   1817 	} else if (icr & ICR_RXSEQ) {
   1818 		DPRINTF(DGE_DEBUG_LINK,
   1819 		    ("%s: LINK: Receive sequence error\n",
   1820 		    sc->sc_dev.dv_xname));
   1821 	}
   1822 	/* XXX - fix errata */
   1823 }
   1824 
   1825 /*
   1826  * dge_reset:
   1827  *
   1828  *	Reset the i82597 chip.
   1829  */
   1830 static void
   1831 dge_reset(struct dge_softc *sc)
   1832 {
   1833 	int i;
   1834 
   1835 	/*
   1836 	 * Do a chip reset.
   1837 	 */
   1838 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1839 
   1840 	delay(10000);
   1841 
   1842 	for (i = 0; i < 1000; i++) {
   1843 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1844 			break;
   1845 		delay(20);
   1846 	}
   1847 
   1848 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1849 		printf("%s: WARNING: reset failed to complete\n",
   1850 		    sc->sc_dev.dv_xname);
   1851         /*
   1852          * Reset the EEPROM logic.
   1853          * This will cause the chip to reread its default values,
   1854 	 * which doesn't happen otherwise (errata).
   1855          */
   1856         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1857         delay(10000);
   1858 }
   1859 
   1860 /*
   1861  * dge_init:		[ifnet interface function]
   1862  *
   1863  *	Initialize the interface.  Must be called at splnet().
   1864  */
   1865 static int
   1866 dge_init(struct ifnet *ifp)
   1867 {
   1868 	struct dge_softc *sc = ifp->if_softc;
   1869 	struct dge_rxsoft *rxs;
   1870 	int i, error = 0;
   1871 	uint32_t reg;
   1872 
   1873 	/*
   1874 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1875 	 * There is a small but measurable benefit to avoiding the adjusment
   1876 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1877 	 * on such platforms.  One possibility is that the DMA itself is
   1878 	 * slightly more efficient if the front of the entire packet (instead
   1879 	 * of the front of the headers) is aligned.
   1880 	 *
   1881 	 * Note we must always set align_tweak to 0 if we are using
   1882 	 * jumbo frames.
   1883 	 */
   1884 #ifdef __NO_STRICT_ALIGNMENT
   1885 	sc->sc_align_tweak = 0;
   1886 #else
   1887 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1888 		sc->sc_align_tweak = 0;
   1889 	else
   1890 		sc->sc_align_tweak = 2;
   1891 #endif /* __NO_STRICT_ALIGNMENT */
   1892 
   1893 	/* Cancel any pending I/O. */
   1894 	dge_stop(ifp, 0);
   1895 
   1896 	/* Reset the chip to a known state. */
   1897 	dge_reset(sc);
   1898 
   1899 	/* Initialize the transmit descriptor ring. */
   1900 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1901 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1902 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1903 	sc->sc_txfree = DGE_NTXDESC;
   1904 	sc->sc_txnext = 0;
   1905 
   1906 	sc->sc_txctx_ipcs = 0xffffffff;
   1907 	sc->sc_txctx_tucs = 0xffffffff;
   1908 
   1909 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1910 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1911 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1912 	CSR_WRITE(sc, DGE_TDH, 0);
   1913 	CSR_WRITE(sc, DGE_TDT, 0);
   1914 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1915 
   1916 #if 0
   1917 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1918 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1919 #endif
   1920 	CSR_WRITE(sc, DGE_RXDCTL,
   1921 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1922 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1923 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1924 
   1925 	/* Initialize the transmit job descriptors. */
   1926 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1927 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1928 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1929 	sc->sc_txsnext = 0;
   1930 	sc->sc_txsdirty = 0;
   1931 
   1932 	/*
   1933 	 * Initialize the receive descriptor and receive job
   1934 	 * descriptor rings.
   1935 	 */
   1936 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1937 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1938 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1939 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1940 	CSR_WRITE(sc, DGE_RDT, 0);
   1941 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1942 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1943 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1944 
   1945 	for (i = 0; i < DGE_NRXDESC; i++) {
   1946 		rxs = &sc->sc_rxsoft[i];
   1947 		if (rxs->rxs_mbuf == NULL) {
   1948 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1949 				printf("%s: unable to allocate or map rx "
   1950 				    "buffer %d, error = %d\n",
   1951 				    sc->sc_dev.dv_xname, i, error);
   1952 				/*
   1953 				 * XXX Should attempt to run with fewer receive
   1954 				 * XXX buffers instead of just failing.
