if_dge.c revision 1.31 1 /* $NetBSD: if_dge.c,v 1.31 2010/11/13 13:52:06 uebayasi Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.31 2010/11/13 13:52:06 uebayasi Exp $");
84
85 #include "rnd.h"
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #if NRND > 0
100 #include <sys/rnd.h>
101 #endif
102
103 #include <net/if.h>
104 #include <net/if_dl.h>
105 #include <net/if_media.h>
106 #include <net/if_ether.h>
107
108 #include <net/bpf.h>
109
110 #include <netinet/in.h> /* XXX for struct ip */
111 #include <netinet/in_systm.h> /* XXX for struct ip */
112 #include <netinet/ip.h> /* XXX for struct ip */
113 #include <netinet/tcp.h> /* XXX for struct tcphdr */
114
115 #include <sys/bus.h>
116 #include <sys/intr.h>
117 #include <machine/endian.h>
118
119 #include <dev/mii/mii.h>
120 #include <dev/mii/miivar.h>
121 #include <dev/mii/mii_bitbang.h>
122
123 #include <dev/pci/pcireg.h>
124 #include <dev/pci/pcivar.h>
125 #include <dev/pci/pcidevs.h>
126
127 #include <dev/pci/if_dgereg.h>
128
129 /*
130 * The receive engine may sometimes become off-by-one when writing back
131 * chained descriptors. Avoid this by allocating a large chunk of
132 * memory and use if instead (to avoid chained descriptors).
133 * This only happens with chained descriptors under heavy load.
134 */
135 #define DGE_OFFBYONE_RXBUG
136
137 #define DGE_EVENT_COUNTERS
138 #define DGE_DEBUG
139
140 #ifdef DGE_DEBUG
141 #define DGE_DEBUG_LINK 0x01
142 #define DGE_DEBUG_TX 0x02
143 #define DGE_DEBUG_RX 0x04
144 #define DGE_DEBUG_CKSUM 0x08
145 int dge_debug = 0;
146
147 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
148 #else
149 #define DPRINTF(x, y) /* nothing */
150 #endif /* DGE_DEBUG */
151
152 /*
153 * Transmit descriptor list size. We allow up to 100 DMA segments per
154 * packet (Intel reports of jumbo frame packets with as
155 * many as 80 DMA segments when using 16k buffers).
156 */
157 #define DGE_NTXSEGS 100
158 #define DGE_IFQUEUELEN 20000
159 #define DGE_TXQUEUELEN 2048
160 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
161 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
162 #define DGE_NTXDESC 1024
163 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
164 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
165 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
166
167 /*
168 * Receive descriptor list size.
169 * Packet is of size MCLBYTES, and for jumbo packets buffers may
170 * be chained. Due to the nature of the card (high-speed), keep this
171 * ring large. With 2k buffers the ring can store 400 jumbo packets,
172 * which at full speed will be received in just under 3ms.
173 */
174 #define DGE_NRXDESC 2048
175 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
176 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
177 /*
178 * # of descriptors between head and written descriptors.
179 * This is to work-around two erratas.
180 */
181 #define DGE_RXSPACE 10
182 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
183 /*
184 * Receive descriptor fetch threshholds. These are values recommended
185 * by Intel, do not touch them unless you know what you are doing.
186 */
187 #define RXDCTL_PTHRESH_VAL 128
188 #define RXDCTL_HTHRESH_VAL 16
189 #define RXDCTL_WTHRESH_VAL 16
190
191
192 /*
193 * Tweakable parameters; default values.
194 */
195 #define FCRTH 0x30000 /* Send XOFF water mark */
196 #define FCRTL 0x28000 /* Send XON water mark */
197 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
198 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
199
200 /*
201 * Control structures are DMA'd to the i82597 chip. We allocate them in
202 * a single clump that maps to a single DMA segment to make serveral things
203 * easier.
204 */
205 struct dge_control_data {
206 /*
207 * The transmit descriptors.
208 */
209 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
210
211 /*
212 * The receive descriptors.
213 */
214 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
215 };
216
217 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
218 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
219 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
220
221 /*
222 * The DGE interface have a higher max MTU size than normal jumbo frames.
223 */
224 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
225
226 /*
227 * Software state for transmit jobs.
228 */
229 struct dge_txsoft {
230 struct mbuf *txs_mbuf; /* head of our mbuf chain */
231 bus_dmamap_t txs_dmamap; /* our DMA map */
232 int txs_firstdesc; /* first descriptor in packet */
233 int txs_lastdesc; /* last descriptor in packet */
234 int txs_ndesc; /* # of descriptors used */
235 };
236
237 /*
238 * Software state for receive buffers. Each descriptor gets a
239 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
240 * more than one buffer, we chain them together.
241 */
242 struct dge_rxsoft {
243 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
244 bus_dmamap_t rxs_dmamap; /* our DMA map */
245 };
246
247 /*
248 * Software state per device.
249 */
250 struct dge_softc {
251 struct device sc_dev; /* generic device information */
252 bus_space_tag_t sc_st; /* bus space tag */
253 bus_space_handle_t sc_sh; /* bus space handle */
254 bus_dma_tag_t sc_dmat; /* bus DMA tag */
255 struct ethercom sc_ethercom; /* ethernet common data */
256
257 int sc_flags; /* flags; see below */
258 int sc_bus_speed; /* PCI/PCIX bus speed */
259 int sc_pcix_offset; /* PCIX capability register offset */
260
261 pci_chipset_tag_t sc_pc;
262 pcitag_t sc_pt;
263 int sc_mmrbc; /* Max PCIX memory read byte count */
264
265 void *sc_ih; /* interrupt cookie */
266
267 struct ifmedia sc_media;
268
269 bus_dmamap_t sc_cddmamap; /* control data DMA map */
270 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
271
272 int sc_align_tweak;
273
274 /*
275 * Software state for the transmit and receive descriptors.
276 */
277 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
278 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
279
280 /*
281 * Control data structures.
282 */
283 struct dge_control_data *sc_control_data;
284 #define sc_txdescs sc_control_data->wcd_txdescs
285 #define sc_rxdescs sc_control_data->wcd_rxdescs
286
287 #ifdef DGE_EVENT_COUNTERS
288 /* Event counters. */
289 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
290 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
291 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
292 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
293 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
294 struct evcnt sc_ev_rxintr; /* Rx interrupts */
295 struct evcnt sc_ev_linkintr; /* Link interrupts */
296
297 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
298 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
299 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
300 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
301
302 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
303 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
304 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
305
306 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
307 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
308 #endif /* DGE_EVENT_COUNTERS */
309
310 int sc_txfree; /* number of free Tx descriptors */
311 int sc_txnext; /* next ready Tx descriptor */
312
313 int sc_txsfree; /* number of free Tx jobs */
314 int sc_txsnext; /* next free Tx job */
315 int sc_txsdirty; /* dirty Tx jobs */
316
317 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
318 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
319
320 int sc_rxptr; /* next ready Rx descriptor/queue ent */
321 int sc_rxdiscard;
322 int sc_rxlen;
323 struct mbuf *sc_rxhead;
324 struct mbuf *sc_rxtail;
325 struct mbuf **sc_rxtailp;
326
327 uint32_t sc_ctrl0; /* prototype CTRL0 register */
328 uint32_t sc_icr; /* prototype interrupt bits */
329 uint32_t sc_tctl; /* prototype TCTL register */
330 uint32_t sc_rctl; /* prototype RCTL register */
331
332 int sc_mchash_type; /* multicast filter offset */
333
334 uint16_t sc_eeprom[EEPROM_SIZE];
335
336 #if NRND > 0
337 rndsource_element_t rnd_source; /* random source */
338 #endif
339 #ifdef DGE_OFFBYONE_RXBUG
340 void *sc_bugbuf;
341 SLIST_HEAD(, rxbugentry) sc_buglist;
342 bus_dmamap_t sc_bugmap;
343 struct rxbugentry *sc_entry;
344 #endif
345 };
346
347 #define DGE_RXCHAIN_RESET(sc) \
348 do { \
349 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
350 *(sc)->sc_rxtailp = NULL; \
351 (sc)->sc_rxlen = 0; \
352 } while (/*CONSTCOND*/0)
353
354 #define DGE_RXCHAIN_LINK(sc, m) \
355 do { \
356 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
357 (sc)->sc_rxtailp = &(m)->m_next; \
358 } while (/*CONSTCOND*/0)
359
360 /* sc_flags */
361 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
362 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
363
364 #ifdef DGE_EVENT_COUNTERS
365 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
366 #else
367 #define DGE_EVCNT_INCR(ev) /* nothing */
368 #endif
369
370 #define CSR_READ(sc, reg) \
371 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
372 #define CSR_WRITE(sc, reg, val) \
373 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
374
375 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
376 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
377
378 #define DGE_CDTXSYNC(sc, x, n, ops) \
379 do { \
380 int __x, __n; \
381 \
382 __x = (x); \
