Home | History | Annotate | Line # | Download | only in pci
if_dge.c revision 1.38.4.2
      1 /*	$NetBSD: if_dge.c,v 1.38.4.2 2015/06/06 14:40:09 skrll Exp $ */
      2 
      3 /*
      4  * Copyright (c) 2004, SUNET, Swedish University Computer Network.
      5  * All rights reserved.
      6  *
      7  * Written by Anders Magnusson for SUNET, Swedish University Computer Network.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. All advertising materials mentioning features or use of this software
     18  *    must display the following acknowledgement:
     19  *	This product includes software developed for the NetBSD Project by
     20  *	SUNET, Swedish University Computer Network.
     21  * 4. The name of SUNET may not be used to endorse or promote products
     22  *    derived from this software without specific prior written permission.
     23  *
     24  * THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
     25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     34  * POSSIBILITY OF SUCH DAMAGE.
     35  */
     36 
     37 /*
     38  * Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
     39  * All rights reserved.
     40  *
     41  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
     42  *
     43  * Redistribution and use in source and binary forms, with or without
     44  * modification, are permitted provided that the following conditions
     45  * are met:
     46  * 1. Redistributions of source code must retain the above copyright
     47  *    notice, this list of conditions and the following disclaimer.
     48  * 2. Redistributions in binary form must reproduce the above copyright
     49  *    notice, this list of conditions and the following disclaimer in the
     50  *    documentation and/or other materials provided with the distribution.
     51  * 3. All advertising materials mentioning features or use of this software
     52  *    must display the following acknowledgement:
     53  *	This product includes software developed for the NetBSD Project by
     54  *	Wasabi Systems, Inc.
     55  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
     56  *    or promote products derived from this software without specific prior
     57  *    written permission.
     58  *
     59  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
     60  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     61  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     62  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
     63  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     64  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     65  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     66  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     67  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     68  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     69  * POSSIBILITY OF SUCH DAMAGE.
     70  */
     71 
     72 /*
     73  * Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
     74  *
     75  * TODO (in no specific order):
     76  *	HW VLAN support.
     77  *	TSE offloading (needs kernel changes...)
     78  *	RAIDC (receive interrupt delay adaptation)
     79  *	Use memory > 4GB.
     80  */
     81 
     82 #include <sys/cdefs.h>
     83 __KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.38.4.2 2015/06/06 14:40:09 skrll Exp $");
     84 
     85 #include <sys/param.h>
     86 #include <sys/systm.h>
     87 #include <sys/callout.h>
     88 #include <sys/mbuf.h>
     89 #include <sys/malloc.h>
     90 #include <sys/kernel.h>
     91 #include <sys/socket.h>
     92 #include <sys/ioctl.h>
     93 #include <sys/errno.h>
     94 #include <sys/device.h>
     95 #include <sys/queue.h>
     96 
     97 #include <sys/rndsource.h>
     98 
     99 #include <net/if.h>
    100 #include <net/if_dl.h>
    101 #include <net/if_media.h>
    102 #include <net/if_ether.h>
    103 
    104 #include <net/bpf.h>
    105 
    106 #include <netinet/in.h>			/* XXX for struct ip */
    107 #include <netinet/in_systm.h>		/* XXX for struct ip */
    108 #include <netinet/ip.h>			/* XXX for struct ip */
    109 #include <netinet/tcp.h>		/* XXX for struct tcphdr */
    110 
    111 #include <sys/bus.h>
    112 #include <sys/intr.h>
    113 #include <machine/endian.h>
    114 
    115 #include <dev/mii/mii.h>
    116 #include <dev/mii/miivar.h>
    117 #include <dev/mii/mii_bitbang.h>
    118 
    119 #include <dev/pci/pcireg.h>
    120 #include <dev/pci/pcivar.h>
    121 #include <dev/pci/pcidevs.h>
    122 
    123 #include <dev/pci/if_dgereg.h>
    124 
    125 /*
    126  * The receive engine may sometimes become off-by-one when writing back
    127  * chained descriptors.	 Avoid this by allocating a large chunk of
    128  * memory and use if instead (to avoid chained descriptors).
    129  * This only happens with chained descriptors under heavy load.
    130  */
    131 #define DGE_OFFBYONE_RXBUG
    132 
    133 #define DGE_EVENT_COUNTERS
    134 #define DGE_DEBUG
    135 
    136 #ifdef DGE_DEBUG
    137 #define DGE_DEBUG_LINK		0x01
    138 #define DGE_DEBUG_TX		0x02
    139 #define DGE_DEBUG_RX		0x04
    140 #define DGE_DEBUG_CKSUM		0x08
    141 int	dge_debug = 0;
    142 
    143 #define DPRINTF(x, y)	if (dge_debug & (x)) printf y
    144 #else
    145 #define DPRINTF(x, y)	/* nothing */
    146 #endif /* DGE_DEBUG */
    147 
    148 /*
    149  * Transmit descriptor list size. We allow up to 100 DMA segments per
    150  * packet (Intel reports of jumbo frame packets with as
    151  * many as 80 DMA segments when using 16k buffers).
    152  */
    153 #define DGE_NTXSEGS		100
    154 #define DGE_IFQUEUELEN		20000
    155 #define DGE_TXQUEUELEN		2048
    156 #define DGE_TXQUEUELEN_MASK	(DGE_TXQUEUELEN - 1)
    157 #define DGE_TXQUEUE_GC		(DGE_TXQUEUELEN / 8)
    158 #define DGE_NTXDESC		1024
    159 #define DGE_NTXDESC_MASK		(DGE_NTXDESC - 1)
    160 #define DGE_NEXTTX(x)		(((x) + 1) & DGE_NTXDESC_MASK)
    161 #define DGE_NEXTTXS(x)		(((x) + 1) & DGE_TXQUEUELEN_MASK)
    162 
    163 /*
    164  * Receive descriptor list size.
    165  * Packet is of size MCLBYTES, and for jumbo packets buffers may
    166  * be chained.	Due to the nature of the card (high-speed), keep this
    167  * ring large. With 2k buffers the ring can store 400 jumbo packets,
    168  * which at full speed will be received in just under 3ms.
    169  */
    170 #define DGE_NRXDESC		2048
    171 #define DGE_NRXDESC_MASK	(DGE_NRXDESC - 1)
    172 #define DGE_NEXTRX(x)		(((x) + 1) & DGE_NRXDESC_MASK)
    173 /*
    174  * # of descriptors between head and written descriptors.
    175  * This is to work-around two erratas.
    176  */
    177 #define DGE_RXSPACE		10
    178 #define DGE_PREVRX(x)		(((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
    179 /*
    180  * Receive descriptor fetch threshholds. These are values recommended
    181  * by Intel, do not touch them unless you know what you are doing.
    182  */
    183 #define RXDCTL_PTHRESH_VAL	128
    184 #define RXDCTL_HTHRESH_VAL	16
    185 #define RXDCTL_WTHRESH_VAL	16
    186 
    187 
    188 /*
    189  * Tweakable parameters; default values.
    190  */
    191 #define FCRTH	0x30000 /* Send XOFF water mark */
    192 #define FCRTL	0x28000 /* Send XON water mark */
    193 #define RDTR	0x20	/* Interrupt delay after receive, .8192us units */
    194 #define TIDV	0x20	/* Interrupt delay after send, .8192us units */
    195 
    196 /*
    197  * Control structures are DMA'd to the i82597 chip.  We allocate them in
    198  * a single clump that maps to a single DMA segment to make serveral things
    199  * easier.
    200  */
    201 struct dge_control_data {
    202 	/*
    203 	 * The transmit descriptors.
    204 	 */
    205 	struct dge_tdes wcd_txdescs[DGE_NTXDESC];
    206 
    207 	/*
    208 	 * The receive descriptors.
    209 	 */
    210 	struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
    211 };
    212 
    213 #define DGE_CDOFF(x)	offsetof(struct dge_control_data, x)
    214 #define DGE_CDTXOFF(x)	DGE_CDOFF(wcd_txdescs[(x)])
    215 #define DGE_CDRXOFF(x)	DGE_CDOFF(wcd_rxdescs[(x)])
    216 
    217 /*
    218  * The DGE interface have a higher max MTU size than normal jumbo frames.
    219  */
    220 #define DGE_MAX_MTU	16288	/* Max MTU size for this interface */
    221 
    222 /*
    223  * Software state for transmit jobs.
    224  */
    225 struct dge_txsoft {
    226 	struct mbuf *txs_mbuf;		/* head of our mbuf chain */
    227 	bus_dmamap_t txs_dmamap;	/* our DMA map */
    228 	int txs_firstdesc;		/* first descriptor in packet */
    229 	int txs_lastdesc;		/* last descriptor in packet */
    230 	int txs_ndesc;			/* # of descriptors used */
    231 };
    232 
    233 /*
    234  * Software state for receive buffers.	Each descriptor gets a
    235  * 2k (MCLBYTES) buffer and a DMA map.	For packets which fill
    236  * more than one buffer, we chain them together.
    237  */
    238 struct dge_rxsoft {
    239 	struct mbuf *rxs_mbuf;		/* head of our mbuf chain */
    240 	bus_dmamap_t rxs_dmamap;	/* our DMA map */
    241 };
    242 
    243 /*
    244  * Software state per device.
    245  */
    246 struct dge_softc {
    247 	device_t sc_dev;		/* generic device information */
    248 	bus_space_tag_t sc_st;		/* bus space tag */
    249 	bus_space_handle_t sc_sh;	/* bus space handle */
    250 	bus_dma_tag_t sc_dmat;		/* bus DMA tag */
    251 	struct ethercom sc_ethercom;	/* ethernet common data */
    252 
    253 	int sc_flags;			/* flags; see below */
    254 	int sc_bus_speed;		/* PCI/PCIX bus speed */
    255 	int sc_pcix_offset;		/* PCIX capability register offset */
    256 
    257 	pci_chipset_tag_t sc_pc;
    258 	pcitag_t sc_pt;
    259 	int sc_mmrbc;			/* Max PCIX memory read byte count */
    260 
    261 	void *sc_ih;			/* interrupt cookie */
    262 
    263 	struct ifmedia sc_media;
    264 
    265 	bus_dmamap_t sc_cddmamap;	/* control data DMA map */
    266 #define sc_cddma	sc_cddmamap->dm_segs[0].ds_addr
    267 
    268 	int		sc_align_tweak;
    269 
    270 	/*
    271 	 * Software state for the transmit and receive descriptors.
    272 	 */
    273 	struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
    274 	struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
    275 
    276 	/*
    277 	 * Control data structures.
