if_dge.c revision 1.38 1 /* $NetBSD: if_dge.c,v 1.38 2014/08/10 16:44:36 tls Exp $ */
2
3 /*
4 * Copyright (c) 2004, SUNET, Swedish University Computer Network.
5 * All rights reserved.
6 *
7 * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed for the NetBSD Project by
20 * SUNET, Swedish University Computer Network.
21 * 4. The name of SUNET may not be used to endorse or promote products
22 * derived from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
39 * All rights reserved.
40 *
41 * Written by Jason R. Thorpe for Wasabi Systems, Inc.
42 *
43 * Redistribution and use in source and binary forms, with or without
44 * modification, are permitted provided that the following conditions
45 * are met:
46 * 1. Redistributions of source code must retain the above copyright
47 * notice, this list of conditions and the following disclaimer.
48 * 2. Redistributions in binary form must reproduce the above copyright
49 * notice, this list of conditions and the following disclaimer in the
50 * documentation and/or other materials provided with the distribution.
51 * 3. All advertising materials mentioning features or use of this software
52 * must display the following acknowledgement:
53 * This product includes software developed for the NetBSD Project by
54 * Wasabi Systems, Inc.
55 * 4. The name of Wasabi Systems, Inc. may not be used to endorse
56 * or promote products derived from this software without specific prior
57 * written permission.
58 *
59 * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
61 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
62 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
63 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
64 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
65 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
66 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
67 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
68 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
69 * POSSIBILITY OF SUCH DAMAGE.
70 */
71
72 /*
73 * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
74 *
75 * TODO (in no specific order):
76 * HW VLAN support.
77 * TSE offloading (needs kernel changes...)
78 * RAIDC (receive interrupt delay adaptation)
79 * Use memory > 4GB.
80 */
81
82 #include <sys/cdefs.h>
83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.38 2014/08/10 16:44:36 tls Exp $");
84
85
86
87 #include <sys/param.h>
88 #include <sys/systm.h>
89 #include <sys/callout.h>
90 #include <sys/mbuf.h>
91 #include <sys/malloc.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/ioctl.h>
95 #include <sys/errno.h>
96 #include <sys/device.h>
97 #include <sys/queue.h>
98
99 #include <sys/rnd.h>
100
101 #include <net/if.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/if_ether.h>
105
106 #include <net/bpf.h>
107
108 #include <netinet/in.h> /* XXX for struct ip */
109 #include <netinet/in_systm.h> /* XXX for struct ip */
110 #include <netinet/ip.h> /* XXX for struct ip */
111 #include <netinet/tcp.h> /* XXX for struct tcphdr */
112
113 #include <sys/bus.h>
114 #include <sys/intr.h>
115 #include <machine/endian.h>
116
117 #include <dev/mii/mii.h>
118 #include <dev/mii/miivar.h>
119 #include <dev/mii/mii_bitbang.h>
120
121 #include <dev/pci/pcireg.h>
122 #include <dev/pci/pcivar.h>
123 #include <dev/pci/pcidevs.h>
124
125 #include <dev/pci/if_dgereg.h>
126
127 /*
128 * The receive engine may sometimes become off-by-one when writing back
129 * chained descriptors. Avoid this by allocating a large chunk of
130 * memory and use if instead (to avoid chained descriptors).
131 * This only happens with chained descriptors under heavy load.
132 */
133 #define DGE_OFFBYONE_RXBUG
134
135 #define DGE_EVENT_COUNTERS
136 #define DGE_DEBUG
137
138 #ifdef DGE_DEBUG
139 #define DGE_DEBUG_LINK 0x01
140 #define DGE_DEBUG_TX 0x02
141 #define DGE_DEBUG_RX 0x04
142 #define DGE_DEBUG_CKSUM 0x08
143 int dge_debug = 0;
144
145 #define DPRINTF(x, y) if (dge_debug & (x)) printf y
146 #else
147 #define DPRINTF(x, y) /* nothing */
148 #endif /* DGE_DEBUG */
149
150 /*
151 * Transmit descriptor list size. We allow up to 100 DMA segments per
152 * packet (Intel reports of jumbo frame packets with as
153 * many as 80 DMA segments when using 16k buffers).
154 */
155 #define DGE_NTXSEGS 100
156 #define DGE_IFQUEUELEN 20000
157 #define DGE_TXQUEUELEN 2048
158 #define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
159 #define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
160 #define DGE_NTXDESC 1024
161 #define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
162 #define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
163 #define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
164
165 /*
166 * Receive descriptor list size.
167 * Packet is of size MCLBYTES, and for jumbo packets buffers may
168 * be chained. Due to the nature of the card (high-speed), keep this
169 * ring large. With 2k buffers the ring can store 400 jumbo packets,
170 * which at full speed will be received in just under 3ms.
171 */
172 #define DGE_NRXDESC 2048
173 #define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
174 #define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
175 /*
176 * # of descriptors between head and written descriptors.
177 * This is to work-around two erratas.
178 */
179 #define DGE_RXSPACE 10
180 #define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
181 /*
182 * Receive descriptor fetch threshholds. These are values recommended
183 * by Intel, do not touch them unless you know what you are doing.
184 */
185 #define RXDCTL_PTHRESH_VAL 128
186 #define RXDCTL_HTHRESH_VAL 16
187 #define RXDCTL_WTHRESH_VAL 16
188
189
190 /*
191 * Tweakable parameters; default values.
192 */
193 #define FCRTH 0x30000 /* Send XOFF water mark */
194 #define FCRTL 0x28000 /* Send XON water mark */
195 #define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
196 #define TIDV 0x20 /* Interrupt delay after send, .8192us units */
197
198 /*
199 * Control structures are DMA'd to the i82597 chip. We allocate them in
200 * a single clump that maps to a single DMA segment to make serveral things
201 * easier.
202 */
203 struct dge_control_data {
204 /*
205 * The transmit descriptors.
206 */
207 struct dge_tdes wcd_txdescs[DGE_NTXDESC];
208
209 /*
210 * The receive descriptors.
211 */
212 struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
213 };
214
215 #define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
216 #define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
217 #define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
218
219 /*
220 * The DGE interface have a higher max MTU size than normal jumbo frames.
221 */
222 #define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
223
224 /*
225 * Software state for transmit jobs.
226 */
227 struct dge_txsoft {
228 struct mbuf *txs_mbuf; /* head of our mbuf chain */
229 bus_dmamap_t txs_dmamap; /* our DMA map */
230 int txs_firstdesc; /* first descriptor in packet */
231 int txs_lastdesc; /* last descriptor in packet */
232 int txs_ndesc; /* # of descriptors used */
233 };
234
235 /*
236 * Software state for receive buffers. Each descriptor gets a
237 * 2k (MCLBYTES) buffer and a DMA map. For packets which fill
238 * more than one buffer, we chain them together.
239 */
240 struct dge_rxsoft {
241 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
242 bus_dmamap_t rxs_dmamap; /* our DMA map */
243 };
244
245 /*
246 * Software state per device.
247 */
248 struct dge_softc {
249 device_t sc_dev; /* generic device information */
250 bus_space_tag_t sc_st; /* bus space tag */
251 bus_space_handle_t sc_sh; /* bus space handle */
252 bus_dma_tag_t sc_dmat; /* bus DMA tag */
253 struct ethercom sc_ethercom; /* ethernet common data */
254
255 int sc_flags; /* flags; see below */
256 int sc_bus_speed; /* PCI/PCIX bus speed */
257 int sc_pcix_offset; /* PCIX capability register offset */
258
259 pci_chipset_tag_t sc_pc;
260 pcitag_t sc_pt;
261 int sc_mmrbc; /* Max PCIX memory read byte count */
262
263 void *sc_ih; /* interrupt cookie */
264
265 struct ifmedia sc_media;
266
267 bus_dmamap_t sc_cddmamap; /* control data DMA map */
268 #define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
269
270 int sc_align_tweak;
271
272 /*
273 * Software state for the transmit and receive descriptors.
274 */
275 struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
276 struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
277
278 /*
279 * Control data structures.