383 __n = (n); \
384 \
385 /* If it will wrap around, sync to the end of the ring. */ \
386 if ((__x + __n) > DGE_NTXDESC) { \
387 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
388 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
389 (DGE_NTXDESC - __x), (ops)); \
390 __n -= (DGE_NTXDESC - __x); \
391 __x = 0; \
392 } \
393 \
394 /* Now sync whatever is left. */ \
395 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
396 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
397 } while (/*CONSTCOND*/0)
398
399 #define DGE_CDRXSYNC(sc, x, ops) \
400 do { \
401 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
402 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
403 } while (/*CONSTCOND*/0)
404
405 #ifdef DGE_OFFBYONE_RXBUG
406 #define DGE_INIT_RXDESC(sc, x) \
407 do { \
408 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
409 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
410 struct mbuf *__m = __rxs->rxs_mbuf; \
411 \
412 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
413 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
414 __rxd->dr_baddrh = 0; \
415 __rxd->dr_len = 0; \
416 __rxd->dr_cksum = 0; \
417 __rxd->dr_status = 0; \
418 __rxd->dr_errors = 0; \
419 __rxd->dr_special = 0; \
420 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
421 \
422 CSR_WRITE((sc), DGE_RDT, (x)); \
423 } while (/*CONSTCOND*/0)
424 #else
425 #define DGE_INIT_RXDESC(sc, x) \
426 do { \
427 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
428 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
429 struct mbuf *__m = __rxs->rxs_mbuf; \
430 \
431 /* \
432 * Note: We scoot the packet forward 2 bytes in the buffer \
433 * so that the payload after the Ethernet header is aligned \
434 * to a 4-byte boundary. \
435 * \
436 * XXX BRAINDAMAGE ALERT! \
437 * The stupid chip uses the same size for every buffer, which \
438 * is set in the Receive Control register. We are using the 2K \
439 * size option, but what we REALLY want is (2K - 2)! For this \
440 * reason, we can't "scoot" packets longer than the standard \
441 * Ethernet MTU. On strict-alignment platforms, if the total \
442 * size exceeds (2K - 2) we set align_tweak to 0 and let \
443 * the upper layer copy the headers. \
444 */ \
445 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
446 \
447 __rxd->dr_baddrl = \
448 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
449 (sc)->sc_align_tweak); \
450 __rxd->dr_baddrh = 0; \
451 __rxd->dr_len = 0; \
452 __rxd->dr_cksum = 0; \
453 __rxd->dr_status = 0; \
454 __rxd->dr_errors = 0; \
455 __rxd->dr_special = 0; \
456 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
457 \
458 CSR_WRITE((sc), DGE_RDT, (x)); \
459 } while (/*CONSTCOND*/0)
460 #endif
461
462 #ifdef DGE_OFFBYONE_RXBUG
463 /*
464 * Allocation constants. Much memory may be used for this.
465 */
466 #ifndef DGE_BUFFER_SIZE
467 #define DGE_BUFFER_SIZE DGE_MAX_MTU
468 #endif
469 #define DGE_NBUFFERS (4*DGE_NRXDESC)
470 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
471
472 struct rxbugentry {
473 SLIST_ENTRY(rxbugentry) rb_entry;
474 int rb_slot;
475 };
476
477 static int
478 dge_alloc_rcvmem(struct dge_softc *sc)
479 {
480 char *ptr, *kva;
481 bus_dma_segment_t seg;
482 int i, rseg, state, error;
483 struct rxbugentry *entry;
484
485 state = error = 0;
486
487 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
488 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
489 aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
490 return ENOBUFS;
491 }
492
493 state = 1;
494 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
495 BUS_DMA_NOWAIT)) {
496 aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
497 (int)DGE_RXMEM);
498 error = ENOBUFS;
499 goto out;
500 }
501
502 state = 2;
503 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
504 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
505 aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
506 error = ENOBUFS;
507 goto out;
508 }
509
510 state = 3;
511 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
512 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
513 aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
514 error = ENOBUFS;
515 goto out;
516 }
517
518 state = 4;
519 sc->sc_bugbuf = (void *)kva;
520 SLIST_INIT(&sc->sc_buglist);
521
522 /*
523 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
524 * in an array.
525 */
526 ptr = sc->sc_bugbuf;
527 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
528 M_DEVBUF, M_NOWAIT)) == NULL) {
529 error = ENOBUFS;
530 goto out;
531 }
532 sc->sc_entry = entry;
533 for (i = 0; i < DGE_NBUFFERS; i++) {
534 entry[i].rb_slot = i;
535 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
536 }
537 out:
538 if (error != 0) {
539 switch (state) {
540 case 4:
541 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
542 case 3:
543 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
544 case 2:
545 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
546 case 1:
547 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
548 break;
549 default:
550 break;
551 }
552 }
553
554 return error;
555 }
556
557 /*
558 * Allocate a jumbo buffer.
559 */
560 static void *
561 dge_getbuf(struct dge_softc *sc)
562 {
563 struct rxbugentry *entry;
564
565 entry = SLIST_FIRST(&sc->sc_buglist);
566
567 if (entry == NULL) {
568 printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
569 return(NULL);
570 }
571
572 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
573 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
574 }
575
576 /*
577 * Release a jumbo buffer.
578 */
579 static void
580 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
581 {
582 struct rxbugentry *entry;
583 struct dge_softc *sc;
584 int i, s;
585
586 /* Extract the softc struct pointer. */
587 sc = (struct dge_softc *)arg;
588
589 if (sc == NULL)
590 panic("dge_freebuf: can't find softc pointer!");
591
592 /* calculate the slot this buffer belongs to */
593
594 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
595
596 if ((i < 0) || (i >= DGE_NBUFFERS))
597 panic("dge_freebuf: asked to free buffer %d!", i);
598
599 s = splvm();
600 entry = sc->sc_entry + i;
601 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
602
603 if (__predict_true(m != NULL))
604 pool_cache_put(mb_cache, m);
605 splx(s);
606 }
607 #endif
608
609 static void dge_start(struct ifnet *);
610 static void dge_watchdog(struct ifnet *);
611 static int dge_ioctl(struct ifnet *, u_long, void *);
612 static int dge_init(struct ifnet *);
613 static void dge_stop(struct ifnet *, int);
614
615 static bool dge_shutdown(device_t, int);
616
617 static void dge_reset(struct dge_softc *);
618 static void dge_rxdrain(struct dge_softc *);
619 static int dge_add_rxbuf(struct dge_softc *, int);
620
621 static void dge_set_filter(struct dge_softc *);
622
623 static int dge_intr(void *);
624 static void dge_txintr(struct dge_softc *);
625 static void dge_rxintr(struct dge_softc *);
626 static void dge_linkintr(struct dge_softc *, uint32_t);
627
628 static int dge_match(device_t, cfdata_t, void *);
629 static void dge_attach(device_t, device_t, void *);
630
631 static int dge_read_eeprom(struct dge_softc *sc);
632 static int dge_eeprom_clockin(struct dge_softc *sc);
633 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
634 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
635 static int dge_xgmii_mediachange(struct ifnet *);
636 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
637 static void dge_xgmii_reset(struct dge_softc *);
638 static void dge_xgmii_writereg(device_t, int, int, int);
639
640
641 CFATTACH_DECL(dge, sizeof(struct dge_softc),
642 dge_match, dge_attach, NULL, NULL);
643
644 #ifdef DGE_EVENT_COUNTERS
645 #if DGE_NTXSEGS > 100
646 #error Update dge_txseg_evcnt_names
647 #endif
648 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
649 #endif /* DGE_EVENT_COUNTERS */
650
651 static int
652 dge_match(device_t parent, cfdata_t cf, void *aux)
653 {
654 struct pci_attach_args *pa = aux;
655
656 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
657 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
658 return (1);
659
660 return (0);
661 }
662
663 static void
664 dge_attach(device_t parent, device_t self, void *aux)
665 {
666 struct dge_softc *sc = device_private(self);
667 struct pci_attach_args *pa = aux;
668 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
669 pci_chipset_tag_t pc = pa->pa_pc;
670 pci_intr_handle_t ih;
671 const char *intrstr = NULL;
672 bus_dma_segment_t seg;
673 int i, rseg, error;
674 uint8_t enaddr[ETHER_ADDR_LEN];
675 pcireg_t preg, memtype;
676 uint32_t reg;
677
678 sc->sc_dmat = pa->pa_dmat;
679 sc->sc_pc = pa->pa_pc;
680 sc->sc_pt = pa->pa_tag;
681
682 preg = PCI_REVISION(pci_conf_read(pc, pa->pa_tag, PCI_CLASS_REG));
683 aprint_naive(": Ethernet controller\n");
684 aprint_normal(": Intel i82597EX 10GbE-LR Ethernet, rev. %d\n", preg);
685
686 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
687 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
688 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
689 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
690 return;
691 }
692
693 /* Enable bus mastering */
694 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
695 preg |= PCI_COMMAND_MASTER_ENABLE;
696 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
697
698 /*
699 * Map and establish our interrupt.