    278 	 */
    279 	struct dge_control_data *sc_control_data;
    280 #define sc_txdescs	sc_control_data->wcd_txdescs
    281 #define sc_rxdescs	sc_control_data->wcd_rxdescs
    282 
    283 #ifdef DGE_EVENT_COUNTERS
    284 	/* Event counters. */
    285 	struct evcnt sc_ev_txsstall;	/* Tx stalled due to no txs */
    286 	struct evcnt sc_ev_txdstall;	/* Tx stalled due to no txd */
    287 	struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
    288 	struct evcnt sc_ev_txdw;	/* Tx descriptor interrupts */
    289 	struct evcnt sc_ev_txqe;	/* Tx queue empty interrupts */
    290 	struct evcnt sc_ev_rxintr;	/* Rx interrupts */
    291 	struct evcnt sc_ev_linkintr;	/* Link interrupts */
    292 
    293 	struct evcnt sc_ev_rxipsum;	/* IP checksums checked in-bound */
    294 	struct evcnt sc_ev_rxtusum;	/* TCP/UDP cksums checked in-bound */
    295 	struct evcnt sc_ev_txipsum;	/* IP checksums comp. out-bound */
    296 	struct evcnt sc_ev_txtusum;	/* TCP/UDP cksums comp. out-bound */
    297 
    298 	struct evcnt sc_ev_txctx_init;	/* Tx cksum context cache initialized */
    299 	struct evcnt sc_ev_txctx_hit;	/* Tx cksum context cache hit */
    300 	struct evcnt sc_ev_txctx_miss;	/* Tx cksum context cache miss */
    301 
    302 	struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
    303 	struct evcnt sc_ev_txdrop;	/* Tx packets dropped (too many segs) */
    304 #endif /* DGE_EVENT_COUNTERS */
    305 
    306 	int	sc_txfree;		/* number of free Tx descriptors */
    307 	int	sc_txnext;		/* next ready Tx descriptor */
    308 
    309 	int	sc_txsfree;		/* number of free Tx jobs */
    310 	int	sc_txsnext;		/* next free Tx job */
    311 	int	sc_txsdirty;		/* dirty Tx jobs */
    312 
    313 	uint32_t sc_txctx_ipcs;		/* cached Tx IP cksum ctx */
    314 	uint32_t sc_txctx_tucs;		/* cached Tx TCP/UDP cksum ctx */
    315 
    316 	int	sc_rxptr;		/* next ready Rx descriptor/queue ent */
    317 	int	sc_rxdiscard;
    318 	int	sc_rxlen;
    319 	struct mbuf *sc_rxhead;
    320 	struct mbuf *sc_rxtail;
    321 	struct mbuf **sc_rxtailp;
    322 
    323 	uint32_t sc_ctrl0;		/* prototype CTRL0 register */
    324 	uint32_t sc_icr;		/* prototype interrupt bits */
    325 	uint32_t sc_tctl;		/* prototype TCTL register */
    326 	uint32_t sc_rctl;		/* prototype RCTL register */
    327 
    328 	int sc_mchash_type;		/* multicast filter offset */
    329 
    330 	uint16_t sc_eeprom[EEPROM_SIZE];
    331 
    332 	krndsource_t rnd_source; /* random source */
    333 #ifdef DGE_OFFBYONE_RXBUG
    334 	void *sc_bugbuf;
    335 	SLIST_HEAD(, rxbugentry) sc_buglist;
    336 	bus_dmamap_t sc_bugmap;
    337 	struct rxbugentry *sc_entry;
    338 #endif
    339 };
    340 
    341 #define DGE_RXCHAIN_RESET(sc)						\
    342 do {									\
    343 	(sc)->sc_rxtailp = &(sc)->sc_rxhead;				\
    344 	*(sc)->sc_rxtailp = NULL;					\
    345 	(sc)->sc_rxlen = 0;						\
    346 } while (/*CONSTCOND*/0)
    347 
    348 #define DGE_RXCHAIN_LINK(sc, m)						\
    349 do {									\
    350 	*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m);			\
    351 	(sc)->sc_rxtailp = &(m)->m_next;				\
    352 } while (/*CONSTCOND*/0)
    353 
    354 /* sc_flags */
    355 #define DGE_F_BUS64		0x20	/* bus is 64-bit */
    356 #define DGE_F_PCIX		0x40	/* bus is PCI-X */
    357 
    358 #ifdef DGE_EVENT_COUNTERS
    359 #define DGE_EVCNT_INCR(ev)	(ev)->ev_count++
    360 #else
    361 #define DGE_EVCNT_INCR(ev)	/* nothing */
    362 #endif
    363 
    364 #define CSR_READ(sc, reg)						\
    365 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
    366 #define CSR_WRITE(sc, reg, val)						\
    367 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
    368 
    369 #define DGE_CDTXADDR(sc, x)	((sc)->sc_cddma + DGE_CDTXOFF((x)))
    370 #define DGE_CDRXADDR(sc, x)	((sc)->sc_cddma + DGE_CDRXOFF((x)))
    371 
    372 #define DGE_CDTXSYNC(sc, x, n, ops)					\
    373 do {									\
    374 	int __x, __n;							\
    375 									\
    376 	__x = (x);							\
    377 	__n = (n);							\
    378 									\
    379 	/* If it will wrap around, sync to the end of the ring. */	\
    380 	if ((__x + __n) > DGE_NTXDESC) {				\
    381 		bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,	\
    382 		    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) *		\
    383 		    (DGE_NTXDESC - __x), (ops));			\
    384 		__n -= (DGE_NTXDESC - __x);				\
    385 		__x = 0;						\
    386 	}								\
    387 									\
    388 	/* Now sync whatever is left. */				\
    389 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    390 	    DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops));	\
    391 } while (/*CONSTCOND*/0)
    392 
    393 #define DGE_CDRXSYNC(sc, x, ops)						\
    394 do {									\
    395 	bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap,		\
    396 	   DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops));		\
    397 } while (/*CONSTCOND*/0)
    398 
    399 #ifdef DGE_OFFBYONE_RXBUG
    400 #define DGE_INIT_RXDESC(sc, x)						\
    401 do {									\
    402 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    403 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    404 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    405 									\
    406 	__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr +	\
    407 	    (mtod((__m), char *) - (char *)sc->sc_bugbuf));		\
    408 	__rxd->dr_baddrh = 0;						\
    409 	__rxd->dr_len = 0;						\
    410 	__rxd->dr_cksum = 0;						\
    411 	__rxd->dr_status = 0;						\
    412 	__rxd->dr_errors = 0;						\
    413 	__rxd->dr_special = 0;						\
    414 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    415 									\
    416 	CSR_WRITE((sc), DGE_RDT, (x));					\
    417 } while (/*CONSTCOND*/0)
    418 #else
    419 #define DGE_INIT_RXDESC(sc, x)						\
    420 do {									\
    421 	struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)];		\
    422 	struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)];		\
    423 	struct mbuf *__m = __rxs->rxs_mbuf;				\
    424 									\
    425 	/*								\
    426 	 * Note: We scoot the packet forward 2 bytes in the buffer	\
    427 	 * so that the payload after the Ethernet header is aligned	\
    428 	 * to a 4-byte boundary.					\
    429 	 *								\
    430 	 * XXX BRAINDAMAGE ALERT!					\
    431 	 * The stupid chip uses the same size for every buffer, which	\
    432 	 * is set in the Receive Control register.  We are using the 2K \
    433 	 * size option, but what we REALLY want is (2K - 2)!  For this	\
    434 	 * reason, we can't "scoot" packets longer than the standard	\
    435 	 * Ethernet MTU.  On strict-alignment platforms, if the total	\
    436 	 * size exceeds (2K - 2) we set align_tweak to 0 and let	\
    437 	 * the upper layer copy the headers.				\
    438 	 */								\
    439 	__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak;	\
    440 									\
    441 	__rxd->dr_baddrl =						\
    442 	    htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr +		\
    443 		(sc)->sc_align_tweak);					\
    444 	__rxd->dr_baddrh = 0;						\
    445 	__rxd->dr_len = 0;						\
    446 	__rxd->dr_cksum = 0;						\
    447 	__rxd->dr_status = 0;						\
    448 	__rxd->dr_errors = 0;						\
    449 	__rxd->dr_special = 0;						\
    450 	DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
    451 									\
    452 	CSR_WRITE((sc), DGE_RDT, (x));					\
    453 } while (/*CONSTCOND*/0)
    454 #endif
    455 
    456 #ifdef DGE_OFFBYONE_RXBUG
    457 /*
    458  * Allocation constants.  Much memory may be used for this.
    459  */
    460 #ifndef DGE_BUFFER_SIZE
    461 #define DGE_BUFFER_SIZE DGE_MAX_MTU
    462 #endif
    463 #define DGE_NBUFFERS	(4*DGE_NRXDESC)
    464 #define DGE_RXMEM	(DGE_NBUFFERS*DGE_BUFFER_SIZE)
    465 
    466 struct rxbugentry {
    467 	SLIST_ENTRY(rxbugentry) rb_entry;
    468 	int rb_slot;
    469 };
    470 
    471 static int
    472 dge_alloc_rcvmem(struct dge_softc *sc)
    473 {
    474 	char *kva;
    475 	bus_dma_segment_t seg;
    476 	int i, rseg, state, error;
    477 	struct rxbugentry *entry;
    478 
    479 	state = error = 0;
    480 
    481 	if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
    482 	     &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
    483 		aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
    484 		return ENOBUFS;
    485 	}
    486 
    487 	state = 1;
    488 	if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
    489 	    BUS_DMA_NOWAIT)) {
    490 		aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
    491 		    (int)DGE_RXMEM);
    492 		error = ENOBUFS;
    493 		goto out;
    494 	}
    495 
    496 	state = 2;
    497 	if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
    498 	    BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
    499 		aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
    500 		error = ENOBUFS;
    501 		goto out;
    502 	}
    503 
    504 	state = 3;
    505 	if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
    506 	    kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
    507 		aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
    508 		error = ENOBUFS;
    509 		goto out;
    510 	}
    511 
    512 	state = 4;
    513 	sc->sc_bugbuf = (void *)kva;
    514 	SLIST_INIT(&sc->sc_buglist);
    515 
    516 	/*
    517 	 * Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
    518 	 * in an array.
    519 	 */
    520 	if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
    521 	    M_DEVBUF, M_NOWAIT)) == NULL) {
    522 		error = ENOBUFS;
    523 		goto out;
    524 	}
    525 	sc->sc_entry = entry;
    526 	for (i = 0; i < DGE_NBUFFERS; i++) {
    527 		entry[i].rb_slot = i;
    528 		SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
    529 	}
    530 out:
    531 	if (error != 0) {
    532 		switch (state) {
    533 		case 4:
    534 			bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
    535 		case 3:
    536 			bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
    537 		case 2:
    538 			bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
    539 		case 1:
    540 			bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    541 			break;
    542 		default:
    543 			break;
    544 		}
    545 	}
    546 
    547 	return error;
    548 }
    549 
    550 /*
    551  * Allocate a jumbo buffer.
