if_dge.c revision 1.34 1 /* $NetBSD: if_dge.c,v 1.34 2012/02/02 19:43:05 tls Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.34 2012/02/02 19:43:05 tls Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <sys/rnd.h>
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #include <net/bpf.h>
107
108 #include <netinet/in.h> /* XXX for struct ip */
109 #include <netinet/in_systm.h> /* XXX for struct ip */
110 #include <netinet/ip.h> /* XXX for struct ip */
111 #include <netinet/tcp.h> /* XXX for struct tcphdr */
112
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115 #include <machine/endian.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/mii_bitbang.h>
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/pci/if_dgereg.h>
126
127 /*
128 * The receive engine may sometimes become off-by-one when writing back
129 * chained descriptors. Avoid this by allocating a large chunk of
130 * memory and use if instead (to avoid chained descriptors).
131 * This only happens with chained descriptors under heavy load.
132 */
133 #define DGE_OFFBYONE_RXBUG
134
135 #define DGE_EVENT_COUNTERS
136 #define DGE_DEBUG
137
138 #ifdef DGE_DEBUG
139 #define DGE_DEBUG_LINK 0x01
140 #define DGE_DEBUG_TX 0x02
141 #define DGE_DEBUG_RX 0x04
142 #define DGE_DEBUG_CKSUM 0x08
143 int dge_debug = 0;
144
145 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
146 #else
147 #define DPRINTF(x, y) /* nothing */
148 #endif /* DGE_DEBUG */
149
150 /*
151 * Transmit descriptor list size. We allow up to 100 DMA segments per
152 * packet (Intel reports of jumbo frame packets with as
153 * many as 80 DMA segments when using 16k buffers).
154 */
155 #define DGE_NTXSEGS 100
156 #define DGE_IFQUEUELEN 20000
157 #define DGE_TXQUEUELEN 2048
158 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
159 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
160 #define DGE_NTXDESC 1024
161 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
162 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
163 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
164
165 /*
166 * Receive descriptor list size.
167 * Packet is of size MCLBYTES, and for jumbo packets buffers may
168 * be chained. Due to the nature of the card (high-speed), keep this
169 * ring large. With 2k buffers the ring can store 400 jumbo packets,
170 * which at full speed will be received in just under 3ms.
171 */
172 #define DGE_NRXDESC 2048
173 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
174 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
175 /*
176 * # of descriptors between head and written descriptors.
177 * This is to work-around two erratas.
178 */
179 #define DGE_RXSPACE 10
180 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
181 /*
182 * Receive descriptor fetch threshholds. These are values recommended
183 * by Intel, do not touch them unless you know what you are doing.
184 */
185 #define RXDCTL_PTHRESH_VAL 128
186 #define RXDCTL_HTHRESH_VAL 16
187 #define RXDCTL_WTHRESH_VAL 16
188
189
190 /*
191 * Tweakable parameters; default values.
192 */
193 #define FCRTH 0x30000 /* Send XOFF water mark */
194 #define FCRTL 0x28000 /* Send XON water mark */
195 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
196 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
197
198 /*
199 * Control structures are DMA'd to the i82597 chip. We allocate them in
200 * a single clump that maps to a single DMA segment to make serveral things
201 * easier.
202 */
203 struct dge_control_data {
204 /*
205 * The transmit descriptors.
206 */
207 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
208
209 /*
210 * The receive descriptors.
211 */
212 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
213 };
214
215 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
216 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
217 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
218
219 /*
220 * The DGE interface have a higher max MTU size than normal jumbo frames.
221 */
222 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
223
224 /*
225 * Software state for transmit jobs.
226 */
227 struct dge_txsoft {
228 struct mbuf *txs_mbuf; /* head of our mbuf chain */
229 bus_dmamap_t txs_dmamap; /* our DMA map */
230 int txs_firstdesc; /* first descriptor in packet */
231 int txs_lastdesc; /* last descriptor in packet */
232 int txs_ndesc; /* # of descriptors used */
233 };
234
235 /*
236 * Software state for receive buffers. Each descriptor gets a
237 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
238 * more than one buffer, we chain them together.
239 */
240 struct dge_rxsoft {
241 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
242 bus_dmamap_t rxs_dmamap; /* our DMA map */
243 };
244
245 /*
246 * Software state per device.
247 */
248 struct dge_softc {
249 struct device sc_dev; /* generic device information */
250 bus_space_tag_t sc_st; /* bus space tag */
251 bus_space_handle_t sc_sh; /* bus space handle */
252 bus_dma_tag_t sc_dmat; /* bus DMA tag */
253 struct ethercom sc_ethercom; /* ethernet common data */
254
255 int sc_flags; /* flags; see below */
256 int sc_bus_speed; /* PCI/PCIX bus speed */
257 int sc_pcix_offset; /* PCIX capability register offset */
258
259 pci_chipset_tag_t sc_pc;
260 pcitag_t sc_pt;
261 int sc_mmrbc; /* Max PCIX memory read byte count */
262
263 void *sc_ih; /* interrupt cookie */
264
265 struct ifmedia sc_media;
266
267 bus_dmamap_t sc_cddmamap; /* control data DMA map */
268 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
269
270 int sc_align_tweak;
271
272 /*
273 * Software state for the transmit and receive descriptors.
274 */
275 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
276 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
277
278 /*
279 * Control data structures.
280 */
281 struct dge_control_data *sc_control_data;
282 #define sc_txdescs sc_control_data->wcd_txdescs
283 #define sc_rxdescs sc_control_data->wcd_rxdescs
284
285 #ifdef DGE_EVENT_COUNTERS
286 /* Event counters. */
287 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
288 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
289 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
290 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
291 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
292 struct evcnt sc_ev_rxintr; /* Rx interrupts */
293 struct evcnt sc_ev_linkintr; /* Link interrupts */
294
295 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
296 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
297 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
298 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
299
300 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
301 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
302 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
303
304 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
305 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
306 #endif /* DGE_EVENT_COUNTERS */
307
308 int sc_txfree; /* number of free Tx descriptors */
309 int sc_txnext; /* next ready Tx descriptor */
310
311 int sc_txsfree; /* number of free Tx jobs */
312 int sc_txsnext; /* next free Tx job */
313 int sc_txsdirty; /* dirty Tx jobs */
314
315 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
316 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
317
318 int sc_rxptr; /* next ready Rx descriptor/queue ent */
319 int sc_rxdiscard;
320 int sc_rxlen;
321 struct mbuf *sc_rxhead;
322 struct mbuf *sc_rxtail;
323 struct mbuf **sc_rxtailp;
324
325 uint32_t sc_ctrl0; /* prototype CTRL0 register */
326 uint32_t sc_icr; /* prototype interrupt bits */
327 uint32_t sc_tctl; /* prototype TCTL register */
328 uint32_t sc_rctl; /* prototype RCTL register */
329
330 int sc_mchash_type; /* multicast filter offset */
331
332 uint16_t sc_eeprom[EEPROM_SIZE];
333
334 krndsource_t rnd_source; /* random source */
335 #ifdef DGE_OFFBYONE_RXBUG
336 void *sc_bugbuf;
337 SLIST_HEAD(, rxbugentry) sc_buglist;
338 bus_dmamap_t sc_bugmap;
339 struct rxbugentry *sc_entry;
340 #endif
341 };
342
343 #define DGE_RXCHAIN_RESET(sc) \
344 do { \
345 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
346 *(sc)->sc_rxtailp = NULL; \
347 (sc)->sc_rxlen = 0; \
348 } while (/*CONSTCOND*/0)
349
350 #define DGE_RXCHAIN_LINK(sc, m) \
351 do { \
352 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
353 (sc)->sc_rxtailp = &(m)->m_next; \
354 } while (/*CONSTCOND*/0)
355
356 /* sc_flags */
357 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
358 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
359
360 #ifdef DGE_EVENT_COUNTERS
361 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
362 #else
363 #define DGE_EVCNT_INCR(ev) /* nothing */
364 #endif
365
366 #define CSR_READ(sc, reg) \
367 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
368 #define CSR_WRITE(sc, reg, val) \
369 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
370
371 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
372 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
373
374 #define DGE_CDTXSYNC(sc, x, n, ops) \
375 do { \
376 int __x, __n; \
377 \
378 __x = (x); \
379 __n = (n); \
380 \
381 /* If it will wrap around, sync to the end of the ring. */ \
382 if ((__x + __n) > DGE_NTXDESC) { \
383 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
384 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
385 (DGE_NTXDESC - __x), (ops)); \
386 __n -= (DGE_NTXDESC - __x); \
387 __x = 0; \
388 } \
389 \
390 /* Now sync whatever is left. */ \
391 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
392 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
393 } while (/*CONSTCOND*/0)
394
395 #define DGE_CDRXSYNC(sc, x, ops) \
396 do { \
397 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
398 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
399 } while (/*CONSTCOND*/0)
400
401 #ifdef DGE_OFFBYONE_RXBUG
402 #define DGE_INIT_RXDESC(sc, x) \
403 do { \
404 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
405 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
406 struct mbuf *__m = __rxs->rxs_mbuf; \
407 \
408 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
409 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
410 __rxd->dr_baddrh = 0; \
411 __rxd->dr_len = 0; \
412 __rxd->dr_cksum = 0; \
413 __rxd->dr_status = 0; \
414 __rxd->dr_errors = 0; \
415 __rxd->dr_special = 0; \
416 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
417 \
418 CSR_WRITE((sc), DGE_RDT, (x)); \
419 } while (/*CONSTCOND*/0)
420 #else
421 #define DGE_INIT_RXDESC(sc, x) \
422 do { \
423 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
424 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
425 struct mbuf *__m = __rxs->rxs_mbuf; \
426 \
427 /* \
428 * Note: We scoot the packet forward 2 bytes in the buffer \
429 * so that the payload after the Ethernet header is aligned \
430 * to a 4-byte boundary. \
431 * \
432 * XXX BRAINDAMAGE ALERT! \
433 * The stupid chip uses the same size for every buffer, which \
434 * is set in the Receive Control register. We are using the 2K \
435 * size option, but what we REALLY want is (2K - 2)! For this \
436 * reason, we can't "scoot" packets longer than the standard \
437 * Ethernet MTU. On strict-alignment platforms, if the total \
438 * size exceeds (2K - 2) we set align_tweak to 0 and let \
439 * the upper layer copy the headers. \
440 */ \
441 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
442 \
443 __rxd->dr_baddrl = \
444 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
445 (sc)->sc_align_tweak); \
446 __rxd->dr_baddrh = 0; \
447 __rxd->dr_len = 0; \
448 __rxd->dr_cksum = 0; \
449 __rxd->dr_status = 0; \
450 __rxd->dr_errors = 0; \
451 __rxd->dr_special = 0; \
452 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
453 \
454 CSR_WRITE((sc), DGE_RDT, (x)); \
455 } while (/*CONSTCOND*/0)
456 #endif
457
458 #ifdef DGE_OFFBYONE_RXBUG
459 /*
460 * Allocation constants. Much memory may be used for this.