280 */
281 struct dge_control_data *sc_control_data;
282 #define sc_txdescs sc_control_data->wcd_txdescs
283 #define sc_rxdescs sc_control_data->wcd_rxdescs
284
285 #ifdef DGE_EVENT_COUNTERS
286 /* Event counters. */
287 struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
288 struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
289 struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
290 struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
291 struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
292 struct evcnt sc_ev_rxintr; /* Rx interrupts */
293 struct evcnt sc_ev_linkintr; /* Link interrupts */
294
295 struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
296 struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
297 struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
298 struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
299
300 struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
301 struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
302 struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
303
304 struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
305 struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
306 #endif /* DGE_EVENT_COUNTERS */
307
308 int sc_txfree; /* number of free Tx descriptors */
309 int sc_txnext; /* next ready Tx descriptor */
310
311 int sc_txsfree; /* number of free Tx jobs */
312 int sc_txsnext; /* next free Tx job */
313 int sc_txsdirty; /* dirty Tx jobs */
314
315 uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
316 uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
317
318 int sc_rxptr; /* next ready Rx descriptor/queue ent */
319 int sc_rxdiscard;
320 int sc_rxlen;
321 struct mbuf *sc_rxhead;
322 struct mbuf *sc_rxtail;
323 struct mbuf **sc_rxtailp;
324
325 uint32_t sc_ctrl0; /* prototype CTRL0 register */
326 uint32_t sc_icr; /* prototype interrupt bits */
327 uint32_t sc_tctl; /* prototype TCTL register */
328 uint32_t sc_rctl; /* prototype RCTL register */
329
330 int sc_mchash_type; /* multicast filter offset */
331
332 uint16_t sc_eeprom[EEPROM_SIZE];
333
334 krndsource_t rnd_source; /* random source */
335 #ifdef DGE_OFFBYONE_RXBUG
336 void *sc_bugbuf;
337 SLIST_HEAD(, rxbugentry) sc_buglist;
338 bus_dmamap_t sc_bugmap;
339 struct rxbugentry *sc_entry;
340 #endif
341 };
342
343 #define DGE_RXCHAIN_RESET(sc) \
344 do { \
345 (sc)->sc_rxtailp = &(sc)->sc_rxhead; \
346 *(sc)->sc_rxtailp = NULL; \
347 (sc)->sc_rxlen = 0; \
348 } while (/*CONSTCOND*/0)
349
350 #define DGE_RXCHAIN_LINK(sc, m) \
351 do { \
352 *(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
353 (sc)->sc_rxtailp = &(m)->m_next; \
354 } while (/*CONSTCOND*/0)
355
356 /* sc_flags */
357 #define DGE_F_BUS64 0x20 /* bus is 64-bit */
358 #define DGE_F_PCIX 0x40 /* bus is PCI-X */
359
360 #ifdef DGE_EVENT_COUNTERS
361 #define DGE_EVCNT_INCR(ev) (ev)->ev_count++
362 #else
363 #define DGE_EVCNT_INCR(ev) /* nothing */
364 #endif
365
366 #define CSR_READ(sc, reg) \
367 bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
368 #define CSR_WRITE(sc, reg, val) \
369 bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
370
371 #define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
372 #define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
373
374 #define DGE_CDTXSYNC(sc, x, n, ops) \
375 do { \
376 int __x, __n; \
377 \
378 __x = (x); \
379 __n = (n); \
380 \
381 /* If it will wrap around, sync to the end of the ring. */ \
382 if ((__x + __n) > DGE_NTXDESC) { \
383 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
384 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
385 (DGE_NTXDESC - __x), (ops)); \
386 __n -= (DGE_NTXDESC - __x); \
387 __x = 0; \
388 } \
389 \
390 /* Now sync whatever is left. */ \
391 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
392 DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
393 } while (/*CONSTCOND*/0)
394
395 #define DGE_CDRXSYNC(sc, x, ops) \
396 do { \
397 bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
398 DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
399 } while (/*CONSTCOND*/0)
400
401 #ifdef DGE_OFFBYONE_RXBUG
402 #define DGE_INIT_RXDESC(sc, x) \
403 do { \
404 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
405 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
406 struct mbuf *__m = __rxs->rxs_mbuf; \
407 \
408 __rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
409 (mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
410 __rxd->dr_baddrh = 0; \
411 __rxd->dr_len = 0; \
412 __rxd->dr_cksum = 0; \
413 __rxd->dr_status = 0; \
414 __rxd->dr_errors = 0; \
415 __rxd->dr_special = 0; \
416 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
417 \
418 CSR_WRITE((sc), DGE_RDT, (x)); \
419 } while (/*CONSTCOND*/0)
420 #else
421 #define DGE_INIT_RXDESC(sc, x) \
422 do { \
423 struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
424 struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
425 struct mbuf *__m = __rxs->rxs_mbuf; \
426 \
427 /* \
428 * Note: We scoot the packet forward 2 bytes in the buffer \
429 * so that the payload after the Ethernet header is aligned \
430 * to a 4-byte boundary. \
431 * \
432 * XXX BRAINDAMAGE ALERT! \
433 * The stupid chip uses the same size for every buffer, which \
434 * is set in the Receive Control register. We are using the 2K \
435 * size option, but what we REALLY want is (2K - 2)! For this \
436 * reason, we can't "scoot" packets longer than the standard \
437 * Ethernet MTU. On strict-alignment platforms, if the total \
438 * size exceeds (2K - 2) we set align_tweak to 0 and let \
439 * the upper layer copy the headers. \
440 */ \
441 __m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
442 \
443 __rxd->dr_baddrl = \
444 htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
445 (sc)->sc_align_tweak); \
446 __rxd->dr_baddrh = 0; \
447 __rxd->dr_len = 0; \
448 __rxd->dr_cksum = 0; \
449 __rxd->dr_status = 0; \
450 __rxd->dr_errors = 0; \
451 __rxd->dr_special = 0; \
452 DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
453 \
454 CSR_WRITE((sc), DGE_RDT, (x)); \
455 } while (/*CONSTCOND*/0)
456 #endif
457
458 #ifdef DGE_OFFBYONE_RXBUG
459 /*
460 * Allocation constants. Much memory may be used for this.
461 */
462 #ifndef DGE_BUFFER_SIZE
463 #define DGE_BUFFER_SIZE DGE_MAX_MTU
464 #endif
465 #define DGE_NBUFFERS (4*DGE_NRXDESC)
466 #define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
467
468 struct rxbugentry {
469 SLIST_ENTRY(rxbugentry) rb_entry;
470 int rb_slot;
471 };
472
473 static int
474 dge_alloc_rcvmem(struct dge_softc *sc)
475 {
476 char *kva;
477 bus_dma_segment_t seg;
478 int i, rseg, state, error;
479 struct rxbugentry *entry;
480
481 state = error = 0;
482
483 if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
484 &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
485 aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
486 return ENOBUFS;
487 }
488
489 state = 1;
490 if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
491 BUS_DMA_NOWAIT)) {
492 aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
493 (int)DGE_RXMEM);
494 error = ENOBUFS;
495 goto out;
496 }
497
498 state = 2;
499 if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
500 BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
501 aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
502 error = ENOBUFS;
503 goto out;
504 }
505
506 state = 3;
507 if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
508 kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
509 aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
510 error = ENOBUFS;
511 goto out;
512 }
513
514 state = 4;
515 sc->sc_bugbuf = (void *)kva;
516 SLIST_INIT(&sc->sc_buglist);
517
518 /*
519 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
520 * in an array.
521 */
522 if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
523 M_DEVBUF, M_NOWAIT)) == NULL) {
524 error = ENOBUFS;
525 goto out;
526 }
527 sc->sc_entry = entry;
528 for (i = 0; i < DGE_NBUFFERS; i++) {
529 entry[i].rb_slot = i;
530 SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
531 }
532 out:
533 if (error != 0) {
534 switch (state) {
535 case 4:
536 bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
537 case 3:
538 bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
539 case 2:
540 bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
541 case 1:
542 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
543 break;
544 default:
545 break;
546 }
547 }
548
549 return error;
550 }
551
552 /*
553 * Allocate a jumbo buffer.
554 */
555 static void *
556 dge_getbuf(struct dge_softc *sc)
557 {
558 struct rxbugentry *entry;
559
560 entry = SLIST_FIRST(&sc->sc_buglist);
561
562 if (entry == NULL) {
563 printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
564 return(NULL);
565 }
566
567 SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
568 return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
569 }
570
571 /*
572 * Release a jumbo buffer.