700 */
701 if (pci_intr_map(pa, &ih)) {
702 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
703 return;
704 }
705 intrstr = pci_intr_string(pc, ih);
706 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
707 if (sc->sc_ih == NULL) {
708 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
709 if (intrstr != NULL)
710 aprint_error(" at %s", intrstr);
711 aprint_error("\n");
712 return;
713 }
714 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
715
716 /*
717 * Determine a few things about the bus we're connected to.
718 */
719 reg = CSR_READ(sc, DGE_STATUS);
720 if (reg & STATUS_BUS64)
721 sc->sc_flags |= DGE_F_BUS64;
722
723 sc->sc_flags |= DGE_F_PCIX;
724 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
725 PCI_CAP_PCIX,
726 &sc->sc_pcix_offset, NULL) == 0)
727 aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
728 "capability\n");
729
730 if (sc->sc_flags & DGE_F_PCIX) {
731 switch (reg & STATUS_PCIX_MSK) {
732 case STATUS_PCIX_66:
733 sc->sc_bus_speed = 66;
734 break;
735 case STATUS_PCIX_100:
736 sc->sc_bus_speed = 100;
737 break;
738 case STATUS_PCIX_133:
739 sc->sc_bus_speed = 133;
740 break;
741 default:
742 aprint_error_dev(&sc->sc_dev,
743 "unknown PCIXSPD %d; assuming 66MHz\n",
744 reg & STATUS_PCIX_MSK);
745 sc->sc_bus_speed = 66;
746 }
747 } else
748 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
749 aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
750 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
751 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
752
753 /*
754 * Allocate the control data structures, and create and load the
755 * DMA map for it.
756 */
757 if ((error = bus_dmamem_alloc(sc->sc_dmat,
758 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
759 0)) != 0) {
760 aprint_error_dev(&sc->sc_dev,
761 "unable to allocate control data, error = %d\n",
762 error);
763 goto fail_0;
764 }
765
766 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
767 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
768 0)) != 0) {
769 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
770 error);
771 goto fail_1;
772 }
773
774 if ((error = bus_dmamap_create(sc->sc_dmat,
775 sizeof(struct dge_control_data), 1,
776 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
777 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
778 "error = %d\n", error);
779 goto fail_2;
780 }
781
782 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
783 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
784 0)) != 0) {
785 aprint_error_dev(&sc->sc_dev,
786 "unable to load control data DMA map, error = %d\n",
787 error);
788 goto fail_3;
789 }
790
791 #ifdef DGE_OFFBYONE_RXBUG
792 if (dge_alloc_rcvmem(sc) != 0)
793 return; /* Already complained */
794 #endif
795 /*
796 * Create the transmit buffer DMA maps.
797 */
798 for (i = 0; i < DGE_TXQUEUELEN; i++) {
799 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
800 DGE_NTXSEGS, MCLBYTES, 0, 0,
801 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
802 aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
803 "error = %d\n", i, error);
804 goto fail_4;
805 }
806 }
807
808 /*
809 * Create the receive buffer DMA maps.
810 */
811 for (i = 0; i < DGE_NRXDESC; i++) {
812 #ifdef DGE_OFFBYONE_RXBUG
813 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
814 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
815 #else
816 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
817 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
818 #endif
819 aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
820 "error = %d\n", i, error);
821 goto fail_5;
822 }
823 sc->sc_rxsoft[i].rxs_mbuf = NULL;
824 }
825
826 /*
827 * Set bits in ctrl0 register.
828 * Should get the software defined pins out of EEPROM?
829 */
830 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
831 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
832 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
833
834 /*
835 * Reset the chip to a known state.
836 */
837 dge_reset(sc);
838
839 /*
840 * Reset the PHY.
841 */
842 dge_xgmii_reset(sc);
843
844 /*
845 * Read in EEPROM data.
846 */
847 if (dge_read_eeprom(sc)) {
848 aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
849 return;
850 }
851
852 /*
853 * Get the ethernet address.
854 */
855 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
856 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
857 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
858 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
859 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
860 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
861
862 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
863 ether_sprintf(enaddr));
864
865 /*
866 * Setup media stuff.
867 */
868 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
869 dge_xgmii_mediastatus);
870 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
871 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
872
873 ifp = &sc->sc_ethercom.ec_if;
874 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
875 ifp->if_softc = sc;
876 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
877 ifp->if_ioctl = dge_ioctl;
878 ifp->if_start = dge_start;
879 ifp->if_watchdog = dge_watchdog;
880 ifp->if_init = dge_init;
881 ifp->if_stop = dge_stop;
882 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
883 IFQ_SET_READY(&ifp->if_snd);
884
885 sc->sc_ethercom.ec_capabilities |=
886 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
887
888 /*
889 * We can perform TCPv4 and UDPv4 checkums in-bound.
890 */
891 ifp->if_capabilities |=
892 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
893 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
894 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
895
896 /*
897 * Attach the interface.
898 */
899 if_attach(ifp);
900 ether_ifattach(ifp, enaddr);
901 #if NRND > 0
902 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
903 RND_TYPE_NET, 0);
904 #endif
905
906 #ifdef DGE_EVENT_COUNTERS
907 /* Fix segment event naming */
908 if (dge_txseg_evcnt_names == NULL) {
909 dge_txseg_evcnt_names =
910 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
911 for (i = 0; i < DGE_NTXSEGS; i++)
912 snprintf((*dge_txseg_evcnt_names)[i],
913 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
914 }
915
916 /* Attach event counters. */
917 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
918 NULL, device_xname(&sc->sc_dev), "txsstall");
919 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
920 NULL, device_xname(&sc->sc_dev), "txdstall");
921 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
922 NULL, device_xname(&sc->sc_dev), "txforceintr");
923 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
924 NULL, device_xname(&sc->sc_dev), "txdw");
925 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
926 NULL, device_xname(&sc->sc_dev), "txqe");
927 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
928 NULL, device_xname(&sc->sc_dev), "rxintr");
929 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
930 NULL, device_xname(&sc->sc_dev), "linkintr");
931
932 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
933 NULL, device_xname(&sc->sc_dev), "rxipsum");
934 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
935 NULL, device_xname(&sc->sc_dev), "rxtusum");
936 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
937 NULL, device_xname(&sc->sc_dev), "txipsum");
938 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
939 NULL, device_xname(&sc->sc_dev), "txtusum");
940
941 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
942 NULL, device_xname(&sc->sc_dev), "txctx init");
943 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
944 NULL, device_xname(&sc->sc_dev), "txctx hit");
945 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
946 NULL, device_xname(&sc->sc_dev), "txctx miss");
947
948 for (i = 0; i < DGE_NTXSEGS; i++)
949 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
950 NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
951
952 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
953 NULL, device_xname(&sc->sc_dev), "txdrop");
954
955 #endif /* DGE_EVENT_COUNTERS */
956
957 /*
958 * Make sure the interface is shutdown during reboot.
959 */
960 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
961 pmf_class_network_register(self, ifp);
962 else
963 aprint_error_dev(self, "couldn't establish power handler\n");
964
965 return;
966
967 /*
968 * Free any resources we've allocated during the failed attach
969 * attempt. Do this in reverse order and fall through.