461 */
462 #ifndef DGE_BUFFER_SIZE
463 #define DGE_BUFFER_SIZE DGE_MAX_MTU
464 #endif
465 #define DGE_NBUFFERS (4*DGE_NRXDESC)
466 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
467
468 struct rxbugentry {
469 SLIST_ENTRY(rxbugentry) rb_entry;
470 int rb_slot;
471 };
472
473 static int
474 dge_alloc_rcvmem(struct dge_softc *sc)
475 {
476 char *ptr, *kva;
477 bus_dma_segment_t seg;
478 int i, rseg, state, error;
479 struct rxbugentry *entry;
480
481 state = error = 0;
482
483 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
484 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
485 aprint_error_dev(&sc->sc_dev, "can't alloc rx buffers\n");
486 return ENOBUFS;
487 }
488
489 state = 1;
490 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
491 BUS_DMA_NOWAIT)) {
492 aprint_error_dev(&sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
493 (int)DGE_RXMEM);
494 error = ENOBUFS;
495 goto out;
496 }
497
498 state = 2;
499 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
500 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
501 aprint_error_dev(&sc->sc_dev, "can't create DMA map\n");
502 error = ENOBUFS;
503 goto out;
504 }
505
506 state = 3;
507 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
508 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
509 aprint_error_dev(&sc->sc_dev, "can't load DMA map\n");
510 error = ENOBUFS;
511 goto out;
512 }
513
514 state = 4;
515 sc->sc_bugbuf = (void *)kva;
516 SLIST_INIT(&sc->sc_buglist);
517
518 /*
519 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
520 * in an array.
521 */
522 ptr = sc->sc_bugbuf;
523 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
524 M_DEVBUF, M_NOWAIT)) == NULL) {
525 error = ENOBUFS;
526 goto out;
527 }
528 sc->sc_entry = entry;
529 for (i = 0; i < DGE_NBUFFERS; i++) {
530 entry[i].rb_slot = i;
531 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
532 }
533 out:
534 if (error != 0) {
535 switch (state) {
536 case 4:
537 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
538 case 3:
539 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
540 case 2:
541 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
542 case 1:
543 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
544 break;
545 default:
546 break;
547 }
548 }
549
550 return error;
551 }
552
553 /*
554 * Allocate a jumbo buffer.
555 */
556 static void *
557 dge_getbuf(struct dge_softc *sc)
558 {
559 struct rxbugentry *entry;
560
561 entry = SLIST_FIRST(&sc->sc_buglist);
562
563 if (entry == NULL) {
564 printf("%s: no free RX buffers\n", device_xname(&sc->sc_dev));
565 return(NULL);
566 }
567
568 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
569 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
570 }
571
572 /*
573 * Release a jumbo buffer.
574 */
575 static void
576 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
577 {
578 struct rxbugentry *entry;
579 struct dge_softc *sc;
580 int i, s;
581
582 /* Extract the softc struct pointer. */
583 sc = (struct dge_softc *)arg;
584
585 if (sc == NULL)
586 panic("dge_freebuf: can't find softc pointer!");
587
588 /* calculate the slot this buffer belongs to */
589
590 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
591
592 if ((i < 0) || (i >= DGE_NBUFFERS))
593 panic("dge_freebuf: asked to free buffer %d!", i);
594
595 s = splvm();
596 entry = sc->sc_entry + i;
597 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
598
599 if (__predict_true(m != NULL))
600 pool_cache_put(mb_cache, m);
601 splx(s);
602 }
603 #endif
604
605 static void dge_start(struct ifnet *);
606 static void dge_watchdog(struct ifnet *);
607 static int dge_ioctl(struct ifnet *, u_long, void *);
608 static int dge_init(struct ifnet *);
609 static void dge_stop(struct ifnet *, int);
610
611 static bool dge_shutdown(device_t, int);
612
613 static void dge_reset(struct dge_softc *);
614 static void dge_rxdrain(struct dge_softc *);
615 static int dge_add_rxbuf(struct dge_softc *, int);
616
617 static void dge_set_filter(struct dge_softc *);
618
619 static int dge_intr(void *);
620 static void dge_txintr(struct dge_softc *);
621 static void dge_rxintr(struct dge_softc *);
622 static void dge_linkintr(struct dge_softc *, uint32_t);
623
624 static int dge_match(device_t, cfdata_t, void *);
625 static void dge_attach(device_t, device_t, void *);
626
627 static int dge_read_eeprom(struct dge_softc *sc);
628 static int dge_eeprom_clockin(struct dge_softc *sc);
629 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
630 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
631 static int dge_xgmii_mediachange(struct ifnet *);
632 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
633 static void dge_xgmii_reset(struct dge_softc *);
634 static void dge_xgmii_writereg(device_t, int, int, int);
635
636
637 CFATTACH_DECL(dge, sizeof(struct dge_softc),
638 dge_match, dge_attach, NULL, NULL);
639
640 #ifdef DGE_EVENT_COUNTERS
641 #if DGE_NTXSEGS > 100
642 #error Update dge_txseg_evcnt_names
643 #endif
644 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
645 #endif /* DGE_EVENT_COUNTERS */
646
647 static int
648 dge_match(device_t parent, cfdata_t cf, void *aux)
649 {
650 struct pci_attach_args *pa = aux;
651
652 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
653 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
654 return (1);
655
656 return (0);
657 }
658
659 static void
660 dge_attach(device_t parent, device_t self, void *aux)
661 {
662 struct dge_softc *sc = device_private(self);
663 struct pci_attach_args *pa = aux;
664 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
665 pci_chipset_tag_t pc = pa->pa_pc;
666 pci_intr_handle_t ih;
667 const char *intrstr = NULL;
668 bus_dma_segment_t seg;
669 int i, rseg, error;
670 uint8_t enaddr[ETHER_ADDR_LEN];
671 pcireg_t preg, memtype;
672 uint32_t reg;
673
674 sc->sc_dmat = pa->pa_dmat;
675 sc->sc_pc = pa->pa_pc;
676 sc->sc_pt = pa->pa_tag;
677
678 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
679 "Intel i82597EX 10GbE-LR Ethernet", 1);
680
681 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
682 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
683 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
684 aprint_error_dev(&sc->sc_dev, "unable to map device registers\n");
685 return;
686 }
687
688 /* Enable bus mastering */
689 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
690 preg |= PCI_COMMAND_MASTER_ENABLE;
691 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
692
693 /*
694 * Map and establish our interrupt.