573 */
574 static void
575 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
576 {
577 struct rxbugentry *entry;
578 struct dge_softc *sc;
579 int i, s;
580
581 /* Extract the softc struct pointer. */
582 sc = (struct dge_softc *)arg;
583
584 if (sc == NULL)
585 panic("dge_freebuf: can't find softc pointer!");
586
587 /* calculate the slot this buffer belongs to */
588
589 i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
590
591 if ((i < 0) || (i >= DGE_NBUFFERS))
592 panic("dge_freebuf: asked to free buffer %d!", i);
593
594 s = splvm();
595 entry = sc->sc_entry + i;
596 SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
597
598 if (__predict_true(m != NULL))
599 pool_cache_put(mb_cache, m);
600 splx(s);
601 }
602 #endif
603
604 static void dge_start(struct ifnet *);
605 static void dge_watchdog(struct ifnet *);
606 static int dge_ioctl(struct ifnet *, u_long, void *);
607 static int dge_init(struct ifnet *);
608 static void dge_stop(struct ifnet *, int);
609
610 static bool dge_shutdown(device_t, int);
611
612 static void dge_reset(struct dge_softc *);
613 static void dge_rxdrain(struct dge_softc *);
614 static int dge_add_rxbuf(struct dge_softc *, int);
615
616 static void dge_set_filter(struct dge_softc *);
617
618 static int dge_intr(void *);
619 static void dge_txintr(struct dge_softc *);
620 static void dge_rxintr(struct dge_softc *);
621 static void dge_linkintr(struct dge_softc *, uint32_t);
622
623 static int dge_match(device_t, cfdata_t, void *);
624 static void dge_attach(device_t, device_t, void *);
625
626 static int dge_read_eeprom(struct dge_softc *sc);
627 static int dge_eeprom_clockin(struct dge_softc *sc);
628 static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
629 static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
630 static int dge_xgmii_mediachange(struct ifnet *);
631 static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
632 static void dge_xgmii_reset(struct dge_softc *);
633 static void dge_xgmii_writereg(device_t, int, int, int);
634
635
636 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
637 dge_match, dge_attach, NULL, NULL);
638
639 #ifdef DGE_EVENT_COUNTERS
640 #if DGE_NTXSEGS > 100
641 #error Update dge_txseg_evcnt_names
642 #endif
643 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
644 #endif /* DGE_EVENT_COUNTERS */
645
646 static int
647 dge_match(device_t parent, cfdata_t cf, void *aux)
648 {
649 struct pci_attach_args *pa = aux;
650
651 if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
652 PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
653 return (1);
654
655 return (0);
656 }
657
658 static void
659 dge_attach(device_t parent, device_t self, void *aux)
660 {
661 struct dge_softc *sc = device_private(self);
662 struct pci_attach_args *pa = aux;
663 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
664 pci_chipset_tag_t pc = pa->pa_pc;
665 pci_intr_handle_t ih;
666 const char *intrstr = NULL;
667 bus_dma_segment_t seg;
668 int i, rseg, error;
669 uint8_t enaddr[ETHER_ADDR_LEN];
670 pcireg_t preg, memtype;
671 uint32_t reg;
672 char intrbuf[PCI_INTRSTR_LEN];
673
674 sc->sc_dev = self;
675 sc->sc_dmat = pa->pa_dmat;
676 sc->sc_pc = pa->pa_pc;
677 sc->sc_pt = pa->pa_tag;
678
679 pci_aprint_devinfo_fancy(pa, "Ethernet controller",
680 "Intel i82597EX 10GbE-LR Ethernet", 1);
681
682 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
683 if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
684 &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
685 aprint_error_dev(sc->sc_dev, "unable to map device registers\n");
686 return;
687 }
688
689 /* Enable bus mastering */
690 preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
691 preg |= PCI_COMMAND_MASTER_ENABLE;
692 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
693
694 /*
695 * Map and establish our interrupt.
696 */
697 if (pci_intr_map(pa, &ih)) {
698 aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
699 return;
700 }
701 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
702 sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
703 if (sc->sc_ih == NULL) {
704 aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
705 if (intrstr != NULL)
706 aprint_error(" at %s", intrstr);
707 aprint_error("\n");
708 return;
709 }
710 aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
711
712 /*
713 * Determine a few things about the bus we're connected to.
714 */
715 reg = CSR_READ(sc, DGE_STATUS);
716 if (reg & STATUS_BUS64)
717 sc->sc_flags |= DGE_F_BUS64;
718
719 sc->sc_flags |= DGE_F_PCIX;
720 if (pci_get_capability(pa->pa_pc, pa->pa_tag,
721 PCI_CAP_PCIX,
722 &sc->sc_pcix_offset, NULL) == 0)
723 aprint_error_dev(sc->sc_dev, "unable to find PCIX "
724 "capability\n");
725
726 if (sc->sc_flags & DGE_F_PCIX) {
727 switch (reg & STATUS_PCIX_MSK) {
728 case STATUS_PCIX_66:
729 sc->sc_bus_speed = 66;
730 break;
731 case STATUS_PCIX_100:
732 sc->sc_bus_speed = 100;
733 break;
734 case STATUS_PCIX_133:
735 sc->sc_bus_speed = 133;
736 break;
737 default:
738 aprint_error_dev(sc->sc_dev,
739 "unknown PCIXSPD %d; assuming 66MHz\n",
740 reg & STATUS_PCIX_MSK);
741 sc->sc_bus_speed = 66;
742 }
743 } else
744 sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
745 aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
746 (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
747 (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
748
749 /*
750 * Allocate the control data structures, and create and load the
751 * DMA map for it.
752 */
753 if ((error = bus_dmamem_alloc(sc->sc_dmat,
754 sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
755 0)) != 0) {
756 aprint_error_dev(sc->sc_dev,
757 "unable to allocate control data, error = %d\n",
758 error);
759 goto fail_0;
760 }
761
762 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
763 sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
764 0)) != 0) {
765 aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
766 error);
767 goto fail_1;
768 }
769
770 if ((error = bus_dmamap_create(sc->sc_dmat,
771 sizeof(struct dge_control_data), 1,
772 sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
773 aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
774 "error = %d\n", error);
775 goto fail_2;
776 }
777
778 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
779 sc->sc_control_data, sizeof(struct dge_control_data), NULL,
780 0)) != 0) {
781 aprint_error_dev(sc->sc_dev,
782 "unable to load control data DMA map, error = %d\n",
783 error);
784 goto fail_3;
785 }
786
787 #ifdef DGE_OFFBYONE_RXBUG
788 if (dge_alloc_rcvmem(sc) != 0)
789 return; /* Already complained */
790 #endif
791 /*
792 * Create the transmit buffer DMA maps.
793 */
794 for (i = 0; i < DGE_TXQUEUELEN; i++) {
795 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
796 DGE_NTXSEGS, MCLBYTES, 0, 0,
797 &sc->sc_txsoft[i].txs_dmamap)) != 0) {
798 aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
799 "error = %d\n", i, error);
800 goto fail_4;
801 }
802 }
803
804 /*
805 * Create the receive buffer DMA maps.
806 */
807 for (i = 0; i < DGE_NRXDESC; i++) {
808 #ifdef DGE_OFFBYONE_RXBUG
809 if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
810 DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
811 #else
812 if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
813 MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
814 #endif
815 aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
816 "error = %d\n", i, error);
817 goto fail_5;
818 }
819 sc->sc_rxsoft[i].rxs_mbuf = NULL;
820 }
821
822 /*
823 * Set bits in ctrl0 register.
824 * Should get the software defined pins out of EEPROM?
825 */
826 sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
827 sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
828 CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
829
830 /*
831 * Reset the chip to a known state.
832 */
833 dge_reset(sc);
834
835 /*
836 * Reset the PHY.
837 */
838 dge_xgmii_reset(sc);
839
840 /*
841 * Read in EEPROM data.
842 */
843 if (dge_read_eeprom(sc)) {
844 aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
845 return;
846 }
847
848 /*
849 * Get the ethernet address.
850 */
851 enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
852 enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
853 enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
854 enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
855 enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
856 enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
857
858 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
859 ether_sprintf(enaddr));
860
861 /*
862 * Setup media stuff.
863 */
864 ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
865 dge_xgmii_mediastatus);
866 ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
867 ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
868
869 ifp = &sc->sc_ethercom.ec_if;
870 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
871 ifp->if_softc = sc;
872 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
873 ifp->if_ioctl = dge_ioctl;
874 ifp->if_start = dge_start;
875 ifp->if_watchdog = dge_watchdog;
876 ifp->if_init = dge_init;
877 ifp->if_stop = dge_stop;
878 IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
879 IFQ_SET_READY(&ifp->if_snd);
880
881 sc->sc_ethercom.ec_capabilities |=
882 ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
883
884 /*
885 * We can perform TCPv4 and UDPv4 checkums in-bound.
886 */
887 ifp->if_capabilities |=
888 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
889 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
890 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
891
892 /*
893 * Attach the interface.
894 */
895 if_attach(ifp);
896 ether_ifattach(ifp, enaddr);
897 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
898 RND_TYPE_NET, RND_FLAG_DEFAULT);
899
900 #ifdef DGE_EVENT_COUNTERS
901 /* Fix segment event naming */
902 if (dge_txseg_evcnt_names == NULL) {
903 dge_txseg_evcnt_names =
904 malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
905 for (i = 0; i < DGE_NTXSEGS; i++)
906 snprintf((*dge_txseg_evcnt_names)[i],
907 sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
908 }
909
910 /* Attach event counters. */
911 evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
912 NULL, device_xname(sc->sc_dev), "txsstall");
913 evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
914 NULL, device_xname(sc->sc_dev), "txdstall");
915 evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
916 NULL, device_xname(sc->sc_dev), "txforceintr");
917 evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
918 NULL, device_xname(sc->sc_dev), "txdw");
919 evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
920 NULL, device_xname(sc->sc_dev), "txqe");
921 evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
922 NULL, device_xname(sc->sc_dev), "rxintr");
923 evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
924 NULL, device_xname(sc->sc_dev), "linkintr");
925
926 evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
927 NULL, device_xname(sc->sc_dev), "rxipsum");
928 evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
929 NULL, device_xname(sc->sc_dev), "rxtusum");
930 evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
931 NULL, device_xname(sc->sc_dev), "txipsum");
932 evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
933 NULL, device_xname(sc->sc_dev), "txtusum");
934
935 evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
936 NULL, device_xname(sc->sc_dev), "txctx init");
937 evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
938 NULL, device_xname(sc->sc_dev), "txctx hit");
939 evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
940 NULL, device_xname(sc->sc_dev), "txctx miss");
941
942 for (i = 0; i < DGE_NTXSEGS; i++)
943 evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
944 NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
945
946 evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
947 NULL, device_xname(sc->sc_dev), "txdrop");
948
949 #endif /* DGE_EVENT_COUNTERS */
950
951 /*
952 * Make sure the interface is shutdown during reboot.
