if_dge.c revision 1.30 1 /* $NetBSD: if_dge.c,v 1.30 2010/04/05 07:20:25 joerg Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.30 2010/04/05 07:20:25 joerg Exp $");
84
85 #include "rnd.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <uvm/uvm_extern.h> /* for PAGE_SIZE */
100
101 #if NRND > 0
102 #include <sys/rnd.h>
103 #endif
104
105 #include <net/if.h>
106 #include <net/if_dl.h>
107 #include <net/if_media.h>
108 #include <net/if_ether.h>
109
110 #include <net/bpf.h>
111
112 #include <netinet/in.h> /* XXX for struct ip */
113 #include <netinet/in_systm.h> /* XXX for struct ip */
114 #include <netinet/ip.h> /* XXX for struct ip */
115 #include <netinet/tcp.h> /* XXX for struct tcphdr */
116
117 #include <sys/bus.h>
118 #include <sys/intr.h>
119 #include <machine/endian.h>
120
121 #include <dev/mii/mii.h>
122 #include <dev/mii/miivar.h>
123 #include <dev/mii/mii_bitbang.h>
124
125 #include <dev/pci/pcireg.h>
126 #include <dev/pci/pcivar.h>
127 #include <dev/pci/pcidevs.h>
128
129 #include <dev/pci/if_dgereg.h>
130
131 /*
132 * The receive engine may sometimes become off-by-one when writing back
133 * chained descriptors. Avoid this by allocating a large chunk of
134 * memory and use if instead (to avoid chained descriptors).
135 * This only happens with chained descriptors under heavy load.
136 */
137 #define DGE_OFFBYONE_RXBUG
138
139 #define DGE_EVENT_COUNTERS
140 #define DGE_DEBUG
141
142 #ifdef DGE_DEBUG
143 #define DGE_DEBUG_LINK 0x01
144 #define DGE_DEBUG_TX 0x02
145 #define DGE_DEBUG_RX 0x04
146 #define DGE_DEBUG_CKSUM 0x08
147 int dge_debug = 0;
148
149 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
150 #else
151 #define DPRINTF(x, y) /* nothing */
152 #endif /* DGE_DEBUG */
153
154 /*
155 * Transmit descriptor list size. We allow up to 100 DMA segments per
156 * packet (Intel reports of jumbo frame packets with as
157 * many as 80 DMA segments when using 16k buffers).
158 */
159 #define DGE_NTXSEGS 100
160 #define DGE_IFQUEUELEN 20000
161 #define DGE_TXQUEUELEN 2048
162 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
163 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
164 #define DGE_NTXDESC 1024
165 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
166 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
167 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
168
169 /*
170 * Receive descriptor list size.
171 * Packet is of size MCLBYTES, and for jumbo packets buffers may
172 * be chained. Due to the nature of the card (high-speed), keep this
173 * ring large. With 2k buffers the ring can store 400 jumbo packets,
174 * which at full speed will be received in just under 3ms.
175 */
176 #define DGE_NRXDESC 2048
177 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
178 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
179 /*
180 * # of descriptors between head and written descriptors.
181 * This is to work-around two erratas.
182 */
183 #define DGE_RXSPACE 10
184 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
185 /*
186 * Receive descriptor fetch threshholds. These are values recommended
187 * by Intel, do not touch them unless you know what you are doing.
188 */
189 #define RXDCTL_PTHRESH_VAL 128
190 #define RXDCTL_HTHRESH_VAL 16
191 #define RXDCTL_WTHRESH_VAL 16
192
193
194 /*
195 * Tweakable parameters; default values.
196 */
197 #define FCRTH 0x30000 /* Send XOFF water mark */
198 #define FCRTL 0x28000 /* Send XON water mark */
199 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
200 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
201
202 /*
203 * Control structures are DMA'd to the i82597 chip. We allocate them in
204 * a single clump that maps to a single DMA segment to make serveral things
205 * easier.
206 */
207 struct dge_control_data {
208 /*
209 * The transmit descriptors.
210 */
211 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
212
213 /*
214 * The receive descriptors.
215 */
216 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
217 };
218
219 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
220 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
221 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
222
223 /*
224 * The DGE interface have a higher max MTU size than normal jumbo frames.
225 */
226 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
227
228 /*
229 * Software state for transmit jobs.
230 */
231 struct dge_txsoft {
232 struct mbuf *txs_mbuf; /* head of our mbuf chain */
233 bus_dmamap_t txs_dmamap; /* our DMA map */
234 int txs_firstdesc; /* first descriptor in packet */
235 int txs_lastdesc; /* last descriptor in packet */
236 int txs_ndesc; /* # of descriptors used */
237 };
238
239 /*
240 * Software state for receive buffers. Each descriptor gets a
241 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
242 * more than one buffer, we chain them together.
243 */
244 struct dge_rxsoft {
245 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
246 bus_dmamap_t rxs_dmamap; /* our DMA map */
247 };
248
249 /*
250 * Software state per device.
251 */
252 struct dge_softc {
253 struct device sc_dev; /* generic device information */
254 bus_space_tag_t sc_st; /* bus space tag */
255 bus_space_handle_t sc_sh; /* bus space handle */
256 bus_dma_tag_t sc_dmat; /* bus DMA tag */
257 struct ethercom sc_ethercom; /* ethernet common data */
258
259 int sc_flags; /* flags; see below */
260 int sc_bus_speed; /* PCI/PCIX bus speed */
261 int sc_pcix_offset; /* PCIX capability register offset */
262
263 pci_chipset_tag_t sc_pc;
264 pcitag_t sc_pt;
265 int sc_mmrbc; /* Max PCIX memory read byte count */
266
267 void *sc_ih; /* interrupt cookie */
268
269 struct ifmedia sc_media;
270
271 bus_dmamap_t sc_cddmamap; /* control data DMA map */
272 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
273
274 int sc_align_tweak;
275
276 /*
277 * Software state for the transmit and receive descriptors.
278 */
279 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
280 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
281
282 /*
283 * Control data structures.