695 */
696 if (pci_intr_map(pa, &ih)) {
697 aprint_error_dev(&sc->sc_dev, "unable to map interrupt\n");
698 return;
699 }
700 intrstr = pci_intr_string(pc, ih);
701 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
702 if (sc->sc_ih == NULL) {
703 aprint_error_dev(&sc->sc_dev, "unable to establish interrupt");
704 if (intrstr != NULL)
705 aprint_error(" at %s", intrstr);
706 aprint_error("\n");
707 return;
708 }
709 aprint_normal_dev(&sc->sc_dev, "interrupting at %s\n", intrstr);
710
711 /*
712 * Determine a few things about the bus we're connected to.
713 */
714 reg = CSR_READ(sc, DGE_STATUS);
715 if (reg & STATUS_BUS64)
716 sc->sc_flags |= DGE_F_BUS64;
717
718 sc->sc_flags |= DGE_F_PCIX;
719 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
720 PCI_CAP_PCIX,
721 &sc->sc_pcix_offset, NULL) == 0)
722 aprint_error_dev(&sc->sc_dev, "unable to find PCIX "
723 "capability\n");
724
725 if (sc->sc_flags & DGE_F_PCIX) {
726 switch (reg & STATUS_PCIX_MSK) {
727 case STATUS_PCIX_66:
728 sc->sc_bus_speed = 66;
729 break;
730 case STATUS_PCIX_100:
731 sc->sc_bus_speed = 100;
732 break;
733 case STATUS_PCIX_133:
734 sc->sc_bus_speed = 133;
735 break;
736 default:
737 aprint_error_dev(&sc->sc_dev,
738 "unknown PCIXSPD %d; assuming 66MHz\n",
739 reg & STATUS_PCIX_MSK);
740 sc->sc_bus_speed = 66;
741 }
742 } else
743 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
744 aprint_verbose_dev(&sc->sc_dev, "%d-bit %dMHz %s bus\n",
745 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
746 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
747
748 /*
749 * Allocate the control data structures, and create and load the
750 * DMA map for it.
751 */
752 if ((error = bus_dmamem_alloc(sc->sc_dmat,
753 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
754 0)) != 0) {
755 aprint_error_dev(&sc->sc_dev,
756 "unable to allocate control data, error = %d\n",
757 error);
758 goto fail_0;
759 }
760
761 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
762 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
763 0)) != 0) {
764 aprint_error_dev(&sc->sc_dev, "unable to map control data, error = %d\n",
765 error);
766 goto fail_1;
767 }
768
769 if ((error = bus_dmamap_create(sc->sc_dmat,
770 sizeof(struct dge_control_data), 1,
771 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
772 aprint_error_dev(&sc->sc_dev, "unable to create control data DMA map, "
773 "error = %d\n", error);
774 goto fail_2;
775 }
776
777 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
778 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
779 0)) != 0) {
780 aprint_error_dev(&sc->sc_dev,
781 "unable to load control data DMA map, error = %d\n",
782 error);
783 goto fail_3;
784 }
785
786 #ifdef DGE_OFFBYONE_RXBUG
787 if (dge_alloc_rcvmem(sc) != 0)
788 return; /* Already complained */
789 #endif
790 /*
791 * Create the transmit buffer DMA maps.
792 */
793 for (i = 0; i < DGE_TXQUEUELEN; i++) {
794 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
795 DGE_NTXSEGS, MCLBYTES, 0, 0,
796 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
797 aprint_error_dev(&sc->sc_dev, "unable to create Tx DMA map %d, "
798 "error = %d\n", i, error);
799 goto fail_4;
800 }
801 }
802
803 /*
804 * Create the receive buffer DMA maps.
805 */
806 for (i = 0; i < DGE_NRXDESC; i++) {
807 #ifdef DGE_OFFBYONE_RXBUG
808 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
809 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
810 #else
811 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
812 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
813 #endif
814 aprint_error_dev(&sc->sc_dev, "unable to create Rx DMA map %d, "
815 "error = %d\n", i, error);
816 goto fail_5;
817 }
818 sc->sc_rxsoft[i].rxs_mbuf = NULL;
819 }
820
821 /*
822 * Set bits in ctrl0 register.
823 * Should get the software defined pins out of EEPROM?
824 */
825 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
826 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
827 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
828
829 /*
830 * Reset the chip to a known state.
831 */
832 dge_reset(sc);
833
834 /*
835 * Reset the PHY.
836 */
837 dge_xgmii_reset(sc);
838
839 /*
840 * Read in EEPROM data.
841 */
842 if (dge_read_eeprom(sc)) {
843 aprint_error_dev(&sc->sc_dev, "couldn't read EEPROM\n");
844 return;
845 }
846
847 /*
848 * Get the ethernet address.
849 */
850 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
851 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
852 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
853 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
854 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
855 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
856
857 aprint_normal_dev(&sc->sc_dev, "Ethernet address %s\n",
858 ether_sprintf(enaddr));
859
860 /*
861 * Setup media stuff.
862 */
863 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
864 dge_xgmii_mediastatus);
865 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
866 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
867
868 ifp = &sc->sc_ethercom.ec_if;
869 strlcpy(ifp->if_xname, device_xname(&sc->sc_dev), IFNAMSIZ);
870 ifp->if_softc = sc;
871 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
872 ifp->if_ioctl = dge_ioctl;
873 ifp->if_start = dge_start;
874 ifp->if_watchdog = dge_watchdog;
875 ifp->if_init = dge_init;
876 ifp->if_stop = dge_stop;
877 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
878 IFQ_SET_READY(&ifp->if_snd);
879
880 sc->sc_ethercom.ec_capabilities |=
881 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
882
883 /*
884 * We can perform TCPv4 and UDPv4 checkums in-bound.
885 */
886 ifp->if_capabilities |=
887 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
888 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
889 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
890
891 /*
892 * Attach the interface.
893 */
894 if_attach(ifp);
895 ether_ifattach(ifp, enaddr);
896 rnd_attach_source(&sc->rnd_source, device_xname(&sc->sc_dev),
897 RND_TYPE_NET, 0);
898
899 #ifdef DGE_EVENT_COUNTERS
900 /* Fix segment event naming */
901 if (dge_txseg_evcnt_names == NULL) {
902 dge_txseg_evcnt_names =
903 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
904 for (i = 0; i < DGE_NTXSEGS; i++)
905 snprintf((*dge_txseg_evcnt_names)[i],
906 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
907 }
908
909 /* Attach event counters. */
910 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
911 NULL, device_xname(&sc->sc_dev), "txsstall");
912 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
913 NULL, device_xname(&sc->sc_dev), "txdstall");
914 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
915 NULL, device_xname(&sc->sc_dev), "txforceintr");
916 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
917 NULL, device_xname(&sc->sc_dev), "txdw");
918 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
919 NULL, device_xname(&sc->sc_dev), "txqe");
920 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
921 NULL, device_xname(&sc->sc_dev), "rxintr");
922 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
923 NULL, device_xname(&sc->sc_dev), "linkintr");
924
925 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
926 NULL, device_xname(&sc->sc_dev), "rxipsum");
927 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
928 NULL, device_xname(&sc->sc_dev), "rxtusum");
929 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
930 NULL, device_xname(&sc->sc_dev), "txipsum");
931 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
932 NULL, device_xname(&sc->sc_dev), "txtusum");
933
934 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
935 NULL, device_xname(&sc->sc_dev), "txctx init");
936 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
937 NULL, device_xname(&sc->sc_dev), "txctx hit");
938 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
939 NULL, device_xname(&sc->sc_dev), "txctx miss");
940
941 for (i = 0; i < DGE_NTXSEGS; i++)
942 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
943 NULL, device_xname(&sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
944
945 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
946 NULL, device_xname(&sc->sc_dev), "txdrop");
947
948 #endif /* DGE_EVENT_COUNTERS */
949
950 /*
951 * Make sure the interface is shutdown during reboot.
952 */
953 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
954 pmf_class_network_register(self, ifp);
955 else
956 aprint_error_dev(self, "couldn't establish power handler\n");
957
958 return;
959
960 /*
961 * Free any resources we've allocated during the failed attach
962 * attempt. Do this in reverse order and fall through.