953 */
954 if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
955 pmf_class_network_register(self, ifp);
956 else
957 aprint_error_dev(self, "couldn't establish power handler\n");
958
959 return;
960
961 /*
962 * Free any resources we've allocated during the failed attach
963 * attempt. Do this in reverse order and fall through.
964 */
965 fail_5:
966 for (i = 0; i < DGE_NRXDESC; i++) {
967 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
968 bus_dmamap_destroy(sc->sc_dmat,
969 sc->sc_rxsoft[i].rxs_dmamap);
970 }
971 fail_4:
972 for (i = 0; i < DGE_TXQUEUELEN; i++) {
973 if (sc->sc_txsoft[i].txs_dmamap != NULL)
974 bus_dmamap_destroy(sc->sc_dmat,
975 sc->sc_txsoft[i].txs_dmamap);
976 }
977 bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
978 fail_3:
979 bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
980 fail_2:
981 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
982 sizeof(struct dge_control_data));
983 fail_1:
984 bus_dmamem_free(sc->sc_dmat, &seg, rseg);
985 fail_0:
986 return;
987 }
988
989 /*
990 * dge_shutdown:
991 *
992 * Make sure the interface is stopped at reboot time.
993 */
994 static bool
995 dge_shutdown(device_t self, int howto)
996 {
997 struct dge_softc *sc;
998
999 sc = device_private(self);
1000 dge_stop(&sc->sc_ethercom.ec_if, 1);
1001
1002 return true;
1003 }
1004
1005 /*
1006 * dge_tx_cksum:
1007 *
1008 * Set up TCP/IP checksumming parameters for the
1009 * specified packet.
1010 */
1011 static int
1012 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
1013 {
1014 struct mbuf *m0 = txs->txs_mbuf;
1015 struct dge_ctdes *t;
1016 uint32_t ipcs, tucs;
1017 struct ether_header *eh;
1018 int offset, iphl;
1019 uint8_t fields = 0;
1020
1021 /*
1022 * XXX It would be nice if the mbuf pkthdr had offset
1023 * fields for the protocol headers.
1024 */
1025
1026 eh = mtod(m0, struct ether_header *);
1027 switch (htons(eh->ether_type)) {
1028 case ETHERTYPE_IP:
1029 offset = ETHER_HDR_LEN;
1030 break;
1031
1032 case ETHERTYPE_VLAN:
1033 offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1034 break;
1035
1036 default:
1037 /*
1038 * Don't support this protocol or encapsulation.
1039 */
1040 *fieldsp = 0;
1041 return (0);
1042 }
1043
1044 iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
1045
1046 /*
1047 * NOTE: Even if we're not using the IP or TCP/UDP checksum
1048 * offload feature, if we load the context descriptor, we
1049 * MUST provide valid values for IPCSS and TUCSS fields.
1050 */
1051
1052 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
1053 DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
1054 fields |= TDESC_POPTS_IXSM;
1055 ipcs = DGE_TCPIP_IPCSS(offset) |
1056 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1057 DGE_TCPIP_IPCSE(offset + iphl - 1);
1058 } else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
1059 /* Use the cached value. */
1060 ipcs = sc->sc_txctx_ipcs;
1061 } else {
1062 /* Just initialize it to the likely value anyway. */
1063 ipcs = DGE_TCPIP_IPCSS(offset) |
1064 DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
1065 DGE_TCPIP_IPCSE(offset + iphl - 1);
1066 }
1067 DPRINTF(DGE_DEBUG_CKSUM,
1068 ("%s: CKSUM: offset %d ipcs 0x%x\n",
1069 device_xname(sc->sc_dev), offset, ipcs));
1070
1071 offset += iphl;
1072
1073 if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1074 DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
1075 fields |= TDESC_POPTS_TXSM;
1076 tucs = DGE_TCPIP_TUCSS(offset) |
1077 DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
1078 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1079 } else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
1080 /* Use the cached value. */
1081 tucs = sc->sc_txctx_tucs;
1082 } else {
1083 /* Just initialize it to a valid TCP context. */
1084 tucs = DGE_TCPIP_TUCSS(offset) |
1085 DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
1086 DGE_TCPIP_TUCSE(0) /* rest of packet */;
1087 }
1088
1089 DPRINTF(DGE_DEBUG_CKSUM,
1090 ("%s: CKSUM: offset %d tucs 0x%x\n",
1091 device_xname(sc->sc_dev), offset, tucs));
1092
1093 if (sc->sc_txctx_ipcs == ipcs &&
1094 sc->sc_txctx_tucs == tucs) {
1095 /* Cached context is fine. */
1096 DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
1097 } else {
1098 /* Fill in the context descriptor. */
1099 #ifdef DGE_EVENT_COUNTERS
1100 if (sc->sc_txctx_ipcs == 0xffffffff &&
1101 sc->sc_txctx_tucs == 0xffffffff)
1102 DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
1103 else
1104 DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
1105 #endif
1106 t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
1107 t->dc_tcpip_ipcs = htole32(ipcs);
1108 t->dc_tcpip_tucs = htole32(tucs);
1109 t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
1110 t->dc_tcpip_seg = 0;
1111 DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
1112
1113 sc->sc_txctx_ipcs = ipcs;
1114 sc->sc_txctx_tucs = tucs;
1115
1116 sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
1117 txs->txs_ndesc++;
1118 }
1119
1120 *fieldsp = fields;
1121
1122 return (0);
1123 }
1124
1125 /*
1126 * dge_start: [ifnet interface function]
1127 *
1128 * Start packet transmission on the interface.
1129 */
1130 static void
1131 dge_start(struct ifnet *ifp)
1132 {
1133 struct dge_softc *sc = ifp->if_softc;
1134 struct mbuf *m0;
1135 struct dge_txsoft *txs;
1136 bus_dmamap_t dmamap;
1137 int error, nexttx, lasttx = -1, ofree, seg;
1138 uint32_t cksumcmd;
1139 uint8_t cksumfields;
1140
1141 if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
1142 return;
1143
1144 /*
1145 * Remember the previous number of free descriptors.
1146 */
1147 ofree = sc->sc_txfree;
1148
1149 /*
1150 * Loop through the send queue, setting up transmit descriptors
1151 * until we drain the queue, or use up all available transmit
1152 * descriptors.
1153 */
1154 for (;;) {
1155 /* Grab a packet off the queue. */
1156 IFQ_POLL(&ifp->if_snd, m0);
1157 if (m0 == NULL)
1158 break;
1159
1160 DPRINTF(DGE_DEBUG_TX,
1161 ("%s: TX: have packet to transmit: %p\n",
1162 device_xname(sc->sc_dev), m0));
1163
1164 /* Get a work queue entry. */
1165 if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
1166 dge_txintr(sc);
1167 if (sc->sc_txsfree == 0) {
1168 DPRINTF(DGE_DEBUG_TX,
1169 ("%s: TX: no free job descriptors\n",
1170 device_xname(sc->sc_dev)));
1171 DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
1172 break;
1173 }
1174 }
1175
1176 txs = &sc->sc_txsoft[sc->sc_txsnext];
1177 dmamap = txs->txs_dmamap;
1178
1179 /*
1180 * Load the DMA map. If this fails, the packet either
1181 * didn't fit in the allotted number of segments, or we
1182 * were short on resources. For the too-many-segments
1183 * case, we simply report an error and drop the packet,
1184 * since we can't sanely copy a jumbo packet to a single
1185 * buffer.
1186 */
1187 error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
1188 BUS_DMA_WRITE|BUS_DMA_NOWAIT);
1189 if (error) {
1190 if (error == EFBIG) {
1191 DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
1192 printf("%s: Tx packet consumes too many "
1193 "DMA segments, dropping...\n",
1194 device_xname(sc->sc_dev));
1195 IFQ_DEQUEUE(&ifp->if_snd, m0);
1196 m_freem(m0);
1197 continue;
1198 }
1199 /*
1200 * Short on resources, just stop for now.
1201 */
1202 DPRINTF(DGE_DEBUG_TX,
1203 ("%s: TX: dmamap load failed: %d\n",
1204 device_xname(sc->sc_dev), error));
1205 break;
1206 }
1207
1208 /*
1209 * Ensure we have enough descriptors free to describe
1210 * the packet. Note, we always reserve one descriptor
1211 * at the end of the ring due to the semantics of the
1212 * TDT register, plus one more in the event we need
1213 * to re-load checksum offload context.
1214 */
1215 if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
1216 /*
1217 * Not enough free descriptors to transmit this
1218 * packet. We haven't committed anything yet,
1219 * so just unload the DMA map, put the packet
1220 * pack on the queue, and punt. Notify the upper
1221 * layer that there are no more slots left.