    552  */
    553 static void *
    554 dge_getbuf(struct dge_softc *sc)
    555 {
    556 	struct rxbugentry *entry;
    557 
    558 	entry = SLIST_FIRST(&sc->sc_buglist);
    559 
    560 	if (entry == NULL) {
    561 		printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
    562 		return(NULL);
    563 	}
    564 
    565 	SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
    566 	return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
    567 }
    568 
    569 /*
    570  * Release a jumbo buffer.
    571  */
    572 static void
    573 dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
    574 {
    575 	struct rxbugentry *entry;
    576 	struct dge_softc *sc;
    577 	int i, s;
    578 
    579 	/* Extract the softc struct pointer. */
    580 	sc = (struct dge_softc *)arg;
    581 
    582 	if (sc == NULL)
    583 		panic("dge_freebuf: can't find softc pointer!");
    584 
    585 	/* calculate the slot this buffer belongs to */
    586 
    587 	i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
    588 
    589 	if ((i < 0) || (i >= DGE_NBUFFERS))
    590 		panic("dge_freebuf: asked to free buffer %d!", i);
    591 
    592 	s = splvm();
    593 	entry = sc->sc_entry + i;
    594 	SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
    595 
    596 	if (__predict_true(m != NULL))
    597 		pool_cache_put(mb_cache, m);
    598 	splx(s);
    599 }
    600 #endif
    601 
    602 static void	dge_start(struct ifnet *);
    603 static void	dge_watchdog(struct ifnet *);
    604 static int	dge_ioctl(struct ifnet *, u_long, void *);
    605 static int	dge_init(struct ifnet *);
    606 static void	dge_stop(struct ifnet *, int);
    607 
    608 static bool	dge_shutdown(device_t, int);
    609 
    610 static void	dge_reset(struct dge_softc *);
    611 static void	dge_rxdrain(struct dge_softc *);
    612 static int	dge_add_rxbuf(struct dge_softc *, int);
    613 
    614 static void	dge_set_filter(struct dge_softc *);
    615 
    616 static int	dge_intr(void *);
    617 static void	dge_txintr(struct dge_softc *);
    618 static void	dge_rxintr(struct dge_softc *);
    619 static void	dge_linkintr(struct dge_softc *, uint32_t);
    620 
    621 static int	dge_match(device_t, cfdata_t, void *);
    622 static void	dge_attach(device_t, device_t, void *);
    623 
    624 static int	dge_read_eeprom(struct dge_softc *sc);
    625 static int	dge_eeprom_clockin(struct dge_softc *sc);
    626 static void	dge_eeprom_clockout(struct dge_softc *sc, int bit);
    627 static uint16_t	dge_eeprom_word(struct dge_softc *sc, int addr);
    628 static int	dge_xgmii_mediachange(struct ifnet *);
    629 static void	dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
    630 static void	dge_xgmii_reset(struct dge_softc *);
    631 static void	dge_xgmii_writereg(struct dge_softc *, int, int, int);
    632 
    633 
    634 CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
    635     dge_match, dge_attach, NULL, NULL);
    636 
    637 #ifdef DGE_EVENT_COUNTERS
    638 #if DGE_NTXSEGS > 100
    639 #error Update dge_txseg_evcnt_names
    640 #endif
    641 static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
    642 #endif /* DGE_EVENT_COUNTERS */
    643 
    644 static int
    645 dge_match(device_t parent, cfdata_t cf, void *aux)
    646 {
    647 	struct pci_attach_args *pa = aux;
    648 
    649 	if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_INTEL &&
    650 	    PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_82597EX)
    651 		return (1);
    652 
    653 	return (0);
    654 }
    655 
    656 static void
    657 dge_attach(device_t parent, device_t self, void *aux)
    658 {
    659 	struct dge_softc *sc = device_private(self);
    660 	struct pci_attach_args *pa = aux;
    661 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
    662 	pci_chipset_tag_t pc = pa->pa_pc;
    663 	pci_intr_handle_t ih;
    664 	const char *intrstr = NULL;
    665 	bus_dma_segment_t seg;
    666 	int i, rseg, error;
    667 	uint8_t enaddr[ETHER_ADDR_LEN];
    668 	pcireg_t preg, memtype;
    669 	uint32_t reg;
    670 	char intrbuf[PCI_INTRSTR_LEN];
    671 
    672 	sc->sc_dev = self;
    673 	sc->sc_dmat = pa->pa_dmat;
    674 	sc->sc_pc = pa->pa_pc;
    675 	sc->sc_pt = pa->pa_tag;
    676 
    677 	pci_aprint_devinfo_fancy(pa, "Ethernet controller",
    678 		"Intel i82597EX 10GbE-LR Ethernet", 1);
    679 
    680 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
    681         if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
    682             &sc->sc_st, &sc->sc_sh, NULL, NULL)) {
    683                 aprint_error_dev(sc->sc_dev, "unable to map device registers\n");
    684                 return;
    685         }
    686 
    687 	/* Enable bus mastering */
    688 	preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    689 	preg |= PCI_COMMAND_MASTER_ENABLE;
    690 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
    691 
    692 	/*
    693 	 * Map and establish our interrupt.
    694 	 */
    695 	if (pci_intr_map(pa, &ih)) {
    696 		aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
    697 		return;
    698 	}
    699 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    700 	sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
    701 	if (sc->sc_ih == NULL) {
    702 		aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
    703 		if (intrstr != NULL)
    704 			aprint_error(" at %s", intrstr);
    705 		aprint_error("\n");
    706 		return;
    707 	}
    708 	aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
    709 
    710 	/*
    711 	 * Determine a few things about the bus we're connected to.
    712 	 */
    713 	reg = CSR_READ(sc, DGE_STATUS);
    714 	if (reg & STATUS_BUS64)
    715 		sc->sc_flags |= DGE_F_BUS64;
    716 
    717 	sc->sc_flags |= DGE_F_PCIX;
    718 	if (pci_get_capability(pa->pa_pc, pa->pa_tag,
    719 			       PCI_CAP_PCIX,
    720 			       &sc->sc_pcix_offset, NULL) == 0)
    721 		aprint_error_dev(sc->sc_dev, "unable to find PCIX "
    722 		    "capability\n");
    723 
    724 	if (sc->sc_flags & DGE_F_PCIX) {
    725 		switch (reg & STATUS_PCIX_MSK) {
    726 		case STATUS_PCIX_66:
    727 			sc->sc_bus_speed = 66;
    728 			break;
    729 		case STATUS_PCIX_100:
    730 			sc->sc_bus_speed = 100;
    731 			break;
    732 		case STATUS_PCIX_133:
    733 			sc->sc_bus_speed = 133;
    734 			break;
    735 		default:
    736 			aprint_error_dev(sc->sc_dev,
    737 			    "unknown PCIXSPD %d; assuming 66MHz\n",
    738 			    reg & STATUS_PCIX_MSK);
    739 			sc->sc_bus_speed = 66;
    740 		}
    741 	} else
    742 		sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
    743 	aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
    744 	    (sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
    745 	    (sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
    746 
    747 	/*
    748 	 * Allocate the control data structures, and create and load the
    749 	 * DMA map for it.
    750 	 */
    751 	if ((error = bus_dmamem_alloc(sc->sc_dmat,
    752 	    sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
    753 	    0)) != 0) {
    754 		aprint_error_dev(sc->sc_dev,
    755 		    "unable to allocate control data, error = %d\n",
    756 		    error);
    757 		goto fail_0;
    758 	}
    759 
    760 	if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
    761 	    sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
    762 	    0)) != 0) {
    763 		aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
    764 		    error);
    765 		goto fail_1;
    766 	}
    767 
    768 	if ((error = bus_dmamap_create(sc->sc_dmat,
    769 	    sizeof(struct dge_control_data), 1,
    770 	    sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
    771 		aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
    772 		    "error = %d\n", error);
    773 		goto fail_2;
    774 	}
    775 
    776 	if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
    777 	    sc->sc_control_data, sizeof(struct dge_control_data), NULL,
    778 	    0)) != 0) {
    779 		aprint_error_dev(sc->sc_dev,
    780 		    "unable to load control data DMA map, error = %d\n",
    781 		    error);
    782 		goto fail_3;
    783 	}
    784 
    785 #ifdef DGE_OFFBYONE_RXBUG
    786 	if (dge_alloc_rcvmem(sc) != 0)
    787 		return; /* Already complained */
    788 #endif
    789 	/*
    790 	 * Create the transmit buffer DMA maps.
    791 	 */
    792 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    793 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
    794 		    DGE_NTXSEGS, MCLBYTES, 0, 0,
    795 		    &sc->sc_txsoft[i].txs_dmamap)) != 0) {
    796 			aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
    797 			    "error = %d\n", i, error);
    798 			goto fail_4;
    799 		}
    800 	}
    801 
    802 	/*
    803 	 * Create the receive buffer DMA maps.
    804 	 */
    805 	for (i = 0; i < DGE_NRXDESC; i++) {
    806 #ifdef DGE_OFFBYONE_RXBUG
    807 		if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
    808 		    DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    809 #else
    810 		if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
    811 		    MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
    812 #endif
    813 			aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
    814 			    "error = %d\n", i, error);
    815 			goto fail_5;
    816 		}
    817 		sc->sc_rxsoft[i].rxs_mbuf = NULL;
    818 	}
    819 
    820 	/*
    821 	 * Set bits in ctrl0 register.
    822 	 * Should get the software defined pins out of EEPROM?
    823 	 */
    824 	sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
    825 	sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
    826 	    CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
    827 
    828 	/*
    829 	 * Reset the chip to a known state.
    830 	 */
    831 	dge_reset(sc);
    832 
    833 	/*
    834 	 * Reset the PHY.
    835 	 */
    836 	dge_xgmii_reset(sc);
    837 
    838 	/*
    839 	 * Read in EEPROM data.
    840 	 */
    841 	if (dge_read_eeprom(sc)) {
    842 		aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
    843 		return;
    844 	}
    845 
    846 	/*
    847 	 * Get the ethernet address.
    848 	 */
    849 	enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
    850 	enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
    851 	enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
    852 	enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
    853 	enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
    854 	enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
    855 
    856 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    857 	    ether_sprintf(enaddr));
    858 
    859 	/*
    860 	 * Setup media stuff.
    861 	 */
    862         ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
    863             dge_xgmii_mediastatus);
    864         ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
    865         ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
    866 
    867 	ifp = &sc->sc_ethercom.ec_if;
    868 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
    869 	ifp->if_softc = sc;
    870 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    871 	ifp->if_ioctl = dge_ioctl;
    872 	ifp->if_start = dge_start;
    873 	ifp->if_watchdog = dge_watchdog;
    874 	ifp->if_init = dge_init;
    875 	ifp->if_stop = dge_stop;
    876 	IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
    877 	IFQ_SET_READY(&ifp->if_snd);
    878 
    879 	sc->sc_ethercom.ec_capabilities |=
    880 	    ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
    881 
    882 	/*
    883 	 * We can perform TCPv4 and UDPv4 checkums in-bound.