963 */
964 fail_5:
965 for (i = 0; i < DGE_NRXDESC; i++) {
966 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
967 bus_dmamap_destroy(sc->sc_dmat,
968 sc->sc_rxsoft[i].rxs_dmamap);
969 }
970 fail_4:
971 for (i = 0; i < DGE_TXQUEUELEN; i++) {
972 if (sc->sc_txsoft[i].txs_dmamap != NULL)
973 bus_dmamap_destroy(sc->sc_dmat,
974 sc->sc_txsoft[i].txs_dmamap);
975 }
976 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
977 fail_3:
978 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
979 fail_2:
980 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
981 sizeof(struct dge_control_data));
982 fail_1:
983 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
984 fail_0:
985 return;
986 }
987
988 /*
989 * dge_shutdown:
990 *
991 * Make sure the interface is stopped at reboot time.
992 */
993 static bool
994 dge_shutdown(device_t self, int howto)
995 {
996 struct dge_softc *sc;
997
998 sc = device_private(self);
999 dge_stop(&sc->sc_ethercom.ec_if, 1);
1000
1001 return true;
1002 }
1003
1004 /*
1005 * dge_tx_cksum:
1006 *
1007 * Set up TCP/IP checksumming parameters for the
1008 * specified packet.
1009 */
1010 static int
1011 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1012 {
1013 struct mbuf *m0 = txs->txs_mbuf;
1014 struct dge_ctdes *t;
1015 uint32_t ipcs, tucs;
1016 struct ether_header *eh;
1017 int offset, iphl;
1018 uint8_t fields = 0;
1019
1020 /*
1021 * XXX It would be nice if the mbuf pkthdr had offset
1022 * fields for the protocol headers.
1023 */
1024
1025 eh = mtod(m0, struct ether_header *);
1026 switch (htons(eh->ether_type)) {
1027 case ETHERTYPE_IP:
1028 offset = ETHER_HDR_LEN;
1029 break;
1030
1031 case ETHERTYPE_VLAN:
1032 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1033 break;
1034
1035 default:
1036 /*
1037 * Don't support this protocol or encapsulation.
1038 */
1039 *fieldsp = 0;
1040 return (0);
1041 }
1042
1043 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1044
1045 /*
1046 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1047 * offload feature, if we load the context descriptor, we
1048 * MUST provide valid values for IPCSS and TUCSS fields.
1049 */
1050
1051 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1052 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1053 fields |= TDESC_POPTS_IXSM;
1054 ipcs = DGE_TCPIP_IPCSS(offset) |
1055 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1056 DGE_TCPIP_IPCSE(offset + iphl - 1);
1057 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1058 /* Use the cached value. */
1059 ipcs = sc->sc_txctx_ipcs;
1060 } else {
1061 /* Just initialize it to the likely value anyway. */
1062 ipcs = DGE_TCPIP_IPCSS(offset) |
1063 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1064 DGE_TCPIP_IPCSE(offset + iphl - 1);
1065 }
1066 DPRINTF(DGE_DEBUG_CKSUM,
1067 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1068 device_xname(&sc->sc_dev), offset, ipcs));
1069
1070 offset += iphl;
1071
1072 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1073 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1074 fields |= TDESC_POPTS_TXSM;
1075 tucs = DGE_TCPIP_TUCSS(offset) |
1076 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1077 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1078 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1079 /* Use the cached value. */
1080 tucs = sc->sc_txctx_tucs;
1081 } else {
1082 /* Just initialize it to a valid TCP context. */
1083 tucs = DGE_TCPIP_TUCSS(offset) |
1084 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1085 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1086 }
1087
1088 DPRINTF(DGE_DEBUG_CKSUM,
1089 ("%s: CKSUM: offset %d tucs 0x%x\n",
1090 device_xname(&sc->sc_dev), offset, tucs));
1091
1092 if (sc->sc_txctx_ipcs == ipcs &&
1093 sc->sc_txctx_tucs == tucs) {
1094 /* Cached context is fine. */
1095 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1096 } else {
1097 /* Fill in the context descriptor. */
1098 #ifdef DGE_EVENT_COUNTERS
1099 if (sc->sc_txctx_ipcs == 0xffffffff &&
1100 sc->sc_txctx_tucs == 0xffffffff)
1101 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1102 else
1103 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1104 #endif
1105 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1106 t->dc_tcpip_ipcs = htole32(ipcs);
1107 t->dc_tcpip_tucs = htole32(tucs);
1108 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1109 t->dc_tcpip_seg = 0;
1110 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1111
1112 sc->sc_txctx_ipcs = ipcs;
1113 sc->sc_txctx_tucs = tucs;
1114
1115 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1116 txs->txs_ndesc++;
1117 }
1118
1119 *fieldsp = fields;
1120
1121 return (0);
1122 }
1123
1124 /*
1125 * dge_start: [ifnet interface function]
1126 *
1127 * Start packet transmission on the interface.
1128 */
1129 static void
1130 dge_start(struct ifnet *ifp)
1131 {
1132 struct dge_softc *sc = ifp->if_softc;
1133 struct mbuf *m0;
1134 struct dge_txsoft *txs;
1135 bus_dmamap_t dmamap;
1136 int error, nexttx, lasttx = -1, ofree, seg;
1137 uint32_t cksumcmd;
1138 uint8_t cksumfields;
1139
1140 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1141 return;
1142
1143 /*
1144 * Remember the previous number of free descriptors.
1145 */
1146 ofree = sc->sc_txfree;
1147
1148 /*
1149 * Loop through the send queue, setting up transmit descriptors
1150 * until we drain the queue, or use up all available transmit
1151 * descriptors.
1152 */
1153 for (;;) {
1154 /* Grab a packet off the queue. */
1155 IFQ_POLL(&ifp->if_snd, m0);
1156 if (m0 == NULL)
1157 break;
1158
1159 DPRINTF(DGE_DEBUG_TX,
1160 ("%s: TX: have packet to transmit: %p\n",
1161 device_xname(&sc->sc_dev), m0));
1162
1163 /* Get a work queue entry. */
1164 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1165 dge_txintr(sc);
1166 if (sc->sc_txsfree == 0) {
1167 DPRINTF(DGE_DEBUG_TX,
1168 ("%s: TX: no free job descriptors\n",
1169 device_xname(&sc->sc_dev)));
1170 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1171 break;
1172 }
1173 }
1174
1175 txs = &sc->sc_txsoft[sc->sc_txsnext];
1176 dmamap = txs->txs_dmamap;
1177
1178 /*
1179 * Load the DMA map. If this fails, the packet either
1180 * didn't fit in the allotted number of segments, or we
1181 * were short on resources. For the too-many-segments
1182 * case, we simply report an error and drop the packet,
1183 * since we can't sanely copy a jumbo packet to a single
1184 * buffer.
1185 */
1186 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1187 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1188 if (error) {
1189 if (error == EFBIG) {
1190 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1191 printf("%s: Tx packet consumes too many "
1192 "DMA segments, dropping...\n",
1193 device_xname(&sc->sc_dev));
1194 IFQ_DEQUEUE(&ifp->if_snd, m0);
1195 m_freem(m0);
1196 continue;
1197 }
1198 /*
1199 * Short on resources, just stop for now.
1200 */
1201 DPRINTF(DGE_DEBUG_TX,
1202 ("%s: TX: dmamap load failed: %d\n",
1203 device_xname(&sc->sc_dev), error));
1204 break;
1205 }
1206
1207 /*
1208 * Ensure we have enough descriptors free to describe
1209 * the packet. Note, we always reserve one descriptor
1210 * at the end of the ring due to the semantics of the
1211 * TDT register, plus one more in the event we need
1212 * to re-load checksum offload context.
1213 */
1214 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1215 /*
1216 * Not enough free descriptors to transmit this
1217 * packet. We haven't committed anything yet,
1218 * so just unload the DMA map, put the packet
1219 * pack on the queue, and punt. Notify the upper
1220 * layer that there are no more slots left.
1221 */
1222 DPRINTF(DGE_DEBUG_TX,
1223 ("%s: TX: need %d descriptors, have %d\n",
1224 device_xname(&sc->sc_dev), dmamap->dm_nsegs,
1225 sc->sc_txfree - 1));
1226 ifp->if_flags |= IFF_OACTIVE;
1227 bus_dmamap_unload(sc->sc_dmat, dmamap);
1228 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1229 break;
1230 }
1231
1232 IFQ_DEQUEUE(&ifp->if_snd, m0);
1233
1234 /*
1235 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1236 */
1237
1238 /* Sync the DMA map. */
1239 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1240 BUS_DMASYNC_PREWRITE);
1241
1242 DPRINTF(DGE_DEBUG_TX,
1243 ("%s: TX: packet has %d DMA segments\n",
1244 device_xname(&sc->sc_dev), dmamap->dm_nsegs));
1245
1246 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1247
1248 /*
1249 * Store a pointer to the packet so that we can free it
1250 * later.