970 */
971 fail_5:
972 for (i = 0; i < DGE_NRXDESC; i++) {
973 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
974 bus_dmamap_destroy(sc->sc_dmat,
975 sc->sc_rxsoft[i].rxs_dmamap);
976 }
977 fail_4:
978 for (i = 0; i < DGE_TXQUEUELEN; i++) {
979 if (sc->sc_txsoft[i].txs_dmamap != NULL)
980 bus_dmamap_destroy(sc->sc_dmat,
981 sc->sc_txsoft[i].txs_dmamap);
982 }
983 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
984 fail_3:
985 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
986 fail_2:
987 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
988 sizeof(struct dge_control_data));
989 fail_1:
990 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
991 fail_0:
992 return;
993 }
994
995 /*
996 * dge_shutdown:
997 *
998 * Make sure the interface is stopped at reboot time.
999 */
1000 static bool
1001 dge_shutdown(device_t self, int howto)
1002 {
1003 struct dge_softc *sc;
1004
1005 sc = device_private(self);
1006 dge_stop(&sc->sc_ethercom.ec_if, 1);
1007
1008 return true;
1009 }
1010
1011 /*
1012 * dge_tx_cksum:
1013 *
1014 * Set up TCP/IP checksumming parameters for the
1015 * specified packet.
1016 */
1017 static int
1018 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1019 {
1020 struct mbuf *m0 = txs->txs_mbuf;
1021 struct dge_ctdes *t;
1022 uint32_t ipcs, tucs;
1023 struct ether_header *eh;
1024 int offset, iphl;
1025 uint8_t fields = 0;
1026
1027 /*
1028 * XXX It would be nice if the mbuf pkthdr had offset
1029 * fields for the protocol headers.
1030 */
1031
1032 eh = mtod(m0, struct ether_header *);
1033 switch (htons(eh->ether_type)) {
1034 case ETHERTYPE_IP:
1035 offset = ETHER_HDR_LEN;
1036 break;
1037
1038 case ETHERTYPE_VLAN:
1039 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1040 break;
1041
1042 default:
1043 /*
1044 * Don't support this protocol or encapsulation.
1045 */
1046 *fieldsp = 0;
1047 return (0);
1048 }
1049
1050 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1051
1052 /*
1053 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1054 * offload feature, if we load the context descriptor, we
1055 * MUST provide valid values for IPCSS and TUCSS fields.
1056 */
1057
1058 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1059 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1060 fields |= TDESC_POPTS_IXSM;
1061 ipcs = DGE_TCPIP_IPCSS(offset) |
1062 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1063 DGE_TCPIP_IPCSE(offset + iphl - 1);
1064 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1065 /* Use the cached value. */
1066 ipcs = sc->sc_txctx_ipcs;
1067 } else {
1068 /* Just initialize it to the likely value anyway. */
1069 ipcs = DGE_TCPIP_IPCSS(offset) |
1070 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1071 DGE_TCPIP_IPCSE(offset + iphl - 1);
1072 }
1073 DPRINTF(DGE_DEBUG_CKSUM,
1074 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1075 device_xname(&sc->sc_dev), offset, ipcs));
1076
1077 offset += iphl;
1078
1079 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1080 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1081 fields |= TDESC_POPTS_TXSM;
1082 tucs = DGE_TCPIP_TUCSS(offset) |
1083 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1084 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1085 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1086 /* Use the cached value. */
1087 tucs = sc->sc_txctx_tucs;
1088 } else {
1089 /* Just initialize it to a valid TCP context. */
1090 tucs = DGE_TCPIP_TUCSS(offset) |
1091 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1092 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1093 }
1094
1095 DPRINTF(DGE_DEBUG_CKSUM,
1096 ("%s: CKSUM: offset %d tucs 0x%x\n",
1097 device_xname(&sc->sc_dev), offset, tucs));
1098
1099 if (sc->sc_txctx_ipcs == ipcs &&
1100 sc->sc_txctx_tucs == tucs) {
1101 /* Cached context is fine. */
1102 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1103 } else {
1104 /* Fill in the context descriptor. */
1105 #ifdef DGE_EVENT_COUNTERS
1106 if (sc->sc_txctx_ipcs == 0xffffffff &&
1107 sc->sc_txctx_tucs == 0xffffffff)
1108 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1109 else
1110 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1111 #endif
1112 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1113 t->dc_tcpip_ipcs = htole32(ipcs);
1114 t->dc_tcpip_tucs = htole32(tucs);
1115 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1116 t->dc_tcpip_seg = 0;
1117 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1118
1119 sc->sc_txctx_ipcs = ipcs;
1120 sc->sc_txctx_tucs = tucs;
1121
1122 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1123 txs->txs_ndesc++;
1124 }
1125
1126 *fieldsp = fields;
1127
1128 return (0);
1129 }
1130
1131 /*
1132 * dge_start: [ifnet interface function]
1133 *
1134 * Start packet transmission on the interface.
1135 */
1136 static void
1137 dge_start(struct ifnet *ifp)
1138 {
1139 struct dge_softc *sc = ifp->if_softc;
1140 struct mbuf *m0;
1141 struct dge_txsoft *txs;
1142 bus_dmamap_t dmamap;
1143 int error, nexttx, lasttx = -1, ofree, seg;
1144 uint32_t cksumcmd;
1145 uint8_t cksumfields;
1146
1147 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1148 return;
1149
1150 /*
1151 * Remember the previous number of free descriptors.
1152 */
1153 ofree = sc->sc_txfree;
1154
1155 /*
1156 * Loop through the send queue, setting up transmit descriptors
1157 * until we drain the queue, or use up all available transmit
1158 * descriptors.
1159 */
1160 for (;;) {
1161 /* Grab a packet off the queue. */
1162 IFQ_POLL(&ifp->if_snd, m0);
1163 if (m0 == NULL)
1164 break;
1165
1166 DPRINTF(DGE_DEBUG_TX,
1167 ("%s: TX: have packet to transmit: %p\n",
1168 device_xname(&sc->sc_dev), m0));
1169
1170 /* Get a work queue entry. */
1171 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1172 dge_txintr(sc);
1173 if (sc->sc_txsfree == 0) {
1174 DPRINTF(DGE_DEBUG_TX,
1175 ("%s: TX: no free job descriptors\n",
1176 device_xname(&sc->sc_dev)));
1177 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1178 break;
1179 }
1180 }
1181
1182 txs = &sc->sc_txsoft[sc->sc_txsnext];
1183 dmamap = txs->txs_dmamap;
1184
1185 /*
1186 * Load the DMA map. If this fails, the packet either
1187 * didn't fit in the allotted number of segments, or we
1188 * were short on resources. For the too-many-segments
1189 * case, we simply report an error and drop the packet,
1190 * since we can't sanely copy a jumbo packet to a single
1191 * buffer.
1192 */
1193 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1194 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1195 if (error) {
1196 if (error == EFBIG) {
1197 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1198 printf("%s: Tx packet consumes too many "
1199 "DMA segments, dropping...\n",
1200 device_xname(&sc->sc_dev));
1201 IFQ_DEQUEUE(&ifp->if_snd, m0);
1202 m_freem(m0);
1203 continue;
1204 }
1205 /*
1206 * Short on resources, just stop for now.
1207 */
1208 DPRINTF(DGE_DEBUG_TX,
1209 ("%s: TX: dmamap load failed: %d\n",
1210 device_xname(&sc->sc_dev), error));
1211 break;
1212 }
1213
1214 /*
1215 * Ensure we have enough descriptors free to describe
1216 * the packet. Note, we always reserve one descriptor
1217 * at the end of the ring due to the semantics of the
1218 * TDT register, plus one more in the event we need
1219 * to re-load checksum offload context.
1220 */
1221 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1222 /*
1223 * Not enough free descriptors to transmit this
1224 * packet. We haven't committed anything yet,
1225 * so just unload the DMA map, put the packet
1226 * pack on the queue, and punt. Notify the upper
1227 * layer that there are no more slots left.
1228 */
1229 DPRINTF(DGE_DEBUG_TX,
1230 ("%s: TX: need %d descriptors, have %d\n",
1231 device_xname(&sc->sc_dev), dmamap->dm_nsegs,
1232 sc->sc_txfree - 1));
1233 ifp->if_flags |= IFF_OACTIVE;
1234 bus_dmamap_unload(sc->sc_dmat, dmamap);
1235 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1236 break;
1237 }
1238
1239 IFQ_DEQUEUE(&ifp->if_snd, m0);
1240
1241 /*
1242 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1243 */
1244
1245 /* Sync the DMA map. */
1246 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1247 BUS_DMASYNC_PREWRITE);
1248
1249 DPRINTF(DGE_DEBUG_TX,
1250 ("%s: TX: packet has %d DMA segments\n",
1251 device_xname(&sc->sc_dev), dmamap->dm_nsegs));
1252
1253 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1254
1255 /*
1256 * Store a pointer to the packet so that we can free it
1257 * later.