284 */
285 struct dge_control_data *sc_control_data;
286 #define sc_txdescs sc_control_data->wcd_txdescs
287 #define sc_rxdescs sc_control_data->wcd_rxdescs
288
289 #ifdef DGE_EVENT_COUNTERS
290 /* Event counters. */
291 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
292 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
293 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
294 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
295 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
296 struct evcnt sc_ev_rxintr; /* Rx interrupts */
297 struct evcnt sc_ev_linkintr; /* Link interrupts */
298
299 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
300 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
301 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
302 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
303
304 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
305 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
306 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
307
308 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
309 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
310 #endif /* DGE_EVENT_COUNTERS */
311
312 int sc_txfree; /* number of free Tx descriptors */
313 int sc_txnext; /* next ready Tx descriptor */
314
315 int sc_txsfree; /* number of free Tx jobs */
316 int sc_txsnext; /* next free Tx job */
317 int sc_txsdirty; /* dirty Tx jobs */
318
319 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
320 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
321
322 int sc_rxptr; /* next ready Rx descriptor/queue ent */
323 int sc_rxdiscard;
324 int sc_rxlen;
325 struct mbuf *sc_rxhead;
326 struct mbuf *sc_rxtail;
327 struct mbuf **sc_rxtailp;
328
329 uint32_t sc_ctrl0; /* prototype CTRL0 register */
330 uint32_t sc_icr; /* prototype interrupt bits */
331 uint32_t sc_tctl; /* prototype TCTL register */
332 uint32_t sc_rctl; /* prototype RCTL register */
333
334 int sc_mchash_type; /* multicast filter offset */
335
336 uint16_t sc_eeprom[EEPROM_SIZE];
337
338 #if NRND > 0
339 rndsource_element_t rnd_source; /* random source */
340 #endif
341 #ifdef DGE_OFFBYONE_RXBUG
342 void *sc_bugbuf;
343 SLIST_HEAD(, rxbugentry) sc_buglist;
344 bus_dmamap_t sc_bugmap;
345 struct rxbugentry *sc_entry;
346 #endif
347 };
348
349 #define DGE_RXCHAIN_RESET(sc) \
350 do { \
351 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
352 *(sc)->sc_rxtailp = NULL; \
353 (sc)->sc_rxlen = 0; \
354 } while (/*CONSTCOND*/0)
355
356 #define DGE_RXCHAIN_LINK(sc, m) \
357 do { \
358 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
359 (sc)->sc_rxtailp = &(m)->m_next; \
360 } while (/*CONSTCOND*/0)
361
362 /* sc_flags */
363 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
364 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
365
366 #ifdef DGE_EVENT_COUNTERS
367 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
368 #else
369 #define DGE_EVCNT_INCR(ev) /* nothing */
370 #endif
371
372 #define CSR_READ(sc, reg) \
373 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
374 #define CSR_WRITE(sc, reg, val) \
375 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
376
377 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
378 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
379
380 #define DGE_CDTXSYNC(sc, x, n, ops) \
381 do { \
382 int __x, __n; \
383 \
384 __x = (x); \
385 __n = (n); \
386 \
387 /* If it will wrap around, sync to the end of the ring. */ \
388 if ((__x + __n) > DGE_NTXDESC) { \
389 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
390 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
391 (DGE_NTXDESC - __x), (ops)); \
392 __n -= (DGE_NTXDESC - __x); \
393 __x = 0; \
394 } \
395 \
396 /* Now sync whatever is left. */ \
397 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
398 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
399 } while (/*CONSTCOND*/0)
400
401 #define DGE_CDRXSYNC(sc, x, ops) \
402 do { \
403 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
404 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
405 } while (/*CONSTCOND*/0)
406
407 #ifdef DGE_OFFBYONE_RXBUG
408 #define DGE_INIT_RXDESC(sc, x) \
409 do { \
410 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
411 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
412 struct mbuf *__m = __rxs->rxs_mbuf; \
413 \
414 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
415 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
416 __rxd->dr_baddrh = 0; \
417 __rxd->dr_len = 0; \
418 __rxd->dr_cksum = 0; \
419 __rxd->dr_status = 0; \
420 __rxd->dr_errors = 0; \
421 __rxd->dr_special = 0; \
422 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
423 \
424 CSR_WRITE((sc), DGE_RDT, (x)); \
425 } while (/*CONSTCOND*/0)
426 #else
427 #define DGE_INIT_RXDESC(sc, x) \
428 do { \
429 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
430 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
431 struct mbuf *__m = __rxs->rxs_mbuf; \
432 \
433 /* \
434 * Note: We scoot the packet forward 2 bytes in the buffer \
435 * so that the payload after the Ethernet header is aligned \
436 * to a 4-byte boundary. \
437 * \
438 * XXX BRAINDAMAGE ALERT! \
439 * The stupid chip uses the same size for every buffer, which \
440 * is set in the Receive Control register. We are using the 2K \
441 * size option, but what we REALLY want is (2K - 2)! For this \
442 * reason, we can't "scoot" packets longer than the standard \
443 * Ethernet MTU. On strict-alignment platforms, if the total \
444 * size exceeds (2K - 2) we set align_tweak to 0 and let \
445 * the upper layer copy the headers. \
446 */ \
447 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
448 \
449 __rxd->dr_baddrl = \
450 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
451 (sc)->sc_align_tweak); \
452 __rxd->dr_baddrh = 0; \
453 __rxd->dr_len = 0; \
454 __rxd->dr_cksum = 0; \
455 __rxd->dr_status = 0; \
456 __rxd->dr_errors = 0; \
457 __rxd->dr_special = 0; \
458 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
459 \
460 CSR_WRITE((sc), DGE_RDT, (x)); \
461 } while (/*CONSTCOND*/0)
462 #endif
463
464 #ifdef DGE_OFFBYONE_RXBUG
465 /*
466 * Allocation constants. Much memory may be used for this.
467 */
468 #ifndef DGE_BUFFER_SIZE
469 #define DGE_BUFFER_SIZE DGE_MAX_MTU
470 #endif
471 #define DGE_NBUFFERS (4*DGE_NRXDESC)
472 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
473
474 struct rxbugentry {
475 SLIST_ENTRY(rxbugentry) rb_entry;
476 int rb_slot;
477 };
478
479 static int
480 dge_alloc_rcvmem(struct dge_softc *sc)
481 {
482 char *ptr, *kva;
483 bus_dma_segment_t seg;
484 int i, rseg, state, error;
485 struct rxbugentry *entry;
486
487 state = error = 0;
488
489 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
490 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
491 aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
492 return ENOBUFS;
493 }
494
495 state = 1;
496 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
497 BUS_DMA_NOWAIT)) {
498 aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
499 (int)DGE_RXMEM);
500 error = ENOBUFS;
501 goto out;
502 }
503
504 state = 2;
505 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
506 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
507 aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
508 error = ENOBUFS;
509 goto out;
510 }
511
512 state = 3;
513 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
514 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
515 aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
516 error = ENOBUFS;
517 goto out;
518 }
519
520 state = 4;
521 sc->sc_bugbuf = (void *)kva;
522 SLIST_INIT(&sc->sc_buglist);
523
524 /*
525 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
526 * in an array.
527 */
528 ptr = sc->sc_bugbuf;
529 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
530 M_DEVBUF, M_NOWAIT)) == NULL) {
531 error = ENOBUFS;
532 goto out;
533 }
534 sc->sc_entry = entry;
535 for (i = 0; i < DGE_NBUFFERS; i++) {
536 entry[i].rb_slot = i;
537 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
538 }
539 out:
540 if (error != 0) {
541 switch (state) {
542 case 4:
543 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
544 case 3:
545 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
546 case 2:
547 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
548 case 1:
549 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
550 break;
551 default:
552 break;
553 }
554 }
555
556 return error;
557 }
558
559 /*
560 * Allocate a jumbo buffer.
561 */
562 static void *
563 dge_getbuf(struct dge_softc *sc)
564 {
565 struct rxbugentry *entry;
566
567 entry = SLIST_FIRST(&sc->sc_buglist);
568
569 if (entry == NULL) {
570 printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
571 return(NULL);
572 }
573
574 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
575 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
576 }
577
578 /*
579 * Release a jumbo buffer.
580 */
581 static void
582 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
583 {
584 struct rxbugentry *entry;
585 struct dge_softc *sc;
586 int i, s;
587
588 /* Extract the softc struct pointer. */
589 sc = (struct dge_softc *)arg;
590
591 if (sc == NULL)
592 panic("dge_freebuf: can't find softc pointer!");
593
594 /* calculate the slot this buffer belongs to */
595
596 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
597
598 if ((i < 0) || (i >= DGE_NBUFFERS))
599 panic("dge_freebuf: asked to free buffer %d!", i);
600
601 s = splvm();
602 entry = sc->sc_entry + i;
603 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
604
605 if (__predict_true(m != NULL))
606 pool_cache_put(mb_cache, m);
607 splx(s);
608 }
609 #endif
610
611 static void dge_start(struct ifnet *);
612 static void dge_watchdog(struct ifnet *);
613 static int dge_ioctl(struct ifnet *, u_long, void *);
614 static int dge_init(struct ifnet *);
615 static void dge_stop(struct ifnet *, int);
616
617 static bool dge_shutdown(device_t, int);
618
619 static void dge_reset(struct dge_softc *);
620 static void dge_rxdrain(struct dge_softc *);
621 static int dge_add_rxbuf(struct dge_softc *, int);
622
623 static void dge_set_filter(struct dge_softc *);
624
625 static int dge_intr(void *);
626 static void dge_txintr(struct dge_softc *);
627 static void dge_rxintr(struct dge_softc *);
628 static void dge_linkintr(struct dge_softc *, uint32_t);
629
630 static int dge_match(device_t, cfdata_t, void *);
631 static void dge_attach(device_t, device_t, void *);
632
633 static int dge_read_eeprom(struct dge_softc *sc);
634 static int dge_eeprom_clockin(struct dge_softc *sc);
635 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
636 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
637 static int dge_xgmii_mediachange(struct ifnet *);
638 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
639 static void dge_xgmii_reset(struct dge_softc *);
640 static void dge_xgmii_writereg(device_t, int, int, int);
641
642
643 CFATTACH_DECL(dge, sizeof(struct dge_softc),
644 dge_match, dge_attach, NULL, NULL);
645
646 #ifdef DGE_EVENT_COUNTERS
647 #if DGE_NTXSEGS > 100
648 #error Update dge_txseg_evcnt_names
649 #endif
650 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
651 #endif /* DGE_EVENT_COUNTERS */
652
653 static int
654 dge_match(device_t parent, cfdata_t cf, void *aux)
655 {
656 struct pci_attach_args *pa = aux;
657
658 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
659 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
660 return (1);
661
662 return (0);
663 }
664
665 static void
666 dge_attach(device_t parent, device_t self, void *aux)
667 {
668 struct dge_softc *sc = device_private(self);
669 struct pci_attach_args *pa = aux;
670 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
671 pci_chipset_tag_t pc = pa->pa_pc;
672 pci_intr_handle_t ih;
673 const char *intrstr = NULL;
674 bus_dma_segment_t seg;
675 int i, rseg, error;
676 uint8_t enaddr[ETHER_ADDR_LEN];
677 pcireg_t preg, memtype;
678 uint32_t reg;
679
680 sc->sc_dmat = pa->pa_dmat;
681 sc->sc_pc = pa->pa_pc;
682 sc->sc_pt = pa->pa_tag;
683
684 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
685 aprint_naive(": Ethernet controller\n");
686 aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
687
688 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
689 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
690 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
691 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
692 return;
693 }
694
695 /* Enable bus mastering */
696 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
697 preg |= PCI_COMMAND_MASTER_ENABLE;
698 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
699
700 /*
701 * Map and establish our interrupt.