    884 	 */
    885 	ifp->if_capabilities |=
    886 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    887 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    888 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    889 
    890 	/*
    891 	 * Attach the interface.
    892 	 */
    893 	if_attach(ifp);
    894 	ether_ifattach(ifp, enaddr);
    895 	rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
    896 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
    897 
    898 #ifdef DGE_EVENT_COUNTERS
    899 	/* Fix segment event naming */
    900 	if (dge_txseg_evcnt_names == NULL) {
    901 		dge_txseg_evcnt_names =
    902 		    malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
    903 		for (i = 0; i < DGE_NTXSEGS; i++)
    904 			snprintf((*dge_txseg_evcnt_names)[i],
    905 			    sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
    906 	}
    907 
    908 	/* Attach event counters. */
    909 	evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
    910 	    NULL, device_xname(sc->sc_dev), "txsstall");
    911 	evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
    912 	    NULL, device_xname(sc->sc_dev), "txdstall");
    913 	evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
    914 	    NULL, device_xname(sc->sc_dev), "txforceintr");
    915 	evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
    916 	    NULL, device_xname(sc->sc_dev), "txdw");
    917 	evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
    918 	    NULL, device_xname(sc->sc_dev), "txqe");
    919 	evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
    920 	    NULL, device_xname(sc->sc_dev), "rxintr");
    921 	evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
    922 	    NULL, device_xname(sc->sc_dev), "linkintr");
    923 
    924 	evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
    925 	    NULL, device_xname(sc->sc_dev), "rxipsum");
    926 	evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
    927 	    NULL, device_xname(sc->sc_dev), "rxtusum");
    928 	evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
    929 	    NULL, device_xname(sc->sc_dev), "txipsum");
    930 	evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
    931 	    NULL, device_xname(sc->sc_dev), "txtusum");
    932 
    933 	evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
    934 	    NULL, device_xname(sc->sc_dev), "txctx init");
    935 	evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
    936 	    NULL, device_xname(sc->sc_dev), "txctx hit");
    937 	evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
    938 	    NULL, device_xname(sc->sc_dev), "txctx miss");
    939 
    940 	for (i = 0; i < DGE_NTXSEGS; i++)
    941 		evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
    942 		    NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
    943 
    944 	evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
    945 	    NULL, device_xname(sc->sc_dev), "txdrop");
    946 
    947 #endif /* DGE_EVENT_COUNTERS */
    948 
    949 	/*
    950 	 * Make sure the interface is shutdown during reboot.
    951 	 */
    952 	if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
    953 		pmf_class_network_register(self, ifp);
    954 	else
    955 		aprint_error_dev(self, "couldn't establish power handler\n");
    956 
    957 	return;
    958 
    959 	/*
    960 	 * Free any resources we've allocated during the failed attach
    961 	 * attempt.  Do this in reverse order and fall through.
    962 	 */
    963  fail_5:
    964 	for (i = 0; i < DGE_NRXDESC; i++) {
    965 		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
    966 			bus_dmamap_destroy(sc->sc_dmat,
    967 			    sc->sc_rxsoft[i].rxs_dmamap);
    968 	}
    969  fail_4:
    970 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
    971 		if (sc->sc_txsoft[i].txs_dmamap != NULL)
    972 			bus_dmamap_destroy(sc->sc_dmat,
    973 			    sc->sc_txsoft[i].txs_dmamap);
    974 	}
    975 	bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
    976  fail_3:
    977 	bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
    978  fail_2:
    979 	bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
    980 	    sizeof(struct dge_control_data));
    981  fail_1:
    982 	bus_dmamem_free(sc->sc_dmat, &seg, rseg);
    983  fail_0:
    984 	return;
    985 }
    986 
    987 /*
    988  * dge_shutdown:
    989  *
    990  *	Make sure the interface is stopped at reboot time.
    991  */
    992 static bool
    993 dge_shutdown(device_t self, int howto)
    994 {
    995 	struct dge_softc *sc;
    996 
    997 	sc = device_private(self);
    998 	dge_stop(&sc->sc_ethercom.ec_if, 1);
    999 
   1000 	return true;
   1001 }
   1002 
   1003 /*
   1004  * dge_tx_cksum:
   1005  *
   1006  *	Set up TCP/IP checksumming parameters for the
   1007  *	specified packet.
   1008  */
   1009 static int
   1010 dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
   1011 {
   1012 	struct mbuf *m0 = txs->txs_mbuf;
   1013 	struct dge_ctdes *t;
   1014 	uint32_t ipcs, tucs;
   1015 	struct ether_header *eh;
   1016 	int offset, iphl;
   1017 	uint8_t fields = 0;
   1018 
   1019 	/*
   1020 	 * XXX It would be nice if the mbuf pkthdr had offset
   1021 	 * fields for the protocol headers.
   1022 	 */
   1023 
   1024 	eh = mtod(m0, struct ether_header *);
   1025 	switch (htons(eh->ether_type)) {
   1026 	case ETHERTYPE_IP:
   1027 		offset = ETHER_HDR_LEN;
   1028 		break;
   1029 
   1030 	case ETHERTYPE_VLAN:
   1031 		offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
   1032 		break;
   1033 
   1034 	default:
   1035 		/*
   1036 		 * Don't support this protocol or encapsulation.
   1037 		 */
   1038 		*fieldsp = 0;
   1039 		return (0);
   1040 	}
   1041 
   1042 	iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
   1043 
   1044 	/*
   1045 	 * NOTE: Even if we're not using the IP or TCP/UDP checksum
   1046 	 * offload feature, if we load the context descriptor, we
   1047 	 * MUST provide valid values for IPCSS and TUCSS fields.
   1048 	 */
   1049 
   1050 	if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
   1051 		DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
   1052 		fields |= TDESC_POPTS_IXSM;
   1053 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1054 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1055 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1056 	} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
   1057 		/* Use the cached value. */
   1058 		ipcs = sc->sc_txctx_ipcs;
   1059 	} else {
   1060 		/* Just initialize it to the likely value anyway. */
   1061 		ipcs = DGE_TCPIP_IPCSS(offset) |
   1062 		    DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
   1063 		    DGE_TCPIP_IPCSE(offset + iphl - 1);
   1064 	}
   1065 	DPRINTF(DGE_DEBUG_CKSUM,
   1066 	    ("%s: CKSUM: offset %d ipcs 0x%x\n",
   1067 	    device_xname(sc->sc_dev), offset, ipcs));
   1068 
   1069 	offset += iphl;
   1070 
   1071 	if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1072 		DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
   1073 		fields |= TDESC_POPTS_TXSM;
   1074 		tucs = DGE_TCPIP_TUCSS(offset) |
   1075 		   DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
   1076 		   DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1077 	} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
   1078 		/* Use the cached value. */
   1079 		tucs = sc->sc_txctx_tucs;
   1080 	} else {
   1081 		/* Just initialize it to a valid TCP context. */
   1082 		tucs = DGE_TCPIP_TUCSS(offset) |
   1083 		    DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
   1084 		    DGE_TCPIP_TUCSE(0) /* rest of packet */;
   1085 	}
   1086 
   1087 	DPRINTF(DGE_DEBUG_CKSUM,
   1088 	    ("%s: CKSUM: offset %d tucs 0x%x\n",
   1089 	    device_xname(sc->sc_dev), offset, tucs));
   1090 
   1091 	if (sc->sc_txctx_ipcs == ipcs &&
   1092 	    sc->sc_txctx_tucs == tucs) {
   1093 		/* Cached context is fine. */
   1094 		DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
   1095 	} else {
   1096 		/* Fill in the context descriptor. */
   1097 #ifdef DGE_EVENT_COUNTERS
   1098 		if (sc->sc_txctx_ipcs == 0xffffffff &&
   1099 		    sc->sc_txctx_tucs == 0xffffffff)
   1100 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
   1101 		else
   1102 			DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
   1103 #endif
   1104 		t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
   1105 		t->dc_tcpip_ipcs = htole32(ipcs);
   1106 		t->dc_tcpip_tucs = htole32(tucs);
   1107 		t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
   1108 		t->dc_tcpip_seg = 0;
   1109 		DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
   1110 
   1111 		sc->sc_txctx_ipcs = ipcs;
   1112 		sc->sc_txctx_tucs = tucs;
   1113 
   1114 		sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
   1115 		txs->txs_ndesc++;
   1116 	}
   1117 
   1118 	*fieldsp = fields;
   1119 
   1120 	return (0);
   1121 }
   1122 
   1123 /*
   1124  * dge_start:		[ifnet interface function]
   1125  *
   1126  *	Start packet transmission on the interface.
   1127  */
   1128 static void
   1129 dge_start(struct ifnet *ifp)
   1130 {
   1131 	struct dge_softc *sc = ifp->if_softc;
   1132 	struct mbuf *m0;
   1133 	struct dge_txsoft *txs;
   1134 	bus_dmamap_t dmamap;
   1135 	int error, nexttx, lasttx = -1, ofree, seg;
   1136 	uint32_t cksumcmd;
   1137 	uint8_t cksumfields;
   1138 
   1139 	if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
   1140 		return;
   1141 
   1142 	/*
   1143 	 * Remember the previous number of free descriptors.
   1144 	 */
   1145 	ofree = sc->sc_txfree;
   1146 
   1147 	/*
   1148 	 * Loop through the send queue, setting up transmit descriptors
   1149 	 * until we drain the queue, or use up all available transmit
   1150 	 * descriptors.
   1151 	 */
   1152 	for (;;) {
   1153 		/* Grab a packet off the queue. */
   1154 		IFQ_POLL(&ifp->if_snd, m0);
   1155 		if (m0 == NULL)
   1156 			break;
   1157 
   1158 		DPRINTF(DGE_DEBUG_TX,
   1159 		    ("%s: TX: have packet to transmit: %p\n",
   1160 		    device_xname(sc->sc_dev), m0));
   1161 
   1162 		/* Get a work queue entry. */
   1163 		if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
   1164 			dge_txintr(sc);
   1165 			if (sc->sc_txsfree == 0) {
   1166 				DPRINTF(DGE_DEBUG_TX,
   1167 				    ("%s: TX: no free job descriptors\n",
   1168 					device_xname(sc->sc_dev)));
   1169 				DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
   1170 				break;
   1171 			}
   1172 		}
   1173 
   1174 		txs = &sc->sc_txsoft[sc->sc_txsnext];
   1175 		dmamap = txs->txs_dmamap;
   1176 
   1177 		/*
   1178 		 * Load the DMA map.  If this fails, the packet either
   1179 		 * didn't fit in the allotted number of segments, or we
   1180 		 * were short on resources.  For the too-many-segments
   1181 		 * case, we simply report an error and drop the packet,
   1182 		 * since we can't sanely copy a jumbo packet to a single
   1183 		 * buffer.