1222 */
1223 DPRINTF(DGE_DEBUG_TX,
1224 ("%s: TX: need %d descriptors, have %d\n",
1225 device_xname(sc->sc_dev), dmamap->dm_nsegs,
1226 sc->sc_txfree - 1));
1227 ifp->if_flags |= IFF_OACTIVE;
1228 bus_dmamap_unload(sc->sc_dmat, dmamap);
1229 DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
1230 break;
1231 }
1232
1233 IFQ_DEQUEUE(&ifp->if_snd, m0);
1234
1235 /*
1236 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1237 */
1238
1239 /* Sync the DMA map. */
1240 bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
1241 BUS_DMASYNC_PREWRITE);
1242
1243 DPRINTF(DGE_DEBUG_TX,
1244 ("%s: TX: packet has %d DMA segments\n",
1245 device_xname(sc->sc_dev), dmamap->dm_nsegs));
1246
1247 DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
1248
1249 /*
1250 * Store a pointer to the packet so that we can free it
1251 * later.
1252 *
1253 * Initially, we consider the number of descriptors the
1254 * packet uses the number of DMA segments. This may be
1255 * incremented by 1 if we do checksum offload (a descriptor
1256 * is used to set the checksum context).
1257 */
1258 txs->txs_mbuf = m0;
1259 txs->txs_firstdesc = sc->sc_txnext;
1260 txs->txs_ndesc = dmamap->dm_nsegs;
1261
1262 /*
1263 * Set up checksum offload parameters for
1264 * this packet.
1265 */
1266 if (m0->m_pkthdr.csum_flags &
1267 (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
1268 if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
1269 /* Error message already displayed. */
1270 bus_dmamap_unload(sc->sc_dmat, dmamap);
1271 continue;
1272 }
1273 } else {
1274 cksumfields = 0;
1275 }
1276
1277 cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
1278
1279 /*
1280 * Initialize the transmit descriptor.
1281 */
1282 for (nexttx = sc->sc_txnext, seg = 0;
1283 seg < dmamap->dm_nsegs;
1284 seg++, nexttx = DGE_NEXTTX(nexttx)) {
1285 /*
1286 * Note: we currently only use 32-bit DMA
1287 * addresses.
1288 */
1289 sc->sc_txdescs[nexttx].dt_baddrh = 0;
1290 sc->sc_txdescs[nexttx].dt_baddrl =
1291 htole32(dmamap->dm_segs[seg].ds_addr);
1292 sc->sc_txdescs[nexttx].dt_ctl =
1293 htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
1294 sc->sc_txdescs[nexttx].dt_status = 0;
1295 sc->sc_txdescs[nexttx].dt_popts = cksumfields;
1296 sc->sc_txdescs[nexttx].dt_vlan = 0;
1297 lasttx = nexttx;
1298
1299 DPRINTF(DGE_DEBUG_TX,
1300 ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
1301 device_xname(sc->sc_dev), nexttx,
1302 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
1303 (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
1304 }
1305
1306 KASSERT(lasttx != -1);
1307
1308 /*
1309 * Set up the command byte on the last descriptor of
1310 * the packet. If we're in the interrupt delay window,
1311 * delay the interrupt.
1312 */
1313 sc->sc_txdescs[lasttx].dt_ctl |=
1314 htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
1315
1316 txs->txs_lastdesc = lasttx;
1317
1318 DPRINTF(DGE_DEBUG_TX,
1319 ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
1320 lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
1321
1322 /* Sync the descriptors we're using. */
1323 DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
1324 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1325
1326 /* Give the packet to the chip. */
1327 CSR_WRITE(sc, DGE_TDT, nexttx);
1328
1329 DPRINTF(DGE_DEBUG_TX,
1330 ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
1331
1332 DPRINTF(DGE_DEBUG_TX,
1333 ("%s: TX: finished transmitting packet, job %d\n",
1334 device_xname(sc->sc_dev), sc->sc_txsnext));
1335
1336 /* Advance the tx pointer. */
1337 sc->sc_txfree -= txs->txs_ndesc;
1338 sc->sc_txnext = nexttx;
1339
1340 sc->sc_txsfree--;
1341 sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
1342
1343 /* Pass the packet to any BPF listeners. */
1344 bpf_mtap(ifp, m0);
1345 }
1346
1347 if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
1348 /* No more slots; notify upper layer. */
1349 ifp->if_flags |= IFF_OACTIVE;
1350 }
1351
1352 if (sc->sc_txfree != ofree) {
1353 /* Set a watchdog timer in case the chip flakes out. */
1354 ifp->if_timer = 5;
1355 }
1356 }
1357
1358 /*
1359 * dge_watchdog: [ifnet interface function]
1360 *
1361 * Watchdog timer handler.
1362 */
1363 static void
1364 dge_watchdog(struct ifnet *ifp)
1365 {
1366 struct dge_softc *sc = ifp->if_softc;
1367
1368 /*
1369 * Since we're using delayed interrupts, sweep up
1370 * before we report an error.
1371 */
1372 dge_txintr(sc);
1373
1374 if (sc->sc_txfree != DGE_NTXDESC) {
1375 printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
1376 device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
1377 sc->sc_txnext);
1378 ifp->if_oerrors++;
1379
1380 /* Reset the interface. */
1381 (void) dge_init(ifp);
1382 }
1383
1384 /* Try to get more packets going. */
1385 dge_start(ifp);
1386 }
1387
1388 /*
1389 * dge_ioctl: [ifnet interface function]
1390 *
1391 * Handle control requests from the operator.
1392 */
1393 static int
1394 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
1395 {
1396 struct dge_softc *sc = ifp->if_softc;
1397 struct ifreq *ifr = (struct ifreq *) data;
1398 pcireg_t preg;
1399 int s, error, mmrbc;
1400
1401 s = splnet();
1402
1403 switch (cmd) {
1404 case SIOCSIFMEDIA:
1405 case SIOCGIFMEDIA:
1406 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
1407 break;
1408
1409 case SIOCSIFMTU:
1410 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
1411 error = EINVAL;
1412 else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
1413 break;
1414 else if (ifp->if_flags & IFF_UP)
1415 error = (*ifp->if_init)(ifp);
1416 else
1417 error = 0;
1418 break;
1419
1420 case SIOCSIFFLAGS:
1421 if ((error = ifioctl_common(ifp, cmd, data)) != 0)
1422 break;
1423 /* extract link flags */
1424 if ((ifp->if_flags & IFF_LINK0) == 0 &&
1425 (ifp->if_flags & IFF_LINK1) == 0)
1426 mmrbc = PCIX_MMRBC_512;
1427 else if ((ifp->if_flags & IFF_LINK0) == 0 &&
1428 (ifp->if_flags & IFF_LINK1) != 0)
1429 mmrbc = PCIX_MMRBC_1024;
1430 else if ((ifp->if_flags & IFF_LINK0) != 0 &&
1431 (ifp->if_flags & IFF_LINK1) == 0)
1432 mmrbc = PCIX_MMRBC_2048;
1433 else
1434 mmrbc = PCIX_MMRBC_4096;
1435 if (mmrbc != sc->sc_mmrbc) {
1436 preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
1437 preg &= ~PCIX_MMRBC_MSK;
1438 preg |= mmrbc;
1439 pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
1440 sc->sc_mmrbc = mmrbc;
1441 }
1442 /* FALLTHROUGH */
1443 default:
1444 if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
1445 break;
1446
1447 error = 0;
1448
1449 if (cmd == SIOCSIFCAP)
1450 error = (*ifp->if_init)(ifp);
1451 else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
1452 ;
1453 else if (ifp->if_flags & IFF_RUNNING) {
1454 /*
1455 * Multicast list has changed; set the hardware filter
1456 * accordingly.
1457 */
1458 dge_set_filter(sc);
1459 }
1460 break;
1461 }
1462
1463 /* Try to get more packets going. */
1464 dge_start(ifp);
1465
1466 splx(s);
1467 return (error);
1468 }
1469
1470 /*
1471 * dge_intr:
1472 *
1473 * Interrupt service routine.
1474 */
1475 static int
1476 dge_intr(void *arg)
1477 {
1478 struct dge_softc *sc = arg;
1479 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1480 uint32_t icr;
1481 int wantinit, handled = 0;
1482
1483 for (wantinit = 0; wantinit == 0;) {
1484 icr = CSR_READ(sc, DGE_ICR);
1485 if ((icr & sc->sc_icr) == 0)
1486 break;
1487
1488 rnd_add_uint32(&sc->rnd_source, icr);
1489
1490 handled = 1;
1491
1492 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1493 if (icr & (ICR_RXDMT0|ICR_RXT0)) {
1494 DPRINTF(DGE_DEBUG_RX,
1495 ("%s: RX: got Rx intr 0x%08x\n",
1496 device_xname(sc->sc_dev),
1497 icr & (ICR_RXDMT0|ICR_RXT0)));
1498 DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
1499 }
1500 #endif
1501 dge_rxintr(sc);
1502
1503 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
1504 if (icr & ICR_TXDW) {
1505 DPRINTF(DGE_DEBUG_TX,
1506 ("%s: TX: got TXDW interrupt\n",
1507 device_xname(sc->sc_dev)));
1508 DGE_EVCNT_INCR(&sc->sc_ev_txdw);
1509 }
1510 if (icr & ICR_TXQE)
1511 DGE_EVCNT_INCR(&sc->sc_ev_txqe);
1512 #endif
1513 dge_txintr(sc);
1514
1515 if (icr & (ICR_LSC|ICR_RXSEQ)) {
1516 DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
1517 dge_linkintr(sc, icr);
1518 }
1519
1520 if (icr & ICR_RXO) {
1521 printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
1522 wantinit = 1;
1523 }
1524 }
1525
1526 if (handled) {
1527 if (wantinit)
1528 dge_init(ifp);
1529
1530 /* Try to get more packets going. */
1531 dge_start(ifp);
1532 }
1533
1534 return (handled);
1535 }
1536
1537 /*
1538 * dge_txintr:
1539 *
1540 * Helper; handle transmit interrupts.