1251 *
1252 * Initially, we consider the number of descriptors the
1253 * packet uses the number of DMA segments. This may be
1254 * incremented by 1 if we do checksum offload (a descriptor
1255 * is used to set the checksum context).
1256 */
1257 txs->txs_mbuf = m0;
1258 txs->txs_firstdesc = sc->sc_txnext;
1259 txs->txs_ndesc = dmamap->dm_nsegs;
1260
1261 /*
1262 * Set up checksum offload parameters for
1263 * this packet.
1264 */
1265 if (m0->m_pkthdr.csum_flags &
1266 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1267 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1268 /* Error message already displayed. */
1269 bus_dmamap_unload(sc->sc_dmat, dmamap);
1270 continue;
1271 }
1272 } else {
1273 cksumfields = 0;
1274 }
1275
1276 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1277
1278 /*
1279 * Initialize the transmit descriptor.
1280 */
1281 for (nexttx = sc->sc_txnext, seg = 0;
1282 seg < dmamap->dm_nsegs;
1283 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1284 /*
1285 * Note: we currently only use 32-bit DMA
1286 * addresses.
1287 */
1288 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1289 sc->sc_txdescs[nexttx].dt_baddrl =
1290 htole32(dmamap->dm_segs[seg].ds_addr);
1291 sc->sc_txdescs[nexttx].dt_ctl =
1292 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1293 sc->sc_txdescs[nexttx].dt_status = 0;
1294 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1295 sc->sc_txdescs[nexttx].dt_vlan = 0;
1296 lasttx = nexttx;
1297
1298 DPRINTF(DGE_DEBUG_TX,
1299 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1300 device_xname(&sc->sc_dev), nexttx,
1301 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1302 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1303 }
1304
1305 KASSERT(lasttx != -1);
1306
1307 /*
1308 * Set up the command byte on the last descriptor of
1309 * the packet. If we're in the interrupt delay window,
1310 * delay the interrupt.
1311 */
1312 sc->sc_txdescs[lasttx].dt_ctl |=
1313 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1314
1315 txs->txs_lastdesc = lasttx;
1316
1317 DPRINTF(DGE_DEBUG_TX,
1318 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(&sc->sc_dev),
1319 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1320
1321 /* Sync the descriptors we're using. */
1322 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1323 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1324
1325 /* Give the packet to the chip. */
1326 CSR_WRITE(sc, DGE_TDT, nexttx);
1327
1328 DPRINTF(DGE_DEBUG_TX,
1329 ("%s: TX: TDT -> %d\n", device_xname(&sc->sc_dev), nexttx));
1330
1331 DPRINTF(DGE_DEBUG_TX,
1332 ("%s: TX: finished transmitting packet, job %d\n",
1333 device_xname(&sc->sc_dev), sc->sc_txsnext));
1334
1335 /* Advance the tx pointer. */
1336 sc->sc_txfree -= txs->txs_ndesc;
1337 sc->sc_txnext = nexttx;
1338
1339 sc->sc_txsfree--;
1340 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1341
1342 /* Pass the packet to any BPF listeners. */
1343 bpf_mtap(ifp, m0);
1344 }
1345
1346 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1347 /* No more slots; notify upper layer. */
1348 ifp->if_flags |= IFF_OACTIVE;
1349 }
1350
1351 if (sc->sc_txfree != ofree) {
1352 /* Set a watchdog timer in case the chip flakes out. */
1353 ifp->if_timer = 5;
1354 }
1355 }
1356
1357 /*
1358 * dge_watchdog: [ifnet interface function]
1359 *
1360 * Watchdog timer handler.
1361 */
1362 static void
1363 dge_watchdog(struct ifnet *ifp)
1364 {
1365 struct dge_softc *sc = ifp->if_softc;
1366
1367 /*
1368 * Since we're using delayed interrupts, sweep up
1369 * before we report an error.
1370 */
1371 dge_txintr(sc);
1372
1373 if (sc->sc_txfree != DGE_NTXDESC) {
1374 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1375 device_xname(&sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1376 sc->sc_txnext);
1377 ifp->if_oerrors++;
1378
1379 /* Reset the interface. */
1380 (void) dge_init(ifp);
1381 }
1382
1383 /* Try to get more packets going. */
1384 dge_start(ifp);
1385 }
1386
1387 /*
1388 * dge_ioctl: [ifnet interface function]
1389 *
1390 * Handle control requests from the operator.
1391 */
1392 static int
1393 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1394 {
1395 struct dge_softc *sc = ifp->if_softc;
1396 struct ifreq *ifr = (struct ifreq *) data;
1397 pcireg_t preg;
1398 int s, error, mmrbc;
1399
1400 s = splnet();
1401
1402 switch (cmd) {
1403 case SIOCSIFMEDIA:
1404 case SIOCGIFMEDIA:
1405 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1406 break;
1407
1408 case SIOCSIFMTU:
1409 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1410 error = EINVAL;
1411 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1412 break;
1413 else if (ifp->if_flags & IFF_UP)
1414 error = (*ifp->if_init)(ifp);
1415 else
1416 error = 0;
1417 break;
1418
1419 case SIOCSIFFLAGS:
1420 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1421 break;
1422 /* extract link flags */
1423 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1424 (ifp->if_flags & IFF_LINK1) == 0)
1425 mmrbc = PCIX_MMRBC_512;
1426 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1427 (ifp->if_flags & IFF_LINK1) != 0)
1428 mmrbc = PCIX_MMRBC_1024;
1429 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1430 (ifp->if_flags & IFF_LINK1) == 0)
1431 mmrbc = PCIX_MMRBC_2048;
1432 else
1433 mmrbc = PCIX_MMRBC_4096;
1434 if (mmrbc != sc->sc_mmrbc) {
1435 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1436 preg &= ~PCIX_MMRBC_MSK;
1437 preg |= mmrbc;
1438 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1439 sc->sc_mmrbc = mmrbc;
1440 }
1441 /* FALLTHROUGH */
1442 default:
1443 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1444 break;
1445
1446 error = 0;
1447
1448 if (cmd == SIOCSIFCAP)
1449 error = (*ifp->if_init)(ifp);
1450 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1451 ;
1452 else if (ifp->if_flags & IFF_RUNNING) {
1453 /*
1454 * Multicast list has changed; set the hardware filter
1455 * accordingly.
1456 */
1457 dge_set_filter(sc);
1458 }
1459 break;
1460 }
1461
1462 /* Try to get more packets going. */
1463 dge_start(ifp);
1464
1465 splx(s);
1466 return (error);
1467 }
1468
1469 /*
1470 * dge_intr:
1471 *
1472 * Interrupt service routine.
1473 */
1474 static int
1475 dge_intr(void *arg)
1476 {
1477 struct dge_softc *sc = arg;
1478 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1479 uint32_t icr;
1480 int wantinit, handled = 0;
1481
1482 for (wantinit = 0; wantinit == 0;) {
1483 icr = CSR_READ(sc, DGE_ICR);
1484 if ((icr & sc->sc_icr) == 0)
1485 break;
1486
1487 rnd_add_uint32(&sc->rnd_source, icr);
1488
1489 handled = 1;
1490
1491 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1492 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1493 DPRINTF(DGE_DEBUG_RX,
1494 ("%s: RX: got Rx intr 0x%08x\n",
1495 device_xname(&sc->sc_dev),
1496 icr & (ICR_RXDMT0|ICR_RXT0)));
1497 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1498 }
1499 #endif
1500 dge_rxintr(sc);
1501
1502 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1503 if (icr & ICR_TXDW) {
1504 DPRINTF(DGE_DEBUG_TX,
1505 ("%s: TX: got TXDW interrupt\n",
1506 device_xname(&sc->sc_dev)));
1507 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1508 }
1509 if (icr & ICR_TXQE)
1510 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1511 #endif
1512 dge_txintr(sc);
1513
1514 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1515 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1516 dge_linkintr(sc, icr);
1517 }
1518
1519 if (icr & ICR_RXO) {
1520 printf("%s: Receive overrun\n", device_xname(&sc->sc_dev));
1521 wantinit = 1;
1522 }
1523 }
1524
1525 if (handled) {
1526 if (wantinit)
1527 dge_init(ifp);
1528
1529 /* Try to get more packets going. */
1530 dge_start(ifp);
1531 }
1532
1533 return (handled);
1534 }
1535
1536 /*
1537 * dge_txintr:
1538 *
1539 * Helper; handle transmit interrupts.