   1184 		 */
   1185 		error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
   1186 		    BUS_DMA_WRITE|BUS_DMA_NOWAIT);
   1187 		if (error) {
   1188 			if (error == EFBIG) {
   1189 				DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
   1190 				printf("%s: Tx packet consumes too many "
   1191 				    "DMA segments, dropping...\n",
   1192 				    device_xname(sc->sc_dev));
   1193 				IFQ_DEQUEUE(&ifp->if_snd, m0);
   1194 				m_freem(m0);
   1195 				continue;
   1196 			}
   1197 			/*
   1198 			 * Short on resources, just stop for now.
   1199 			 */
   1200 			DPRINTF(DGE_DEBUG_TX,
   1201 			    ("%s: TX: dmamap load failed: %d\n",
   1202 			    device_xname(sc->sc_dev), error));
   1203 			break;
   1204 		}
   1205 
   1206 		/*
   1207 		 * Ensure we have enough descriptors free to describe
   1208 		 * the packet.  Note, we always reserve one descriptor
   1209 		 * at the end of the ring due to the semantics of the
   1210 		 * TDT register, plus one more in the event we need
   1211 		 * to re-load checksum offload context.
   1212 		 */
   1213 		if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
   1214 			/*
   1215 			 * Not enough free descriptors to transmit this
   1216 			 * packet.  We haven't committed anything yet,
   1217 			 * so just unload the DMA map, put the packet
   1218 			 * pack on the queue, and punt.  Notify the upper
   1219 			 * layer that there are no more slots left.
   1220 			 */
   1221 			DPRINTF(DGE_DEBUG_TX,
   1222 			    ("%s: TX: need %d descriptors, have %d\n",
   1223 			    device_xname(sc->sc_dev), dmamap->dm_nsegs,
   1224 			    sc->sc_txfree - 1));
   1225 			ifp->if_flags |= IFF_OACTIVE;
   1226 			bus_dmamap_unload(sc->sc_dmat, dmamap);
   1227 			DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
   1228 			break;
   1229 		}
   1230 
   1231 		IFQ_DEQUEUE(&ifp->if_snd, m0);
   1232 
   1233 		/*
   1234 		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
   1235 		 */
   1236 
   1237 		/* Sync the DMA map. */
   1238 		bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
   1239 		    BUS_DMASYNC_PREWRITE);
   1240 
   1241 		DPRINTF(DGE_DEBUG_TX,
   1242 		    ("%s: TX: packet has %d DMA segments\n",
   1243 		    device_xname(sc->sc_dev), dmamap->dm_nsegs));
   1244 
   1245 		DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
   1246 
   1247 		/*
   1248 		 * Store a pointer to the packet so that we can free it
   1249 		 * later.
   1250 		 *
   1251 		 * Initially, we consider the number of descriptors the
   1252 		 * packet uses the number of DMA segments.  This may be
   1253 		 * incremented by 1 if we do checksum offload (a descriptor
   1254 		 * is used to set the checksum context).
   1255 		 */
   1256 		txs->txs_mbuf = m0;
   1257 		txs->txs_firstdesc = sc->sc_txnext;
   1258 		txs->txs_ndesc = dmamap->dm_nsegs;
   1259 
   1260 		/*
   1261 		 * Set up checksum offload parameters for
   1262 		 * this packet.
   1263 		 */
   1264 		if (m0->m_pkthdr.csum_flags &
   1265 		    (M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
   1266 			if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
   1267 				/* Error message already displayed. */
   1268 				bus_dmamap_unload(sc->sc_dmat, dmamap);
   1269 				continue;
   1270 			}
   1271 		} else {
   1272 			cksumfields = 0;
   1273 		}
   1274 
   1275 		cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
   1276 
   1277 		/*
   1278 		 * Initialize the transmit descriptor.
   1279 		 */
   1280 		for (nexttx = sc->sc_txnext, seg = 0;
   1281 		     seg < dmamap->dm_nsegs;
   1282 		     seg++, nexttx = DGE_NEXTTX(nexttx)) {
   1283 			/*
   1284 			 * Note: we currently only use 32-bit DMA
   1285 			 * addresses.
   1286 			 */
   1287 			sc->sc_txdescs[nexttx].dt_baddrh = 0;
   1288 			sc->sc_txdescs[nexttx].dt_baddrl =
   1289 			    htole32(dmamap->dm_segs[seg].ds_addr);
   1290 			sc->sc_txdescs[nexttx].dt_ctl =
   1291 			    htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
   1292 			sc->sc_txdescs[nexttx].dt_status = 0;
   1293 			sc->sc_txdescs[nexttx].dt_popts = cksumfields;
   1294 			sc->sc_txdescs[nexttx].dt_vlan = 0;
   1295 			lasttx = nexttx;
   1296 
   1297 			DPRINTF(DGE_DEBUG_TX,
   1298 			    ("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
   1299 			    device_xname(sc->sc_dev), nexttx,
   1300 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
   1301 			    (unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
   1302 		}
   1303 
   1304 		KASSERT(lasttx != -1);
   1305 
   1306 		/*
   1307 		 * Set up the command byte on the last descriptor of
   1308 		 * the packet.  If we're in the interrupt delay window,
   1309 		 * delay the interrupt.
   1310 		 */
   1311 		sc->sc_txdescs[lasttx].dt_ctl |=
   1312 		    htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
   1313 
   1314 		txs->txs_lastdesc = lasttx;
   1315 
   1316 		DPRINTF(DGE_DEBUG_TX,
   1317 		    ("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
   1318 		    lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
   1319 
   1320 		/* Sync the descriptors we're using. */
   1321 		DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
   1322 		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1323 
   1324 		/* Give the packet to the chip. */
   1325 		CSR_WRITE(sc, DGE_TDT, nexttx);
   1326 
   1327 		DPRINTF(DGE_DEBUG_TX,
   1328 		    ("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
   1329 
   1330 		DPRINTF(DGE_DEBUG_TX,
   1331 		    ("%s: TX: finished transmitting packet, job %d\n",
   1332 		    device_xname(sc->sc_dev), sc->sc_txsnext));
   1333 
   1334 		/* Advance the tx pointer. */
   1335 		sc->sc_txfree -= txs->txs_ndesc;
   1336 		sc->sc_txnext = nexttx;
   1337 
   1338 		sc->sc_txsfree--;
   1339 		sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
   1340 
   1341 		/* Pass the packet to any BPF listeners. */
   1342 		bpf_mtap(ifp, m0);
   1343 	}
   1344 
   1345 	if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
   1346 		/* No more slots; notify upper layer. */
   1347 		ifp->if_flags |= IFF_OACTIVE;
   1348 	}
   1349 
   1350 	if (sc->sc_txfree != ofree) {
   1351 		/* Set a watchdog timer in case the chip flakes out. */
   1352 		ifp->if_timer = 5;
   1353 	}
   1354 }
   1355 
   1356 /*
   1357  * dge_watchdog:		[ifnet interface function]
   1358  *
   1359  *	Watchdog timer handler.
   1360  */
   1361 static void
   1362 dge_watchdog(struct ifnet *ifp)
   1363 {
   1364 	struct dge_softc *sc = ifp->if_softc;
   1365 
   1366 	/*
   1367 	 * Since we're using delayed interrupts, sweep up
   1368 	 * before we report an error.
   1369 	 */
   1370 	dge_txintr(sc);
   1371 
   1372 	if (sc->sc_txfree != DGE_NTXDESC) {
   1373 		printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
   1374 		    device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
   1375 		    sc->sc_txnext);
   1376 		ifp->if_oerrors++;
   1377 
   1378 		/* Reset the interface. */
   1379 		(void) dge_init(ifp);
   1380 	}
   1381 
   1382 	/* Try to get more packets going. */
   1383 	dge_start(ifp);
   1384 }
   1385 
   1386 /*
   1387  * dge_ioctl:		[ifnet interface function]
   1388  *
   1389  *	Handle control requests from the operator.
   1390  */
   1391 static int
   1392 dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
   1393 {
   1394 	struct dge_softc *sc = ifp->if_softc;
   1395 	struct ifreq *ifr = (struct ifreq *) data;
   1396 	pcireg_t preg;
   1397 	int s, error, mmrbc;
   1398 
   1399 	s = splnet();
   1400 
   1401 	switch (cmd) {
   1402 	case SIOCSIFMEDIA:
   1403 	case SIOCGIFMEDIA:
   1404 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
   1405 		break;
   1406 
   1407 	case SIOCSIFMTU:
   1408 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
   1409 			error = EINVAL;
   1410 		else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
   1411 			break;
   1412 		else if (ifp->if_flags & IFF_UP)
   1413 			error = (*ifp->if_init)(ifp);
   1414 		else
   1415 			error = 0;
   1416 		break;
   1417 
   1418         case SIOCSIFFLAGS:
   1419 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
   1420 			break;
   1421 		/* extract link flags */
   1422 		if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1423 		    (ifp->if_flags & IFF_LINK1) == 0)
   1424 			mmrbc = PCIX_MMRBC_512;
   1425 		else if ((ifp->if_flags & IFF_LINK0) == 0 &&
   1426 		    (ifp->if_flags & IFF_LINK1) != 0)
   1427 			mmrbc = PCIX_MMRBC_1024;
   1428 		else if ((ifp->if_flags & IFF_LINK0) != 0 &&
   1429 		    (ifp->if_flags & IFF_LINK1) == 0)
   1430 			mmrbc = PCIX_MMRBC_2048;
   1431 		else
   1432 			mmrbc = PCIX_MMRBC_4096;
   1433 		if (mmrbc != sc->sc_mmrbc) {
   1434 			preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
   1435 			preg &= ~PCIX_MMRBC_MSK;
   1436 			preg |= mmrbc;
   1437 			pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
   1438 			sc->sc_mmrbc = mmrbc;
   1439 		}
   1440                 /* FALLTHROUGH */
   1441 	default:
   1442 		if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
   1443 			break;
   1444 
   1445 		error = 0;
   1446 
   1447 		if (cmd == SIOCSIFCAP)
   1448 			error = (*ifp->if_init)(ifp);
   1449 		else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
   1450 			;
   1451 		else if (ifp->if_flags & IFF_RUNNING) {
   1452 			/*
   1453 			 * Multicast list has changed; set the hardware filter
   1454 			 * accordingly.
   1455 			 */
   1456 			dge_set_filter(sc);
   1457 		}
   1458 		break;
   1459 	}
   1460 
   1461 	/* Try to get more packets going. */
   1462 	dge_start(ifp);
   1463 
   1464 	splx(s);
   1465 	return (error);
   1466 }
   1467 
   1468 /*
   1469  * dge_intr:
   1470  *
   1471  *	Interrupt service routine.