1541 */
1542 static void
1543 dge_txintr(struct dge_softc *sc)
1544 {
1545 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1546 struct dge_txsoft *txs;
1547 uint8_t status;
1548 int i;
1549
1550 ifp->if_flags &= ~IFF_OACTIVE;
1551
1552 /*
1553 * Go through the Tx list and free mbufs for those
1554 * frames which have been transmitted.
1555 */
1556 for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
1557 i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
1558 txs = &sc->sc_txsoft[i];
1559
1560 DPRINTF(DGE_DEBUG_TX,
1561 ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
1562
1563 DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
1564 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1565
1566 status =
1567 sc->sc_txdescs[txs->txs_lastdesc].dt_status;
1568 if ((status & TDESC_STA_DD) == 0) {
1569 DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
1570 BUS_DMASYNC_PREREAD);
1571 break;
1572 }
1573
1574 DPRINTF(DGE_DEBUG_TX,
1575 ("%s: TX: job %d done: descs %d..%d\n",
1576 device_xname(sc->sc_dev), i, txs->txs_firstdesc,
1577 txs->txs_lastdesc));
1578
1579 ifp->if_opackets++;
1580 sc->sc_txfree += txs->txs_ndesc;
1581 bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
1582 0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1583 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
1584 m_freem(txs->txs_mbuf);
1585 txs->txs_mbuf = NULL;
1586 }
1587
1588 /* Update the dirty transmit buffer pointer. */
1589 sc->sc_txsdirty = i;
1590 DPRINTF(DGE_DEBUG_TX,
1591 ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
1592
1593 /*
1594 * If there are no more pending transmissions, cancel the watchdog
1595 * timer.
1596 */
1597 if (sc->sc_txsfree == DGE_TXQUEUELEN)
1598 ifp->if_timer = 0;
1599 }
1600
1601 /*
1602 * dge_rxintr:
1603 *
1604 * Helper; handle receive interrupts.
1605 */
1606 static void
1607 dge_rxintr(struct dge_softc *sc)
1608 {
1609 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
1610 struct dge_rxsoft *rxs;
1611 struct mbuf *m;
1612 int i, len;
1613 uint8_t status, errors;
1614
1615 for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
1616 rxs = &sc->sc_rxsoft[i];
1617
1618 DPRINTF(DGE_DEBUG_RX,
1619 ("%s: RX: checking descriptor %d\n",
1620 device_xname(sc->sc_dev), i));
1621
1622 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1623
1624 status = sc->sc_rxdescs[i].dr_status;
1625 errors = sc->sc_rxdescs[i].dr_errors;
1626 len = le16toh(sc->sc_rxdescs[i].dr_len);
1627
1628 if ((status & RDESC_STS_DD) == 0) {
1629 /*
1630 * We have processed all of the receive descriptors.
1631 */
1632 DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
1633 break;
1634 }
1635
1636 if (__predict_false(sc->sc_rxdiscard)) {
1637 DPRINTF(DGE_DEBUG_RX,
1638 ("%s: RX: discarding contents of descriptor %d\n",
1639 device_xname(sc->sc_dev), i));
1640 DGE_INIT_RXDESC(sc, i);
1641 if (status & RDESC_STS_EOP) {
1642 /* Reset our state. */
1643 DPRINTF(DGE_DEBUG_RX,
1644 ("%s: RX: resetting rxdiscard -> 0\n",
1645 device_xname(sc->sc_dev)));
1646 sc->sc_rxdiscard = 0;
1647 }
1648 continue;
1649 }
1650
1651 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1652 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1653
1654 m = rxs->rxs_mbuf;
1655
1656 /*
1657 * Add a new receive buffer to the ring.
1658 */
1659 if (dge_add_rxbuf(sc, i) != 0) {
1660 /*
1661 * Failed, throw away what we've done so
1662 * far, and discard the rest of the packet.
1663 */
1664 ifp->if_ierrors++;
1665 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
1666 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
1667 DGE_INIT_RXDESC(sc, i);
1668 if ((status & RDESC_STS_EOP) == 0)
1669 sc->sc_rxdiscard = 1;
1670 if (sc->sc_rxhead != NULL)
1671 m_freem(sc->sc_rxhead);
1672 DGE_RXCHAIN_RESET(sc);
1673 DPRINTF(DGE_DEBUG_RX,
1674 ("%s: RX: Rx buffer allocation failed, "
1675 "dropping packet%s\n", device_xname(sc->sc_dev),
1676 sc->sc_rxdiscard ? " (discard)" : ""));
1677 continue;
1678 }
1679 DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
1680
1681 DGE_RXCHAIN_LINK(sc, m);
1682
1683 m->m_len = len;
1684
1685 DPRINTF(DGE_DEBUG_RX,
1686 ("%s: RX: buffer at %p len %d\n",
1687 device_xname(sc->sc_dev), m->m_data, len));
1688
1689 /*
1690 * If this is not the end of the packet, keep
1691 * looking.
1692 */
1693 if ((status & RDESC_STS_EOP) == 0) {
1694 sc->sc_rxlen += len;
1695 DPRINTF(DGE_DEBUG_RX,
1696 ("%s: RX: not yet EOP, rxlen -> %d\n",
1697 device_xname(sc->sc_dev), sc->sc_rxlen));
1698 continue;
1699 }
1700
1701 /*
1702 * Okay, we have the entire packet now...
1703 */
1704 *sc->sc_rxtailp = NULL;
1705 m = sc->sc_rxhead;
1706 len += sc->sc_rxlen;
1707
1708 DGE_RXCHAIN_RESET(sc);
1709
1710 DPRINTF(DGE_DEBUG_RX,
1711 ("%s: RX: have entire packet, len -> %d\n",
1712 device_xname(sc->sc_dev), len));
1713
1714 /*
1715 * If an error occurred, update stats and drop the packet.
1716 */
1717 if (errors &
1718 (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
1719 ifp->if_ierrors++;
1720 if (errors & RDESC_ERR_SE)
1721 printf("%s: symbol error\n",
1722 device_xname(sc->sc_dev));
1723 else if (errors & RDESC_ERR_P)
1724 printf("%s: parity error\n",
1725 device_xname(sc->sc_dev));
1726 else if (errors & RDESC_ERR_CE)
1727 printf("%s: CRC error\n",
1728 device_xname(sc->sc_dev));
1729 m_freem(m);
1730 continue;
1731 }
1732
1733 /*
1734 * No errors. Receive the packet.
1735 */
1736 m->m_pkthdr.rcvif = ifp;
1737 m->m_pkthdr.len = len;
1738
1739 /*
1740 * Set up checksum info for this packet.
1741 */
1742 if (status & RDESC_STS_IPCS) {
1743 DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
1744 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1745 if (errors & RDESC_ERR_IPE)
1746 m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1747 }
1748 if (status & RDESC_STS_TCPCS) {
1749 /*
1750 * Note: we don't know if this was TCP or UDP,
1751 * so we just set both bits, and expect the
1752 * upper layers to deal.
1753 */
1754 DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
1755 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
1756 if (errors & RDESC_ERR_TCPE)
1757 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
1758 }
1759
1760 ifp->if_ipackets++;
1761
1762 /* Pass this up to any BPF listeners. */
1763 bpf_mtap(ifp, m);
1764
1765 /* Pass it on. */
1766 (*ifp->if_input)(ifp, m);
1767 }
1768
1769 /* Update the receive pointer. */
1770 sc->sc_rxptr = i;
1771
1772 DPRINTF(DGE_DEBUG_RX,
1773 ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
1774 }
1775
1776 /*
1777 * dge_linkintr:
1778 *
1779 * Helper; handle link interrupts.
1780 */
1781 static void
1782 dge_linkintr(struct dge_softc *sc, uint32_t icr)
1783 {
1784 uint32_t status;
1785
1786 if (icr & ICR_LSC) {
1787 status = CSR_READ(sc, DGE_STATUS);
1788 if (status & STATUS_LINKUP) {
1789 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
1790 device_xname(sc->sc_dev)));
1791 } else {
1792 DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
1793 device_xname(sc->sc_dev)));
1794 }
1795 } else if (icr & ICR_RXSEQ) {
1796 DPRINTF(DGE_DEBUG_LINK,
1797 ("%s: LINK: Receive sequence error\n",
1798 device_xname(sc->sc_dev)));
1799 }
1800 /* XXX - fix errata */
1801 }
1802
1803 /*
1804 * dge_reset:
1805 *
1806 * Reset the i82597 chip.