702 */
703 if (pci_intr_map(pa, &ih)) {
704 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
705 return;
706 }
707 intrstr = pci_intr_string(pc, ih);
708 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
709 if (sc->sc_ih == NULL) {
710 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
711 if (intrstr != NULL)
712 aprint_error(" at %s", intrstr);
713 aprint_error("\n");
714 return;
715 }
716 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
717
718 /*
719 * Determine a few things about the bus we're connected to.
720 */
721 reg = CSR_READ(sc, DGE_STATUS);
722 if (reg & STATUS_BUS64)
723 sc->sc_flags |= DGE_F_BUS64;
724
725 sc->sc_flags |= DGE_F_PCIX;
726 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
727 PCI_CAP_PCIX,
728 &sc->sc_pcix_offset, NULL) == 0)
729 aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
730 "capability\n");
731
732 if (sc->sc_flags & DGE_F_PCIX) {
733 switch (reg & STATUS_PCIX_MSK) {
734 case STATUS_PCIX_66:
735 sc->sc_bus_speed = 66;
736 break;
737 case STATUS_PCIX_100:
738 sc->sc_bus_speed = 100;
739 break;
740 case STATUS_PCIX_133:
741 sc->sc_bus_speed = 133;
742 break;
743 default:
744 aprint_error_dev(&sc->sc_dev,
745 "unknown PCIXSPD %d; assuming 66MHz\n",
746 reg & STATUS_PCIX_MSK);
747 sc->sc_bus_speed = 66;
748 }
749 } else
750 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
751 aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
752 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
753 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
754
755 /*
756 * Allocate the control data structures, and create and load the
757 * DMA map for it.
758 */
759 if ((error = bus_dmamem_alloc(sc->sc_dmat,
760 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
761 0)) != 0) {
762 aprint_error_dev(&sc->sc_dev,
763 "unable to allocate control data, error = %d\n",
764 error);
765 goto fail_0;
766 }
767
768 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
769 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
770 0)) != 0) {
771 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
772 error);
773 goto fail_1;
774 }
775
776 if ((error = bus_dmamap_create(sc->sc_dmat,
777 sizeof(struct dge_control_data), 1,
778 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
779 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
780 "error = %d\n", error);
781 goto fail_2;
782 }
783
784 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
785 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
786 0)) != 0) {
787 aprint_error_dev(&sc->sc_dev,
788 "unable to load control data DMA map, error = %d\n",
789 error);
790 goto fail_3;
791 }
792
793 #ifdef DGE_OFFBYONE_RXBUG
794 if (dge_alloc_rcvmem(sc) != 0)
795 return; /* Already complained */
796 #endif
797 /*
798 * Create the transmit buffer DMA maps.
799 */
800 for (i = 0; i < DGE_TXQUEUELEN; i++) {
801 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
802 DGE_NTXSEGS, MCLBYTES, 0, 0,
803 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
804 aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
805 "error = %d\n", i, error);
806 goto fail_4;
807 }
808 }
809
810 /*
811 * Create the receive buffer DMA maps.
812 */
813 for (i = 0; i < DGE_NRXDESC; i++) {
814 #ifdef DGE_OFFBYONE_RXBUG
815 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
816 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
817 #else
818 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
819 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
820 #endif
821 aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
822 "error = %d\n", i, error);
823 goto fail_5;
824 }
825 sc->sc_rxsoft[i].rxs_mbuf = NULL;
826 }
827
828 /*
829 * Set bits in ctrl0 register.
830 * Should get the software defined pins out of EEPROM?
831 */
832 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
833 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
834 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
835
836 /*
837 * Reset the chip to a known state.
838 */
839 dge_reset(sc);
840
841 /*
842 * Reset the PHY.
843 */
844 dge_xgmii_reset(sc);
845
846 /*
847 * Read in EEPROM data.
848 */
849 if (dge_read_eeprom(sc)) {
850 aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
851 return;
852 }
853
854 /*
855 * Get the ethernet address.
856 */
857 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
858 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
859 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
860 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
861 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
862 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
863
864 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
865 ether_sprintf(enaddr));
866
867 /*
868 * Setup media stuff.
869 */
870 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
871 dge_xgmii_mediastatus);
872 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
873 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
874
875 ifp = &sc->sc_ethercom.ec_if;
876 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
877 ifp->if_softc = sc;
878 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
879 ifp->if_ioctl = dge_ioctl;
880 ifp->if_start = dge_start;
881 ifp->if_watchdog = dge_watchdog;
882 ifp->if_init = dge_init;
883 ifp->if_stop = dge_stop;
884 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
885 IFQ_SET_READY(&ifp->if_snd);
886
887 sc->sc_ethercom.ec_capabilities |=
888 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
889
890 /*
891 * We can perform TCPv4 and UDPv4 checkums in-bound.
892 */
893 ifp->if_capabilities |=
894 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
895 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
896 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
897
898 /*
899 * Attach the interface.
900 */
901 if_attach(ifp);
902 ether_ifattach(ifp, enaddr);
903 #if NRND > 0
904 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
905 RND_TYPE_NET, 0);
906 #endif
907
908 #ifdef DGE_EVENT_COUNTERS
909 /* Fix segment event naming */
910 if (dge_txseg_evcnt_names == NULL) {
911 dge_txseg_evcnt_names =
912 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
913 for (i = 0; i < DGE_NTXSEGS; i++)
914 snprintf((*dge_txseg_evcnt_names)[i],
915 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
916 }
917
918 /* Attach event counters. */
919 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
920 NULL, device_xname(&sc->sc_dev), "txsstall");
921 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
922 NULL, device_xname(&sc->sc_dev), "txdstall");
923 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
924 NULL, device_xname(&sc->sc_dev), "txforceintr");
925 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
926 NULL, device_xname(&sc->sc_dev), "txdw");
927 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
928 NULL, device_xname(&sc->sc_dev), "txqe");
929 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
930 NULL, device_xname(&sc->sc_dev), "rxintr");
931 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
932 NULL, device_xname(&sc->sc_dev), "linkintr");
933
934 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
935 NULL, device_xname(&sc->sc_dev), "rxipsum");
936 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
937 NULL, device_xname(&sc->sc_dev), "rxtusum");
938 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
939 NULL, device_xname(&sc->sc_dev), "txipsum");
940 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
941 NULL, device_xname(&sc->sc_dev), "txtusum");
942
943 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
944 NULL, device_xname(&sc->sc_dev), "txctx init");
945 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
946 NULL, device_xname(&sc->sc_dev), "txctx hit");
947 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
948 NULL, device_xname(&sc->sc_dev), "txctx miss");
949
950 for (i = 0; i < DGE_NTXSEGS; i++)
951 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
952 NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
953
954 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
955 NULL, device_xname(&sc->sc_dev), "txdrop");
956
957 #endif /* DGE_EVENT_COUNTERS */
958
959 /*
960 * Make sure the interface is shutdown during reboot.
961 */
962 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
963 pmf_class_network_register(self, ifp);
964 else
965 aprint_error_dev(self, "couldn't establish power handler\n");
966
967 return;
968
969 /*
970 * Free any resources we've allocated during the failed attach
971 * attempt. Do this in reverse order and fall through.