   1955 				 */
   1956 				dge_rxdrain(sc);
   1957 				goto out;
   1958 			}
   1959 		}
   1960 		DGE_INIT_RXDESC(sc, i);
   1961 	}
   1962 	sc->sc_rxptr = DGE_RXSPACE;
   1963 	sc->sc_rxdiscard = 0;
   1964 	DGE_RXCHAIN_RESET(sc);
   1965 
   1966 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1967 		sc->sc_ctrl0 |= CTRL0_JFE;
   1968 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1969 	}
   1970 
   1971 	/* Write the control registers. */
   1972 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1973 
   1974 	/*
   1975 	 * Set up checksum offload parameters.
   1976 	 */
   1977 	reg = CSR_READ(sc, DGE_RXCSUM);
   1978 	if (ifp->if_capenable & IFCAP_CSUM_IPv4)
   1979 		reg |= RXCSUM_IPOFL;
   1980 	else
   1981 		reg &= ~RXCSUM_IPOFL;
   1982 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4))
   1983 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1984 	else {
   1985 		reg &= ~RXCSUM_TUOFL;
   1986 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4) == 0)
   1987 			reg &= ~RXCSUM_IPOFL;
   1988 	}
   1989 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1990 
   1991 	/*
   1992 	 * Set up the interrupt registers.
   1993 	 */
   1994 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1995 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1996 	    ICR_RXO | ICR_RXT0;
   1997 
   1998 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1999 
   2000 	/*
   2001 	 * Set up the transmit control register.
   2002 	 */
   2003 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   2004 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   2005 
   2006 	/*
   2007 	 * Set up the receive control register; we actually program
   2008 	 * the register when we set the receive filter.  Use multicast
   2009 	 * address offset type 0.
   2010 	 */
   2011 	sc->sc_mchash_type = 0;
   2012 
   2013 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   2014 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   2015 
   2016 #ifdef DGE_OFFBYONE_RXBUG
   2017 	sc->sc_rctl |= RCTL_BSIZE_16k;
   2018 #else
   2019 	switch(MCLBYTES) {
   2020 	case 2048:
   2021 		sc->sc_rctl |= RCTL_BSIZE_2k;
   2022 		break;
   2023 	case 4096:
   2024 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2025 		break;
   2026 	case 8192:
   2027 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2028 		break;
   2029 	case 16384:
   2030 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2031 		break;
   2032 	default:
   2033 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2034 	}
   2035 #endif
   2036 
   2037 	/* Set the receive filter. */
   2038 	/* Also sets RCTL */
   2039 	dge_set_filter(sc);
   2040 
   2041 	/* ...all done! */
   2042 	ifp->if_flags |= IFF_RUNNING;
   2043 	ifp->if_flags &= ~IFF_OACTIVE;
   2044 
   2045  out:
   2046 	if (error)
   2047 		printf("%s: interface not running\n", sc->sc_dev.dv_xname);
   2048 	return (error);
   2049 }
   2050 
   2051 /*
   2052  * dge_rxdrain:
   2053  *
   2054  *	Drain the receive queue.
   2055  */
   2056 static void
   2057 dge_rxdrain(struct dge_softc *sc)
   2058 {
   2059 	struct dge_rxsoft *rxs;
   2060 	int i;
   2061 
   2062 	for (i = 0; i < DGE_NRXDESC; i++) {
   2063 		rxs = &sc->sc_rxsoft[i];
   2064 		if (rxs->rxs_mbuf != NULL) {
   2065 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2066 			m_freem(rxs->rxs_mbuf);
   2067 			rxs->rxs_mbuf = NULL;
   2068 		}
   2069 	}
   2070 }
   2071 
   2072 /*
   2073  * dge_stop:		[ifnet interface function]
   2074  *
   2075  *	Stop transmission on the interface.
   2076  */
   2077 static void
   2078 dge_stop(struct ifnet *ifp, int disable)
   2079 {
   2080 	struct dge_softc *sc = ifp->if_softc;
   2081 	struct dge_txsoft *txs;
   2082 	int i;
   2083 
   2084 	/* Stop the transmit and receive processes. */
   2085 	CSR_WRITE(sc, DGE_TCTL, 0);
   2086 	CSR_WRITE(sc, DGE_RCTL, 0);
   2087 
   2088 	/* Release any queued transmit buffers. */
   2089 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2090 		txs = &sc->sc_txsoft[i];
   2091 		if (txs->txs_mbuf != NULL) {
   2092 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2093 			m_freem(txs->txs_mbuf);
   2094 			txs->txs_mbuf = NULL;
   2095 		}
   2096 	}
   2097 
   2098 	if (disable)
   2099 		dge_rxdrain(sc);
   2100 
   2101 	/* Mark the interface as down and cancel the watchdog timer. */
   2102 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2103 	ifp->if_timer = 0;
   2104 }
   2105 
   2106 /*
   2107  * dge_add_rxbuf:
   2108  *
   2109  *	Add a receive buffer to the indiciated descriptor.