1540 */
1541 static void
1542 dge_txintr(struct dge_softc *sc)
1543 {
1544 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1545 struct dge_txsoft *txs;
1546 uint8_t status;
1547 int i;
1548
1549 ifp->if_flags &= ~IFF_OACTIVE;
1550
1551 /*
1552 * Go through the Tx list and free mbufs for those
1553 * frames which have been transmitted.
1554 */
1555 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1556 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1557 txs = &sc->sc_txsoft[i];
1558
1559 DPRINTF(DGE_DEBUG_TX,
1560 ("%s: TX: checking job %d\n", device_xname(&sc->sc_dev), i));
1561
1562 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1563 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1564
1565 status =
1566 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1567 if ((status & TDESC_STA_DD) == 0) {
1568 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1569 BUS_DMASYNC_PREREAD);
1570 break;
1571 }
1572
1573 DPRINTF(DGE_DEBUG_TX,
1574 ("%s: TX: job %d done: descs %d..%d\n",
1575 device_xname(&sc->sc_dev), i, txs->txs_firstdesc,
1576 txs->txs_lastdesc));
1577
1578 ifp->if_opackets++;
1579 sc->sc_txfree += txs->txs_ndesc;
1580 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1581 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1582 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1583 m_freem(txs->txs_mbuf);
1584 txs->txs_mbuf = NULL;
1585 }
1586
1587 /* Update the dirty transmit buffer pointer. */
1588 sc->sc_txsdirty = i;
1589 DPRINTF(DGE_DEBUG_TX,
1590 ("%s: TX: txsdirty -> %d\n", device_xname(&sc->sc_dev), i));
1591
1592 /*
1593 * If there are no more pending transmissions, cancel the watchdog
1594 * timer.
1595 */
1596 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1597 ifp->if_timer = 0;
1598 }
1599
1600 /*
1601 * dge_rxintr:
1602 *
1603 * Helper; handle receive interrupts.
1604 */
1605 static void
1606 dge_rxintr(struct dge_softc *sc)
1607 {
1608 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1609 struct dge_rxsoft *rxs;
1610 struct mbuf *m;
1611 int i, len;
1612 uint8_t status, errors;
1613
1614 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1615 rxs = &sc->sc_rxsoft[i];
1616
1617 DPRINTF(DGE_DEBUG_RX,
1618 ("%s: RX: checking descriptor %d\n",
1619 device_xname(&sc->sc_dev), i));
1620
1621 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1622
1623 status = sc->sc_rxdescs[i].dr_status;
1624 errors = sc->sc_rxdescs[i].dr_errors;
1625 len = le16toh(sc->sc_rxdescs[i].dr_len);
1626
1627 if ((status & RDESC_STS_DD) == 0) {
1628 /*
1629 * We have processed all of the receive descriptors.
1630 */
1631 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1632 break;
1633 }
1634
1635 if (__predict_false(sc->sc_rxdiscard)) {
1636 DPRINTF(DGE_DEBUG_RX,
1637 ("%s: RX: discarding contents of descriptor %d\n",
1638 device_xname(&sc->sc_dev), i));
1639 DGE_INIT_RXDESC(sc, i);
1640 if (status & RDESC_STS_EOP) {
1641 /* Reset our state. */
1642 DPRINTF(DGE_DEBUG_RX,
1643 ("%s: RX: resetting rxdiscard -> 0\n",
1644 device_xname(&sc->sc_dev)));
1645 sc->sc_rxdiscard = 0;
1646 }
1647 continue;
1648 }
1649
1650 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1651 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1652
1653 m = rxs->rxs_mbuf;
1654
1655 /*
1656 * Add a new receive buffer to the ring.
1657 */
1658 if (dge_add_rxbuf(sc, i) != 0) {
1659 /*
1660 * Failed, throw away what we've done so
1661 * far, and discard the rest of the packet.
1662 */
1663 ifp->if_ierrors++;
1664 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1665 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1666 DGE_INIT_RXDESC(sc, i);
1667 if ((status & RDESC_STS_EOP) == 0)
1668 sc->sc_rxdiscard = 1;
1669 if (sc->sc_rxhead != NULL)
1670 m_freem(sc->sc_rxhead);
1671 DGE_RXCHAIN_RESET(sc);
1672 DPRINTF(DGE_DEBUG_RX,
1673 ("%s: RX: Rx buffer allocation failed, "
1674 "dropping packet%s\n", device_xname(&sc->sc_dev),
1675 sc->sc_rxdiscard ? " (discard)" : ""));
1676 continue;
1677 }
1678 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1679
1680 DGE_RXCHAIN_LINK(sc, m);
1681
1682 m->m_len = len;
1683
1684 DPRINTF(DGE_DEBUG_RX,
1685 ("%s: RX: buffer at %p len %d\n",
1686 device_xname(&sc->sc_dev), m->m_data, len));
1687
1688 /*
1689 * If this is not the end of the packet, keep
1690 * looking.
1691 */
1692 if ((status & RDESC_STS_EOP) == 0) {
1693 sc->sc_rxlen += len;
1694 DPRINTF(DGE_DEBUG_RX,
1695 ("%s: RX: not yet EOP, rxlen -> %d\n",
1696 device_xname(&sc->sc_dev), sc->sc_rxlen));
1697 continue;
1698 }
1699
1700 /*
1701 * Okay, we have the entire packet now...
1702 */
1703 *sc->sc_rxtailp = NULL;
1704 m = sc->sc_rxhead;
1705 len += sc->sc_rxlen;
1706
1707 DGE_RXCHAIN_RESET(sc);
1708
1709 DPRINTF(DGE_DEBUG_RX,
1710 ("%s: RX: have entire packet, len -> %d\n",
1711 device_xname(&sc->sc_dev), len));
1712
1713 /*
1714 * If an error occurred, update stats and drop the packet.
1715 */
1716 if (errors &
1717 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1718 ifp->if_ierrors++;
1719 if (errors & RDESC_ERR_SE)
1720 printf("%s: symbol error\n",
1721 device_xname(&sc->sc_dev));
1722 else if (errors & RDESC_ERR_P)
1723 printf("%s: parity error\n",
1724 device_xname(&sc->sc_dev));
1725 else if (errors & RDESC_ERR_CE)
1726 printf("%s: CRC error\n",
1727 device_xname(&sc->sc_dev));
1728 m_freem(m);
1729 continue;
1730 }
1731
1732 /*
1733 * No errors. Receive the packet.
1734 */
1735 m->m_pkthdr.rcvif = ifp;
1736 m->m_pkthdr.len = len;
1737
1738 /*
1739 * Set up checksum info for this packet.
1740 */
1741 if (status & RDESC_STS_IPCS) {
1742 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1743 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1744 if (errors & RDESC_ERR_IPE)
1745 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1746 }
1747 if (status & RDESC_STS_TCPCS) {
1748 /*
1749 * Note: we don't know if this was TCP or UDP,
1750 * so we just set both bits, and expect the
1751 * upper layers to deal.
1752 */
1753 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1754 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1755 if (errors & RDESC_ERR_TCPE)
1756 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1757 }
1758
1759 ifp->if_ipackets++;
1760
1761 /* Pass this up to any BPF listeners. */
1762 bpf_mtap(ifp, m);
1763
1764 /* Pass it on. */
1765 (*ifp->if_input)(ifp, m);
1766 }
1767
1768 /* Update the receive pointer. */
1769 sc->sc_rxptr = i;
1770
1771 DPRINTF(DGE_DEBUG_RX,
1772 ("%s: RX: rxptr -> %d\n", device_xname(&sc->sc_dev), i));
1773 }
1774
1775 /*
1776 * dge_linkintr:
1777 *
1778 * Helper; handle link interrupts.
1779 */
1780 static void
1781 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1782 {
1783 uint32_t status;
1784
1785 if (icr & ICR_LSC) {
1786 status = CSR_READ(sc, DGE_STATUS);
1787 if (status & STATUS_LINKUP) {
1788 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1789 device_xname(&sc->sc_dev)));
1790 } else {
1791 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1792 device_xname(&sc->sc_dev)));
1793 }
1794 } else if (icr & ICR_RXSEQ) {
1795 DPRINTF(DGE_DEBUG_LINK,
1796 ("%s: LINK: Receive sequence error\n",
1797 device_xname(&sc->sc_dev)));
1798 }
1799 /* XXX - fix errata */
1800 }
1801
1802 /*
1803 * dge_reset:
1804 *
1805 * Reset the i82597 chip.