972 */
973 fail_5:
974 for (i = 0; i < DGE_NRXDESC; i++) {
975 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
976 bus_dmamap_destroy(sc->sc_dmat,
977 sc->sc_rxsoft[i].rxs_dmamap);
978 }
979 fail_4:
980 for (i = 0; i < DGE_TXQUEUELEN; i++) {
981 if (sc->sc_txsoft[i].txs_dmamap != NULL)
982 bus_dmamap_destroy(sc->sc_dmat,
983 sc->sc_txsoft[i].txs_dmamap);
984 }
985 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
986 fail_3:
987 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
988 fail_2:
989 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
990 sizeof(struct dge_control_data));
991 fail_1:
992 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
993 fail_0:
994 return;
995 }
996
997 /*
998 * dge_shutdown:
999 *
1000 * Make sure the interface is stopped at reboot time.
1001 */
1002 static bool
1003 dge_shutdown(device_t self, int howto)
1004 {
1005 struct dge_softc *sc;
1006
1007 sc = device_private(self);
1008 dge_stop(&sc->sc_ethercom.ec_if, 1);
1009
1010 return true;
1011 }
1012
1013 /*
1014 * dge_tx_cksum:
1015 *
1016 * Set up TCP/IP checksumming parameters for the
1017 * specified packet.
1018 */
1019 static int
1020 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1021 {
1022 struct mbuf *m0 = txs->txs_mbuf;
1023 struct dge_ctdes *t;
1024 uint32_t ipcs, tucs;
1025 struct ether_header *eh;
1026 int offset, iphl;
1027 uint8_t fields = 0;
1028
1029 /*
1030 * XXX It would be nice if the mbuf pkthdr had offset
1031 * fields for the protocol headers.
1032 */
1033
1034 eh = mtod(m0, struct ether_header *);
1035 switch (htons(eh->ether_type)) {
1036 case ETHERTYPE_IP:
1037 offset = ETHER_HDR_LEN;
1038 break;
1039
1040 case ETHERTYPE_VLAN:
1041 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1042 break;
1043
1044 default:
1045 /*
1046 * Don't support this protocol or encapsulation.
1047 */
1048 *fieldsp = 0;
1049 return (0);
1050 }
1051
1052 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1053
1054 /*
1055 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1056 * offload feature, if we load the context descriptor, we
1057 * MUST provide valid values for IPCSS and TUCSS fields.
1058 */
1059
1060 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1061 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1062 fields |= TDESC_POPTS_IXSM;
1063 ipcs = DGE_TCPIP_IPCSS(offset) |
1064 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1065 DGE_TCPIP_IPCSE(offset + iphl - 1);
1066 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1067 /* Use the cached value. */
1068 ipcs = sc->sc_txctx_ipcs;
1069 } else {
1070 /* Just initialize it to the likely value anyway. */
1071 ipcs = DGE_TCPIP_IPCSS(offset) |
1072 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1073 DGE_TCPIP_IPCSE(offset + iphl - 1);
1074 }
1075 DPRINTF(DGE_DEBUG_CKSUM,
1076 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1077 device_xname(&sc->sc_dev), offset, ipcs));
1078
1079 offset += iphl;
1080
1081 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1082 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1083 fields |= TDESC_POPTS_TXSM;
1084 tucs = DGE_TCPIP_TUCSS(offset) |
1085 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1086 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1087 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1088 /* Use the cached value. */
1089 tucs = sc->sc_txctx_tucs;
1090 } else {
1091 /* Just initialize it to a valid TCP context. */
1092 tucs = DGE_TCPIP_TUCSS(offset) |
1093 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1094 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1095 }
1096
1097 DPRINTF(DGE_DEBUG_CKSUM,
1098 ("%s: CKSUM: offset %d tucs 0x%x\n",
1099 device_xname(&sc->sc_dev), offset, tucs));
1100
1101 if (sc->sc_txctx_ipcs == ipcs &&
1102 sc->sc_txctx_tucs == tucs) {
1103 /* Cached context is fine. */
1104 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1105 } else {
1106 /* Fill in the context descriptor. */
1107 #ifdef DGE_EVENT_COUNTERS
1108 if (sc->sc_txctx_ipcs == 0xffffffff &&
1109 sc->sc_txctx_tucs == 0xffffffff)
1110 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1111 else
1112 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1113 #endif
1114 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1115 t->dc_tcpip_ipcs = htole32(ipcs);
1116 t->dc_tcpip_tucs = htole32(tucs);
1117 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1118 t->dc_tcpip_seg = 0;
1119 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1120
1121 sc->sc_txctx_ipcs = ipcs;
1122 sc->sc_txctx_tucs = tucs;
1123
1124 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1125 txs->txs_ndesc++;
1126 }
1127
1128 *fieldsp = fields;
1129
1130 return (0);
1131 }
1132
1133 /*
1134 * dge_start: [ifnet interface function]
1135 *
1136 * Start packet transmission on the interface.
1137 */
1138 static void
1139 dge_start(struct ifnet *ifp)
1140 {
1141 struct dge_softc *sc = ifp->if_softc;
1142 struct mbuf *m0;
1143 struct dge_txsoft *txs;
1144 bus_dmamap_t dmamap;
1145 int error, nexttx, lasttx = -1, ofree, seg;
1146 uint32_t cksumcmd;
1147 uint8_t cksumfields;
1148
1149 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1150 return;
1151
1152 /*
1153 * Remember the previous number of free descriptors.
1154 */
1155 ofree = sc->sc_txfree;
1156
1157 /*
1158 * Loop through the send queue, setting up transmit descriptors
1159 * until we drain the queue, or use up all available transmit
1160 * descriptors.
1161 */
1162 for (;;) {
1163 /* Grab a packet off the queue. */
1164 IFQ_POLL(&ifp->if_snd, m0);
1165 if (m0 == NULL)
1166 break;
1167
1168 DPRINTF(DGE_DEBUG_TX,
1169 ("%s: TX: have packet to transmit: %p\n",
1170 device_xname(&sc->sc_dev), m0));
1171
1172 /* Get a work queue entry. */
1173 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1174 dge_txintr(sc);
1175 if (sc->sc_txsfree == 0) {
1176 DPRINTF(DGE_DEBUG_TX,
1177 ("%s: TX: no free job descriptors\n",
1178 device_xname(&sc->sc_dev)));
1179 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1180 break;
1181 }
1182 }
1183
1184 txs = &sc->sc_txsoft[sc->sc_txsnext];
1185 dmamap = txs->txs_dmamap;
1186
1187 /*
1188 * Load the DMA map. If this fails, the packet either
1189 * didn't fit in the allotted number of segments, or we
1190 * were short on resources. For the too-many-segments
1191 * case, we simply report an error and drop the packet,
1192 * since we can't sanely copy a jumbo packet to a single
1193 * buffer.
1194 */
1195 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1196 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1197 if (error) {
1198 if (error == EFBIG) {
1199 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1200 printf("%s: Tx packet consumes too many "
1201 "DMA segments, dropping...\n",
1202 device_xname(&sc->sc_dev));
1203 IFQ_DEQUEUE(&ifp->if_snd, m0);
1204 m_freem(m0);
1205 continue;
1206 }
1207 /*
1208 * Short on resources, just stop for now.
1209 */
1210 DPRINTF(DGE_DEBUG_TX,
1211 ("%s: TX: dmamap load failed: %d\n",
1212 device_xname(&sc->sc_dev), error));
1213 break;
1214 }
1215
1216 /*
1217 * Ensure we have enough descriptors free to describe
1218 * the packet. Note, we always reserve one descriptor
1219 * at the end of the ring due to the semantics of the
1220 * TDT register, plus one more in the event we need
1221 * to re-load checksum offload context.
1222 */
1223 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1224 /*
1225 * Not enough free descriptors to transmit this
1226 * packet. We haven't committed anything yet,
1227 * so just unload the DMA map, put the packet
1228 * pack on the queue, and punt. Notify the upper
1229 * layer that there are no more slots left.
1230 */
1231 DPRINTF(DGE_DEBUG_TX,
1232 ("%s: TX: need %d descriptors, have %d\n",
1233 device_xname(&sc->sc_dev), dmamap->dm_nsegs,
1234 sc->sc_txfree - 1));
1235 ifp->if_flags |= IFF_OACTIVE;
1236 bus_dmamap_unload(sc->sc_dmat, dmamap);
1237 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1238 break;
1239 }
1240
1241 IFQ_DEQUEUE(&ifp->if_snd, m0);
1242
1243 /*
1244 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1245 */
1246
1247 /* Sync the DMA map. */
1248 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1249 BUS_DMASYNC_PREWRITE);
1250
1251 DPRINTF(DGE_DEBUG_TX,
1252 ("%s: TX: packet has %d DMA segments\n",
1253 device_xname(&sc->sc_dev), dmamap->dm_nsegs));
1254
1255 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1256
1257 /*
1258 * Store a pointer to the packet so that we can free it
1259 * later.