   2110  */
   2111 static int
   2112 dge_add_rxbuf(struct dge_softc *sc, int idx)
   2113 {
   2114 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2115 	struct mbuf *m;
   2116 	int error;
   2117 #ifdef DGE_OFFBYONE_RXBUG
   2118 	caddr_t buf;
   2119 #endif
   2120 
   2121 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2122 	if (m == NULL)
   2123 		return (ENOBUFS);
   2124 
   2125 #ifdef DGE_OFFBYONE_RXBUG
   2126 	if ((buf = dge_getbuf(sc)) == NULL)
   2127 		return ENOBUFS;
   2128 
   2129 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2130 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2131 
   2132 	if (rxs->rxs_mbuf != NULL)
   2133 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2134 	rxs->rxs_mbuf = m;
   2135 
   2136 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2137 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2138 #else
   2139 	MCLGET(m, M_DONTWAIT);
   2140 	if ((m->m_flags & M_EXT) == 0) {
   2141 		m_freem(m);
   2142 		return (ENOBUFS);
   2143 	}
   2144 
   2145 	if (rxs->rxs_mbuf != NULL)
   2146 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2147 
   2148 	rxs->rxs_mbuf = m;
   2149 
   2150 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2151 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2152 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2153 #endif
   2154 	if (error) {
   2155 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2156 		    sc->sc_dev.dv_xname, idx, error);
   2157 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2158 	}
   2159 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2160 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2161 
   2162 	return (0);
   2163 }
   2164 
   2165 /*
   2166  * dge_set_ral:
   2167  *
   2168  *	Set an entry in the receive address list.
   2169  */
   2170 static void
   2171 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2172 {
   2173 	uint32_t ral_lo, ral_hi;
   2174 
   2175 	if (enaddr != NULL) {
   2176 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2177 		    (enaddr[3] << 24);
   2178 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2179 		ral_hi |= RAH_AV;
   2180 	} else {
   2181 		ral_lo = 0;
   2182 		ral_hi = 0;
   2183 	}
   2184 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2185 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2186 }
   2187 
   2188 /*
   2189  * dge_mchash:
   2190  *
   2191  *	Compute the hash of the multicast address for the 4096-bit
   2192  *	multicast filter.
   2193  */
   2194 static uint32_t
   2195 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2196 {
   2197 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2198 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2199 	uint32_t hash;
   2200 
   2201 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2202 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2203 
   2204 	return (hash & 0xfff);
   2205 }
   2206 
   2207 /*
   2208  * dge_set_filter:
   2209  *
   2210  *	Set up the receive filter.
   2211  */
   2212 static void
   2213 dge_set_filter(struct dge_softc *sc)
   2214 {
   2215 	struct ethercom *ec = &sc->sc_ethercom;
   2216 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2217 	struct ether_multi *enm;
   2218 	struct ether_multistep step;
   2219 	uint32_t hash, reg, bit;
   2220 	int i;
   2221 
   2222 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2223 
   2224 	if (ifp->if_flags & IFF_BROADCAST)
   2225 		sc->sc_rctl |= RCTL_BAM;
   2226 	if (ifp->if_flags & IFF_PROMISC) {
   2227 		sc->sc_rctl |= RCTL_UPE;
   2228 		goto allmulti;
   2229 	}
   2230 
   2231 	/*
   2232 	 * Set the station address in the first RAL slot, and
   2233 	 * clear the remaining slots.
   2234 	 */
   2235 	dge_set_ral(sc, LLADDR(ifp->if_sadl), 0);
   2236 	for (i = 1; i < RA_TABSIZE; i++)
   2237 		dge_set_ral(sc, NULL, i);
   2238 
   2239 	/* Clear out the multicast table. */
   2240 	for (i = 0; i < MC_TABSIZE; i++)
   2241 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2242 
   2243 	ETHER_FIRST_MULTI(step, ec, enm);
   2244 	while (enm != NULL) {
   2245 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2246 			/*
   2247 			 * We must listen to a range of multicast addresses.
   2248 			 * For now, just accept all multicasts, rather than
   2249 			 * trying to set only those filter bits needed to match
   2250 			 * the range.  (At this time, the only use of address
   2251 			 * ranges is for IP multicast routing, for which the
   2252 			 * range is big enough to require all bits set.)
   2253 			 */
   2254 			goto allmulti;
   2255 		}
   2256 
   2257 		hash = dge_mchash(sc, enm->enm_addrlo);
   2258 
   2259 		reg = (hash >> 5) & 0x7f;
   2260 		bit = hash & 0x1f;
   2261 
   2262 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2263 		hash |= 1U << bit;
   2264 
   2265 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2266 
   2267 		ETHER_NEXT_MULTI(step, enm);
   2268 	}
   2269 
   2270 	ifp->if_flags &= ~IFF_ALLMULTI;
   2271 	goto setit;
   2272 
   2273  allmulti:
   2274 	ifp->if_flags |= IFF_ALLMULTI;
   2275 	sc->sc_rctl |= RCTL_MPE;
   2276 
   2277  setit:
   2278 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2279 }
   2280 
   2281 /*
   2282  * Read in the EEPROM info and verify checksum.