   1472  */
   1473 static int
   1474 dge_intr(void *arg)
   1475 {
   1476 	struct dge_softc *sc = arg;
   1477 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1478 	uint32_t icr;
   1479 	int wantinit, handled = 0;
   1480 
   1481 	for (wantinit = 0; wantinit == 0;) {
   1482 		icr = CSR_READ(sc, DGE_ICR);
   1483 		if ((icr & sc->sc_icr) == 0)
   1484 			break;
   1485 
   1486 		rnd_add_uint32(&sc->rnd_source, icr);
   1487 
   1488 		handled = 1;
   1489 
   1490 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1491 		if (icr & (ICR_RXDMT0|ICR_RXT0)) {
   1492 			DPRINTF(DGE_DEBUG_RX,
   1493 			    ("%s: RX: got Rx intr 0x%08x\n",
   1494 			    device_xname(sc->sc_dev),
   1495 			    icr & (ICR_RXDMT0|ICR_RXT0)));
   1496 			DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
   1497 		}
   1498 #endif
   1499 		dge_rxintr(sc);
   1500 
   1501 #if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
   1502 		if (icr & ICR_TXDW) {
   1503 			DPRINTF(DGE_DEBUG_TX,
   1504 			    ("%s: TX: got TXDW interrupt\n",
   1505 			    device_xname(sc->sc_dev)));
   1506 			DGE_EVCNT_INCR(&sc->sc_ev_txdw);
   1507 		}
   1508 		if (icr & ICR_TXQE)
   1509 			DGE_EVCNT_INCR(&sc->sc_ev_txqe);
   1510 #endif
   1511 		dge_txintr(sc);
   1512 
   1513 		if (icr & (ICR_LSC|ICR_RXSEQ)) {
   1514 			DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
   1515 			dge_linkintr(sc, icr);
   1516 		}
   1517 
   1518 		if (icr & ICR_RXO) {
   1519 			printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
   1520 			wantinit = 1;
   1521 		}
   1522 	}
   1523 
   1524 	if (handled) {
   1525 		if (wantinit)
   1526 			dge_init(ifp);
   1527 
   1528 		/* Try to get more packets going. */
   1529 		dge_start(ifp);
   1530 	}
   1531 
   1532 	return (handled);
   1533 }
   1534 
   1535 /*
   1536  * dge_txintr:
   1537  *
   1538  *	Helper; handle transmit interrupts.
   1539  */
   1540 static void
   1541 dge_txintr(struct dge_softc *sc)
   1542 {
   1543 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1544 	struct dge_txsoft *txs;
   1545 	uint8_t status;
   1546 	int i;
   1547 
   1548 	ifp->if_flags &= ~IFF_OACTIVE;
   1549 
   1550 	/*
   1551 	 * Go through the Tx list and free mbufs for those
   1552 	 * frames which have been transmitted.
   1553 	 */
   1554 	for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
   1555 	     i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
   1556 		txs = &sc->sc_txsoft[i];
   1557 
   1558 		DPRINTF(DGE_DEBUG_TX,
   1559 		    ("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
   1560 
   1561 		DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
   1562 		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1563 
   1564 		status =
   1565 		    sc->sc_txdescs[txs->txs_lastdesc].dt_status;
   1566 		if ((status & TDESC_STA_DD) == 0) {
   1567 			DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
   1568 			    BUS_DMASYNC_PREREAD);
   1569 			break;
   1570 		}
   1571 
   1572 		DPRINTF(DGE_DEBUG_TX,
   1573 		    ("%s: TX: job %d done: descs %d..%d\n",
   1574 		    device_xname(sc->sc_dev), i, txs->txs_firstdesc,
   1575 		    txs->txs_lastdesc));
   1576 
   1577 		ifp->if_opackets++;
   1578 		sc->sc_txfree += txs->txs_ndesc;
   1579 		bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
   1580 		    0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1581 		bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   1582 		m_freem(txs->txs_mbuf);
   1583 		txs->txs_mbuf = NULL;
   1584 	}
   1585 
   1586 	/* Update the dirty transmit buffer pointer. */
   1587 	sc->sc_txsdirty = i;
   1588 	DPRINTF(DGE_DEBUG_TX,
   1589 	    ("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
   1590 
   1591 	/*
   1592 	 * If there are no more pending transmissions, cancel the watchdog
   1593 	 * timer.
   1594 	 */
   1595 	if (sc->sc_txsfree == DGE_TXQUEUELEN)
   1596 		ifp->if_timer = 0;
   1597 }
   1598 
   1599 /*
   1600  * dge_rxintr:
   1601  *
   1602  *	Helper; handle receive interrupts.
   1603  */
   1604 static void
   1605 dge_rxintr(struct dge_softc *sc)
   1606 {
   1607 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   1608 	struct dge_rxsoft *rxs;
   1609 	struct mbuf *m;
   1610 	int i, len;
   1611 	uint8_t status, errors;
   1612 
   1613 	for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
   1614 		rxs = &sc->sc_rxsoft[i];
   1615 
   1616 		DPRINTF(DGE_DEBUG_RX,
   1617 		    ("%s: RX: checking descriptor %d\n",
   1618 		    device_xname(sc->sc_dev), i));
   1619 
   1620 		DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
   1621 
   1622 		status = sc->sc_rxdescs[i].dr_status;
   1623 		errors = sc->sc_rxdescs[i].dr_errors;
   1624 		len = le16toh(sc->sc_rxdescs[i].dr_len);
   1625 
   1626 		if ((status & RDESC_STS_DD) == 0) {
   1627 			/*
   1628 			 * We have processed all of the receive descriptors.
   1629 			 */
   1630 			DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
   1631 			break;
   1632 		}
   1633 
   1634 		if (__predict_false(sc->sc_rxdiscard)) {
   1635 			DPRINTF(DGE_DEBUG_RX,
   1636 			    ("%s: RX: discarding contents of descriptor %d\n",
   1637 			    device_xname(sc->sc_dev), i));
   1638 			DGE_INIT_RXDESC(sc, i);
   1639 			if (status & RDESC_STS_EOP) {
   1640 				/* Reset our state. */
   1641 				DPRINTF(DGE_DEBUG_RX,
   1642 				    ("%s: RX: resetting rxdiscard -> 0\n",
   1643 				    device_xname(sc->sc_dev)));
   1644 				sc->sc_rxdiscard = 0;
   1645 			}
   1646 			continue;
   1647 		}
   1648 
   1649 		bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1650 		    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
   1651 
   1652 		m = rxs->rxs_mbuf;
   1653 
   1654 		/*
   1655 		 * Add a new receive buffer to the ring.
   1656 		 */
   1657 		if (dge_add_rxbuf(sc, i) != 0) {
   1658 			/*
   1659 			 * Failed, throw away what we've done so
   1660 			 * far, and discard the rest of the packet.
   1661 			 */
   1662 			ifp->if_ierrors++;
   1663 			bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   1664 			    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   1665 			DGE_INIT_RXDESC(sc, i);
   1666 			if ((status & RDESC_STS_EOP) == 0)
   1667 				sc->sc_rxdiscard = 1;
   1668 			if (sc->sc_rxhead != NULL)
   1669 				m_freem(sc->sc_rxhead);
   1670 			DGE_RXCHAIN_RESET(sc);
   1671 			DPRINTF(DGE_DEBUG_RX,
   1672 			    ("%s: RX: Rx buffer allocation failed, "
   1673 			    "dropping packet%s\n", device_xname(sc->sc_dev),
   1674 			    sc->sc_rxdiscard ? " (discard)" : ""));
   1675 			continue;
   1676 		}
   1677 		DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
   1678 
   1679 		DGE_RXCHAIN_LINK(sc, m);
   1680 
   1681 		m->m_len = len;
   1682 
   1683 		DPRINTF(DGE_DEBUG_RX,
   1684 		    ("%s: RX: buffer at %p len %d\n",
   1685 		    device_xname(sc->sc_dev), m->m_data, len));
   1686 
   1687 		/*
   1688 		 * If this is not the end of the packet, keep
   1689 		 * looking.
   1690 		 */
   1691 		if ((status & RDESC_STS_EOP) == 0) {
   1692 			sc->sc_rxlen += len;
   1693 			DPRINTF(DGE_DEBUG_RX,
   1694 			    ("%s: RX: not yet EOP, rxlen -> %d\n",
   1695 			    device_xname(sc->sc_dev), sc->sc_rxlen));
   1696 			continue;
   1697 		}
   1698 
   1699 		/*
   1700 		 * Okay, we have the entire packet now...
   1701 		 */
   1702 		*sc->sc_rxtailp = NULL;
   1703 		m = sc->sc_rxhead;
   1704 		len += sc->sc_rxlen;
   1705 
   1706 		DGE_RXCHAIN_RESET(sc);
   1707 
   1708 		DPRINTF(DGE_DEBUG_RX,
   1709 		    ("%s: RX: have entire packet, len -> %d\n",
   1710 		    device_xname(sc->sc_dev), len));
   1711 
   1712 		/*
   1713 		 * If an error occurred, update stats and drop the packet.
   1714 		 */
   1715 		if (errors &
   1716 		     (RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
   1717 			ifp->if_ierrors++;
   1718 			if (errors & RDESC_ERR_SE)
   1719 				printf("%s: symbol error\n",
   1720 				    device_xname(sc->sc_dev));
   1721 			else if (errors & RDESC_ERR_P)
   1722 				printf("%s: parity error\n",
   1723 				    device_xname(sc->sc_dev));
   1724 			else if (errors & RDESC_ERR_CE)
   1725 				printf("%s: CRC error\n",
   1726 				    device_xname(sc->sc_dev));
   1727 			m_freem(m);
   1728 			continue;
   1729 		}
   1730 
   1731 		/*
   1732 		 * No errors.  Receive the packet.
   1733 		 */
   1734 		m->m_pkthdr.rcvif = ifp;
   1735 		m->m_pkthdr.len = len;
   1736 
   1737 		/*
   1738 		 * Set up checksum info for this packet.
   1739 		 */
   1740 		if (status & RDESC_STS_IPCS) {
   1741 			DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
   1742 			m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   1743 			if (errors & RDESC_ERR_IPE)
   1744 				m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
   1745 		}
   1746 		if (status & RDESC_STS_TCPCS) {
   1747 			/*
   1748 			 * Note: we don't know if this was TCP or UDP,
   1749 			 * so we just set both bits, and expect the
   1750 			 * upper layers to deal.
   1751 			 */
   1752 			DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
   1753 			m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
   1754 			if (errors & RDESC_ERR_TCPE)
   1755 				m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
   1756 		}
   1757 
   1758 		ifp->if_ipackets++;
   1759 
   1760 		/* Pass this up to any BPF listeners. */
   1761 		bpf_mtap(ifp, m);
   1762 
   1763 		/* Pass it on. */
   1764 		(*ifp->if_input)(ifp, m);
   1765 	}
   1766 
   1767 	/* Update the receive pointer. */
   1768 	sc->sc_rxptr = i;
   1769 
   1770 	DPRINTF(DGE_DEBUG_RX,
   1771 	    ("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
   1772 }
   1773 
   1774 /*
   1775  * dge_linkintr:
   1776  *
   1777  *	Helper; handle link interrupts.