1260 *
1261 * Initially, we consider the number of descriptors the
1262 * packet uses the number of DMA segments. This may be
1263 * incremented by 1 if we do checksum offload (a descriptor
1264 * is used to set the checksum context).
1265 */
1266 txs->txs_mbuf = m0;
1267 txs->txs_firstdesc = sc->sc_txnext;
1268 txs->txs_ndesc = dmamap->dm_nsegs;
1269
1270 /*
1271 * Set up checksum offload parameters for
1272 * this packet.
1273 */
1274 if (m0->m_pkthdr.csum_flags &
1275 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1276 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1277 /* Error message already displayed. */
1278 bus_dmamap_unload(sc->sc_dmat, dmamap);
1279 continue;
1280 }
1281 } else {
1282 cksumfields = 0;
1283 }
1284
1285 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1286
1287 /*
1288 * Initialize the transmit descriptor.
1289 */
1290 for (nexttx = sc->sc_txnext, seg = 0;
1291 seg < dmamap->dm_nsegs;
1292 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1293 /*
1294 * Note: we currently only use 32-bit DMA
1295 * addresses.
1296 */
1297 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1298 sc->sc_txdescs[nexttx].dt_baddrl =
1299 htole32(dmamap->dm_segs[seg].ds_addr);
1300 sc->sc_txdescs[nexttx].dt_ctl =
1301 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1302 sc->sc_txdescs[nexttx].dt_status = 0;
1303 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1304 sc->sc_txdescs[nexttx].dt_vlan = 0;
1305 lasttx = nexttx;
1306
1307 DPRINTF(DGE_DEBUG_TX,
1308 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1309 device_xname(&sc->sc_dev), nexttx,
1310 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1311 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1312 }
1313
1314 KASSERT(lasttx != -1);
1315
1316 /*
1317 * Set up the command byte on the last descriptor of
1318 * the packet. If we're in the interrupt delay window,
1319 * delay the interrupt.
1320 */
1321 sc->sc_txdescs[lasttx].dt_ctl |=
1322 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1323
1324 txs->txs_lastdesc = lasttx;
1325
1326 DPRINTF(DGE_DEBUG_TX,
1327 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
1328 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1329
1330 /* Sync the descriptors we're using. */
1331 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1332 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1333
1334 /* Give the packet to the chip. */
1335 CSR_WRITE(sc, DGE_TDT, nexttx);
1336
1337 DPRINTF(DGE_DEBUG_TX,
1338 ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
1339
1340 DPRINTF(DGE_DEBUG_TX,
1341 ("%s: TX: finished transmitting packet, job %d\n",
1342 device_xname(&sc->sc_dev), sc->sc_txsnext));
1343
1344 /* Advance the tx pointer. */
1345 sc->sc_txfree -= txs->txs_ndesc;
1346 sc->sc_txnext = nexttx;
1347
1348 sc->sc_txsfree--;
1349 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1350
1351 /* Pass the packet to any BPF listeners. */
1352 bpf_mtap(ifp, m0);
1353 }
1354
1355 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1356 /* No more slots; notify upper layer. */
1357 ifp->if_flags |= IFF_OACTIVE;
1358 }
1359
1360 if (sc->sc_txfree != ofree) {
1361 /* Set a watchdog timer in case the chip flakes out. */
1362 ifp->if_timer = 5;
1363 }
1364 }
1365
1366 /*
1367 * dge_watchdog: [ifnet interface function]
1368 *
1369 * Watchdog timer handler.
1370 */
1371 static void
1372 dge_watchdog(struct ifnet *ifp)
1373 {
1374 struct dge_softc *sc = ifp->if_softc;
1375
1376 /*
1377 * Since we're using delayed interrupts, sweep up
1378 * before we report an error.
1379 */
1380 dge_txintr(sc);
1381
1382 if (sc->sc_txfree != DGE_NTXDESC) {
1383 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1384 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1385 sc->sc_txnext);
1386 ifp->if_oerrors++;
1387
1388 /* Reset the interface. */
1389 (void) dge_init(ifp);
1390 }
1391
1392 /* Try to get more packets going. */
1393 dge_start(ifp);
1394 }
1395
1396 /*
1397 * dge_ioctl: [ifnet interface function]
1398 *
1399 * Handle control requests from the operator.
1400 */
1401 static int
1402 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1403 {
1404 struct dge_softc *sc = ifp->if_softc;
1405 struct ifreq *ifr = (struct ifreq *) data;
1406 pcireg_t preg;
1407 int s, error, mmrbc;
1408
1409 s = splnet();
1410
1411 switch (cmd) {
1412 case SIOCSIFMEDIA:
1413 case SIOCGIFMEDIA:
1414 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1415 break;
1416
1417 case SIOCSIFMTU:
1418 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1419 error = EINVAL;
1420 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1421 break;
1422 else if (ifp->if_flags & IFF_UP)
1423 error = (*ifp->if_init)(ifp);
1424 else
1425 error = 0;
1426 break;
1427
1428 case SIOCSIFFLAGS:
1429 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1430 break;
1431 /* extract link flags */
1432 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1433 (ifp->if_flags & IFF_LINK1) == 0)
1434 mmrbc = PCIX_MMRBC_512;
1435 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1436 (ifp->if_flags & IFF_LINK1) != 0)
1437 mmrbc = PCIX_MMRBC_1024;
1438 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1439 (ifp->if_flags & IFF_LINK1) == 0)
1440 mmrbc = PCIX_MMRBC_2048;
1441 else
1442 mmrbc = PCIX_MMRBC_4096;
1443 if (mmrbc != sc->sc_mmrbc) {
1444 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1445 preg &= ~PCIX_MMRBC_MSK;
1446 preg |= mmrbc;
1447 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1448 sc->sc_mmrbc = mmrbc;
1449 }
1450 /* FALLTHROUGH */
1451 default:
1452 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1453 break;
1454
1455 error = 0;
1456
1457 if (cmd == SIOCSIFCAP)
1458 error = (*ifp->if_init)(ifp);
1459 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1460 ;
1461 else if (ifp->if_flags & IFF_RUNNING) {
1462 /*
1463 * Multicast list has changed; set the hardware filter
1464 * accordingly.
1465 */
1466 dge_set_filter(sc);
1467 }
1468 break;
1469 }
1470
1471 /* Try to get more packets going. */
1472 dge_start(ifp);
1473
1474 splx(s);
1475 return (error);
1476 }
1477
1478 /*
1479 * dge_intr:
1480 *
1481 * Interrupt service routine.
1482 */
1483 static int
1484 dge_intr(void *arg)
1485 {
1486 struct dge_softc *sc = arg;
1487 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1488 uint32_t icr;
1489 int wantinit, handled = 0;
1490
1491 for (wantinit = 0; wantinit == 0;) {
1492 icr = CSR_READ(sc, DGE_ICR);
1493 if ((icr & sc->sc_icr) == 0)
1494 break;
1495
1496 #if 0 /*NRND > 0*/
1497 if (RND_ENABLED(&sc->rnd_source))
1498 rnd_add_uint32(&sc->rnd_source, icr);
1499 #endif
1500
1501 handled = 1;
1502
1503 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1504 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1505 DPRINTF(DGE_DEBUG_RX,
1506 ("%s: RX: got Rx intr 0x%08x\n",
1507 device_xname(&sc->sc_dev),
1508 icr & (ICR_RXDMT0|ICR_RXT0)));
1509 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1510 }
1511 #endif
1512 dge_rxintr(sc);
1513
1514 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1515 if (icr & ICR_TXDW) {
1516 DPRINTF(DGE_DEBUG_TX,
1517 ("%s: TX: got TXDW interrupt\n",
1518 device_xname(&sc->sc_dev)));
1519 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1520 }
1521 if (icr & ICR_TXQE)
1522 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1523 #endif
1524 dge_txintr(sc);
1525
1526 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1527 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1528 dge_linkintr(sc, icr);
1529 }
1530
1531 if (icr & ICR_RXO) {
1532 printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
1533 wantinit = 1;
1534 }
1535 }
1536
1537 if (handled) {
1538 if (wantinit)
1539 dge_init(ifp);
1540
1541 /* Try to get more packets going. */
1542 dge_start(ifp);
1543 }
1544
1545 return (handled);
1546 }
1547
1548 /*
1549 * dge_txintr:
1550 *
1551 * Helper; handle transmit interrupts.