1258 *
1259 * Initially, we consider the number of descriptors the
1260 * packet uses the number of DMA segments. This may be
1261 * incremented by 1 if we do checksum offload (a descriptor
1262 * is used to set the checksum context).
1263 */
1264 txs->txs_mbuf = m0;
1265 txs->txs_firstdesc = sc->sc_txnext;
1266 txs->txs_ndesc = dmamap->dm_nsegs;
1267
1268 /*
1269 * Set up checksum offload parameters for
1270 * this packet.
1271 */
1272 if (m0->m_pkthdr.csum_flags &
1273 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1274 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1275 /* Error message already displayed. */
1276 bus_dmamap_unload(sc->sc_dmat, dmamap);
1277 continue;
1278 }
1279 } else {
1280 cksumfields = 0;
1281 }
1282
1283 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1284
1285 /*
1286 * Initialize the transmit descriptor.
1287 */
1288 for (nexttx = sc->sc_txnext, seg = 0;
1289 seg < dmamap->dm_nsegs;
1290 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1291 /*
1292 * Note: we currently only use 32-bit DMA
1293 * addresses.
1294 */
1295 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1296 sc->sc_txdescs[nexttx].dt_baddrl =
1297 htole32(dmamap->dm_segs[seg].ds_addr);
1298 sc->sc_txdescs[nexttx].dt_ctl =
1299 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1300 sc->sc_txdescs[nexttx].dt_status = 0;
1301 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1302 sc->sc_txdescs[nexttx].dt_vlan = 0;
1303 lasttx = nexttx;
1304
1305 DPRINTF(DGE_DEBUG_TX,
1306 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1307 device_xname(&sc->sc_dev), nexttx,
1308 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1309 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1310 }
1311
1312 KASSERT(lasttx != -1);
1313
1314 /*
1315 * Set up the command byte on the last descriptor of
1316 * the packet. If we're in the interrupt delay window,
1317 * delay the interrupt.
1318 */
1319 sc->sc_txdescs[lasttx].dt_ctl |=
1320 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1321
1322 txs->txs_lastdesc = lasttx;
1323
1324 DPRINTF(DGE_DEBUG_TX,
1325 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
1326 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1327
1328 /* Sync the descriptors we're using. */
1329 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1330 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1331
1332 /* Give the packet to the chip. */
1333 CSR_WRITE(sc, DGE_TDT, nexttx);
1334
1335 DPRINTF(DGE_DEBUG_TX,
1336 ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
1337
1338 DPRINTF(DGE_DEBUG_TX,
1339 ("%s: TX: finished transmitting packet, job %d\n",
1340 device_xname(&sc->sc_dev), sc->sc_txsnext));
1341
1342 /* Advance the tx pointer. */
1343 sc->sc_txfree -= txs->txs_ndesc;
1344 sc->sc_txnext = nexttx;
1345
1346 sc->sc_txsfree--;
1347 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1348
1349 /* Pass the packet to any BPF listeners. */
1350 bpf_mtap(ifp, m0);
1351 }
1352
1353 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1354 /* No more slots; notify upper layer. */
1355 ifp->if_flags |= IFF_OACTIVE;
1356 }
1357
1358 if (sc->sc_txfree != ofree) {
1359 /* Set a watchdog timer in case the chip flakes out. */
1360 ifp->if_timer = 5;
1361 }
1362 }
1363
1364 /*
1365 * dge_watchdog: [ifnet interface function]
1366 *
1367 * Watchdog timer handler.
1368 */
1369 static void
1370 dge_watchdog(struct ifnet *ifp)
1371 {
1372 struct dge_softc *sc = ifp->if_softc;
1373
1374 /*
1375 * Since we're using delayed interrupts, sweep up
1376 * before we report an error.
1377 */
1378 dge_txintr(sc);
1379
1380 if (sc->sc_txfree != DGE_NTXDESC) {
1381 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1382 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1383 sc->sc_txnext);
1384 ifp->if_oerrors++;
1385
1386 /* Reset the interface. */
1387 (void) dge_init(ifp);
1388 }
1389
1390 /* Try to get more packets going. */
1391 dge_start(ifp);
1392 }
1393
1394 /*
1395 * dge_ioctl: [ifnet interface function]
1396 *
1397 * Handle control requests from the operator.
1398 */
1399 static int
1400 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1401 {
1402 struct dge_softc *sc = ifp->if_softc;
1403 struct ifreq *ifr = (struct ifreq *) data;
1404 pcireg_t preg;
1405 int s, error, mmrbc;
1406
1407 s = splnet();
1408
1409 switch (cmd) {
1410 case SIOCSIFMEDIA:
1411 case SIOCGIFMEDIA:
1412 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1413 break;
1414
1415 case SIOCSIFMTU:
1416 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1417 error = EINVAL;
1418 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1419 break;
1420 else if (ifp->if_flags & IFF_UP)
1421 error = (*ifp->if_init)(ifp);
1422 else
1423 error = 0;
1424 break;
1425
1426 case SIOCSIFFLAGS:
1427 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1428 break;
1429 /* extract link flags */
1430 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1431 (ifp->if_flags & IFF_LINK1) == 0)
1432 mmrbc = PCIX_MMRBC_512;
1433 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1434 (ifp->if_flags & IFF_LINK1) != 0)
1435 mmrbc = PCIX_MMRBC_1024;
1436 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1437 (ifp->if_flags & IFF_LINK1) == 0)
1438 mmrbc = PCIX_MMRBC_2048;
1439 else
1440 mmrbc = PCIX_MMRBC_4096;
1441 if (mmrbc != sc->sc_mmrbc) {
1442 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1443 preg &= ~PCIX_MMRBC_MSK;
1444 preg |= mmrbc;
1445 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1446 sc->sc_mmrbc = mmrbc;
1447 }
1448 /* FALLTHROUGH */
1449 default:
1450 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1451 break;
1452
1453 error = 0;
1454
1455 if (cmd == SIOCSIFCAP)
1456 error = (*ifp->if_init)(ifp);
1457 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1458 ;
1459 else if (ifp->if_flags & IFF_RUNNING) {
1460 /*
1461 * Multicast list has changed; set the hardware filter
1462 * accordingly.
1463 */
1464 dge_set_filter(sc);
1465 }
1466 break;
1467 }
1468
1469 /* Try to get more packets going. */
1470 dge_start(ifp);
1471
1472 splx(s);
1473 return (error);
1474 }
1475
1476 /*
1477 * dge_intr:
1478 *
1479 * Interrupt service routine.
1480 */
1481 static int
1482 dge_intr(void *arg)
1483 {
1484 struct dge_softc *sc = arg;
1485 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1486 uint32_t icr;
1487 int wantinit, handled = 0;
1488
1489 for (wantinit = 0; wantinit == 0;) {
1490 icr = CSR_READ(sc, DGE_ICR);
1491 if ((icr & sc->sc_icr) == 0)
1492 break;
1493
1494 #if 0 /*NRND > 0*/
1495 if (RND_ENABLED(&sc->rnd_source))
1496 rnd_add_uint32(&sc->rnd_source, icr);
1497 #endif
1498
1499 handled = 1;
1500
1501 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1502 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1503 DPRINTF(DGE_DEBUG_RX,
1504 ("%s: RX: got Rx intr 0x%08x\n",
1505 device_xname(&sc->sc_dev),
1506 icr & (ICR_RXDMT0|ICR_RXT0)));
1507 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1508 }
1509 #endif
1510 dge_rxintr(sc);
1511
1512 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1513 if (icr & ICR_TXDW) {
1514 DPRINTF(DGE_DEBUG_TX,
1515 ("%s: TX: got TXDW interrupt\n",
1516 device_xname(&sc->sc_dev)));
1517 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1518 }
1519 if (icr & ICR_TXQE)
1520 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1521 #endif
1522 dge_txintr(sc);
1523
1524 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1525 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1526 dge_linkintr(sc, icr);
1527 }
1528
1529 if (icr & ICR_RXO) {
1530 printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
1531 wantinit = 1;
1532 }
1533 }
1534
1535 if (handled) {
1536 if (wantinit)
1537 dge_init(ifp);
1538
1539 /* Try to get more packets going. */
1540 dge_start(ifp);
1541 }
1542
1543 return (handled);
1544 }
1545
1546 /*
1547 * dge_txintr:
1548 *
1549 * Helper; handle transmit interrupts.