1806 */
1807 static void
1808 dge_reset(struct dge_softc *sc)
1809 {
1810 int i;
1811
1812 /*
1813 * Do a chip reset.
1814 */
1815 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1816
1817 delay(10000);
1818
1819 for (i = 0; i < 1000; i++) {
1820 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1821 break;
1822 delay(20);
1823 }
1824
1825 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1826 printf("%s: WARNING: reset failed to complete\n",
1827 device_xname(&sc->sc_dev));
1828 /*
1829 * Reset the EEPROM logic.
1830 * This will cause the chip to reread its default values,
1831 * which doesn't happen otherwise (errata).
1832 */
1833 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1834 delay(10000);
1835 }
1836
1837 /*
1838 * dge_init: [ifnet interface function]
1839 *
1840 * Initialize the interface. Must be called at splnet().
1841 */
1842 static int
1843 dge_init(struct ifnet *ifp)
1844 {
1845 struct dge_softc *sc = ifp->if_softc;
1846 struct dge_rxsoft *rxs;
1847 int i, error = 0;
1848 uint32_t reg;
1849
1850 /*
1851 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1852 * There is a small but measurable benefit to avoiding the adjusment
1853 * of the descriptor so that the headers are aligned, for normal mtu,
1854 * on such platforms. One possibility is that the DMA itself is
1855 * slightly more efficient if the front of the entire packet (instead
1856 * of the front of the headers) is aligned.
1857 *
1858 * Note we must always set align_tweak to 0 if we are using
1859 * jumbo frames.
1860 */
1861 #ifdef __NO_STRICT_ALIGNMENT
1862 sc->sc_align_tweak = 0;
1863 #else
1864 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1865 sc->sc_align_tweak = 0;
1866 else
1867 sc->sc_align_tweak = 2;
1868 #endif /* __NO_STRICT_ALIGNMENT */
1869
1870 /* Cancel any pending I/O. */
1871 dge_stop(ifp, 0);
1872
1873 /* Reset the chip to a known state. */
1874 dge_reset(sc);
1875
1876 /* Initialize the transmit descriptor ring. */
1877 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1878 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1879 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1880 sc->sc_txfree = DGE_NTXDESC;
1881 sc->sc_txnext = 0;
1882
1883 sc->sc_txctx_ipcs = 0xffffffff;
1884 sc->sc_txctx_tucs = 0xffffffff;
1885
1886 CSR_WRITE(sc, DGE_TDBAH, 0);
1887 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1888 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1889 CSR_WRITE(sc, DGE_TDH, 0);
1890 CSR_WRITE(sc, DGE_TDT, 0);
1891 CSR_WRITE(sc, DGE_TIDV, TIDV);
1892
1893 #if 0
1894 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1895 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1896 #endif
1897 CSR_WRITE(sc, DGE_RXDCTL,
1898 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1899 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1900 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1901
1902 /* Initialize the transmit job descriptors. */
1903 for (i = 0; i < DGE_TXQUEUELEN; i++)
1904 sc->sc_txsoft[i].txs_mbuf = NULL;
1905 sc->sc_txsfree = DGE_TXQUEUELEN;
1906 sc->sc_txsnext = 0;
1907 sc->sc_txsdirty = 0;
1908
1909 /*
1910 * Initialize the receive descriptor and receive job
1911 * descriptor rings.
1912 */
1913 CSR_WRITE(sc, DGE_RDBAH, 0);
1914 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1915 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1916 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1917 CSR_WRITE(sc, DGE_RDT, 0);
1918 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1919 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1920 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1921
1922 for (i = 0; i < DGE_NRXDESC; i++) {
1923 rxs = &sc->sc_rxsoft[i];
1924 if (rxs->rxs_mbuf == NULL) {
1925 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1926 printf("%s: unable to allocate or map rx "
1927 "buffer %d, error = %d\n",
1928 device_xname(&sc->sc_dev), i, error);
1929 /*
1930 * XXX Should attempt to run with fewer receive
1931 * XXX buffers instead of just failing.
1932 */
1933 dge_rxdrain(sc);
1934 goto out;
1935 }
1936 }
1937 DGE_INIT_RXDESC(sc, i);
1938 }
1939 sc->sc_rxptr = DGE_RXSPACE;
1940 sc->sc_rxdiscard = 0;
1941 DGE_RXCHAIN_RESET(sc);
1942
1943 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1944 sc->sc_ctrl0 |= CTRL0_JFE;
1945 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1946 }
1947
1948 /* Write the control registers. */
1949 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1950
1951 /*
1952 * Set up checksum offload parameters.
1953 */
1954 reg = CSR_READ(sc, DGE_RXCSUM);
1955 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1956 reg |= RXCSUM_IPOFL;
1957 else
1958 reg &= ~RXCSUM_IPOFL;
1959 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1960 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1961 else {
1962 reg &= ~RXCSUM_TUOFL;
1963 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1964 reg &= ~RXCSUM_IPOFL;
1965 }
1966 CSR_WRITE(sc, DGE_RXCSUM, reg);
1967
1968 /*
1969 * Set up the interrupt registers.
1970 */
1971 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1972 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1973 ICR_RXO | ICR_RXT0;
1974
1975 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1976
1977 /*
1978 * Set up the transmit control register.
1979 */
1980 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1981 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1982
1983 /*
1984 * Set up the receive control register; we actually program
1985 * the register when we set the receive filter. Use multicast
1986 * address offset type 0.
1987 */
1988 sc->sc_mchash_type = 0;
1989
1990 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
1991 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
1992
1993 #ifdef DGE_OFFBYONE_RXBUG
1994 sc->sc_rctl |= RCTL_BSIZE_16k;
1995 #else
1996 switch(MCLBYTES) {
1997 case 2048:
1998 sc->sc_rctl |= RCTL_BSIZE_2k;
1999 break;
2000 case 4096:
2001 sc->sc_rctl |= RCTL_BSIZE_4k;
2002 break;
2003 case 8192:
2004 sc->sc_rctl |= RCTL_BSIZE_8k;
2005 break;
2006 case 16384:
2007 sc->sc_rctl |= RCTL_BSIZE_16k;
2008 break;
2009 default:
2010 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2011 }
2012 #endif
2013
2014 /* Set the receive filter. */
2015 /* Also sets RCTL */
2016 dge_set_filter(sc);
2017
2018 /* ...all done! */
2019 ifp->if_flags |= IFF_RUNNING;
2020 ifp->if_flags &= ~IFF_OACTIVE;
2021
2022 out:
2023 if (error)
2024 printf("%s: interface not running\n", device_xname(&sc->sc_dev));
2025 return (error);
2026 }
2027
2028 /*
2029 * dge_rxdrain:
2030 *
2031 * Drain the receive queue.
2032 */
2033 static void
2034 dge_rxdrain(struct dge_softc *sc)
2035 {
2036 struct dge_rxsoft *rxs;
2037 int i;
2038
2039 for (i = 0; i < DGE_NRXDESC; i++) {
2040 rxs = &sc->sc_rxsoft[i];
2041 if (rxs->rxs_mbuf != NULL) {
2042 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2043 m_freem(rxs->rxs_mbuf);
2044 rxs->rxs_mbuf = NULL;
2045 }
2046 }
2047 }
2048
2049 /*
2050 * dge_stop: [ifnet interface function]
2051 *
2052 * Stop transmission on the interface.
2053 */
2054 static void
2055 dge_stop(struct ifnet *ifp, int disable)
2056 {
2057 struct dge_softc *sc = ifp->if_softc;
2058 struct dge_txsoft *txs;
2059 int i;
2060
2061 /* Stop the transmit and receive processes. */
2062 CSR_WRITE(sc, DGE_TCTL, 0);
2063 CSR_WRITE(sc, DGE_RCTL, 0);
2064
2065 /* Release any queued transmit buffers. */
2066 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2067 txs = &sc->sc_txsoft[i];
2068 if (txs->txs_mbuf != NULL) {
2069 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2070 m_freem(txs->txs_mbuf);
2071 txs->txs_mbuf = NULL;
2072 }
2073 }
2074
2075 /* Mark the interface as down and cancel the watchdog timer. */
2076 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2077 ifp->if_timer = 0;
2078
2079 if (disable)
2080 dge_rxdrain(sc);
2081 }
2082
2083 /*
2084 * dge_add_rxbuf:
2085 *
2086 * Add a receive buffer to the indiciated descriptor.