1807 */
1808 static void
1809 dge_reset(struct dge_softc *sc)
1810 {
1811 int i;
1812
1813 /*
1814 * Do a chip reset.
1815 */
1816 CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
1817
1818 delay(10000);
1819
1820 for (i = 0; i < 1000; i++) {
1821 if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
1822 break;
1823 delay(20);
1824 }
1825
1826 if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
1827 printf("%s: WARNING: reset failed to complete\n",
1828 device_xname(sc->sc_dev));
1829 /*
1830 * Reset the EEPROM logic.
1831 * This will cause the chip to reread its default values,
1832 * which doesn't happen otherwise (errata).
1833 */
1834 CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
1835 delay(10000);
1836 }
1837
1838 /*
1839 * dge_init: [ifnet interface function]
1840 *
1841 * Initialize the interface. Must be called at splnet().
1842 */
1843 static int
1844 dge_init(struct ifnet *ifp)
1845 {
1846 struct dge_softc *sc = ifp->if_softc;
1847 struct dge_rxsoft *rxs;
1848 int i, error = 0;
1849 uint32_t reg;
1850
1851 /*
1852 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
1853 * There is a small but measurable benefit to avoiding the adjusment
1854 * of the descriptor so that the headers are aligned, for normal mtu,
1855 * on such platforms. One possibility is that the DMA itself is
1856 * slightly more efficient if the front of the entire packet (instead
1857 * of the front of the headers) is aligned.
1858 *
1859 * Note we must always set align_tweak to 0 if we are using
1860 * jumbo frames.
1861 */
1862 #ifdef __NO_STRICT_ALIGNMENT
1863 sc->sc_align_tweak = 0;
1864 #else
1865 if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
1866 sc->sc_align_tweak = 0;
1867 else
1868 sc->sc_align_tweak = 2;
1869 #endif /* __NO_STRICT_ALIGNMENT */
1870
1871 /* Cancel any pending I/O. */
1872 dge_stop(ifp, 0);
1873
1874 /* Reset the chip to a known state. */
1875 dge_reset(sc);
1876
1877 /* Initialize the transmit descriptor ring. */
1878 memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
1879 DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
1880 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1881 sc->sc_txfree = DGE_NTXDESC;
1882 sc->sc_txnext = 0;
1883
1884 sc->sc_txctx_ipcs = 0xffffffff;
1885 sc->sc_txctx_tucs = 0xffffffff;
1886
1887 CSR_WRITE(sc, DGE_TDBAH, 0);
1888 CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
1889 CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
1890 CSR_WRITE(sc, DGE_TDH, 0);
1891 CSR_WRITE(sc, DGE_TDT, 0);
1892 CSR_WRITE(sc, DGE_TIDV, TIDV);
1893
1894 #if 0
1895 CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
1896 TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
1897 #endif
1898 CSR_WRITE(sc, DGE_RXDCTL,
1899 RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
1900 RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
1901 RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
1902
1903 /* Initialize the transmit job descriptors. */
1904 for (i = 0; i < DGE_TXQUEUELEN; i++)
1905 sc->sc_txsoft[i].txs_mbuf = NULL;
1906 sc->sc_txsfree = DGE_TXQUEUELEN;
1907 sc->sc_txsnext = 0;
1908 sc->sc_txsdirty = 0;
1909
1910 /*
1911 * Initialize the receive descriptor and receive job
1912 * descriptor rings.
1913 */
1914 CSR_WRITE(sc, DGE_RDBAH, 0);
1915 CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
1916 CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
1917 CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
1918 CSR_WRITE(sc, DGE_RDT, 0);
1919 CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
1920 CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
1921 CSR_WRITE(sc, DGE_FCRTH, FCRTH);
1922
1923 for (i = 0; i < DGE_NRXDESC; i++) {
1924 rxs = &sc->sc_rxsoft[i];
1925 if (rxs->rxs_mbuf == NULL) {
1926 if ((error = dge_add_rxbuf(sc, i)) != 0) {
1927 printf("%s: unable to allocate or map rx "
1928 "buffer %d, error = %d\n",
1929 device_xname(sc->sc_dev), i, error);
1930 /*
1931 * XXX Should attempt to run with fewer receive
1932 * XXX buffers instead of just failing.
1933 */
1934 dge_rxdrain(sc);
1935 goto out;
1936 }
1937 }
1938 DGE_INIT_RXDESC(sc, i);
1939 }
1940 sc->sc_rxptr = DGE_RXSPACE;
1941 sc->sc_rxdiscard = 0;
1942 DGE_RXCHAIN_RESET(sc);
1943
1944 if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
1945 sc->sc_ctrl0 |= CTRL0_JFE;
1946 CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
1947 }
1948
1949 /* Write the control registers. */
1950 CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
1951
1952 /*
1953 * Set up checksum offload parameters.
1954 */
1955 reg = CSR_READ(sc, DGE_RXCSUM);
1956 if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
1957 reg |= RXCSUM_IPOFL;
1958 else
1959 reg &= ~RXCSUM_IPOFL;
1960 if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
1961 reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
1962 else {
1963 reg &= ~RXCSUM_TUOFL;
1964 if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
1965 reg &= ~RXCSUM_IPOFL;
1966 }
1967 CSR_WRITE(sc, DGE_RXCSUM, reg);
1968
1969 /*
1970 * Set up the interrupt registers.
1971 */
1972 CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
1973 sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
1974 ICR_RXO | ICR_RXT0;
1975
1976 CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
1977
1978 /*
1979 * Set up the transmit control register.
1980 */
1981 sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
1982 CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
1983
1984 /*
1985 * Set up the receive control register; we actually program
1986 * the register when we set the receive filter. Use multicast
1987 * address offset type 0.
1988 */
1989 sc->sc_mchash_type = 0;
1990
1991 sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
1992 RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
1993
1994 #ifdef DGE_OFFBYONE_RXBUG
1995 sc->sc_rctl |= RCTL_BSIZE_16k;
1996 #else
1997 switch(MCLBYTES) {
1998 case 2048:
1999 sc->sc_rctl |= RCTL_BSIZE_2k;
2000 break;
2001 case 4096:
2002 sc->sc_rctl |= RCTL_BSIZE_4k;
2003 break;
2004 case 8192:
2005 sc->sc_rctl |= RCTL_BSIZE_8k;
2006 break;
2007 case 16384:
2008 sc->sc_rctl |= RCTL_BSIZE_16k;
2009 break;
2010 default:
2011 panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
2012 }
2013 #endif
2014
2015 /* Set the receive filter. */
2016 /* Also sets RCTL */
2017 dge_set_filter(sc);
2018
2019 /* ...all done! */
2020 ifp->if_flags |= IFF_RUNNING;
2021 ifp->if_flags &= ~IFF_OACTIVE;
2022
2023 out:
2024 if (error)
2025 printf("%s: interface not running\n", device_xname(sc->sc_dev));
2026 return (error);
2027 }
2028
2029 /*
2030 * dge_rxdrain:
2031 *
2032 * Drain the receive queue.
2033 */
2034 static void
2035 dge_rxdrain(struct dge_softc *sc)
2036 {
2037 struct dge_rxsoft *rxs;
2038 int i;
2039
2040 for (i = 0; i < DGE_NRXDESC; i++) {
2041 rxs = &sc->sc_rxsoft[i];
2042 if (rxs->rxs_mbuf != NULL) {
2043 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2044 m_freem(rxs->rxs_mbuf);
2045 rxs->rxs_mbuf = NULL;
2046 }
2047 }
2048 }
2049
2050 /*
2051 * dge_stop: [ifnet interface function]
2052 *
2053 * Stop transmission on the interface.
2054 */
2055 static void
2056 dge_stop(struct ifnet *ifp, int disable)
2057 {
2058 struct dge_softc *sc = ifp->if_softc;
2059 struct dge_txsoft *txs;
2060 int i;
2061
2062 /* Stop the transmit and receive processes. */
2063 CSR_WRITE(sc, DGE_TCTL, 0);
2064 CSR_WRITE(sc, DGE_RCTL, 0);
2065
2066 /* Release any queued transmit buffers. */
2067 for (i = 0; i < DGE_TXQUEUELEN; i++) {
2068 txs = &sc->sc_txsoft[i];
2069 if (txs->txs_mbuf != NULL) {
2070 bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
2071 m_freem(txs->txs_mbuf);
2072 txs->txs_mbuf = NULL;
2073 }
2074 }
2075
2076 /* Mark the interface as down and cancel the watchdog timer. */
2077 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2078 ifp->if_timer = 0;
2079
2080 if (disable)
2081 dge_rxdrain(sc);
2082 }
2083
2084 /*
2085 * dge_add_rxbuf:
2086 *
2087 * Add a receive buffer to the indiciated descriptor.