1552 */
1553 static void
1554 dge_txintr(struct dge_softc *sc)
1555 {
1556 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1557 struct dge_txsoft *txs;
1558 uint8_t status;
1559 int i;
1560
1561 ifp->if_flags &= ~IFF_OACTIVE;
1562
1563 /*
1564 * Go through the Tx list and free mbufs for those
1565 * frames which have been transmitted.
1566 */
1567 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1568 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1569 txs = &sc->sc_txsoft[i];
1570
1571 DPRINTF(DGE_DEBUG_TX,
1572 ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
1573
1574 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1575 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1576
1577 status =
1578 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1579 if ((status & TDESC_STA_DD) == 0) {
1580 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1581 BUS_DMASYNC_PREREAD);
1582 break;
1583 }
1584
1585 DPRINTF(DGE_DEBUG_TX,
1586 ("%s: TX: job %d done: descs %d..%d\n",
1587 device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
1588 txs->txs_lastdesc));
1589
1590 ifp->if_opackets++;
1591 sc->sc_txfree += txs->txs_ndesc;
1592 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1593 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1594 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1595 m_freem(txs->txs_mbuf);
1596 txs->txs_mbuf = NULL;
1597 }
1598
1599 /* Update the dirty transmit buffer pointer. */
1600 sc->sc_txsdirty = i;
1601 DPRINTF(DGE_DEBUG_TX,
1602 ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
1603
1604 /*
1605 * If there are no more pending transmissions, cancel the watchdog
1606 * timer.
1607 */
1608 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1609 ifp->if_timer = 0;
1610 }
1611
1612 /*
1613 * dge_rxintr:
1614 *
1615 * Helper; handle receive interrupts.
1616 */
1617 static void
1618 dge_rxintr(struct dge_softc *sc)
1619 {
1620 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1621 struct dge_rxsoft *rxs;
1622 struct mbuf *m;
1623 int i, len;
1624 uint8_t status, errors;
1625
1626 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1627 rxs = &sc->sc_rxsoft[i];
1628
1629 DPRINTF(DGE_DEBUG_RX,
1630 ("%s: RX: checking descriptor %d\n",
1631 device_xname(&sc->sc_dev), i));
1632
1633 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1634
1635 status = sc->sc_rxdescs[i].dr_status;
1636 errors = sc->sc_rxdescs[i].dr_errors;
1637 len = le16toh(sc->sc_rxdescs[i].dr_len);
1638
1639 if ((status & RDESC_STS_DD) == 0) {
1640 /*
1641 * We have processed all of the receive descriptors.
1642 */
1643 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1644 break;
1645 }
1646
1647 if (__predict_false(sc->sc_rxdiscard)) {
1648 DPRINTF(DGE_DEBUG_RX,
1649 ("%s: RX: discarding contents of descriptor %d\n",
1650 device_xname(&sc->sc_dev), i));
1651 DGE_INIT_RXDESC(sc, i);
1652 if (status & RDESC_STS_EOP) {
1653 /* Reset our state. */
1654 DPRINTF(DGE_DEBUG_RX,
1655 ("%s: RX: resetting rxdiscard -> 0\n",
1656 device_xname(&sc->sc_dev)));
1657 sc->sc_rxdiscard = 0;
1658 }
1659 continue;
1660 }
1661
1662 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1663 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1664
1665 m = rxs->rxs_mbuf;
1666
1667 /*
1668 * Add a new receive buffer to the ring.
1669 */
1670 if (dge_add_rxbuf(sc, i) != 0) {
1671 /*
1672 * Failed, throw away what we've done so
1673 * far, and discard the rest of the packet.
1674 */
1675 ifp->if_ierrors++;
1676 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1677 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1678 DGE_INIT_RXDESC(sc, i);
1679 if ((status & RDESC_STS_EOP) == 0)
1680 sc->sc_rxdiscard = 1;
1681 if (sc->sc_rxhead != NULL)
1682 m_freem(sc->sc_rxhead);
1683 DGE_RXCHAIN_RESET(sc);
1684 DPRINTF(DGE_DEBUG_RX,
1685 ("%s: RX: Rx buffer allocation failed, "
1686 "dropping packet%s\n", device_xname(&sc->sc_dev),
1687 sc->sc_rxdiscard ? " (discard)" : ""));
1688 continue;
1689 }
1690 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1691
1692 DGE_RXCHAIN_LINK(sc, m);
1693
1694 m->m_len = len;
1695
1696 DPRINTF(DGE_DEBUG_RX,
1697 ("%s: RX: buffer at %p len %d\n",
1698 device_xname(&sc->sc_dev), m->m_data, len));
1699
1700 /*
1701 * If this is not the end of the packet, keep
1702 * looking.
1703 */
1704 if ((status & RDESC_STS_EOP) == 0) {
1705 sc->sc_rxlen += len;
1706 DPRINTF(DGE_DEBUG_RX,
1707 ("%s: RX: not yet EOP, rxlen -> %d\n",
1708 device_xname(&sc->sc_dev), sc->sc_rxlen));
1709 continue;
1710 }
1711
1712 /*
1713 * Okay, we have the entire packet now...
1714 */
1715 *sc->sc_rxtailp = NULL;
1716 m = sc->sc_rxhead;
1717 len += sc->sc_rxlen;
1718
1719 DGE_RXCHAIN_RESET(sc);
1720
1721 DPRINTF(DGE_DEBUG_RX,
1722 ("%s: RX: have entire packet, len -> %d\n",
1723 device_xname(&sc->sc_dev), len));
1724
1725 /*
1726 * If an error occurred, update stats and drop the packet.
1727 */
1728 if (errors &
1729 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1730 ifp->if_ierrors++;
1731 if (errors & RDESC_ERR_SE)
1732 printf("%s: symbol error\n",
1733 device_xname(&sc->sc_dev));
1734 else if (errors & RDESC_ERR_P)
1735 printf("%s: parity error\n",
1736 device_xname(&sc->sc_dev));
1737 else if (errors & RDESC_ERR_CE)
1738 printf("%s: CRC error\n",
1739 device_xname(&sc->sc_dev));
1740 m_freem(m);
1741 continue;
1742 }
1743
1744 /*
1745 * No errors. Receive the packet.
1746 */
1747 m->m_pkthdr.rcvif = ifp;
1748 m->m_pkthdr.len = len;
1749
1750 /*
1751 * Set up checksum info for this packet.
1752 */
1753 if (status & RDESC_STS_IPCS) {
1754 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1755 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1756 if (errors & RDESC_ERR_IPE)
1757 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1758 }
1759 if (status & RDESC_STS_TCPCS) {
1760 /*
1761 * Note: we don't know if this was TCP or UDP,
1762 * so we just set both bits, and expect the
1763 * upper layers to deal.
1764 */
1765 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1766 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1767 if (errors & RDESC_ERR_TCPE)
1768 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1769 }
1770
1771 ifp->if_ipackets++;
1772
1773 /* Pass this up to any BPF listeners. */
1774 bpf_mtap(ifp, m);
1775
1776 /* Pass it on. */
1777 (*ifp->if_input)(ifp, m);
1778 }
1779
1780 /* Update the receive pointer. */
1781 sc->sc_rxptr = i;
1782
1783 DPRINTF(DGE_DEBUG_RX,
1784 ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
1785 }
1786
1787 /*
1788 * dge_linkintr:
1789 *
1790 * Helper; handle link interrupts.
1791 */
1792 static void
1793 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1794 {
1795 uint32_t status;
1796
1797 if (icr & ICR_LSC) {
1798 status = CSR_READ(sc, DGE_STATUS);
1799 if (status & STATUS_LINKUP) {
1800 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1801 device_xname(&sc->sc_dev)));
1802 } else {
1803 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1804 device_xname(&sc->sc_dev)));
1805 }
1806 } else if (icr & ICR_RXSEQ) {
1807 DPRINTF(DGE_DEBUG_LINK,
1808 ("%s: LINK: Receive sequence error\n",
1809 device_xname(&sc->sc_dev)));
1810 }
1811 /* XXX - fix errata */
1812 }
1813
1814 /*
1815 * dge_reset:
1816 *
1817 * Reset the i82597 chip.