2087 */
2088 static int
2089 dge_add_rxbuf(struct dge_softc *sc, int idx)
2090 {
2091 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2092 struct mbuf *m;
2093 int error;
2094 #ifdef DGE_OFFBYONE_RXBUG
2095 void *buf;
2096 #endif
2097
2098 MGETHDR(m, M_DONTWAIT, MT_DATA);
2099 if (m == NULL)
2100 return (ENOBUFS);
2101
2102 #ifdef DGE_OFFBYONE_RXBUG
2103 if ((buf = dge_getbuf(sc)) == NULL)
2104 return ENOBUFS;
2105
2106 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2107 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2108 m->m_flags |= M_EXT_RW;
2109
2110 if (rxs->rxs_mbuf != NULL)
2111 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2112 rxs->rxs_mbuf = m;
2113
2114 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2115 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2116 #else
2117 MCLGET(m, M_DONTWAIT);
2118 if ((m->m_flags & M_EXT) == 0) {
2119 m_freem(m);
2120 return (ENOBUFS);
2121 }
2122
2123 if (rxs->rxs_mbuf != NULL)
2124 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2125
2126 rxs->rxs_mbuf = m;
2127
2128 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2129 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2130 BUS_DMA_READ|BUS_DMA_NOWAIT);
2131 #endif
2132 if (error) {
2133 printf("%s: unable to load rx DMA map %d, error = %d\n",
2134 device_xname(&sc->sc_dev), idx, error);
2135 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2136 }
2137 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2138 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2139
2140 return (0);
2141 }
2142
2143 /*
2144 * dge_set_ral:
2145 *
2146 * Set an entry in the receive address list.
2147 */
2148 static void
2149 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2150 {
2151 uint32_t ral_lo, ral_hi;
2152
2153 if (enaddr != NULL) {
2154 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2155 (enaddr[3] << 24);
2156 ral_hi = enaddr[4] | (enaddr[5] << 8);
2157 ral_hi |= RAH_AV;
2158 } else {
2159 ral_lo = 0;
2160 ral_hi = 0;
2161 }
2162 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2163 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2164 }
2165
2166 /*
2167 * dge_mchash:
2168 *
2169 * Compute the hash of the multicast address for the 4096-bit
2170 * multicast filter.
2171 */
2172 static uint32_t
2173 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2174 {
2175 static const int lo_shift[4] = { 4, 3, 2, 0 };
2176 static const int hi_shift[4] = { 4, 5, 6, 8 };
2177 uint32_t hash;
2178
2179 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2180 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2181
2182 return (hash & 0xfff);
2183 }
2184
2185 /*
2186 * dge_set_filter:
2187 *
2188 * Set up the receive filter.
2189 */
2190 static void
2191 dge_set_filter(struct dge_softc *sc)
2192 {
2193 struct ethercom *ec = &sc->sc_ethercom;
2194 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2195 struct ether_multi *enm;
2196 struct ether_multistep step;
2197 uint32_t hash, reg, bit;
2198 int i;
2199
2200 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2201
2202 if (ifp->if_flags & IFF_BROADCAST)
2203 sc->sc_rctl |= RCTL_BAM;
2204 if (ifp->if_flags & IFF_PROMISC) {
2205 sc->sc_rctl |= RCTL_UPE;
2206 goto allmulti;
2207 }
2208
2209 /*
2210 * Set the station address in the first RAL slot, and
2211 * clear the remaining slots.
2212 */
2213 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2214 for (i = 1; i < RA_TABSIZE; i++)
2215 dge_set_ral(sc, NULL, i);
2216
2217 /* Clear out the multicast table. */
2218 for (i = 0; i < MC_TABSIZE; i++)
2219 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2220
2221 ETHER_FIRST_MULTI(step, ec, enm);
2222 while (enm != NULL) {
2223 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2224 /*
2225 * We must listen to a range of multicast addresses.
2226 * For now, just accept all multicasts, rather than
2227 * trying to set only those filter bits needed to match
2228 * the range. (At this time, the only use of address
2229 * ranges is for IP multicast routing, for which the
2230 * range is big enough to require all bits set.)
2231 */
2232 goto allmulti;
2233 }
2234
2235 hash = dge_mchash(sc, enm->enm_addrlo);
2236
2237 reg = (hash >> 5) & 0x7f;
2238 bit = hash & 0x1f;
2239
2240 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2241 hash |= 1U << bit;
2242
2243 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2244
2245 ETHER_NEXT_MULTI(step, enm);
2246 }
2247
2248 ifp->if_flags &= ~IFF_ALLMULTI;
2249 goto setit;
2250
2251 allmulti:
2252 ifp->if_flags |= IFF_ALLMULTI;
2253 sc->sc_rctl |= RCTL_MPE;
2254
2255 setit:
2256 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2257 }
2258
2259 /*
2260 * Read in the EEPROM info and verify checksum.
2261 */
2262 int
2263 dge_read_eeprom(struct dge_softc *sc)
2264 {
2265 uint16_t cksum;
2266 int i;
2267
2268 cksum = 0;
2269 for (i = 0; i < EEPROM_SIZE; i++) {
2270 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2271 cksum += sc->sc_eeprom[i];
2272 }
2273 return cksum != EEPROM_CKSUM;
2274 }
2275
2276
2277 /*
2278 * Read a 16-bit word from address addr in the serial EEPROM.
2279 */
2280 uint16_t
2281 dge_eeprom_word(struct dge_softc *sc, int addr)
2282 {
2283 uint32_t reg;
2284 uint16_t rval = 0;
2285 int i;
2286
2287 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2288
2289 /* Lower clock pulse (and data in to chip) */
2290 CSR_WRITE(sc, DGE_EECD, reg);
2291 /* Select chip */
2292 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2293
2294 /* Send read command */
2295 dge_eeprom_clockout(sc, 1);
2296 dge_eeprom_clockout(sc, 1);
2297 dge_eeprom_clockout(sc, 0);
2298
2299 /* Send address */
2300 for (i = 5; i >= 0; i--)
2301 dge_eeprom_clockout(sc, (addr >> i) & 1);
2302
2303 /* Read data */
2304 for (i = 0; i < 16; i++) {
2305 rval <<= 1;
2306 rval |= dge_eeprom_clockin(sc);
2307 }
2308
2309 /* Deselect chip */
2310 CSR_WRITE(sc, DGE_EECD, reg);
2311
2312 return rval;
2313 }
2314
2315 /*
2316 * Clock out a single bit to the EEPROM.
2317 */
2318 void
2319 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2320 {
2321 int reg;
2322
2323 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2324 if (bit)
2325 reg |= EECD_DI;
2326
2327 CSR_WRITE(sc, DGE_EECD, reg);
2328 delay(2);
2329 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2330 delay(2);
2331 CSR_WRITE(sc, DGE_EECD, reg);
2332 delay(2);
2333 }
2334
2335 /*
2336 * Clock in a single bit from EEPROM.
2337 */
2338 int
2339 dge_eeprom_clockin(struct dge_softc *sc)
2340 {
2341 int reg, rv;
2342
2343 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2344
2345 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2346 delay(2);
2347 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2348 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2349 delay(2);
2350
2351 return rv;
2352 }
2353
2354 static void
2355 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2356 {
2357 struct dge_softc *sc = ifp->if_softc;
2358
2359 ifmr->ifm_status = IFM_AVALID;
2360 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2361
2362 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2363 ifmr->ifm_status |= IFM_ACTIVE;
2364 }
2365
2366 static inline int
2367 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2368 {
2369 int i, mdic;
2370
2371 CSR_WRITE(sc, DGE_MDIO,
2372 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2373 for (i = 0; i < 10; i++) {
2374 delay(10);
2375 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2376 break;
2377 }
2378 return mdic;
2379 }
2380
2381
2382 static void
2383 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
2384 {
2385 struct dge_softc *sc = device_private(self);
2386 int mdic;
2387
2388 CSR_WRITE(sc, DGE_MDIRW, val);
2389 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2390 printf("%s: address cycle timeout; phy %d reg %d\n",
2391 device_xname(&sc->sc_dev), phy, reg);
2392 return;
2393 }
2394 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2395 printf("%s: read cycle timeout; phy %d reg %d\n",
2396 device_xname(&sc->sc_dev), phy, reg);
2397 return;
2398 }
2399 }
2400
2401 static void
2402 dge_xgmii_reset(struct dge_softc *sc)
2403 {
2404 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2405 }
2406
2407 static int
2408 dge_xgmii_mediachange(struct ifnet *ifp)
2409 {
2410 return 0;
2411 }
2412