1550 */
1551 static void
1552 dge_txintr(struct dge_softc *sc)
1553 {
1554 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1555 struct dge_txsoft *txs;
1556 uint8_t status;
1557 int i;
1558
1559 ifp->if_flags &= ~IFF_OACTIVE;
1560
1561 /*
1562 * Go through the Tx list and free mbufs for those
1563 * frames which have been transmitted.
1564 */
1565 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1566 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1567 txs = &sc->sc_txsoft[i];
1568
1569 DPRINTF(DGE_DEBUG_TX,
1570 ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
1571
1572 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1573 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1574
1575 status =
1576 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1577 if ((status & TDESC_STA_DD) == 0) {
1578 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1579 BUS_DMASYNC_PREREAD);
1580 break;
1581 }
1582
1583 DPRINTF(DGE_DEBUG_TX,
1584 ("%s: TX: job %d done: descs %d..%d\n",
1585 device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
1586 txs->txs_lastdesc));
1587
1588 ifp->if_opackets++;
1589 sc->sc_txfree += txs->txs_ndesc;
1590 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1591 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1592 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1593 m_freem(txs->txs_mbuf);
1594 txs->txs_mbuf = NULL;
1595 }
1596
1597 /* Update the dirty transmit buffer pointer. */
1598 sc->sc_txsdirty = i;
1599 DPRINTF(DGE_DEBUG_TX,
1600 ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
1601
1602 /*
1603 * If there are no more pending transmissions, cancel the watchdog
1604 * timer.
1605 */
1606 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1607 ifp->if_timer = 0;
1608 }
1609
1610 /*
1611 * dge_rxintr:
1612 *
1613 * Helper; handle receive interrupts.
1614 */
1615 static void
1616 dge_rxintr(struct dge_softc *sc)
1617 {
1618 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1619 struct dge_rxsoft *rxs;
1620 struct mbuf *m;
1621 int i, len;
1622 uint8_t status, errors;
1623
1624 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1625 rxs = &sc->sc_rxsoft[i];
1626
1627 DPRINTF(DGE_DEBUG_RX,
1628 ("%s: RX: checking descriptor %d\n",
1629 device_xname(&sc->sc_dev), i));
1630
1631 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1632
1633 status = sc->sc_rxdescs[i].dr_status;
1634 errors = sc->sc_rxdescs[i].dr_errors;
1635 len = le16toh(sc->sc_rxdescs[i].dr_len);
1636
1637 if ((status & RDESC_STS_DD) == 0) {
1638 /*
1639 * We have processed all of the receive descriptors.
1640 */
1641 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1642 break;
1643 }
1644
1645 if (__predict_false(sc->sc_rxdiscard)) {
1646 DPRINTF(DGE_DEBUG_RX,
1647 ("%s: RX: discarding contents of descriptor %d\n",
1648 device_xname(&sc->sc_dev), i));
1649 DGE_INIT_RXDESC(sc, i);
1650 if (status & RDESC_STS_EOP) {
1651 /* Reset our state. */
1652 DPRINTF(DGE_DEBUG_RX,
1653 ("%s: RX: resetting rxdiscard -> 0\n",
1654 device_xname(&sc->sc_dev)));
1655 sc->sc_rxdiscard = 0;
1656 }
1657 continue;
1658 }
1659
1660 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1661 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1662
1663 m = rxs->rxs_mbuf;
1664
1665 /*
1666 * Add a new receive buffer to the ring.
1667 */
1668 if (dge_add_rxbuf(sc, i) != 0) {
1669 /*
1670 * Failed, throw away what we've done so
1671 * far, and discard the rest of the packet.
1672 */
1673 ifp->if_ierrors++;
1674 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1675 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1676 DGE_INIT_RXDESC(sc, i);
1677 if ((status & RDESC_STS_EOP) == 0)
1678 sc->sc_rxdiscard = 1;
1679 if (sc->sc_rxhead != NULL)
1680 m_freem(sc->sc_rxhead);
1681 DGE_RXCHAIN_RESET(sc);
1682 DPRINTF(DGE_DEBUG_RX,
1683 ("%s: RX: Rx buffer allocation failed, "
1684 "dropping packet%s\n", device_xname(&sc->sc_dev),
1685 sc->sc_rxdiscard ? " (discard)" : ""));
1686 continue;
1687 }
1688 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1689
1690 DGE_RXCHAIN_LINK(sc, m);
1691
1692 m->m_len = len;
1693
1694 DPRINTF(DGE_DEBUG_RX,
1695 ("%s: RX: buffer at %p len %d\n",
1696 device_xname(&sc->sc_dev), m->m_data, len));
1697
1698 /*
1699 * If this is not the end of the packet, keep
1700 * looking.
1701 */
1702 if ((status & RDESC_STS_EOP) == 0) {
1703 sc->sc_rxlen += len;
1704 DPRINTF(DGE_DEBUG_RX,
1705 ("%s: RX: not yet EOP, rxlen -> %d\n",
1706 device_xname(&sc->sc_dev), sc->sc_rxlen));
1707 continue;
1708 }
1709
1710 /*
1711 * Okay, we have the entire packet now...
1712 */
1713 *sc->sc_rxtailp = NULL;
1714 m = sc->sc_rxhead;
1715 len += sc->sc_rxlen;
1716
1717 DGE_RXCHAIN_RESET(sc);
1718
1719 DPRINTF(DGE_DEBUG_RX,
1720 ("%s: RX: have entire packet, len -> %d\n",
1721 device_xname(&sc->sc_dev), len));
1722
1723 /*
1724 * If an error occurred, update stats and drop the packet.
1725 */
1726 if (errors &
1727 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1728 ifp->if_ierrors++;
1729 if (errors & RDESC_ERR_SE)
1730 printf("%s: symbol error\n",
1731 device_xname(&sc->sc_dev));
1732 else if (errors & RDESC_ERR_P)
1733 printf("%s: parity error\n",
1734 device_xname(&sc->sc_dev));
1735 else if (errors & RDESC_ERR_CE)
1736 printf("%s: CRC error\n",
1737 device_xname(&sc->sc_dev));
1738 m_freem(m);
1739 continue;
1740 }
1741
1742 /*
1743 * No errors. Receive the packet.
1744 */
1745 m->m_pkthdr.rcvif = ifp;
1746 m->m_pkthdr.len = len;
1747
1748 /*
1749 * Set up checksum info for this packet.
1750 */
1751 if (status & RDESC_STS_IPCS) {
1752 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1753 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1754 if (errors & RDESC_ERR_IPE)
1755 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1756 }
1757 if (status & RDESC_STS_TCPCS) {
1758 /*
1759 * Note: we don't know if this was TCP or UDP,
1760 * so we just set both bits, and expect the
1761 * upper layers to deal.
1762 */
1763 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1764 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1765 if (errors & RDESC_ERR_TCPE)
1766 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1767 }
1768
1769 ifp->if_ipackets++;
1770
1771 /* Pass this up to any BPF listeners. */
1772 bpf_mtap(ifp, m);
1773
1774 /* Pass it on. */
1775 (*ifp->if_input)(ifp, m);
1776 }
1777
1778 /* Update the receive pointer. */
1779 sc->sc_rxptr = i;
1780
1781 DPRINTF(DGE_DEBUG_RX,
1782 ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
1783 }
1784
1785 /*
1786 * dge_linkintr:
1787 *
1788 * Helper; handle link interrupts.
1789 */
1790 static void
1791 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1792 {
1793 uint32_t status;
1794
1795 if (icr & ICR_LSC) {
1796 status = CSR_READ(sc, DGE_STATUS);
1797 if (status & STATUS_LINKUP) {
1798 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1799 device_xname(&sc->sc_dev)));
1800 } else {
1801 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1802 device_xname(&sc->sc_dev)));
1803 }
1804 } else if (icr & ICR_RXSEQ) {
1805 DPRINTF(DGE_DEBUG_LINK,
1806 ("%s: LINK: Receive sequence error\n",
1807 device_xname(&sc->sc_dev)));
1808 }
1809 /* XXX - fix errata */
1810 }
1811
1812 /*
1813 * dge_reset:
1814 *
1815 * Reset the i82597 chip.