1818 */
1819 static void
1820 dge_reset(struct dge_softc *sc)
1821 {
1822 int i;
1823
1824 /*
1825 * Do a chip reset.
1826 */
1827 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1828
1829 delay(10000);
1830
1831 for (i = 0; i < 1000; i++) {
1832 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1833 break;
1834 delay(20);
1835 }
1836
1837 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1838 printf("%s: WARNING: reset failed to complete\n",
1839 device_xname(&sc->sc_dev));
1840 /*
1841 * Reset the EEPROM logic.
1842 * This will cause the chip to reread its default values,
1843 * which doesn't happen otherwise (errata).
1844 */
1845 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1846 delay(10000);
1847 }
1848
1849 /*
1850 * dge_init: [ifnet interface function]
1851 *
1852 * Initialize the interface. Must be called at splnet().
1853 */
1854 static int
1855 dge_init(struct ifnet *ifp)
1856 {
1857 struct dge_softc *sc = ifp->if_softc;
1858 struct dge_rxsoft *rxs;
1859 int i, error = 0;
1860 uint32_t reg;
1861
1862 /*
1863 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1864 * There is a small but measurable benefit to avoiding the adjusment
1865 * of the descriptor so that the headers are aligned, for normal mtu,
1866 * on such platforms. One possibility is that the DMA itself is
1867 * slightly more efficient if the front of the entire packet (instead
1868 * of the front of the headers) is aligned.
1869 *
1870 * Note we must always set align_tweak to 0 if we are using
1871 * jumbo frames.
1872 */
1873 #ifdef __NO_STRICT_ALIGNMENT
1874 sc->sc_align_tweak = 0;
1875 #else
1876 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1877 sc->sc_align_tweak = 0;
1878 else
1879 sc->sc_align_tweak = 2;
1880 #endif /* __NO_STRICT_ALIGNMENT */
1881
1882 /* Cancel any pending I/O. */
1883 dge_stop(ifp, 0);
1884
1885 /* Reset the chip to a known state. */
1886 dge_reset(sc);
1887
1888 /* Initialize the transmit descriptor ring. */
1889 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1890 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1891 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1892 sc->sc_txfree = DGE_NTXDESC;
1893 sc->sc_txnext = 0;
1894
1895 sc->sc_txctx_ipcs = 0xffffffff;
1896 sc->sc_txctx_tucs = 0xffffffff;
1897
1898 CSR_WRITE(sc, DGE_TDBAH, 0);
1899 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1900 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1901 CSR_WRITE(sc, DGE_TDH, 0);
1902 CSR_WRITE(sc, DGE_TDT, 0);
1903 CSR_WRITE(sc, DGE_TIDV, TIDV);
1904
1905 #if 0
1906 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1907 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1908 #endif
1909 CSR_WRITE(sc, DGE_RXDCTL,
1910 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1911 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1912 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1913
1914 /* Initialize the transmit job descriptors. */
1915 for (i = 0; i < DGE_TXQUEUELEN; i++)
1916 sc->sc_txsoft[i].txs_mbuf = NULL;
1917 sc->sc_txsfree = DGE_TXQUEUELEN;
1918 sc->sc_txsnext = 0;
1919 sc->sc_txsdirty = 0;
1920
1921 /*
1922 * Initialize the receive descriptor and receive job
1923 * descriptor rings.
1924 */
1925 CSR_WRITE(sc, DGE_RDBAH, 0);
1926 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1927 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1928 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1929 CSR_WRITE(sc, DGE_RDT, 0);
1930 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1931 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1932 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1933
1934 for (i = 0; i < DGE_NRXDESC; i++) {
1935 rxs = &sc->sc_rxsoft[i];
1936 if (rxs->rxs_mbuf == NULL) {
1937 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1938 printf("%s: unable to allocate or map rx "
1939 "buffer %d, error = %d\n",
1940 device_xname(&sc->sc_dev), i, error);
1941 /*
1942 * XXX Should attempt to run with fewer receive
1943 * XXX buffers instead of just failing.
1944 */
1945 dge_rxdrain(sc);
1946 goto out;
1947 }
1948 }
1949 DGE_INIT_RXDESC(sc, i);
1950 }
1951 sc->sc_rxptr = DGE_RXSPACE;
1952 sc->sc_rxdiscard = 0;
1953 DGE_RXCHAIN_RESET(sc);
1954
1955 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1956 sc->sc_ctrl0 |= CTRL0_JFE;
1957 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1958 }
1959
1960 /* Write the control registers. */
1961 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1962
1963 /*
1964 * Set up checksum offload parameters.
1965 */
1966 reg = CSR_READ(sc, DGE_RXCSUM);
1967 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1968 reg |= RXCSUM_IPOFL;
1969 else
1970 reg &= ~RXCSUM_IPOFL;
1971 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1972 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1973 else {
1974 reg &= ~RXCSUM_TUOFL;
1975 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1976 reg &= ~RXCSUM_IPOFL;
1977 }
1978 CSR_WRITE(sc, DGE_RXCSUM, reg);
1979
1980 /*
1981 * Set up the interrupt registers.
1982 */
1983 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1984 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1985 ICR_RXO | ICR_RXT0;
1986
1987 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1988
1989 /*
1990 * Set up the transmit control register.
1991 */
1992 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1993 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1994
1995 /*
1996 * Set up the receive control register; we actually program
1997 * the register when we set the receive filter. Use multicast
1998 * address offset type 0.
1999 */
2000 sc->sc_mchash_type = 0;
2001
2002 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2003 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2004
2005 #ifdef DGE_OFFBYONE_RXBUG
2006 sc->sc_rctl |= RCTL_BSIZE_16k;
2007 #else
2008 switch(MCLBYTES) {
2009 case 2048:
2010 sc->sc_rctl |= RCTL_BSIZE_2k;
2011 break;
2012 case 4096:
2013 sc->sc_rctl |= RCTL_BSIZE_4k;
2014 break;
2015 case 8192:
2016 sc->sc_rctl |= RCTL_BSIZE_8k;
2017 break;
2018 case 16384:
2019 sc->sc_rctl |= RCTL_BSIZE_16k;
2020 break;
2021 default:
2022 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2023 }
2024 #endif
2025
2026 /* Set the receive filter. */
2027 /* Also sets RCTL */
2028 dge_set_filter(sc);
2029
2030 /* ...all done! */
2031 ifp->if_flags |= IFF_RUNNING;
2032 ifp->if_flags &= ~IFF_OACTIVE;
2033
2034 out:
2035 if (error)
2036 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2037 return (error);
2038 }
2039
2040 /*
2041 * dge_rxdrain:
2042 *
2043 * Drain the receive queue.
2044 */
2045 static void
2046 dge_rxdrain(struct dge_softc *sc)
2047 {
2048 struct dge_rxsoft *rxs;
2049 int i;
2050
2051 for (i = 0; i < DGE_NRXDESC; i++) {
2052 rxs = &sc->sc_rxsoft[i];
2053 if (rxs->rxs_mbuf != NULL) {
2054 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2055 m_freem(rxs->rxs_mbuf);
2056 rxs->rxs_mbuf = NULL;
2057 }
2058 }
2059 }
2060
2061 /*
2062 * dge_stop: [ifnet interface function]
2063 *
2064 * Stop transmission on the interface.
2065 */
2066 static void
2067 dge_stop(struct ifnet *ifp, int disable)
2068 {
2069 struct dge_softc *sc = ifp->if_softc;
2070 struct dge_txsoft *txs;
2071 int i;
2072
2073 /* Stop the transmit and receive processes. */
2074 CSR_WRITE(sc, DGE_TCTL, 0);
2075 CSR_WRITE(sc, DGE_RCTL, 0);
2076
2077 /* Release any queued transmit buffers. */
2078 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2079 txs = &sc->sc_txsoft[i];
2080 if (txs->txs_mbuf != NULL) {
2081 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2082 m_freem(txs->txs_mbuf);
2083 txs->txs_mbuf = NULL;
2084 }
2085 }
2086
2087 /* Mark the interface as down and cancel the watchdog timer. */
2088 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2089 ifp->if_timer = 0;
2090
2091 if (disable)
2092 dge_rxdrain(sc);
2093 }
2094
2095 /*
2096 * dge_add_rxbuf:
2097 *
2098 * Add a receive buffer to the indiciated descriptor.