   2283  */
   2284 int
   2285 dge_read_eeprom(struct dge_softc *sc)
   2286 {
   2287 	uint16_t cksum;
   2288 	int i;
   2289 
   2290 	cksum = 0;
   2291 	for (i = 0; i < EEPROM_SIZE; i++) {
   2292 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2293 		cksum += sc->sc_eeprom[i];
   2294 	}
   2295 	return cksum != EEPROM_CKSUM;
   2296 }
   2297 
   2298 
   2299 /*
   2300  * Read a 16-bit word from address addr in the serial EEPROM.
   2301  */
   2302 uint16_t
   2303 dge_eeprom_word(struct dge_softc *sc, int addr)
   2304 {
   2305 	uint32_t reg;
   2306 	uint16_t rval = 0;
   2307 	int i;
   2308 
   2309 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2310 
   2311 	/* Lower clock pulse (and data in to chip) */
   2312 	CSR_WRITE(sc, DGE_EECD, reg);
   2313 	/* Select chip */
   2314 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2315 
   2316 	/* Send read command */
   2317 	dge_eeprom_clockout(sc, 1);
   2318 	dge_eeprom_clockout(sc, 1);
   2319 	dge_eeprom_clockout(sc, 0);
   2320 
   2321 	/* Send address */
   2322 	for (i = 5; i >= 0; i--)
   2323 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2324 
   2325 	/* Read data */
   2326 	for (i = 0; i < 16; i++) {
   2327 		rval <<= 1;
   2328 		rval |= dge_eeprom_clockin(sc);
   2329 	}
   2330 
   2331 	/* Deselect chip */
   2332 	CSR_WRITE(sc, DGE_EECD, reg);
   2333 
   2334 	return rval;
   2335 }
   2336 
   2337 /*
   2338  * Clock out a single bit to the EEPROM.
   2339  */
   2340 void
   2341 dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2342 {
   2343 	int reg;
   2344 
   2345 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2346 	if (bit)
   2347 		reg |= EECD_DI;
   2348 
   2349 	CSR_WRITE(sc, DGE_EECD, reg);
   2350 	delay(2);
   2351 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2352 	delay(2);
   2353 	CSR_WRITE(sc, DGE_EECD, reg);
   2354 	delay(2);
   2355 }
   2356 
   2357 /*
   2358  * Clock in a single bit from EEPROM.
   2359  */
   2360 int
   2361 dge_eeprom_clockin(struct dge_softc *sc)
   2362 {
   2363 	int reg, rv;
   2364 
   2365 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2366 
   2367 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2368 	delay(2);
   2369 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2370 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2371 	delay(2);
   2372 
   2373 	return rv;
   2374 }
   2375 
   2376 static void
   2377 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2378 {
   2379 	struct dge_softc *sc = ifp->if_softc;
   2380 
   2381 	ifmr->ifm_status = IFM_AVALID;
   2382 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2383 
   2384 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2385 		ifmr->ifm_status |= IFM_ACTIVE;
   2386 }
   2387 
   2388 static inline int
   2389 phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2390 {
   2391         int i, mdic;
   2392 
   2393         CSR_WRITE(sc, DGE_MDIO,
   2394 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2395         for (i = 0; i < 10; i++) {
   2396                 delay(10);
   2397                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2398                         break;
   2399         }
   2400         return mdic;
   2401 }
   2402 
   2403 
   2404 static void
   2405 dge_xgmii_writereg(struct device *self, int phy, int reg, int val)
   2406 {
   2407 	struct dge_softc *sc = (void *) self;
   2408 	int mdic;
   2409 
   2410 	CSR_WRITE(sc, DGE_MDIRW, val);
   2411 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2412 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2413 		    sc->sc_dev.dv_xname, phy, reg);
   2414 		return;
   2415 	}
   2416 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2417 		printf("%s: read cycle timeout; phy %d reg %d\n",
   2418 		    sc->sc_dev.dv_xname, phy, reg);
   2419 		return;
   2420 	}
   2421 }
   2422 
   2423 static void
   2424 dge_xgmii_reset(struct dge_softc *sc)
   2425 {
   2426 	dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
   2427 }
   2428 
   2429 static int
   2430 dge_xgmii_mediachange(struct ifnet *ifp)
   2431 {
   2432 	return 0;
   2433 }
   2434 
   2435