   1778  */
   1779 static void
   1780 dge_linkintr(struct dge_softc *sc, uint32_t icr)
   1781 {
   1782 	uint32_t status;
   1783 
   1784 	if (icr & ICR_LSC) {
   1785 		status = CSR_READ(sc, DGE_STATUS);
   1786 		if (status & STATUS_LINKUP) {
   1787 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
   1788 			    device_xname(sc->sc_dev)));
   1789 		} else {
   1790 			DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
   1791 			    device_xname(sc->sc_dev)));
   1792 		}
   1793 	} else if (icr & ICR_RXSEQ) {
   1794 		DPRINTF(DGE_DEBUG_LINK,
   1795 		    ("%s: LINK: Receive sequence error\n",
   1796 		    device_xname(sc->sc_dev)));
   1797 	}
   1798 	/* XXX - fix errata */
   1799 }
   1800 
   1801 /*
   1802  * dge_reset:
   1803  *
   1804  *	Reset the i82597 chip.
   1805  */
   1806 static void
   1807 dge_reset(struct dge_softc *sc)
   1808 {
   1809 	int i;
   1810 
   1811 	/*
   1812 	 * Do a chip reset.
   1813 	 */
   1814 	CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
   1815 
   1816 	delay(10000);
   1817 
   1818 	for (i = 0; i < 1000; i++) {
   1819 		if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
   1820 			break;
   1821 		delay(20);
   1822 	}
   1823 
   1824 	if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
   1825 		printf("%s: WARNING: reset failed to complete\n",
   1826 		    device_xname(sc->sc_dev));
   1827         /*
   1828          * Reset the EEPROM logic.
   1829          * This will cause the chip to reread its default values,
   1830 	 * which doesn't happen otherwise (errata).
   1831          */
   1832         CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
   1833         delay(10000);
   1834 }
   1835 
   1836 /*
   1837  * dge_init:		[ifnet interface function]
   1838  *
   1839  *	Initialize the interface.  Must be called at splnet().
   1840  */
   1841 static int
   1842 dge_init(struct ifnet *ifp)
   1843 {
   1844 	struct dge_softc *sc = ifp->if_softc;
   1845 	struct dge_rxsoft *rxs;
   1846 	int i, error = 0;
   1847 	uint32_t reg;
   1848 
   1849 	/*
   1850 	 * *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
   1851 	 * There is a small but measurable benefit to avoiding the adjusment
   1852 	 * of the descriptor so that the headers are aligned, for normal mtu,
   1853 	 * on such platforms.  One possibility is that the DMA itself is
   1854 	 * slightly more efficient if the front of the entire packet (instead
   1855 	 * of the front of the headers) is aligned.
   1856 	 *
   1857 	 * Note we must always set align_tweak to 0 if we are using
   1858 	 * jumbo frames.
   1859 	 */
   1860 #ifdef __NO_STRICT_ALIGNMENT
   1861 	sc->sc_align_tweak = 0;
   1862 #else
   1863 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
   1864 		sc->sc_align_tweak = 0;
   1865 	else
   1866 		sc->sc_align_tweak = 2;
   1867 #endif /* __NO_STRICT_ALIGNMENT */
   1868 
   1869 	/* Cancel any pending I/O. */
   1870 	dge_stop(ifp, 0);
   1871 
   1872 	/* Reset the chip to a known state. */
   1873 	dge_reset(sc);
   1874 
   1875 	/* Initialize the transmit descriptor ring. */
   1876 	memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
   1877 	DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
   1878 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
   1879 	sc->sc_txfree = DGE_NTXDESC;
   1880 	sc->sc_txnext = 0;
   1881 
   1882 	sc->sc_txctx_ipcs = 0xffffffff;
   1883 	sc->sc_txctx_tucs = 0xffffffff;
   1884 
   1885 	CSR_WRITE(sc, DGE_TDBAH, 0);
   1886 	CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
   1887 	CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
   1888 	CSR_WRITE(sc, DGE_TDH, 0);
   1889 	CSR_WRITE(sc, DGE_TDT, 0);
   1890 	CSR_WRITE(sc, DGE_TIDV, TIDV);
   1891 
   1892 #if 0
   1893 	CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
   1894 	    TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
   1895 #endif
   1896 	CSR_WRITE(sc, DGE_RXDCTL,
   1897 	    RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
   1898 	    RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
   1899 	    RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
   1900 
   1901 	/* Initialize the transmit job descriptors. */
   1902 	for (i = 0; i < DGE_TXQUEUELEN; i++)
   1903 		sc->sc_txsoft[i].txs_mbuf = NULL;
   1904 	sc->sc_txsfree = DGE_TXQUEUELEN;
   1905 	sc->sc_txsnext = 0;
   1906 	sc->sc_txsdirty = 0;
   1907 
   1908 	/*
   1909 	 * Initialize the receive descriptor and receive job
   1910 	 * descriptor rings.
   1911 	 */
   1912 	CSR_WRITE(sc, DGE_RDBAH, 0);
   1913 	CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
   1914 	CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
   1915 	CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
   1916 	CSR_WRITE(sc, DGE_RDT, 0);
   1917 	CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
   1918 	CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
   1919 	CSR_WRITE(sc, DGE_FCRTH, FCRTH);
   1920 
   1921 	for (i = 0; i < DGE_NRXDESC; i++) {
   1922 		rxs = &sc->sc_rxsoft[i];
   1923 		if (rxs->rxs_mbuf == NULL) {
   1924 			if ((error = dge_add_rxbuf(sc, i)) != 0) {
   1925 				printf("%s: unable to allocate or map rx "
   1926 				    "buffer %d, error = %d\n",
   1927 				    device_xname(sc->sc_dev), i, error);
   1928 				/*
   1929 				 * XXX Should attempt to run with fewer receive
   1930 				 * XXX buffers instead of just failing.
   1931 				 */
   1932 				dge_rxdrain(sc);
   1933 				goto out;
   1934 			}
   1935 		}
   1936 		DGE_INIT_RXDESC(sc, i);
   1937 	}
   1938 	sc->sc_rxptr = DGE_RXSPACE;
   1939 	sc->sc_rxdiscard = 0;
   1940 	DGE_RXCHAIN_RESET(sc);
   1941 
   1942 	if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
   1943 		sc->sc_ctrl0 |= CTRL0_JFE;
   1944 		CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
   1945 	}
   1946 
   1947 	/* Write the control registers. */
   1948 	CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
   1949 
   1950 	/*
   1951 	 * Set up checksum offload parameters.
   1952 	 */
   1953 	reg = CSR_READ(sc, DGE_RXCSUM);
   1954 	if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
   1955 		reg |= RXCSUM_IPOFL;
   1956 	else
   1957 		reg &= ~RXCSUM_IPOFL;
   1958 	if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
   1959 		reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
   1960 	else {
   1961 		reg &= ~RXCSUM_TUOFL;
   1962 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
   1963 			reg &= ~RXCSUM_IPOFL;
   1964 	}
   1965 	CSR_WRITE(sc, DGE_RXCSUM, reg);
   1966 
   1967 	/*
   1968 	 * Set up the interrupt registers.
   1969 	 */
   1970 	CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
   1971 	sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
   1972 	    ICR_RXO | ICR_RXT0;
   1973 
   1974 	CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
   1975 
   1976 	/*
   1977 	 * Set up the transmit control register.
   1978 	 */
   1979 	sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
   1980 	CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
   1981 
   1982 	/*
   1983 	 * Set up the receive control register; we actually program
   1984 	 * the register when we set the receive filter.  Use multicast
   1985 	 * address offset type 0.
   1986 	 */
   1987 	sc->sc_mchash_type = 0;
   1988 
   1989 	sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
   1990 	    RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
   1991 
   1992 #ifdef DGE_OFFBYONE_RXBUG
   1993 	sc->sc_rctl |= RCTL_BSIZE_16k;
   1994 #else
   1995 	switch(MCLBYTES) {
   1996 	case 2048:
   1997 		sc->sc_rctl |= RCTL_BSIZE_2k;
   1998 		break;
   1999 	case 4096:
   2000 		sc->sc_rctl |= RCTL_BSIZE_4k;
   2001 		break;
   2002 	case 8192:
   2003 		sc->sc_rctl |= RCTL_BSIZE_8k;
   2004 		break;
   2005 	case 16384:
   2006 		sc->sc_rctl |= RCTL_BSIZE_16k;
   2007 		break;
   2008 	default:
   2009 		panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
   2010 	}
   2011 #endif
   2012 
   2013 	/* Set the receive filter. */
   2014 	/* Also sets RCTL */
   2015 	dge_set_filter(sc);
   2016 
   2017 	/* ...all done! */
   2018 	ifp->if_flags |= IFF_RUNNING;
   2019 	ifp->if_flags &= ~IFF_OACTIVE;
   2020 
   2021  out:
   2022 	if (error)
   2023 		printf("%s: interface not running\n", device_xname(sc->sc_dev));
   2024 	return (error);
   2025 }
   2026 
   2027 /*
   2028  * dge_rxdrain:
   2029  *
   2030  *	Drain the receive queue.
   2031  */
   2032 static void
   2033 dge_rxdrain(struct dge_softc *sc)
   2034 {
   2035 	struct dge_rxsoft *rxs;
   2036 	int i;
   2037 
   2038 	for (i = 0; i < DGE_NRXDESC; i++) {
   2039 		rxs = &sc->sc_rxsoft[i];
   2040 		if (rxs->rxs_mbuf != NULL) {
   2041 			bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2042 			m_freem(rxs->rxs_mbuf);
   2043 			rxs->rxs_mbuf = NULL;
   2044 		}
   2045 	}
   2046 }
   2047 
   2048 /*
   2049  * dge_stop:		[ifnet interface function]
   2050  *
   2051  *	Stop transmission on the interface.
   2052  */
   2053 static void
   2054 dge_stop(struct ifnet *ifp, int disable)
   2055 {
   2056 	struct dge_softc *sc = ifp->if_softc;
   2057 	struct dge_txsoft *txs;
   2058 	int i;
   2059 
   2060 	/* Stop the transmit and receive processes. */
   2061 	CSR_WRITE(sc, DGE_TCTL, 0);
   2062 	CSR_WRITE(sc, DGE_RCTL, 0);
   2063 
   2064 	/* Release any queued transmit buffers. */
   2065 	for (i = 0; i < DGE_TXQUEUELEN; i++) {
   2066 		txs = &sc->sc_txsoft[i];
   2067 		if (txs->txs_mbuf != NULL) {
   2068 			bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
   2069 			m_freem(txs->txs_mbuf);
   2070 			txs->txs_mbuf = NULL;
   2071 		}
   2072 	}
   2073 
   2074 	/* Mark the interface as down and cancel the watchdog timer. */
   2075 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2076 	ifp->if_timer = 0;
   2077 
   2078 	if (disable)
   2079 		dge_rxdrain(sc);
   2080 }
   2081 
   2082 /*
   2083  * dge_add_rxbuf:
   2084  *
   2085  *	Add a receive buffer to the indiciated descriptor.