1816 */
1817 static void
1818 dge_reset(struct dge_softc *sc)
1819 {
1820 int i;
1821
1822 /*
1823 * Do a chip reset.
1824 */
1825 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1826
1827 delay(10000);
1828
1829 for (i = 0; i < 1000; i++) {
1830 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1831 break;
1832 delay(20);
1833 }
1834
1835 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1836 printf("%s: WARNING: reset failed to complete\n",
1837 device_xname(&sc->sc_dev));
1838 /*
1839 * Reset the EEPROM logic.
1840 * This will cause the chip to reread its default values,
1841 * which doesn't happen otherwise (errata).
1842 */
1843 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1844 delay(10000);
1845 }
1846
1847 /*
1848 * dge_init: [ifnet interface function]
1849 *
1850 * Initialize the interface. Must be called at splnet().
1851 */
1852 static int
1853 dge_init(struct ifnet *ifp)
1854 {
1855 struct dge_softc *sc = ifp->if_softc;
1856 struct dge_rxsoft *rxs;
1857 int i, error = 0;
1858 uint32_t reg;
1859
1860 /*
1861 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1862 * There is a small but measurable benefit to avoiding the adjusment
1863 * of the descriptor so that the headers are aligned, for normal mtu,
1864 * on such platforms. One possibility is that the DMA itself is
1865 * slightly more efficient if the front of the entire packet (instead
1866 * of the front of the headers) is aligned.
1867 *
1868 * Note we must always set align_tweak to 0 if we are using
1869 * jumbo frames.
1870 */
1871 #ifdef __NO_STRICT_ALIGNMENT
1872 sc->sc_align_tweak = 0;
1873 #else
1874 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1875 sc->sc_align_tweak = 0;
1876 else
1877 sc->sc_align_tweak = 2;
1878 #endif /* __NO_STRICT_ALIGNMENT */
1879
1880 /* Cancel any pending I/O. */
1881 dge_stop(ifp, 0);
1882
1883 /* Reset the chip to a known state. */
1884 dge_reset(sc);
1885
1886 /* Initialize the transmit descriptor ring. */
1887 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1888 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1889 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1890 sc->sc_txfree = DGE_NTXDESC;
1891 sc->sc_txnext = 0;
1892
1893 sc->sc_txctx_ipcs = 0xffffffff;
1894 sc->sc_txctx_tucs = 0xffffffff;
1895
1896 CSR_WRITE(sc, DGE_TDBAH, 0);
1897 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1898 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1899 CSR_WRITE(sc, DGE_TDH, 0);
1900 CSR_WRITE(sc, DGE_TDT, 0);
1901 CSR_WRITE(sc, DGE_TIDV, TIDV);
1902
1903 #if 0
1904 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1905 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1906 #endif
1907 CSR_WRITE(sc, DGE_RXDCTL,
1908 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1909 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1910 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1911
1912 /* Initialize the transmit job descriptors. */
1913 for (i = 0; i < DGE_TXQUEUELEN; i++)
1914 sc->sc_txsoft[i].txs_mbuf = NULL;
1915 sc->sc_txsfree = DGE_TXQUEUELEN;
1916 sc->sc_txsnext = 0;
1917 sc->sc_txsdirty = 0;
1918
1919 /*
1920 * Initialize the receive descriptor and receive job
1921 * descriptor rings.
1922 */
1923 CSR_WRITE(sc, DGE_RDBAH, 0);
1924 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1925 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1926 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1927 CSR_WRITE(sc, DGE_RDT, 0);
1928 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1929 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1930 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1931
1932 for (i = 0; i < DGE_NRXDESC; i++) {
1933 rxs = &sc->sc_rxsoft[i];
1934 if (rxs->rxs_mbuf == NULL) {
1935 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1936 printf("%s: unable to allocate or map rx "
1937 "buffer %d, error = %d\n",
1938 device_xname(&sc->sc_dev), i, error);
1939 /*
1940 * XXX Should attempt to run with fewer receive
1941 * XXX buffers instead of just failing.
1942 */
1943 dge_rxdrain(sc);
1944 goto out;
1945 }
1946 }
1947 DGE_INIT_RXDESC(sc, i);
1948 }
1949 sc->sc_rxptr = DGE_RXSPACE;
1950 sc->sc_rxdiscard = 0;
1951 DGE_RXCHAIN_RESET(sc);
1952
1953 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1954 sc->sc_ctrl0 |= CTRL0_JFE;
1955 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1956 }
1957
1958 /* Write the control registers. */
1959 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1960
1961 /*
1962 * Set up checksum offload parameters.
1963 */
1964 reg = CSR_READ(sc, DGE_RXCSUM);
1965 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1966 reg |= RXCSUM_IPOFL;
1967 else
1968 reg &= ~RXCSUM_IPOFL;
1969 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1970 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1971 else {
1972 reg &= ~RXCSUM_TUOFL;
1973 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1974 reg &= ~RXCSUM_IPOFL;
1975 }
1976 CSR_WRITE(sc, DGE_RXCSUM, reg);
1977
1978 /*
1979 * Set up the interrupt registers.
1980 */
1981 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1982 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1983 ICR_RXO | ICR_RXT0;
1984
1985 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1986
1987 /*
1988 * Set up the transmit control register.
1989 */
1990 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1991 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1992
1993 /*
1994 * Set up the receive control register; we actually program
1995 * the register when we set the receive filter. Use multicast
1996 * address offset type 0.
1997 */
1998 sc->sc_mchash_type = 0;
1999
2000 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
2001 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
2002
2003 #ifdef DGE_OFFBYONE_RXBUG
2004 sc->sc_rctl |= RCTL_BSIZE_16k;
2005 #else
2006 switch(MCLBYTES) {
2007 case 2048:
2008 sc->sc_rctl |= RCTL_BSIZE_2k;
2009 break;
2010 case 4096:
2011 sc->sc_rctl |= RCTL_BSIZE_4k;
2012 break;
2013 case 8192:
2014 sc->sc_rctl |= RCTL_BSIZE_8k;
2015 break;
2016 case 16384:
2017 sc->sc_rctl |= RCTL_BSIZE_16k;
2018 break;
2019 default:
2020 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2021 }
2022 #endif
2023
2024 /* Set the receive filter. */
2025 /* Also sets RCTL */
2026 dge_set_filter(sc);
2027
2028 /* ...all done! */
2029 ifp->if_flags |= IFF_RUNNING;
2030 ifp->if_flags &= ~IFF_OACTIVE;
2031
2032 out:
2033 if (error)
2034 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2035 return (error);
2036 }
2037
2038 /*
2039 * dge_rxdrain:
2040 *
2041 * Drain the receive queue.
2042 */
2043 static void
2044 dge_rxdrain(struct dge_softc *sc)
2045 {
2046 struct dge_rxsoft *rxs;
2047 int i;
2048
2049 for (i = 0; i < DGE_NRXDESC; i++) {
2050 rxs = &sc->sc_rxsoft[i];
2051 if (rxs->rxs_mbuf != NULL) {
2052 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2053 m_freem(rxs->rxs_mbuf);
2054 rxs->rxs_mbuf = NULL;
2055 }
2056 }
2057 }
2058
2059 /*
2060 * dge_stop: [ifnet interface function]
2061 *
2062 * Stop transmission on the interface.
2063 */
2064 static void
2065 dge_stop(struct ifnet *ifp, int disable)
2066 {
2067 struct dge_softc *sc = ifp->if_softc;
2068 struct dge_txsoft *txs;
2069 int i;
2070
2071 /* Stop the transmit and receive processes. */
2072 CSR_WRITE(sc, DGE_TCTL, 0);
2073 CSR_WRITE(sc, DGE_RCTL, 0);
2074
2075 /* Release any queued transmit buffers. */
2076 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2077 txs = &sc->sc_txsoft[i];
2078 if (txs->txs_mbuf != NULL) {
2079 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2080 m_freem(txs->txs_mbuf);
2081 txs->txs_mbuf = NULL;
2082 }
2083 }
2084
2085 /* Mark the interface as down and cancel the watchdog timer. */
2086 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2087 ifp->if_timer = 0;
2088
2089 if (disable)
2090 dge_rxdrain(sc);
2091 }
2092
2093 /*
2094 * dge_add_rxbuf:
2095 *
2096 * Add a receive buffer to the indiciated descriptor.