2088 */
2089 static int
2090 dge_add_rxbuf(struct dge_softc *sc, int idx)
2091 {
2092 struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
2093 struct mbuf *m;
2094 int error;
2095 #ifdef DGE_OFFBYONE_RXBUG
2096 void *buf;
2097 #endif
2098
2099 MGETHDR(m, M_DONTWAIT, MT_DATA);
2100 if (m == NULL)
2101 return (ENOBUFS);
2102
2103 #ifdef DGE_OFFBYONE_RXBUG
2104 if ((buf = dge_getbuf(sc)) == NULL)
2105 return ENOBUFS;
2106
2107 m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
2108 MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
2109 m->m_flags |= M_EXT_RW;
2110
2111 if (rxs->rxs_mbuf != NULL)
2112 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2113 rxs->rxs_mbuf = m;
2114
2115 error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
2116 DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
2117 #else
2118 MCLGET(m, M_DONTWAIT);
2119 if ((m->m_flags & M_EXT) == 0) {
2120 m_freem(m);
2121 return (ENOBUFS);
2122 }
2123
2124 if (rxs->rxs_mbuf != NULL)
2125 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
2126
2127 rxs->rxs_mbuf = m;
2128
2129 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
2130 error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
2131 BUS_DMA_READ|BUS_DMA_NOWAIT);
2132 #endif
2133 if (error) {
2134 printf("%s: unable to load rx DMA map %d, error = %d\n",
2135 device_xname(sc->sc_dev), idx, error);
2136 panic("dge_add_rxbuf"); /* XXX XXX XXX */
2137 }
2138 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
2139 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
2140
2141 return (0);
2142 }
2143
2144 /*
2145 * dge_set_ral:
2146 *
2147 * Set an entry in the receive address list.
2148 */
2149 static void
2150 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
2151 {
2152 uint32_t ral_lo, ral_hi;
2153
2154 if (enaddr != NULL) {
2155 ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
2156 (enaddr[3] << 24);
2157 ral_hi = enaddr[4] | (enaddr[5] << 8);
2158 ral_hi |= RAH_AV;
2159 } else {
2160 ral_lo = 0;
2161 ral_hi = 0;
2162 }
2163 CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
2164 CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
2165 }
2166
2167 /*
2168 * dge_mchash:
2169 *
2170 * Compute the hash of the multicast address for the 4096-bit
2171 * multicast filter.
2172 */
2173 static uint32_t
2174 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
2175 {
2176 static const int lo_shift[4] = { 4, 3, 2, 0 };
2177 static const int hi_shift[4] = { 4, 5, 6, 8 };
2178 uint32_t hash;
2179
2180 hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
2181 (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
2182
2183 return (hash & 0xfff);
2184 }
2185
2186 /*
2187 * dge_set_filter:
2188 *
2189 * Set up the receive filter.
2190 */
2191 static void
2192 dge_set_filter(struct dge_softc *sc)
2193 {
2194 struct ethercom *ec = &sc->sc_ethercom;
2195 struct ifnet *ifp = &sc->sc_ethercom.ec_if;
2196 struct ether_multi *enm;
2197 struct ether_multistep step;
2198 uint32_t hash, reg, bit;
2199 int i;
2200
2201 sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
2202
2203 if (ifp->if_flags & IFF_BROADCAST)
2204 sc->sc_rctl |= RCTL_BAM;
2205 if (ifp->if_flags & IFF_PROMISC) {
2206 sc->sc_rctl |= RCTL_UPE;
2207 goto allmulti;
2208 }
2209
2210 /*
2211 * Set the station address in the first RAL slot, and
2212 * clear the remaining slots.
2213 */
2214 dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
2215 for (i = 1; i < RA_TABSIZE; i++)
2216 dge_set_ral(sc, NULL, i);
2217
2218 /* Clear out the multicast table. */
2219 for (i = 0; i < MC_TABSIZE; i++)
2220 CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
2221
2222 ETHER_FIRST_MULTI(step, ec, enm);
2223 while (enm != NULL) {
2224 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2225 /*
2226 * We must listen to a range of multicast addresses.
2227 * For now, just accept all multicasts, rather than
2228 * trying to set only those filter bits needed to match
2229 * the range. (At this time, the only use of address
2230 * ranges is for IP multicast routing, for which the
2231 * range is big enough to require all bits set.)
2232 */
2233 goto allmulti;
2234 }
2235
2236 hash = dge_mchash(sc, enm->enm_addrlo);
2237
2238 reg = (hash >> 5) & 0x7f;
2239 bit = hash & 0x1f;
2240
2241 hash = CSR_READ(sc, DGE_MTA + (reg << 2));
2242 hash |= 1U << bit;
2243
2244 CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
2245
2246 ETHER_NEXT_MULTI(step, enm);
2247 }
2248
2249 ifp->if_flags &= ~IFF_ALLMULTI;
2250 goto setit;
2251
2252 allmulti:
2253 ifp->if_flags |= IFF_ALLMULTI;
2254 sc->sc_rctl |= RCTL_MPE;
2255
2256 setit:
2257 CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
2258 }
2259
2260 /*
2261 * Read in the EEPROM info and verify checksum.
2262 */
2263 int
2264 dge_read_eeprom(struct dge_softc *sc)
2265 {
2266 uint16_t cksum;
2267 int i;
2268
2269 cksum = 0;
2270 for (i = 0; i < EEPROM_SIZE; i++) {
2271 sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
2272 cksum += sc->sc_eeprom[i];
2273 }
2274 return cksum != EEPROM_CKSUM;
2275 }
2276
2277
2278 /*
2279 * Read a 16-bit word from address addr in the serial EEPROM.
2280 */
2281 uint16_t
2282 dge_eeprom_word(struct dge_softc *sc, int addr)
2283 {
2284 uint32_t reg;
2285 uint16_t rval = 0;
2286 int i;
2287
2288 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
2289
2290 /* Lower clock pulse (and data in to chip) */
2291 CSR_WRITE(sc, DGE_EECD, reg);
2292 /* Select chip */
2293 CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
2294
2295 /* Send read command */
2296 dge_eeprom_clockout(sc, 1);
2297 dge_eeprom_clockout(sc, 1);
2298 dge_eeprom_clockout(sc, 0);
2299
2300 /* Send address */
2301 for (i = 5; i >= 0; i--)
2302 dge_eeprom_clockout(sc, (addr >> i) & 1);
2303
2304 /* Read data */
2305 for (i = 0; i < 16; i++) {
2306 rval <<= 1;
2307 rval |= dge_eeprom_clockin(sc);
2308 }
2309
2310 /* Deselect chip */
2311 CSR_WRITE(sc, DGE_EECD, reg);
2312
2313 return rval;
2314 }
2315
2316 /*
2317 * Clock out a single bit to the EEPROM.
2318 */
2319 void
2320 dge_eeprom_clockout(struct dge_softc *sc, int bit)
2321 {
2322 int reg;
2323
2324 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
2325 if (bit)
2326 reg |= EECD_DI;
2327
2328 CSR_WRITE(sc, DGE_EECD, reg);
2329 delay(2);
2330 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
2331 delay(2);
2332 CSR_WRITE(sc, DGE_EECD, reg);
2333 delay(2);
2334 }
2335
2336 /*
2337 * Clock in a single bit from EEPROM.
2338 */
2339 int
2340 dge_eeprom_clockin(struct dge_softc *sc)
2341 {
2342 int reg, rv;
2343
2344 reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
2345
2346 CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
2347 delay(2);
2348 rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
2349 CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
2350 delay(2);
2351
2352 return rv;
2353 }
2354
2355 static void
2356 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
2357 {
2358 struct dge_softc *sc = ifp->if_softc;
2359
2360 ifmr->ifm_status = IFM_AVALID;
2361 ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
2362
2363 if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
2364 ifmr->ifm_status |= IFM_ACTIVE;
2365 }
2366
2367 static inline int
2368 phwait(struct dge_softc *sc, int p, int r, int d, int type)
2369 {
2370 int i, mdic;
2371
2372 CSR_WRITE(sc, DGE_MDIO,
2373 MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
2374 for (i = 0; i < 10; i++) {
2375 delay(10);
2376 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
2377 break;
2378 }
2379 return mdic;
2380 }
2381
2382
2383 static void
2384 dge_xgmii_writereg(device_t self, int phy, int reg, int val)
2385 {
2386 struct dge_softc *sc = device_private(self);
2387 int mdic;
2388
2389 CSR_WRITE(sc, DGE_MDIRW, val);
2390 if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
2391 printf("%s: address cycle timeout; phy %d reg %d\n",
2392 device_xname(sc->sc_dev), phy, reg);
2393 return;
2394 }
2395 if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
2396 printf("%s: read cycle timeout; phy %d reg %d\n",
2397 device_xname(sc->sc_dev), phy, reg);
2398 return;
2399 }
2400 }
2401
2402 static void
2403 dge_xgmii_reset(struct dge_softc *sc)
2404 {
2405 dge_xgmii_writereg((void *)sc, 0, 0, BMCR_RESET);
2406 }
2407
2408 static int
2409 dge_xgmii_mediachange(struct ifnet *ifp)
2410 {
2411 return 0;
2412 }
2413