   2086  */
   2087 static int
   2088 dge_add_rxbuf(struct dge_softc *sc, int idx)
   2089 {
   2090 	struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
   2091 	struct mbuf *m;
   2092 	int error;
   2093 #ifdef DGE_OFFBYONE_RXBUG
   2094 	void *buf;
   2095 #endif
   2096 
   2097 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   2098 	if (m == NULL)
   2099 		return (ENOBUFS);
   2100 
   2101 #ifdef DGE_OFFBYONE_RXBUG
   2102 	if ((buf = dge_getbuf(sc)) == NULL)
   2103 		return ENOBUFS;
   2104 
   2105 	m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
   2106 	MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
   2107 	m->m_flags |= M_EXT_RW;
   2108 
   2109 	if (rxs->rxs_mbuf != NULL)
   2110 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2111 	rxs->rxs_mbuf = m;
   2112 
   2113 	error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
   2114 	    DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
   2115 #else
   2116 	MCLGET(m, M_DONTWAIT);
   2117 	if ((m->m_flags & M_EXT) == 0) {
   2118 		m_freem(m);
   2119 		return (ENOBUFS);
   2120 	}
   2121 
   2122 	if (rxs->rxs_mbuf != NULL)
   2123 		bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
   2124 
   2125 	rxs->rxs_mbuf = m;
   2126 
   2127 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
   2128 	error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
   2129 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
   2130 #endif
   2131 	if (error) {
   2132 		printf("%s: unable to load rx DMA map %d, error = %d\n",
   2133 		    device_xname(sc->sc_dev), idx, error);
   2134 		panic("dge_add_rxbuf");	/* XXX XXX XXX */
   2135 	}
   2136 	bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
   2137 	    rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
   2138 
   2139 	return (0);
   2140 }
   2141 
   2142 /*
   2143  * dge_set_ral:
   2144  *
   2145  *	Set an entry in the receive address list.
   2146  */
   2147 static void
   2148 dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
   2149 {
   2150 	uint32_t ral_lo, ral_hi;
   2151 
   2152 	if (enaddr != NULL) {
   2153 		ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
   2154 		    (enaddr[3] << 24);
   2155 		ral_hi = enaddr[4] | (enaddr[5] << 8);
   2156 		ral_hi |= RAH_AV;
   2157 	} else {
   2158 		ral_lo = 0;
   2159 		ral_hi = 0;
   2160 	}
   2161 	CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
   2162 	CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
   2163 }
   2164 
   2165 /*
   2166  * dge_mchash:
   2167  *
   2168  *	Compute the hash of the multicast address for the 4096-bit
   2169  *	multicast filter.
   2170  */
   2171 static uint32_t
   2172 dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
   2173 {
   2174 	static const int lo_shift[4] = { 4, 3, 2, 0 };
   2175 	static const int hi_shift[4] = { 4, 5, 6, 8 };
   2176 	uint32_t hash;
   2177 
   2178 	hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
   2179 	    (((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
   2180 
   2181 	return (hash & 0xfff);
   2182 }
   2183 
   2184 /*
   2185  * dge_set_filter:
   2186  *
   2187  *	Set up the receive filter.
   2188  */
   2189 static void
   2190 dge_set_filter(struct dge_softc *sc)
   2191 {
   2192 	struct ethercom *ec = &sc->sc_ethercom;
   2193 	struct ifnet *ifp = &sc->sc_ethercom.ec_if;
   2194 	struct ether_multi *enm;
   2195 	struct ether_multistep step;
   2196 	uint32_t hash, reg, bit;
   2197 	int i;
   2198 
   2199 	sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
   2200 
   2201 	if (ifp->if_flags & IFF_BROADCAST)
   2202 		sc->sc_rctl |= RCTL_BAM;
   2203 	if (ifp->if_flags & IFF_PROMISC) {
   2204 		sc->sc_rctl |= RCTL_UPE;
   2205 		goto allmulti;
   2206 	}
   2207 
   2208 	/*
   2209 	 * Set the station address in the first RAL slot, and
   2210 	 * clear the remaining slots.
   2211 	 */
   2212 	dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
   2213 	for (i = 1; i < RA_TABSIZE; i++)
   2214 		dge_set_ral(sc, NULL, i);
   2215 
   2216 	/* Clear out the multicast table. */
   2217 	for (i = 0; i < MC_TABSIZE; i++)
   2218 		CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
   2219 
   2220 	ETHER_FIRST_MULTI(step, ec, enm);
   2221 	while (enm != NULL) {
   2222 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
   2223 			/*
   2224 			 * We must listen to a range of multicast addresses.
   2225 			 * For now, just accept all multicasts, rather than
   2226 			 * trying to set only those filter bits needed to match
   2227 			 * the range.  (At this time, the only use of address
   2228 			 * ranges is for IP multicast routing, for which the
   2229 			 * range is big enough to require all bits set.)
   2230 			 */
   2231 			goto allmulti;
   2232 		}
   2233 
   2234 		hash = dge_mchash(sc, enm->enm_addrlo);
   2235 
   2236 		reg = (hash >> 5) & 0x7f;
   2237 		bit = hash & 0x1f;
   2238 
   2239 		hash = CSR_READ(sc, DGE_MTA + (reg << 2));
   2240 		hash |= 1U << bit;
   2241 
   2242 		CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
   2243 
   2244 		ETHER_NEXT_MULTI(step, enm);
   2245 	}
   2246 
   2247 	ifp->if_flags &= ~IFF_ALLMULTI;
   2248 	goto setit;
   2249 
   2250  allmulti:
   2251 	ifp->if_flags |= IFF_ALLMULTI;
   2252 	sc->sc_rctl |= RCTL_MPE;
   2253 
   2254  setit:
   2255 	CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
   2256 }
   2257 
   2258 /*
   2259  * Read in the EEPROM info and verify checksum.
   2260  */
   2261 int
   2262 dge_read_eeprom(struct dge_softc *sc)
   2263 {
   2264 	uint16_t cksum;
   2265 	int i;
   2266 
   2267 	cksum = 0;
   2268 	for (i = 0; i < EEPROM_SIZE; i++) {
   2269 		sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
   2270 		cksum += sc->sc_eeprom[i];
   2271 	}
   2272 	return cksum != EEPROM_CKSUM;
   2273 }
   2274 
   2275 
   2276 /*
   2277  * Read a 16-bit word from address addr in the serial EEPROM.
   2278  */
   2279 uint16_t
   2280 dge_eeprom_word(struct dge_softc *sc, int addr)
   2281 {
   2282 	uint32_t reg;
   2283 	uint16_t rval = 0;
   2284 	int i;
   2285 
   2286 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
   2287 
   2288 	/* Lower clock pulse (and data in to chip) */
   2289 	CSR_WRITE(sc, DGE_EECD, reg);
   2290 	/* Select chip */
   2291 	CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
   2292 
   2293 	/* Send read command */
   2294 	dge_eeprom_clockout(sc, 1);
   2295 	dge_eeprom_clockout(sc, 1);
   2296 	dge_eeprom_clockout(sc, 0);
   2297 
   2298 	/* Send address */
   2299 	for (i = 5; i >= 0; i--)
   2300 		dge_eeprom_clockout(sc, (addr >> i) & 1);
   2301 
   2302 	/* Read data */
   2303 	for (i = 0; i < 16; i++) {
   2304 		rval <<= 1;
   2305 		rval |= dge_eeprom_clockin(sc);
   2306 	}
   2307 
   2308 	/* Deselect chip */
   2309 	CSR_WRITE(sc, DGE_EECD, reg);
   2310 
   2311 	return rval;
   2312 }
   2313 
   2314 /*
   2315  * Clock out a single bit to the EEPROM.
   2316  */
   2317 void
   2318 dge_eeprom_clockout(struct dge_softc *sc, int bit)
   2319 {
   2320 	int reg;
   2321 
   2322 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
   2323 	if (bit)
   2324 		reg |= EECD_DI;
   2325 
   2326 	CSR_WRITE(sc, DGE_EECD, reg);
   2327 	delay(2);
   2328 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
   2329 	delay(2);
   2330 	CSR_WRITE(sc, DGE_EECD, reg);
   2331 	delay(2);
   2332 }
   2333 
   2334 /*
   2335  * Clock in a single bit from EEPROM.
   2336  */
   2337 int
   2338 dge_eeprom_clockin(struct dge_softc *sc)
   2339 {
   2340 	int reg, rv;
   2341 
   2342 	reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
   2343 
   2344 	CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
   2345 	delay(2);
   2346 	rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
   2347 	CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
   2348 	delay(2);
   2349 
   2350 	return rv;
   2351 }
   2352 
   2353 static void
   2354 dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
   2355 {
   2356 	struct dge_softc *sc = ifp->if_softc;
   2357 
   2358 	ifmr->ifm_status = IFM_AVALID;
   2359 	ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
   2360 
   2361 	if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
   2362 		ifmr->ifm_status |= IFM_ACTIVE;
   2363 }
   2364 
   2365 static inline int
   2366 phwait(struct dge_softc *sc, int p, int r, int d, int type)
   2367 {
   2368         int i, mdic;
   2369 
   2370         CSR_WRITE(sc, DGE_MDIO,
   2371 	    MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
   2372         for (i = 0; i < 10; i++) {
   2373                 delay(10);
   2374                 if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
   2375                         break;
   2376         }
   2377         return mdic;
   2378 }
   2379 
   2380 static void
   2381 dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
   2382 {
   2383 	int mdic;
   2384 
   2385 	CSR_WRITE(sc, DGE_MDIRW, val);
   2386 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
   2387 		printf("%s: address cycle timeout; phy %d reg %d\n",
   2388 		    device_xname(sc->sc_dev), phy, reg);
   2389 		return;
   2390 	}
   2391 	if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
   2392 		printf("%s: write cycle timeout; phy %d reg %d\n",
   2393 		    device_xname(sc->sc_dev), phy, reg);
   2394 		return;
   2395 	}
   2396 }
   2397 
   2398 static void
   2399 dge_xgmii_reset(struct dge_softc *sc)
   2400 {
   2401 	dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
   2402 }
   2403 
   2404 static int
   2405 dge_xgmii_mediachange(struct ifnet *ifp)
   2406 {
   2407 	return 0;
   2408 }
   2409