2097 */
2098 static int
2099 dge_add_rxbuf(struct dge_softc *sc, int idx)
2100 {
2101 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2102 struct mbuf *m;
2103 int error;
2104 #ifdef DGE_OFFBYONE_RXBUG
2105 void *buf;
2106 #endif
2107
2108 MGETHDR(m, M_DONTWAIT, MT_DATA);
2109 if (m == NULL)
2110 return (ENOBUFS);
2111
2112 #ifdef DGE_OFFBYONE_RXBUG
2113 if ((buf = dge_getbuf(sc)) == NULL)
2114 return ENOBUFS;
2115
2116 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2117 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2118 m->m_flags |= M_EXT_RW;
2119
2120 if (rxs->rxs_mbuf != NULL)
2121 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2122 rxs->rxs_mbuf = m;
2123
2124 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2125 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2126 #else
2127 MCLGET(m, M_DONTWAIT);
2128 if ((m->m_flags & M_EXT) == 0) {
2129 m_freem(m);
2130 return (ENOBUFS);
2131 }
2132
2133 if (rxs->rxs_mbuf != NULL)
2134 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2135
2136 rxs->rxs_mbuf = m;
2137
2138 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2139 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2140 BUS_DMA_READ|BUS_DMA_NOWAIT);
2141 #endif
2142 if (error) {
2143 printf("%s: unable to load rx DMA map %d, error = %d\n",
2144 device_xname(&sc->sc_dev), idx, error);
2145 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2146 }
2147 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2148 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2149
2150 return (0);
2151 }
2152
2153 /*
2154 * dge_set_ral:
2155 *
2156 * Set an entry in the receive address list.
2157 */
2158 static void
2159 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2160 {
2161 uint32_t ral_lo, ral_hi;
2162
2163 if (enaddr != NULL) {
2164 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2165 (enaddr[3] << 24);
2166 ral_hi = enaddr[4] | (enaddr[5] << 8);
2167 ral_hi |= RAH_AV;
2168 } else {
2169 ral_lo = 0;
2170 ral_hi = 0;
2171 }
2172 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2173 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2174 }
2175
2176 /*
2177 * dge_mchash:
2178 *
2179 * Compute the hash of the multicast address for the 4096-bit
2180 * multicast filter.
2181 */
2182 static uint32_t
2183 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2184 {
2185 static const int lo_shift[4] = { 4, 3, 2, 0 };
2186 static const int hi_shift[4] = { 4, 5, 6, 8 };
2187 uint32_t hash;
2188
2189 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2190 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2191
2192 return (hash & 0xfff);
2193 }
2194
2195 /*
2196 * dge_set_filter:
2197 *
2198 * Set up the receive filter.
2199 */
2200 static void
2201 dge_set_filter(struct dge_softc *sc)
2202 {
2203 struct ethercom *ec = &sc->sc_ethercom;
2204 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2205 struct ether_multi *enm;
2206 struct ether_multistep step;
2207 uint32_t hash, reg, bit;
2208 int i;
2209
2210 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2211
2212 if (ifp->if_flags & IFF_BROADCAST)
2213 sc->sc_rctl |= RCTL_BAM;
2214 if (ifp->if_flags & IFF_PROMISC) {
2215 sc->sc_rctl |= RCTL_UPE;
2216 goto allmulti;
2217 }
2218
2219 /*
2220 * Set the station address in the first RAL slot, and
2221 * clear the remaining slots.
2222 */
2223 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2224 for (i = 1; i < RA_TABSIZE; i++)
2225 dge_set_ral(sc, NULL, i);
2226
2227 /* Clear out the multicast table. */
2228 for (i = 0; i < MC_TABSIZE; i++)
2229 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2230
2231 ETHER_FIRST_MULTI(step, ec, enm);
2232 while (enm != NULL) {
2233 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2234 /*
2235 * We must listen to a range of multicast addresses.
2236 * For now, just accept all multicasts, rather than
2237 * trying to set only those filter bits needed to match
2238 * the range. (At this time, the only use of address
2239 * ranges is for IP multicast routing, for which the
2240 * range is big enough to require all bits set.)
2241 */
2242 goto allmulti;
2243 }
2244
2245 hash = dge_mchash(sc, enm->enm_addrlo);
2246
2247 reg = (hash >> 5) & 0x7f;
2248 bit = hash & 0x1f;
2249
2250 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2251 hash |= 1U << bit;
2252
2253 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2254
2255 ETHER_NEXT_MULTI(step, enm);
2256 }
2257
2258 ifp->if_flags &= ~IFF_ALLMULTI;
2259 goto setit;
2260
2261 allmulti:
2262 ifp->if_flags |= IFF_ALLMULTI;
2263 sc->sc_rctl |= RCTL_MPE;
2264
2265 setit:
2266 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2267 }
2268
2269 /*
2270 * Read in the EEPROM info and verify checksum.
2271 */
2272 int
2273 dge_read_eeprom(struct dge_softc *sc)
2274 {
2275 uint16_t cksum;
2276 int i;
2277
2278 cksum = 0;
2279 for (i = 0; i < EEPROM_SIZE; i++) {
2280 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2281 cksum += sc->sc_eeprom[i];
2282 }
2283 return cksum != EEPROM_CKSUM;
2284 }
2285
2286
2287 /*
2288 * Read a 16-bit word from address addr in the serial EEPROM.
2289 */
2290 uint16_t
2291 dge_eeprom_word(struct dge_softc *sc, int addr)
2292 {
2293 uint32_t reg;
2294 uint16_t rval = 0;
2295 int i;
2296
2297 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2298
2299 /* Lower clock pulse (and data in to chip) */
2300 CSR_WRITE(sc, DGE_EECD, reg);
2301 /* Select chip */
2302 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2303
2304 /* Send read command */
2305 dge_eeprom_clockout(sc, 1);
2306 dge_eeprom_clockout(sc, 1);
2307 dge_eeprom_clockout(sc, 0);
2308
2309 /* Send address */
2310 for (i = 5; i >= 0; i--)
2311 dge_eeprom_clockout(sc, (addr >> i) & 1);
2312
2313 /* Read data */
2314 for (i = 0; i < 16; i++) {
2315 rval <<= 1;
2316 rval |= dge_eeprom_clockin(sc);
2317 }
2318
2319 /* Deselect chip */
2320 CSR_WRITE(sc, DGE_EECD, reg);
2321
2322 return rval;
2323 }
2324
2325 /*
2326 * Clock out a single bit to the EEPROM.
2327 */
2328 void
2329 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2330 {
2331 int reg;
2332
2333 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2334 if (bit)
2335 reg |= EECD_DI;
2336
2337 CSR_WRITE(sc, DGE_EECD, reg);
2338 delay(2);
2339 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2340 delay(2);
2341 CSR_WRITE(sc, DGE_EECD, reg);
2342 delay(2);
2343 }
2344
2345 /*
2346 * Clock in a single bit from EEPROM.
2347 */
2348 int
2349 dge_eeprom_clockin(struct dge_softc *sc)
2350 {
2351 int reg, rv;
2352
2353 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2354
2355 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2356 delay(2);
2357 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2358 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2359 delay(2);
2360
2361 return rv;
2362 }
2363
2364 static void
2365 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2366 {
2367 struct dge_softc *sc = ifp->if_softc;
2368
2369 ifmr->ifm_status = IFM_AVALID;
2370 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2371
2372 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2373 ifmr->ifm_status |= IFM_ACTIVE;
2374 }
2375
2376 static inline int
2377 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2378 {
2379 int i, mdic;
2380
2381 CSR_WRITE(sc, DGE_MDIO,
2382 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2383 for (i = 0; i < 10; i++) {
2384 delay(10);
2385 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2386 break;
2387 }
2388 return mdic;
2389 }
2390
2391
2392 static void
2393 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
2394 {
2395 struct dge_softc *sc = device_private(self);
2396 int mdic;
2397
2398 CSR_WRITE(sc, DGE_MDIRW, val);
2399 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2400 printf("%s: address cycle timeout; phy %d reg %d\n",
2401 device_xname(&sc->sc_dev), phy, reg);
2402 return;
2403 }
2404 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2405 printf("%s: read cycle timeout; phy %d reg %d\n",
2406 device_xname(&sc->sc_dev), phy, reg);
2407 return;
2408 }
2409 }
2410
2411 static void
2412 dge_xgmii_reset(struct dge_softc *sc)
2413 {
2414 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2415 }
2416
2417 static int
2418 dge_xgmii_mediachange(struct ifnet *ifp)
2419 {
2420 return 0;
2421 }
2422