2099 */
2100 static int
2101 dge_add_rxbuf(struct dge_softc *sc, int idx)
2102 {
2103 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2104 struct mbuf *m;
2105 int error;
2106 #ifdef DGE_OFFBYONE_RXBUG
2107 void *buf;
2108 #endif
2109
2110 MGETHDR(m, M_DONTWAIT, MT_DATA);
2111 if (m == NULL)
2112 return (ENOBUFS);
2113
2114 #ifdef DGE_OFFBYONE_RXBUG
2115 if ((buf = dge_getbuf(sc)) == NULL)
2116 return ENOBUFS;
2117
2118 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2119 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2120 m->m_flags |= M_EXT_RW;
2121
2122 if (rxs->rxs_mbuf != NULL)
2123 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2124 rxs->rxs_mbuf = m;
2125
2126 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2127 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2128 #else
2129 MCLGET(m, M_DONTWAIT);
2130 if ((m->m_flags & M_EXT) == 0) {
2131 m_freem(m);
2132 return (ENOBUFS);
2133 }
2134
2135 if (rxs->rxs_mbuf != NULL)
2136 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2137
2138 rxs->rxs_mbuf = m;
2139
2140 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2141 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2142 BUS_DMA_READ|BUS_DMA_NOWAIT);
2143 #endif
2144 if (error) {
2145 printf("%s: unable to load rx DMA map %d, error = %d\n",
2146 device_xname(&sc->sc_dev), idx, error);
2147 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2148 }
2149 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2150 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2151
2152 return (0);
2153 }
2154
2155 /*
2156 * dge_set_ral:
2157 *
2158 * Set an entry in the receive address list.
2159 */
2160 static void
2161 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2162 {
2163 uint32_t ral_lo, ral_hi;
2164
2165 if (enaddr != NULL) {
2166 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2167 (enaddr[3] << 24);
2168 ral_hi = enaddr[4] | (enaddr[5] << 8);
2169 ral_hi |= RAH_AV;
2170 } else {
2171 ral_lo = 0;
2172 ral_hi = 0;
2173 }
2174 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2175 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2176 }
2177
2178 /*
2179 * dge_mchash:
2180 *
2181 * Compute the hash of the multicast address for the 4096-bit
2182 * multicast filter.
2183 */
2184 static uint32_t
2185 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2186 {
2187 static const int lo_shift[4] = { 4, 3, 2, 0 };
2188 static const int hi_shift[4] = { 4, 5, 6, 8 };
2189 uint32_t hash;
2190
2191 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2192 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2193
2194 return (hash & 0xfff);
2195 }
2196
2197 /*
2198 * dge_set_filter:
2199 *
2200 * Set up the receive filter.
2201 */
2202 static void
2203 dge_set_filter(struct dge_softc *sc)
2204 {
2205 struct ethercom *ec = &sc->sc_ethercom;
2206 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2207 struct ether_multi *enm;
2208 struct ether_multistep step;
2209 uint32_t hash, reg, bit;
2210 int i;
2211
2212 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2213
2214 if (ifp->if_flags & IFF_BROADCAST)
2215 sc->sc_rctl |= RCTL_BAM;
2216 if (ifp->if_flags & IFF_PROMISC) {
2217 sc->sc_rctl |= RCTL_UPE;
2218 goto allmulti;
2219 }
2220
2221 /*
2222 * Set the station address in the first RAL slot, and
2223 * clear the remaining slots.
2224 */
2225 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2226 for (i = 1; i < RA_TABSIZE; i++)
2227 dge_set_ral(sc, NULL, i);
2228
2229 /* Clear out the multicast table. */
2230 for (i = 0; i < MC_TABSIZE; i++)
2231 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2232
2233 ETHER_FIRST_MULTI(step, ec, enm);
2234 while (enm != NULL) {
2235 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2236 /*
2237 * We must listen to a range of multicast addresses.
2238 * For now, just accept all multicasts, rather than
2239 * trying to set only those filter bits needed to match
2240 * the range. (At this time, the only use of address
2241 * ranges is for IP multicast routing, for which the
2242 * range is big enough to require all bits set.)
2243 */
2244 goto allmulti;
2245 }
2246
2247 hash = dge_mchash(sc, enm->enm_addrlo);
2248
2249 reg = (hash >> 5) & 0x7f;
2250 bit = hash & 0x1f;
2251
2252 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2253 hash |= 1U << bit;
2254
2255 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2256
2257 ETHER_NEXT_MULTI(step, enm);
2258 }
2259
2260 ifp->if_flags &= ~IFF_ALLMULTI;
2261 goto setit;
2262
2263 allmulti:
2264 ifp->if_flags |= IFF_ALLMULTI;
2265 sc->sc_rctl |= RCTL_MPE;
2266
2267 setit:
2268 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2269 }
2270
2271 /*
2272 * Read in the EEPROM info and verify checksum.
2273 */
2274 int
2275 dge_read_eeprom(struct dge_softc *sc)
2276 {
2277 uint16_t cksum;
2278 int i;
2279
2280 cksum = 0;
2281 for (i = 0; i < EEPROM_SIZE; i++) {
2282 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2283 cksum += sc->sc_eeprom[i];
2284 }
2285 return cksum != EEPROM_CKSUM;
2286 }
2287
2288
2289 /*
2290 * Read a 16-bit word from address addr in the serial EEPROM.
2291 */
2292 uint16_t
2293 dge_eeprom_word(struct dge_softc *sc, int addr)
2294 {
2295 uint32_t reg;
2296 uint16_t rval = 0;
2297 int i;
2298
2299 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2300
2301 /* Lower clock pulse (and data in to chip) */
2302 CSR_WRITE(sc, DGE_EECD, reg);
2303 /* Select chip */
2304 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2305
2306 /* Send read command */
2307 dge_eeprom_clockout(sc, 1);
2308 dge_eeprom_clockout(sc, 1);
2309 dge_eeprom_clockout(sc, 0);
2310
2311 /* Send address */
2312 for (i = 5; i >= 0; i--)
2313 dge_eeprom_clockout(sc, (addr >> i) & 1);
2314
2315 /* Read data */
2316 for (i = 0; i < 16; i++) {
2317 rval <<= 1;
2318 rval |= dge_eeprom_clockin(sc);
2319 }
2320
2321 /* Deselect chip */
2322 CSR_WRITE(sc, DGE_EECD, reg);
2323
2324 return rval;
2325 }
2326
2327 /*
2328 * Clock out a single bit to the EEPROM.
2329 */
2330 void
2331 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2332 {
2333 int reg;
2334
2335 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2336 if (bit)
2337 reg |= EECD_DI;
2338
2339 CSR_WRITE(sc, DGE_EECD, reg);
2340 delay(2);
2341 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2342 delay(2);
2343 CSR_WRITE(sc, DGE_EECD, reg);
2344 delay(2);
2345 }
2346
2347 /*
2348 * Clock in a single bit from EEPROM.
2349 */
2350 int
2351 dge_eeprom_clockin(struct dge_softc *sc)
2352 {
2353 int reg, rv;
2354
2355 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2356
2357 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2358 delay(2);
2359 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2360 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2361 delay(2);
2362
2363 return rv;
2364 }
2365
2366 static void
2367 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2368 {
2369 struct dge_softc *sc = ifp->if_softc;
2370
2371 ifmr->ifm_status = IFM_AVALID;
2372 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2373
2374 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2375 ifmr->ifm_status |= IFM_ACTIVE;
2376 }
2377
2378 static inline int
2379 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2380 {
2381 int i, mdic;
2382
2383 CSR_WRITE(sc, DGE_MDIO,
2384 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2385 for (i = 0; i < 10; i++) {
2386 delay(10);
2387 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2388 break;
2389 }
2390 return mdic;
2391 }
2392
2393
2394 static void
2395 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
2396 {
2397 struct dge_softc *sc = device_private(self);
2398 int mdic;
2399
2400 CSR_WRITE(sc, DGE_MDIRW, val);
2401 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2402 printf("%s: address cycle timeout; phy %d reg %d\n",
2403 device_xname(&sc->sc_dev), phy, reg);
2404 return;
2405 }
2406 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2407 printf("%s: read cycle timeout; phy %d reg %d\n",
2408 device_xname(&sc->sc_dev), phy, reg);
2409 return;
2410 }
2411 }
2412
2413 static void
2414 dge_xgmii_reset(struct dge_softc *sc)
2415 {
2416 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2417 }
2418
2419 static int
2420 dge_xgmii_mediachange(struct ifnet *ifp)
2421 {
2422 return 0;
2423 }
2424